1 /*
2  * R-Car Gen3 Clock Pulse Generator
3  *
4  * Copyright (C) 2015-2016 Glider bvba
5  *
6  * Based on clk-rcar-gen3.c
7  *
8  * Copyright (C) 2015 Renesas Electronics Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  */
14 
15 #include <linux/bug.h>
16 #include <linux/bitfield.h>
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/device.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/pm.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26 
27 #include "renesas-cpg-mssr.h"
28 #include "rcar-gen3-cpg.h"
29 
30 #define CPG_PLL0CR		0x00d8
31 #define CPG_PLL2CR		0x002c
32 #define CPG_PLL4CR		0x01f4
33 
34 struct cpg_simple_notifier {
35 	struct notifier_block nb;
36 	void __iomem *reg;
37 	u32 saved;
38 };
39 
40 static int cpg_simple_notifier_call(struct notifier_block *nb,
41 				    unsigned long action, void *data)
42 {
43 	struct cpg_simple_notifier *csn =
44 		container_of(nb, struct cpg_simple_notifier, nb);
45 
46 	switch (action) {
47 	case PM_EVENT_SUSPEND:
48 		csn->saved = readl(csn->reg);
49 		return NOTIFY_OK;
50 
51 	case PM_EVENT_RESUME:
52 		writel(csn->saved, csn->reg);
53 		return NOTIFY_OK;
54 	}
55 	return NOTIFY_DONE;
56 }
57 
58 static void cpg_simple_notifier_register(struct raw_notifier_head *notifiers,
59 					 struct cpg_simple_notifier *csn)
60 {
61 	csn->nb.notifier_call = cpg_simple_notifier_call;
62 	raw_notifier_chain_register(notifiers, &csn->nb);
63 }
64 
65 /*
66  * Z Clock & Z2 Clock
67  *
68  * Traits of this clock:
69  * prepare - clk_prepare only ensures that parents are prepared
70  * enable - clk_enable only ensures that parents are enabled
71  * rate - rate is adjustable.  clk->rate = (parent->rate * mult / 32 ) / 2
72  * parent - fixed parent.  No clk_set_parent support
73  */
74 #define CPG_FRQCRB			0x00000004
75 #define CPG_FRQCRB_KICK			BIT(31)
76 #define CPG_FRQCRC			0x000000e0
77 #define CPG_FRQCRC_ZFC_MASK		GENMASK(12, 8)
78 #define CPG_FRQCRC_Z2FC_MASK		GENMASK(4, 0)
79 
80 struct cpg_z_clk {
81 	struct clk_hw hw;
82 	void __iomem *reg;
83 	void __iomem *kick_reg;
84 	unsigned long mask;
85 };
86 
87 #define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
88 
89 static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
90 					   unsigned long parent_rate)
91 {
92 	struct cpg_z_clk *zclk = to_z_clk(hw);
93 	unsigned int mult;
94 	u32 val;
95 
96 	val = readl(zclk->reg) & zclk->mask;
97 	mult = 32 - (val >> __ffs(zclk->mask));
98 
99 	/* Factor of 2 is for fixed divider */
100 	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult, 32 * 2);
101 }
102 
103 static long cpg_z_clk_round_rate(struct clk_hw *hw, unsigned long rate,
104 				 unsigned long *parent_rate)
105 {
106 	/* Factor of 2 is for fixed divider */
107 	unsigned long prate = *parent_rate / 2;
108 	unsigned int mult;
109 
110 	mult = div_u64(rate * 32ULL, prate);
111 	mult = clamp(mult, 1U, 32U);
112 
113 	return (u64)prate * mult / 32;
114 }
115 
116 static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
117 			      unsigned long parent_rate)
118 {
119 	struct cpg_z_clk *zclk = to_z_clk(hw);
120 	unsigned int mult;
121 	unsigned int i;
122 	u32 val, kick;
123 
124 	/* Factor of 2 is for fixed divider */
125 	mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL * 2, parent_rate);
126 	mult = clamp(mult, 1U, 32U);
127 
128 	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
129 		return -EBUSY;
130 
131 	val = readl(zclk->reg) & ~zclk->mask;
132 	val |= ((32 - mult) << __ffs(zclk->mask)) & zclk->mask;
133 	writel(val, zclk->reg);
134 
135 	/*
136 	 * Set KICK bit in FRQCRB to update hardware setting and wait for
137 	 * clock change completion.
