xref: /openbmc/linux/drivers/clk/qcom/clk-alpha-pll.c (revision cce8e04c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/export.h>
8 #include <linux/clk-provider.h>
9 #include <linux/regmap.h>
10 #include <linux/delay.h>
11 
12 #include "clk-alpha-pll.h"
13 #include "common.h"
14 
15 #define PLL_MODE(p)		((p)->offset + 0x0)
16 # define PLL_OUTCTRL		BIT(0)
17 # define PLL_BYPASSNL		BIT(1)
18 # define PLL_RESET_N		BIT(2)
19 # define PLL_OFFLINE_REQ	BIT(7)
20 # define PLL_LOCK_COUNT_SHIFT	8
21 # define PLL_LOCK_COUNT_MASK	0x3f
22 # define PLL_BIAS_COUNT_SHIFT	14
23 # define PLL_BIAS_COUNT_MASK	0x3f
24 # define PLL_VOTE_FSM_ENA	BIT(20)
25 # define PLL_FSM_ENA		BIT(20)
26 # define PLL_VOTE_FSM_RESET	BIT(21)
27 # define PLL_UPDATE		BIT(22)
28 # define PLL_UPDATE_BYPASS	BIT(23)
29 # define PLL_OFFLINE_ACK	BIT(28)
30 # define ALPHA_PLL_ACK_LATCH	BIT(29)
31 # define PLL_ACTIVE_FLAG	BIT(30)
32 # define PLL_LOCK_DET		BIT(31)
33 
34 #define PLL_L_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_L_VAL])
35 #define PLL_ALPHA_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
36 #define PLL_ALPHA_VAL_U(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
37 
38 #define PLL_USER_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
39 # define PLL_POST_DIV_SHIFT	8
40 # define PLL_POST_DIV_MASK(p)	GENMASK((p)->width, 0)
41 # define PLL_ALPHA_EN		BIT(24)
42 # define PLL_ALPHA_MODE		BIT(25)
43 # define PLL_VCO_SHIFT		20
44 # define PLL_VCO_MASK		0x3
45 
46 #define PLL_USER_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
47 
48 #define PLL_CONFIG_CTL(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
49 #define PLL_CONFIG_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
50 #define PLL_TEST_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
51 #define PLL_TEST_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
52 #define PLL_STATUS(p)		((p)->offset + (p)->regs[PLL_OFF_STATUS])
53 #define PLL_OPMODE(p)		((p)->offset + (p)->regs[PLL_OFF_OPMODE])
54 #define PLL_FRAC(p)		((p)->offset + (p)->regs[PLL_OFF_FRAC])
55 
56 const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
57 	[CLK_ALPHA_PLL_TYPE_DEFAULT] =  {
58 		[PLL_OFF_L_VAL] = 0x04,
59 		[PLL_OFF_ALPHA_VAL] = 0x08,
60 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
61 		[PLL_OFF_USER_CTL] = 0x10,
62 		[PLL_OFF_USER_CTL_U] = 0x14,
63 		[PLL_OFF_CONFIG_CTL] = 0x18,
64 		[PLL_OFF_TEST_CTL] = 0x1c,
65 		[PLL_OFF_TEST_CTL_U] = 0x20,
66 		[PLL_OFF_STATUS] = 0x24,
67 	},
68 	[CLK_ALPHA_PLL_TYPE_HUAYRA] =  {
69 		[PLL_OFF_L_VAL] = 0x04,
70 		[PLL_OFF_ALPHA_VAL] = 0x08,
71 		[PLL_OFF_USER_CTL] = 0x10,
72 		[PLL_OFF_CONFIG_CTL] = 0x14,
73 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
74 		[PLL_OFF_TEST_CTL] = 0x1c,
75 		[PLL_OFF_TEST_CTL_U] = 0x20,
76 		[PLL_OFF_STATUS] = 0x24,
77 	},
78 	[CLK_ALPHA_PLL_TYPE_BRAMMO] =  {
79 		[PLL_OFF_L_VAL] = 0x04,
80 		[PLL_OFF_ALPHA_VAL] = 0x08,
81 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
82 		[PLL_OFF_USER_CTL] = 0x10,
83 		[PLL_OFF_CONFIG_CTL] = 0x18,
84 		[PLL_OFF_TEST_CTL] = 0x1c,
85 		[PLL_OFF_STATUS] = 0x24,
86 	},
87 	[CLK_ALPHA_PLL_TYPE_FABIA] =  {
88 		[PLL_OFF_L_VAL] = 0x04,
89 		[PLL_OFF_USER_CTL] = 0x0c,
90 		[PLL_OFF_USER_CTL_U] = 0x10,
91 		[PLL_OFF_CONFIG_CTL] = 0x14,
92 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
93 		[PLL_OFF_TEST_CTL] = 0x1c,
94 		[PLL_OFF_TEST_CTL_U] = 0x20,
95 		[PLL_OFF_STATUS] = 0x24,
96 		[PLL_OFF_OPMODE] = 0x2c,
97 		[PLL_OFF_FRAC] = 0x38,
98 	},
99 };
100 EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
101 
102 /*
103  * Even though 40 bits are present, use only 32 for ease of calculation.
