xref: /openbmc/linux/drivers/clk/clk.c (revision fe7498ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	ret = core->ops->is_enabled(core->hw);
255 done:
256 	if (core->rpm_enabled)
257 		pm_runtime_put(core->dev);
258 
259 	return ret;
260 }
261 
262 /***    helper functions   ***/
263 
264 const char *__clk_get_name(const struct clk *clk)
265 {
266 	return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269 
270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 	return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275 
276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 	return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281 
282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 	return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287 
288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 	return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 			    const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 				   const char *name,
345 				   struct of_phandle_args *out_args)
346 {
347 	return -ENOENT;
348 }
349 static inline struct clk_hw *
350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 	return ERR_PTR(-ENOENT);
353 }
354 #endif
355 
356 /**
357  * clk_core_get - Find the clk_core parent of a clk
358  * @core: clk to find parent of
359  * @p_index: parent index to search for
360  *
361  * This is the preferred method for clk providers to find the parent of a
362  * clk when that parent is external to the clk controller. The parent_names
363  * array is indexed and treated as a local name matching a string in the device
364  * node's 'clock-names' property or as the 'con_id' matching the device's
365  * dev_name() in a clk_lookup. This allows clk providers to use their own
366  * namespace instead of looking for a globally unique parent string.
367  *
368  * For example the following DT snippet would allow a clock registered by the
369  * clock-controller@c001 that has a clk_init_data::parent_data array
370  * with 'xtal' in the 'name' member to find the clock provided by the
371  * clock-controller@f00abcd without needing to get the globally unique name of
372  * the xtal clk.
373  *
374  *      parent: clock-controller@f00abcd {
375  *              reg = <0xf00abcd 0xabcd>;
376  *              #clock-cells = <0>;
377  *      };
378  *
379  *      clock-controller@c001 {
380  *              reg = <0xc001 0xf00d>;
381  *              clocks = <&parent>;
382  *              clock-names = "xtal";
383  *              #clock-cells = <1>;
384  *      };
385  *
386  * Returns: -ENOENT when the provider can't be found or the clk doesn't
387  * exist in the provider or the name can't be found in the DT node or
388  * in a clkdev lookup. NULL when the provider knows about the clk but it
389  * isn't provided on this system.
390  * A valid clk_core pointer when the clk can be found in the provider.
391  */
392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 	const char *name = core->parents[p_index].fw_name;
395 	int index = core->parents[p_index].index;
396 	struct clk_hw *hw = ERR_PTR(-ENOENT);
397 	struct device *dev = core->dev;
398 	const char *dev_id = dev ? dev_name(dev) : NULL;
399 	struct device_node *np = core->of_node;
400 	struct of_phandle_args clkspec;
401 
402 	if (np && (name || index >= 0) &&
403 	    !of_parse_clkspec(np, index, name, &clkspec)) {
404 		hw = of_clk_get_hw_from_clkspec(&clkspec);
405 		of_node_put(clkspec.np);
406 	} else if (name) {
407 		/*
408 		 * If the DT search above couldn't find the provider fallback to
409 		 * looking up via clkdev based clk_lookups.
410 		 */
411 		hw = clk_find_hw(dev_id, name);
412 	}
413 
414 	if (IS_ERR(hw))
415 		return ERR_CAST(hw);
416 
417 	return hw->core;
418 }
419 
420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 	struct clk_parent_map *entry = &core->parents[index];
423 	struct clk_core *parent;
424 
425 	if (entry->hw) {
426 		parent = entry->hw->core;
427 		/*
428 		 * We have a direct reference but it isn't registered yet?
429 		 * Orphan it and let clk_reparent() update the orphan status
430 		 * when the parent is registered.
431 		 */
432 		if (!parent)
433 			parent = ERR_PTR(-EPROBE_DEFER);
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/* Only cache it if it's not an error */
441 	if (!IS_ERR(parent))
442 		entry->core = parent;
443 }
444 
445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 							 u8 index)
447 {
448 	if (!core || index >= core->num_parents || !core->parents)
449 		return NULL;
450 
451 	if (!core->parents[index].core)
452 		clk_core_fill_parent_index(core, index);
453 
454 	return core->parents[index].core;
455 }
456 
457 struct clk_hw *
458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459 {
460 	struct clk_core *parent;
461 
462 	parent = clk_core_get_parent_by_index(hw->core, index);
463 
464 	return !parent ? NULL : parent->hw;
465 }
466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467 
468 unsigned int __clk_get_enable_count(struct clk *clk)
469 {
470 	return !clk ? 0 : clk->core->enable_count;
471 }
472 
473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474 {
475 	if (!core)
476 		return 0;
477 
478 	if (!core->num_parents || core->parent)
479 		return core->rate;
480 
481 	/*
482 	 * Clk must have a parent because num_parents > 0 but the parent isn't
483 	 * known yet. Best to return 0 as the rate of this clk until we can
484 	 * properly recalc the rate based on the parent's rate.
485 	 */
486 	return 0;
487 }
488 
489 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490 {
491 	return clk_core_get_rate_nolock(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494 
495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
496 {
497 	if (!core)
498 		return 0;
499 
500 	return core->accuracy;
501 }
502 
503 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
504 {
505 	return hw->core->flags;
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
508 
509 bool clk_hw_is_prepared(const struct clk_hw *hw)
510 {
511 	return clk_core_is_prepared(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
514 
515 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
516 {
517 	return clk_core_rate_is_protected(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
520 
521 bool clk_hw_is_enabled(const struct clk_hw *hw)
522 {
523 	return clk_core_is_enabled(hw->core);
524 }
525 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
526 
527 bool __clk_is_enabled(struct clk *clk)
528 {
529 	if (!clk)
530 		return false;
531 
532 	return clk_core_is_enabled(clk->core);
533 }
534 EXPORT_SYMBOL_GPL(__clk_is_enabled);
535 
536 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
537 			   unsigned long best, unsigned long flags)
538 {
539 	if (flags & CLK_MUX_ROUND_CLOSEST)
540 		return abs(now - rate) < abs(best - rate);
541 
542 	return now <= rate && now > best;
543 }
544 
545 int clk_mux_determine_rate_flags(struct clk_hw *hw,
546 				 struct clk_rate_request *req,
547 				 unsigned long flags)
548 {
549 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
550 	int i, num_parents, ret;
551 	unsigned long best = 0;
552 	struct clk_rate_request parent_req = *req;
553 
554 	/* if NO_REPARENT flag set, pass through to current parent */
555 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
556 		parent = core->parent;
557 		if (core->flags & CLK_SET_RATE_PARENT) {
558 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
559 						   &parent_req);
560 			if (ret)
561 				return ret;
562 
563 			best = parent_req.rate;
564 		} else if (parent) {
565 			best = clk_core_get_rate_nolock(parent);
566 		} else {
567 			best = clk_core_get_rate_nolock(core);
568 		}
569 
570 		goto out;
571 	}
572 
573 	/* find the parent that can provide the fastest rate <= rate */
574 	num_parents = core->num_parents;
575 	for (i = 0; i < num_parents; i++) {
576 		parent = clk_core_get_parent_by_index(core, i);
577 		if (!parent)
578 			continue;
579 
580 		if (core->flags & CLK_SET_RATE_PARENT) {
581 			parent_req = *req;
582 			ret = __clk_determine_rate(parent->hw, &parent_req);
583 			if (ret)
584 				continue;
585 		} else {
586 			parent_req.rate = clk_core_get_rate_nolock(parent);
587 		}
588 
589 		if (mux_is_better_rate(req->rate, parent_req.rate,
590 				       best, flags)) {
591 			best_parent = parent;
592 			best = parent_req.rate;
593 		}
594 	}
595 
596 	if (!best_parent)
597 		return -EINVAL;
598 
599 out:
600 	if (best_parent)
601 		req->best_parent_hw = best_parent->hw;
602 	req->best_parent_rate = best;
603 	req->rate = best;
604 
605 	return 0;
606 }
607 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
608 
609 struct clk *__clk_lookup(const char *name)
610 {
611 	struct clk_core *core = clk_core_lookup(name);
612 
613 	return !core ? NULL : core->hw->clk;
614 }
615 
616 static void clk_core_get_boundaries(struct clk_core *core,
617 				    unsigned long *min_rate,
618 				    unsigned long *max_rate)
619 {
620 	struct clk *clk_user;
621 
622 	lockdep_assert_held(&prepare_lock);
623 
624 	*min_rate = core->min_rate;
625 	*max_rate = core->max_rate;
626 
627 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
628 		*min_rate = max(*min_rate, clk_user->min_rate);
629 
630 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
631 		*max_rate = min(*max_rate, clk_user->max_rate);
632 }
633 
634 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
635 			   unsigned long max_rate)
636 {
637 	hw->core->min_rate = min_rate;
638 	hw->core->max_rate = max_rate;
639 }
640 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
641 
642 /*
643  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
644  * @hw: mux type clk to determine rate on
645  * @req: rate request, also used to return preferred parent and frequencies
646  *
647  * Helper for finding best parent to provide a given frequency. This can be used
648  * directly as a determine_rate callback (e.g. for a mux), or from a more
649  * complex clock that may combine a mux with other operations.
650  *
651  * Returns: 0 on success, -EERROR value on error
652  */
653 int __clk_mux_determine_rate(struct clk_hw *hw,
654 			     struct clk_rate_request *req)
655 {
656 	return clk_mux_determine_rate_flags(hw, req, 0);
657 }
658 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
659 
660 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
661 				     struct clk_rate_request *req)
662 {
663 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
664 }
665 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
666 
667 /***        clk api        ***/
668 
669 static void clk_core_rate_unprotect(struct clk_core *core)
670 {
671 	lockdep_assert_held(&prepare_lock);
672 
673 	if (!core)
674 		return;
675 
676 	if (WARN(core->protect_count == 0,
677 	    "%s already unprotected\n", core->name))
678 		return;
679 
680 	if (--core->protect_count > 0)
681 		return;
682 
683 	clk_core_rate_unprotect(core->parent);
684 }
685 
686 static int clk_core_rate_nuke_protect(struct clk_core *core)
687 {
688 	int ret;
689 
690 	lockdep_assert_held(&prepare_lock);
691 
692 	if (!core)
693 		return -EINVAL;
694 
695 	if (core->protect_count == 0)
696 		return 0;
697 
698 	ret = core->protect_count;
699 	core->protect_count = 1;
700 	clk_core_rate_unprotect(core);
701 
702 	return ret;
703 }
704 
705 /**
706  * clk_rate_exclusive_put - release exclusivity over clock rate control
707  * @clk: the clk over which the exclusivity is released
708  *
709  * clk_rate_exclusive_put() completes a critical section during which a clock
710  * consumer cannot tolerate any other consumer making any operation on the
711  * clock which could result in a rate change or rate glitch. Exclusive clocks
712  * cannot have their rate changed, either directly or indirectly due to changes
713  * further up the parent chain of clocks. As a result, clocks up parent chain
714  * also get under exclusive control of the calling consumer.
715  *
716  * If exlusivity is claimed more than once on clock, even by the same consumer,
717  * the rate effectively gets locked as exclusivity can't be preempted.
718  *
719  * Calls to clk_rate_exclusive_put() must be balanced with calls to
720  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
721  * error status.
722  */
723 void clk_rate_exclusive_put(struct clk *clk)
724 {
725 	if (!clk)
726 		return;
727 
728 	clk_prepare_lock();
729 
730 	/*
731 	 * if there is something wrong with this consumer protect count, stop
732 	 * here before messing with the provider
733 	 */
734 	if (WARN_ON(clk->exclusive_count <= 0))
735 		goto out;
736 
737 	clk_core_rate_unprotect(clk->core);
738 	clk->exclusive_count--;
739 out:
740 	clk_prepare_unlock();
741 }
742 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
743 
744 static void clk_core_rate_protect(struct clk_core *core)
745 {
746 	lockdep_assert_held(&prepare_lock);
747 
748 	if (!core)
749 		return;
750 
751 	if (core->protect_count == 0)
752 		clk_core_rate_protect(core->parent);
753 
754 	core->protect_count++;
755 }
756 
757 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
758 {
759 	lockdep_assert_held(&prepare_lock);
760 
761 	if (!core)
762 		return;
763 
764 	if (count == 0)
765 		return;
766 
767 	clk_core_rate_protect(core);
768 	core->protect_count = count;
769 }
770 
771 /**
772  * clk_rate_exclusive_get - get exclusivity over the clk rate control
773  * @clk: the clk over which the exclusity of rate control is requested
774  *
775  * clk_rate_exclusive_get() begins a critical section during which a clock
776  * consumer cannot tolerate any other consumer making any operation on the
777  * clock which could result in a rate change or rate glitch. Exclusive clocks
778  * cannot have their rate changed, either directly or indirectly due to changes
779  * further up the parent chain of clocks. As a result, clocks up parent chain
780  * also get under exclusive control of the calling consumer.
781  *
782  * If exlusivity is claimed more than once on clock, even by the same consumer,
783  * the rate effectively gets locked as exclusivity can't be preempted.
784  *
785  * Calls to clk_rate_exclusive_get() should be balanced with calls to
786  * clk_rate_exclusive_put(). Calls to this function may sleep.
787  * Returns 0 on success, -EERROR otherwise
788  */
789 int clk_rate_exclusive_get(struct clk *clk)
790 {
791 	if (!clk)
792 		return 0;
793 
794 	clk_prepare_lock();
795 	clk_core_rate_protect(clk->core);
796 	clk->exclusive_count++;
797 	clk_prepare_unlock();
798 
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
802 
803 static void clk_core_unprepare(struct clk_core *core)
804 {
805 	lockdep_assert_held(&prepare_lock);
806 
807 	if (!core)
808 		return;
809 
810 	if (WARN(core->prepare_count == 0,
811 	    "%s already unprepared\n", core->name))
812 		return;
813 
814 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
815 	    "Unpreparing critical %s\n", core->name))
816 		return;
817 
818 	if (core->flags & CLK_SET_RATE_GATE)
819 		clk_core_rate_unprotect(core);
820 
821 	if (--core->prepare_count > 0)
822 		return;
823 
824 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
825 
826 	trace_clk_unprepare(core);
827 
828 	if (core->ops->unprepare)
829 		core->ops->unprepare(core->hw);
830 
831 	clk_pm_runtime_put(core);
832 
833 	trace_clk_unprepare_complete(core);
834 	clk_core_unprepare(core->parent);
835 }
836 
837 static void clk_core_unprepare_lock(struct clk_core *core)
838 {
839 	clk_prepare_lock();
840 	clk_core_unprepare(core);
841 	clk_prepare_unlock();
842 }
843 
844 /**
845  * clk_unprepare - undo preparation of a clock source
846  * @clk: the clk being unprepared
847  *
848  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
849  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
850  * if the operation may sleep.  One example is a clk which is accessed over
851  * I2c.  In the complex case a clk gate operation may require a fast and a slow
852  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
853  * exclusive.  In fact clk_disable must be called before clk_unprepare.
