xref: /openbmc/linux/drivers/clk/samsung/clk-cpu.c (revision 94a8cfce)
1 /*
2  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
3  * Author: Thomas Abraham <thomas.ab@samsung.com>
4  *
5  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
6  * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This file contains the utility function to register CPU clock for Samsung
13  * Exynos platforms. A CPU clock is defined as a clock supplied to a CPU or a
14  * group of CPUs. The CPU clock is typically derived from a hierarchy of clock
15  * blocks which includes mux and divider blocks. There are a number of other
16  * auxiliary clocks supplied to the CPU domain such as the debug blocks and AXI
17  * clock for CPU domain. The rates of these auxiliary clocks are related to the
18  * CPU clock rate and this relation is usually specified in the hardware manual
19  * of the SoC or supplied after the SoC characterization.
20  *
21  * The below implementation of the CPU clock allows the rate changes of the CPU
22  * clock and the corresponding rate changes of the auxillary clocks of the CPU
23  * domain. The platform clock driver provides a clock register configuration
24  * for each configurable rate which is then used to program the clock hardware
25  * registers to acheive a fast co-oridinated rate change for all the CPU domain
26  * clocks.
27  *
28  * On a rate change request for the CPU clock, the rate change is propagated
29  * upto the PLL supplying the clock to the CPU domain clock blocks. While the
30  * CPU domain PLL is reconfigured, the CPU domain clocks are driven using an
31  * alternate clock source. If required, the alternate clock source is divided
32  * down in order to keep the output clock rate within the previous OPP limits.
33 */
34 
35 #include <linux/errno.h>
36 #include "clk-cpu.h"
37 
38 #define E4210_SRC_CPU		0x0
39 #define E4210_STAT_CPU		0x200
40 #define E4210_DIV_CPU0		0x300
41 #define E4210_DIV_CPU1		0x304
42 #define E4210_DIV_STAT_CPU0	0x400
43 #define E4210_DIV_STAT_CPU1	0x404
44 
45 #define E4210_DIV0_RATIO0_MASK	0x7
46 #define E4210_DIV1_HPM_MASK	(0x7 << 4)
47 #define E4210_DIV1_COPY_MASK	(0x7 << 0)
48 #define E4210_MUX_HPM_MASK	(1 << 20)
49 #define E4210_DIV0_ATB_SHIFT	16
50 #define E4210_DIV0_ATB_MASK	(DIV_MASK << E4210_DIV0_ATB_SHIFT)
51 
52 #define MAX_DIV			8
53 #define DIV_MASK		7
54 #define DIV_MASK_ALL		0xffffffff
55 #define MUX_MASK		7
56 
57 /*
58  * Helper function to wait until divider(s) have stabilized after the divider
59  * value has changed.
60  */
61 static void wait_until_divider_stable(void __iomem *div_reg, unsigned long mask)
62 {
63 	unsigned long timeout = jiffies + msecs_to_jiffies(10);
64 
65 	do {
66 		if (!(readl(div_reg) & mask))
67 			return;
68 	} while (time_before(jiffies, timeout));
69 
70 	if (!(readl(div_reg) & mask))
71 		return;
72 
73 	pr_err("%s: timeout in divider stablization\n", __func__);
74 }
75 
76 /*
77  * Helper function to wait until mux has stabilized after the mux selection
78  * value was changed.
79  */
80 static void wait_until_mux_stable(void __iomem *mux_reg, u32 mux_pos,
81 					unsigned long mux_value)
82 {
83 	unsigned long timeout = jiffies + msecs_to_jiffies(10);
84 
85 	do {
86 		if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value)
87 			return;
88 	} while (time_before(jiffies, timeout));
89 
90 	if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value)
91 		return;
92 
93 	pr_err("%s: re-parenting mux timed-out\n", __func__);
94 }
95 
96 /* common round rate callback useable for all types of CPU clocks */
97 static long exynos_cpuclk_round_rate(struct clk_hw *hw,
98 			unsigned long drate, unsigned long *prate)
99 {
100 	struct clk *parent = __clk_get_parent(hw->clk);
101 	*prate = __clk_round_rate(parent, drate);
102 	return *prate;
103 }
104 
105 /* common recalc rate callback useable for all types of CPU clocks */
106 static unsigned long exynos_cpuclk_recalc_rate(struct clk_hw *hw,
107 			unsigned long parent_rate)
108 {
109 	/*
110 	 * The CPU clock output (armclk) rate is the same as its parent
111 	 * rate. Although there exist certain dividers inside the CPU
112 	 * clock block that could be used to divide the parent clock,
113 	 * the driver does not make use of them currently, except during
114 	 * frequency transitions.
115 	 */
116 	return parent_rate;
117 }
118 
119 static const struct clk_ops exynos_cpuclk_clk_ops = {
120 	.recalc_rate = exynos_cpuclk_recalc_rate,
121 	.round_rate = exynos_cpuclk_round_rate,
122 };
123 
124 /*
125  * Helper function to set the 'safe' dividers for the CPU clock. The parameters
126  * div and mask contain the divider value and the register bit mask of the
127  * dividers to be programmed.
