1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * R9A09G032 clock driver 4 * 5 * Copyright (C) 2018 Renesas Electronics Europe Limited 6 * 7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/clk-provider.h> 12 #include <linux/delay.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/math64.h> 16 #include <linux/of.h> 17 #include <linux/of_address.h> 18 #include <linux/platform_device.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <dt-bindings/clock/r9a06g032-sysctrl.h> 22 23 struct r9a06g032_gate { 24 u16 gate, reset, ready, midle, 25 scon, mirack, mistat; 26 }; 27 28 /* This is used to describe a clock for instantiation */ 29 struct r9a06g032_clkdesc { 30 const char *name; 31 uint32_t type: 3; 32 uint32_t index: 8; 33 uint32_t source : 8; /* source index + 1 (0 == none) */ 34 /* these are used to populate the bitsel struct */ 35 union { 36 struct r9a06g032_gate gate; 37 /* for dividers */ 38 struct { 39 unsigned int div_min : 10, div_max : 10, reg: 10; 40 u16 div_table[4]; 41 }; 42 /* For fixed-factor ones */ 43 struct { 44 u16 div, mul; 45 }; 46 unsigned int factor; 47 unsigned int frequency; 48 /* for dual gate */ 49 struct { 50 uint16_t group : 1, index: 3; 51 u16 sel, g1, r1, g2, r2; 52 } dual; 53 }; 54 } __packed; 55 56 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \ 57 { .gate = _clk, .reset = _rst, \ 58 .ready = _rdy, .midle = _midle, \ 59 .scon = _scon, .mirack = _mirack, .mistat = _mistat } 60 #define D_GATE(_idx, _n, _src, ...) \ 61 { .type = K_GATE, .index = R9A06G032_##_idx, \ 62 .source = 1 + R9A06G032_##_src, .name = _n, \ 63 .gate = I_GATE(__VA_ARGS__), } 64 #define D_ROOT(_idx, _n, _mul, _div) \ 65 { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \ 66 .div = _div, .mul = _mul } 67 #define D_FFC(_idx, _n, _src, _div) \ 68 { .type = K_FFC, .index = R9A06G032_##_idx, \ 69 .source = 1 + R9A06G032_##_src, .name = _n, \ 70 .div = _div, .mul = 1} 71 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \ 72 { .type = K_DIV, .index = R9A06G032_##_idx, \ 73 .source = 1 + R9A06G032_##_src, .name = _n, \ 74 .reg = _reg, .div_min = _min, .div_max = _max, \ 75 .div_table = { __VA_ARGS__ } } 76 #define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \ 77 { .type = K_DUALGATE, .index = R9A06G032_##_idx, \ 78 .source = 1 + R9A06G032_##_src, .name = _n, \ 79 .dual = { .group = _g, .index = _gi, \ 80 .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, } 81 82 enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE }; 83 84 /* Internal clock IDs */ 85 #define R9A06G032_CLKOUT 0 86 #define R9A06G032_CLKOUT_D10 2 87 #define R9A06G032_CLKOUT_D16 3 88 #define R9A06G032_CLKOUT_D160 4 89 #define R9A06G032_CLKOUT_D1OR2 5 90 #define R9A06G032_CLKOUT_D20 6 91 #define R9A06G032_CLKOUT_D40 7 92 #define R9A06G032_CLKOUT_D5 8 93 #define R9A06G032_CLKOUT_D8 9 94 #define R9A06G032_DIV_ADC 10 95 #define R9A06G032_DIV_I2C 11 96 #define R9A06G032_DIV_NAND 12 97 #define R9A06G032_DIV_P1_PG 13 98 #define R9A06G032_DIV_P2_PG 14 99 #define R9A06G032_DIV_P3_PG 15 100 #define R9A06G032_DIV_P4_PG 16 101 #define R9A06G032_DIV_P5_PG 17 102 #define R9A06G032_DIV_P6_PG 18 103 #define R9A06G032_DIV_QSPI0 19 104 #define R9A06G032_DIV_QSPI1 20 105 #define R9A06G032_DIV_REF_SYNC 21 106 #define R9A06G032_DIV_SDIO0 22 107 #define R9A06G032_DIV_SDIO1 23 108 #define R9A06G032_DIV_SWITCH 24 109 #define R9A06G032_DIV_UART 25 110 #define R9A06G032_DIV_MOTOR 64 111 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78 112 #define R9A06G032_CLK_ECAT100_D4 79 113 #define R9A06G032_CLK_HSR100_D2 80 114 #define R9A06G032_CLK_REF_SYNC_D4 81 115 #define R9A06G032_CLK_REF_SYNC_D8 82 116 #define R9A06G032_CLK_SERCOS100_D2 83 117 #define R9A06G032_DIV_CA7 84 118 119 #define R9A06G032_UART_GROUP_012 154 120 #define R9A06G032_UART_GROUP_34567 155 121 122 #define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1) 123 124 static const struct r9a06g032_clkdesc r9a06g032_clocks[] __initconst = { 125 D_ROOT(CLKOUT, "clkout", 25, 1), 126 D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10), 127 D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10), 128 D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16), 129 D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160), 130 D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2), 131 D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20), 132 D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40), 133 D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5), 134 D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8), 