xref: /openbmc/linux/drivers/clk/qcom/gdsc.c (revision 27ab1c1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, 2017-2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/export.h>
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/ktime.h>
13 #include <linux/pm_domain.h>
14 #include <linux/regmap.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/reset-controller.h>
17 #include <linux/slab.h>
18 #include "gdsc.h"
19 
20 #define PWR_ON_MASK		BIT(31)
21 #define EN_REST_WAIT_MASK	GENMASK_ULL(23, 20)
22 #define EN_FEW_WAIT_MASK	GENMASK_ULL(19, 16)
23 #define CLK_DIS_WAIT_MASK	GENMASK_ULL(15, 12)
24 #define SW_OVERRIDE_MASK	BIT(2)
25 #define HW_CONTROL_MASK		BIT(1)
26 #define SW_COLLAPSE_MASK	BIT(0)
27 #define GMEM_CLAMP_IO_MASK	BIT(0)
28 #define GMEM_RESET_MASK		BIT(4)
29 
30 /* CFG_GDSCR */
31 #define GDSC_POWER_UP_COMPLETE		BIT(16)
32 #define GDSC_POWER_DOWN_COMPLETE	BIT(15)
33 #define GDSC_RETAIN_FF_ENABLE		BIT(11)
34 #define CFG_GDSCR_OFFSET		0x4
35 
36 /* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */
37 #define EN_REST_WAIT_VAL	(0x2 << 20)
38 #define EN_FEW_WAIT_VAL		(0x8 << 16)
39 #define CLK_DIS_WAIT_VAL	(0x2 << 12)
40 
41 #define RETAIN_MEM		BIT(14)
42 #define RETAIN_PERIPH		BIT(13)
43 
44 #define TIMEOUT_US		500
45 
46 #define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd)
47 
48 enum gdsc_status {
49 	GDSC_OFF,
50 	GDSC_ON
51 };
52 
53 /* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */
54 static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status)
55 {
56 	unsigned int reg;
57 	u32 val;
58 	int ret;
59 
60 	if (sc->flags & POLL_CFG_GDSCR)
61 		reg = sc->gdscr + CFG_GDSCR_OFFSET;
62 	else if (sc->gds_hw_ctrl)
63 		reg = sc->gds_hw_ctrl;
64 	else
65 		reg = sc->gdscr;
66 
67 	ret = regmap_read(sc->regmap, reg, &val);
68 	if (ret)
69 		return ret;
70 
71 	if (sc->flags & POLL_CFG_GDSCR) {
72 		switch (status) {
73 		case GDSC_ON:
74 			return !!(val & GDSC_POWER_UP_COMPLETE);
75 		case GDSC_OFF:
76 			return !!(val & GDSC_POWER_DOWN_COMPLETE);
77 		}
78 	}
79 
80 	switch (status) {
81 	case GDSC_ON:
82 		return !!(val & PWR_ON_MASK);
83 	case GDSC_OFF:
84 		return !(val & PWR_ON_MASK);
85 	}
86 
87 	return -EINVAL;
88 }
89 
90 static int gdsc_hwctrl(struct gdsc *sc, bool en)
91 {
92 	u32 val = en ? HW_CONTROL_MASK : 0;
93 
94 	return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val);
95 }
96 
97 static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status)
98 {
99 	ktime_t start;
100 
101 	start = ktime_get();
102 	do {
103 		if (gdsc_check_status(sc, status))
104 			return 0;
105 	} while (ktime_us_delta(ktime_get(), start) < TIMEOUT_US);
106 
107 	if (gdsc_check_status(sc, status))
108 		return 0;
109 
110 	return -ETIMEDOUT;
111 }
112 
113 static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status)
114 {
115 	int ret;
116 	u32 val = (status == GDSC_ON) ? 0 : SW_COLLAPSE_MASK;
117 
118 	if (status == GDSC_ON && sc->rsupply) {
119 		ret = regulator_enable(sc->rsupply);
120 		if (ret < 0)
121 			return ret;
122 	}
123 
124 	ret = regmap_update_bits(sc->regmap, sc->gdscr, SW_COLLAPSE_MASK, val);
125 	if (ret)
126 		return ret;
127 
128 	/* If disabling votable gdscs, don't poll on status */
129 	if ((sc->flags & VOTABLE) && status == GDSC_OFF) {
130 		/*
131 		 * Add a short delay here to ensure that an enable
132 		 * right after it was disabled does not put it in an
133 		 * unknown state
134 		 */
135 		udelay(TIMEOUT_US);
136 		return 0;
137 	}
138 
139 	if (sc->gds_hw_ctrl) {
140 		/*
141 		 * The gds hw controller asserts/de-asserts the status bit soon
142 		 * after it receives a power on/off request from a master.
