xref: /openbmc/linux/drivers/clk/mvebu/armada-37xx-periph.c (revision 53e8558837be58c1d44d50ad87247a8c56c95c13)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Marvell Armada 37xx SoC Peripheral clocks
4  *
5  * Copyright (C) 2016 Marvell
6  *
7  * Gregory CLEMENT <gregory.clement@free-electrons.com>
8  *
9  * Most of the peripheral clocks can be modelled like this:
10  *             _____    _______    _______
11  * TBG-A-P  --|     |  |       |  |       |   ______
12  * TBG-B-P  --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
13  * TBG-A-S  --|     |  |       |  |       |  |______|
14  * TBG-B-S  --|_____|  |_______|  |_______|
15  *
16  * However some clocks may use only one or two block or and use the
17  * xtal clock as parent.
18  */
19 
20 #include <linux/clk-provider.h>
21 #include <linux/io.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28 
29 #define TBG_SEL		0x0
30 #define DIV_SEL0	0x4
31 #define DIV_SEL1	0x8
32 #define DIV_SEL2	0xC
33 #define CLK_SEL		0x10
34 #define CLK_DIS		0x14
35 
36 #define  ARMADA_37XX_DVFS_LOAD_1 1
37 #define LOAD_LEVEL_NR	4
38 
39 #define ARMADA_37XX_NB_L0L1	0x18
40 #define ARMADA_37XX_NB_L2L3	0x1C
41 #define		ARMADA_37XX_NB_TBG_DIV_OFF	13
42 #define		ARMADA_37XX_NB_TBG_DIV_MASK	0x7
43 #define		ARMADA_37XX_NB_CLK_SEL_OFF	11
44 #define		ARMADA_37XX_NB_CLK_SEL_MASK	0x1
45 #define		ARMADA_37XX_NB_TBG_SEL_OFF	9
46 #define		ARMADA_37XX_NB_TBG_SEL_MASK	0x3
47 #define		ARMADA_37XX_NB_CONFIG_SHIFT	16
48 #define ARMADA_37XX_NB_DYN_MOD	0x24
49 #define		ARMADA_37XX_NB_DFS_EN	31
50 #define ARMADA_37XX_NB_CPU_LOAD	0x30
51 #define		ARMADA_37XX_NB_CPU_LOAD_MASK	0x3
52 #define		ARMADA_37XX_DVFS_LOAD_0		0
53 #define		ARMADA_37XX_DVFS_LOAD_1		1
54 #define		ARMADA_37XX_DVFS_LOAD_2		2
55 #define		ARMADA_37XX_DVFS_LOAD_3		3
56 
57 struct clk_periph_driver_data {
58 	struct clk_hw_onecell_data *hw_data;
59 	spinlock_t lock;
60 	void __iomem *reg;
61 
62 	/* Storage registers for suspend/resume operations */
63 	u32 tbg_sel;
64 	u32 div_sel0;
65 	u32 div_sel1;
66 	u32 div_sel2;
67 	u32 clk_sel;
68 	u32 clk_dis;
69 };
70 
71 struct clk_double_div {
72 	struct clk_hw hw;
73 	void __iomem *reg1;
74 	u8 shift1;
75 	void __iomem *reg2;
76 	u8 shift2;
77 };
78 
79 struct clk_pm_cpu {
80 	struct clk_hw hw;
81 	void __iomem *reg_mux;
82 	u8 shift_mux;
83 	u32 mask_mux;
84 	void __iomem *reg_div;
85 	u8 shift_div;
86 	struct regmap *nb_pm_base;
87 	unsigned long l1_expiration;
88 };
89 
90 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
91 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
92 
93 struct clk_periph_data {
94 	const char *name;
95 	const char * const *parent_names;
96 	int num_parents;
97 	struct clk_hw *mux_hw;
98 	struct clk_hw *rate_hw;
99 	struct clk_hw *gate_hw;
100 	struct clk_hw *muxrate_hw;
101 	bool is_double_div;
102 };
103 
104 static const struct clk_div_table clk_table6[] = {
105 	{ .val = 1, .div = 1, },
106 	{ .val = 2, .div = 2, },
107 	{ .val = 3, .div = 3, },
108 	{ .val = 4, .div = 4, },
109 	{ .val = 5, .div = 5, },
110 	{ .val = 6, .div = 6, },
111 	{ .val = 0, .div = 0, }, /* last entry */
112 };
113 
114 static const struct clk_div_table clk_table1[] = {
115 	{ .val = 0, .div = 1, },
116 	{ .val = 1, .div = 2, },
117 	{ .val = 0, .div = 0, }, /* last entry */
118 };
119 
120 static const struct clk_div_table clk_table2[] = {
121 	{ .val = 0, .div = 2, },
122 	{ .val = 1, .div = 4, },
123 	{ .val = 0, .div = 0, }, /* last entry */
124 };
125 
126 static const struct clk_ops clk_double_div_ops;
127 static const struct clk_ops clk_pm_cpu_ops;
128 
129 #define PERIPH_GATE(_name, _bit)		\
130 struct clk_gate gate_##_name = {		\
131 	.reg = (void *)CLK_DIS,			\
132 	.bit_idx = _bit,			\
133 	.hw.init = &(struct clk_init_data){	\
134 		.ops =  &clk_gate_ops,		\
135 	}					\
136 };
137 
138 #define PERIPH_MUX(_name, _shift)		\