135 D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250), 136 D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16), 137 D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32), 138 D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200), 139 D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128), 140 D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128), 141 D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128), 142 D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40), 143 D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64), 144 D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7), 145 D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7), 146 D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16), 147 D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128), 148 D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128), 149 D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40), 150 D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128), 151 D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0), 152 D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0), 153 D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0), 154 D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0), 155 D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0), 156 D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0), 157 D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0), 158 D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0), 159 D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0), 160 D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0), 161 D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0), 162 D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0), 163 D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0), 164 D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0), 165 D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0), 166 D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0), 167 D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0), 168 D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0), 169 D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0), 170 D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0), 171 D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0), 172 D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0), 173 D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0), 174 D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0), 175 D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0), 176 D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0), 177 D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0), 178 D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0), 179 D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0), 180 D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0), 181 D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0), 182 D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0), 183 D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0), 184 D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0), 185 D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0), 186 D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0), 187 D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0), 188 D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8), 189 D_GATE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441), 190 D_GATE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0), 191 D_GATE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461), 192 D_GATE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0), 193 D_GATE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0), 194 D_GATE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0), 195 D_GATE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0), 196 D_GATE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0), 197 D_GATE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103), 198 D_GATE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101), 199 D_GATE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0), 200 D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05), 201 D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0), 202 D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4), 203 D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4), 204 D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2), 205 D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4), 206 D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8), 