xref: /openbmc/linux/drivers/clk/qcom/clk-alpha-pll.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/export.h>
8 #include <linux/clk-provider.h>
9 #include <linux/regmap.h>
10 #include <linux/delay.h>
11 
12 #include "clk-alpha-pll.h"
13 #include "common.h"
14 
15 #define PLL_MODE(p)		((p)->offset + 0x0)
16 # define PLL_OUTCTRL		BIT(0)
17 # define PLL_BYPASSNL		BIT(1)
18 # define PLL_RESET_N		BIT(2)
19 # define PLL_OFFLINE_REQ	BIT(7)
20 # define PLL_LOCK_COUNT_SHIFT	8
21 # define PLL_LOCK_COUNT_MASK	0x3f
22 # define PLL_BIAS_COUNT_SHIFT	14
23 # define PLL_BIAS_COUNT_MASK	0x3f
24 # define PLL_VOTE_FSM_ENA	BIT(20)
25 # define PLL_FSM_ENA		BIT(20)
26 # define PLL_VOTE_FSM_RESET	BIT(21)
27 # define PLL_UPDATE		BIT(22)
28 # define PLL_UPDATE_BYPASS	BIT(23)
29 # define PLL_OFFLINE_ACK	BIT(28)
30 # define ALPHA_PLL_ACK_LATCH	BIT(29)
31 # define PLL_ACTIVE_FLAG	BIT(30)
32 # define PLL_LOCK_DET		BIT(31)
33 
34 #define PLL_L_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_L_VAL])
35 #define PLL_ALPHA_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
36 #define PLL_ALPHA_VAL_U(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
37 
38 #define PLL_USER_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
39 # define PLL_POST_DIV_SHIFT	8
40 # define PLL_POST_DIV_MASK(p)	GENMASK((p)->width, 0)
41 # define PLL_ALPHA_EN		BIT(24)
42 # define PLL_ALPHA_MODE		BIT(25)
43 # define PLL_VCO_SHIFT		20
44 # define PLL_VCO_MASK		0x3
45 
46 #define PLL_USER_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
47 
48 #define PLL_CONFIG_CTL(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
49 #define PLL_CONFIG_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
50 #define PLL_TEST_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
51 #define PLL_TEST_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
52 #define PLL_STATUS(p)		((p)->offset + (p)->regs[PLL_OFF_STATUS])
53 #define PLL_OPMODE(p)		((p)->offset + (p)->regs[PLL_OFF_OPMODE])
54 #define PLL_FRAC(p)		((p)->offset + (p)->regs[PLL_OFF_FRAC])
55 
56 const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
57 	[CLK_ALPHA_PLL_TYPE_DEFAULT] =  {
58 		[PLL_OFF_L_VAL] = 0x04,
59 		[PLL_OFF_ALPHA_VAL] = 0x08,
60 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
61 		[PLL_OFF_USER_CTL] = 0x10,
62 		[PLL_OFF_USER_CTL_U] = 0x14,
63 		[PLL_OFF_CONFIG_CTL] = 0x18,
64 		[PLL_OFF_TEST_CTL] = 0x1c,
65 		[PLL_OFF_TEST_CTL_U] = 0x20,
66 		[PLL_OFF_STATUS] = 0x24,
67 	},
68 	[CLK_ALPHA_PLL_TYPE_HUAYRA] =  {
69 		[PLL_OFF_L_VAL] = 0x04,
70 		[PLL_OFF_ALPHA_VAL] = 0x08,
71 		[PLL_OFF_USER_CTL] = 0x10,
72 		[PLL_OFF_CONFIG_CTL] = 0x14,
73 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
74 		[PLL_OFF_TEST_CTL] = 0x1c,
75 		[PLL_OFF_TEST_CTL_U] = 0x20,
76 		[PLL_OFF_STATUS] = 0x24,
77 	},
78 	[CLK_ALPHA_PLL_TYPE_BRAMMO] =  {
79 		[PLL_OFF_L_VAL] = 0x04,
80 		[PLL_OFF_ALPHA_VAL] = 0x08,
81 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
82 		[PLL_OFF_USER_CTL] = 0x10,
83 		[PLL_OFF_CONFIG_CTL] = 0x18,
84 		[PLL_OFF_TEST_CTL] = 0x1c,
85 		[PLL_OFF_STATUS] = 0x24,
86 	},
87 	[CLK_ALPHA_PLL_TYPE_FABIA] =  {
88 		[PLL_OFF_L_VAL] = 0x04,
89 		[PLL_OFF_USER_CTL] = 0x0c,
90 		[PLL_OFF_USER_CTL_U] = 0x10,
91 		[PLL_OFF_CONFIG_CTL] = 0x14,
92 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
93 		[PLL_OFF_TEST_CTL] = 0x1c,
94 		[PLL_OFF_TEST_CTL_U] = 0x20,
95 		[PLL_OFF_STATUS] = 0x24,
96 		[PLL_OFF_OPMODE] = 0x2c,
97 		[PLL_OFF_FRAC] = 0x38,
98 	},
99 };
100 EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
101 
102 /*
103  * Even though 40 bits are present, use only 32 for ease of calculation.