143 		 * The controller then takes around 8 xo cycles to start its
144 		 * internal state machine and update the status bit. During
145 		 * this time, the status bit does not reflect the true status
146 		 * of the core.
147 		 * Add a delay of 1 us between writing to the SW_COLLAPSE bit
148 		 * and polling the status bit.
149 		 */
150 		udelay(1);
151 	}
152 
153 	ret = gdsc_poll_status(sc, status);
154 	WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n");
155 
156 	if (!ret && status == GDSC_OFF && sc->rsupply) {
157 		ret = regulator_disable(sc->rsupply);
158 		if (ret < 0)
159 			return ret;
160 	}
161 
162 	return ret;
163 }
164 
165 static inline int gdsc_deassert_reset(struct gdsc *sc)
166 {
167 	int i;
168 
169 	for (i = 0; i < sc->reset_count; i++)
170 		sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]);
171 	return 0;
172 }
173 
174 static inline int gdsc_assert_reset(struct gdsc *sc)
175 {
176 	int i;
177 
178 	for (i = 0; i < sc->reset_count; i++)
179 		sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]);
180 	return 0;
181 }
182 
183 static inline void gdsc_force_mem_on(struct gdsc *sc)
184 {
185 	int i;
186 	u32 mask = RETAIN_MEM | RETAIN_PERIPH;
187 
188 	for (i = 0; i < sc->cxc_count; i++)
189 		regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask);
190 }
191 
192 static inline void gdsc_clear_mem_on(struct gdsc *sc)
193 {
194 	int i;
195 	u32 mask = RETAIN_MEM | RETAIN_PERIPH;
196 
197 	for (i = 0; i < sc->cxc_count; i++)
198 		regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0);
199 }
200 
201 static inline void gdsc_deassert_clamp_io(struct gdsc *sc)
202 {
203 	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
204 			   GMEM_CLAMP_IO_MASK, 0);
205 }
206 
207 static inline void gdsc_assert_clamp_io(struct gdsc *sc)
208 {
209 	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
210 			   GMEM_CLAMP_IO_MASK, 1);
211 }
212 
213 static inline void gdsc_assert_reset_aon(struct gdsc *sc)
214 {
215 	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
216 			   GMEM_RESET_MASK, 1);
217 	udelay(1);
218 	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
219 			   GMEM_RESET_MASK, 0);
220 }
221 
222 static void gdsc_retain_ff_on(struct gdsc *sc)
223 {
224 	u32 mask = GDSC_RETAIN_FF_ENABLE;
225 
226 	regmap_update_bits(sc->regmap, sc->gdscr, mask, mask);
227 }
228 
229 static int gdsc_enable(struct generic_pm_domain *domain)
230 {
231 	struct gdsc *sc = domain_to_gdsc(domain);
232 	int ret;
233 
234 	if (sc->pwrsts == PWRSTS_ON)
235 		return gdsc_deassert_reset(sc);
236 
237 	if (sc->flags & SW_RESET) {
238 		gdsc_assert_reset(sc);
239 		udelay(1);
240 		gdsc_deassert_reset(sc);
241 	}
242 
243 	if (sc->flags & CLAMP_IO) {
244 		if (sc->flags & AON_RESET)
245 			gdsc_assert_reset_aon(sc);
246 		gdsc_deassert_clamp_io(sc);
247 	}
248 
249 	ret = gdsc_toggle_logic(sc, GDSC_ON);
250 	if (ret)
251 		return ret;
252 
253 	if (sc->pwrsts & PWRSTS_OFF)
254 		gdsc_force_mem_on(sc);
255 
256 	/*
257 	 * If clocks to this power domain were already on, they will take an
258 	 * additional 4 clock cycles to re-enable after the power domain is
259 	 * enabled. Delay to account for this. A delay is also needed to ensure
260 	 * clocks are not enabled within 400ns of enabling power to the
261 	 * memories.