128  */
129 static void exynos_set_safe_div(void __iomem *base, unsigned long div,
130 					unsigned long mask)
131 {
132 	unsigned long div0;
133 
134 	div0 = readl(base + E4210_DIV_CPU0);
135 	div0 = (div0 & ~mask) | (div & mask);
136 	writel(div0, base + E4210_DIV_CPU0);
137 	wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, mask);
138 }
139 
140 /* handler for pre-rate change notification from parent clock */
141 static int exynos_cpuclk_pre_rate_change(struct clk_notifier_data *ndata,
142 			struct exynos_cpuclk *cpuclk, void __iomem *base)
143 {
144 	const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
145 	unsigned long alt_prate = clk_get_rate(cpuclk->alt_parent);
146 	unsigned long alt_div = 0, alt_div_mask = DIV_MASK;
147 	unsigned long div0, div1 = 0, mux_reg;
148 
149 	/* find out the divider values to use for clock data */
150 	while ((cfg_data->prate * 1000) != ndata->new_rate) {
151 		if (cfg_data->prate == 0)
152 			return -EINVAL;
153 		cfg_data++;
154 	}
155 
156 	spin_lock(cpuclk->lock);
157 
158 	/*
159 	 * For the selected PLL clock frequency, get the pre-defined divider
160 	 * values. If the clock for sclk_hpm is not sourced from apll, then
161 	 * the values for DIV_COPY and DIV_HPM dividers need not be set.
162 	 */
163 	div0 = cfg_data->div0;
164 	if (test_bit(CLK_CPU_HAS_DIV1, &cpuclk->flags)) {
165 		div1 = cfg_data->div1;
166 		if (readl(base + E4210_SRC_CPU) & E4210_MUX_HPM_MASK)
167 			div1 = readl(base + E4210_DIV_CPU1) &
168 				(E4210_DIV1_HPM_MASK | E4210_DIV1_COPY_MASK);
169 	}
170 
171 	/*
172 	 * If the old parent clock speed is less than the clock speed of
173 	 * the alternate parent, then it should be ensured that at no point
174 	 * the armclk speed is more than the old_prate until the dividers are
175 	 * set.  Also workaround the issue of the dividers being set to lower
176 	 * values before the parent clock speed is set to new lower speed
177 	 * (this can result in too high speed of armclk output clocks).
178 	 */
179 	if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) {
180 		unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate);
181 
182 		alt_div = DIV_ROUND_UP(alt_prate, tmp_rate) - 1;
183 		WARN_ON(alt_div >= MAX_DIV);
184 
185 		if (test_bit(CLK_CPU_NEEDS_DEBUG_ALT_DIV, &cpuclk->flags)) {
186 			/*
187 			 * In Exynos4210, ATB clock parent is also mout_core. So
188 			 * ATB clock also needs to be mantained at safe speed.
189 			 */
190 			alt_div |= E4210_DIV0_ATB_MASK;
191 			alt_div_mask |= E4210_DIV0_ATB_MASK;
192 		}
193 		exynos_set_safe_div(base, alt_div, alt_div_mask);
194 		div0 |= alt_div;
195 	}
196 
197 	/* select sclk_mpll as the alternate parent */
198 	mux_reg = readl(base + E4210_SRC_CPU);
199 	writel(mux_reg | (1 << 16), base + E4210_SRC_CPU);
200 	wait_until_mux_stable(base + E4210_STAT_CPU, 16, 2);
201 
202 	/* alternate parent is active now. set the dividers */
203 	writel(div0, base + E4210_DIV_CPU0);
204 	wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, DIV_MASK_ALL);
205 
206 	if (test_bit(CLK_CPU_HAS_DIV1, &cpuclk->flags)) {
207 		writel(div1, base + E4210_DIV_CPU1);
208 		wait_until_divider_stable(base + E4210_DIV_STAT_CPU1,
209 				DIV_MASK_ALL);
210 	}
211 
212 	spin_unlock(cpuclk->lock);
213 	return 0;
214 }
215 
216 /* handler for post-rate change notification from parent clock */
217 static int exynos_cpuclk_post_rate_change(struct clk_notifier_data *ndata,
218 			struct exynos_cpuclk *cpuclk, void __iomem *base)
219 {
220 	const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
221 	unsigned long div = 0, div_mask = DIV_MASK;
222 	unsigned long mux_reg;
223 
224 	/* find out the divider values to use for clock data */
225 	if (test_bit(CLK_CPU_NEEDS_DEBUG_ALT_DIV, &cpuclk->flags)) {
226 		while ((cfg_data->prate * 1000) != ndata->new_rate) {
227 			if (cfg_data->prate == 0)
228 				return -EINVAL;
229 			cfg_data++;
230 		}
231 	}
232 
233 	spin_lock(cpuclk->lock);
234 
235 	/* select mout_apll as the alternate parent */
236 	mux_reg = readl(base + E4210_SRC_CPU);
237 	writel(mux_reg & ~(1 << 16), base + E4210_SRC_CPU);
238 	wait_until_mux_stable(base + E4210_STAT_CPU, 16, 1);
239 
240 	if (test_bit(CLK_CPU_NEEDS_DEBUG_ALT_DIV, &cpuclk->flags)) {
241 		div |= (cfg_data->div0 & E4210_DIV0_ATB_MASK);
242 		div_mask |= E4210_DIV0_ATB_MASK;
243 	}
244 
245 	exynos_set_safe_div(base, div, div_mask);
246 	spin_unlock(cpuclk->lock);
247 	return 0;
248 }
249 
250 /*
251  * This notifier function is called for the pre-rate and post-rate change
252  * notifications of the parent clock of cpuclk.