104  */
105 #define ALPHA_REG_BITWIDTH	40
106 #define ALPHA_REG_16BIT_WIDTH	16
107 #define ALPHA_BITWIDTH		32U
108 #define ALPHA_SHIFT(w)		min(w, ALPHA_BITWIDTH)
109 
110 #define PLL_HUAYRA_M_WIDTH		8
111 #define PLL_HUAYRA_M_SHIFT		8
112 #define PLL_HUAYRA_M_MASK		0xff
113 #define PLL_HUAYRA_N_SHIFT		0
114 #define PLL_HUAYRA_N_MASK		0xff
115 #define PLL_HUAYRA_ALPHA_WIDTH		16
116 
117 #define FABIA_OPMODE_STANDBY	0x0
118 #define FABIA_OPMODE_RUN	0x1
119 
120 #define FABIA_PLL_OUT_MASK	0x7
121 #define FABIA_PLL_RATE_MARGIN	500
122 
123 #define pll_alpha_width(p)					\
124 		((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ?	\
125 				 ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
126 
127 #define pll_has_64bit_config(p)	((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
128 
129 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
130 					   struct clk_alpha_pll, clkr)
131 
132 #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
133 					   struct clk_alpha_pll_postdiv, clkr)
134 
135 static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
136 			const char *action)
137 {
138 	u32 val;
139 	int count;
140 	int ret;
141 	const char *name = clk_hw_get_name(&pll->clkr.hw);
142 
143 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
144 	if (ret)
145 		return ret;
146 
147 	for (count = 100; count > 0; count--) {
148 		ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
149 		if (ret)
150 			return ret;
151 		if (inverse && !(val & mask))
152 			return 0;
153 		else if ((val & mask) == mask)
154 			return 0;
155 
156 		udelay(1);
157 	}
158 
159 	WARN(1, "%s failed to %s!\n", name, action);
160 	return -ETIMEDOUT;
161 }
162 
163 #define wait_for_pll_enable_active(pll) \
164 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
165 
166 #define wait_for_pll_enable_lock(pll) \
167 	wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
168 
169 #define wait_for_pll_disable(pll) \
170 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
171 
172 #define wait_for_pll_offline(pll) \
173 	wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
174 
175 #define wait_for_pll_update(pll) \
176 	wait_for_pll(pll, PLL_UPDATE, 1, "update")
177 
178 #define wait_for_pll_update_ack_set(pll) \
179 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
180 
181 #define wait_for_pll_update_ack_clear(pll) \
182 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
183 
184 void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
185 			     const struct alpha_pll_config *config)
186 {
187 	u32 val, mask;
188 
189 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
190 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
191 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
192 
193 	if (pll_has_64bit_config(pll))
194 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
195 			     config->config_ctl_hi_val);
196 
197 	if (pll_alpha_width(pll) > 32)
198 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
199 
200 	val = config->main_output_mask;
201 	val |= config->aux_output_mask;
202 	val |= config->aux2_output_mask;
203 	val |= config->early_output_mask;
204 	val |= config->pre_div_val;
205 	val |= config->post_div_val;
206 	val |= config->vco_val;
