1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Marvell Armada 37xx SoC Peripheral clocks 4 * 5 * Copyright (C) 2016 Marvell 6 * 7 * Gregory CLEMENT <gregory.clement@free-electrons.com> 8 * 9 * Most of the peripheral clocks can be modelled like this: 10 * _____ _______ _______ 11 * TBG-A-P --| | | | | | ______ 12 * TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk 13 * TBG-A-S --| | | | | | |______| 14 * TBG-B-S --|_____| |_______| |_______| 15 * 16 * However some clocks may use only one or two block or and use the 17 * xtal clock as parent. 18 */ 19 20 #include <linux/clk-provider.h> 21 #include <linux/io.h> 22 #include <linux/mfd/syscon.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/platform_device.h> 26 #include <linux/regmap.h> 27 #include <linux/slab.h> 28 29 #define TBG_SEL 0x0 30 #define DIV_SEL0 0x4 31 #define DIV_SEL1 0x8 32 #define DIV_SEL2 0xC 33 #define CLK_SEL 0x10 34 #define CLK_DIS 0x14 35 36 #define ARMADA_37XX_DVFS_LOAD_1 1 37 #define LOAD_LEVEL_NR 4 38 39 #define ARMADA_37XX_NB_L0L1 0x18 40 #define ARMADA_37XX_NB_L2L3 0x1C 41 #define ARMADA_37XX_NB_TBG_DIV_OFF 13 42 #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7 43 #define ARMADA_37XX_NB_CLK_SEL_OFF 11 44 #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1 45 #define ARMADA_37XX_NB_TBG_SEL_OFF 9 46 #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3 47 #define ARMADA_37XX_NB_CONFIG_SHIFT 16 48 #define ARMADA_37XX_NB_DYN_MOD 0x24 49 #define ARMADA_37XX_NB_DFS_EN 31 50 #define ARMADA_37XX_NB_CPU_LOAD 0x30 51 #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3 52 #define ARMADA_37XX_DVFS_LOAD_0 0 53 #define ARMADA_37XX_DVFS_LOAD_1 1 54 #define ARMADA_37XX_DVFS_LOAD_2 2 55 #define ARMADA_37XX_DVFS_LOAD_3 3 56 57 struct clk_periph_driver_data { 58 struct clk_hw_onecell_data *hw_data; 59 spinlock_t lock; 60 void __iomem *reg; 61 62 /* Storage registers for suspend/resume operations */ 63 u32 tbg_sel; 64 u32 div_sel0; 65 u32 div_sel1; 66 u32 div_sel2; 67 u32 clk_sel; 68 u32 clk_dis; 69 }; 70 71 struct clk_double_div { 72 struct clk_hw hw; 73 void __iomem *reg1; 74 u8 shift1; 75 void __iomem *reg2; 76 u8 shift2; 77 }; 78 79 struct clk_pm_cpu { 80 struct clk_hw hw; 81 void __iomem *reg_mux; 82 u8 shift_mux; 83 u32 mask_mux; 84 void __iomem *reg_div; 85 u8 shift_div; 86 struct regmap *nb_pm_base; 87 }; 88 89 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw) 90 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw) 91 92 struct clk_periph_data { 93 const char *name; 94 const char * const *parent_names; 95 int num_parents; 96 struct clk_hw *mux_hw; 97 struct clk_hw *rate_hw; 98 struct clk_hw *gate_hw; 99 struct clk_hw *muxrate_hw; 100 bool is_double_div; 101 }; 102 103 static const struct clk_div_table clk_table6[] = { 104 { .val = 1, .div = 1, }, 105 { .val = 2, .div = 2, }, 106 { .val = 3, .div = 3, }, 107 { .val = 4, .div = 4, }, 108 { .val = 5, .div = 5, }, 109 { .val = 6, .div = 6, }, 110 { .val = 0, .div = 0, }, /* last entry */ 111 }; 112 113 static const struct clk_div_table clk_table1[] = { 114 { .val = 0, .div = 1, }, 115 { .val = 1, .div = 2, }, 116 { .val = 0, .div = 0, }, /* last entry */ 117 }; 118 119 static const struct clk_div_table clk_table2[] = { 120 { .val = 0, .div = 2, }, 121 { .val = 1, .div = 4, }, 122 { .val = 0, .div = 0, }, /* last entry */ 123 }; 124 125 static const struct clk_ops clk_double_div_ops; 126 static const struct clk_ops clk_pm_cpu_ops; 127 128 #define