104  */
105 #define ALPHA_REG_BITWIDTH	40
106 #define ALPHA_REG_16BIT_WIDTH	16
107 #define ALPHA_BITWIDTH		32U
108 #define ALPHA_SHIFT(w)		min(w, ALPHA_BITWIDTH)
109 
110 #define PLL_HUAYRA_M_WIDTH		8
111 #define PLL_HUAYRA_M_SHIFT		8
112 #define PLL_HUAYRA_M_MASK		0xff
113 #define PLL_HUAYRA_N_SHIFT		0
114 #define PLL_HUAYRA_N_MASK		0xff
115 #define PLL_HUAYRA_ALPHA_WIDTH		16
116 
117 #define FABIA_OPMODE_STANDBY	0x0
118 #define FABIA_OPMODE_RUN	0x1
119 
120 #define FABIA_PLL_OUT_MASK	0x7
121 #define FABIA_PLL_RATE_MARGIN	500
122 
123 #define pll_alpha_width(p)					\
124 		((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ?	\
125 				 ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
126 
127 #define pll_has_64bit_config(p)	((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
128 
129 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
130 					   struct clk_alpha_pll, clkr)
131 
132 #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
133 					   struct clk_alpha_pll_postdiv, clkr)
134 
135 static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
136 			const char *action)
137 {
138 	u32 val;
139 	int count;
140 	int ret;
141 	const char *name = clk_hw_get_name(&pll->clkr.hw);
142 
143 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
144 	if (ret)
145 		return ret;
146 
147 	for (count = 100; count > 0; count--) {
148 		ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
149 		if (ret)
150 			return ret;
151 		if (inverse && !(val & mask))
152 			return 0;
153 		else if ((val & mask) == mask)
154 			return 0;
155 
156 		udelay(1);
157 	}
158 
159 	WARN(1, "%s failed to %s!\n", name, action);
160 	return -ETIMEDOUT;
161 }
162 
163 #define wait_for_pll_enable_active(pll) \
164 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
165 
166 #define wait_for_pll_enable_lock(pll) \
167 	wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
168 
169 #define wait_for_pll_disable(pll) \
170 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
171 
172 #define wait_for_pll_offline(pll) \
173 	wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
174 
175 #define wait_for_pll_update(pll) \
176 	wait_for_pll(pll, PLL_UPDATE, 1, "update")
177 
178 #define wait_for_pll_update_ack_set(pll) \
179 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
180 
181 #define wait_for_pll_update_ack_clear(pll) \
182 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
183 
184 void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
185 			     const struct alpha_pll_config *config)
186 {
187 	u32 val, mask;
188 
189 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
190 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
191 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
192 
193 	if (pll_has_64bit_config(pll))
194 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
195 			     config->config_ctl_hi_val);
196 
197 	if (pll_alpha_width(pll) > 32)
198 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
199 
200 	val = config->main_output_mask;
201 	val |= config->aux_output_mask;
202 	val |= config->aux2_output_mask;
203 	val |= config->early_output_mask;
204 	val |= config->pre_div_val;
205 	val |= config->post_div_val;
206 	val |= config->vco_val;
207 	val |= config->alpha_en_mask;