207 	val |= config->alpha_en_mask;
208 	val |= config->alpha_mode_mask;
209 
210 	mask = config->main_output_mask;
211 	mask |= config->aux_output_mask;
212 	mask |= config->aux2_output_mask;
213 	mask |= config->early_output_mask;
214 	mask |= config->pre_div_mask;
215 	mask |= config->post_div_mask;
216 	mask |= config->vco_mask;
217 
218 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
219 
220 	if (pll->flags & SUPPORTS_FSM_MODE)
221 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
222 }
223 
224 static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
225 {
226 	int ret;
227 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
228 	u32 val;
229 
230 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
231 	if (ret)
232 		return ret;
233 
234 	val |= PLL_FSM_ENA;
235 
236 	if (pll->flags & SUPPORTS_OFFLINE_REQ)
237 		val &= ~PLL_OFFLINE_REQ;
238 
239 	ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
240 	if (ret)
241 		return ret;
242 
243 	/* Make sure enable request goes through before waiting for update */
244 	mb();
245 
246 	return wait_for_pll_enable_active(pll);
247 }
248 
249 static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
250 {
251 	int ret;
252 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
253 	u32 val;
254 
255 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
256 	if (ret)
257 		return;
258 
259 	if (pll->flags & SUPPORTS_OFFLINE_REQ) {
260 		ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
261 					 PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
262 		if (ret)
263 			return;
264 
265 		ret = wait_for_pll_offline(pll);
266 		if (ret)
267 			return;
268 	}
269 
270 	/* Disable hwfsm */
271 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
272 				 PLL_FSM_ENA, 0);
273 	if (ret)
274 		return;
275 
276 	wait_for_pll_disable(pll);
277 }
278 
279 static int pll_is_enabled(struct clk_hw *hw, u32 mask)
280 {
281 	int ret;
282 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
283 	u32 val;
284 
285 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
286 	if (ret)
287 		return ret;
288 
289 	return !!(val & mask);
290 }
291 
292 static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
293 {
294 	return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
295 }
296 
297 static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
298 {
299 	return pll_is_enabled(hw, PLL_LOCK_DET);
300 }
301 
302 static int clk_alpha_pll_enable(struct clk_hw *hw)
303 {
304 	int ret;
305 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
306 	u32 val, mask;
307 
308 	mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
309 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
310 	if (ret)
311 		return ret;
312 
313 	/* If in FSM mode, just vote for it */
314 	if (val & PLL_VOTE_FSM_ENA) {
315 		ret = clk_enable_regmap(hw);
316 		if (ret)
317 			return ret;
318 		return wait_for_pll_enable_active(pll);
319 	}
320 
321 	/* Skip if already enabled */
322 	if ((val & mask) == mask)
323 		return 0;
324 
325 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
326 				 PLL_BYPASSNL, PLL_BYPASSNL);
327 	if (ret)
328 		return ret;
329 
330 	/*
331 	 * H/W requires a 5us delay between disabling the bypass and
332 	 * de-asserting the reset.