207 D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2), 208 D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4), 209 D_GATE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0), 210 D_GATE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0), 211 D_GATE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0), 212 D_GATE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0), 213 D_GATE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0), 214 D_GATE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0), 215 D_GATE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0), 216 D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640), 217 D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1), 218 D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0), 219 D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0), 220 D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0), 221 D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0), 222 D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0), 223 D_GATE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0), 224 D_GATE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0), 225 D_GATE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0), 226 D_GATE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141), 227 D_GATE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1), 228 D_GATE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2), 229 D_GATE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5), 230 D_GATE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2), 231 D_GATE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2), 232 D_GATE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0), 233 D_GATE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0), 234 D_GATE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0), 235 D_GATE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1), 236 D_GATE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0), 237 D_GATE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0), 238 D_GATE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0), 239 D_GATE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0), 240 D_GATE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182), 241 D_GATE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2), 242 D_GATE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25), 243 D_GATE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0), 244 D_GATE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0), 245 D_GATE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0), 246 D_GATE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0), 247 D_GATE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302), 248 D_GATE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2), 249 D_GATE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0), 250 D_GATE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0), 251 D_GATE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82), 252 D_GATE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662), 253 D_GATE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0), 254 D_GATE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0), 255 D_GATE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0), 256 D_GATE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0), 257 D_GATE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0), 258 D_GATE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0), 259 D_GATE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0), 260 D_GATE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0), 261 D_GATE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0), 262 D_GATE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0), 263 D_GATE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0), 264 D_GATE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0), 265 D_GATE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0), 266 D_GATE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0), 267 D_GATE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0), 268 D_GATE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0), 269 D_GATE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0), 270 /* 271 * These are not hardware clocks, but are needed to handle the special 272 * case where we have a 'selector bit' that doesn't just change the 273 * parent for a clock, but also the gate it's suposed to use. 274 */ 275 { 276 .index = R9A06G032_UART_GROUP_012, 277 .name = "uart_group_012", 278 .type = K_BITSEL, 279 .source = 1 + R9A06G032_DIV_UART, 280 