xref: /openbmc/linux/drivers/clk/pxa/clk-pxa.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Marvell PXA family clocks
3  *
4  * Copyright (C) 2014 Robert Jarzmik
5  *
6  * Common clock code for PXA clocks ("CKEN" type clocks + DT)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/clkdev.h>
16 #include <linux/of.h>
17 
18 #include <dt-bindings/clock/pxa-clock.h>
19 #include "clk-pxa.h"
20 
21 #define KHz 1000
22 #define MHz (1000 * 1000)
23 
24 #define MDREFR_K0DB4	(1 << 29)	/* SDCLK0 Divide by 4 Control/Status */
25 #define MDREFR_K2FREE	(1 << 25)	/* SDRAM Free-Running Control */
26 #define MDREFR_K1FREE	(1 << 24)	/* SDRAM Free-Running Control */
27 #define MDREFR_K0FREE	(1 << 23)	/* SDRAM Free-Running Control */
28 #define MDREFR_SLFRSH	(1 << 22)	/* SDRAM Self-Refresh Control/Status */
29 #define MDREFR_APD	(1 << 20)	/* SDRAM/SSRAM Auto-Power-Down Enable */
30 #define MDREFR_K2DB2	(1 << 19)	/* SDCLK2 Divide by 2 Control/Status */
31 #define MDREFR_K2RUN	(1 << 18)	/* SDCLK2 Run Control/Status */
32 #define MDREFR_K1DB2	(1 << 17)	/* SDCLK1 Divide by 2 Control/Status */
33 #define MDREFR_K1RUN	(1 << 16)	/* SDCLK1 Run Control/Status */
34 #define MDREFR_E1PIN	(1 << 15)	/* SDCKE1 Level Control/Status */
35 #define MDREFR_K0DB2	(1 << 14)	/* SDCLK0 Divide by 2 Control/Status */
36 #define MDREFR_K0RUN	(1 << 13)	/* SDCLK0 Run Control/Status */
37 #define MDREFR_E0PIN	(1 << 12)	/* SDCKE0 Level Control/Status */
38 #define MDREFR_DB2_MASK	(MDREFR_K2DB2 | MDREFR_K1DB2)
39 #define MDREFR_DRI_MASK	0xFFF
40 
41 static DEFINE_SPINLOCK(pxa_clk_lock);
42 
43 static struct clk *pxa_clocks[CLK_MAX];
44 static struct clk_onecell_data onecell_data = {
45 	.clks = pxa_clocks,
46 	.clk_num = CLK_MAX,
47 };
48 
49 struct pxa_clk {
50 	struct clk_hw hw;
51 	struct clk_fixed_factor lp;
52 	struct clk_fixed_factor hp;
53 	struct clk_gate gate;
54 	bool (*is_in_low_power)(void);
55 };
56 
57 #define to_pxa_clk(_hw) container_of(_hw, struct pxa_clk, hw)
58 
59 static unsigned long cken_recalc_rate(struct clk_hw *hw,
60 				      unsigned long parent_rate)
61 {
62 	struct pxa_clk *pclk = to_pxa_clk(hw);
63 	struct clk_fixed_factor *fix;
64 
65 	if (!pclk->is_in_low_power || pclk->is_in_low_power())
66 		fix = &pclk->lp;
67 	else
68 		fix = &pclk->hp;
69 	__clk_hw_set_clk(&fix->hw, hw);
70 	return clk_fixed_factor_ops.recalc_rate(&fix->hw, parent_rate);
71 }
72 
73 static struct clk_ops cken_rate_ops = {
74 	.recalc_rate = cken_recalc_rate,
75 };
76 
77 static u8 cken_get_parent(struct clk_hw *hw)
78 {
79 	struct pxa_clk *pclk = to_pxa_clk(hw);
80 
81 	if (!pclk->is_in_low_power)
82 		return 0;
83 	return pclk->is_in_low_power() ? 0 : 1;
84 }
85 
86 static struct clk_ops cken_mux_ops = {
87 	.get_parent = cken_get_parent,
88 	.set_parent = dummy_clk_set_parent,
89 };
90 
91 void __init clkdev_pxa_register(int ckid, const char *con_id,
92 				const char *dev_id, struct clk *clk)
93 {
94 	if (!IS_ERR(clk) && (ckid != CLK_NONE))
95 		pxa_clocks[ckid] = clk;
96 	if (!IS_ERR(clk))
97 		clk_register_clkdev(clk, con_id, dev_id);
98 }
99 
100 int __init clk_pxa_cken_init(const struct desc_clk_cken *clks, int nb_clks)
101 {
102 	int i;
103 	struct pxa_clk *pxa_clk;
104 	struct clk *clk;
105 
106 	for (i = 0; i < nb_clks; i++) {
107 		pxa_clk = kzalloc(sizeof(*pxa_clk), GFP_KERNEL);
108 		pxa_clk->is_in_low_power = clks[i].is_in_low_power;
109 		pxa_clk->lp = clks[i].lp;
110 		pxa_clk->hp = clks[i].hp;
111 		pxa_clk->gate = clks[i].gate;
112 		pxa_clk->gate.lock = &pxa_clk_lock;
113 		clk = clk_register_composite(NULL, clks[i].name,
114 					     clks[i].parent_names, 2,
115 					     &pxa_clk->hw, &cken_mux_ops,
116 					     &pxa_clk->hw, &cken_rate_ops,
117 					     &pxa_clk->gate.hw, &clk_gate_ops,