333 	 */
334 	mb();
335 	udelay(5);
336 
337 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
338 				 PLL_RESET_N, PLL_RESET_N);
339 	if (ret)
340 		return ret;
341 
342 	ret = wait_for_pll_enable_lock(pll);
343 	if (ret)
344 		return ret;
345 
346 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
347 				 PLL_OUTCTRL, PLL_OUTCTRL);
348 
349 	/* Ensure that the write above goes through before returning. */
350 	mb();
351 	return ret;
352 }
353 
354 static void clk_alpha_pll_disable(struct clk_hw *hw)
355 {
356 	int ret;
357 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
358 	u32 val, mask;
359 
360 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
361 	if (ret)
362 		return;
363 
364 	/* If in FSM mode, just unvote it */
365 	if (val & PLL_VOTE_FSM_ENA) {
366 		clk_disable_regmap(hw);
367 		return;
368 	}
369 
370 	mask = PLL_OUTCTRL;
371 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
372 
373 	/* Delay of 2 output clock ticks required until output is disabled */
374 	mb();
375 	udelay(1);
376 
377 	mask = PLL_RESET_N | PLL_BYPASSNL;
378 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
379 }
380 
381 static unsigned long
382 alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
383 {
384 	return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
385 }
386 
387 static unsigned long
388 alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
389 		     u32 alpha_width)
390 {
391 	u64 remainder;
392 	u64 quotient;
393 
394 	quotient = rate;
395 	remainder = do_div(quotient, prate);
396 	*l = quotient;
397 
398 	if (!remainder) {
399 		*a = 0;
400 		return rate;
401 	}
402 
403 	/* Upper ALPHA_BITWIDTH bits of Alpha */
404 	quotient = remainder << ALPHA_SHIFT(alpha_width);
405 
406 	remainder = do_div(quotient, prate);
407 
408 	if (remainder)
409 		quotient++;
410 
411 	*a = quotient;
412 	return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
413 }
414 
415 static const struct pll_vco *
416 alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
417 {
418 	const struct pll_vco *v = pll->vco_table;
419 	const struct pll_vco *end = v + pll->num_vco;
420 
421 	for (; v < end; v++)
422 		if (rate >= v->min_freq && rate <= v->max_freq)
423 			return v;
424 
425 	return NULL;
426 }
427 
428 static unsigned long
429 clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
430 {
431 	u32 l, low, high, ctl;
432 	u64 a = 0, prate = parent_rate;
433 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
434 	u32 alpha_width = pll_alpha_width(pll);
435 
436 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
437 
438 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
439 	if (ctl & PLL_ALPHA_EN) {
440 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
441 		if (alpha_width > 32) {
442 			regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
443 				    &high);
444 			a = (u64)high << 32 | low;
445 		} else {
446 			a = low & GENMASK(alpha_width - 1, 0);
447 		}
448 
449 		if (alpha_width > ALPHA_BITWIDTH)
450 			a >>= alpha_width - ALPHA_BITWIDTH;
451 	}
452 
453 	return alpha_pll_calc_rate(prate, l, a, alpha_width);
454 }
455 
456 
457 static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
458 {
459 	int ret;
460 	u32 mode;
461 
462 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
463 
464 	/* Latch the input to the PLL */
465 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
466 			   PLL_UPDATE);
467 
468 	/* Wait for 2 reference cycle before checking ACK bit */
469 	udelay(1);
470 
471 	/*
472 	 * PLL will latch the new L, Alpha and freq control word.
473 	 * PLL will respond by raising PLL_ACK_LATCH output when new programming
474 	 * has been latched in and PLL is being updated. When
475 	 * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
476 	 * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
477 	 */
478 	if (mode & PLL_UPDATE_BYPASS) {
479 		ret = wait_for_pll_update_ack_set(pll);
480 		if (ret)
481 			return ret;
482 
483 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
484 	} else {
485 		ret = wait_for_pll_update(pll);
486 		if (ret)
487 			return ret;
488 	}
489 
490 	ret = wait_for_pll_update_ack_clear(pll);
491 	if (ret)
492 		return ret;
493 
494 	/* Wait for PLL output to stabilize */
495 	udelay(10);
496 
497 	return 0;
498 }
499 
500 static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
501 				      int (*is_enabled)(struct clk_hw *))
502 {
503 	if (!is_enabled(&pll->clkr.hw) ||
504 	    !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