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */ 281 .dual.sel = ((0xec / 4) << 5) | 24, 282 .dual.group = 0, 283 }, 284 { 285 .index = R9A06G032_UART_GROUP_34567, 286 .name = "uart_group_34567", 287 .type = K_BITSEL, 288 .source = 1 + R9A06G032_DIV_P2_PG, 289 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */ 290 .dual.sel = ((0x34 / 4) << 5) | 30, 291 .dual.group = 1, 292 }, 293 D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5), 294 D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9), 295 D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd), 296 D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763), 297 D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767), 298 D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b), 299 D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f), 300 D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773), 301 }; 302 303 struct r9a06g032_priv { 304 struct clk_onecell_data data; 305 spinlock_t lock; /* protects concurent access to gates */ 306 void __iomem *reg; 307 }; 308 309 /* register/bit pairs are encoded as an uint16_t */ 310 static void 311 clk_rdesc_set(struct r9a06g032_priv *clocks, 312 u16 one, unsigned int on) 313 { 314 u32 __iomem *reg = clocks->reg + (4 * (one >> 5)); 315 u32 val = readl(reg); 316 317 val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f)); 318 writel(val, reg); 319 } 320 321 static int 322 clk_rdesc_get(struct r9a06g032_priv *clocks, 323 uint16_t one) 324 { 325 u32 __iomem *reg = clocks->reg + (4 * (one >> 5)); 326 u32 val = readl(reg); 327 328 return !!(val & (1U << (one & 0x1f))); 329 } 330 331 /* 332 * This implements the R9A09G032 clock gate 'driver'. We cannot use the system's 333 * clock gate framework as the gates on the R9A09G032 have a special enabling 334 * sequence, therefore we use this little proxy. 335 */ 336 struct r9a06g032_clk_gate { 337 struct clk_hw hw; 338 struct r9a06g032_priv *clocks; 339 u16 index; 340 341 struct r9a06g032_gate gate; 342 }; 343 344 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw) 345 346 static void 347 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks, 348 struct r9a06g032_gate *g, int on) 349 { 350 unsigned long flags; 351 352 WARN_ON(!g->gate); 353 354 spin_lock_irqsave(&clocks->lock, flags); 355 clk_rdesc_set(clocks, g->gate, on); 356 /* De-assert reset */ 357 if (g->reset) 358 clk_rdesc_set(clocks, g->reset, 1); 359 spin_unlock_irqrestore(&clocks->lock, flags); 360 361 /* Hardware manual recommends 5us delay after enabling clock & reset */ 362 udelay(5); 363 364 /* If the peripheral is memory mapped (i.e. an AXI slave), there is an 365 * associated SLVRDY bit in the System Controller that needs to be set 366 * so that the FlexWAY bus fabric passes on the read/write requests. 367 */ 368 if (g->ready || g->midle) { 369 spin_lock_irqsave(&clocks->lock, flags); 370 if (g->ready) 371 clk_rdesc_set(clocks, g->ready, on); 372 /* Clear 'Master Idle Request' bit */ 373 if (g->midle) 374 clk_rdesc_set(clocks, g->midle, !on); 375 spin_unlock_irqrestore(&clocks->lock, flags); 376 } 377 /* Note: We don't wait for FlexWAY Socket Connection signal */ 378 } 379 380 static int r9a06g032_clk_gate_enable(struct clk_hw *hw) 381 { 382 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); 383 384 r9a06g032_clk_gate_set(g->clocks, &g->gate, 1); 385 return 0; 386 } 387 388 static void r9a06g032_clk_gate_disable(struct clk_hw *hw) 389 { 390 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); 391 392 r9a06g032_clk_gate_set(g->clocks, &g->gate, 0); 393 } 394 395 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw) 396 { 397 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); 398 399 /* if clock is in reset, the gate might be on, and still not 'be' on */ 400 if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset)) 401 return 0; 402 403 return clk_rdesc_get(g->clocks, g->gate.gate); 404 } 405 406 static const struct clk_ops r9a06g032_clk_gate_ops = { 407 .enable = r9a06g032_clk_gate_enable, 408 .disable = r9a06g032_clk_gate_disable, 409 .is_enabled = r9a06g032_clk_gate_is_enabled, 410 }; 411 412 static struct clk * 413 r9a06g032_register_gate(struct r9a06g032_priv *clocks, 414 const char *parent_name, 415 const struct r9a06g032_clkdesc *desc) 416 { 417 struct clk *clk; 418 struct r9a06g032_clk_gate *g; 419 struct clk_init_data init; 420 421 g = kzalloc(sizeof(*g), GFP_KERNEL); 422 if (!g) 423 return NULL; 424 425 init.name = desc->name; 426 init.ops = &r9a06g032_clk_gate_ops; 427 init.flags = CLK_SET_RATE_PARENT; 428 init.parent_names = parent_name ? &parent_name : NULL; 429 init.num_parents = parent_name ? 