xref: /openbmc/linux/drivers/clk/renesas/rcar-gen4-cpg.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R-Car Gen4 Clock Pulse Generator
4  *
5  * Copyright (C) 2021 Renesas Electronics Corp.
6  *
7  * Based on rcar-gen3-cpg.c
8  *
9  * Copyright (C) 2015-2018 Glider bvba
10  * Copyright (C) 2019 Renesas Electronics Corp.
11  */
12 
13 #include <linux/bitfield.h>
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/slab.h>
22 
23 #include "renesas-cpg-mssr.h"
24 #include "rcar-gen4-cpg.h"
25 #include "rcar-cpg-lib.h"
26 
27 static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata;
28 static unsigned int cpg_clk_extalr __initdata;
29 static u32 cpg_mode __initdata;
30 
31 #define CPG_PLLECR		0x0820	/* PLL Enable Control Register */
32 
33 #define CPG_PLLECR_PLLST(n)	BIT(8 + ((n) < 3 ? (n) - 1 : \
34 					 (n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */
35 
36 #define CPG_PLL1CR0		0x830	/* PLLn Control Registers */
37 #define CPG_PLL1CR1		0x8b0
38 #define CPG_PLL2CR0		0x834
39 #define CPG_PLL2CR1		0x8b8
40 #define CPG_PLL3CR0		0x83c
41 #define CPG_PLL3CR1		0x8c0
42 #define CPG_PLL4CR0		0x844
43 #define CPG_PLL4CR1		0x8c8
44 #define CPG_PLL6CR0		0x84c
45 #define CPG_PLL6CR1		0x8d8
46 
47 #define CPG_PLLxCR0_KICK	BIT(31)
48 #define CPG_PLLxCR0_NI		GENMASK(27, 20)	/* Integer mult. factor */
49 #define CPG_PLLxCR0_SSMODE	GENMASK(18, 16)	/* PLL mode */
50 #define CPG_PLLxCR0_SSMODE_FM	BIT(18)	/* Fractional Multiplication */
51 #define CPG_PLLxCR0_SSMODE_DITH	BIT(17) /* Frequency Dithering */
52 #define CPG_PLLxCR0_SSMODE_CENT	BIT(16)	/* Center (vs. Down) Spread Dithering */
53 #define CPG_PLLxCR0_SSFREQ	GENMASK(14, 8)	/* SSCG Modulation Frequency */
54 #define CPG_PLLxCR0_SSDEPT	GENMASK(6, 0)	/* SSCG Modulation Depth */
55 
56 #define SSMODE_FM		BIT(2)	/* Fractional Multiplication */
57 #define SSMODE_DITHER		BIT(1)	/* Frequency Dithering */
58 #define SSMODE_CENTER		BIT(0)	/* Center (vs. Down) Spread Dithering */
59 
60 /* PLL Clocks */
61 struct cpg_pll_clk {
62 	struct clk_hw hw;
63 	void __iomem *pllcr0_reg;
64 	void __iomem *pllecr_reg;
65 	u32 pllecr_pllst_mask;
66 };
67 
68 #define to_pll_clk(_hw)   container_of(_hw, struct cpg_pll_clk, hw)
69 
70 static unsigned long cpg_pll_clk_recalc_rate(struct clk_hw *hw,
71 					     unsigned long parent_rate)
72 {
73 	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
74 	unsigned int mult;
75 
76 	mult = FIELD_GET(CPG_PLLxCR0_NI, readl(pll_clk->pllcr0_reg)) + 1;
77 
78 	return parent_rate * mult * 2;
79 }
80 
81 static int cpg_pll_clk_determine_rate(struct clk_hw *hw,
82 				      struct clk_rate_request *req)
83 {
84 	unsigned int min_mult, max_mult, mult;
85 	unsigned long prate;
86 
87 	prate = req->best_parent_rate * 2;
88 	min_mult = max(div64_ul(req->min_rate, prate), 1ULL);
89 	max_mult = min(div64_ul(req->max_rate, prate), 256ULL);
90 	if (max_mult < min_mult)
91 		return -EINVAL;
92 
93 	mult = DIV_ROUND_CLOSEST_ULL(req->rate, prate);
94 	mult = clamp(mult, min_mult, max_mult);
95 
96 	req->rate = prate * mult;
97 	return 0;
98 }
99 
100 static int cpg_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
101 				unsigned long parent_rate)
102 {
103 	struct cpg_pll_clk *pll_clk = to_pll_clk(hw);
104 	unsigned int mult;
105 	u32 val;
106 
107 	mult = DIV_ROUND_CLOSEST_ULL(rate, parent_rate * 2);
108 	mult = clamp(mult, 1U, 256U);
109 
110 	if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK)
111 		return -EBUSY;
112 
113 	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI,
114 		       FIELD_PREP(CPG_PLLxCR0_NI, mult - 1));
115 
116 	/*
117 	 * Set KICK bit in PLLxCR0 to update hardware setting and wait for
118 	 * clock change completion.