118 					     clks[i].flags);
119 		clkdev_pxa_register(clks[i].ckid, clks[i].con_id,
120 				    clks[i].dev_id, clk);
121 	}
122 	return 0;
123 }
124 
125 void __init clk_pxa_dt_common_init(struct device_node *np)
126 {
127 	of_clk_add_provider(np, of_clk_src_onecell_get, &onecell_data);
128 }
129 
130 void pxa2xx_core_turbo_switch(bool on)
131 {
132 	unsigned long flags;
133 	unsigned int unused, clkcfg;
134 
135 	local_irq_save(flags);
136 
137 	asm("mrc p14, 0, %0, c6, c0, 0" : "=r" (clkcfg));
138 	clkcfg &= ~CLKCFG_TURBO & ~CLKCFG_HALFTURBO;
139 	if (on)
140 		clkcfg |= CLKCFG_TURBO;
141 	clkcfg |= CLKCFG_FCS;
142 
143 	asm volatile(
144 	"	b	2f\n"
145 	"	.align	5\n"
146 	"1:	mcr	p14, 0, %1, c6, c0, 0\n"
147 	"	b	3f\n"
148 	"2:	b	1b\n"
149 	"3:	nop\n"
150 		: "=&r" (unused) : "r" (clkcfg));
151 
152 	local_irq_restore(flags);
153 }
154 
155 void pxa2xx_cpll_change(struct pxa2xx_freq *freq,
156 			u32 (*mdrefr_dri)(unsigned int), void __iomem *mdrefr,
157 			void __iomem *cccr)
158 {
159 	unsigned int clkcfg = freq->clkcfg;
160 	unsigned int unused, preset_mdrefr, postset_mdrefr;
161 	unsigned long flags;
162 
163 	local_irq_save(flags);
164 
165 	/* Calculate the next MDREFR.  If we're slowing down the SDRAM clock
166 	 * we need to preset the smaller DRI before the change.	 If we're
167 	 * speeding up we need to set the larger DRI value after the change.
168 	 */
169 	preset_mdrefr = postset_mdrefr = readl(mdrefr);
170 	if ((preset_mdrefr & MDREFR_DRI_MASK) > mdrefr_dri(freq->membus_khz)) {
171 		preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK);
172 		preset_mdrefr |= mdrefr_dri(freq->membus_khz);
173 	}
174 	postset_mdrefr =
175 		(postset_mdrefr & ~MDREFR_DRI_MASK) |
176 		mdrefr_dri(freq->membus_khz);
177 
178 	/* If we're dividing the memory clock by two for the SDRAM clock, this
179 	 * must be set prior to the change.  Clearing the divide must be done
180 	 * after the change.
181 	 */
182 	if (freq->div2) {
183 		preset_mdrefr  |= MDREFR_DB2_MASK;
184 		postset_mdrefr |= MDREFR_DB2_MASK;
185 	} else {
186 		postset_mdrefr &= ~MDREFR_DB2_MASK;
187 	}
188 
189 	/* Set new the CCCR and prepare CLKCFG */
190 	writel(freq->cccr, cccr);
191 
192 	asm volatile(
193 	"	ldr	r4, [%1]\n"
194 	"	b	2f\n"
195 	"	.align	5\n"
196 	"1:	str	%3, [%1]		/* preset the MDREFR */\n"
197 	"	mcr	p14, 0, %2, c6, c0, 0	/* set CLKCFG[FCS] */\n"
198 	"	str	%4, [%1]		/* postset the MDREFR */\n"
199 	"	b	3f\n"
200 	"2:	b	1b\n"
201 	"3:	nop\n"
202 	     : "=&r" (unused)
203 	     : "r" (mdrefr), "r" (clkcfg), "r" (preset_mdrefr),
204 	       "r" (postset_mdrefr)
205 	     : "r4", "r5");
206 
207 	local_irq_restore(flags);
208 }
209 
210 int pxa2xx_determine_rate(struct clk_rate_request *req,
211 			  struct pxa2xx_freq *freqs, int nb_freqs)
212 {
213 	int i, closest_below = -1, closest_above = -1;
214 	unsigned long rate;
215 
216 	for (i = 0; i < nb_freqs; i++) {
217 		rate = freqs[i].cpll;
218 		if (rate == req->rate)
219 			break;
220 		if (rate < req->min_rate)
221 			continue;
222 		if (rate > req->max_rate)
223 			continue;
224 		if (rate <= req->rate)
225 			closest_below = i;
226 		if ((rate >= req->rate) && (closest_above == -1))
227 			closest_above = i;
228 	}
229 
230 	req->best_parent_hw = NULL;
231 
232 	if (i < nb_freqs) {
233 		rate = req->rate;
234 	} else if (closest_below >= 0) {
235 		rate = freqs[closest_below].cpll;
236 	} else if (closest_above >= 0) {
237 		rate = freqs[closest_above].cpll;
238 	} else {
239 		pr_debug("%s(rate=%lu) no match\n", __func__, req->rate);
240 		return -EINVAL;
241 	}
242 
243 	pr_debug("%s(rate=%lu) rate=%lu\n", __func__, req->rate, rate);
244 	req->rate = rate;
245 
246 	return 0;
247 }
248