208 	val |= config->alpha_mode_mask;
209 
210 	mask = config->main_output_mask;
211 	mask |= config->aux_output_mask;
212 	mask |= config->aux2_output_mask;
213 	mask |= config->early_output_mask;
214 	mask |= config->pre_div_mask;
215 	mask |= config->post_div_mask;
216 	mask |= config->vco_mask;
217 
218 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
219 
220 	if (pll->flags & SUPPORTS_FSM_MODE)
221 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
222 }
223 EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
224 
225 static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
226 {
227 	int ret;
228 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
229 	u32 val;
230 
231 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
232 	if (ret)
233 		return ret;
234 
235 	val |= PLL_FSM_ENA;
236 
237 	if (pll->flags & SUPPORTS_OFFLINE_REQ)
238 		val &= ~PLL_OFFLINE_REQ;
239 
240 	ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
241 	if (ret)
242 		return ret;
243 
244 	/* Make sure enable request goes through before waiting for update */
245 	mb();
246 
247 	return wait_for_pll_enable_active(pll);
248 }
249 
250 static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
251 {
252 	int ret;
253 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
254 	u32 val;
255 
256 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
257 	if (ret)
258 		return;
259 
260 	if (pll->flags & SUPPORTS_OFFLINE_REQ) {
261 		ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
262 					 PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
263 		if (ret)
264 			return;
265 
266 		ret = wait_for_pll_offline(pll);
267 		if (ret)
268 			return;
269 	}
270 
271 	/* Disable hwfsm */
272 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
273 				 PLL_FSM_ENA, 0);
274 	if (ret)
275 		return;
276 
277 	wait_for_pll_disable(pll);
278 }
279 
280 static int pll_is_enabled(struct clk_hw *hw, u32 mask)
281 {
282 	int ret;
283 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
284 	u32 val;
285 
286 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
287 	if (ret)
288 		return ret;
289 
290 	return !!(val & mask);
291 }
292 
293 static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
294 {
295 	return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
296 }
297 
298 static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
299 {
300 	return pll_is_enabled(hw, PLL_LOCK_DET);
301 }
302 
303 static int clk_alpha_pll_enable(struct clk_hw *hw)
304 {
305 	int ret;
306 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
307 	u32 val, mask;
308 
309 	mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
310 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
311 	if (ret)
312 		return ret;
313 
314 	/* If in FSM mode, just vote for it */
315 	if (val & PLL_VOTE_FSM_ENA) {
316 		ret = clk_enable_regmap(hw);
317 		if (ret)
318 			return ret;
319 		return wait_for_pll_enable_active(pll);
320 	}
321 
322 	/* Skip if already enabled */
323 	if ((val & mask) == mask)
324 		return 0;
325 
326 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
327 				 PLL_BYPASSNL, PLL_BYPASSNL);
328 	if (ret)
329 		return ret;
330 
331 	/*
332 	 * H/W requires a 5us delay between disabling the bypass and
333 	 * de-asserting the reset.