PERIPH_GATE(_name, _bit) \ 129 struct clk_gate gate_##_name = { \ 130 .reg = (void *)CLK_DIS, \ 131 .bit_idx = _bit, \ 132 .hw.init = &(struct clk_init_data){ \ 133 .ops = &clk_gate_ops, \ 134 } \ 135 }; 136 137 #define PERIPH_MUX(_name, _shift) \ 138 struct clk_mux mux_##_name = { \ 139 .reg = (void *)TBG_SEL, \ 140 .shift = _shift, \ 141 .mask = 3, \ 142 .hw.init = &(struct clk_init_data){ \ 143 .ops = &clk_mux_ro_ops, \ 144 } \ 145 }; 146 147 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \ 148 struct clk_double_div rate_##_name = { \ 149 .reg1 = (void *)_reg1, \ 150 .reg2 = (void *)_reg2, \ 151 .shift1 = _shift1, \ 152 .shift2 = _shift2, \ 153 .hw.init = &(struct clk_init_data){ \ 154 .ops = &clk_double_div_ops, \ 155 } \ 156 }; 157 158 #define PERIPH_DIV(_name, _reg, _shift, _table) \ 159 struct clk_divider rate_##_name = { \ 160 .reg = (void *)_reg, \ 161 .table = _table, \ 162 .shift = _shift, \ 163 .hw.init = &(struct clk_init_data){ \ 164 .ops = &clk_divider_ro_ops, \ 165 } \ 166 }; 167 168 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \ 169 struct clk_pm_cpu muxrate_##_name = { \ 170 .reg_mux = (void *)TBG_SEL, \ 171 .mask_mux = 3, \ 172 .shift_mux = _shift1, \ 173 .reg_div = (void *)_reg, \ 174 .shift_div = _shift2, \ 175 .hw.init = &(struct clk_init_data){ \ 176 .ops = &clk_pm_cpu_ops, \ 177 } \ 178 }; 179 180 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\ 181 static PERIPH_GATE(_name, _bit); \ 182 static PERIPH_MUX(_name, _shift); \ 183 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2); 184 185 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \ 186 static PERIPH_GATE(_name, _bit); \ 187 static PERIPH_MUX(_name, _shift); \ 188 static PERIPH_DIV(_name, _reg, _shift1, _table); 189 190 #define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \ 191 static PERIPH_GATE(_name, _bit); \ 192 static PERIPH_DIV(_name, _reg, _shift, _table); 193 194 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\ 195 static PERIPH_MUX(_name, _shift); \ 196 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2); 197 198 #define REF_CLK_FULL(_name) \ 199 { .name = #_name, \ 200 .parent_names = (const char *[]){ "TBG-A-P", \ 201 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 202 .num_parents = 4, \ 203 .mux_hw = &mux_##_name.hw, \ 204 .gate_hw = &gate_##_name.hw, \ 205 .rate_hw = &rate_##_name.hw, \ 206 } 207 208 #define REF_CLK_FULL_DD(_name) \ 209 { .name = #_name, \ 210 .parent_names = (const char *[]){ "TBG-A-P", \ 211 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 212 .num_parents = 4, \ 213 .mux_hw = &mux_##_name.hw, \ 214 .gate_hw = &gate_##_name.hw, \ 215 .rate_hw = &rate_##_name.hw, \ 216 .is_double_div = true, \ 217 } 218 219 #define REF_CLK_GATE(_name, _parent_name) \ 220 { .name = #_name, \ 221 .parent_names = (const char *[]){ _parent_name}, \ 222 .num_parents = 1, \ 223 .gate_hw = &gate_##_name.hw, \ 224 } 225 226 #define REF_CLK_GATE_DIV(_name, _parent_name) \ 227 { .name = #_name, \ 228 .parent_names = (const char *[]){ _parent_name}, \ 229 .num_parents = 1, \ 230 .gate_hw = &gate_##_name.hw, \ 231 .rate_hw = &rate_##_name.hw, \ 232 } 233 234 #define REF_CLK_PM_CPU(_name) \ 235 { .name = #_name, \ 236 .parent_names = (const char *[]){ "TBG-A-P", \ 237 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 238 .num_parents = 4, \ 239 .muxrate_hw = &muxrate_##_name.hw, \ 240 } 241 242 #define REF_CLK_MUX_DD(_name) \ 243 { .name = #_name, \ 244 .parent_names = (const