262 	 */
263 	udelay(1);
264 
265 	/* Turn on HW trigger mode if supported */
266 	if (sc->flags & HW_CTRL) {
267 		ret = gdsc_hwctrl(sc, true);
268 		if (ret)
269 			return ret;
270 		/*
271 		 * Wait for the GDSC to go through a power down and
272 		 * up cycle.  In case a firmware ends up polling status
273 		 * bits for the gdsc, it might read an 'on' status before
274 		 * the GDSC can finish the power cycle.
275 		 * We wait 1us before returning to ensure the firmware
276 		 * can't immediately poll the status bits.
277 		 */
278 		udelay(1);
279 	}
280 
281 	if (sc->flags & RETAIN_FF_ENABLE)
282 		gdsc_retain_ff_on(sc);
283 
284 	return 0;
285 }
286 
287 static int gdsc_disable(struct generic_pm_domain *domain)
288 {
289 	struct gdsc *sc = domain_to_gdsc(domain);
290 	int ret;
291 
292 	if (sc->pwrsts == PWRSTS_ON)
293 		return gdsc_assert_reset(sc);
294 
295 	/* Turn off HW trigger mode if supported */
296 	if (sc->flags & HW_CTRL) {
297 		ret = gdsc_hwctrl(sc, false);
298 		if (ret < 0)
299 			return ret;
300 		/*
301 		 * Wait for the GDSC to go through a power down and
302 		 * up cycle.  In case we end up polling status
303 		 * bits for the gdsc before the power cycle is completed
304 		 * it might read an 'on' status wrongly.
305 		 */
306 		udelay(1);
307 
308 		ret = gdsc_poll_status(sc, GDSC_ON);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	if (sc->pwrsts & PWRSTS_OFF)
314 		gdsc_clear_mem_on(sc);
315 
316 	ret = gdsc_toggle_logic(sc, GDSC_OFF);
317 	if (ret)
318 		return ret;
319 
320 	if (sc->flags & CLAMP_IO)
321 		gdsc_assert_clamp_io(sc);
322 
323 	return 0;
324 }
325 
326 static int gdsc_init(struct gdsc *sc)
327 {
328 	u32 mask, val;
329 	int on, ret;
330 
331 	/*
332 	 * Disable HW trigger: collapse/restore occur based on registers writes.
333 	 * Disable SW override: Use hardware state-machine for sequencing.
334 	 * Configure wait time between states.
335 	 */
336 	mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK |
337 	       EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK;
338 	val = EN_REST_WAIT_VAL | EN_FEW_WAIT_VAL | CLK_DIS_WAIT_VAL;
339 	ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val);
340 	if (ret)
341 		return ret;
342 
343 	/* Force gdsc ON if only ON state is supported */
344 	if (sc->pwrsts == PWRSTS_ON) {
345 		ret = gdsc_toggle_logic(sc, GDSC_ON);
346 		if (ret)
347 			return ret;
348 	}
349 
350 	on = gdsc_check_status(sc, GDSC_ON);
351 	if (on < 0)
352 		return on;
353 
354 	/*
355 	 * Votable GDSCs can be ON due to Vote from other masters.
356 	 * If a Votable GDSC is ON, make sure we have a Vote.
357 	 */
358 	if ((sc->flags & VOTABLE) && on)
359 		gdsc_enable(&sc->pd);
360 
361 	/*
362 	 * Make sure the retain bit is set if the GDSC is already on, otherwise
363 	 * we end up turning off the GDSC and destroying all the register
364 	 * contents that we thought we were saving.
