1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R9A09G032 clock driver
4  *
5  * Copyright (C) 2018 Renesas Electronics Europe Limited
6  *
7  * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
22 
23 struct r9a06g032_gate {
24 	u16 gate, reset, ready, midle,
25 		scon, mirack, mistat;
26 };
27 
28 /* This is used to describe a clock for instantiation */
29 struct r9a06g032_clkdesc {
30 	const char *name;
31 	uint32_t type: 3;
32 	uint32_t index: 8;
33 	uint32_t source : 8; /* source index + 1 (0 == none) */
34 	/* these are used to populate the bitsel struct */
35 	union {
36 		struct r9a06g032_gate gate;
37 		/* for dividers */
38 		struct {
39 			unsigned int div_min : 10, div_max : 10, reg: 10;
40 			u16 div_table[4];
41 		};
42 		/* For fixed-factor ones */
43 		struct {
44 			u16 div, mul;
45 		};
46 		unsigned int factor;
47 		unsigned int frequency;
48 		/* for dual gate */
49 		struct {
50 			uint16_t group : 1, index: 3;
51 			u16 sel, g1, r1, g2, r2;
52 		} dual;
53 	};
54 } __packed;
55 
56 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
57 	{ .gate = _clk, .reset = _rst, \
58 		.ready = _rdy, .midle = _midle, \
59 		.scon = _scon, .mirack = _mirack, .mistat = _mistat }
60 #define D_GATE(_idx, _n, _src, ...) \
61 	{ .type = K_GATE, .index = R9A06G032_##_idx, \
62 		.source = 1 + R9A06G032_##_src, .name = _n, \
63 		.gate = I_GATE(__VA_ARGS__), }
64 #define D_ROOT(_idx, _n, _mul, _div) \
65 	{ .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
66 		.div = _div, .mul = _mul }
67 #define D_FFC(_idx, _n, _src, _div) \
68 	{ .type = K_FFC, .index = R9A06G032_##_idx, \
69 		.source = 1 + R9A06G032_##_src, .name = _n, \
70 		.div = _div, .mul = 1}
71 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
72 	{ .type = K_DIV, .index = R9A06G032_##_idx, \
73 		.source = 1 + R9A06G032_##_src, .name = _n, \
74 		.reg = _reg, .div_min = _min, .div_max = _max, \
75 		.div_table = { __VA_ARGS__ } }
76 #define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
77 	{ .type = K_DUALGATE, .index = R9A06G032_##_idx, \
78 		.source = 1 + R9A06G032_##_src, .name = _n, \
79 		.dual = { .group = _g, .index = _gi, \
80 			.g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
81 
82 enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
83 
84 /* Internal clock IDs */
85 #define R9A06G032_CLKOUT		0
86 #define R9A06G032_CLKOUT_D10		2
87 #define R9A06G032_CLKOUT_D16		3
88 #define R9A06G032_CLKOUT_D160		4
89 #define R9A06G032_CLKOUT_D1OR2		5
90 #define R9A06G032_CLKOUT_D20		6
91 #define R9A06G032_CLKOUT_D40		7
92 #define R9A06G032_CLKOUT_D5		8
93 #define R9A06G032_CLKOUT_D8		9
94 #define R9A06G032_DIV_ADC		10
95 #define R9A06G032_DIV_I2C		11
96 #define R9A06G032_DIV_NAND		12
97 #define R9A06G032_DIV_P1_PG		13
98 #define R9A06G032_DIV_P2_PG		14
99 #define R9A06G032_DIV_P3_PG		15
100 #define R9A06G032_DIV_P4_PG		16
101 #define R9A06G032_DIV_P5_PG		17
102 #define R9A06G032_DIV_P6_PG		18
103 #define R9A06G032_DIV_QSPI0		19
104 #define R9A06G032_DIV_QSPI1		20
105 #define R9A06G032_DIV_REF_SYNC		21
106 #define R9A06G032_DIV_SDIO0		22
107 #define R9A06G032_DIV_SDIO1		23
108 #define R9A06G032_DIV_SWITCH		24
109 #define R9A06G032_DIV_UART		25
110 #define R9A06G032_DIV_MOTOR		64
111 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
112 #define R9A06G032_CLK_ECAT100_D4	79
113 #define R9A06G032_CLK_HSR100_D2		80
114 #define R9A06G032_CLK_REF_SYNC_D4	81
115 #define R9A06G032_CLK_REF_SYNC_D8	82
116 #define R9A06G032_CLK_SERCOS100_D2	83
117 #define R9A06G032_DIV_CA7		84
118 
119 #define R9A06G032_UART_GROUP_012	154
120 #define R9A06G032_UART_GROUP_34567	155
121 
122 #define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
123 
124 static const struct r9a06g032_clkdesc r9a06g032_clocks[] __initconst = {
125 	D_ROOT(CLKOUT, "clkout", 25, 1),
126 	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
127 	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
128 	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
129 	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
130 	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
131 	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
132 	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
133 	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
134 	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
135 	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
136 	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
137 	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
138 	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
139 	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
140 	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
141 	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
142 	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
143 	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
144 	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
145 	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
146 	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
147 	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
148 	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
149 	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
150 	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
151 	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
152 	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
153 	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
154 	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
155 	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
156 	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
157 	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
158 	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
159 	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
160 	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
161 	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
162 	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
163 	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
164 	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
165 	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
166 	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
167 	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
168 	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
169 	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
170 	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