139 struct clk_mux mux_##_name = {			\
140 	.reg = (void *)TBG_SEL,			\
141 	.shift = _shift,			\
142 	.mask = 3,				\
143 	.hw.init = &(struct clk_init_data){	\
144 		.ops =  &clk_mux_ro_ops,	\
145 	}					\
146 };
147 
148 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2)	\
149 struct clk_double_div rate_##_name = {		\
150 	.reg1 = (void *)_reg1,			\
151 	.reg2 = (void *)_reg2,			\
152 	.shift1 = _shift1,			\
153 	.shift2 = _shift2,			\
154 	.hw.init = &(struct clk_init_data){	\
155 		.ops =  &clk_double_div_ops,	\
156 	}					\
157 };
158 
159 #define PERIPH_DIV(_name, _reg, _shift, _table)	\
160 struct clk_divider rate_##_name = {		\
161 	.reg = (void *)_reg,			\
162 	.table = _table,			\
163 	.shift = _shift,			\
164 	.hw.init = &(struct clk_init_data){	\
165 		.ops =  &clk_divider_ro_ops,	\
166 	}					\
167 };
168 
169 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2)	\
170 struct clk_pm_cpu muxrate_##_name = {		\
171 	.reg_mux = (void *)TBG_SEL,		\
172 	.mask_mux = 3,				\
173 	.shift_mux = _shift1,			\
174 	.reg_div = (void *)_reg,		\
175 	.shift_div = _shift2,			\
176 	.hw.init = &(struct clk_init_data){	\
177 		.ops =  &clk_pm_cpu_ops,	\
178 	}					\
179 };
180 
181 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
182 static PERIPH_GATE(_name, _bit);			    \
183 static PERIPH_MUX(_name, _shift);			    \
184 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
185 
186 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table)	\
187 static PERIPH_GATE(_name, _bit);			    \
188 static PERIPH_MUX(_name, _shift);			    \
189 static PERIPH_DIV(_name, _reg, _shift1, _table);
190 
191 #define PERIPH_CLK_GATE_DIV(_name, _bit,  _reg, _shift, _table)	\
192 static PERIPH_GATE(_name, _bit);			\
193 static PERIPH_DIV(_name, _reg, _shift, _table);
194 
195 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
196 static PERIPH_MUX(_name, _shift);			    \
197 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
198 
199 #define REF_CLK_FULL(_name)				\
200 	{ .name = #_name,				\
201 	  .parent_names = (const char *[]){ "TBG-A-P",	\
202 	      "TBG-B-P", "TBG-A-S", "TBG-B-S"},		\
203 	  .num_parents = 4,				\
204 	  .mux_hw = &mux_##_name.hw,			\
205 	  .gate_hw = &gate_##_name.hw,			\
206 	  .rate_hw = &rate_##_name.hw,			\
207 	}
208 
209 #define REF_CLK_FULL_DD(_name)				\
210 	{ .name = #_name,				\
211 	  .parent_names = (const char *[]){ "TBG-A-P",	\
212 	      "TBG-B-P", "TBG-A-S", "TBG-B-S"},		\
213 	  .num_parents = 4,				\
214 	  .mux_hw = &mux_##_name.hw,			\
215 	  .gate_hw = &gate_##_name.hw,			\
216 	  .rate_hw = &rate_##_name.hw,			\
217 	  .is_double_div = true,			\
218 	}
219 
220 #define REF_CLK_GATE(_name, _parent_name)			\
221 	{ .name = #_name,					\
222 	  .parent_names = (const char *[]){ _parent_name},	\
223 	  .num_parents = 1,					\
224 	  .gate_hw = &gate_##_name.hw,				\
225 	}
226 
227 #define REF_CLK_GATE_DIV(_name, _parent_name)			\
228 	{ .name = #_name,					\
229 	  .parent_names = (const char *[]){ _parent_name},	\
230 	  .num_parents = 1,					\
231 	  .gate_hw = &gate_##_name.hw,				\
232 	  .rate_hw = &rate_##_name.hw,				\
233 	}
234 
235 #define REF_CLK_PM_CPU(_name)				\
236 	{ .name = #_name,				\
237 	  .parent_names = (const char *[]){ "TBG-A-P",	\
238 	      "TBG-B-P", "TBG-A-S", "TBG-B-S"},		\
239 	  .num_parents = 4,				\
240 	  .muxrate_hw = &muxrate_##_name.hw,		\
241 	}
242 
243 #define REF_CLK_MUX_DD(_name)				\
244 	{ .name = #_name,				\
245 	  .parent_names = (const char *[]){ "TBG-A-P",	\
246 	      "TBG-B-P", "TBG-A-S", "TBG-B-S"},		\
247 	  .num_parents = 4,				\
248 	  .mux_hw = &mux_##_name.hw,			\
249 	  .rate_hw = &rate_##_name.hw,			\
250 	  .is_double_div = true,			\
251 	}
252 
253 /* NB periph clocks */
254 PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