334 	 */
335 	mb();
336 	udelay(5);
337 
338 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
339 				 PLL_RESET_N, PLL_RESET_N);
340 	if (ret)
341 		return ret;
342 
343 	ret = wait_for_pll_enable_lock(pll);
344 	if (ret)
345 		return ret;
346 
347 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
348 				 PLL_OUTCTRL, PLL_OUTCTRL);
349 
350 	/* Ensure that the write above goes through before returning. */
351 	mb();
352 	return ret;
353 }
354 
355 static void clk_alpha_pll_disable(struct clk_hw *hw)
356 {
357 	int ret;
358 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
359 	u32 val, mask;
360 
361 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
362 	if (ret)
363 		return;
364 
365 	/* If in FSM mode, just unvote it */
366 	if (val & PLL_VOTE_FSM_ENA) {
367 		clk_disable_regmap(hw);
368 		return;
369 	}
370 
371 	mask = PLL_OUTCTRL;
372 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
373 
374 	/* Delay of 2 output clock ticks required until output is disabled */
375 	mb();
376 	udelay(1);
377 
378 	mask = PLL_RESET_N | PLL_BYPASSNL;
379 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
380 }
381 
382 static unsigned long
383 alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
384 {
385 	return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
386 }
387 
388 static unsigned long
389 alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
390 		     u32 alpha_width)
391 {
392 	u64 remainder;
393 	u64 quotient;
394 
395 	quotient = rate;
396 	remainder = do_div(quotient, prate);
397 	*l = quotient;
398 
399 	if (!remainder) {
400 		*a = 0;
401 		return rate;
402 	}
403 
404 	/* Upper ALPHA_BITWIDTH bits of Alpha */
405 	quotient = remainder << ALPHA_SHIFT(alpha_width);
406 
407 	remainder = do_div(quotient, prate);
408 
409 	if (remainder)
410 		quotient++;
411 
412 	*a = quotient;
413 	return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
414 }
415 
416 static const struct pll_vco *
417 alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
418 {
419 	const struct pll_vco *v = pll->vco_table;
420 	const struct pll_vco *end = v + pll->num_vco;
421 
422 	for (; v < end; v++)
423 		if (rate >= v->min_freq && rate <= v->max_freq)
424 			return v;
425 
426 	return NULL;
427 }
428 
429 static unsigned long
430 clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
431 {
432 	u32 l, low, high, ctl;
433 	u64 a = 0, prate = parent_rate;
434 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
435 	u32 alpha_width = pll_alpha_width(pll);
436 
437 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
438 
439 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
440 	if (ctl & PLL_ALPHA_EN) {
441 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
442 		if (alpha_width > 32) {
443 			regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
444 				    &high);
445 			a = (u64)high << 32 | low;
446 		} else {
447 			a = low & GENMASK(alpha_width - 1, 0);
448 		}
449 
450 		if (alpha_width > ALPHA_BITWIDTH)
451 			a >>= alpha_width - ALPHA_BITWIDTH;
452 	}
453 
454 	return alpha_pll_calc_rate(prate, l, a, alpha_width);
455 }
456 
457 
458 static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
459 {
460 	int ret;
461 	u32 mode;
462 
463 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
464 
465 	/* Latch the input to the PLL */
466 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
467 			   PLL_UPDATE);
468 
469 	/* Wait for 2 reference cycle before checking ACK bit */
470 	udelay(1);
471 
472 	/*
473 	 * PLL will latch the new L, Alpha and freq control word.
474 	 * PLL will respond by raising PLL_ACK_LATCH output when new programming
475 	 * has been latched in and PLL is being updated. When
476 	 * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
477 	 * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
478 	 */
479 	if (mode & PLL_UPDATE_BYPASS) {
480 		ret = wait_for_pll_update_ack_set(pll);
481 		if (ret)
482 			return ret;
483 
484 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
485 	} else {
486 		ret = wait_for_pll_update(pll);
487 		if (ret)
488 			return ret;
489 	}
490 
491 	ret = wait_for_pll_update_ack_clear(pll);
492 	if (ret)
493 		return ret;
494 
495 	/* Wait for PLL output to stabilize */
496 	udelay(10);
497 
498 	return 0;
499 }
500 
501 static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
502 				      int (*is_enabled)(struct clk_hw *))
503 {
504 	if (!is_enabled(&pll->clkr.hw) ||
505 	    !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