854  */
855 void clk_unprepare(struct clk *clk)
856 {
857 	if (IS_ERR_OR_NULL(clk))
858 		return;
859 
860 	clk_core_unprepare_lock(clk->core);
861 }
862 EXPORT_SYMBOL_GPL(clk_unprepare);
863 
864 static int clk_core_prepare(struct clk_core *core)
865 {
866 	int ret = 0;
867 
868 	lockdep_assert_held(&prepare_lock);
869 
870 	if (!core)
871 		return 0;
872 
873 	if (core->prepare_count == 0) {
874 		ret = clk_pm_runtime_get(core);
875 		if (ret)
876 			return ret;
877 
878 		ret = clk_core_prepare(core->parent);
879 		if (ret)
880 			goto runtime_put;
881 
882 		trace_clk_prepare(core);
883 
884 		if (core->ops->prepare)
885 			ret = core->ops->prepare(core->hw);
886 
887 		trace_clk_prepare_complete(core);
888 
889 		if (ret)
890 			goto unprepare;
891 	}
892 
893 	core->prepare_count++;
894 
895 	/*
896 	 * CLK_SET_RATE_GATE is a special case of clock protection
897 	 * Instead of a consumer claiming exclusive rate control, it is
898 	 * actually the provider which prevents any consumer from making any
899 	 * operation which could result in a rate change or rate glitch while
900 	 * the clock is prepared.
901 	 */
902 	if (core->flags & CLK_SET_RATE_GATE)
903 		clk_core_rate_protect(core);
904 
905 	return 0;
906 unprepare:
907 	clk_core_unprepare(core->parent);
908 runtime_put:
909 	clk_pm_runtime_put(core);
910 	return ret;
911 }
912 
913 static int clk_core_prepare_lock(struct clk_core *core)
914 {
915 	int ret;
916 
917 	clk_prepare_lock();
918 	ret = clk_core_prepare(core);
919 	clk_prepare_unlock();
920 
921 	return ret;
922 }
923 
924 /**
925  * clk_prepare - prepare a clock source
926  * @clk: the clk being prepared
927  *
928  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
929  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
930  * operation may sleep.  One example is a clk which is accessed over I2c.  In
931  * the complex case a clk ungate operation may require a fast and a slow part.
932  * It is this reason that clk_prepare and clk_enable are not mutually
933  * exclusive.  In fact clk_prepare must be called before clk_enable.
934  * Returns 0 on success, -EERROR otherwise.
935  */
936 int clk_prepare(struct clk *clk)
937 {
938 	if (!clk)
939 		return 0;
940 
941 	return clk_core_prepare_lock(clk->core);
942 }
943 EXPORT_SYMBOL_GPL(clk_prepare);
944 
945 static void clk_core_disable(struct clk_core *core)
946 {
947 	lockdep_assert_held(&enable_lock);
948 
949 	if (!core)
950 		return;
951 
952 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
953 		return;
954 
955 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
956 	    "Disabling critical %s\n", core->name))
957 		return;
958 
959 	if (--core->enable_count > 0)
960 		return;
961 
962 	trace_clk_disable_rcuidle(core);
963 
964 	if (core->ops->disable)
965 		core->ops->disable(core->hw);
966 
967 	trace_clk_disable_complete_rcuidle(core);
968 
969 	clk_core_disable(core->parent);
970 }
971 
972 static void clk_core_disable_lock(struct clk_core *core)
973 {
974 	unsigned long flags;
975 
976 	flags = clk_enable_lock();
977 	clk_core_disable(core);
978 	clk_enable_unlock(flags);
979 }
980 
981 /**
982  * clk_disable - gate a clock
983  * @clk: the clk being gated
984  *
985  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
986  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
987  * clk if the operation is fast and will never sleep.  One example is a
988  * SoC-internal clk which is controlled via simple register writes.  In the
989  * complex case a clk gate operation may require a fast and a slow part.  It is
990  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
991  * In fact clk_disable must be called before clk_unprepare.
992  */
993 void clk_disable(struct clk *clk)
994 {
995 	if (IS_ERR_OR_NULL(clk))
996 		return;
997 
998 	clk_core_disable_lock(clk->core);
999 }
1000 EXPORT_SYMBOL_GPL(clk_disable);
1001 
1002 static int clk_core_enable(struct clk_core *core)
1003 {
1004 	int ret = 0;
1005 
1006 	lockdep_assert_held(&enable_lock);
1007 
1008 	if (!core)
1009 		return 0;
1010 
1011 	if (WARN(core->prepare_count == 0,
1012 	    "Enabling unprepared %s\n", core->name))
1013 		return -ESHUTDOWN;
1014 
1015 	if (core->enable_count == 0) {
1016 		ret = clk_core_enable(core->parent);
1017 
1018 		if (ret)
1019 			return ret;
1020 
1021 		trace_clk_enable_rcuidle(core);
1022 
1023 		if (core->ops->enable)
1024 			ret = core->ops->enable(core->hw);
1025 
1026 		trace_clk_enable_complete_rcuidle(core);
1027 
1028 		if (ret) {
1029 			clk_core_disable(core->parent);
1030 			return ret;
1031 		}
1032 	}
1033 
1034 	core->enable_count++;
1035 	return 0;
1036 }
1037 
1038 static int clk_core_enable_lock(struct clk_core *core)
1039 {
1040 	unsigned long flags;
1041 	int ret;
1042 
1043 	flags = clk_enable_lock();
1044 	ret = clk_core_enable(core);
1045 	clk_enable_unlock(flags);
1046 
1047 	return ret;
1048 }
1049 
1050 /**
1051  * clk_gate_restore_context - restore context for poweroff
1052  * @hw: the clk_hw pointer of clock whose state is to be restored
1053  *
1054  * The clock gate restore context function enables or disables
1055  * the gate clocks based on the enable_count. This is done in cases
1056  * where the clock context is lost and based on the enable_count
1057  * the clock either needs to be enabled/disabled. This
1058  * helps restore the state of gate clocks.
1059  */
1060 void clk_gate_restore_context(struct clk_hw *hw)
1061 {
1062 	struct clk_core *core = hw->core;
1063 
1064 	if (core->enable_count)
1065 		core->ops->enable(hw);
1066 	else
1067 		core->ops->disable(hw);
1068 }
1069 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1070 
1071 static int clk_core_save_context(struct clk_core *core)
1072 {
1073 	struct clk_core *child;
1074 	int ret = 0;
1075 
1076 	hlist_for_each_entry(child, &core->children, child_node) {
1077 		ret = clk_core_save_context(child);
1078 		if (ret < 0)
1079 			return ret;
1080 	}
1081 
1082 	if (core->ops && core->ops->save_context)
1083 		ret = core->ops->save_context(core->hw);
1084 
1085 	return ret;
1086 }
1087 
1088 static void clk_core_restore_context(struct clk_core *core)
1089 {
1090 	struct clk_core *child;
1091 
1092 	if (core->ops && core->ops->restore_context)
1093 		core->ops->restore_context(core->hw);
1094 
1095 	hlist_for_each_entry(child, &core->children, child_node)
1096 		clk_core_restore_context(child);
1097 }
1098 
1099 /**
1100  * clk_save_context - save clock context for poweroff
1101  *
1102  * Saves the context of the clock register for powerstates in which the
1103  * contents of the registers will be lost. Occurs deep within the suspend
1104  * code.  Returns 0 on success.
1105  */
1106 int clk_save_context(void)
1107 {
1108 	struct clk_core *clk;
1109 	int ret;
1110 
1111 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1112 		ret = clk_core_save_context(clk);
1113 		if (ret < 0)
1114 			return ret;
1115 	}
1116 
1117 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1118 		ret = clk_core_save_context(clk);
1119 		if (ret < 0)
1120 			return ret;
1121 	}
1122 
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(clk_save_context);
1126 
1127 /**
1128  * clk_restore_context - restore clock context after poweroff
1129  *
1130  * Restore the saved clock context upon resume.
1131  *
1132  */
1133 void clk_restore_context(void)
1134 {
1135 	struct clk_core *core;
1136 
1137 	hlist_for_each_entry(core, &clk_root_list, child_node)
1138 		clk_core_restore_context(core);
1139 
1140 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1141 		clk_core_restore_context(core);
1142 }
1143 EXPORT_SYMBOL_GPL(clk_restore_context);
1144 
1145 /**
1146  * clk_enable - ungate a clock
1147  * @clk: the clk being ungated
1148  *
1149  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1150  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1151  * if the operation will never sleep.  One example is a SoC-internal clk which
1152  * is controlled via simple register writes.  In the complex case a clk ungate
1153  * operation may require a fast and a slow part.  It is this reason that
1154  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1155  * must be called before clk_enable.  Returns 0 on success, -EERROR
1156  * otherwise.
1157  */
1158 int clk_enable(struct clk *clk)
1159 {
1160 	if (!clk)
1161 		return 0;
1162 
1163 	return clk_core_enable_lock(clk->core);
1164 }
1165 EXPORT_SYMBOL_GPL(clk_enable);
1166 
1167 /**
1168  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1169  * @clk: clock source
1170  *
1171  * Returns true if clk_prepare() implicitly enables the clock, effectively
1172  * making clk_enable()/clk_disable() no-ops, false otherwise.
1173  *
1174  * This is of interest mainly to power management code where actually
1175  * disabling the clock also requires unpreparing it to have any material
1176  * effect.
1177  *
1178  * Regardless of the value returned here, the caller must always invoke
1179  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1180  * to be right.
1181  */
1182 bool clk_is_enabled_when_prepared(struct clk *clk)
1183 {
1184 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1185 }
1186 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1187 
1188 static int clk_core_prepare_enable(struct clk_core *core)
1189 {
1190 	int ret;
1191 
1192 	ret = clk_core_prepare_lock(core);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = clk_core_enable_lock(core);
1197 	if (ret)
1198 		clk_core_unprepare_lock(core);
1199 
1200 	return ret;
1201 }
1202 
1203 static void clk_core_disable_unprepare(struct clk_core *core)
1204 {
1205 	clk_core_disable_lock(core);
1206 	clk_core_unprepare_lock(core);
1207 }
1208 
1209 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1210 {
1211 	struct clk_core *child;
1212 
1213 	lockdep_assert_held(&prepare_lock);
1214 
1215 	hlist_for_each_entry(child, &core->children, child_node)
1216 		clk_unprepare_unused_subtree(child);
1217 
1218 	if (core->prepare_count)
1219 		return;
1220 
1221 	if (core->flags & CLK_IGNORE_UNUSED)
1222 		return;
1223 
1224 	if (clk_pm_runtime_get(core))
1225 		return;
1226 
1227 	if (clk_core_is_prepared(core)) {
1228 		trace_clk_unprepare(core);
1229 		if (core->ops->unprepare_unused)
1230 			core->ops->unprepare_unused(core->hw);
1231 		else if (core->ops->unprepare)
1232 			core->ops->unprepare(core->hw);
1233 		trace_clk_unprepare_complete(core);
1234 	}
1235 
1236 	clk_pm_runtime_put(core);
1237 }
1238 
1239 static void __init clk_disable_unused_subtree(struct clk_core *core)
1240 {
1241 	struct clk_core *child;
1242 	unsigned long flags;
1243 
1244 	lockdep_assert_held(&prepare_lock);
1245 
1246 	hlist_for_each_entry(child, &core->children, child_node)
1247 		clk_disable_unused_subtree(child);
1248 
1249 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1250 		clk_core_prepare_enable(core->parent);
1251 
1252 	if (clk_pm_runtime_get(core))
1253 		goto unprepare_out;
1254 
1255 	flags = clk_enable_lock();
1256 
1257 	if (core->enable_count)
1258 		goto unlock_out;
1259 
1260 	if (core->flags & CLK_IGNORE_UNUSED)
1261 		goto unlock_out;
1262 
1263 	/*
1264 	 * some gate clocks have special needs during the disable-unused
1265 	 * sequence.  call .disable_unused if available, otherwise fall
1266 	 * back to .disable
1267 	 */
1268 	if (clk_core_is_enabled(core)) {
1269 		trace_clk_disable(core);
1270 		if (core->ops->disable_unused)
1271 			core->ops->disable_unused(core->hw);
1272 		else if (core->ops->disable)
1273 			core->ops->disable(core->hw);
1274 		trace_clk_disable_complete(core);
1275 	}
1276 
1277 unlock_out:
1278 	clk_enable_unlock(flags);
1279 	clk_pm_runtime_put(core);
1280 unprepare_out:
1281 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1282 		clk_core_disable_unprepare(core->parent);
1283 }
1284 
1285 static bool clk_ignore_unused __initdata;
1286 static int __init clk_ignore_unused_setup(char *__unused)
1287 {
1288 	clk_ignore_unused = true;
1289 	return 1;
1290 }
1291 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1292 
1293 static int __init clk_disable_unused(void)
1294 {
1295 	struct clk_core *core;
1296 
1297 	if (clk_ignore_unused) {
1298 		pr_warn("clk: Not disabling unused clocks\n");
1299 		return 0;
1300 	}
1301 
1302 	clk_prepare_lock();
1303 
1304 	hlist_for_each_entry(core, &clk_root_list, child_node)
1305 		clk_disable_unused_subtree(core);
1306 
1307 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1308 		clk_disable_unused_subtree(core);
1309 
1310 	hlist_for_each_entry(core, &clk_root_list, child_node)
1311 		clk_unprepare_unused_subtree(core);
1312 
1313 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1314 		clk_unprepare_unused_subtree(core);
1315 
1316 	clk_prepare_unlock();
1317 
1318 	return 0;
1319 }
1320 late_initcall_sync(clk_disable_unused);
1321 
1322 static int clk_core_determine_round_nolock(struct clk_core *core,
1323 					   struct clk_rate_request *req)
1324 {
1325 	long rate;
1326 
1327 	lockdep_assert_held(&prepare_lock);
1328 
1329 	if (!core)
1330 		return 0;
1331 
1332 	/*
1333 	 * At this point, core protection will be disabled
1334 	 * - if the provider is not protected at all
1335 	 * - if the calling consumer is the only one which has exclusivity
1336 	 *   over the provider
1337 	 */
1338 	if (clk_core_rate_is_protected(core)) {
1339 		req->rate = core->rate;
1340 	} else if (core->ops->determine_rate) {
1341 		return core->ops->determine_rate(core->hw, req);
1342 	} else if (core->ops->round_rate) {
1343 		rate = core->ops->round_rate(core->hw, req->rate,
1344 					     &req->best_parent_rate);
1345 		if (rate < 0)
1346 			return rate;
1347 
1348 		req->rate = rate;
1349 	} else {
1350 		return -EINVAL;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 static void clk_core_init_rate_req(struct clk_core * const core,
1357 				   struct clk_rate_request *req)
1358 {
1359 	struct clk_core *parent;
1360 
1361 	if (WARN_ON(!core || !req))
1362 		return;
1363 
1364 	parent = core->parent;
1365 	if (parent) {
1366 		req->best_parent_hw = parent->hw;
1367 		req->best_parent_rate = parent->rate;
1368 	} else {
1369 		req->best_parent_hw = NULL;
1370 		req->best_parent_rate = 0;
1371 	}
1372 }
1373 
1374 static bool clk_core_can_round(struct clk_core * const core)
1375 {
1376 	return core->ops->determine_rate || core->ops->round_rate;
1377 }
1378 
1379 static int clk_core_round_rate_nolock(struct clk_core *core,
1380 				      struct clk_rate_request *req)
1381 {
1382 	lockdep_assert_held(&prepare_lock);
1383 
1384 	if (!core) {
1385 		req->rate = 0;
1386 		return 0;
1387 	}
1388 
1389 	clk_core_init_rate_req(core, req);
1390 
1391 	if (clk_core_can_round(core))
1392 		return clk_core_determine_round_nolock(core, req);
1393 	else if (core->flags & CLK_SET_RATE_PARENT)
1394 		return clk_core_round_rate_nolock(core->parent, req);
1395 
1396 	req->rate = core->rate;
1397 	return 0;
1398 }
1399 
1400 /**
1401  * __clk_determine_rate - get the closest rate actually supported by a clock
1402  * @hw: determine the rate of this clock
1403  * @req: target rate request
1404  *
1405  * Useful for clk_ops such as .set_rate and .determine_rate.