171 	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
172 	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
173 	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
174 	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
175 	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
176 	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
177 	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
178 	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
179 	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
180 	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
181 	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
182 	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
183 	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
184 	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
185 	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
186 	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
187 	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
188 	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
189 	D_GATE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
190 	D_GATE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
191 	D_GATE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
192 	D_GATE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
193 	D_GATE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
194 	D_GATE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
195 	D_GATE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
196 	D_GATE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
197 	D_GATE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
198 	D_GATE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
199 	D_GATE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
200 	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
201 	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
202 	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
203 	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
204 	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
205 	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
206 	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
207 	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
208 	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
209 	D_GATE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
210 	D_GATE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
211 	D_GATE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
212 	D_GATE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
213 	D_GATE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
214 	D_GATE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
215 	D_GATE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
216 	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
217 	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
218 	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
219 	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
220 	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
221 	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
222 	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
223 	D_GATE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
224 	D_GATE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
225 	D_GATE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
226 	D_GATE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
227 	D_GATE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
228 	D_GATE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
229 	D_GATE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
230 	D_GATE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
231 	D_GATE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
232 	D_GATE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
233 	D_GATE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
234 	D_GATE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
235 	D_GATE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
236 	D_GATE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
237 	D_GATE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
238 	D_GATE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
239 	D_GATE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
240 	D_GATE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
241 	D_GATE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
242 	D_GATE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
243 	D_GATE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
244 	D_GATE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
245 	D_GATE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
246 	D_GATE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
247 	D_GATE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
248 	D_GATE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
249 	D_GATE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
250 	D_GATE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
251 	D_GATE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
252 	D_GATE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
253 	D_GATE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
254 	D_GATE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
255 	D_GATE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
256 	D_GATE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
257 	D_GATE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
258 	D_GATE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
259 	D_GATE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
260 	D_GATE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
261 	D_GATE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
262 	D_GATE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
263 	D_GATE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
264 	D_GATE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
265 	D_GATE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
266 	D_GATE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
267 	D_GATE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
268 	D_GATE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
269 	D_GATE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
270 	/*
271 	 * These are not hardware clocks, but are needed to handle the special
272 	 * case where we have a 'selector bit' that doesn't just change the
273 	 * parent for a clock, but also the gate it's suposed to use.