char *[]){ "TBG-A-P", \ 245 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 246 .num_parents = 4, \ 247 .mux_hw = &mux_##_name.hw, \ 248 .rate_hw = &rate_##_name.hw, \ 249 .is_double_div = true, \ 250 } 251 252 /* NB periph clocks */ 253 PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13); 254 PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7); 255 PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0); 256 PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6); 257 PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12); 258 PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6); 259 static PERIPH_GATE(avs, 11); 260 PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0); 261 PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24); 262 static PERIPH_GATE(i2c_2, 16); 263 static PERIPH_GATE(i2c_1, 17); 264 PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2); 265 PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12); 266 PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6); 267 PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6); 268 PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19); 269 static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28); 270 271 static struct clk_periph_data data_nb[] = { 272 REF_CLK_FULL_DD(mmc), 273 REF_CLK_FULL_DD(sata_host), 274 REF_CLK_FULL_DD(sec_at), 275 REF_CLK_FULL_DD(sec_dap), 276 REF_CLK_FULL_DD(tscem), 277 REF_CLK_FULL(tscem_tmx), 278 REF_CLK_GATE(avs, "xtal"), 279 REF_CLK_FULL_DD(sqf), 280 REF_CLK_FULL_DD(pwm), 281 REF_CLK_GATE(i2c_2, "xtal"), 282 REF_CLK_GATE(i2c_1, "xtal"), 283 REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"), 284 REF_CLK_FULL_DD(ddr_fclk), 285 REF_CLK_FULL(trace), 286 REF_CLK_FULL(counter), 287 REF_CLK_FULL_DD(eip97), 288 REF_CLK_PM_CPU(cpu), 289 { }, 290 }; 291 292 /* SB periph clocks */ 293 PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9); 294 PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21); 295 PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9); 296 static PERIPH_GATE(gbe1_50, 0); 297 static PERIPH_GATE(gbe0_50, 1); 298 static PERIPH_GATE(gbe1_125, 2); 299 static PERIPH_GATE(gbe0_125, 3); 300 PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1); 301 PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1); 302 PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1); 303 PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6); 304 PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12); 305 PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18); 306 307 static struct clk_periph_data data_sb[] = { 308 REF_CLK_MUX_DD(gbe_50), 309 REF_CLK_MUX_DD(gbe_core), 310 REF_CLK_MUX_DD(gbe_125), 311 REF_CLK_GATE(gbe1_50, "gbe_50"), 312 REF_CLK_GATE(gbe0_50, "gbe_50"), 313 REF_CLK_GATE(gbe1_125, "gbe_125"), 314 REF_CLK_GATE(gbe0_125, "gbe_125"), 315 REF_CLK_GATE_DIV(gbe1_core, "gbe_core"), 316 REF_CLK_GATE_DIV(gbe0_core, "gbe_core"), 317 REF_CLK_GATE_DIV(gbe_bm, "gbe_core"), 318 REF_CLK_FULL_DD(sdio), 319 REF_CLK_FULL_DD(usb32_usb2_sys), 320 REF_CLK_FULL_DD(usb32_ss_sys), 321 { }, 322 }; 323 324 static unsigned int get_div(void __iomem *reg, int shift) 325 { 326 u32 val; 327 328 val = (readl(reg) >> shift) & 0x7; 329 if (val > 6) 330 return 0; 331 return val; 332 } 333 334 static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw, 335 unsigned long parent_rate) 336 { 337 struct clk_double_div *double_div = to_clk_double_div(hw); 338 unsigned int div; 339 340 div = get_div(double_div->reg1, double_div->shift1); 341 div *= get_div(double_div->reg2, double_div->shift2); 342 343 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 344 } 345 346 static const struct clk_ops clk_double_div_ops = { 347 .recalc_rate = clk_double_div_recalc_rate, 348 }; 349 350 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level, 351 unsigned int *reg, 352 unsigned int *offset) 353 { 354 if (load_level <= ARMADA_37XX_DVFS_LOAD_1) 355 *reg = ARMADA_37XX_NB_L0L1; 356 else 357 *reg = ARMADA_37XX_NB_L2L3; 358 359 if (load_level == ARMADA_37XX_DVFS_LOAD_0 || 360 load_level == ARMADA_37XX_DVFS_LOAD_2) 361 *offset += ARMADA_37XX_NB_CONFIG_SHIFT; 362 } 363 364 static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base) 365 { 366 unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD; 367 368 if (IS_ERR(base)) 369 return false; 370 371 regmap_read(base, reg, &val); 372 373 return !!(val & BIT(ARMADA_37XX_NB_DFS_EN)); 374 } 375 376 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base) 377 { 378 unsigned int reg = ARMADA_37XX_NB_CPU_LOAD; 379 unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF; 380 unsigned int load_level, div; 381 382 /* 383 * This function is always called after the function 384 * armada_3700_pm_dvfs_is_enabled, so no need to check again 385 * if the base is valid. 386 */ 387 regmap_read(base, reg, &load_level); 388 389 /* 390 * The register and the offset inside this register accessed to 391 * read the current divider depend on the load level 392 */ 393 load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK; 394 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 395 396 regmap_read(base, reg, &div); 397 398 return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK; 399 } 400 401 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base) 402 { 403 unsigned int reg = ARMADA_37XX_NB_CPU_LOAD; 404 unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF; 405 unsigned int load_level, sel; 406 407 /* 408 * This function is always called after the function 409 * armada_3700_pm_dvfs_is_enabled, so no need to check again 410 * if the base is valid 411 */ 412 regmap_read(base, reg, &load_level); 413 414 /* 415 * The register and the offset inside this register accessed to 416 * read the current divider depend on the load level 417 */ 418 load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK; 419 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 420 421 regmap_read(base, reg, &sel); 422 423 return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK; 424 } 425 426 static u8 clk_pm_cpu_get_parent(struct clk_hw *hw) 427 { 428 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 429 u32 val; 430 431 if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) { 432 val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base); 433 } else { 434 val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux; 435 val &= pm_cpu->mask_mux; 436 } 437 438 return val; 439 } 440 441 static int clk_pm_cpu_set_parent(struct clk_hw *hw, u8 index) 442 { 443 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 444 struct regmap *base = pm_cpu->nb_pm_base; 445 int load_level; 446 447 /* 448 * We set the clock parent only if the DVFS is available but 449 * not enabled. 