119 	 */
120 	cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK);
121 
122 	/*
123 	 * Note: There is no HW information about the worst case latency.
124 	 *
125 	 * Using experimental measurements, it seems that no more than
126 	 * ~45 µs are needed, independently of the CPU rate.
127 	 * Since this value might be dependent on external xtal rate, pll
128 	 * rate or even the other emulation clocks rate, use 1000 as a
129 	 * "super" safe value.
130 	 */
131 	return readl_poll_timeout(pll_clk->pllecr_reg, val,
132 				  val & pll_clk->pllecr_pllst_mask, 0, 1000);
133 }
134 
135 static const struct clk_ops cpg_pll_clk_ops = {
136 	.recalc_rate = cpg_pll_clk_recalc_rate,
137 	.determine_rate = cpg_pll_clk_determine_rate,
138 	.set_rate = cpg_pll_clk_set_rate,
139 };
140 
141 static struct clk * __init cpg_pll_clk_register(const char *name,
142 						const char *parent_name,
143 						void __iomem *base,
144 						unsigned int cr0_offset,
145 						unsigned int cr1_offset,
146 						unsigned int index)
147 
148 {
149 	struct cpg_pll_clk *pll_clk;
150 	struct clk_init_data init = {};
151 	struct clk *clk;
152 
153 	pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL);
154 	if (!pll_clk)
155 		return ERR_PTR(-ENOMEM);
156 
157 	init.name = name;
158 	init.ops = &cpg_pll_clk_ops;
159 	init.parent_names = &parent_name;
160 	init.num_parents = 1;
161 
162 	pll_clk->hw.init = &init;
163 	pll_clk->pllcr0_reg = base + cr0_offset;
164 	pll_clk->pllecr_reg = base + CPG_PLLECR;
165 	pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index);
166 
167 	/* Disable Fractional Multiplication and Frequency Dithering */
168 	writel(0, base + cr1_offset);
169 	cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_SSMODE, 0);
170 
171 	clk = clk_register(NULL, &pll_clk->hw);
172 	if (IS_ERR(clk))
173 		kfree(pll_clk);
174 
175 	return clk;
176 }
177 /*
178  * Z0 Clock & Z1 Clock
179  */
180 #define CPG_FRQCRB			0x00000804
181 #define CPG_FRQCRB_KICK			BIT(31)
182 #define CPG_FRQCRC			0x00000808
183 
184 struct cpg_z_clk {
185 	struct clk_hw hw;
186 	void __iomem *reg;
187 	void __iomem *kick_reg;
188 	unsigned long max_rate;		/* Maximum rate for normal mode */
189 	unsigned int fixed_div;
190 	u32 mask;
191 };
192 
193 #define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
194 
195 static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
196 					   unsigned long parent_rate)
197 {
198 	struct cpg_z_clk *zclk = to_z_clk(hw);
199 	unsigned int mult;
200 	u32 val;
201 
202 	val = readl(zclk->reg) & zclk->mask;
203 	mult = 32 - (val >> __ffs(zclk->mask));
204 
205 	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
206 				     32 * zclk->fixed_div);
207 }
208 
209 static int cpg_z_clk_determine_rate(struct clk_hw *hw,
210 				    struct clk_rate_request *req)
211 {
212 	struct cpg_z_clk *zclk = to_z_clk(hw);
213 	unsigned int min_mult, max_mult, mult;
214 	unsigned long rate, prate;
215 
216 	rate = min(req->rate, req->max_rate);
217 	if (rate <= zclk->max_rate) {
218 		/* Set parent rate to initial value for normal modes */
219 		prate = zclk->max_rate;
220 	} else {
221 		/* Set increased parent rate for boost modes */
222 		prate = rate;
223 	}
224 	req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
225 						  prate * zclk->fixed_div);
226 
227 	prate = req->best_parent_rate / zclk->fixed_div;
228 	min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
229 	max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
230 	if (max_mult < min_mult)
231 		return -EINVAL;
232 
233 	mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate);
234 	mult = clamp(mult, min_mult, max_mult);
235 
236 	req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32);
237 	return 0;
238 }
239 
240 static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
241 			      unsigned long parent_rate)
242 {
243 	struct cpg_z_clk *zclk = to_z_clk(hw);
244 	unsigned int mult;
245 	unsigned int i;
246 
247 	mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
248 				       parent_rate);
249 	mult = clamp(mult, 1U, 32U);
250 
251 	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
252 		return -EBUSY;
253 
254 	cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask));
255 
256 	/*
257 	 * Set KICK bit in FRQCRB to update hardware setting and wait for
258 	 * clock change completion.