138 	 */
139 	kick = readl(zclk->kick_reg);
140 	kick |= CPG_FRQCRB_KICK;
141 	writel(kick, zclk->kick_reg);
142 
143 	/*
144 	 * Note: There is no HW information about the worst case latency.
145 	 *
146 	 * Using experimental measurements, it seems that no more than
147 	 * ~10 iterations are needed, independently of the CPU rate.
148 	 * Since this value might be dependent of external xtal rate, pll1
149 	 * rate or even the other emulation clocks rate, use 1000 as a
150 	 * "super" safe value.
151 	 */
152 	for (i = 1000; i; i--) {
153 		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
154 			return 0;
155 
156 		cpu_relax();
157 	}
158 
159 	return -ETIMEDOUT;
160 }
161 
162 static const struct clk_ops cpg_z_clk_ops = {
163 	.recalc_rate = cpg_z_clk_recalc_rate,
164 	.round_rate = cpg_z_clk_round_rate,
165 	.set_rate = cpg_z_clk_set_rate,
166 };
167 
168 static struct clk * __init cpg_z_clk_register(const char *name,
169 					      const char *parent_name,
170 					      void __iomem *reg,
171 					      unsigned long mask)
172 {
173 	struct clk_init_data init;
174 	struct cpg_z_clk *zclk;
175 	struct clk *clk;
176 
177 	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
178 	if (!zclk)
179 		return ERR_PTR(-ENOMEM);
180 
181 	init.name = name;
182 	init.ops = &cpg_z_clk_ops;
183 	init.flags = 0;
184 	init.parent_names = &parent_name;
185 	init.num_parents = 1;
186 
187 	zclk->reg = reg + CPG_FRQCRC;
188 	zclk->kick_reg = reg + CPG_FRQCRB;
189 	zclk->hw.init = &init;
190 	zclk->mask = mask;
191 
192 	clk = clk_register(NULL, &zclk->hw);
193 	if (IS_ERR(clk))
194 		kfree(zclk);
195 
196 	return clk;
197 }
198 
199 /*
200  * SDn Clock
201  */
202 #define CPG_SD_STP_HCK		BIT(9)
203 #define CPG_SD_STP_CK		BIT(8)
204 
205 #define CPG_SD_STP_MASK		(CPG_SD_STP_HCK | CPG_SD_STP_CK)
206 #define CPG_SD_FC_MASK		(0x7 << 2 | 0x3 << 0)
207 
208 #define CPG_SD_DIV_TABLE_DATA(stp_hck, stp_ck, sd_srcfc, sd_fc, sd_div) \
209 { \
210 	.val = ((stp_hck) ? CPG_SD_STP_HCK : 0) | \
211 	       ((stp_ck) ? CPG_SD_STP_CK : 0) | \
212 	       ((sd_srcfc) << 2) | \
213 	       ((sd_fc) << 0), \
214 	.div = (sd_div), \
215 }
216 
217 struct sd_div_table {
218 	u32 val;
219 	unsigned int div;
220 };
221 
222 struct sd_clock {
223 	struct clk_hw hw;
224 	const struct sd_div_table *div_table;
225 	struct cpg_simple_notifier csn;
226 	unsigned int div_num;
227 	unsigned int div_min;
228 	unsigned int div_max;
229 	unsigned int cur_div_idx;
230 };
231 
232 /* SDn divider
233  *                     sd_srcfc   sd_fc   div
234  * stp_hck   stp_ck    (div)      (div)     = sd_srcfc x sd_fc
235  *-------------------------------------------------------------------
236  *  0         0         0 (1)      1 (4)      4
237  *  0         0         1 (2)      1 (4)      8
238  *  1         0         2 (4)      1 (4)     16
239  *  1         0         3 (8)      1 (4)     32
240  *  1         0         4 (16)     1 (4)     64
241  *  0         0         0 (1)      0 (2)      2
242  *  0         0         1 (2)      0 (2)      4
243  *  1         0         2 (4)      0 (2)      8
244  *  1         0         3 (8)      0 (2)     16
245  *  1         0         4 (16)     0 (2)     32
246  */
247 static const struct sd_div_table cpg_sd_div_table[] = {
248 /*	CPG_SD_DIV_TABLE_DATA(stp_hck,  stp_ck,   sd_srcfc,   sd_fc,  sd_div) */
249 	CPG_SD_DIV_TABLE_DATA(0,        0,        0,          1,        4),
250 	CPG_SD_DIV_TABLE_DATA(0,        0,        1,          1,        8),
251 	CPG_SD_DIV_TABLE_DATA(1,        0,        2,          1,       16),