505 		return 0;
506 
507 	return __clk_alpha_pll_update_latch(pll);
508 }
509 
510 static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
511 				    unsigned long prate,
512 				    int (*is_enabled)(struct clk_hw *))
513 {
514 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
515 	const struct pll_vco *vco;
516 	u32 l, alpha_width = pll_alpha_width(pll);
517 	u64 a;
518 
519 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
520 	vco = alpha_pll_find_vco(pll, rate);
521 	if (pll->vco_table && !vco) {
522 		pr_err("alpha pll not in a valid vco range\n");
523 		return -EINVAL;
524 	}
525 
526 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
527 
528 	if (alpha_width > ALPHA_BITWIDTH)
529 		a <<= alpha_width - ALPHA_BITWIDTH;
530 
531 	if (alpha_width > 32)
532 		regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
533 
534 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
535 
536 	if (vco) {
537 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
538 				   PLL_VCO_MASK << PLL_VCO_SHIFT,
539 				   vco->val << PLL_VCO_SHIFT);
540 	}
541 
542 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
543 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
544 
545 	return clk_alpha_pll_update_latch(pll, is_enabled);
546 }
547 
548 static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
549 				  unsigned long prate)
550 {
551 	return __clk_alpha_pll_set_rate(hw, rate, prate,
552 					clk_alpha_pll_is_enabled);
553 }
554 
555 static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
556 					unsigned long prate)
557 {
558 	return __clk_alpha_pll_set_rate(hw, rate, prate,
559 					clk_alpha_pll_hwfsm_is_enabled);
560 }
561 
562 static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
563 				     unsigned long *prate)
564 {
565 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
566 	u32 l, alpha_width = pll_alpha_width(pll);
567 	u64 a;
568 	unsigned long min_freq, max_freq;
569 
570 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
571 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
572 		return rate;
573 
574 	min_freq = pll->vco_table[0].min_freq;
575 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
576 
577 	return clamp(rate, min_freq, max_freq);
578 }
579 
580 static unsigned long
581 alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
582 {
583 	/*
584 	 * a contains 16 bit alpha_val in two’s compliment number in the range
585 	 * of [-0.5, 0.5).
586 	 */
587 	if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
588 		l -= 1;
589 
590 	return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
591 }
592 
593 static unsigned long
594 alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
595 			    u32 *l, u32 *a)
596 {
597 	u64 remainder;
598 	u64 quotient;
599 
600 	quotient = rate;
601 	remainder = do_div(quotient, prate);
602 	*l = quotient;
603 
604 	if (!remainder) {
605 		*a = 0;
606 		return rate;
607 	}
608 
609 	quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
610 	remainder = do_div(quotient, prate);
611 
612 	if (remainder)
613 		quotient++;
614 
615 	/*
616 	 * alpha_val should be in two’s compliment number in the range
617 	 * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
618 	 * since alpha value will be subtracted in this case.
619 	 */
620 	if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
621 		*l += 1;
622 
623 	*a = quotient;
624 	return alpha_huayra_pll_calc_rate(prate, *l, *a);
625 }
626 
627 static unsigned long
628 alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
629 {
630 	u64 rate = parent_rate, tmp;
631 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
632 	u32 l, alpha = 0, ctl, alpha_m, alpha_n;
633 
634 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
635 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
636 
637 	if (ctl & PLL_ALPHA_EN) {
638 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
639 		/*
640 		 * Depending upon alpha_mode, it can be treated as M/N value or
641 		 * as a two’s compliment number. When alpha_mode=1,
642 		 * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
643 		 *
644 		 *		Fout=FIN*(L+(M/N))
645 		 *
646 		 * M is a signed number (-128 to 127) and N is unsigned
647 		 * (0 to 255). M/N has to be within +/-0.5.
648 		 *
649 		 * When alpha_mode=0, it is a two’s compliment number in the
650 		 * range [-0.5, 0.5).
651 		 *
652 		 *		Fout=FIN*(L+(alpha_val)/2^16)
653 		 *
654 		 * where alpha_val is two’s compliment number.