259 	 */
260 	cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
261 
262 	/*
263 	 * Note: There is no HW information about the worst case latency.
264 	 *
265 	 * Using experimental measurements, it seems that no more than
266 	 * ~10 iterations are needed, independently of the CPU rate.
267 	 * Since this value might be dependent on external xtal rate, pll1
268 	 * rate or even the other emulation clocks rate, use 1000 as a
269 	 * "super" safe value.
270 	 */
271 	for (i = 1000; i; i--) {
272 		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
273 			return 0;
274 
275 		cpu_relax();
276 	}
277 
278 	return -ETIMEDOUT;
279 }
280 
281 static const struct clk_ops cpg_z_clk_ops = {
282 	.recalc_rate = cpg_z_clk_recalc_rate,
283 	.determine_rate = cpg_z_clk_determine_rate,
284 	.set_rate = cpg_z_clk_set_rate,
285 };
286 
287 static struct clk * __init cpg_z_clk_register(const char *name,
288 					      const char *parent_name,
289 					      void __iomem *reg,
290 					      unsigned int div,
291 					      unsigned int offset)
292 {
293 	struct clk_init_data init = {};
294 	struct cpg_z_clk *zclk;
295 	struct clk *clk;
296 
297 	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
298 	if (!zclk)
299 		return ERR_PTR(-ENOMEM);
300 
301 	init.name = name;
302 	init.ops = &cpg_z_clk_ops;
303 	init.flags = CLK_SET_RATE_PARENT;
304 	init.parent_names = &parent_name;
305 	init.num_parents = 1;
306 
307 	zclk->reg = reg + CPG_FRQCRC;
308 	zclk->kick_reg = reg + CPG_FRQCRB;
309 	zclk->hw.init = &init;
310 	zclk->mask = GENMASK(offset + 4, offset);
311 	zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
312 
313 	clk = clk_register(NULL, &zclk->hw);
314 	if (IS_ERR(clk)) {
315 		kfree(zclk);
316 		return clk;
317 	}
318 
319 	zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) /
320 			 zclk->fixed_div;
321 	return clk;
322 }
323 
324 /*
325  * RPC Clocks
326  */
327 static const struct clk_div_table cpg_rpcsrc_div_table[] = {
328 	{ 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 },
329 };
330 
331 struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev,
332 	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
333 	struct clk **clks, void __iomem *base,
334 	struct raw_notifier_head *notifiers)
335 {
336 	const struct clk *parent;
337 	unsigned int mult = 1;
338 	unsigned int div = 1;
339 	u32 value;
340 
341 	parent = clks[core->parent & 0xffff];	/* some types use high bits */
342 	if (IS_ERR(parent))
343 		return ERR_CAST(parent);
344 
345 	switch (core->type) {
346 	case CLK_TYPE_GEN4_MAIN:
347 		div = cpg_pll_config->extal_div;
348 		break;
349 
350 	case CLK_TYPE_GEN4_PLL1:
351 		mult = cpg_pll_config->pll1_mult;
352 		div = cpg_pll_config->pll1_div;
353 		break;
354 
355 	case CLK_TYPE_GEN4_PLL2_VAR:
356 		/*
357 		 * PLL2 is implemented as a custom clock, to change the
358 		 * multiplier when cpufreq changes between normal and boost
359 		 * modes.