252 	CPG_SD_DIV_TABLE_DATA(1,        0,        3,          1,       32),
253 	CPG_SD_DIV_TABLE_DATA(1,        0,        4,          1,       64),
254 	CPG_SD_DIV_TABLE_DATA(0,        0,        0,          0,        2),
255 	CPG_SD_DIV_TABLE_DATA(0,        0,        1,          0,        4),
256 	CPG_SD_DIV_TABLE_DATA(1,        0,        2,          0,        8),
257 	CPG_SD_DIV_TABLE_DATA(1,        0,        3,          0,       16),
258 	CPG_SD_DIV_TABLE_DATA(1,        0,        4,          0,       32),
259 };
260 
261 #define to_sd_clock(_hw) container_of(_hw, struct sd_clock, hw)
262 
263 static int cpg_sd_clock_enable(struct clk_hw *hw)
264 {
265 	struct sd_clock *clock = to_sd_clock(hw);
266 	u32 val = readl(clock->csn.reg);
267 
268 	val &= ~(CPG_SD_STP_MASK);
269 	val |= clock->div_table[clock->cur_div_idx].val & CPG_SD_STP_MASK;
270 
271 	writel(val, clock->csn.reg);
272 
273 	return 0;
274 }
275 
276 static void cpg_sd_clock_disable(struct clk_hw *hw)
277 {
278 	struct sd_clock *clock = to_sd_clock(hw);
279 
280 	writel(readl(clock->csn.reg) | CPG_SD_STP_MASK, clock->csn.reg);
281 }
282 
283 static int cpg_sd_clock_is_enabled(struct clk_hw *hw)
284 {
285 	struct sd_clock *clock = to_sd_clock(hw);
286 
287 	return !(readl(clock->csn.reg) & CPG_SD_STP_MASK);
288 }
289 
290 static unsigned long cpg_sd_clock_recalc_rate(struct clk_hw *hw,
291 						unsigned long parent_rate)
292 {
293 	struct sd_clock *clock = to_sd_clock(hw);
294 
295 	return DIV_ROUND_CLOSEST(parent_rate,
296 				 clock->div_table[clock->cur_div_idx].div);
297 }
298 
299 static unsigned int cpg_sd_clock_calc_div(struct sd_clock *clock,
300 					  unsigned long rate,
301 					  unsigned long parent_rate)
302 {
303 	unsigned int div;
304 
305 	if (!rate)
306 		rate = 1;
307 
308 	div = DIV_ROUND_CLOSEST(parent_rate, rate);
309 
310 	return clamp_t(unsigned int, div, clock->div_min, clock->div_max);
311 }
312 
313 static long cpg_sd_clock_round_rate(struct clk_hw *hw, unsigned long rate,
314 				      unsigned long *parent_rate)
315 {
316 	struct sd_clock *clock = to_sd_clock(hw);
317 	unsigned int div = cpg_sd_clock_calc_div(clock, rate, *parent_rate);
318 
319 	return DIV_ROUND_CLOSEST(*parent_rate, div);
320 }
321 
322 static int cpg_sd_clock_set_rate(struct clk_hw *hw, unsigned long rate,
323 				   unsigned long parent_rate)
324 {
325 	struct sd_clock *clock = to_sd_clock(hw);
326 	unsigned int div = cpg_sd_clock_calc_div(clock, rate, parent_rate);
327 	u32 val;
328 	unsigned int i;
329 
330 	for (i = 0; i < clock->div_num; i++)
331 		if (div == clock->div_table[i].div)
332 			break;
333 
334 	if (i >= clock->div_num)
335 		return -EINVAL;
336 
337 	clock->cur_div_idx = i;
338 
339 	val = readl(clock->csn.reg);
340 	val &= ~(CPG_SD_STP_MASK | CPG_SD_FC_MASK);
341 	val |= clock->div_table[i].val & (CPG_SD_STP_MASK | CPG_SD_FC_MASK);
342 	writel(val, clock->csn.reg);
343 
344 	return 0;
345 }
346 
347 static const struct clk_ops cpg_sd_clock_ops = {
348 	.enable = cpg_sd_clock_enable,
349 	.disable = cpg_sd_clock_disable,
350 	.is_enabled = cpg_sd_clock_is_enabled,
351 	.recalc_rate = cpg_sd_clock_recalc_rate,
352 	.round_rate = cpg_sd_clock_round_rate,
353 	.set_rate = cpg_sd_clock_set_rate,
354 };
355 
356 static struct clk * __init cpg_sd_clk_register(const struct cpg_core_clk *core,
357 	void __iomem *base, const char *parent_name,
358 	struct raw_notifier_head *notifiers)
359 {
360 	struct clk_init_data init;
361 	struct sd_clock *clock;
362 	struct clk *clk;