1406  */
1407 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1408 {
1409 	if (!hw) {
1410 		req->rate = 0;
1411 		return 0;
1412 	}
1413 
1414 	return clk_core_round_rate_nolock(hw->core, req);
1415 }
1416 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1417 
1418 /**
1419  * clk_hw_round_rate() - round the given rate for a hw clk
1420  * @hw: the hw clk for which we are rounding a rate
1421  * @rate: the rate which is to be rounded
1422  *
1423  * Takes in a rate as input and rounds it to a rate that the clk can actually
1424  * use.
1425  *
1426  * Context: prepare_lock must be held.
1427  *          For clk providers to call from within clk_ops such as .round_rate,
1428  *          .determine_rate.
1429  *
1430  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1431  *         else returns the parent rate.
1432  */
1433 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1434 {
1435 	int ret;
1436 	struct clk_rate_request req;
1437 
1438 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1439 	req.rate = rate;
1440 
1441 	ret = clk_core_round_rate_nolock(hw->core, &req);
1442 	if (ret)
1443 		return 0;
1444 
1445 	return req.rate;
1446 }
1447 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1448 
1449 /**
1450  * clk_round_rate - round the given rate for a clk
1451  * @clk: the clk for which we are rounding a rate
1452  * @rate: the rate which is to be rounded
1453  *
1454  * Takes in a rate as input and rounds it to a rate that the clk can actually
1455  * use which is then returned.  If clk doesn't support round_rate operation
1456  * then the parent rate is returned.
1457  */
1458 long clk_round_rate(struct clk *clk, unsigned long rate)
1459 {
1460 	struct clk_rate_request req;
1461 	int ret;
1462 
1463 	if (!clk)
1464 		return 0;
1465 
1466 	clk_prepare_lock();
1467 
1468 	if (clk->exclusive_count)
1469 		clk_core_rate_unprotect(clk->core);
1470 
1471 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1472 	req.rate = rate;
1473 
1474 	ret = clk_core_round_rate_nolock(clk->core, &req);
1475 
1476 	if (clk->exclusive_count)
1477 		clk_core_rate_protect(clk->core);
1478 
1479 	clk_prepare_unlock();
1480 
1481 	if (ret)
1482 		return ret;
1483 
1484 	return req.rate;
1485 }
1486 EXPORT_SYMBOL_GPL(clk_round_rate);
1487 
1488 /**
1489  * __clk_notify - call clk notifier chain
1490  * @core: clk that is changing rate
1491  * @msg: clk notifier type (see include/linux/clk.h)
1492  * @old_rate: old clk rate
1493  * @new_rate: new clk rate
1494  *
1495  * Triggers a notifier call chain on the clk rate-change notification
1496  * for 'clk'.  Passes a pointer to the struct clk and the previous
1497  * and current rates to the notifier callback.  Intended to be called by
1498  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1499  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1500  * a driver returns that.
1501  */
1502 static int __clk_notify(struct clk_core *core, unsigned long msg,
1503 		unsigned long old_rate, unsigned long new_rate)
1504 {
1505 	struct clk_notifier *cn;
1506 	struct clk_notifier_data cnd;
1507 	int ret = NOTIFY_DONE;
1508 
1509 	cnd.old_rate = old_rate;
1510 	cnd.new_rate = new_rate;
1511 
1512 	list_for_each_entry(cn, &clk_notifier_list, node) {
1513 		if (cn->clk->core == core) {
1514 			cnd.clk = cn->clk;
1515 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1516 					&cnd);
1517 			if (ret & NOTIFY_STOP_MASK)
1518 				return ret;
1519 		}
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 /**
1526  * __clk_recalc_accuracies
1527  * @core: first clk in the subtree
1528  *
1529  * Walks the subtree of clks starting with clk and recalculates accuracies as
1530  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1531  * callback then it is assumed that the clock will take on the accuracy of its
1532  * parent.
1533  */
1534 static void __clk_recalc_accuracies(struct clk_core *core)
1535 {
1536 	unsigned long parent_accuracy = 0;
1537 	struct clk_core *child;
1538 
1539 	lockdep_assert_held(&prepare_lock);
1540 
1541 	if (core->parent)
1542 		parent_accuracy = core->parent->accuracy;
1543 
1544 	if (core->ops->recalc_accuracy)
1545 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1546 							  parent_accuracy);
1547 	else
1548 		core->accuracy = parent_accuracy;
1549 
1550 	hlist_for_each_entry(child, &core->children, child_node)
1551 		__clk_recalc_accuracies(child);
1552 }
1553 
1554 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1555 {
1556 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1557 		__clk_recalc_accuracies(core);
1558 
1559 	return clk_core_get_accuracy_no_lock(core);
1560 }
1561 
1562 /**
1563  * clk_get_accuracy - return the accuracy of clk
1564  * @clk: the clk whose accuracy is being returned
1565  *
1566  * Simply returns the cached accuracy of the clk, unless
1567  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1568  * issued.
1569  * If clk is NULL then returns 0.
1570  */
1571 long clk_get_accuracy(struct clk *clk)
1572 {
1573 	long accuracy;
1574 
1575 	if (!clk)
1576 		return 0;
1577 
1578 	clk_prepare_lock();
1579 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1580 	clk_prepare_unlock();
1581 
1582 	return accuracy;
1583 }
1584 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1585 
1586 static unsigned long clk_recalc(struct clk_core *core,
1587 				unsigned long parent_rate)
1588 {
1589 	unsigned long rate = parent_rate;
1590 
1591 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1592 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1593 		clk_pm_runtime_put(core);
1594 	}
1595 	return rate;
1596 }
1597 
1598 /**
1599  * __clk_recalc_rates
1600  * @core: first clk in the subtree
1601  * @msg: notification type (see include/linux/clk.h)
1602  *
1603  * Walks the subtree of clks starting with clk and recalculates rates as it
1604  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1605  * it is assumed that the clock will take on the rate of its parent.
1606  *
1607  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1608  * if necessary.
1609  */
1610 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1611 {
1612 	unsigned long old_rate;
1613 	unsigned long parent_rate = 0;
1614 	struct clk_core *child;
1615 
1616 	lockdep_assert_held(&prepare_lock);
1617 
1618 	old_rate = core->rate;
1619 
1620 	if (core->parent)
1621 		parent_rate = core->parent->rate;
1622 
1623 	core->rate = clk_recalc(core, parent_rate);
1624 
1625 	/*
1626 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1627 	 * & ABORT_RATE_CHANGE notifiers
1628 	 */
1629 	if (core->notifier_count && msg)
1630 		__clk_notify(core, msg, old_rate, core->rate);
1631 
1632 	hlist_for_each_entry(child, &core->children, child_node)
1633 		__clk_recalc_rates(child, msg);
1634 }
1635 
1636 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1637 {
1638 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1639 		__clk_recalc_rates(core, 0);
1640 
1641 	return clk_core_get_rate_nolock(core);
1642 }
1643 
1644 /**
1645  * clk_get_rate - return the rate of clk
1646  * @clk: the clk whose rate is being returned
1647  *
1648  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1649  * is set, which means a recalc_rate will be issued.
1650  * If clk is NULL then returns 0.
1651  */
1652 unsigned long clk_get_rate(struct clk *clk)
1653 {
1654 	unsigned long rate;
1655 
1656 	if (!clk)
1657 		return 0;
1658 
1659 	clk_prepare_lock();
1660 	rate = clk_core_get_rate_recalc(clk->core);
1661 	clk_prepare_unlock();
1662 
1663 	return rate;
1664 }
1665 EXPORT_SYMBOL_GPL(clk_get_rate);
1666 
1667 static int clk_fetch_parent_index(struct clk_core *core,
1668 				  struct clk_core *parent)
1669 {
1670 	int i;
1671 
1672 	if (!parent)
1673 		return -EINVAL;
1674 
1675 	for (i = 0; i < core->num_parents; i++) {
1676 		/* Found it first try! */
1677 		if (core->parents[i].core == parent)
1678 			return i;
1679 
1680 		/* Something else is here, so keep looking */
1681 		if (core->parents[i].core)
1682 			continue;
1683 
1684 		/* Maybe core hasn't been cached but the hw is all we know? */
1685 		if (core->parents[i].hw) {
1686 			if (core->parents[i].hw == parent->hw)
1687 				break;
1688 
1689 			/* Didn't match, but we're expecting a clk_hw */
1690 			continue;
1691 		}
1692 
1693 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1694 		if (parent == clk_core_get(core, i))
1695 			break;
1696 
1697 		/* Fallback to comparing globally unique names */
1698 		if (core->parents[i].name &&
1699 		    !strcmp(parent->name, core->parents[i].name))
1700 			break;
1701 	}
1702 
1703 	if (i == core->num_parents)
1704 		return -EINVAL;
1705 
1706 	core->parents[i].core = parent;
1707 	return i;
1708 }
1709 
1710 /**
1711  * clk_hw_get_parent_index - return the index of the parent clock
1712  * @hw: clk_hw associated with the clk being consumed
1713  *
1714  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1715  * clock does not have a current parent.
1716  */
1717 int clk_hw_get_parent_index(struct clk_hw *hw)
1718 {
1719 	struct clk_hw *parent = clk_hw_get_parent(hw);
1720 
1721 	if (WARN_ON(parent == NULL))
1722 		return -EINVAL;
1723 
1724 	return clk_fetch_parent_index(hw->core, parent->core);
1725 }
1726 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1727 
1728 /*
1729  * Update the orphan status of @core and all its children.
1730  */
1731 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1732 {
1733 	struct clk_core *child;
1734 
1735 	core->orphan = is_orphan;
1736 
1737 	hlist_for_each_entry(child, &core->children, child_node)
1738 		clk_core_update_orphan_status(child, is_orphan);
1739 }
1740 
1741 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1742 {
1743 	bool was_orphan = core->orphan;
1744 
1745 	hlist_del(&core->child_node);
1746 
1747 	if (new_parent) {
1748 		bool becomes_orphan = new_parent->orphan;
1749 
1750 		/* avoid duplicate POST_RATE_CHANGE notifications */
1751 		if (new_parent->new_child == core)
1752 			new_parent->new_child = NULL;
1753 
1754 		hlist_add_head(&core->child_node, &new_parent->children);
1755 
1756 		if (was_orphan != becomes_orphan)
1757 			clk_core_update_orphan_status(core, becomes_orphan);
1758 	} else {
1759 		hlist_add_head(&core->child_node, &clk_orphan_list);
1760 		if (!was_orphan)
1761 			clk_core_update_orphan_status(core, true);
1762 	}
1763 
1764 	core->parent = new_parent;
1765 }
1766 
1767 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1768 					   struct clk_core *parent)
1769 {
1770 	unsigned long flags;
1771 	struct clk_core *old_parent = core->parent;
1772 
1773 	/*
1774 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1775 	 *
1776 	 * 2. Migrate prepare state between parents and prevent race with
1777 	 * clk_enable().
1778 	 *
1779 	 * If the clock is not prepared, then a race with
1780 	 * clk_enable/disable() is impossible since we already have the
1781 	 * prepare lock (future calls to clk_enable() need to be preceded by
1782 	 * a clk_prepare()).
1783 	 *
1784 	 * If the clock is prepared, migrate the prepared state to the new
1785 	 * parent and also protect against a race with clk_enable() by
1786 	 * forcing the clock and the new parent on.  This ensures that all
1787 	 * future calls to clk_enable() are practically NOPs with respect to
1788 	 * hardware and software states.
1789 	 *
1790 	 * See also: Comment for clk_set_parent() below.
1791 	 */
1792 
1793 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1794 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1795 		clk_core_prepare_enable(old_parent);
1796 		clk_core_prepare_enable(parent);
1797 	}
1798 
1799 	/* migrate prepare count if > 0 */
1800 	if (core->prepare_count) {
1801 		clk_core_prepare_enable(parent);
1802 		clk_core_enable_lock(core);
1803 	}
1804 
1805 	/* update the clk tree topology */
1806 	flags = clk_enable_lock();
1807 	clk_reparent(core, parent);
1808 	clk_enable_unlock(flags);
1809 
1810 	return old_parent;
1811 }
1812 
1813 static void __clk_set_parent_after(struct clk_core *core,
1814 				   struct clk_core *parent,
1815 				   struct clk_core *old_parent)
1816 {
1817 	/*
1818 	 * Finish the migration of prepare state and undo the changes done
1819 	 * for preventing a race with clk_enable().
1820 	 */
1821 	if (core->prepare_count) {
1822 		clk_core_disable_lock(core);
1823 		clk_core_disable_unprepare(old_parent);
1824 	}
1825 
1826 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1827 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1828 		clk_core_disable_unprepare(parent);
1829 		clk_core_disable_unprepare(old_parent);
1830 	}
1831 }
1832 
1833 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1834 			    u8 p_index)
1835 {
1836 	unsigned long flags;
1837 	int ret = 0;
1838 	struct clk_core *old_parent;
1839 
1840 	old_parent = __clk_set_parent_before(core, parent);
1841 
1842 	trace_clk_set_parent(core, parent);
1843 
1844 	/* change clock input source */
1845 	if (parent && core->ops->set_parent)
1846 		ret = core->ops->set_parent(core->hw, p_index);
1847 
1848 	trace_clk_set_parent_complete(core, parent);
1849 
1850 	if (ret) {
1851 		flags = clk_enable_lock();
1852 		clk_reparent(core, old_parent);
1853 		clk_enable_unlock(flags);
1854 		__clk_set_parent_after(core, old_parent, parent);
1855 
1856 		return ret;
1857 	}
1858 
1859 	__clk_set_parent_after(core, parent, old_parent);
1860 
1861 	return 0;
1862 }
1863 
1864 /**
1865  * __clk_speculate_rates
1866  * @core: first clk in the subtree
1867  * @parent_rate: the "future" rate of clk's parent
1868  *
1869  * Walks the subtree of clks starting with clk, speculating rates as it
1870  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1871  *
1872  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1873  * pre-rate change notifications and returns early if no clks in the
1874  * subtree have subscribed to the notifications.  Note that if a clk does not
1875  * implement the .recalc_rate callback then it is assumed that the clock will
1876  * take on the rate of its parent.