274 	 */
275 	{
276 		.index = R9A06G032_UART_GROUP_012,
277 		.name = "uart_group_012",
278 		.type = K_BITSEL,
279 		.source = 1 + R9A06G032_DIV_UART,
280 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
281 		.dual.sel = ((0xec / 4) << 5) | 24,
282 		.dual.group = 0,
283 	},
284 	{
285 		.index = R9A06G032_UART_GROUP_34567,
286 		.name = "uart_group_34567",
287 		.type = K_BITSEL,
288 		.source = 1 + R9A06G032_DIV_P2_PG,
289 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
290 		.dual.sel = ((0x34 / 4) << 5) | 30,
291 		.dual.group = 1,
292 	},
293 	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
294 	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
295 	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
296 	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
297 	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
298 	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
299 	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
300 	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
301 };
302 
303 struct r9a06g032_priv {
304 	struct clk_onecell_data data;
305 	spinlock_t lock; /* protects concurent access to gates */
306 	void __iomem *reg;
307 };
308 
309 /* register/bit pairs are encoded as an uint16_t */
310 static void
311 clk_rdesc_set(struct r9a06g032_priv *clocks,
312 	      u16 one, unsigned int on)
313 {
314 	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
315 	u32 val = readl(reg);
316 
317 	val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
318 	writel(val, reg);
319 }
320 
321 static int
322 clk_rdesc_get(struct r9a06g032_priv *clocks,
323 	      uint16_t one)
324 {
325 	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
326 	u32 val = readl(reg);
327 
328 	return !!(val & (1U << (one & 0x1f)));
329 }
330 
331 /*
332  * This implements the R9A09G032 clock gate 'driver'. We cannot use the system's
333  * clock gate framework as the gates on the R9A09G032 have a special enabling
334  * sequence, therefore we use this little proxy.
335  */
336 struct r9a06g032_clk_gate {
337 	struct clk_hw hw;
338 	struct r9a06g032_priv *clocks;
339 	u16 index;
340 
341 	struct r9a06g032_gate gate;
342 };
343 
344 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
345 
346 static void
347 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
348 		       struct r9a06g032_gate *g, int on)
349 {
350 	unsigned long flags;
351 
352 	WARN_ON(!g->gate);
353 
354 	spin_lock_irqsave(&clocks->lock, flags);
355 	clk_rdesc_set(clocks, g->gate, on);
356 	/* De-assert reset */
357 	if (g->reset)
358 		clk_rdesc_set(clocks, g->reset, 1);
359 	spin_unlock_irqrestore(&clocks->lock, flags);
360 
361 	/* Hardware manual recommends 5us delay after enabling clock & reset */
362 	udelay(5);
363 
364 	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
365 	 * associated SLVRDY bit in the System Controller that needs to be set
366 	 * so that the FlexWAY bus fabric passes on the read/write requests.