1 : 0; 430 431 g->clocks = clocks; 432 g->index = desc->index; 433 g->gate = desc->gate; 434 g->hw.init = &init; 435 436 /* 437 * important here, some clocks are already in use by the CM3, we 438 * have to assume they are not Linux's to play with and try to disable 439 * at the end of the boot! 440 */ 441 if (r9a06g032_clk_gate_is_enabled(&g->hw)) { 442 init.flags |= CLK_IS_CRITICAL; 443 pr_debug("%s was enabled, making read-only\n", desc->name); 444 } 445 446 clk = clk_register(NULL, &g->hw); 447 if (IS_ERR(clk)) { 448 kfree(g); 449 return NULL; 450 } 451 return clk; 452 } 453 454 struct r9a06g032_clk_div { 455 struct clk_hw hw; 456 struct r9a06g032_priv *clocks; 457 u16 index; 458 u16 reg; 459 u16 min, max; 460 u8 table_size; 461 u16 table[8]; /* we know there are no more than 8 */ 462 }; 463 464 #define to_r9a06g032_div(_hw) \ 465 container_of(_hw, struct r9a06g032_clk_div, hw) 466 467 static unsigned long 468 r9a06g032_div_recalc_rate(struct clk_hw *hw, 469 unsigned long parent_rate) 470 { 471 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); 472 u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg); 473 u32 div = readl(reg); 474 475 if (div < clk->min) 476 div = clk->min; 477 else if (div > clk->max) 478 div = clk->max; 479 return DIV_ROUND_UP(parent_rate, div); 480 } 481 482 /* 483 * Attempts to find a value that is in range of min,max, 484 * and if a table of set dividers was specified for this 485 * register, try to find the fixed divider that is the closest 486 * to the target frequency 487 */ 488 static long 489 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk, 490 unsigned long rate, unsigned long prate) 491 { 492 /* + 1 to cope with rates that have the remainder dropped */ 493 u32 div = DIV_ROUND_UP(prate, rate + 1); 494 int i; 495 496 if (div <= clk->min) 497 return clk->min; 498 if (div >= clk->max) 499 return clk->max; 500 501 for (i = 0; clk->table_size && i < clk->table_size - 1; i++) { 502 if (div >= clk->table[i] && div <= clk->table[i + 1]) { 503 unsigned long m = rate - 504 DIV_ROUND_UP(prate, clk->table[i]); 505 unsigned long p = 506 DIV_ROUND_UP(prate, clk->table[i + 1]) - 507 rate; 508 /* 509 * select the divider that generates 510 * the value closest to the ideal frequency 511 */ 512 div = p >= m ? clk->table[i] : clk->table[i + 1]; 513 return div; 514 } 515 } 516 return div; 517 } 518 519 static long 520 r9a06g032_div_round_rate(struct clk_hw *hw, 521 unsigned long rate, unsigned long *prate) 522 { 523 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); 524 u32 div = DIV_ROUND_UP(*prate, rate); 525 526 pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__, 527 hw->clk, rate, *prate, div); 528 pr_devel(" min %d (%ld) max %d (%ld)\n", 529 clk->min, DIV_ROUND_UP(*prate, clk->min), 530 clk->max, DIV_ROUND_UP(*prate, clk->max)); 531 532 div = r9a06g032_div_clamp_div(clk, rate, *prate); 533 /* 534 * this is a hack. Currently the serial driver asks for a clock rate 535 * that is 16 times the baud rate -- and that is wildly outside the 536 * range of the UART divider, somehow there is no provision for that 537 * case of 'let the divider as is if outside range'. 538 * The serial driver *shouldn't* play with these clocks anyway, there's 539 * several uarts attached to this divider, and changing this impacts 540 * everyone. 541 */ 542 if (clk->index == R9A06G032_DIV_UART || 543 clk->index == R9A06G032_DIV_P2_PG) { 544 pr_devel("%s div uart hack!\n", __func__); 545 return clk_get_rate(hw->clk); 546 } 547 pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk, 548 *prate, div, DIV_ROUND_UP(*prate, div)); 549 return DIV_ROUND_UP(*prate, div); 550 } 551 552 static int 553 r9a06g032_div_set_rate(struct clk_hw *hw, 554 unsigned long rate, unsigned long parent_rate) 555 { 556 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); 557 /* + 1 to cope with rates that have the remainder dropped */ 558 u32 div = DIV_ROUND_UP(parent_rate, rate + 1); 559 u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg); 560 561 pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk, 562 rate, parent_rate, div); 563 564 /* 565 * Need to write the bit 31 with the divider value to 566 * latch it. Technically we should wait until it has been 567 * cleared too. 568 * TODO: Find whether this callback is sleepable, in case 569 * the hardware /does/ require some sort of spinloop here. 570 */ 571 writel(div | BIT(31), reg); 572 573 return 0; 574 } 575 576 static