1877  */
1878 static int __clk_speculate_rates(struct clk_core *core,
1879 				 unsigned long parent_rate)
1880 {
1881 	struct clk_core *child;
1882 	unsigned long new_rate;
1883 	int ret = NOTIFY_DONE;
1884 
1885 	lockdep_assert_held(&prepare_lock);
1886 
1887 	new_rate = clk_recalc(core, parent_rate);
1888 
1889 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1890 	if (core->notifier_count)
1891 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1892 
1893 	if (ret & NOTIFY_STOP_MASK) {
1894 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1895 				__func__, core->name, ret);
1896 		goto out;
1897 	}
1898 
1899 	hlist_for_each_entry(child, &core->children, child_node) {
1900 		ret = __clk_speculate_rates(child, new_rate);
1901 		if (ret & NOTIFY_STOP_MASK)
1902 			break;
1903 	}
1904 
1905 out:
1906 	return ret;
1907 }
1908 
1909 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1910 			     struct clk_core *new_parent, u8 p_index)
1911 {
1912 	struct clk_core *child;
1913 
1914 	core->new_rate = new_rate;
1915 	core->new_parent = new_parent;
1916 	core->new_parent_index = p_index;
1917 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1918 	core->new_child = NULL;
1919 	if (new_parent && new_parent != core->parent)
1920 		new_parent->new_child = core;
1921 
1922 	hlist_for_each_entry(child, &core->children, child_node) {
1923 		child->new_rate = clk_recalc(child, new_rate);
1924 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1925 	}
1926 }
1927 
1928 /*
1929  * calculate the new rates returning the topmost clock that has to be
1930  * changed.
1931  */
1932 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1933 					   unsigned long rate)
1934 {
1935 	struct clk_core *top = core;
1936 	struct clk_core *old_parent, *parent;
1937 	unsigned long best_parent_rate = 0;
1938 	unsigned long new_rate;
1939 	unsigned long min_rate;
1940 	unsigned long max_rate;
1941 	int p_index = 0;
1942 	long ret;
1943 
1944 	/* sanity */
1945 	if (IS_ERR_OR_NULL(core))
1946 		return NULL;
1947 
1948 	/* save parent rate, if it exists */
1949 	parent = old_parent = core->parent;
1950 	if (parent)
1951 		best_parent_rate = parent->rate;
1952 
1953 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1954 
1955 	/* find the closest rate and parent clk/rate */
1956 	if (clk_core_can_round(core)) {
1957 		struct clk_rate_request req;
1958 
1959 		req.rate = rate;
1960 		req.min_rate = min_rate;
1961 		req.max_rate = max_rate;
1962 
1963 		clk_core_init_rate_req(core, &req);
1964 
1965 		ret = clk_core_determine_round_nolock(core, &req);
1966 		if (ret < 0)
1967 			return NULL;
1968 
1969 		best_parent_rate = req.best_parent_rate;
1970 		new_rate = req.rate;
1971 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1972 
1973 		if (new_rate < min_rate || new_rate > max_rate)
1974 			return NULL;
1975 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1976 		/* pass-through clock without adjustable parent */
1977 		core->new_rate = core->rate;
1978 		return NULL;
1979 	} else {
1980 		/* pass-through clock with adjustable parent */
1981 		top = clk_calc_new_rates(parent, rate);
1982 		new_rate = parent->new_rate;
1983 		goto out;
1984 	}
1985 
1986 	/* some clocks must be gated to change parent */
1987 	if (parent != old_parent &&
1988 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1989 		pr_debug("%s: %s not gated but wants to reparent\n",
1990 			 __func__, core->name);
1991 		return NULL;
1992 	}
1993 
1994 	/* try finding the new parent index */
1995 	if (parent && core->num_parents > 1) {
1996 		p_index = clk_fetch_parent_index(core, parent);
1997 		if (p_index < 0) {
1998 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1999 				 __func__, parent->name, core->name);
2000 			return NULL;
2001 		}
2002 	}
2003 
2004 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2005 	    best_parent_rate != parent->rate)
2006 		top = clk_calc_new_rates(parent, best_parent_rate);
2007 
2008 out:
2009 	clk_calc_subtree(core, new_rate, parent, p_index);
2010 
2011 	return top;
2012 }
2013 
2014 /*
2015  * Notify about rate changes in a subtree. Always walk down the whole tree
2016  * so that in case of an error we can walk down the whole tree again and
2017  * abort the change.
2018  */
2019 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2020 						  unsigned long event)
2021 {
2022 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2023 	int ret = NOTIFY_DONE;
2024 
2025 	if (core->rate == core->new_rate)
2026 		return NULL;
2027 
2028 	if (core->notifier_count) {
2029 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2030 		if (ret & NOTIFY_STOP_MASK)
2031 			fail_clk = core;
2032 	}
2033 
2034 	hlist_for_each_entry(child, &core->children, child_node) {
2035 		/* Skip children who will be reparented to another clock */
2036 		if (child->new_parent && child->new_parent != core)
2037 			continue;
2038 		tmp_clk = clk_propagate_rate_change(child, event);
2039 		if (tmp_clk)
2040 			fail_clk = tmp_clk;
2041 	}
2042 
2043 	/* handle the new child who might not be in core->children yet */
2044 	if (core->new_child) {
2045 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2046 		if (tmp_clk)
2047 			fail_clk = tmp_clk;
2048 	}
2049 
2050 	return fail_clk;
2051 }
2052 
2053 /*
2054  * walk down a subtree and set the new rates notifying the rate
2055  * change on the way
2056  */
2057 static void clk_change_rate(struct clk_core *core)
2058 {
2059 	struct clk_core *child;
2060 	struct hlist_node *tmp;
2061 	unsigned long old_rate;
2062 	unsigned long best_parent_rate = 0;
2063 	bool skip_set_rate = false;
2064 	struct clk_core *old_parent;
2065 	struct clk_core *parent = NULL;
2066 
2067 	old_rate = core->rate;
2068 
2069 	if (core->new_parent) {
2070 		parent = core->new_parent;
2071 		best_parent_rate = core->new_parent->rate;
2072 	} else if (core->parent) {
2073 		parent = core->parent;
2074 		best_parent_rate = core->parent->rate;
2075 	}
2076 
2077 	if (clk_pm_runtime_get(core))
2078 		return;
2079 
2080 	if (core->flags & CLK_SET_RATE_UNGATE) {
2081 		clk_core_prepare(core);
2082 		clk_core_enable_lock(core);
2083 	}
2084 
2085 	if (core->new_parent && core->new_parent != core->parent) {
2086 		old_parent = __clk_set_parent_before(core, core->new_parent);
2087 		trace_clk_set_parent(core, core->new_parent);
2088 
2089 		if (core->ops->set_rate_and_parent) {
2090 			skip_set_rate = true;
2091 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2092 					best_parent_rate,
2093 					core->new_parent_index);
2094 		} else if (core->ops->set_parent) {
2095 			core->ops->set_parent(core->hw, core->new_parent_index);
2096 		}
2097 
2098 		trace_clk_set_parent_complete(core, core->new_parent);
2099 		__clk_set_parent_after(core, core->new_parent, old_parent);
2100 	}
2101 
2102 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2103 		clk_core_prepare_enable(parent);
2104 
2105 	trace_clk_set_rate(core, core->new_rate);
2106 
2107 	if (!skip_set_rate && core->ops->set_rate)
2108 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2109 
2110 	trace_clk_set_rate_complete(core, core->new_rate);
2111 
2112 	core->rate = clk_recalc(core, best_parent_rate);
2113 
2114 	if (core->flags & CLK_SET_RATE_UNGATE) {
2115 		clk_core_disable_lock(core);
2116 		clk_core_unprepare(core);
2117 	}
2118 
2119 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2120 		clk_core_disable_unprepare(parent);
2121 
2122 	if (core->notifier_count && old_rate != core->rate)
2123 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2124 
2125 	if (core->flags & CLK_RECALC_NEW_RATES)
2126 		(void)clk_calc_new_rates(core, core->new_rate);
2127 
2128 	/*
2129 	 * Use safe iteration, as change_rate can actually swap parents
2130 	 * for certain clock types.
2131 	 */
2132 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2133 		/* Skip children who will be reparented to another clock */
2134 		if (child->new_parent && child->new_parent != core)
2135 			continue;
2136 		clk_change_rate(child);
2137 	}
2138 
2139 	/* handle the new child who might not be in core->children yet */
2140 	if (core->new_child)
2141 		clk_change_rate(core->new_child);
2142 
2143 	clk_pm_runtime_put(core);
2144 }
2145 
2146 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2147 						     unsigned long req_rate)
2148 {
2149 	int ret, cnt;
2150 	struct clk_rate_request req;
2151 
2152 	lockdep_assert_held(&prepare_lock);
2153 
2154 	if (!core)
2155 		return 0;
2156 
2157 	/* simulate what the rate would be if it could be freely set */
2158 	cnt = clk_core_rate_nuke_protect(core);
2159 	if (cnt < 0)
2160 		return cnt;
2161 
2162 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2163 	req.rate = req_rate;
2164 
2165 	ret = clk_core_round_rate_nolock(core, &req);
2166 
2167 	/* restore the protection */
2168 	clk_core_rate_restore_protect(core, cnt);
2169 
2170 	return ret ? 0 : req.rate;
2171 }
2172 
2173 static int clk_core_set_rate_nolock(struct clk_core *core,
2174 				    unsigned long req_rate)
2175 {
2176 	struct clk_core *top, *fail_clk;
2177 	unsigned long rate;
2178 	int ret = 0;
2179 
2180 	if (!core)
2181 		return 0;
2182 
2183 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2184 
2185 	/* bail early if nothing to do */
2186 	if (rate == clk_core_get_rate_nolock(core))
2187 		return 0;
2188 
2189 	/* fail on a direct rate set of a protected provider */
2190 	if (clk_core_rate_is_protected(core))
2191 		return -EBUSY;
2192 
2193 	/* calculate new rates and get the topmost changed clock */
2194 	top = clk_calc_new_rates(core, req_rate);
2195 	if (!top)
2196 		return -EINVAL;
2197 
2198 	ret = clk_pm_runtime_get(core);
2199 	if (ret)
2200 		return ret;
2201 
2202 	/* notify that we are about to change rates */
2203 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2204 	if (fail_clk) {
2205 		pr_debug("%s: failed to set %s rate\n", __func__,
2206 				fail_clk->name);
2207 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2208 		ret = -EBUSY;
2209 		goto err;
2210 	}
2211 
2212 	/* change the rates */
2213 	clk_change_rate(top);
2214 
2215 	core->req_rate = req_rate;
2216 err:
2217 	clk_pm_runtime_put(core);
2218 
2219 	return ret;
2220 }
2221 
2222 /**
2223  * clk_set_rate - specify a new rate for clk
2224  * @clk: the clk whose rate is being changed
2225  * @rate: the new rate for clk
2226  *
2227  * In the simplest case clk_set_rate will only adjust the rate of clk.
2228  *
2229  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2230  * propagate up to clk's parent; whether or not this happens depends on the
2231  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2232  * after calling .round_rate then upstream parent propagation is ignored.  If
2233  * *parent_rate comes back with a new rate for clk's parent then we propagate
2234  * up to clk's parent and set its rate.  Upward propagation will continue
2235  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2236  * .round_rate stops requesting changes to clk's parent_rate.
2237  *
2238  * Rate changes are accomplished via tree traversal that also recalculates the
2239  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2240  *
2241  * Returns 0 on success, -EERROR otherwise.
2242  */
2243 int clk_set_rate(struct clk *clk, unsigned long rate)
2244 {
2245 	int ret;
2246 
2247 	if (!clk)
2248 		return 0;
2249 
2250 	/* prevent racing with updates to the clock topology */
2251 	clk_prepare_lock();
2252 
2253 	if (clk->exclusive_count)
2254 		clk_core_rate_unprotect(clk->core);
2255 
2256 	ret = clk_core_set_rate_nolock(clk->core, rate);
2257 
2258 	if (clk->exclusive_count)
2259 		clk_core_rate_protect(clk->core);
2260 
2261 	clk_prepare_unlock();
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(clk_set_rate);
2266 
2267 /**
2268  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2269  * @clk: the clk whose rate is being changed
2270  * @rate: the new rate for clk
2271  *
2272  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2273  * within a critical section
2274  *
2275  * This can be used initially to ensure that at least 1 consumer is
2276  * satisfied when several consumers are competing for exclusivity over the
2277  * same clock provider.
2278  *
2279  * The exclusivity is not applied if setting the rate failed.
2280  *
2281  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2282  * clk_rate_exclusive_put().
2283  *
2284  * Returns 0 on success, -EERROR otherwise.
2285  */
2286 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2287 {
2288 	int ret;
2289 
2290 	if (!clk)
2291 		return 0;
2292 
2293 	/* prevent racing with updates to the clock topology */
2294 	clk_prepare_lock();
2295 
2296 	/*
2297 	 * The temporary protection removal is not here, on purpose
2298 	 * This function is meant to be used instead of clk_rate_protect,
2299 	 * so before the consumer code path protect the clock provider
2300 	 */
2301 
2302 	ret = clk_core_set_rate_nolock(clk->core, rate);
2303 	if (!ret) {
2304 		clk_core_rate_protect(clk->core);
2305 		clk->exclusive_count++;
2306 	}
2307 
2308 	clk_prepare_unlock();
2309 
2310 	return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2313 
2314 /**
2315  * clk_set_rate_range - set a rate range for a clock source
2316  * @clk: clock source
2317  * @min: desired minimum clock rate in Hz, inclusive
2318  * @max: desired maximum clock rate in Hz, inclusive
2319  *
2320  * Returns success (0) or negative errno.
2321  */
2322 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2323 {
2324 	int ret = 0;
2325 	unsigned long old_min, old_max, rate;
2326 
2327 	if (!clk)
2328 		return 0;
2329 
2330 	trace_clk_set_rate_range(clk->core, min, max);
2331 
2332 	if (min > max) {
2333 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2334 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2335 		       min, max);
2336 		return -EINVAL;
2337 	}
2338 
2339 	clk_prepare_lock();
2340 
2341 	if (clk->exclusive_count)
2342 		clk_core_rate_unprotect(clk->core);
2343 
2344 	/* Save the current values in case we need to rollback the change */
2345 	old_min = clk->min_rate;
2346 	old_max = clk->max_rate;
2347 	clk->min_rate = min;
2348 	clk->max_rate = max;
2349 
2350 	rate = clk_core_get_rate_nolock(clk->core);
2351 	if (rate < min || rate > max) {
2352 		/*
2353 		 * FIXME:
2354 		 * We are in bit of trouble here, current rate is outside the
2355 		 * the requested range. We are going try to request appropriate
2356 		 * range boundary but there is a catch. It may fail for the
2357 		 * usual reason (clock broken, clock protected, etc) but also
2358 		 * because:
2359 		 * - round_rate() was not favorable and fell on the wrong
2360 		 *   side of the boundary
2361 		 * - the determine_rate() callback does not really check for
2362 		 *   this corner case when determining the rate
2363 		 */
2364 
2365 		if (rate < min)
2366 			rate = min;
2367 		else
2368 			rate = max;
2369 
2370 		ret = clk_core_set_rate_nolock(clk->core, rate);
2371 		if (ret) {
2372 			/* rollback the changes */
2373 			clk->min_rate = old_min;
2374 			clk->max_rate = old_max;
2375 		}
2376 	}
2377 
2378 	if (clk->exclusive_count)
2379 		clk_core_rate_protect(clk->core);
2380 
2381 	clk_prepare_unlock();
2382 
2383 	return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2386 
2387 /**
2388  * clk_set_min_rate - set a minimum clock rate for a clock source
2389  * @clk: clock source
2390  * @rate: desired minimum clock rate in Hz, inclusive
2391  *
2392  * Returns success (0) or negative errno.