363 	unsigned int i;
364 	u32 sd_fc;
365 
366 	clock = kzalloc(sizeof(*clock), GFP_KERNEL);
367 	if (!clock)
368 		return ERR_PTR(-ENOMEM);
369 
370 	init.name = core->name;
371 	init.ops = &cpg_sd_clock_ops;
372 	init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
373 	init.parent_names = &parent_name;
374 	init.num_parents = 1;
375 
376 	clock->csn.reg = base + core->offset;
377 	clock->hw.init = &init;
378 	clock->div_table = cpg_sd_div_table;
379 	clock->div_num = ARRAY_SIZE(cpg_sd_div_table);
380 
381 	sd_fc = readl(clock->csn.reg) & CPG_SD_FC_MASK;
382 	for (i = 0; i < clock->div_num; i++)
383 		if (sd_fc == (clock->div_table[i].val & CPG_SD_FC_MASK))
384 			break;
385 
386 	if (WARN_ON(i >= clock->div_num)) {
387 		kfree(clock);
388 		return ERR_PTR(-EINVAL);
389 	}
390 
391 	clock->cur_div_idx = i;
392 
393 	clock->div_max = clock->div_table[0].div;
394 	clock->div_min = clock->div_max;
395 	for (i = 1; i < clock->div_num; i++) {
396 		clock->div_max = max(clock->div_max, clock->div_table[i].div);
397 		clock->div_min = min(clock->div_min, clock->div_table[i].div);
398 	}
399 
400 	clk = clk_register(NULL, &clock->hw);
401 	if (IS_ERR(clk))
402 		goto free_clock;
403 
404 	cpg_simple_notifier_register(notifiers, &clock->csn);
405 	return clk;
406 
407 free_clock:
408 	kfree(clock);
409 	return clk;
410 }
411 
412 
413 static const struct rcar_gen3_cpg_pll_config *cpg_pll_config __initdata;
414 static unsigned int cpg_clk_extalr __initdata;
415 static u32 cpg_mode __initdata;
416 static u32 cpg_quirks __initdata;
417 
418 #define PLL_ERRATA	BIT(0)		/* Missing PLL0/2/4 post-divider */
419 #define RCKCR_CKSEL	BIT(1)		/* Manual RCLK parent selection */
420 
421 static const struct soc_device_attribute cpg_quirks_match[] __initconst = {
422 	{
423 		.soc_id = "r8a7795", .revision = "ES1.0",
424 		.data = (void *)(PLL_ERRATA | RCKCR_CKSEL),
425 	},
426 	{
427 		.soc_id = "r8a7795", .revision = "ES1.*",
428 		.data = (void *)RCKCR_CKSEL,
429 	},
430 	{
431 		.soc_id = "r8a7796", .revision = "ES1.0",
432 		.data = (void *)RCKCR_CKSEL,
433 	},
434 	{ /* sentinel */ }
435 };
436 
437 struct clk * __init rcar_gen3_cpg_clk_register(struct device *dev,
438 	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
439 	struct clk **clks, void __iomem *base,
440 	struct raw_notifier_head *notifiers)
441 {
442 	const struct clk *parent;
443 	unsigned int mult = 1;
444 	unsigned int div = 1;
445 	u32 value;
446 
447 	parent = clks[core->parent & 0xffff];	/* CLK_TYPE_PE uses high bits */
448 	if (IS_ERR(parent))
449 		return ERR_CAST(parent);
450 
451 	switch (core->type) {
452 	case CLK_TYPE_GEN3_MAIN:
453 		div = cpg_pll_config->extal_div;
454 		break;
455 
456 	case CLK_TYPE_GEN3_PLL0:
457 		/*
458 		 * PLL0 is a configurable multiplier clock. Register it as a
459 		 * fixed factor clock for now as there's no generic multiplier
460 		 * clock implementation and we currently have no need to change
461 		 * the multiplier value.
462 		 */
463 		value = readl(base + CPG_PLL0CR);
464 		mult = (((value >> 24) & 0x7f) + 1) * 2;
465 		if (cpg_quirks & PLL_ERRATA)
466 			mult *= 2;
467 		break;
468 
469 	case CLK_TYPE_GEN3_PLL1:
470 		mult = cpg_pll_config->pll1_mult;
471 		div = cpg_pll_config->pll1_div;
472 		break;
473 
474 	case CLK_TYPE_GEN3_PLL2:
475 		/*
476 		 * PLL2 is a configurable multiplier clock. Register it as a
477 		 * fixed factor clock for now as there's no generic multiplier
478 		 * clock implementation and we currently have no need to change
479 		 * the multiplier value.