365 	 */
366 	if ((sc->flags & RETAIN_FF_ENABLE) && on)
367 		gdsc_retain_ff_on(sc);
368 
369 	/* If ALWAYS_ON GDSCs are not ON, turn them ON */
370 	if (sc->flags & ALWAYS_ON) {
371 		if (!on)
372 			gdsc_enable(&sc->pd);
373 		on = true;
374 		sc->pd.flags |= GENPD_FLAG_ALWAYS_ON;
375 	}
376 
377 	if (on || (sc->pwrsts & PWRSTS_RET))
378 		gdsc_force_mem_on(sc);
379 	else
380 		gdsc_clear_mem_on(sc);
381 
382 	if (!sc->pd.power_off)
383 		sc->pd.power_off = gdsc_disable;
384 	if (!sc->pd.power_on)
385 		sc->pd.power_on = gdsc_enable;
386 	pm_genpd_init(&sc->pd, NULL, !on);
387 
388 	return 0;
389 }
390 
391 int gdsc_register(struct gdsc_desc *desc,
392 		  struct reset_controller_dev *rcdev, struct regmap *regmap)
393 {
394 	int i, ret;
395 	struct genpd_onecell_data *data;
396 	struct device *dev = desc->dev;
397 	struct gdsc **scs = desc->scs;
398 	size_t num = desc->num;
399 
400 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
401 	if (!data)
402 		return -ENOMEM;
403 
404 	data->domains = devm_kcalloc(dev, num, sizeof(*data->domains),
405 				     GFP_KERNEL);
406 	if (!data->domains)
407 		return -ENOMEM;
408 
409 	for (i = 0; i < num; i++) {
410 		if (!scs[i] || !scs[i]->supply)
411 			continue;
412 
413 		scs[i]->rsupply = devm_regulator_get(dev, scs[i]->supply);
414 		if (IS_ERR(scs[i]->rsupply))
415 			return PTR_ERR(scs[i]->rsupply);
416 	}
417 
418 	data->num_domains = num;
419 	for (i = 0; i < num; i++) {
420 		if (!scs[i])
421 			continue;
422 		scs[i]->regmap = regmap;
423 		scs[i]->rcdev = rcdev;
424 		ret = gdsc_init(scs[i]);
425 		if (ret)
426 			return ret;
427 		data->domains[i] = &scs[i]->pd;
428 	}
429 
430 	/* Add subdomains */
431 	for (i = 0; i < num; i++) {
432 		if (!scs[i])
433 			continue;
434 		if (scs[i]->parent)
435 			pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd);
436 	}
437 
438 	return of_genpd_add_provider_onecell(dev->of_node, data);
439 }
440 
441 void gdsc_unregister(struct gdsc_desc *desc)
442 {
443 	int i;
444 	struct device *dev = desc->dev;
445 	struct gdsc **scs = desc->scs;
446 	size_t num = desc->num;
447 
448 	/* Remove subdomains */
449 	for (i = 0; i < num; i++) {
450 		if (!scs[i])
451 			continue;
452 		if (scs[i]->parent)
453 			pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd);
454 	}
455 	of_genpd_del_provider(dev->of_node);
456 }
457 
458 /*
459  * On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU
460  * running in the CX domain so the CPU doesn't need to know anything about the
461  * GX domain EXCEPT....
462  *
463  * Hardware constraints dictate that the GX be powered down before the CX. If
464  * the GMU crashes it could leave the GX on. In order to successfully bring back
465  * the device the CPU needs to disable the GX headswitch. There being no sane
466  * way to reach in and touch that register from deep inside the GPU driver we
467  * need to set up the infrastructure to be able to ensure that the GPU can
468  * ensure that the GX is off during this super special case. We do this by
469  * defining a GX gdsc with a dummy enable function and a "default" disable
470  * function.
471  *
472  * This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU
473  * driver. During power up, nothing will happen from the CPU (and the GMU will
474  * power up normally but during power down this will ensure that the GX domain
475  * is *really* off - this gives us a semi standard way of doing what we need.
476  */
477 int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain)
478 {
479 	/* Do nothing but give genpd the impression that we were successful */
480 	return 0;
481 }
482 EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable);
483