2393  */
2394 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2395 {
2396 	if (!clk)
2397 		return 0;
2398 
2399 	trace_clk_set_min_rate(clk->core, rate);
2400 
2401 	return clk_set_rate_range(clk, rate, clk->max_rate);
2402 }
2403 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2404 
2405 /**
2406  * clk_set_max_rate - set a maximum clock rate for a clock source
2407  * @clk: clock source
2408  * @rate: desired maximum clock rate in Hz, inclusive
2409  *
2410  * Returns success (0) or negative errno.
2411  */
2412 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2413 {
2414 	if (!clk)
2415 		return 0;
2416 
2417 	trace_clk_set_max_rate(clk->core, rate);
2418 
2419 	return clk_set_rate_range(clk, clk->min_rate, rate);
2420 }
2421 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2422 
2423 /**
2424  * clk_get_parent - return the parent of a clk
2425  * @clk: the clk whose parent gets returned
2426  *
2427  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2428  */
2429 struct clk *clk_get_parent(struct clk *clk)
2430 {
2431 	struct clk *parent;
2432 
2433 	if (!clk)
2434 		return NULL;
2435 
2436 	clk_prepare_lock();
2437 	/* TODO: Create a per-user clk and change callers to call clk_put */
2438 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2439 	clk_prepare_unlock();
2440 
2441 	return parent;
2442 }
2443 EXPORT_SYMBOL_GPL(clk_get_parent);
2444 
2445 static struct clk_core *__clk_init_parent(struct clk_core *core)
2446 {
2447 	u8 index = 0;
2448 
2449 	if (core->num_parents > 1 && core->ops->get_parent)
2450 		index = core->ops->get_parent(core->hw);
2451 
2452 	return clk_core_get_parent_by_index(core, index);
2453 }
2454 
2455 static void clk_core_reparent(struct clk_core *core,
2456 				  struct clk_core *new_parent)
2457 {
2458 	clk_reparent(core, new_parent);
2459 	__clk_recalc_accuracies(core);
2460 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2461 }
2462 
2463 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2464 {
2465 	if (!hw)
2466 		return;
2467 
2468 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2469 }
2470 
2471 /**
2472  * clk_has_parent - check if a clock is a possible parent for another
2473  * @clk: clock source
2474  * @parent: parent clock source
2475  *
2476  * This function can be used in drivers that need to check that a clock can be
2477  * the parent of another without actually changing the parent.
2478  *
2479  * Returns true if @parent is a possible parent for @clk, false otherwise.
2480  */
2481 bool clk_has_parent(struct clk *clk, struct clk *parent)
2482 {
2483 	struct clk_core *core, *parent_core;
2484 	int i;
2485 
2486 	/* NULL clocks should be nops, so return success if either is NULL. */
2487 	if (!clk || !parent)
2488 		return true;
2489 
2490 	core = clk->core;
2491 	parent_core = parent->core;
2492 
2493 	/* Optimize for the case where the parent is already the parent. */
2494 	if (core->parent == parent_core)
2495 		return true;
2496 
2497 	for (i = 0; i < core->num_parents; i++)
2498 		if (!strcmp(core->parents[i].name, parent_core->name))
2499 			return true;
2500 
2501 	return false;
2502 }
2503 EXPORT_SYMBOL_GPL(clk_has_parent);
2504 
2505 static int clk_core_set_parent_nolock(struct clk_core *core,
2506 				      struct clk_core *parent)
2507 {
2508 	int ret = 0;
2509 	int p_index = 0;
2510 	unsigned long p_rate = 0;
2511 
2512 	lockdep_assert_held(&prepare_lock);
2513 
2514 	if (!core)
2515 		return 0;
2516 
2517 	if (core->parent == parent)
2518 		return 0;
2519 
2520 	/* verify ops for multi-parent clks */
2521 	if (core->num_parents > 1 && !core->ops->set_parent)
2522 		return -EPERM;
2523 
2524 	/* check that we are allowed to re-parent if the clock is in use */
2525 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2526 		return -EBUSY;
2527 
2528 	if (clk_core_rate_is_protected(core))
2529 		return -EBUSY;
2530 
2531 	/* try finding the new parent index */
2532 	if (parent) {
2533 		p_index = clk_fetch_parent_index(core, parent);
2534 		if (p_index < 0) {
2535 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2536 					__func__, parent->name, core->name);
2537 			return p_index;
2538 		}
2539 		p_rate = parent->rate;
2540 	}
2541 
2542 	ret = clk_pm_runtime_get(core);
2543 	if (ret)
2544 		return ret;
2545 
2546 	/* propagate PRE_RATE_CHANGE notifications */
2547 	ret = __clk_speculate_rates(core, p_rate);
2548 
2549 	/* abort if a driver objects */
2550 	if (ret & NOTIFY_STOP_MASK)
2551 		goto runtime_put;
2552 
2553 	/* do the re-parent */
2554 	ret = __clk_set_parent(core, parent, p_index);
2555 
2556 	/* propagate rate an accuracy recalculation accordingly */
2557 	if (ret) {
2558 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2559 	} else {
2560 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2561 		__clk_recalc_accuracies(core);
2562 	}
2563 
2564 runtime_put:
2565 	clk_pm_runtime_put(core);
2566 
2567 	return ret;
2568 }
2569 
2570 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2571 {
2572 	return clk_core_set_parent_nolock(hw->core, parent->core);
2573 }
2574 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2575 
2576 /**
2577  * clk_set_parent - switch the parent of a mux clk
2578  * @clk: the mux clk whose input we are switching
2579  * @parent: the new input to clk
2580  *
2581  * Re-parent clk to use parent as its new input source.  If clk is in
2582  * prepared state, the clk will get enabled for the duration of this call. If
2583  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2584  * that, the reparenting is glitchy in hardware, etc), use the
2585  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2586  *
2587  * After successfully changing clk's parent clk_set_parent will update the
2588  * clk topology, sysfs topology and propagate rate recalculation via
2589  * __clk_recalc_rates.
2590  *
2591  * Returns 0 on success, -EERROR otherwise.
2592  */
2593 int clk_set_parent(struct clk *clk, struct clk *parent)
2594 {
2595 	int ret;
2596 
2597 	if (!clk)
2598 		return 0;
2599 
2600 	clk_prepare_lock();
2601 
2602 	if (clk->exclusive_count)
2603 		clk_core_rate_unprotect(clk->core);
2604 
2605 	ret = clk_core_set_parent_nolock(clk->core,
2606 					 parent ? parent->core : NULL);
2607 
2608 	if (clk->exclusive_count)
2609 		clk_core_rate_protect(clk->core);
2610 
2611 	clk_prepare_unlock();
2612 
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL_GPL(clk_set_parent);
2616 
2617 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2618 {
2619 	int ret = -EINVAL;
2620 
2621 	lockdep_assert_held(&prepare_lock);
2622 
2623 	if (!core)
2624 		return 0;
2625 
2626 	if (clk_core_rate_is_protected(core))
2627 		return -EBUSY;
2628 
2629 	trace_clk_set_phase(core, degrees);
2630 
2631 	if (core->ops->set_phase) {
2632 		ret = core->ops->set_phase(core->hw, degrees);
2633 		if (!ret)
2634 			core->phase = degrees;
2635 	}
2636 
2637 	trace_clk_set_phase_complete(core, degrees);
2638 
2639 	return ret;
2640 }
2641 
2642 /**
2643  * clk_set_phase - adjust the phase shift of a clock signal
2644  * @clk: clock signal source
2645  * @degrees: number of degrees the signal is shifted
2646  *
2647  * Shifts the phase of a clock signal by the specified
2648  * degrees. Returns 0 on success, -EERROR otherwise.
2649  *
2650  * This function makes no distinction about the input or reference
2651  * signal that we adjust the clock signal phase against. For example
2652  * phase locked-loop clock signal generators we may shift phase with
2653  * respect to feedback clock signal input, but for other cases the
2654  * clock phase may be shifted with respect to some other, unspecified
2655  * signal.
2656  *
2657  * Additionally the concept of phase shift does not propagate through
2658  * the clock tree hierarchy, which sets it apart from clock rates and
2659  * clock accuracy. A parent clock phase attribute does not have an
2660  * impact on the phase attribute of a child clock.
2661  */
2662 int clk_set_phase(struct clk *clk, int degrees)
2663 {
2664 	int ret;
2665 
2666 	if (!clk)
2667 		return 0;
2668 
2669 	/* sanity check degrees */
2670 	degrees %= 360;
2671 	if (degrees < 0)
2672 		degrees += 360;
2673 
2674 	clk_prepare_lock();
2675 
2676 	if (clk->exclusive_count)
2677 		clk_core_rate_unprotect(clk->core);
2678 
2679 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2680 
2681 	if (clk->exclusive_count)
2682 		clk_core_rate_protect(clk->core);
2683 
2684 	clk_prepare_unlock();
2685 
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL_GPL(clk_set_phase);
2689 
2690 static int clk_core_get_phase(struct clk_core *core)
2691 {
2692 	int ret;
2693 
2694 	lockdep_assert_held(&prepare_lock);
2695 	if (!core->ops->get_phase)
2696 		return 0;
2697 
2698 	/* Always try to update cached phase if possible */
2699 	ret = core->ops->get_phase(core->hw);
2700 	if (ret >= 0)
2701 		core->phase = ret;
2702 
2703 	return ret;
2704 }
2705 
2706 /**
2707  * clk_get_phase - return the phase shift of a clock signal
2708  * @clk: clock signal source
2709  *
2710  * Returns the phase shift of a clock node in degrees, otherwise returns
2711  * -EERROR.
2712  */
2713 int clk_get_phase(struct clk *clk)
2714 {
2715 	int ret;
2716 
2717 	if (!clk)
2718 		return 0;
2719 
2720 	clk_prepare_lock();
2721 	ret = clk_core_get_phase(clk->core);
2722 	clk_prepare_unlock();
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL_GPL(clk_get_phase);
2727 
2728 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2729 {
2730 	/* Assume a default value of 50% */
2731 	core->duty.num = 1;
2732 	core->duty.den = 2;
2733 }
2734 
2735 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2736 
2737 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2738 {
2739 	struct clk_duty *duty = &core->duty;
2740 	int ret = 0;
2741 
2742 	if (!core->ops->get_duty_cycle)
2743 		return clk_core_update_duty_cycle_parent_nolock(core);
2744 
2745 	ret = core->ops->get_duty_cycle(core->hw, duty);
2746 	if (ret)
2747 		goto reset;
2748 
2749 	/* Don't trust the clock provider too much */
2750 	if (duty->den == 0 || duty->num > duty->den) {
2751 		ret = -EINVAL;
2752 		goto reset;
2753 	}
2754 
2755 	return 0;
2756 
2757 reset:
2758 	clk_core_reset_duty_cycle_nolock(core);
2759 	return ret;
2760 }
2761 
2762 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2763 {
2764 	int ret = 0;
2765 
2766 	if (core->parent &&
2767 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2768 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2769 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2770 	} else {
2771 		clk_core_reset_duty_cycle_nolock(core);
2772 	}
2773 
2774 	return ret;
2775 }
2776 
2777 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2778 						 struct clk_duty *duty);
2779 
2780 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2781 					  struct clk_duty *duty)
2782 {
2783 	int ret;
2784 
2785 	lockdep_assert_held(&prepare_lock);
2786 
2787 	if (clk_core_rate_is_protected(core))
2788 		return -EBUSY;
2789 
2790 	trace_clk_set_duty_cycle(core, duty);
2791 
2792 	if (!core->ops->set_duty_cycle)
2793 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2794 
2795 	ret = core->ops->set_duty_cycle(core->hw, duty);
2796 	if (!ret)
2797 		memcpy(&core->duty, duty, sizeof(*duty));
2798 
2799 	trace_clk_set_duty_cycle_complete(core, duty);
2800 
2801 	return ret;
2802 }
2803 
2804 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2805 						 struct clk_duty *duty)
2806 {
2807 	int ret = 0;
2808 
2809 	if (core->parent &&
2810 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2811 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2812 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2813 	}
2814 
2815 	return ret;
2816 }
2817 
2818 /**
2819  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2820  * @clk: clock signal source
2821  * @num: numerator of the duty cycle ratio to be applied
2822  * @den: denominator of the duty cycle ratio to be applied
2823  *
2824  * Apply the duty cycle ratio if the ratio is valid and the clock can
2825  * perform this operation
2826  *
2827  * Returns (0) on success, a negative errno otherwise.
2828  */
2829 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2830 {
2831 	int ret;
2832 	struct clk_duty duty;
2833 
2834 	if (!clk)
2835 		return 0;
2836 
2837 	/* sanity check the ratio */
2838 	if (den == 0 || num > den)
2839 		return -EINVAL;
2840 
2841 	duty.num = num;
2842 	duty.den = den;
2843 
2844 	clk_prepare_lock();
2845 
2846 	if (clk->exclusive_count)
2847 		clk_core_rate_unprotect(clk->core);
2848 
2849 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2850 
2851 	if (clk->exclusive_count)
2852 		clk_core_rate_protect(clk->core);
2853 
2854 	clk_prepare_unlock();
2855 
2856 	return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2859 
2860 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2861 					  unsigned int scale)
2862 {
2863 	struct clk_duty *duty = &core->duty;
2864 	int ret;
2865 
2866 	clk_prepare_lock();
2867 
2868 	ret = clk_core_update_duty_cycle_nolock(core);
2869 	if (!ret)
2870 		ret = mult_frac(scale, duty->num, duty->den);
2871 
2872 	clk_prepare_unlock();
2873 
2874 	return ret;
2875 }
2876 
2877 /**
2878  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2879  * @clk: clock signal source
2880  * @scale: scaling factor to be applied to represent the ratio as an integer
2881  *
2882  * Returns the duty cycle ratio of a clock node multiplied by the provided
2883  * scaling factor, or negative errno on error.
2884  */
2885 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2886 {
2887 	if (!clk)
2888 		return 0;
2889 
2890 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2891 }
2892 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2893 
2894 /**
2895  * clk_is_match - check if two clk's point to the same hardware clock
2896  * @p: clk compared against q
2897  * @q: clk compared against p
2898  *
2899  * Returns true if the two struct clk pointers both point to the same hardware
2900  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2901  * share the same struct clk_core object.
2902  *
2903  * Returns false otherwise. Note that two NULL clks are treated as matching.