480 		 */
481 		value = readl(base + CPG_PLL2CR);
482 		mult = (((value >> 24) & 0x7f) + 1) * 2;
483 		if (cpg_quirks & PLL_ERRATA)
484 			mult *= 2;
485 		break;
486 
487 	case CLK_TYPE_GEN3_PLL3:
488 		mult = cpg_pll_config->pll3_mult;
489 		div = cpg_pll_config->pll3_div;
490 		break;
491 
492 	case CLK_TYPE_GEN3_PLL4:
493 		/*
494 		 * PLL4 is a configurable multiplier clock. Register it as a
495 		 * fixed factor clock for now as there's no generic multiplier
496 		 * clock implementation and we currently have no need to change
497 		 * the multiplier value.
498 		 */
499 		value = readl(base + CPG_PLL4CR);
500 		mult = (((value >> 24) & 0x7f) + 1) * 2;
501 		if (cpg_quirks & PLL_ERRATA)
502 			mult *= 2;
503 		break;
504 
505 	case CLK_TYPE_GEN3_SD:
506 		return cpg_sd_clk_register(core, base, __clk_get_name(parent),
507 					   notifiers);
508 
509 	case CLK_TYPE_GEN3_R:
510 		if (cpg_quirks & RCKCR_CKSEL) {
511 			struct cpg_simple_notifier *csn;
512 
513 			csn = kzalloc(sizeof(*csn), GFP_KERNEL);
514 			if (!csn)
515 				return ERR_PTR(-ENOMEM);
516 
517 			csn->reg = base + CPG_RCKCR;
518 
519 			/*
520 			 * RINT is default.
521 			 * Only if EXTALR is populated, we switch to it.
522 			 */
523 			value = readl(csn->reg) & 0x3f;
524 
525 			if (clk_get_rate(clks[cpg_clk_extalr])) {
526 				parent = clks[cpg_clk_extalr];
527 				value |= BIT(15);
528 			}
529 
530 			writel(value, csn->reg);
531 			cpg_simple_notifier_register(notifiers, csn);
532 			break;
533 		}
534 
535 		/* Select parent clock of RCLK by MD28 */
536 		if (cpg_mode & BIT(28))
537 			parent = clks[cpg_clk_extalr];
538 		break;
539 
540 	case CLK_TYPE_GEN3_PE:
541 		/*
542 		 * Peripheral clock with a fixed divider, selectable between
543 		 * clean and spread spectrum parents using MD12
544 		 */
545 		if (cpg_mode & BIT(12)) {
546 			/* Clean */
547 			div = core->div & 0xffff;
548 		} else {
549 			/* SCCG */
550 			parent = clks[core->parent >> 16];
551 			if (IS_ERR(parent))
552 				return ERR_CAST(parent);
553 			div = core->div >> 16;
554 		}
555 		mult = 1;
556 		break;
557 
558 	case CLK_TYPE_GEN3_Z:
559 		return cpg_z_clk_register(core->name, __clk_get_name(parent),
560 					  base, CPG_FRQCRC_ZFC_MASK);
561 
562 	case CLK_TYPE_GEN3_Z2:
563 		return cpg_z_clk_register(core->name, __clk_get_name(parent),
564 					  base, CPG_FRQCRC_Z2FC_MASK);
565 
566 	default:
567 		return ERR_PTR(-EINVAL);
568 	}
569 
570 	return clk_register_fixed_factor(NULL, core->name,
571 					 __clk_get_name(parent), 0, mult, div);
572 }
573 
574 int __init rcar_gen3_cpg_init(const struct rcar_gen3_cpg_pll_config *config,
575 			      unsigned int clk_extalr, u32 mode)
576 {
577 	const struct soc_device_attribute *attr;
578 
579 	cpg_pll_config = config;
580 	cpg_clk_extalr = clk_extalr;
581 	cpg_mode = mode;
582 	attr = soc_device_match(cpg_quirks_match);
583 	if (attr)
584 		cpg_quirks = (uintptr_t)attr->data;
585 	pr_debug("%s: mode = 0x%x quirks = 0x%x\n", __func__, mode, cpg_quirks);
586 	return 0;
587 }
588