655 		 */
656 		if (!(ctl & PLL_ALPHA_MODE))
657 			return alpha_huayra_pll_calc_rate(rate, l, alpha);
658 
659 		alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
660 		alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
661 
662 		rate *= l;
663 		tmp = parent_rate;
664 		if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
665 			alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
666 			tmp *= alpha_m;
667 			do_div(tmp, alpha_n);
668 			rate -= tmp;
669 		} else {
670 			tmp *= alpha_m;
671 			do_div(tmp, alpha_n);
672 			rate += tmp;
673 		}
674 
675 		return rate;
676 	}
677 
678 	return alpha_huayra_pll_calc_rate(rate, l, alpha);
679 }
680 
681 static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
682 				     unsigned long prate)
683 {
684 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
685 	u32 l, a, ctl, cur_alpha = 0;
686 
687 	rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
688 
689 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
690 
691 	if (ctl & PLL_ALPHA_EN)
692 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
693 
694 	/*
695 	 * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
696 	 * without having to go through the power on sequence.
697 	 */
698 	if (clk_alpha_pll_is_enabled(hw)) {
699 		if (cur_alpha != a) {
700 			pr_err("clock needs to be gated %s\n",
701 			       clk_hw_get_name(hw));
702 			return -EBUSY;
703 		}
704 
705 		regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
706 		/* Ensure that the write above goes to detect L val change. */
707 		mb();
708 		return wait_for_pll_enable_lock(pll);
709 	}
710 
711 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
712 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
713 
714 	if (a == 0)
715 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
716 				   PLL_ALPHA_EN, 0x0);
717 	else
718 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
719 				   PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
720 
721 	return 0;
722 }
723 
724 static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
725 					unsigned long *prate)
726 {
727 	u32 l, a;
728 
729 	return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
730 }
731 
732 const struct clk_ops clk_alpha_pll_ops = {
733 	.enable = clk_alpha_pll_enable,
734 	.disable = clk_alpha_pll_disable,
735 	.is_enabled = clk_alpha_pll_is_enabled,
736 	.recalc_rate = clk_alpha_pll_recalc_rate,
737 	.round_rate = clk_alpha_pll_round_rate,
738 	.set_rate = clk_alpha_pll_set_rate,
739 };
740 EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
741 
742 const struct clk_ops clk_alpha_pll_huayra_ops = {
743 	.enable = clk_alpha_pll_enable,
744 	.disable = clk_alpha_pll_disable,
745 	.is_enabled = clk_alpha_pll_is_enabled,
746 	.recalc_rate = alpha_pll_huayra_recalc_rate,
747 	.round_rate = alpha_pll_huayra_round_rate,
748 	.set_rate = alpha_pll_huayra_set_rate,
749 };
750 EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
751 
752 const struct clk_ops clk_alpha_pll_hwfsm_ops = {
753 	.enable = clk_alpha_pll_hwfsm_enable,
754 	.disable = clk_alpha_pll_hwfsm_disable,
755 	.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
756 	.recalc_rate = clk_alpha_pll_recalc_rate,
757 	.round_rate = clk_alpha_pll_round_rate,
758 	.set_rate = clk_alpha_pll_hwfsm_set_rate,
759 };
760 EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
761 
762 static unsigned long
763 clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
764 {
765 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
766 	u32 ctl;
767 
768 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
769 
770 	ctl >>= PLL_POST_DIV_SHIFT;
771 	ctl &= PLL_POST_DIV_MASK(pll);
772 
773 	return parent_rate >> fls(ctl);
774 }
775 
776 static const struct clk_div_table clk_alpha_div_table[] = {
777 	{ 0x0, 1 },
778 	{ 0x1, 2 },
779 	{ 0x3, 4 },
780 	{ 0x7, 8 },
781 	{ 0xf, 16 },
782 	{ }
783 };
784 
785 static const struct clk_div_table clk_alpha_2bit_div_table[] = {
786 	{ 0x0, 1 },
787 	{ 0x1, 2 },
788 	{ 0x3, 4 },
789 	{ }
790 };
791 
792 static long
793 clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
794 				 unsigned long *prate)
795 {
796 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
797 	const struct clk_div_table *table;
798 
799 	if (pll->width == 2)
800 		table = clk_alpha_2bit_div_table;
801 	else
802 		table = clk_alpha_div_table;
803 
804 	return divider_round_rate(hw, rate, prate, table,
805 				  pll->width, CLK_DIVIDER_POWER_OF_TWO);
806 }
807 
808 static long
809 clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
810 				    unsigned long *prate)
811 {
812 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
813 	u32 ctl, div;
814 
815 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
816 
817 	ctl >>= PLL_POST_DIV_SHIFT;
818 	ctl &= BIT(pll->width) - 1;
819 	div = 1 << fls(ctl);
820 
821 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
822 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
823 
824 	return DIV_ROUND_UP_ULL((u64)*prate, div);
825 }
826 
827 static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