506 		return 0;
507 
508 	return __clk_alpha_pll_update_latch(pll);
509 }
510 
511 static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
512 				    unsigned long prate,
513 				    int (*is_enabled)(struct clk_hw *))
514 {
515 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
516 	const struct pll_vco *vco;
517 	u32 l, alpha_width = pll_alpha_width(pll);
518 	u64 a;
519 
520 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
521 	vco = alpha_pll_find_vco(pll, rate);
522 	if (pll->vco_table && !vco) {
523 		pr_err("alpha pll not in a valid vco range\n");
524 		return -EINVAL;
525 	}
526 
527 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
528 
529 	if (alpha_width > ALPHA_BITWIDTH)
530 		a <<= alpha_width - ALPHA_BITWIDTH;
531 
532 	if (alpha_width > 32)
533 		regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
534 
535 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
536 
537 	if (vco) {
538 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
539 				   PLL_VCO_MASK << PLL_VCO_SHIFT,
540 				   vco->val << PLL_VCO_SHIFT);
541 	}
542 
543 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
544 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
545 
546 	return clk_alpha_pll_update_latch(pll, is_enabled);
547 }
548 
549 static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
550 				  unsigned long prate)
551 {
552 	return __clk_alpha_pll_set_rate(hw, rate, prate,
553 					clk_alpha_pll_is_enabled);
554 }
555 
556 static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
557 					unsigned long prate)
558 {
559 	return __clk_alpha_pll_set_rate(hw, rate, prate,
560 					clk_alpha_pll_hwfsm_is_enabled);
561 }
562 
563 static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
564 				     unsigned long *prate)
565 {
566 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
567 	u32 l, alpha_width = pll_alpha_width(pll);
568 	u64 a;
569 	unsigned long min_freq, max_freq;
570 
571 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
572 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
573 		return rate;
574 
575 	min_freq = pll->vco_table[0].min_freq;
576 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
577 
578 	return clamp(rate, min_freq, max_freq);
579 }
580 
581 static unsigned long
582 alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
583 {
584 	/*
585 	 * a contains 16 bit alpha_val in two’s compliment number in the range
586 	 * of [-0.5, 0.5).
587 	 */
588 	if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
589 		l -= 1;
590 
591 	return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
592 }
593 
594 static unsigned long
595 alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
596 			    u32 *l, u32 *a)
597 {
598 	u64 remainder;
599 	u64 quotient;
600 
601 	quotient = rate;
602 	remainder = do_div(quotient, prate);
603 	*l = quotient;
604 
605 	if (!remainder) {
606 		*a = 0;
607 		return rate;
608 	}
609 
610 	quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
611 	remainder = do_div(quotient, prate);
612 
613 	if (remainder)
614 		quotient++;
615 
616 	/*
617 	 * alpha_val should be in two’s compliment number in the range
618 	 * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
619 	 * since alpha value will be subtracted in this case.
620 	 */
621 	if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
622 		*l += 1;
623 
624 	*a = quotient;
625 	return alpha_huayra_pll_calc_rate(prate, *l, *a);
626 }
627 
628 static unsigned long
629 alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
630 {
631 	u64 rate = parent_rate, tmp;
632 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
633 	u32 l, alpha = 0, ctl, alpha_m, alpha_n;
634 
635 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
636 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
637 
638 	if (ctl & PLL_ALPHA_EN) {
639 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
640 		/*
641 		 * Depending upon alpha_mode, it can be treated as M/N value or
642 		 * as a two’s compliment number. When alpha_mode=1,
643 		 * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
644 		 *
645 		 *		Fout=FIN*(L+(M/N))
646 		 *
647 		 * M is a signed number (-128 to 127) and N is unsigned
648 		 * (0 to 255). M/N has to be within +/-0.5.
649 		 *
650 		 * When alpha_mode=0, it is a two’s compliment number in the
651 		 * range [-0.5, 0.5).
652 		 *
653 		 *		Fout=FIN*(L+(alpha_val)/2^16)
654 		 *
655 		 * where alpha_val is two’s compliment number.