255 PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
256 PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
257 PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
258 PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
259 PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
260 static PERIPH_GATE(avs, 11);
261 PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
262 PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
263 static PERIPH_GATE(i2c_2, 16);
264 static PERIPH_GATE(i2c_1, 17);
265 PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
266 PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
267 PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
268 PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
269 PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
270 static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
271 
272 static struct clk_periph_data data_nb[] = {
273 	REF_CLK_FULL_DD(mmc),
274 	REF_CLK_FULL_DD(sata_host),
275 	REF_CLK_FULL_DD(sec_at),
276 	REF_CLK_FULL_DD(sec_dap),
277 	REF_CLK_FULL_DD(tscem),
278 	REF_CLK_FULL(tscem_tmx),
279 	REF_CLK_GATE(avs, "xtal"),
280 	REF_CLK_FULL_DD(sqf),
281 	REF_CLK_FULL_DD(pwm),
282 	REF_CLK_GATE(i2c_2, "xtal"),
283 	REF_CLK_GATE(i2c_1, "xtal"),
284 	REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
285 	REF_CLK_FULL_DD(ddr_fclk),
286 	REF_CLK_FULL(trace),
287 	REF_CLK_FULL(counter),
288 	REF_CLK_FULL_DD(eip97),
289 	REF_CLK_PM_CPU(cpu),
290 	{ },
291 };
292 
293 /* SB periph clocks */
294 PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
295 PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
296 PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
297 static PERIPH_GATE(gbe1_50, 0);
298 static PERIPH_GATE(gbe0_50, 1);
299 static PERIPH_GATE(gbe1_125, 2);
300 static PERIPH_GATE(gbe0_125, 3);
301 PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
302 PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
303 PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
304 PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
305 PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
306 PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
307 static PERIPH_GATE(pcie, 14);
308 
309 static struct clk_periph_data data_sb[] = {
310 	REF_CLK_MUX_DD(gbe_50),
311 	REF_CLK_MUX_DD(gbe_core),
312 	REF_CLK_MUX_DD(gbe_125),
313 	REF_CLK_GATE(gbe1_50, "gbe_50"),
314 	REF_CLK_GATE(gbe0_50, "gbe_50"),
315 	REF_CLK_GATE(gbe1_125, "gbe_125"),
316 	REF_CLK_GATE(gbe0_125, "gbe_125"),
317 	REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
318 	REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
319 	REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
320 	REF_CLK_FULL_DD(sdio),
321 	REF_CLK_FULL_DD(usb32_usb2_sys),
322 	REF_CLK_FULL_DD(usb32_ss_sys),
323 	REF_CLK_GATE(pcie, "gbe_core"),
324 	{ },
325 };
326 
327 static unsigned int get_div(void __iomem *reg, int shift)
328 {
329 	u32 val;
330 
331 	val = (readl(reg) >> shift) & 0x7;
332 	if (val > 6)
333 		return 0;
334 	return val;
335 }
336 
337 static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
338 						unsigned long parent_rate)
339 {
340 	struct clk_double_div *double_div = to_clk_double_div(hw);
341 	unsigned int div;
342 
343 	div = get_div(double_div->reg1, double_div->shift1);
344 	div *= get_div(double_div->reg2, double_div->shift2);
345 
346 	return DIV_ROUND_UP_ULL((u64)parent_rate, div);
347 }
348 
349 static const struct clk_ops clk_double_div_ops = {
350 	.recalc_rate = clk_double_div_recalc_rate,
351 };
352 
353 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
354 					    unsigned int *reg,
355 					    unsigned int *offset)
356 {
357 	if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
358 		*reg = ARMADA_37XX_NB_L0L1;
359 	else
360 		*reg = ARMADA_37XX_NB_L2L3;
361 
362 	if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