828 					  unsigned long parent_rate)
829 {
830 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
831 	int div;
832 
833 	/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
834 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate) - 1;
835 
836 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
837 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
838 				  div << PLL_POST_DIV_SHIFT);
839 }
840 
841 const struct clk_ops clk_alpha_pll_postdiv_ops = {
842 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
843 	.round_rate = clk_alpha_pll_postdiv_round_rate,
844 	.set_rate = clk_alpha_pll_postdiv_set_rate,
845 };
846 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
847 
848 const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
849 	.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
850 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
851 };
852 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
853 
854 void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
855 			     const struct alpha_pll_config *config)
856 {
857 	u32 val, mask;
858 
859 	if (config->l)
860 		regmap_write(regmap, PLL_L_VAL(pll), config->l);
861 
862 	if (config->alpha)
863 		regmap_write(regmap, PLL_FRAC(pll), config->alpha);
864 
865 	if (config->config_ctl_val)
866 		regmap_write(regmap, PLL_CONFIG_CTL(pll),
867 						config->config_ctl_val);
868 
869 	if (config->post_div_mask) {
870 		mask = config->post_div_mask;
871 		val = config->post_div_val;
872 		regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
873 	}
874 
875 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
876 							PLL_UPDATE_BYPASS);
877 
878 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
879 }
880 EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
881 
882 static int alpha_pll_fabia_enable(struct clk_hw *hw)
883 {
884 	int ret;
885 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
886 	u32 val, opmode_val;
887 	struct regmap *regmap = pll->clkr.regmap;
888 
889 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
890 	if (ret)
891 		return ret;
892 
893 	/* If in FSM mode, just vote for it */
894 	if (val & PLL_VOTE_FSM_ENA) {
895 		ret = clk_enable_regmap(hw);
896 		if (ret)
897 			return ret;
898 		return wait_for_pll_enable_active(pll);
899 	}
900 
901 	ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
902 	if (ret)
903 		return ret;
904 
905 	/* Skip If PLL is already running */
906 	if ((opmode_val & FABIA_OPMODE_RUN) && (val & PLL_OUTCTRL))
907 		return 0;
908 
909 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
910 	if (ret)
911 		return ret;
912 
913 	ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY);
914 	if (ret)
915 		return ret;
916 
917 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
918 				 PLL_RESET_N);
919 	if (ret)
920 		return ret;
921 
922 	ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_RUN);
923 	if (ret)
924 		return ret;
925 
926 	ret = wait_for_pll_enable_lock(pll);
927 	if (ret)
928 		return ret;
929 
930 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
931 				 FABIA_PLL_OUT_MASK, FABIA_PLL_OUT_MASK);
932 	if (ret)
933 		return ret;
934 
935 	return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
936 				 PLL_OUTCTRL);
937 }
938 
939 static void alpha_pll_fabia_disable(struct clk_hw *hw)
940 {
941 	int ret;
942 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
943 	u32 val;
944 	struct regmap *regmap = pll->clkr.regmap;
945 
946 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
947 	if (ret)
948 		return;
949 
950 	/* If in FSM mode, just unvote it */
951 	if (val & PLL_FSM_ENA) {
952 		clk_disable_regmap(hw);
953 		return;
954 	}
955 
956 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
957 	if (ret)
958 		return;
959 
960 	/* Disable main outputs */
961 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), FABIA_PLL_OUT_MASK,
962 				 0);
963 	if (ret)
964 		return;
965 
966 	/* Place the PLL in STANDBY */
967 	regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY);
968 }
969 
970 static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
971 						unsigned long parent_rate)
972 {
973 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
974 	u32 l, frac, alpha_width = pll_alpha_width(pll);
975 
976 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
977 	regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
978 
979 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
980 }
981 
982 static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
983 						unsigned long prate)
984 {
985 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
986 	u32 val, l, alpha_width = pll_alpha_width(pll);
987 	u64 a;
988 	unsigned long rrate;
989 	int ret = 0;
990 
991 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
992 	if (ret)
993 		return ret;
994 
995 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
996 
997 	/*
998 	 * Due to limited number of bits for fractional rate programming, the
999 	 * rounded up rate could be marginally higher than the requested rate.