367 	 */
368 	if (g->ready || g->midle) {
369 		spin_lock_irqsave(&clocks->lock, flags);
370 		if (g->ready)
371 			clk_rdesc_set(clocks, g->ready, on);
372 		/* Clear 'Master Idle Request' bit */
373 		if (g->midle)
374 			clk_rdesc_set(clocks, g->midle, !on);
375 		spin_unlock_irqrestore(&clocks->lock, flags);
376 	}
377 	/* Note: We don't wait for FlexWAY Socket Connection signal */
378 }
379 
380 static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
381 {
382 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
383 
384 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
385 	return 0;
386 }
387 
388 static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
389 {
390 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
391 
392 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
393 }
394 
395 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
396 {
397 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
398 
399 	/* if clock is in reset, the gate might be on, and still not 'be' on */
400 	if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
401 		return 0;
402 
403 	return clk_rdesc_get(g->clocks, g->gate.gate);
404 }
405 
406 static const struct clk_ops r9a06g032_clk_gate_ops = {
407 	.enable = r9a06g032_clk_gate_enable,
408 	.disable = r9a06g032_clk_gate_disable,
409 	.is_enabled = r9a06g032_clk_gate_is_enabled,
410 };
411 
412 static struct clk *
413 r9a06g032_register_gate(struct r9a06g032_priv *clocks,
414 			const char *parent_name,
415 			const struct r9a06g032_clkdesc *desc)
416 {
417 	struct clk *clk;
418 	struct r9a06g032_clk_gate *g;
419 	struct clk_init_data init;
420 
421 	g = kzalloc(sizeof(*g), GFP_KERNEL);
422 	if (!g)
423 		return NULL;
424 
425 	init.name = desc->name;
426 	init.ops = &r9a06g032_clk_gate_ops;
427 	init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
428 	init.parent_names = parent_name ? &parent_name : NULL;
429 	init.num_parents = parent_name ? 1 : 0;
430 
431 	g->clocks = clocks;
432 	g->index = desc->index;
433 	g->gate = desc->gate;
434 	g->hw.init = &init;
435 
436 	/*
437 	 * important here, some clocks are already in use by the CM3, we
438 	 * have to assume they are not Linux's to play with and try to disable
439 	 * at the end of the boot!
440 	 */
441 	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
442 		init.flags |= CLK_IS_CRITICAL;
443 		pr_debug("%s was enabled, making read-only\n", desc->name);
444 	}
445 
446 	clk = clk_register(NULL, &g->hw);
447 	if (IS_ERR(clk)) {
448 		kfree(g);
449 		return NULL;
450 	}
451 	return clk;
452 }
453 
454 struct r9a06g032_clk_div {
455 	struct clk_hw hw;
456 	struct r9a06g032_priv *clocks;
457 	u16 index;
458 	u16 reg;
459 	u16 min, max;
460 	u8 table_size;
461 	u16 table[8];	/* we know there are no more than 8 */
462 };
463 
464 #define to_r9a06g032_div(_hw) \
465 		container_of(_hw, struct r9a06g032_clk_div, hw)
466 
467 static unsigned long
468 r9a06g032_div_recalc_rate(struct clk_hw *hw,
469 			  unsigned long parent_rate)
470 {
471 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
472 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
473 	u32 div = readl(reg);
474 
475 	if (div < clk->min)
476 		div = clk->min;
477 	else if (div > clk->max)
478 		div = clk->max;
479 	return DIV_ROUND_UP(parent_rate, div);
480 }
481 
482 /*
483  * Attempts to find a value that is in range of min,max,
484  * and if a table of set dividers was specified for this
485  * register, try to find the fixed divider that is the closest
486  * to the target frequency
487  */
488 static long
489 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
490 			unsigned long rate, unsigned long prate)
491 {
492 	/* + 1 to cope with rates that have the remainder dropped */
493 	u32 div = DIV_ROUND_UP(prate, rate + 1);
494 	int i;
495 
496 	if (div <= clk->min)
497 		return clk->min;
498 	if (div >= clk->max)
499 		return clk->max;
500 
501 	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
502 		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
503 			unsigned long m = rate -
504 				DIV_ROUND_UP(prate, clk->table[i]);
505 			unsigned long p =
506 				DIV_ROUND_UP(prate, clk->table[i + 1]) -
507 				rate;
508 			/*
509 			 * select the divider that generates
510 			 * the value closest to the ideal frequency
511 			 */
512 			div = p >= m ? clk->table[i] : clk->table[i + 1];
513 			return div;
514 		}
515 	}
516 	return div;
517 }
518 
519 static long
520 r9a06g032_div_round_rate(struct clk_hw *hw,
521 			 unsigned long rate, unsigned long *prate)
522 {
523 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
524 	u32 div = DIV_ROUND_UP(*prate, rate);
525 
526 	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
527 		 hw->clk, rate, *prate, div);
528 	pr_devel("   min %d (%ld) max %d (%ld)\n",
529 		 clk->min, DIV_ROUND_UP(*prate, clk->min),
530 		clk->max, DIV_ROUND_UP(*prate, clk->max));
531 
532 	div = r9a06g032_div_clamp_div(clk, rate, *prate);
533 	/*
534 	 * this is a hack. Currently the serial driver asks for a clock rate
535 	 * that is 16 times the baud rate -- and that is wildly outside the
536 	 * range of the UART divider, somehow there is no provision for that
537 	 * case of 'let the divider as is if outside range'.