656 		 */
657 		if (!(ctl & PLL_ALPHA_MODE))
658 			return alpha_huayra_pll_calc_rate(rate, l, alpha);
659 
660 		alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
661 		alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
662 
663 		rate *= l;
664 		tmp = parent_rate;
665 		if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
666 			alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
667 			tmp *= alpha_m;
668 			do_div(tmp, alpha_n);
669 			rate -= tmp;
670 		} else {
671 			tmp *= alpha_m;
672 			do_div(tmp, alpha_n);
673 			rate += tmp;
674 		}
675 
676 		return rate;
677 	}
678 
679 	return alpha_huayra_pll_calc_rate(rate, l, alpha);
680 }
681 
682 static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
683 				     unsigned long prate)
684 {
685 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
686 	u32 l, a, ctl, cur_alpha = 0;
687 
688 	rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
689 
690 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
691 
692 	if (ctl & PLL_ALPHA_EN)
693 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
694 
695 	/*
696 	 * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
697 	 * without having to go through the power on sequence.
698 	 */
699 	if (clk_alpha_pll_is_enabled(hw)) {
700 		if (cur_alpha != a) {
701 			pr_err("clock needs to be gated %s\n",
702 			       clk_hw_get_name(hw));
703 			return -EBUSY;
704 		}
705 
706 		regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
707 		/* Ensure that the write above goes to detect L val change. */
708 		mb();
709 		return wait_for_pll_enable_lock(pll);
710 	}
711 
712 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
713 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
714 
715 	if (a == 0)
716 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
717 				   PLL_ALPHA_EN, 0x0);
718 	else
719 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
720 				   PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
721 
722 	return 0;
723 }
724 
725 static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
726 					unsigned long *prate)
727 {
728 	u32 l, a;
729 
730 	return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
731 }
732 
733 const struct clk_ops clk_alpha_pll_ops = {
734 	.enable = clk_alpha_pll_enable,
735 	.disable = clk_alpha_pll_disable,
736 	.is_enabled = clk_alpha_pll_is_enabled,
737 	.recalc_rate = clk_alpha_pll_recalc_rate,
738 	.round_rate = clk_alpha_pll_round_rate,
739 	.set_rate = clk_alpha_pll_set_rate,
740 };
741 EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
742 
743 const struct clk_ops clk_alpha_pll_huayra_ops = {
744 	.enable = clk_alpha_pll_enable,
745 	.disable = clk_alpha_pll_disable,
746 	.is_enabled = clk_alpha_pll_is_enabled,
747 	.recalc_rate = alpha_pll_huayra_recalc_rate,
748 	.round_rate = alpha_pll_huayra_round_rate,
749 	.set_rate = alpha_pll_huayra_set_rate,
750 };
751 EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
752 
753 const struct clk_ops clk_alpha_pll_hwfsm_ops = {
754 	.enable = clk_alpha_pll_hwfsm_enable,
755 	.disable = clk_alpha_pll_hwfsm_disable,
756 	.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
757 	.recalc_rate = clk_alpha_pll_recalc_rate,
758 	.round_rate = clk_alpha_pll_round_rate,
759 	.set_rate = clk_alpha_pll_hwfsm_set_rate,
760 };
761 EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
762 
763 static unsigned long
764 clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
765 {
766 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
767 	u32 ctl;
768 
769 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
770 
771 	ctl >>= PLL_POST_DIV_SHIFT;
772 	ctl &= PLL_POST_DIV_MASK(pll);
773 
774 	return parent_rate >> fls(ctl);
775 }
776 
777 static const struct clk_div_table clk_alpha_div_table[] = {
778 	{ 0x0, 1 },
779 	{ 0x1, 2 },
780 	{ 0x3, 4 },
781 	{ 0x7, 8 },
782 	{ 0xf, 16 },
783 	{ }
784 };
785 
786 static const struct clk_div_table clk_alpha_2bit_div_table[] = {
787 	{ 0x0, 1 },
788 	{ 0x1, 2 },
789 	{ 0x3, 4 },
790 	{ }
791 };
792 
793 static long
794 clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
795 				 unsigned long *prate)
796 {
797 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
798 	const struct clk_div_table *table;
799 
800 	if (pll->width == 2)
801 		table = clk_alpha_2bit_div_table;
802 	else
803 		table = clk_alpha_div_table;
804 
805 	return divider_round_rate(hw, rate, prate, table,
806 				  pll->width, CLK_DIVIDER_POWER_OF_TWO);
807 }
808 
809 static long
810 clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
811 				    unsigned long *prate)
812 {
813 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
814 	u32 ctl, div;
815 
816 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
817 
818 	ctl >>= PLL_POST_DIV_SHIFT;
819 	ctl &= BIT(pll->width) - 1;
820 	div = 1 << fls(ctl);
821 
822 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
823 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
824 
825 	return DIV_ROUND_UP_ULL((u64)*prate, div);
826 }
827 
828 static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