363 	    load_level ==  ARMADA_37XX_DVFS_LOAD_2)
364 		*offset += ARMADA_37XX_NB_CONFIG_SHIFT;
365 }
366 
367 static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
368 {
369 	unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
370 
371 	if (IS_ERR(base))
372 		return false;
373 
374 	regmap_read(base, reg, &val);
375 
376 	return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
377 }
378 
379 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
380 {
381 	unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
382 	unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
383 	unsigned int load_level, div;
384 
385 	/*
386 	 * This function is always called after the function
387 	 * armada_3700_pm_dvfs_is_enabled, so no need to check again
388 	 * if the base is valid.
389 	 */
390 	regmap_read(base, reg, &load_level);
391 
392 	/*
393 	 * The register and the offset inside this register accessed to
394 	 * read the current divider depend on the load level
395 	 */
396 	load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
397 	armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
398 
399 	regmap_read(base, reg, &div);
400 
401 	return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
402 }
403 
404 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
405 {
406 	unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
407 	unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
408 	unsigned int load_level, sel;
409 
410 	/*
411 	 * This function is always called after the function
412 	 * armada_3700_pm_dvfs_is_enabled, so no need to check again
413 	 * if the base is valid
414 	 */
415 	regmap_read(base, reg, &load_level);
416 
417 	/*
418 	 * The register and the offset inside this register accessed to
419 	 * read the current divider depend on the load level
420 	 */
421 	load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
422 	armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
423 
424 	regmap_read(base, reg, &sel);
425 
426 	return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
427 }
428 
429 static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
430 {
431 	struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
432 	u32 val;
433 
434 	if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
435 		val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
436 	} else {
437 		val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
438 		val &= pm_cpu->mask_mux;
439 	}
440 
441 	return val;
442 }
443 
444 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
445 					    unsigned long parent_rate)
446 {
447 	struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
448 	unsigned int div;
449 
450 	if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
451 		div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
452 	else
453 		div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
454 	return DIV_ROUND_UP_ULL((u64)parent_rate, div);
455 }
456 
457 static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
458 				  unsigned long *parent_rate)
459 {
460 	struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
461 	struct regmap *base = pm_cpu->nb_pm_base;
462 	unsigned int div = *parent_rate / rate;
463 	unsigned int load_level;
464 	/* only available when DVFS is enabled */
465 	if (!armada_3700_pm_dvfs_is_enabled(base))
466 		return -EINVAL;
467 
468 	for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
469 		unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
470 
471 		armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
472 
473 		regmap_read(base, reg, &val);
474 
475 		val >>= offset;
476 		val &= ARMADA_37XX_NB_TBG_DIV_MASK;
477 		if (val == div)
478 			/*
479 			 * We found a load level matching the target
480 			 * divider, switch to this load level and
481 			 * return.