450 */ 451 if (IS_ERR(base) || armada_3700_pm_dvfs_is_enabled(base)) 452 return -EINVAL; 453 454 /* Set the parent clock for all the load level */ 455 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) { 456 unsigned int reg, mask, val, 457 offset = ARMADA_37XX_NB_TBG_SEL_OFF; 458 459 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 460 461 val = index << offset; 462 mask = ARMADA_37XX_NB_TBG_SEL_MASK << offset; 463 regmap_update_bits(base, reg, mask, val); 464 } 465 return 0; 466 } 467 468 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw, 469 unsigned long parent_rate) 470 { 471 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 472 unsigned int div; 473 474 if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) 475 div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base); 476 else 477 div = get_div(pm_cpu->reg_div, pm_cpu->shift_div); 478 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 479 } 480 481 static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate, 482 unsigned long *parent_rate) 483 { 484 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 485 struct regmap *base = pm_cpu->nb_pm_base; 486 unsigned int div = *parent_rate / rate; 487 unsigned int load_level; 488 /* only available when DVFS is enabled */ 489 if (!armada_3700_pm_dvfs_is_enabled(base)) 490 return -EINVAL; 491 492 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) { 493 unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF; 494 495 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 496 497 regmap_read(base, reg, &val); 498 499 val >>= offset; 500 val &= ARMADA_37XX_NB_TBG_DIV_MASK; 501 if (val == div) 502 /* 503 * We found a load level matching the target 504 * divider, switch to this load level and 505 * return. 506 */ 507 return *parent_rate / div; 508 } 509 510 /* We didn't find any valid divider */ 511 return -EINVAL; 512 } 513 514 /* 515 * Switching the CPU from the L2 or L3 frequencies (300 and 200 Mhz 516 * respectively) to L0 frequency (1.2 Ghz) requires a significant 517 * amount of time to let VDD stabilize to the appropriate 518 * voltage. This amount of time is large enough that it cannot be 519 * covered by the hardware countdown register. Due to this, the CPU 520 * might start operating at L0 before the voltage is stabilized, 521 * leading to CPU stalls. 522 * 523 * To work around this problem, we prevent switching directly from the 524 * L2/L3 frequencies to the L0 frequency, and instead switch to the L1 525 * frequency in-between. The sequence therefore becomes: 526 * 1. First switch from L2/L3(200/300MHz) to L1(600MHZ) 527 * 2. Sleep 20ms for stabling VDD voltage 528 * 3. Then switch from L1(600MHZ) to L0(1200Mhz). 529 */ 530 static void clk_pm_cpu_set_rate_wa(unsigned long rate, struct regmap *base) 531 { 532 unsigned int cur_level; 533 534 if (rate != 1200 * 1000 * 1000) 535 return; 536 537 regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level); 538 cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK; 539 if (cur_level <= ARMADA_37XX_DVFS_LOAD_1) 540 return; 541 542 regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD, 543 ARMADA_37XX_NB_CPU_LOAD_MASK, 544 ARMADA_37XX_DVFS_LOAD_1); 545 msleep(20); 546 } 547 548 static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate, 549 unsigned long parent_rate) 550 { 551 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 552 struct regmap *base = pm_cpu->nb_pm_base; 553 unsigned int div = parent_rate / rate; 554 unsigned int load_level; 555 556 /* only available when DVFS is enabled */ 557 if (!armada_3700_pm_dvfs_is_enabled(base)) 558 return -EINVAL; 559 560 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) { 561 unsigned int reg, mask, val, 562 offset = ARMADA_37XX_NB_TBG_DIV_OFF; 563 564 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 565 566 regmap_read(base, reg, &val); 567 val >>= offset; 568 val &= ARMADA_37XX_NB_TBG_DIV_MASK; 569 570 if (val == div) { 571 /* 572 * We found a load level matching the target 573 * divider, switch to this load level and 574 * return. 