const struct clk_ops r9a06g032_clk_div_ops = { 577 .recalc_rate = r9a06g032_div_recalc_rate, 578 .round_rate = r9a06g032_div_round_rate, 579 .set_rate = r9a06g032_div_set_rate, 580 }; 581 582 static struct clk * 583 r9a06g032_register_div(struct r9a06g032_priv *clocks, 584 const char *parent_name, 585 const struct r9a06g032_clkdesc *desc) 586 { 587 struct r9a06g032_clk_div *div; 588 struct clk *clk; 589 struct clk_init_data init; 590 unsigned int i; 591 592 div = kzalloc(sizeof(*div), GFP_KERNEL); 593 if (!div) 594 return NULL; 595 596 init.name = desc->name; 597 init.ops = &r9a06g032_clk_div_ops; 598 init.flags = CLK_SET_RATE_PARENT; 599 init.parent_names = parent_name ? &parent_name : NULL; 600 init.num_parents = parent_name ? 1 : 0; 601 602 div->clocks = clocks; 603 div->index = desc->index; 604 div->reg = desc->reg; 605 div->hw.init = &init; 606 div->min = desc->div_min; 607 div->max = desc->div_max; 608 /* populate (optional) divider table fixed values */ 609 for (i = 0; i < ARRAY_SIZE(div->table) && 610 i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) { 611 div->table[div->table_size++] = desc->div_table[i]; 612 } 613 614 clk = clk_register(NULL, &div->hw); 615 if (IS_ERR(clk)) { 616 kfree(div); 617 return NULL; 618 } 619 return clk; 620 } 621 622 /* 623 * This clock provider handles the case of the R9A06G032 where you have 624 * peripherals that have two potential clock source and two gates, one for 625 * each of the clock source - the used clock source (for all sub clocks) 626 * is selected by a single bit. 627 * That single bit affects all sub-clocks, and therefore needs to change the 628 * active gate (and turn the others off) and force a recalculation of the rates. 629 * 630 * This implements two clock providers, one 'bitselect' that 631 * handles the switch between both parents, and another 'dualgate' 632 * that knows which gate to poke at, depending on the parent's bit position. 633 */ 634 struct r9a06g032_clk_bitsel { 635 struct clk_hw hw; 636 struct r9a06g032_priv *clocks; 637 u16 index; 638 u16 selector; /* selector register + bit */ 639 }; 640 641 #define to_clk_bitselect(_hw) \ 642 container_of(_hw, struct r9a06g032_clk_bitsel, hw) 643 644 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw) 645 { 646 struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw); 647 648 return clk_rdesc_get(set->clocks, set->selector); 649 } 650 651 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index) 652 { 653 struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw); 654 655 /* a single bit in the register selects one of two parent clocks */ 656 clk_rdesc_set(set->clocks, set->selector, !!index); 657 658 return 0; 659 } 660 661 static const struct clk_ops clk_bitselect_ops = { 662 .get_parent = r9a06g032_clk_mux_get_parent, 663 .set_parent = r9a06g032_clk_mux_set_parent, 664 }; 665 666 static struct clk * 667 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks, 668 const char *parent_name, 669 const struct r9a06g032_clkdesc *desc) 670 { 671 struct clk *clk; 672 struct r9a06g032_clk_bitsel *g; 673 struct clk_init_data init; 674 const char *names[2]; 675 676 /* allocate the gate */ 677 g = kzalloc(sizeof(*g), GFP_KERNEL); 678 if (!g) 679 return NULL; 680 681 names[0] = parent_name; 682 names[1] = "clk_pll_usb"; 683 684 init.name = desc->name; 685 init.ops = &clk_bitselect_ops; 686 init.flags = CLK_SET_RATE_PARENT; 687 init.parent_names = names; 688 init.num_parents = 2; 689 690 g->clocks = clocks; 691 g->index = desc->index; 692 g->selector = desc->dual.sel; 693 g->hw.init = &init; 694 695 clk = clk_register(NULL, &g->hw); 696 if (IS_ERR(clk)) { 697 kfree(g); 698 return NULL; 699 } 700 return clk; 701 } 702 703 struct r9a06g032_clk_dualgate { 704 struct clk_hw hw; 705 struct r9a06g032_priv *clocks; 706 u16 index; 707 u16 selector; /* selector register + bit */ 708 struct r9a06g032_gate gate[2]; 709 }; 710 711 #define to_clk_dualgate(_hw) \ 712 container_of(_hw, struct r9a06g032_clk_dualgate, hw) 713 714 static int 715 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable) 716 { 717 u8 sel_bit = clk_rdesc_get(g->clocks, g->selector); 718 719 /* we always turn off the 'other' gate, regardless */ 720 r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0); 721 r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable); 722 723 return 0; 724 } 725 726 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw) 727 { 728 struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw); 729 730 r9a06g032_clk_dualgate_setenable(gate, 1); 731 732 return 0; 