1 /* 2 * Copyright 2012 Freescale Semiconductor, Inc. 3 * 4 * The code contained herein is licensed under the GNU General Public 5 * License. You may obtain a copy of the GNU General Public License 6 * Version 2 or later at the following locations: 7 * 8 * http://www.opensource.org/licenses/gpl-license.html 9 * http://www.gnu.org/copyleft/gpl.html 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk/mxs.h> 14 #include <linux/clkdev.h> 15 #include <linux/err.h> 16 #include <linux/init.h> 17 #include <linux/io.h> 18 #include <linux/of.h> 19 #include <linux/of_address.h> 20 #include "clk.h" 21 22 static void __iomem *clkctrl; 23 #define CLKCTRL clkctrl 24 25 #define PLL0CTRL0 (CLKCTRL + 0x0000) 26 #define PLL1CTRL0 (CLKCTRL + 0x0020) 27 #define PLL2CTRL0 (CLKCTRL + 0x0040) 28 #define CPU (CLKCTRL + 0x0050) 29 #define HBUS (CLKCTRL + 0x0060) 30 #define XBUS (CLKCTRL + 0x0070) 31 #define XTAL (CLKCTRL + 0x0080) 32 #define SSP0 (CLKCTRL + 0x0090) 33 #define SSP1 (CLKCTRL + 0x00a0) 34 #define SSP2 (CLKCTRL + 0x00b0) 35 #define SSP3 (CLKCTRL + 0x00c0) 36 #define GPMI (CLKCTRL + 0x00d0) 37 #define SPDIF (CLKCTRL + 0x00e0) 38 #define EMI (CLKCTRL + 0x00f0) 39 #define SAIF0 (CLKCTRL + 0x0100) 40 #define SAIF1 (CLKCTRL + 0x0110) 41 #define LCDIF (CLKCTRL + 0x0120) 42 #define ETM (CLKCTRL + 0x0130) 43 #define ENET (CLKCTRL + 0x0140) 44 #define FLEXCAN (CLKCTRL + 0x0160) 45 #define FRAC0 (CLKCTRL + 0x01b0) 46 #define FRAC1 (CLKCTRL + 0x01c0) 47 #define CLKSEQ (CLKCTRL + 0x01d0) 48 49 #define BP_CPU_INTERRUPT_WAIT 12 50 #define BP_SAIF_DIV_FRAC_EN 16 51 #define BP_ENET_DIV_TIME 21 52 #define BP_ENET_SLEEP 31 53 #define BP_CLKSEQ_BYPASS_SAIF0 0 54 #define BP_CLKSEQ_BYPASS_SSP0 3 55 #define BP_FRAC0_IO1FRAC 16 56 #define BP_FRAC0_IO0FRAC 24 57 58 static void __iomem *digctrl; 59 #define DIGCTRL digctrl 60 #define BP_SAIF_CLKMUX 10 61 62 /* 63 * HW_SAIF_CLKMUX_SEL: 64 * DIRECT(0x0): SAIF0 clock pins selected for SAIF0 input clocks, and SAIF1 65 * clock pins selected for SAIF1 input clocks. 66 * CROSSINPUT(0x1): SAIF1 clock inputs selected for SAIF0 input clocks, and 67 * SAIF0 clock inputs selected for SAIF1 input clocks. 68 * EXTMSTR0(0x2): SAIF0 clock pin selected for both SAIF0 and SAIF1 input 69 * clocks. 70 * EXTMSTR1(0x3): SAIF1 clock pin selected for both SAIF0 and SAIF1 input 71 * clocks. 72 */ 73 int mxs_saif_clkmux_select(unsigned int clkmux) 74 { 75 if (clkmux > 0x3) 76 return -EINVAL; 77 78 writel_relaxed(0x3 << BP_SAIF_CLKMUX, DIGCTRL + CLR); 79 writel_relaxed(clkmux << BP_SAIF_CLKMUX, DIGCTRL + SET); 80 81 return 0; 82 } 83 84 static void __init clk_misc_init(void) 85 { 86 u32 val; 87 88 /* Gate off cpu clock in WFI for power saving */ 89 writel_relaxed(1 << BP_CPU_INTERRUPT_WAIT, CPU + SET); 