829 					  unsigned long parent_rate)
830 {
831 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
832 	int div;
833 
834 	/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
835 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate) - 1;
836 
837 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
838 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
839 				  div << PLL_POST_DIV_SHIFT);
840 }
841 
842 const struct clk_ops clk_alpha_pll_postdiv_ops = {
843 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
844 	.round_rate = clk_alpha_pll_postdiv_round_rate,
845 	.set_rate = clk_alpha_pll_postdiv_set_rate,
846 };
847 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
848 
849 const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
850 	.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
851 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
852 };
853 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
854 
855 void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
856 			     const struct alpha_pll_config *config)
857 {
858 	u32 val, mask;
859 
860 	if (config->l)
861 		regmap_write(regmap, PLL_L_VAL(pll), config->l);
862 
863 	if (config->alpha)
864 		regmap_write(regmap, PLL_FRAC(pll), config->alpha);
865 
866 	if (config->config_ctl_val)
867 		regmap_write(regmap, PLL_CONFIG_CTL(pll),
868 						config->config_ctl_val);
869 
870 	if (config->post_div_mask) {
871 		mask = config->post_div_mask;
872 		val = config->post_div_val;
873 		regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
874 	}
875 
876 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
877 							PLL_UPDATE_BYPASS);
878 
879 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
880 }
881 EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
882 
883 static int alpha_pll_fabia_enable(struct clk_hw *hw)
884 {
885 	int ret;
886 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
887 	u32 val, opmode_val;
888 	struct regmap *regmap = pll->clkr.regmap;
889 
890 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
891 	if (ret)
892 		return ret;
893 
894 	/* If in FSM mode, just vote for it */
895 	if (val & PLL_VOTE_FSM_ENA) {
896 		ret = clk_enable_regmap(hw);
897 		if (ret)
898 			return ret;
899 		return wait_for_pll_enable_active(pll);
900 	}
901 
902 	ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
903 	if (ret)
904 		return ret;
905 
906 	/* Skip If PLL is already running */
907 	if ((opmode_val & FABIA_OPMODE_RUN) && (val & PLL_OUTCTRL))
908 		return 0;
909 
910 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
911 	if (ret)
912 		return ret;
913 
914 	ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY);
915 	if (ret)
916 		return ret;
917 
918 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
919 				 PLL_RESET_N);
920 	if (ret)
921 		return ret;
922 
923 	ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_RUN);
924 	if (ret)
925 		return ret;
926 
927 	ret = wait_for_pll_enable_lock(pll);
928 	if (ret)
929 		return ret;
930 
931 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
932 				 FABIA_PLL_OUT_MASK, FABIA_PLL_OUT_MASK);
933 	if (ret)
934 		return ret;
935 
936 	return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
937 				 PLL_OUTCTRL);
938 }
939 
940 static void alpha_pll_fabia_disable(struct clk_hw *hw)
941 {
942 	int ret;
943 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
944 	u32 val;
945 	struct regmap *regmap = pll->clkr.regmap;
946 
947 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
948 	if (ret)
949 		return;
950 
951 	/* If in FSM mode, just unvote it */
952 	if (val & PLL_FSM_ENA) {
953 		clk_disable_regmap(hw);
954 		return;
955 	}
956 
957 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
958 	if (ret)
959 		return;
960 
961 	/* Disable main outputs */
962 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), FABIA_PLL_OUT_MASK,
963 				 0);
964 	if (ret)
965 		return;
966 
967 	/* Place the PLL in STANDBY */
968 	regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY);
969 }
970 
971 static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
972 						unsigned long parent_rate)
973 {
974 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
975 	u32 l, frac, alpha_width = pll_alpha_width(pll);
976 
977 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
978 	regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
979 
980 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
981 }
982 
983 static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
984 						unsigned long prate)
985 {
986 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
987 	u32 val, l, alpha_width = pll_alpha_width(pll);
988 	u64 a;
989 	unsigned long rrate;
990 	int ret = 0;
991 
992 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
993 	if (ret)
994 		return ret;
995 
996 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
997 
998 	/*
999 	 * Due to limited number of bits for fractional rate programming, the
1000 	 * rounded up rate could be marginally higher than the requested rate.