575 */ 576 reg = ARMADA_37XX_NB_CPU_LOAD; 577 mask = ARMADA_37XX_NB_CPU_LOAD_MASK; 578 579 clk_pm_cpu_set_rate_wa(rate, base); 580 581 regmap_update_bits(base, reg, mask, load_level); 582 583 return rate; 584 } 585 } 586 587 /* We didn't find any valid divider */ 588 return -EINVAL; 589 } 590 591 static const struct clk_ops clk_pm_cpu_ops = { 592 .get_parent = clk_pm_cpu_get_parent, 593 .set_parent = clk_pm_cpu_set_parent, 594 .round_rate = clk_pm_cpu_round_rate, 595 .set_rate = clk_pm_cpu_set_rate, 596 .recalc_rate = clk_pm_cpu_recalc_rate, 597 }; 598 599 static const struct of_device_id armada_3700_periph_clock_of_match[] = { 600 { .compatible = "marvell,armada-3700-periph-clock-nb", 601 .data = data_nb, }, 602 { .compatible = "marvell,armada-3700-periph-clock-sb", 603 .data = data_sb, }, 604 { } 605 }; 606 607 static int armada_3700_add_composite_clk(const struct clk_periph_data *data, 608 void __iomem *reg, spinlock_t *lock, 609 struct device *dev, struct clk_hw **hw) 610 { 611 const struct clk_ops *mux_ops = NULL, *gate_ops = NULL, 612 *rate_ops = NULL; 613 struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL; 614 615 if (data->mux_hw) { 616 struct clk_mux *mux; 617 618 mux_hw = data->mux_hw; 619 mux = to_clk_mux(mux_hw); 620 mux->lock = lock; 621 mux_ops = mux_hw->init->ops; 622 mux->reg = reg + (u64)mux->reg; 623 } 624 625 if (data->gate_hw) { 626 struct clk_gate *gate; 627 628 gate_hw = data->gate_hw; 629 gate = to_clk_gate(gate_hw); 630 gate->lock = lock; 631 gate_ops = gate_hw->init->ops; 632 gate->reg = reg + (u64)gate->reg; 633 gate->flags = CLK_GATE_SET_TO_DISABLE; 634 } 635 636 if (data->rate_hw) { 637 rate_hw = data->rate_hw; 638 rate_ops = rate_hw->init->ops; 639 if (data->is_double_div) { 640 struct clk_double_div *rate; 641 642 rate = to_clk_double_div(rate_hw); 643 rate->reg1 = reg + (u64)rate->reg1; 644 rate->reg2 = reg + (u64)rate->reg2; 645 } else { 646 struct clk_divider *rate = to_clk_divider(rate_hw); 647 const struct clk_div_table *clkt; 648 int table_size = 0; 649 650 rate->reg = reg + (u64)rate->reg; 651 for (clkt = rate->table; clkt->div; clkt++) 652 table_size++; 653 rate->width = order_base_2(table_size); 654 rate->lock = lock; 655 } 656 } 657 658 if (data->muxrate_hw) { 659 struct clk_pm_cpu *pmcpu_clk; 660 struct clk_hw *muxrate_hw = data->muxrate_hw; 661 struct regmap *map; 662 663 pmcpu_clk = to_clk_pm_cpu(muxrate_hw); 664 pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux; 665 pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div; 666 667 mux_hw = muxrate_hw; 668 rate_hw = muxrate_hw; 669 mux_ops = muxrate_hw->init->ops; 670 rate_ops = muxrate_hw->init->ops; 671 672 map = syscon_regmap_lookup_by_compatible( 673 "marvell,armada-3700-nb-pm"); 674 pmcpu_clk->nb_pm_base = map; 675 } 676 677 *hw = clk_hw_register_composite(dev, data->name, data->parent_names, 678 data->num_parents, mux_hw, 679 mux_ops, rate_hw, rate_ops, 680 gate_hw, gate_ops, CLK_IGNORE_UNUSED); 681 682 return PTR_ERR_OR_ZERO(*hw); 683 } 684 685 static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev) 686 { 687 