253  */
254 static int exynos_cpuclk_notifier_cb(struct notifier_block *nb,
255 				unsigned long event, void *data)
256 {
257 	struct clk_notifier_data *ndata = data;
258 	struct exynos_cpuclk *cpuclk;
259 	void __iomem *base;
260 	int err = 0;
261 
262 	cpuclk = container_of(nb, struct exynos_cpuclk, clk_nb);
263 	base = cpuclk->ctrl_base;
264 
265 	if (event == PRE_RATE_CHANGE)
266 		err = exynos_cpuclk_pre_rate_change(ndata, cpuclk, base);
267 	else if (event == POST_RATE_CHANGE)
268 		err = exynos_cpuclk_post_rate_change(ndata, cpuclk, base);
269 
270 	return notifier_from_errno(err);
271 }
272 
273 /* helper function to register a CPU clock */
274 int __init exynos_register_cpu_clock(struct samsung_clk_provider *ctx,
275 		unsigned int lookup_id, const char *name, const char *parent,
276 		const char *alt_parent, unsigned long offset,
277 		const struct exynos_cpuclk_cfg_data *cfg,
278 		unsigned long num_cfgs, unsigned long flags)
279 {
280 	struct exynos_cpuclk *cpuclk;
281 	struct clk_init_data init;
282 	struct clk *clk;
283 	int ret = 0;
284 
285 	cpuclk = kzalloc(sizeof(*cpuclk), GFP_KERNEL);
286 	if (!cpuclk)
287 		return -ENOMEM;
288 
289 	init.name = name;
290 	init.flags = CLK_SET_RATE_PARENT;
291 	init.parent_names = &parent;
292 	init.num_parents = 1;
293 	init.ops = &exynos_cpuclk_clk_ops;
294 
295 	cpuclk->hw.init = &init;
296 	cpuclk->ctrl_base = ctx->reg_base + offset;
297 	cpuclk->lock = &ctx->lock;
298 	cpuclk->flags = flags;
299 	cpuclk->clk_nb.notifier_call = exynos_cpuclk_notifier_cb;
300 
301 	cpuclk->alt_parent = __clk_lookup(alt_parent);
302 	if (!cpuclk->alt_parent) {
303 		pr_err("%s: could not lookup alternate parent %s\n",
304 				__func__, alt_parent);
305 		ret = -EINVAL;
306 		goto free_cpuclk;
307 	}
308 
309 	clk = __clk_lookup(parent);
310 	if (!clk) {
311 		pr_err("%s: could not lookup parent clock %s\n",
312 				__func__, parent);
313 		ret = -EINVAL;
314 		goto free_cpuclk;
315 	}
316 
317 	ret = clk_notifier_register(clk, &cpuclk->clk_nb);
318 	if (ret) {
319 		pr_err("%s: failed to register clock notifier for %s\n",
320 				__func__, name);
321 		goto free_cpuclk;
322 	}
323 
324 	cpuclk->cfg = kmemdup(cfg, sizeof(*cfg) * num_cfgs, GFP_KERNEL);
325 	if (!cpuclk->cfg) {
326 		pr_err("%s: could not allocate memory for cpuclk data\n",
327 				__func__);
328 		ret = -ENOMEM;
329 		goto unregister_clk_nb;
330 	}
331 
332 	clk = clk_register(NULL, &cpuclk->hw);
333 	if (IS_ERR(clk)) {
334 		pr_err("%s: could not register cpuclk %s\n", __func__,	name);
335 		ret = PTR_ERR(clk);
336 		goto free_cpuclk_data;
337 	}
338 
339 	samsung_clk_add_lookup(ctx, clk, lookup_id);
340 	return 0;
341 
342 free_cpuclk_data:
343 	kfree(cpuclk->cfg);
344 unregister_clk_nb:
345 	clk_notifier_unregister(__clk_lookup(parent), &cpuclk->clk_nb);
346 free_cpuclk:
347 	kfree(cpuclk);
348 	return ret;
349 }
350