2904  */
2905 bool clk_is_match(const struct clk *p, const struct clk *q)
2906 {
2907 	/* trivial case: identical struct clk's or both NULL */
2908 	if (p == q)
2909 		return true;
2910 
2911 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2912 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2913 		if (p->core == q->core)
2914 			return true;
2915 
2916 	return false;
2917 }
2918 EXPORT_SYMBOL_GPL(clk_is_match);
2919 
2920 /***        debugfs support        ***/
2921 
2922 #ifdef CONFIG_DEBUG_FS
2923 #include <linux/debugfs.h>
2924 
2925 static struct dentry *rootdir;
2926 static int inited = 0;
2927 static DEFINE_MUTEX(clk_debug_lock);
2928 static HLIST_HEAD(clk_debug_list);
2929 
2930 static struct hlist_head *orphan_list[] = {
2931 	&clk_orphan_list,
2932 	NULL,
2933 };
2934 
2935 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2936 				 int level)
2937 {
2938 	int phase;
2939 
2940 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2941 		   level * 3 + 1, "",
2942 		   30 - level * 3, c->name,
2943 		   c->enable_count, c->prepare_count, c->protect_count,
2944 		   clk_core_get_rate_recalc(c),
2945 		   clk_core_get_accuracy_recalc(c));
2946 
2947 	phase = clk_core_get_phase(c);
2948 	if (phase >= 0)
2949 		seq_printf(s, "%5d", phase);
2950 	else
2951 		seq_puts(s, "-----");
2952 
2953 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2954 
2955 	if (c->ops->is_enabled)
2956 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2957 	else if (!c->ops->enable)
2958 		seq_printf(s, " %9c\n", 'Y');
2959 	else
2960 		seq_printf(s, " %9c\n", '?');
2961 }
2962 
2963 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2964 				     int level)
2965 {
2966 	struct clk_core *child;
2967 
2968 	clk_summary_show_one(s, c, level);
2969 
2970 	hlist_for_each_entry(child, &c->children, child_node)
2971 		clk_summary_show_subtree(s, child, level + 1);
2972 }
2973 
2974 static int clk_summary_show(struct seq_file *s, void *data)
2975 {
2976 	struct clk_core *c;
2977 	struct hlist_head **lists = (struct hlist_head **)s->private;
2978 
2979 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
2980 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
2981 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
2982 
2983 	clk_prepare_lock();
2984 
2985 	for (; *lists; lists++)
2986 		hlist_for_each_entry(c, *lists, child_node)
2987 			clk_summary_show_subtree(s, c, 0);
2988 
2989 	clk_prepare_unlock();
2990 
2991 	return 0;
2992 }
2993 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2994 
2995 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2996 {
2997 	int phase;
2998 	unsigned long min_rate, max_rate;
2999 
3000 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3001 
3002 	/* This should be JSON format, i.e. elements separated with a comma */
3003 	seq_printf(s, "\"%s\": { ", c->name);
3004 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3005 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3006 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3007 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3008 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3009 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3010 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3011 	phase = clk_core_get_phase(c);
3012 	if (phase >= 0)
3013 		seq_printf(s, "\"phase\": %d,", phase);
3014 	seq_printf(s, "\"duty_cycle\": %u",
3015 		   clk_core_get_scaled_duty_cycle(c, 100000));
3016 }
3017 
3018 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3019 {
3020 	struct clk_core *child;
3021 
3022 	clk_dump_one(s, c, level);
3023 
3024 	hlist_for_each_entry(child, &c->children, child_node) {
3025 		seq_putc(s, ',');
3026 		clk_dump_subtree(s, child, level + 1);
3027 	}
3028 
3029 	seq_putc(s, '}');
3030 }
3031 
3032 static int clk_dump_show(struct seq_file *s, void *data)
3033 {
3034 	struct clk_core *c;
3035 	bool first_node = true;
3036 	struct hlist_head **lists = (struct hlist_head **)s->private;
3037 
3038 	seq_putc(s, '{');
3039 	clk_prepare_lock();
3040 
3041 	for (; *lists; lists++) {
3042 		hlist_for_each_entry(c, *lists, child_node) {
3043 			if (!first_node)
3044 				seq_putc(s, ',');
3045 			first_node = false;
3046 			clk_dump_subtree(s, c, 0);
3047 		}
3048 	}
3049 
3050 	clk_prepare_unlock();
3051 
3052 	seq_puts(s, "}\n");
3053 	return 0;
3054 }
3055 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3056 
3057 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3058 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3059 /*
3060  * This can be dangerous, therefore don't provide any real compile time
3061  * configuration option for this feature.
3062  * People who want to use this will need to modify the source code directly.
3063  */
3064 static int clk_rate_set(void *data, u64 val)
3065 {
3066 	struct clk_core *core = data;
3067 	int ret;
3068 
3069 	clk_prepare_lock();
3070 	ret = clk_core_set_rate_nolock(core, val);
3071 	clk_prepare_unlock();
3072 
3073 	return ret;
3074 }
3075 
3076 #define clk_rate_mode	0644
3077 
3078 static int clk_prepare_enable_set(void *data, u64 val)
3079 {
3080 	struct clk_core *core = data;
3081 	int ret = 0;
3082 
3083 	if (val)
3084 		ret = clk_prepare_enable(core->hw->clk);
3085 	else
3086 		clk_disable_unprepare(core->hw->clk);
3087 
3088 	return ret;
3089 }
3090 
3091 static int clk_prepare_enable_get(void *data, u64 *val)
3092 {
3093 	struct clk_core *core = data;
3094 
3095 	*val = core->enable_count && core->prepare_count;
3096 	return 0;
3097 }
3098 
3099 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3100 			 clk_prepare_enable_set, "%llu\n");
3101 
3102 #else
3103 #define clk_rate_set	NULL
3104 #define clk_rate_mode	0444
3105 #endif
3106 
3107 static int clk_rate_get(void *data, u64 *val)
3108 {
3109 	struct clk_core *core = data;
3110 
3111 	clk_prepare_lock();
3112 	*val = clk_core_get_rate_recalc(core);
3113 	clk_prepare_unlock();
3114 
3115 	return 0;
3116 }
3117 
3118 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3119 
3120 static const struct {
3121 	unsigned long flag;
3122 	const char *name;
3123 } clk_flags[] = {
3124 #define ENTRY(f) { f, #f }
3125 	ENTRY(CLK_SET_RATE_GATE),
3126 	ENTRY(CLK_SET_PARENT_GATE),
3127 	ENTRY(CLK_SET_RATE_PARENT),
3128 	ENTRY(CLK_IGNORE_UNUSED),
3129 	ENTRY(CLK_GET_RATE_NOCACHE),
3130 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3131 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3132 	ENTRY(CLK_RECALC_NEW_RATES),
3133 	ENTRY(CLK_SET_RATE_UNGATE),
3134 	ENTRY(CLK_IS_CRITICAL),
3135 	ENTRY(CLK_OPS_PARENT_ENABLE),
3136 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3137 #undef ENTRY
3138 };
3139 
3140 static int clk_flags_show(struct seq_file *s, void *data)
3141 {
3142 	struct clk_core *core = s->private;
3143 	unsigned long flags = core->flags;
3144 	unsigned int i;
3145 
3146 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3147 		if (flags & clk_flags[i].flag) {
3148 			seq_printf(s, "%s\n", clk_flags[i].name);
3149 			flags &= ~clk_flags[i].flag;
3150 		}
3151 	}
3152 	if (flags) {
3153 		/* Unknown flags */
3154 		seq_printf(s, "0x%lx\n", flags);
3155 	}
3156 
3157 	return 0;
3158 }
3159 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3160 
3161 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3162 				 unsigned int i, char terminator)
3163 {
3164 	struct clk_core *parent;
3165 
3166 	/*
3167 	 * Go through the following options to fetch a parent's name.
3168 	 *
3169 	 * 1. Fetch the registered parent clock and use its name
3170 	 * 2. Use the global (fallback) name if specified
3171 	 * 3. Use the local fw_name if provided
3172 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3173 	 *
3174 	 * This may still fail in some cases, such as when the parent is
3175 	 * specified directly via a struct clk_hw pointer, but it isn't
3176 	 * registered (yet).
3177 	 */
3178 	parent = clk_core_get_parent_by_index(core, i);
3179 	if (parent)
3180 		seq_puts(s, parent->name);
3181 	else if (core->parents[i].name)
3182 		seq_puts(s, core->parents[i].name);
3183 	else if (core->parents[i].fw_name)
3184 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3185 	else if (core->parents[i].index >= 0)
3186 		seq_puts(s,
3187 			 of_clk_get_parent_name(core->of_node,
3188 						core->parents[i].index));
3189 	else
3190 		seq_puts(s, "(missing)");
3191 
3192 	seq_putc(s, terminator);
3193 }
3194 
3195 static int possible_parents_show(struct seq_file *s, void *data)
3196 {
3197 	struct clk_core *core = s->private;
3198 	int i;
3199 
3200 	for (i = 0; i < core->num_parents - 1; i++)
3201 		possible_parent_show(s, core, i, ' ');
3202 
3203 	possible_parent_show(s, core, i, '\n');
3204 
3205 	return 0;
3206 }
3207 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3208 
3209 static int current_parent_show(struct seq_file *s, void *data)
3210 {
3211 	struct clk_core *core = s->private;
3212 
3213 	if (core->parent)
3214 		seq_printf(s, "%s\n", core->parent->name);
3215 
3216 	return 0;
3217 }
3218 DEFINE_SHOW_ATTRIBUTE(current_parent);
3219 
3220 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3221 {
3222 	struct clk_core *core = s->private;
3223 	struct clk_duty *duty = &core->duty;
3224 
3225 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3226 
3227 	return 0;
3228 }
3229 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3230 
3231 static int clk_min_rate_show(struct seq_file *s, void *data)
3232 {
3233 	struct clk_core *core = s->private;
3234 	unsigned long min_rate, max_rate;
3235 
3236 	clk_prepare_lock();
3237 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3238 	clk_prepare_unlock();
3239 	seq_printf(s, "%lu\n", min_rate);
3240 
3241 	return 0;
3242 }
3243 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3244 
3245 static int clk_max_rate_show(struct seq_file *s, void *data)
3246 {
3247 	struct clk_core *core = s->private;
3248 	unsigned long min_rate, max_rate;
3249 
3250 	clk_prepare_lock();
3251 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3252 	clk_prepare_unlock();
3253 	seq_printf(s, "%lu\n", max_rate);
3254 
3255 	return 0;
3256 }
3257 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3258 
3259 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3260 {
3261 	struct dentry *root;
3262 
3263 	if (!core || !pdentry)
3264 		return;
3265 
3266 	root = debugfs_create_dir(core->name, pdentry);
3267 	core->dentry = root;
3268 
3269 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3270 			    &clk_rate_fops);
3271 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3272 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3273 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3274 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3275 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3276 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3277 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3278 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3279 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3280 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3281 			    &clk_duty_cycle_fops);
3282 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3283 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3284 			    &clk_prepare_enable_fops);
3285 #endif
3286 
3287 	if (core->num_parents > 0)
3288 		debugfs_create_file("clk_parent", 0444, root, core,
3289 				    &current_parent_fops);
3290 
3291 	if (core->num_parents > 1)
3292 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3293 				    &possible_parents_fops);
3294 
3295 	if (core->ops->debug_init)
3296 		core->ops->debug_init(core->hw, core->dentry);
3297 }
3298 
3299 /**
3300  * clk_debug_register - add a clk node to the debugfs clk directory
3301  * @core: the clk being added to the debugfs clk directory
3302  *
3303  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3304  * initialized.  Otherwise it bails out early since the debugfs clk directory
3305  * will be created lazily by clk_debug_init as part of a late_initcall.
3306  */
3307 static void clk_debug_register(struct clk_core *core)
3308 {
3309 	mutex_lock(&clk_debug_lock);
3310 	hlist_add_head(&core->debug_node, &clk_debug_list);
3311 	if (inited)
3312 		clk_debug_create_one(core, rootdir);
3313 	mutex_unlock(&clk_debug_lock);
3314 }
3315 
3316  /**
3317  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3318  * @core: the clk being removed from the debugfs clk directory
3319  *
3320  * Dynamically removes a clk and all its child nodes from the
3321  * debugfs clk directory if clk->dentry points to debugfs created by
3322  * clk_debug_register in __clk_core_init.
3323  */
3324 static void clk_debug_unregister(struct clk_core *core)
3325 {
3326 	mutex_lock(&clk_debug_lock);
3327 	hlist_del_init(&core->debug_node);
3328 	debugfs_remove_recursive(core->dentry);
3329 	core->dentry = NULL;
3330 	mutex_unlock(&clk_debug_lock);
3331 }
3332 
3333 /**
3334  * clk_debug_init - lazily populate the debugfs clk directory
3335  *
3336  * clks are often initialized very early during boot before memory can be
3337  * dynamically allocated and well before debugfs is setup. This function
3338  * populates the debugfs clk directory once at boot-time when we know that
3339  * debugfs is setup. It should only be called once at boot-time, all other clks
3340  * added dynamically will be done so with clk_debug_register.
3341  */
3342 static int __init clk_debug_init(void)
3343 {
3344 	struct clk_core *core;
3345 
3346 	rootdir = debugfs_create_dir("clk", NULL);
3347 
3348 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3349 			    &clk_summary_fops);
3350 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3351 			    &clk_dump_fops);
3352 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3353 			    &clk_summary_fops);
3354 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3355 			    &clk_dump_fops);
3356 
3357 	mutex_lock(&clk_debug_lock);
3358 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3359 		clk_debug_create_one(core, rootdir);
3360 
3361 	inited = 1;
3362 	mutex_unlock(&clk_debug_lock);
3363 
3364 	return 0;
3365 }
3366 late_initcall(clk_debug_init);
3367 #else
3368 static inline void clk_debug_register(struct clk_core *core) { }
3369 static inline void clk_debug_unregister(struct clk_core *core)
3370 {
3371 }
3372 #endif
3373 
3374 static void clk_core_reparent_orphans_nolock(void)
3375 {
3376 	struct clk_core *orphan;
3377 	struct hlist_node *tmp2;
3378 
3379 	/*
3380 	 * walk the list of orphan clocks and reparent any that newly finds a
3381 	 * parent.
3382 	 */
3383 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3384 		struct clk_core *parent = __clk_init_parent(orphan);
3385 
3386 		/*
3387 		 * We need to use __clk_set_parent_before() and _after() to
3388 		 * to properly migrate any prepare/enable count of the orphan
3389 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3390 		 * are enabled during init but might not have a parent yet.
3391 		 */
3392 		if (parent) {
3393 			/* update the clk tree topology */
3394 			__clk_set_parent_before(orphan, parent);
3395 			__clk_set_parent_after(orphan, parent, NULL);
3396 			__clk_recalc_accuracies(orphan);
3397 			__clk_recalc_rates(orphan, 0);
3398 		}
3399 	}
3400 }
3401 
3402 /**
3403  * __clk_core_init - initialize the data structures in a struct clk_core
3404  * @core:	clk_core being initialized
3405  *
3406  * Initializes the lists in struct clk_core, queries the hardware for the
3407  * parent and rate and sets them both.