struct clk_periph_driver_data *data = dev_get_drvdata(dev); 688 689 data->tbg_sel = readl(data->reg + TBG_SEL); 690 data->div_sel0 = readl(data->reg + DIV_SEL0); 691 data->div_sel1 = readl(data->reg + DIV_SEL1); 692 data->div_sel2 = readl(data->reg + DIV_SEL2); 693 data->clk_sel = readl(data->reg + CLK_SEL); 694 data->clk_dis = readl(data->reg + CLK_DIS); 695 696 return 0; 697 } 698 699 static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev) 700 { 701 struct clk_periph_driver_data *data = dev_get_drvdata(dev); 702 703 /* Follow the same order than what the Cortex-M3 does (ATF code) */ 704 writel(data->clk_dis, data->reg + CLK_DIS); 705 writel(data->div_sel0, data->reg + DIV_SEL0); 706 writel(data->div_sel1, data->reg + DIV_SEL1); 707 writel(data->div_sel2, data->reg + DIV_SEL2); 708 writel(data->tbg_sel, data->reg + TBG_SEL); 709 writel(data->clk_sel, data->reg + CLK_SEL); 710 711 return 0; 712 } 713 714 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = { 715 SET_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend, 716 armada_3700_periph_clock_resume) 717 }; 718 719 static int armada_3700_periph_clock_probe(struct platform_device *pdev) 720 { 721 struct clk_periph_driver_data *driver_data; 722 struct device_node *np = pdev->dev.of_node; 723 const struct clk_periph_data *data; 724 struct device *dev = &pdev->dev; 725 int num_periph = 0, i, ret; 726 struct resource *res; 727 728 data = of_device_get_match_data(dev); 729 if (!data) 730 return -ENODEV; 731 732 while (data[num_periph].name) 733 num_periph++; 734 735 driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL); 736 if (!driver_data) 737 return -ENOMEM; 738 739 driver_data->hw_data = devm_kzalloc(dev, 740 struct_size(driver_data->hw_data, 741 hws, num_periph), 742 GFP_KERNEL); 743 if (!driver_data->hw_data) 744 return -ENOMEM; 745 driver_data->hw_data->num = num_periph; 746 747 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 748 driver_data->reg = devm_ioremap_resource(dev, res); 749 if (IS_ERR(driver_data->reg)) 750 return PTR_ERR(driver_data->reg); 751 752 spin_lock_init(&driver_data->lock); 753 754 for (i = 0; i < num_periph; i++) { 755 struct clk_hw **hw = &driver_data->hw_data->hws[i]; 756 if (armada_3700_add_composite_clk(&data[i], driver_data->reg, 757 &driver_data->lock, dev, hw)) 758 dev_err(dev, "Can't register periph clock %s\n", 759 data[i].name); 760 } 761 762 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, 763 driver_data->hw_data); 764 if (ret) { 765 for (i = 0; i < num_periph; i++) 766 clk_hw_unregister(driver_data->hw_data->hws[i]); 767 return ret; 768 } 769 770 platform_set_drvdata(pdev, driver_data); 771 return 0; 772 } 773 774 static int armada_3700_periph_clock_remove(struct platform_device *pdev) 775 { 776 struct clk_periph_driver_data *data = platform_get_drvdata(pdev); 777 struct clk_hw_onecell_data *hw_data = data->hw_data; 778 int i; 779 780 of_clk_del_provider(pdev->dev.of_node); 781 782 for (i = 0; i < hw_data->num; i++) 783 clk_hw_unregister(hw_data->hws[i]); 784 785 return 0; 786 } 787 788 static struct platform_driver armada_3700_periph_clock_driver = { 789 .probe = armada_3700_periph_clock_probe, 790 .remove = armada_3700_periph_clock_remove, 791 .driver = { 792 .name = "marvell-armada-3700-periph-clock", 793 .of_match_table = armada_3700_periph_clock_of_match, 794 .pm = &armada_3700_periph_clock_pm_ops, 795 }, 796 }; 797 798 builtin_platform_driver(armada_3700_periph_clock_driver); 799