90 91 /* 0 is a bad default value for a divider */ 92 writel_relaxed(1 << BP_ENET_DIV_TIME, ENET + SET); 93 94 /* Clear BYPASS for SAIF */ 95 writel_relaxed(0x3 << BP_CLKSEQ_BYPASS_SAIF0, CLKSEQ + CLR); 96 97 /* SAIF has to use frac div for functional operation */ 98 val = readl_relaxed(SAIF0); 99 val |= 1 << BP_SAIF_DIV_FRAC_EN; 100 writel_relaxed(val, SAIF0); 101 102 val = readl_relaxed(SAIF1); 103 val |= 1 << BP_SAIF_DIV_FRAC_EN; 104 writel_relaxed(val, SAIF1); 105 106 /* Extra fec clock setting */ 107 val = readl_relaxed(ENET); 108 val &= ~(1 << BP_ENET_SLEEP); 109 writel_relaxed(val, ENET); 110 111 /* 112 * Source ssp clock from ref_io than ref_xtal, 113 * as ref_xtal only provides 24 MHz as maximum. 114 */ 115 writel_relaxed(0xf << BP_CLKSEQ_BYPASS_SSP0, CLKSEQ + CLR); 116 117 /* 118 * 480 MHz seems too high to be ssp clock source directly, 119 * so set frac0 to get a 288 MHz ref_io0 and ref_io1. 120 */ 121 val = readl_relaxed(FRAC0); 122 val &= ~((0x3f << BP_FRAC0_IO0FRAC) | (0x3f << BP_FRAC0_IO1FRAC)); 123 val |= (30 << BP_FRAC0_IO0FRAC) | (30 << BP_FRAC0_IO1FRAC); 124 writel_relaxed(val, FRAC0); 125 } 126 127 static const char *sel_cpu[] __initconst = { "ref_cpu", "ref_xtal", }; 128 static const char *sel_io0[] __initconst = { "ref_io0", "ref_xtal", }; 129 static const char *sel_io1[] __initconst = { "ref_io1", "ref_xtal", }; 130 static const char *sel_pix[] __initconst = { "ref_pix", "ref_xtal", }; 131 static const char *sel_gpmi[] __initconst = { "ref_gpmi", "ref_xtal", }; 132 static const char *sel_pll0[] __initconst = { "pll0", "ref_xtal", }; 133 static const char *cpu_sels[] __initconst = { "cpu_pll", "cpu_xtal", }; 134 static const char *emi_sels[] __initconst = { "emi_pll", "emi_xtal", }; 135 static const char *ptp_sels[] __initconst = { "ref_xtal", "pll0", }; 136 137 enum imx28_clk { 138 ref_xtal, pll0, pll1, pll2, ref_cpu, ref_emi, ref_io0, ref_io1, 139 ref_pix, ref_hsadc, ref_gpmi, saif0_sel, saif1_sel, gpmi_sel, 140 ssp0_sel, ssp1_sel, ssp2_sel, ssp3_sel, emi_sel, etm_sel, 141 lcdif_sel, cpu, ptp_sel, cpu_pll, cpu_xtal, hbus, xbus, 142 ssp0_div, ssp1_div, ssp2_div, ssp3_div, gpmi_div, emi_pll, 143 emi_xtal, lcdif_div, etm_div, ptp, saif0_div, saif1_div, 144 clk32k_div, rtc, lradc, spdif_div, clk32k, pwm, uart, ssp0, 145 ssp1, ssp2, ssp3, gpmi, spdif, emi, saif0, saif1, lcdif, etm, 146 fec, can0, can1, usb0, usb1, usb0_phy, usb1_phy, enet_out, 147 clk_max 148 }; 149 150 static struct clk *clks[clk_max]; 151 static struct clk_onecell_data clk_data; 152 153 static enum imx28_clk clks_init_on[] __initdata = { 154 cpu, hbus, xbus, emi, uart, 155 }; 156 157 int __init mx28_clocks_init(void) 158 { 159 struct device_node *np; 160 u32 i; 161 162 np = of_find_compatible_node(NULL, NULL, "fsl,imx28-digctl"); 163 digctrl = of_iomap(np, 0); 164 WARN_ON(!digctrl); 165 166 np = of_find_compatible_node(NULL, NULL, "fsl,imx28-clkctrl"); 167 clkctrl = of_iomap(np, 0); 168 WARN_ON(!clkctrl); 169 170 clk_misc_init(); 171 172 clks[ref_xtal] = mxs_clk_fixed("ref_xtal", 24000000); 173 clks[pll0] = mxs_clk_pll("pll0", "ref_xtal", PLL0CTRL0, 17, 480000000); 174 clks[pll1] = mxs_clk_pll("pll1", "ref_xtal", PLL1CTRL0, 17, 480000000); 175 clks[pll2] = mxs_clk_pll("pll2", "ref_xtal", PLL2CTRL0, 23, 50000000); 176 clks[ref_cpu] = mxs_clk_ref("ref_cpu", "pll0", FRAC0, 0); 177 clks[ref_emi] = mxs_clk_ref("ref_emi", "pll0", FRAC0, 1); 178 clks[ref_io1] = mxs_clk_ref("ref_io1", "pll0", FRAC0, 2); 179 clks[ref_io0] = mxs_clk_ref("ref_io0", "pll0", FRAC0, 3); 180 clks[ref_pix] = mxs_clk_ref("ref_pix", "pll0", FRAC1, 0); 181 clks[ref_hsadc] = mxs_clk_ref("ref_hsadc", "pll0", FRAC1, 1); 182 clks[ref_gpmi] = mxs_clk_ref("ref_gpmi", "pll0", FRAC1, 2); 183 clks[saif0_sel] = mxs_clk_mux("saif0_sel", CLKSEQ, 0, 1, sel_pll0, ARRAY_SIZE(sel_pll0)); 184 clks[saif1_sel] = mxs_clk_mux("saif1_sel", CLKSEQ, 1, 1, sel_pll0, ARRAY_SIZE(sel_pll0)); 185 clks[gpmi_sel] = mxs_clk_mux("gpmi_sel", CLKSEQ, 2, 1, sel_gpmi, ARRAY_SIZE(sel_gpmi)); 186 clks[ssp0_sel] = mxs_clk_mux("ssp0_sel", CLKSEQ, 3, 1, sel_io0, ARRAY_SIZE(sel_io0)); 187 clks[ssp1_sel] = mxs_clk_mux("ssp1_sel", CLKSEQ, 4, 1, sel_io0, ARRAY_SIZE(sel_io0)); 188 clks[ssp2_sel] = mxs_clk_mux("ssp2_sel", CLKSEQ, 5, 1, sel_io1, ARRAY_SIZE(sel_io1)); 189 clks[ssp3_sel] = mxs_clk_mux("ssp3_sel", CLKSEQ, 6, 1, sel_io1, ARRAY_SIZE(sel_io1)); 190 clks[emi_sel] = mxs_clk_mux("emi_sel", CLKSEQ, 7, 1, emi_sels, ARRAY_SIZE(emi_sels)); 191 clks[etm_sel] = mxs_clk_mux("etm_sel", CLKSEQ, 8, 1, sel_cpu, ARRAY_SIZE(sel_cpu)); 192 clks[lcdif_sel] = mxs_clk_mux("lcdif_sel", CLKSEQ, 14, 1, sel_pix, ARRAY_SIZE(sel_pix)); 193 clks[cpu] = mxs_clk_mux("cpu", CLKSEQ, 18, 1, cpu_sels, ARRAY_SIZE(cpu_sels)); 194 clks[ptp_sel] = mxs_clk_mux("ptp_sel", ENET, 19, 1, ptp_sels, ARRAY_SIZE(ptp_sels)); 195 clks[cpu_pll] = mxs_clk_div("cpu_pll", "ref_cpu", CPU, 0, 6, 28); 196 clks[cpu_xtal] = mxs_clk_div("cpu_xtal", "ref_xtal", CPU, 16, 10, 29); 197 clks[hbus] = mxs_clk_div("hbus", "cpu", HBUS, 0, 5, 31); 198 clks[xbus] = mxs_clk_div("xbus", "ref_xtal", XBUS, 0, 10, 31); 199 clks[ssp0_div] = mxs_clk_div("ssp0_div", "ssp0_sel", SSP0, 0, 9, 29); 200 clks[ssp1_div] = mxs_clk_div("ssp1_div", "ssp1_sel", SSP1, 0, 9, 29); 201 clks[ssp2_div] = mxs_clk_div("ssp2_div", "ssp2_sel", SSP2, 0, 9, 29); 202 clks[ssp3_div] = mxs_clk_div("ssp3_div", "ssp3_sel", SSP3, 0, 9, 29); 203 clks[gpmi_div] = mxs_clk_div("gpmi_div", "gpmi_sel", GPMI, 0, 10, 29); 204 clks[emi_pll] = mxs_clk_div("emi_pll", "ref_emi", EMI, 