1000 	 */
1001 	if (rrate > (rate + FABIA_PLL_RATE_MARGIN) || rrate < rate) {
1002 		pr_err("Call set rate on the PLL with rounded rates!\n");
1003 		return -EINVAL;
1004 	}
1005 
1006 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1007 	regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
1008 
1009 	return __clk_alpha_pll_update_latch(pll);
1010 }
1011 
1012 const struct clk_ops clk_alpha_pll_fabia_ops = {
1013 	.enable = alpha_pll_fabia_enable,
1014 	.disable = alpha_pll_fabia_disable,
1015 	.is_enabled = clk_alpha_pll_is_enabled,
1016 	.set_rate = alpha_pll_fabia_set_rate,
1017 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1018 	.round_rate = clk_alpha_pll_round_rate,
1019 };
1020 EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
1021 
1022 const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
1023 	.enable = alpha_pll_fabia_enable,
1024 	.disable = alpha_pll_fabia_disable,
1025 	.is_enabled = clk_alpha_pll_is_enabled,
1026 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1027 	.round_rate = clk_alpha_pll_round_rate,
1028 };
1029 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
1030 
1031 static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
1032 					unsigned long parent_rate)
1033 {
1034 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1035 	u32 i, div = 1, val;
1036 	int ret;
1037 
1038 	if (!pll->post_div_table) {
1039 		pr_err("Missing the post_div_table for the PLL\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1044 	if (ret)
1045 		return ret;
1046 
1047 	val >>= pll->post_div_shift;
1048 	val &= BIT(pll->width) - 1;
1049 
1050 	for (i = 0; i < pll->num_post_div; i++) {
1051 		if (pll->post_div_table[i].val == val) {
1052 			div = pll->post_div_table[i].div;
1053 			break;
1054 		}
1055 	}
1056 
1057 	return (parent_rate / div);
1058 }
1059 
1060 static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
1061 				unsigned long rate, unsigned long *prate)
1062 {
1063 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1064 
1065 	if (!pll->post_div_table) {
1066 		pr_err("Missing the post_div_table for the PLL\n");
1067 		return -EINVAL;
1068 	}
1069 
1070 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1071 				pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1072 }
1073 
1074 static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
1075 				unsigned long rate, unsigned long parent_rate)
1076 {
1077 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1078 	int i, val = 0, div, ret;
1079 
1080 	/*
1081 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1082 	 * no-operation.
1083 	 */
1084 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1085 	if (ret)
1086 		return ret;
1087 
1088 	if (val & PLL_VOTE_FSM_ENA)
1089 		return 0;
1090 
1091 	if (!pll->post_div_table) {
1092 		pr_err("Missing the post_div_table for the PLL\n");
1093 		return -EINVAL;
1094 	}
1095 
1096 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
1097 	for (i = 0; i < pll->num_post_div; i++) {
1098 		if (pll->post_div_table[i].div == div) {
1099 			val = pll->post_div_table[i].val;
1100 			break;
1101 		}
1102 	}
1103 
1104 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1105 				(BIT(pll->width) - 1) << pll->post_div_shift,
1106 				val << pll->post_div_shift);
1107 }
1108 
1109 const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
1110 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1111 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1112 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1113 };
1114 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
1115