1001 	 */
1002 	if (rrate > (rate + FABIA_PLL_RATE_MARGIN) || rrate < rate) {
1003 		pr_err("Call set rate on the PLL with rounded rates!\n");
1004 		return -EINVAL;
1005 	}
1006 
1007 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1008 	regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
1009 
1010 	return __clk_alpha_pll_update_latch(pll);
1011 }
1012 
1013 const struct clk_ops clk_alpha_pll_fabia_ops = {
1014 	.enable = alpha_pll_fabia_enable,
1015 	.disable = alpha_pll_fabia_disable,
1016 	.is_enabled = clk_alpha_pll_is_enabled,
1017 	.set_rate = alpha_pll_fabia_set_rate,
1018 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1019 	.round_rate = clk_alpha_pll_round_rate,
1020 };
1021 EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
1022 
1023 const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
1024 	.enable = alpha_pll_fabia_enable,
1025 	.disable = alpha_pll_fabia_disable,
1026 	.is_enabled = clk_alpha_pll_is_enabled,
1027 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1028 	.round_rate = clk_alpha_pll_round_rate,
1029 };
1030 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
1031 
1032 static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
1033 					unsigned long parent_rate)
1034 {
1035 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1036 	u32 i, div = 1, val;
1037 	int ret;
1038 
1039 	if (!pll->post_div_table) {
1040 		pr_err("Missing the post_div_table for the PLL\n");
1041 		return -EINVAL;
1042 	}
1043 
1044 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1045 	if (ret)
1046 		return ret;
1047 
1048 	val >>= pll->post_div_shift;
1049 	val &= BIT(pll->width) - 1;
1050 
1051 	for (i = 0; i < pll->num_post_div; i++) {
1052 		if (pll->post_div_table[i].val == val) {
1053 			div = pll->post_div_table[i].div;
1054 			break;
1055 		}
1056 	}
1057 
1058 	return (parent_rate / div);
1059 }
1060 
1061 static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
1062 				unsigned long rate, unsigned long *prate)
1063 {
1064 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1065 
1066 	if (!pll->post_div_table) {
1067 		pr_err("Missing the post_div_table for the PLL\n");
1068 		return -EINVAL;
1069 	}
1070 
1071 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1072 				pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1073 }
1074 
1075 static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
1076 				unsigned long rate, unsigned long parent_rate)
1077 {
1078 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1079 	int i, val = 0, div, ret;
1080 
1081 	/*
1082 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1083 	 * no-operation.
1084 	 */
1085 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1086 	if (ret)
1087 		return ret;
1088 
1089 	if (val & PLL_VOTE_FSM_ENA)
1090 		return 0;
1091 
1092 	if (!pll->post_div_table) {
1093 		pr_err("Missing the post_div_table for the PLL\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
1098 	for (i = 0; i < pll->num_post_div; i++) {
1099 		if (pll->post_div_table[i].div == div) {
1100 			val = pll->post_div_table[i].val;
1101 			break;
1102 		}
1103 	}
1104 
1105 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1106 				(BIT(pll->width) - 1) << pll->post_div_shift,
1107 				val << pll->post_div_shift);
1108 }
1109 
1110 const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
1111 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1112 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1113 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1114 };
1115 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
1116