0, 6, 28); 205 clks[emi_xtal] = mxs_clk_div("emi_xtal", "ref_xtal", EMI, 8, 4, 29); 206 clks[lcdif_div] = mxs_clk_div("lcdif_div", "lcdif_sel", LCDIF, 0, 13, 29); 207 clks[etm_div] = mxs_clk_div("etm_div", "etm_sel", ETM, 0, 7, 29); 208 clks[ptp] = mxs_clk_div("ptp", "ptp_sel", ENET, 21, 6, 27); 209 clks[saif0_div] = mxs_clk_frac("saif0_div", "saif0_sel", SAIF0, 0, 16, 29); 210 clks[saif1_div] = mxs_clk_frac("saif1_div", "saif1_sel", SAIF1, 0, 16, 29); 211 clks[clk32k_div] = mxs_clk_fixed_factor("clk32k_div", "ref_xtal", 1, 750); 212 clks[rtc] = mxs_clk_fixed_factor("rtc", "ref_xtal", 1, 768); 213 clks[lradc] = mxs_clk_fixed_factor("lradc", "clk32k", 1, 16); 214 clks[spdif_div] = mxs_clk_fixed_factor("spdif_div", "pll0", 1, 4); 215 clks[clk32k] = mxs_clk_gate("clk32k", "clk32k_div", XTAL, 26); 216 clks[pwm] = mxs_clk_gate("pwm", "ref_xtal", XTAL, 29); 217 clks[uart] = mxs_clk_gate("uart", "ref_xtal", XTAL, 31); 218 clks[ssp0] = mxs_clk_gate("ssp0", "ssp0_div", SSP0, 31); 219 clks[ssp1] = mxs_clk_gate("ssp1", "ssp1_div", SSP1, 31); 220 clks[ssp2] = mxs_clk_gate("ssp2", "ssp2_div", SSP2, 31); 221 clks[ssp3] = mxs_clk_gate("ssp3", "ssp3_div", SSP3, 31); 222 clks[gpmi] = mxs_clk_gate("gpmi", "gpmi_div", GPMI, 31); 223 clks[spdif] = mxs_clk_gate("spdif", "spdif_div", SPDIF, 31); 224 clks[emi] = mxs_clk_gate("emi", "emi_sel", EMI, 31); 225 clks[saif0] = mxs_clk_gate("saif0", "saif0_div", SAIF0, 31); 226 clks[saif1] = mxs_clk_gate("saif1", "saif1_div", SAIF1, 31); 227 clks[lcdif] = mxs_clk_gate("lcdif", "lcdif_div", LCDIF, 31); 228 clks[etm] = mxs_clk_gate("etm", "etm_div", ETM, 31); 229 clks[fec] = mxs_clk_gate("fec", "hbus", ENET, 30); 230 clks[can0] = mxs_clk_gate("can0", "ref_xtal", FLEXCAN, 30); 231 clks[can1] = mxs_clk_gate("can1", "ref_xtal", FLEXCAN, 28); 232 clks[usb0] = mxs_clk_gate("usb0", "usb0_phy", DIGCTRL, 2); 233 clks[usb1] = mxs_clk_gate("usb1", "usb1_phy", DIGCTRL, 16); 234 clks[usb0_phy] = clk_register_gate(NULL, "usb0_phy", "pll0", 0, PLL0CTRL0, 18, 0, &mxs_lock); 235 clks[usb1_phy] = clk_register_gate(NULL, "usb1_phy", "pll1", 0, PLL1CTRL0, 18, 0, &mxs_lock); 236 clks[enet_out] = clk_register_gate(NULL, "enet_out", "pll2", 0, ENET, 18, 0, &mxs_lock); 237 238 for (i = 0; i < ARRAY_SIZE(clks); i++) 239 if (IS_ERR(clks[i])) { 240 pr_err("i.MX28 clk %d: register failed with %ld\n", 241 i, PTR_ERR(clks[i])); 242 return PTR_ERR(clks[i]); 243 } 244 245 clk_data.clks = clks; 246 clk_data.clk_num = ARRAY_SIZE(clks); 247 of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); 248 249 clk_register_clkdev(clks[enet_out], NULL, "enet_out"); 250 251 for (i = 0; i < ARRAY_SIZE(clks_init_on); i++) 252 clk_prepare_enable(clks[clks_init_on[i]]); 253 254 return 0; 255 } 256