482 			 */
483 			return *parent_rate / div;
484 	}
485 
486 	/* We didn't find any valid divider */
487 	return -EINVAL;
488 }
489 
490 /*
491  * Workaround when base CPU frequnecy is 1000 or 1200 MHz
492  *
493  * Switching the CPU from the L2 or L3 frequencies (250/300 or 200 MHz
494  * respectively) to L0 frequency (1/1.2 GHz) requires a significant
495  * amount of time to let VDD stabilize to the appropriate
496  * voltage. This amount of time is large enough that it cannot be
497  * covered by the hardware countdown register. Due to this, the CPU
498  * might start operating at L0 before the voltage is stabilized,
499  * leading to CPU stalls.
500  *
501  * To work around this problem, we prevent switching directly from the
502  * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
503  * frequency in-between. The sequence therefore becomes:
504  * 1. First switch from L2/L3 (200/250/300 MHz) to L1 (500/600 MHz)
505  * 2. Sleep 20ms for stabling VDD voltage
506  * 3. Then switch from L1 (500/600 MHz) to L0 (1000/1200 MHz).
507  */
508 static void clk_pm_cpu_set_rate_wa(struct clk_pm_cpu *pm_cpu,
509 				   unsigned int new_level, unsigned long rate,
510 				   struct regmap *base)
511 {
512 	unsigned int cur_level;
513 
514 	regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
515 	cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
516 
517 	if (cur_level == new_level)
518 		return;
519 
520 	/*
521 	 * System wants to go to L1 on its own. If we are going from L2/L3,
522 	 * remember when 20ms will expire. If from L0, set the value so that
523 	 * next switch to L0 won't have to wait.
524 	 */
525 	if (new_level == ARMADA_37XX_DVFS_LOAD_1) {
526 		if (cur_level == ARMADA_37XX_DVFS_LOAD_0)
527 			pm_cpu->l1_expiration = jiffies;
528 		else
529 			pm_cpu->l1_expiration = jiffies + msecs_to_jiffies(20);
530 		return;
531 	}
532 
533 	/*
534 	 * If we are setting to L2/L3, just invalidate L1 expiration time,
535 	 * sleeping is not needed.
536 	 */
537 	if (rate < 1000*1000*1000)
538 		goto invalidate_l1_exp;
539 
540 	/*
541 	 * We are going to L0 with rate >= 1GHz. Check whether we have been at
542 	 * L1 for long enough time. If not, go to L1 for 20ms.
543 	 */
544 	if (pm_cpu->l1_expiration && jiffies >= pm_cpu->l1_expiration)
545 		goto invalidate_l1_exp;
546 
547 	regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
548 			   ARMADA_37XX_NB_CPU_LOAD_MASK,
549 			   ARMADA_37XX_DVFS_LOAD_1);
550 	msleep(20);
551 
552 invalidate_l1_exp:
553 	pm_cpu->l1_expiration = 0;
554 }
555 
556 static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
557 			       unsigned long parent_rate)
558 {
559 	struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
560 	struct regmap *base = pm_cpu->nb_pm_base;
561 	unsigned int div = parent_rate / rate;
562 	unsigned int load_level;
563 
564 	/* only available when DVFS is enabled */
565 	if (!armada_3700_pm_dvfs_is_enabled(base))
566 		return -EINVAL;
567 
568 	for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
569 		unsigned int reg, mask, val,
570 			offset = ARMADA_37XX_NB_TBG_DIV_OFF;
571 
572 		armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
573 
574 		regmap_read(base, reg, &val);
575 		val >>= offset;
576 		val &= ARMADA_37XX_NB_TBG_DIV_MASK;
577 
578 		if (val == div) {
579 			/*
580 			 * We found a load level matching the target
581 			 * divider, switch to this load level and
582 			 * return.