538 	 * The serial driver *shouldn't* play with these clocks anyway, there's
539 	 * several uarts attached to this divider, and changing this impacts
540 	 * everyone.
541 	 */
542 	if (clk->index == R9A06G032_DIV_UART) {
543 		pr_devel("%s div uart hack!\n", __func__);
544 		return clk_get_rate(hw->clk);
545 	}
546 	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
547 		 *prate, div, DIV_ROUND_UP(*prate, div));
548 	return DIV_ROUND_UP(*prate, div);
549 }
550 
551 static int
552 r9a06g032_div_set_rate(struct clk_hw *hw,
553 		       unsigned long rate, unsigned long parent_rate)
554 {
555 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
556 	/* + 1 to cope with rates that have the remainder dropped */
557 	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
558 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
559 
560 	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
561 		 rate, parent_rate, div);
562 
563 	/*
564 	 * Need to write the bit 31 with the divider value to
565 	 * latch it. Technically we should wait until it has been
566 	 * cleared too.
567 	 * TODO: Find whether this callback is sleepable, in case
568 	 * the hardware /does/ require some sort of spinloop here.
569 	 */
570 	writel(div | BIT(31), reg);
571 
572 	return 0;
573 }
574 
575 static const struct clk_ops r9a06g032_clk_div_ops = {
576 	.recalc_rate = r9a06g032_div_recalc_rate,
577 	.round_rate = r9a06g032_div_round_rate,
578 	.set_rate = r9a06g032_div_set_rate,
579 };
580 
581 static struct clk *
582 r9a06g032_register_div(struct r9a06g032_priv *clocks,
583 		       const char *parent_name,
584 		       const struct r9a06g032_clkdesc *desc)
585 {
586 	struct r9a06g032_clk_div *div;
587 	struct clk *clk;
588 	struct clk_init_data init;
589 	unsigned int i;
590 
591 	div = kzalloc(sizeof(*div), GFP_KERNEL);
592 	if (!div)
593 		return NULL;
594 
595 	init.name = desc->name;
596 	init.ops = &r9a06g032_clk_div_ops;
597 	init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
598 	init.parent_names = parent_name ? &parent_name : NULL;
599 	init.num_parents = parent_name ? 1 : 0;
600 
601 	div->clocks = clocks;
602 	div->index = desc->index;
603 	div->reg = desc->reg;
604 	div->hw.init = &init;
605 	div->min = desc->div_min;
606 	div->max = desc->div_max;
607 	/* populate (optional) divider table fixed values */
608 	for (i = 0; i < ARRAY_SIZE(div->table) &&
609 	     i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
610 		div->table[div->table_size++] = desc->div_table[i];
611 	}
612 
613 	clk = clk_register(NULL, &div->hw);
614 	if (IS_ERR(clk)) {
615 		kfree(div);
616 		return NULL;
617 	}
618 	return clk;
619 }
620 
621 /*
622  * This clock provider handles the case of the R9A06G032 where you have
623  * peripherals that have two potential clock source and two gates, one for
624  * each of the clock source - the used clock source (for all sub clocks)
625  * is selected by a single bit.
626  * That single bit affects all sub-clocks, and therefore needs to change the
627  * active gate (and turn the others off) and force a recalculation of the rates.
628  *
629  * This implements two clock providers, one 'bitselect' that
630  * handles the switch between both parents, and another 'dualgate'
631  * that knows which gate to poke at, depending on the parent's bit position.