733 } 734 735 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw) 736 { 737 struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw); 738 739 r9a06g032_clk_dualgate_setenable(gate, 0); 740 } 741 742 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw) 743 { 744 struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw); 745 u8 sel_bit = clk_rdesc_get(g->clocks, g->selector); 746 747 return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate); 748 } 749 750 static const struct clk_ops r9a06g032_clk_dualgate_ops = { 751 .enable = r9a06g032_clk_dualgate_enable, 752 .disable = r9a06g032_clk_dualgate_disable, 753 .is_enabled = r9a06g032_clk_dualgate_is_enabled, 754 }; 755 756 static struct clk * 757 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks, 758 const char *parent_name, 759 const struct r9a06g032_clkdesc *desc, 760 uint16_t sel) 761 { 762 struct r9a06g032_clk_dualgate *g; 763 struct clk *clk; 764 struct clk_init_data init; 765 766 /* allocate the gate */ 767 g = kzalloc(sizeof(*g), GFP_KERNEL); 768 if (!g) 769 return NULL; 770 g->clocks = clocks; 771 g->index = desc->index; 772 g->selector = sel; 773 g->gate[0].gate = desc->dual.g1; 774 g->gate[0].reset = desc->dual.r1; 775 g->gate[1].gate = desc->dual.g2; 776 g->gate[1].reset = desc->dual.r2; 777 778 init.name = desc->name; 779 init.ops = &r9a06g032_clk_dualgate_ops; 780 init.flags = CLK_SET_RATE_PARENT; 781 init.parent_names = &parent_name; 782 init.num_parents = 1; 783 g->hw.init = &init; 784 /* 785 * important here, some clocks are already in use by the CM3, we 786 * have to assume they are not Linux's to play with and try to disable 787 * at the end of the boot! 788 */ 789 if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) { 790 init.flags |= CLK_IS_CRITICAL; 791 pr_debug("%s was enabled, making read-only\n", desc->name); 792 } 793 794 clk = clk_register(NULL, &g->hw); 795 if (IS_ERR(clk)) { 796 kfree(g); 797 return NULL; 798 } 799 return clk; 800 } 801 802 static void r9a06g032_clocks_del_clk_provider(void *data) 803 { 804 of_clk_del_provider(data); 805 } 806 807 static int __init r9a06g032_clocks_probe(struct platform_device *pdev) 808 { 809 struct device *dev = &pdev->dev; 810 struct device_node *np = dev->of_node; 811 struct r9a06g032_priv *clocks; 812 struct clk **clks; 813 struct clk *mclk; 814 unsigned int i; 815 u16 uart_group_sel[2]; 816 int error; 817 818 clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL); 819 clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *), 820 GFP_KERNEL); 821 if (!clocks || !clks) 822 return -ENOMEM; 823 824 spin_lock_init(&clocks->lock); 825 826 clocks->data.clks = clks; 827 clocks->data.clk_num = R9A06G032_CLOCK_COUNT; 828 829 mclk = devm_clk_get(dev, "mclk"); 830 if (IS_ERR(mclk)) 831 return PTR_ERR(mclk); 832 833 clocks->reg = of_iomap(np, 0); 834 if (WARN_ON(!clocks->reg)) 835 return -ENOMEM; 836 for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) { 837 const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i]; 838 const char *parent_name = d->source ? 839 __clk_get_name(clocks->data.clks[d->source - 1]) : 840 __clk_get_name(mclk); 841 struct clk *clk = NULL; 842 843 switch (d->type) { 844 case K_FFC: 845 clk = clk_register_fixed_factor(NULL, d->name, 846 parent_name, 0, 847 d->mul, d->div); 848 break; 849 case K_GATE: 850 clk = r9a06g032_register_gate(clocks, parent_name, d); 851 break; 852 case K_DIV: 853 clk = r9a06g032_register_div(clocks, parent_name, d); 854 break; 855 case K_BITSEL: 856 /* keep that selector register around */ 857 uart_group_sel[d->dual.group] = d->dual.sel; 858 clk = r9a06g032_register_bitsel(clocks, parent_name, d); 859 break; 860 case K_DUALGATE: 861 clk = r9a06g032_register_dualgate(clocks, parent_name, 862 d, 863 uart_group_sel[d->dual.group]); 864 break; 865 } 866 clocks->data.clks[d->index] = clk; 867 } 868 error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data); 869 if (error) 870 return error; 871 872 return devm_add_action_or_reset(dev, 873 r9a06g032_clocks_del_clk_provider, np); 874 } 875 876 static const struct of_device_id r9a06g032_match[] = { 877 { .compatible = "renesas,r9a06g032-sysctrl" }, 878 { } 879 }; 880 881 static struct platform_driver r9a06g032_clock_driver = { 882 .driver = { 883 .name = "renesas,r9a06g032-sysctrl", 884 .of_match_table = r9a06g032_match, 885 }, 886 }; 887 888 static int __init r9a06g032_clocks_init(void) 889 { 890 return platform_driver_probe(&r9a06g032_clock_driver, 891 r9a06g032_clocks_probe); 892 } 893 894 subsys_initcall(r9a06g032_clocks_init); 895