3408  */
3409 static int __clk_core_init(struct clk_core *core)
3410 {
3411 	int ret;
3412 	struct clk_core *parent;
3413 	unsigned long rate;
3414 	int phase;
3415 
3416 	if (!core)
3417 		return -EINVAL;
3418 
3419 	clk_prepare_lock();
3420 
3421 	ret = clk_pm_runtime_get(core);
3422 	if (ret)
3423 		goto unlock;
3424 
3425 	/* check to see if a clock with this name is already registered */
3426 	if (clk_core_lookup(core->name)) {
3427 		pr_debug("%s: clk %s already initialized\n",
3428 				__func__, core->name);
3429 		ret = -EEXIST;
3430 		goto out;
3431 	}
3432 
3433 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3434 	if (core->ops->set_rate &&
3435 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3436 	      core->ops->recalc_rate)) {
3437 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3438 		       __func__, core->name);
3439 		ret = -EINVAL;
3440 		goto out;
3441 	}
3442 
3443 	if (core->ops->set_parent && !core->ops->get_parent) {
3444 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3445 		       __func__, core->name);
3446 		ret = -EINVAL;
3447 		goto out;
3448 	}
3449 
3450 	if (core->num_parents > 1 && !core->ops->get_parent) {
3451 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3452 		       __func__, core->name);
3453 		ret = -EINVAL;
3454 		goto out;
3455 	}
3456 
3457 	if (core->ops->set_rate_and_parent &&
3458 			!(core->ops->set_parent && core->ops->set_rate)) {
3459 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3460 				__func__, core->name);
3461 		ret = -EINVAL;
3462 		goto out;
3463 	}
3464 
3465 	/*
3466 	 * optional platform-specific magic
3467 	 *
3468 	 * The .init callback is not used by any of the basic clock types, but
3469 	 * exists for weird hardware that must perform initialization magic for
3470 	 * CCF to get an accurate view of clock for any other callbacks. It may
3471 	 * also be used needs to perform dynamic allocations. Such allocation
3472 	 * must be freed in the terminate() callback.
3473 	 * This callback shall not be used to initialize the parameters state,
3474 	 * such as rate, parent, etc ...
3475 	 *
3476 	 * If it exist, this callback should called before any other callback of
3477 	 * the clock
3478 	 */
3479 	if (core->ops->init) {
3480 		ret = core->ops->init(core->hw);
3481 		if (ret)
3482 			goto out;
3483 	}
3484 
3485 	parent = core->parent = __clk_init_parent(core);
3486 
3487 	/*
3488 	 * Populate core->parent if parent has already been clk_core_init'd. If
3489 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3490 	 * list.  If clk doesn't have any parents then place it in the root
3491 	 * clk list.
3492 	 *
3493 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3494 	 * clocks and re-parent any that are children of the clock currently
3495 	 * being clk_init'd.
3496 	 */
3497 	if (parent) {
3498 		hlist_add_head(&core->child_node, &parent->children);
3499 		core->orphan = parent->orphan;
3500 	} else if (!core->num_parents) {
3501 		hlist_add_head(&core->child_node, &clk_root_list);
3502 		core->orphan = false;
3503 	} else {
3504 		hlist_add_head(&core->child_node, &clk_orphan_list);
3505 		core->orphan = true;
3506 	}
3507 
3508 	/*
3509 	 * Set clk's accuracy.  The preferred method is to use
3510 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3511 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3512 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3513 	 * clock).
3514 	 */
3515 	if (core->ops->recalc_accuracy)
3516 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3517 					clk_core_get_accuracy_no_lock(parent));
3518 	else if (parent)
3519 		core->accuracy = parent->accuracy;
3520 	else
3521 		core->accuracy = 0;
3522 
3523 	/*
3524 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3525 	 * Since a phase is by definition relative to its parent, just
3526 	 * query the current clock phase, or just assume it's in phase.
3527 	 */
3528 	phase = clk_core_get_phase(core);
3529 	if (phase < 0) {
3530 		ret = phase;
3531 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3532 			core->name);
3533 		goto out;
3534 	}
3535 
3536 	/*
3537 	 * Set clk's duty cycle.
3538 	 */
3539 	clk_core_update_duty_cycle_nolock(core);
3540 
3541 	/*
3542 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3543 	 * simple clocks and lazy developers the default fallback is to use the
3544 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3545 	 * then rate is set to zero.
3546 	 */
3547 	if (core->ops->recalc_rate)
3548 		rate = core->ops->recalc_rate(core->hw,
3549 				clk_core_get_rate_nolock(parent));
3550 	else if (parent)
3551 		rate = parent->rate;
3552 	else
3553 		rate = 0;
3554 	core->rate = core->req_rate = rate;
3555 
3556 	/*
3557 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3558 	 * don't get accidentally disabled when walking the orphan tree and
3559 	 * reparenting clocks
3560 	 */
3561 	if (core->flags & CLK_IS_CRITICAL) {
3562 		ret = clk_core_prepare(core);
3563 		if (ret) {
3564 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3565 			       __func__, core->name);
3566 			goto out;
3567 		}
3568 
3569 		ret = clk_core_enable_lock(core);
3570 		if (ret) {
3571 			pr_warn("%s: critical clk '%s' failed to enable\n",
3572 			       __func__, core->name);
3573 			clk_core_unprepare(core);
3574 			goto out;
3575 		}
3576 	}
3577 
3578 	clk_core_reparent_orphans_nolock();
3579 
3580 
3581 	kref_init(&core->ref);
3582 out:
3583 	clk_pm_runtime_put(core);
3584 unlock:
3585 	if (ret)
3586 		hlist_del_init(&core->child_node);
3587 
3588 	clk_prepare_unlock();
3589 
3590 	if (!ret)
3591 		clk_debug_register(core);
3592 
3593 	return ret;
3594 }
3595 
3596 /**
3597  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3598  * @core: clk to add consumer to
3599  * @clk: consumer to link to a clk
3600  */
3601 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3602 {
3603 	clk_prepare_lock();
3604 	hlist_add_head(&clk->clks_node, &core->clks);
3605 	clk_prepare_unlock();
3606 }
3607 
3608 /**
3609  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3610  * @clk: consumer to unlink
3611  */
3612 static void clk_core_unlink_consumer(struct clk *clk)
3613 {
3614 	lockdep_assert_held(&prepare_lock);
3615 	hlist_del(&clk->clks_node);
3616 }
3617 
3618 /**
3619  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3620  * @core: clk to allocate a consumer for
3621  * @dev_id: string describing device name
3622  * @con_id: connection ID string on device
3623  *
3624  * Returns: clk consumer left unlinked from the consumer list
3625  */
3626 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3627 			     const char *con_id)
3628 {
3629 	struct clk *clk;
3630 
3631 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3632 	if (!clk)
3633 		return ERR_PTR(-ENOMEM);
3634 
3635 	clk->core = core;
3636 	clk->dev_id = dev_id;
3637 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3638 	clk->max_rate = ULONG_MAX;
3639 
3640 	return clk;
3641 }
3642 
3643 /**
3644  * free_clk - Free a clk consumer
3645  * @clk: clk consumer to free
3646  *
3647  * Note, this assumes the clk has been unlinked from the clk_core consumer
3648  * list.
3649  */
3650 static void free_clk(struct clk *clk)
3651 {
3652 	kfree_const(clk->con_id);
3653 	kfree(clk);
3654 }
3655 
3656 /**
3657  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3658  * a clk_hw
3659  * @dev: clk consumer device
3660  * @hw: clk_hw associated with the clk being consumed
3661  * @dev_id: string describing device name
3662  * @con_id: connection ID string on device
3663  *
3664  * This is the main function used to create a clk pointer for use by clk
3665  * consumers. It connects a consumer to the clk_core and clk_hw structures
3666  * used by the framework and clk provider respectively.
3667  */
3668 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3669 			      const char *dev_id, const char *con_id)
3670 {
3671 	struct clk *clk;
3672 	struct clk_core *core;
3673 
3674 	/* This is to allow this function to be chained to others */
3675 	if (IS_ERR_OR_NULL(hw))
3676 		return ERR_CAST(hw);
3677 
3678 	core = hw->core;
3679 	clk = alloc_clk(core, dev_id, con_id);
3680 	if (IS_ERR(clk))
3681 		return clk;
3682 	clk->dev = dev;
3683 
3684 	if (!try_module_get(core->owner)) {
3685 		free_clk(clk);
3686 		return ERR_PTR(-ENOENT);
3687 	}
3688 
3689 	kref_get(&core->ref);
3690 	clk_core_link_consumer(core, clk);
3691 
3692 	return clk;
3693 }
3694 
3695 /**
3696  * clk_hw_get_clk - get clk consumer given an clk_hw
3697  * @hw: clk_hw associated with the clk being consumed
3698  * @con_id: connection ID string on device
3699  *
3700  * Returns: new clk consumer
3701  * This is the function to be used by providers which need
3702  * to get a consumer clk and act on the clock element
3703  * Calls to this function must be balanced with calls clk_put()
3704  */
3705 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3706 {
3707 	struct device *dev = hw->core->dev;
3708 
3709 	return clk_hw_create_clk(dev, hw, dev_name(dev), con_id);
3710 }
3711 EXPORT_SYMBOL(clk_hw_get_clk);
3712 
3713 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3714 {
3715 	const char *dst;
3716 
3717 	if (!src) {
3718 		if (must_exist)
3719 			return -EINVAL;
3720 		return 0;
3721 	}
3722 
3723 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3724 	if (!dst)
3725 		return -ENOMEM;
3726 
3727 	return 0;
3728 }
3729 
3730 static int clk_core_populate_parent_map(struct clk_core *core,
3731 					const struct clk_init_data *init)
3732 {
3733 	u8 num_parents = init->num_parents;
3734 	const char * const *parent_names = init->parent_names;
3735 	const struct clk_hw **parent_hws = init->parent_hws;
3736 	const struct clk_parent_data *parent_data = init->parent_data;
3737 	int i, ret = 0;
3738 	struct clk_parent_map *parents, *parent;
3739 
3740 	if (!num_parents)
3741 		return 0;
3742 
3743 	/*
3744 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3745 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3746 	 */
3747 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3748 	core->parents = parents;
3749 	if (!parents)
3750 		return -ENOMEM;
3751 
3752 	/* Copy everything over because it might be __initdata */
3753 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3754 		parent->index = -1;
3755 		if (parent_names) {
3756 			/* throw a WARN if any entries are NULL */
3757 			WARN(!parent_names[i],
3758 				"%s: invalid NULL in %s's .parent_names\n",
3759 				__func__, core->name);
3760 			ret = clk_cpy_name(&parent->name, parent_names[i],
3761 					   true);
3762 		} else if (parent_data) {
3763 			parent->hw = parent_data[i].hw;
3764 			parent->index = parent_data[i].index;
3765 			ret = clk_cpy_name(&parent->fw_name,
3766 					   parent_data[i].fw_name, false);
3767 			if (!ret)
3768 				ret = clk_cpy_name(&parent->name,
3769 						   parent_data[i].name,
3770 						   false);
3771 		} else if (parent_hws) {
3772 			parent->hw = parent_hws[i];
3773 		} else {
3774 			ret = -EINVAL;
3775 			WARN(1, "Must specify parents if num_parents > 0\n");
3776 		}
3777 
3778 		if (ret) {
3779 			do {
3780 				kfree_const(parents[i].name);
3781 				kfree_const(parents[i].fw_name);
3782 			} while (--i >= 0);
3783 			kfree(parents);
3784 
3785 			return ret;
3786 		}
3787 	}
3788 
3789 	return 0;
3790 }
3791 
3792 static void clk_core_free_parent_map(struct clk_core *core)
3793 {
3794 	int i = core->num_parents;
3795 
3796 	if (!core->num_parents)
3797 		return;
3798 
3799 	while (--i >= 0) {
3800 		kfree_const(core->parents[i].name);
3801 		kfree_const(core->parents[i].fw_name);
3802 	}
3803 
3804 	kfree(core->parents);
3805 }
3806 
3807 static struct clk *
3808 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3809 {
3810 	int ret;
3811 	struct clk_core *core;
3812 	const struct clk_init_data *init = hw->init;
3813 
3814 	/*
3815 	 * The init data is not supposed to be used outside of registration path.
3816 	 * Set it to NULL so that provider drivers can't use it either and so that
3817 	 * we catch use of hw->init early on in the core.
3818 	 */
3819 	hw->init = NULL;
3820 
3821 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3822 	if (!core) {
3823 		ret = -ENOMEM;
3824 		goto fail_out;
3825 	}
3826 
3827 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3828 	if (!core->name) {
3829 		ret = -ENOMEM;
3830 		goto fail_name;
3831 	}
3832 
3833 	if (WARN_ON(!init->ops)) {
3834 		ret = -EINVAL;
3835 		goto fail_ops;
3836 	}
3837 	core->ops = init->ops;
3838 
3839 	if (dev && pm_runtime_enabled(dev))
3840 		core->rpm_enabled = true;
3841 	core->dev = dev;
3842 	core->of_node = np;
3843 	if (dev && dev->driver)
3844 		core->owner = dev->driver->owner;
3845 	core->hw = hw;
3846 	core->flags = init->flags;
3847 	core->num_parents = init->num_parents;
3848 	core->min_rate = 0;
3849 	core->max_rate = ULONG_MAX;
3850 	hw->core = core;
3851 
3852 	ret = clk_core_populate_parent_map(core, init);
3853 	if (ret)
3854 		goto fail_parents;
3855 
3856 	INIT_HLIST_HEAD(&core->clks);
3857 
3858 	/*
3859 	 * Don't call clk_hw_create_clk() here because that would pin the
3860 	 * provider module to itself and prevent it from ever being removed.
3861 	 */
3862 	hw->clk = alloc_clk(core, NULL, NULL);
3863 	if (IS_ERR(hw->clk)) {
3864 		ret = PTR_ERR(hw->clk);
3865 		goto fail_create_clk;
3866 	}
3867 
3868 	clk_core_link_consumer(hw->core, hw->clk);
3869 
3870 	ret = __clk_core_init(core);
3871 	if (!ret)
3872 		return hw->clk;
3873 
3874 	clk_prepare_lock();
3875 	clk_core_unlink_consumer(hw->clk);
3876 	clk_prepare_unlock();
3877 
3878 	free_clk(hw->clk);
3879 	hw->clk = NULL;
3880 
3881 fail_create_clk:
3882 	clk_core_free_parent_map(core);
3883 fail_parents:
3884 fail_ops:
3885 	kfree_const(core->name);
3886 fail_name:
3887 	kfree(core);
3888 fail_out:
3889 	return ERR_PTR(ret);
3890 }
3891 
3892 /**
3893  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3894  * @dev: Device to get device node of
3895  *
3896  * Return: device node pointer of @dev, or the device node pointer of
3897  * @dev->parent if dev doesn't have a device node, or NULL if neither
3898  * @dev or @dev->parent have a device node.
3899  */
3900 static struct device_node *dev_or_parent_of_node(struct device *dev)
3901 {
3902 	struct device_node *np;
3903 
3904 	if (!dev)
3905 		return NULL;
3906 
3907 	np = dev_of_node(dev);
3908 	if (!np)
3909 		np = dev_of_node(dev->parent);
3910 
3911 	return np;
3912 }
3913 
3914 /**
3915  * clk_register - allocate a new clock, register it and return an opaque cookie
3916  * @dev: device that is registering this clock
3917  * @hw: link to hardware-specific clock data
3918  *
3919  * clk_register is the *deprecated* interface for populating the clock tree with
3920  * new clock nodes. Use clk_hw_register() instead.
3921  *
3922  * Returns: a pointer to the newly allocated struct clk which
3923  * cannot be dereferenced by driver code but may be used in conjunction with the
3924  * rest of the clock API.  In the event of an error clk_register will return an
3925  * error code; drivers must test for an error code after calling clk_register.