583 			 */
584 			reg = ARMADA_37XX_NB_CPU_LOAD;
585 			mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
586 
587 			/* Apply workaround when base CPU frequency is 1000 or 1200 MHz */
588 			if (parent_rate >= 1000*1000*1000)
589 				clk_pm_cpu_set_rate_wa(pm_cpu, load_level, rate, base);
590 
591 			regmap_update_bits(base, reg, mask, load_level);
592 
593 			return rate;
594 		}
595 	}
596 
597 	/* We didn't find any valid divider */
598 	return -EINVAL;
599 }
600 
601 static const struct clk_ops clk_pm_cpu_ops = {
602 	.get_parent = clk_pm_cpu_get_parent,
603 	.round_rate = clk_pm_cpu_round_rate,
604 	.set_rate = clk_pm_cpu_set_rate,
605 	.recalc_rate = clk_pm_cpu_recalc_rate,
606 };
607 
608 static const struct of_device_id armada_3700_periph_clock_of_match[] = {
609 	{ .compatible = "marvell,armada-3700-periph-clock-nb",
610 	  .data = data_nb, },
611 	{ .compatible = "marvell,armada-3700-periph-clock-sb",
612 	.data = data_sb, },
613 	{ }
614 };
615 
616 static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
617 					 void __iomem *reg, spinlock_t *lock,
618 					 struct device *dev, struct clk_hw **hw)
619 {
620 	const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
621 		*rate_ops = NULL;
622 	struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
623 
624 	if (data->mux_hw) {
625 		struct clk_mux *mux;
626 
627 		mux_hw = data->mux_hw;
628 		mux = to_clk_mux(mux_hw);
629 		mux->lock = lock;
630 		mux_ops = mux_hw->init->ops;
631 		mux->reg = reg + (u64)mux->reg;
632 	}
633 
634 	if (data->gate_hw) {
635 		struct clk_gate *gate;
636 
637 		gate_hw = data->gate_hw;
638 		gate = to_clk_gate(gate_hw);
639 		gate->lock = lock;
640 		gate_ops = gate_hw->init->ops;
641 		gate->reg = reg + (u64)gate->reg;
642 		gate->flags = CLK_GATE_SET_TO_DISABLE;
643 	}
644 
645 	if (data->rate_hw) {
646 		rate_hw = data->rate_hw;
647 		rate_ops = rate_hw->init->ops;
648 		if (data->is_double_div) {
649 			struct clk_double_div *rate;
650 
651 			rate =  to_clk_double_div(rate_hw);
652 			rate->reg1 = reg + (u64)rate->reg1;
653 			rate->reg2 = reg + (u64)rate->reg2;
654 		} else {
655 			struct clk_divider *rate = to_clk_divider(rate_hw);
656 			const struct clk_div_table *clkt;
657 			int table_size = 0;
658 
659 			rate->reg = reg + (u64)rate->reg;
660 			for (clkt = rate->table; clkt->div; clkt++)
661 				table_size++;
662 			rate->width = order_base_2(table_size);
663 			rate->lock = lock;
664 		}
665 	}
666 
667 	if (data->muxrate_hw) {
668 		struct clk_pm_cpu *pmcpu_clk;
669 		struct clk_hw *muxrate_hw = data->muxrate_hw;
670 		struct regmap *map;
671 
672 		pmcpu_clk =  to_clk_pm_cpu(muxrate_hw);
673 		pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
674 		pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
675 
676 		mux_hw = muxrate_hw;
677 		rate_hw = muxrate_hw;
678 		mux_ops = muxrate_hw->init->ops;
679 		rate_ops = muxrate_hw->init->ops;
680 
681 		map = syscon_regmap_lookup_by_compatible(
682 				"marvell,armada-3700-nb-pm");
683 		pmcpu_clk->nb_pm_base = map;
684 	}
685 
686 	*hw = clk_hw_register_composite(dev, data->name, data->parent_names,
687 					data->num_parents, mux_hw,
688 					mux_ops, rate_hw, rate_ops,
689 					gate_hw, gate_ops, CLK_IGNORE_UNUSED);
690 
691 	return PTR_ERR_OR_ZERO(*hw);
692 }
693 
694 static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev)
695 {
696 	struct clk_periph_driver_data *data = dev_get_drvdata(dev);
697 
698 	data->tbg_sel = readl(data->reg + TBG_SEL);