632  */
633 struct r9a06g032_clk_bitsel {
634 	struct clk_hw	hw;
635 	struct r9a06g032_priv *clocks;
636 	u16 index;
637 	u16 selector;		/* selector register + bit */
638 };
639 
640 #define to_clk_bitselect(_hw) \
641 		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
642 
643 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
644 {
645 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
646 
647 	return clk_rdesc_get(set->clocks, set->selector);
648 }
649 
650 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
651 {
652 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
653 
654 	/* a single bit in the register selects one of two parent clocks */
655 	clk_rdesc_set(set->clocks, set->selector, !!index);
656 
657 	return 0;
658 }
659 
660 static const struct clk_ops clk_bitselect_ops = {
661 	.get_parent = r9a06g032_clk_mux_get_parent,
662 	.set_parent = r9a06g032_clk_mux_set_parent,
663 };
664 
665 static struct clk *
666 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
667 			  const char *parent_name,
668 			  const struct r9a06g032_clkdesc *desc)
669 {
670 	struct clk *clk;
671 	struct r9a06g032_clk_bitsel *g;
672 	struct clk_init_data init;
673 	const char *names[2];
674 
675 	/* allocate the gate */
676 	g = kzalloc(sizeof(*g), GFP_KERNEL);
677 	if (!g)
678 		return NULL;
679 
680 	names[0] = parent_name;
681 	names[1] = "clk_pll_usb";
682 
683 	init.name = desc->name;
684 	init.ops = &clk_bitselect_ops;
685 	init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
686 	init.parent_names = names;
687 	init.num_parents = 2;
688 
689 	g->clocks = clocks;
690 	g->index = desc->index;
691 	g->selector = desc->dual.sel;
692 	g->hw.init = &init;
693 
694 	clk = clk_register(NULL, &g->hw);
695 	if (IS_ERR(clk)) {
696 		kfree(g);
697 		return NULL;
698 	}
699 	return clk;
700 }
701 
702 struct r9a06g032_clk_dualgate {
703 	struct clk_hw	hw;
704 	struct r9a06g032_priv *clocks;
705 	u16 index;
706 	u16 selector;		/* selector register + bit */
707 	struct r9a06g032_gate gate[2];
708 };
709 
710 #define to_clk_dualgate(_hw) \
711 		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
712 
713 static int
714 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
715 {
716 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
717 
718 	/* we always turn off the 'other' gate, regardless */
719 	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
720 	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
721 
722 	return 0;
723 }
724 
725 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
726 {
727 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
728 
729 	r9a06g032_clk_dualgate_setenable(gate, 1);
730 
731 	return 0;
732 }
733 
734 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
735 {
736 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
737 
738 	r9a06g032_clk_dualgate_setenable(gate, 0);
739 }
740 
741 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
742 {
743 	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
744 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
745 
746 	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
747 }
748 
749 static const struct clk_ops r9a06g032_clk_dualgate_ops = {
750 	.enable = r9a06g032_clk_dualgate_enable,
751 	.disable = r9a06g032_clk_dualgate_disable,
752 	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
753 };
754 
755 static struct clk *
756 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
757 			    const char *parent_name,
758 			    const struct r9a06g032_clkdesc *desc,
759 			    uint16_t sel)
760 {
761 	struct r9a06g032_clk_dualgate *g;
762 	struct clk *clk;
763 	struct clk_init_data init;
764 
765 	/* allocate the gate */
766 	g = kzalloc(sizeof(*g), GFP_KERNEL);
767 	if (!g)
768 		return NULL;
769 	g->clocks = clocks;
770 	g->index = desc->index;
771 	g->selector = sel;
772 	g->gate[0].gate = desc->dual.g1;
773 	g->gate[0].reset = desc->dual.r1;
774 	g->gate[1].gate = desc->dual.g2;
775 	g->gate[1].reset = desc->dual.r2;
776 
777 	init.name = desc->name;
778 	init.ops = &r9a06g032_clk_dualgate_ops;
779 	init.flags = CLK_IS_BASIC | CLK_SET_RATE_PARENT;
780 	init.parent_names = &parent_name;
781 	init.num_parents = 1;
782 	g->hw.init = &init;
783 	/*
784 	 * important here, some clocks are already in use by the CM3, we
785 	 * have to assume they are not Linux's to play with and try to disable
786 	 * at the end of the boot!