360 		 */
361 		return cpg_pll_clk_register(core->name, __clk_get_name(parent),
362 					    base, CPG_PLL2CR0, CPG_PLL2CR1, 2);
363 
364 	case CLK_TYPE_GEN4_PLL2:
365 		mult = cpg_pll_config->pll2_mult;
366 		div = cpg_pll_config->pll2_div;
367 		break;
368 
369 	case CLK_TYPE_GEN4_PLL3:
370 		mult = cpg_pll_config->pll3_mult;
371 		div = cpg_pll_config->pll3_div;
372 		break;
373 
374 	case CLK_TYPE_GEN4_PLL4:
375 		mult = cpg_pll_config->pll4_mult;
376 		div = cpg_pll_config->pll4_div;
377 		break;
378 
379 	case CLK_TYPE_GEN4_PLL5:
380 		mult = cpg_pll_config->pll5_mult;
381 		div = cpg_pll_config->pll5_div;
382 		break;
383 
384 	case CLK_TYPE_GEN4_PLL6:
385 		mult = cpg_pll_config->pll6_mult;
386 		div = cpg_pll_config->pll6_div;
387 		break;
388 
389 	case CLK_TYPE_GEN4_PLL2X_3X:
390 		value = readl(base + core->offset);
391 		mult = (((value >> 24) & 0x7f) + 1) * 2;
392 		break;
393 
394 	case CLK_TYPE_GEN4_Z:
395 		return cpg_z_clk_register(core->name, __clk_get_name(parent),
396 					  base, core->div, core->offset);
397 
398 	case CLK_TYPE_GEN4_SDSRC:
399 		div = ((readl(base + SD0CKCR1) >> 29) & 0x03) + 4;
400 		break;
401 
402 	case CLK_TYPE_GEN4_SDH:
403 		return cpg_sdh_clk_register(core->name, base + core->offset,
404 					   __clk_get_name(parent), notifiers);
405 
406 	case CLK_TYPE_GEN4_SD:
407 		return cpg_sd_clk_register(core->name, base + core->offset,
408 					   __clk_get_name(parent));
409 
410 	case CLK_TYPE_GEN4_MDSEL:
411 		/*
412 		 * Clock selectable between two parents and two fixed dividers
413 		 * using a mode pin
414 		 */
415 		if (cpg_mode & BIT(core->offset)) {
416 			div = core->div & 0xffff;
417 		} else {
418 			parent = clks[core->parent >> 16];
419 			if (IS_ERR(parent))
420 				return ERR_CAST(parent);
421 			div = core->div >> 16;
422 		}
423 		mult = 1;
424 		break;
425 
426 	case CLK_TYPE_GEN4_OSC:
427 		/*
428 		 * Clock combining OSC EXTAL predivider and a fixed divider
429 		 */
430 		div = cpg_pll_config->osc_prediv * core->div;
431 		break;
432 
433 	case CLK_TYPE_GEN4_RPCSRC:
434 		return clk_register_divider_table(NULL, core->name,
435 						  __clk_get_name(parent), 0,
436 						  base + CPG_RPCCKCR, 3, 2, 0,
437 						  cpg_rpcsrc_div_table,
438 						  &cpg_lock);
439 
440 	case CLK_TYPE_GEN4_RPC:
441 		return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR,
442 					    __clk_get_name(parent), notifiers);
443 
444 	case CLK_TYPE_GEN4_RPCD2:
445 		return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR,
446 					      __clk_get_name(parent));
447 
448 	default:
449 		return ERR_PTR(-EINVAL);
450 	}
451 
452 	return clk_register_fixed_factor(NULL, core->name,
453 					 __clk_get_name(parent), 0, mult, div);
454 }
455 
456 int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config,
457 			      unsigned int clk_extalr, u32 mode)
458 {
459 	cpg_pll_config = config;
460 	cpg_clk_extalr = clk_extalr;
461 	cpg_mode = mode;
462 
463 	spin_lock_init(&cpg_lock);
464 
465 	return 0;
466 }
467