699 	data->div_sel0 = readl(data->reg + DIV_SEL0);
700 	data->div_sel1 = readl(data->reg + DIV_SEL1);
701 	data->div_sel2 = readl(data->reg + DIV_SEL2);
702 	data->clk_sel = readl(data->reg + CLK_SEL);
703 	data->clk_dis = readl(data->reg + CLK_DIS);
704 
705 	return 0;
706 }
707 
708 static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev)
709 {
710 	struct clk_periph_driver_data *data = dev_get_drvdata(dev);
711 
712 	/* Follow the same order than what the Cortex-M3 does (ATF code) */
713 	writel(data->clk_dis, data->reg + CLK_DIS);
714 	writel(data->div_sel0, data->reg + DIV_SEL0);
715 	writel(data->div_sel1, data->reg + DIV_SEL1);
716 	writel(data->div_sel2, data->reg + DIV_SEL2);
717 	writel(data->tbg_sel, data->reg + TBG_SEL);
718 	writel(data->clk_sel, data->reg + CLK_SEL);
719 
720 	return 0;
721 }
722 
723 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = {
724 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend,
725 				      armada_3700_periph_clock_resume)
726 };
727 
728 static int armada_3700_periph_clock_probe(struct platform_device *pdev)
729 {
730 	struct clk_periph_driver_data *driver_data;
731 	struct device_node *np = pdev->dev.of_node;
732 	const struct clk_periph_data *data;
733 	struct device *dev = &pdev->dev;
734 	int num_periph = 0, i, ret;
735 	struct resource *res;
736 
737 	data = of_device_get_match_data(dev);
738 	if (!data)
739 		return -ENODEV;
740 
741 	while (data[num_periph].name)
742 		num_periph++;
743 
744 	driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
745 	if (!driver_data)
746 		return -ENOMEM;
747 
748 	driver_data->hw_data = devm_kzalloc(dev,
749 					    struct_size(driver_data->hw_data,
750 							hws, num_periph),
751 					    GFP_KERNEL);
752 	if (!driver_data->hw_data)
753 		return -ENOMEM;
754 	driver_data->hw_data->num = num_periph;
755 
756 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
757 	driver_data->reg = devm_ioremap_resource(dev, res);
758 	if (IS_ERR(driver_data->reg))
759 		return PTR_ERR(driver_data->reg);
760 
761 	spin_lock_init(&driver_data->lock);
762 
763 	for (i = 0; i < num_periph; i++) {
764 		struct clk_hw **hw = &driver_data->hw_data->hws[i];
765 		if (armada_3700_add_composite_clk(&data[i], driver_data->reg,
766 						  &driver_data->lock, dev, hw))
767 			dev_err(dev, "Can't register periph clock %s\n",
768 				data[i].name);
769 	}
770 
771 	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
772 				     driver_data->hw_data);
773 	if (ret) {
774 		for (i = 0; i < num_periph; i++)
775 			clk_hw_unregister(driver_data->hw_data->hws[i]);
776 		return ret;
777 	}
778 
779 	platform_set_drvdata(pdev, driver_data);
780 	return 0;
781 }
782 
783 static int armada_3700_periph_clock_remove(struct platform_device *pdev)
784 {
785 	struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
786 	struct clk_hw_onecell_data *hw_data = data->hw_data;
787 	int i;
788 
789 	of_clk_del_provider(pdev->dev.of_node);
790 
791 	for (i = 0; i < hw_data->num; i++)
792 		clk_hw_unregister(hw_data->hws[i]);
793 
794 	return 0;
795 }
796 
797 static struct platform_driver armada_3700_periph_clock_driver = {
798 	.probe = armada_3700_periph_clock_probe,
799 	.remove = armada_3700_periph_clock_remove,
800 	.driver		= {
801 		.name	= "marvell-armada-3700-periph-clock",
802 		.of_match_table = armada_3700_periph_clock_of_match,
803 		.pm	= &armada_3700_periph_clock_pm_ops,
804 	},
805 };
806 
807 builtin_platform_driver(armada_3700_periph_clock_driver);
808