787 	 */
788 	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
789 		init.flags |= CLK_IS_CRITICAL;
790 		pr_debug("%s was enabled, making read-only\n", desc->name);
791 	}
792 
793 	clk = clk_register(NULL, &g->hw);
794 	if (IS_ERR(clk)) {
795 		kfree(g);
796 		return NULL;
797 	}
798 	return clk;
799 }
800 
801 static void r9a06g032_clocks_del_clk_provider(void *data)
802 {
803 	of_clk_del_provider(data);
804 }
805 
806 static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
807 {
808 	struct device *dev = &pdev->dev;
809 	struct device_node *np = dev->of_node;
810 	struct r9a06g032_priv *clocks;
811 	struct clk **clks;
812 	struct clk *mclk;
813 	unsigned int i;
814 	u16 uart_group_sel[2];
815 	int error;
816 
817 	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
818 	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
819 			    GFP_KERNEL);
820 	if (!clocks || !clks)
821 		return -ENOMEM;
822 
823 	spin_lock_init(&clocks->lock);
824 
825 	clocks->data.clks = clks;
826 	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
827 
828 	mclk = devm_clk_get(dev, "mclk");
829 	if (IS_ERR(mclk))
830 		return PTR_ERR(mclk);
831 
832 	clocks->reg = of_iomap(np, 0);
833 	if (WARN_ON(!clocks->reg))
834 		return -ENOMEM;
835 	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
836 		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
837 		const char *parent_name = d->source ?
838 			__clk_get_name(clocks->data.clks[d->source - 1]) :
839 			__clk_get_name(mclk);
840 		struct clk *clk = NULL;
841 
842 		switch (d->type) {
843 		case K_FFC:
844 			clk = clk_register_fixed_factor(NULL, d->name,
845 							parent_name, 0,
846 							d->mul, d->div);
847 			break;
848 		case K_GATE:
849 			clk = r9a06g032_register_gate(clocks, parent_name, d);
850 			break;
851 		case K_DIV:
852 			clk = r9a06g032_register_div(clocks, parent_name, d);
853 			break;
854 		case K_BITSEL:
855 			/* keep that selector register around */
856 			uart_group_sel[d->dual.group] = d->dual.sel;
857 			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
858 			break;
859 		case K_DUALGATE:
860 			clk = r9a06g032_register_dualgate(clocks, parent_name,
861 							  d,
862 							  uart_group_sel[d->dual.group]);
863 			break;
864 		}
865 		clocks->data.clks[d->index] = clk;
866 	}
867 	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
868 	if (error)
869 		return error;
870 
871 	return devm_add_action_or_reset(dev,
872 					r9a06g032_clocks_del_clk_provider, np);
873 }
874 
875 static const struct of_device_id r9a06g032_match[] = {
876 	{ .compatible = "renesas,r9a06g032-sysctrl" },
877 	{ }
878 };
879 
880 static struct platform_driver r9a06g032_clock_driver = {
881 	.driver		= {
882 		.name	= "renesas,r9a06g032-sysctrl",
883 		.of_match_table = r9a06g032_match,
884 	},
885 };
886 
887 static int __init r9a06g032_clocks_init(void)
888 {
889 	return platform_driver_probe(&r9a06g032_clock_driver,
890 			r9a06g032_clocks_probe);
891 }
892 
893 subsys_initcall(r9a06g032_clocks_init);
894