3926  */
3927 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3928 {
3929 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3930 }
3931 EXPORT_SYMBOL_GPL(clk_register);
3932 
3933 /**
3934  * clk_hw_register - register a clk_hw and return an error code
3935  * @dev: device that is registering this clock
3936  * @hw: link to hardware-specific clock data
3937  *
3938  * clk_hw_register is the primary interface for populating the clock tree with
3939  * new clock nodes. It returns an integer equal to zero indicating success or
3940  * less than zero indicating failure. Drivers must test for an error code after
3941  * calling clk_hw_register().
3942  */
3943 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3944 {
3945 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3946 			       hw));
3947 }
3948 EXPORT_SYMBOL_GPL(clk_hw_register);
3949 
3950 /*
3951  * of_clk_hw_register - register a clk_hw and return an error code
3952  * @node: device_node of device that is registering this clock
3953  * @hw: link to hardware-specific clock data
3954  *
3955  * of_clk_hw_register() is the primary interface for populating the clock tree
3956  * with new clock nodes when a struct device is not available, but a struct
3957  * device_node is. It returns an integer equal to zero indicating success or
3958  * less than zero indicating failure. Drivers must test for an error code after
3959  * calling of_clk_hw_register().
3960  */
3961 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3962 {
3963 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3964 }
3965 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3966 
3967 /* Free memory allocated for a clock. */
3968 static void __clk_release(struct kref *ref)
3969 {
3970 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3971 
3972 	lockdep_assert_held(&prepare_lock);
3973 
3974 	clk_core_free_parent_map(core);
3975 	kfree_const(core->name);
3976 	kfree(core);
3977 }
3978 
3979 /*
3980  * Empty clk_ops for unregistered clocks. These are used temporarily
3981  * after clk_unregister() was called on a clock and until last clock
3982  * consumer calls clk_put() and the struct clk object is freed.
3983  */
3984 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3985 {
3986 	return -ENXIO;
3987 }
3988 
3989 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3990 {
3991 	WARN_ON_ONCE(1);
3992 }
3993 
3994 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3995 					unsigned long parent_rate)
3996 {
3997 	return -ENXIO;
3998 }
3999 
4000 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4001 {
4002 	return -ENXIO;
4003 }
4004 
4005 static const struct clk_ops clk_nodrv_ops = {
4006 	.enable		= clk_nodrv_prepare_enable,
4007 	.disable	= clk_nodrv_disable_unprepare,
4008 	.prepare	= clk_nodrv_prepare_enable,
4009 	.unprepare	= clk_nodrv_disable_unprepare,
4010 	.set_rate	= clk_nodrv_set_rate,
4011 	.set_parent	= clk_nodrv_set_parent,
4012 };
4013 
4014 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4015 						struct clk_core *target)
4016 {
4017 	int i;
4018 	struct clk_core *child;
4019 
4020 	for (i = 0; i < root->num_parents; i++)
4021 		if (root->parents[i].core == target)
4022 			root->parents[i].core = NULL;
4023 
4024 	hlist_for_each_entry(child, &root->children, child_node)
4025 		clk_core_evict_parent_cache_subtree(child, target);
4026 }
4027 
4028 /* Remove this clk from all parent caches */
4029 static void clk_core_evict_parent_cache(struct clk_core *core)
4030 {
4031 	struct hlist_head **lists;
4032 	struct clk_core *root;
4033 
4034 	lockdep_assert_held(&prepare_lock);
4035 
4036 	for (lists = all_lists; *lists; lists++)
4037 		hlist_for_each_entry(root, *lists, child_node)
4038 			clk_core_evict_parent_cache_subtree(root, core);
4039 
4040 }
4041 
4042 /**
4043  * clk_unregister - unregister a currently registered clock
4044  * @clk: clock to unregister
4045  */
4046 void clk_unregister(struct clk *clk)
4047 {
4048 	unsigned long flags;
4049 	const struct clk_ops *ops;
4050 
4051 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4052 		return;
4053 
4054 	clk_debug_unregister(clk->core);
4055 
4056 	clk_prepare_lock();
4057 
4058 	ops = clk->core->ops;
4059 	if (ops == &clk_nodrv_ops) {
4060 		pr_err("%s: unregistered clock: %s\n", __func__,
4061 		       clk->core->name);
4062 		goto unlock;
4063 	}
4064 	/*
4065 	 * Assign empty clock ops for consumers that might still hold
4066 	 * a reference to this clock.
4067 	 */
4068 	flags = clk_enable_lock();
4069 	clk->core->ops = &clk_nodrv_ops;
4070 	clk_enable_unlock(flags);
4071 
4072 	if (ops->terminate)
4073 		ops->terminate(clk->core->hw);
4074 
4075 	if (!hlist_empty(&clk->core->children)) {
4076 		struct clk_core *child;
4077 		struct hlist_node *t;
4078 
4079 		/* Reparent all children to the orphan list. */
4080 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4081 					  child_node)
4082 			clk_core_set_parent_nolock(child, NULL);
4083 	}
4084 
4085 	clk_core_evict_parent_cache(clk->core);
4086 
4087 	hlist_del_init(&clk->core->child_node);
4088 
4089 	if (clk->core->prepare_count)
4090 		pr_warn("%s: unregistering prepared clock: %s\n",
4091 					__func__, clk->core->name);
4092 
4093 	if (clk->core->protect_count)
4094 		pr_warn("%s: unregistering protected clock: %s\n",
4095 					__func__, clk->core->name);
4096 
4097 	kref_put(&clk->core->ref, __clk_release);
4098 	free_clk(clk);
4099 unlock:
4100 	clk_prepare_unlock();
4101 }
4102 EXPORT_SYMBOL_GPL(clk_unregister);
4103 
4104 /**
4105  * clk_hw_unregister - unregister a currently registered clk_hw
4106  * @hw: hardware-specific clock data to unregister
4107  */
4108 void clk_hw_unregister(struct clk_hw *hw)
4109 {
4110 	clk_unregister(hw->clk);
4111 }
4112 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4113 
4114 static void devm_clk_unregister_cb(struct device *dev, void *res)
4115 {
4116 	clk_unregister(*(struct clk **)res);
4117 }
4118 
4119 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4120 {
4121 	clk_hw_unregister(*(struct clk_hw **)res);
4122 }
4123 
4124 /**
4125  * devm_clk_register - resource managed clk_register()
4126  * @dev: device that is registering this clock
4127  * @hw: link to hardware-specific clock data
4128  *
4129  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4130  *
4131  * Clocks returned from this function are automatically clk_unregister()ed on
4132  * driver detach. See clk_register() for more information.
4133  */
4134 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4135 {
4136 	struct clk *clk;
4137 	struct clk **clkp;
4138 
4139 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4140 	if (!clkp)
4141 		return ERR_PTR(-ENOMEM);
4142 
4143 	clk = clk_register(dev, hw);
4144 	if (!IS_ERR(clk)) {
4145 		*clkp = clk;
4146 		devres_add(dev, clkp);
4147 	} else {
4148 		devres_free(clkp);
4149 	}
4150 
4151 	return clk;
4152 }
4153 EXPORT_SYMBOL_GPL(devm_clk_register);
4154 
4155 /**
4156  * devm_clk_hw_register - resource managed clk_hw_register()
4157  * @dev: device that is registering this clock
4158  * @hw: link to hardware-specific clock data
4159  *
4160  * Managed clk_hw_register(). Clocks registered by this function are
4161  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4162  * for more information.
4163  */
4164 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4165 {
4166 	struct clk_hw **hwp;
4167 	int ret;
4168 
4169 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4170 	if (!hwp)
4171 		return -ENOMEM;
4172 
4173 	ret = clk_hw_register(dev, hw);
4174 	if (!ret) {
4175 		*hwp = hw;
4176 		devres_add(dev, hwp);
4177 	} else {
4178 		devres_free(hwp);
4179 	}
4180 
4181 	return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4184 
4185 static int devm_clk_match(struct device *dev, void *res, void *data)
4186 {
4187 	struct clk *c = res;
4188 	if (WARN_ON(!c))
4189 		return 0;
4190 	return c == data;
4191 }
4192 
4193 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4194 {
4195 	struct clk_hw *hw = res;
4196 
4197 	if (WARN_ON(!hw))
4198 		return 0;
4199 	return hw == data;
4200 }
4201 
4202 /**
4203  * devm_clk_unregister - resource managed clk_unregister()
4204  * @dev: device that is unregistering the clock data
4205  * @clk: clock to unregister
4206  *
4207  * Deallocate a clock allocated with devm_clk_register(). Normally
4208  * this function will not need to be called and the resource management
4209  * code will ensure that the resource is freed.
4210  */
4211 void devm_clk_unregister(struct device *dev, struct clk *clk)
4212 {
4213 	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4214 }
4215 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4216 
4217 /**
4218  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4219  * @dev: device that is unregistering the hardware-specific clock data
4220  * @hw: link to hardware-specific clock data
4221  *
4222  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4223  * this function will not need to be called and the resource management
4224  * code will ensure that the resource is freed.
4225  */
4226 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4227 {
4228 	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4229 				hw));
4230 }
4231 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4232 
4233 static void devm_clk_release(struct device *dev, void *res)
4234 {
4235 	clk_put(*(struct clk **)res);
4236 }
4237 
4238 /**
4239  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4240  * @dev: device that is registering this clock
4241  * @hw: clk_hw associated with the clk being consumed
4242  * @con_id: connection ID string on device
4243  *
4244  * Managed clk_hw_get_clk(). Clocks got with this function are
4245  * automatically clk_put() on driver detach. See clk_put()
4246  * for more information.
4247  */
4248 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4249 				const char *con_id)
4250 {
4251 	struct clk *clk;
4252 	struct clk **clkp;
4253 
4254 	/* This should not happen because it would mean we have drivers
4255 	 * passing around clk_hw pointers instead of having the caller use
4256 	 * proper clk_get() style APIs
4257 	 */
4258 	WARN_ON_ONCE(dev != hw->core->dev);
4259 
4260 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4261 	if (!clkp)
4262 		return ERR_PTR(-ENOMEM);
4263 
4264 	clk = clk_hw_get_clk(hw, con_id);
4265 	if (!IS_ERR(clk)) {
4266 		*clkp = clk;
4267 		devres_add(dev, clkp);
4268 	} else {
4269 		devres_free(clkp);
4270 	}
4271 
4272 	return clk;
4273 }
4274 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4275 
4276 /*
4277  * clkdev helpers
4278  */
4279 
4280 void __clk_put(struct clk *clk)
4281 {
4282 	struct module *owner;
4283 
4284 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4285 		return;
4286 
4287 	clk_prepare_lock();
4288 
4289 	/*
4290 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4291 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4292 	 * and by that same consumer
4293 	 */
4294 	if (WARN_ON(clk->exclusive_count)) {
4295 		/* We voiced our concern, let's sanitize the situation */
4296 		clk->core->protect_count -= (clk->exclusive_count - 1);
4297 		clk_core_rate_unprotect(clk->core);
4298 		clk->exclusive_count = 0;
4299 	}
4300 
4301 	hlist_del(&clk->clks_node);
4302 	if (clk->min_rate > clk->core->req_rate ||
4303 	    clk->max_rate < clk->core->req_rate)
4304 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4305 
4306 	owner = clk->core->owner;
4307 	kref_put(&clk->core->ref, __clk_release);
4308 
4309 	clk_prepare_unlock();
4310 
4311 	module_put(owner);
4312 
4313 	free_clk(clk);
4314 }
4315 
4316 /***        clk rate change notifiers        ***/
4317 
4318 /**
4319  * clk_notifier_register - add a clk rate change notifier
4320  * @clk: struct clk * to watch
4321  * @nb: struct notifier_block * with callback info
4322  *
4323  * Request notification when clk's rate changes.  This uses an SRCU
4324  * notifier because we want it to block and notifier unregistrations are
4325  * uncommon.  The callbacks associated with the notifier must not
4326  * re-enter into the clk framework by calling any top-level clk APIs;
4327  * this will cause a nested prepare_lock mutex.
4328  *
4329  * In all notification cases (pre, post and abort rate change) the original
4330  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4331  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4332  *
4333  * clk_notifier_register() must be called from non-atomic context.
4334  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4335  * allocation failure; otherwise, passes along the return value of
4336  * srcu_notifier_chain_register().
4337  */
4338 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4339 {
4340 	struct clk_notifier *cn;
4341 	int ret = -ENOMEM;
4342 
4343 	if (!clk || !nb)
4344 		return -EINVAL;
4345 
4346 	clk_prepare_lock();
4347 
4348 	/* search the list of notifiers for this clk */
4349 	list_for_each_entry(cn, &clk_notifier_list, node)
4350 		if (cn->clk == clk)
4351 			goto found;
4352 
4353 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4354 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4355 	if (!cn)
4356 		goto out;
4357 
4358 	cn->clk = clk;
4359 	srcu_init_notifier_head(&cn->notifier_head);
4360 
4361 	list_add(&cn->node, &clk_notifier_list);
4362 
4363 found:
4364 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4365 
4366 	clk->core->notifier_count++;
4367 
4368 out:
4369 	clk_prepare_unlock();
4370 
4371 	return ret;
4372 }
4373 EXPORT_SYMBOL_GPL(clk_notifier_register);
4374 
4375 /**
4376  * clk_notifier_unregister - remove a clk rate change notifier
4377  * @clk: struct clk *
4378  * @nb: struct notifier_block * with callback info
4379  *
4380  * Request no further notification for changes to 'clk' and frees memory
4381  * allocated in clk_notifier_register.
4382  *
4383  * Returns -EINVAL if called with null arguments; otherwise, passes
4384  * along the return value of srcu_notifier_chain_unregister().
4385  */
4386 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4387 {
4388 	struct clk_notifier *cn;
4389 	int ret = -ENOENT;
4390 
4391 	if (!clk || !nb)
4392 		return -EINVAL;
4393 
4394 	clk_prepare_lock();
4395 
4396 	list_for_each_entry(cn, &clk_notifier_list, node) {
4397 		if (cn->clk == clk) {
4398 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4399 
4400 			clk->core->notifier_count--;
4401 
4402 			/* XXX the notifier code should handle this better */
4403 			if (!cn->notifier_head.head) {
4404 				srcu_cleanup_notifier_head(&cn->notifier_head);
4405 				list_del(&cn->node);
4406 				kfree(cn);
4407 			}
4408 			break;
4409 		}
4410 	}
4411 
4412 	clk_prepare_unlock();
4413 
4414 	return ret;
4415 }
4416 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4417 
4418 struct clk_notifier_devres {
4419 	struct clk *clk;
4420 	struct notifier_block *nb;
4421 };
4422 
4423 static void devm_clk_notifier_release(struct device *dev, void *res)
4424 {
4425 	struct clk_notifier_devres *devres = res;
4426 
4427 	clk_notifier_unregister(devres->clk, devres->nb);
4428 }
4429 
4430 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4431 			       struct notifier_block *nb)
4432 {
4433 	struct clk_notifier_devres *devres;
4434 	int ret;
4435 
4436 	devres = devres_alloc(devm_clk_notifier_release,
4437 			      sizeof(*devres), GFP_KERNEL);
4438 
4439 	if (!devres)
4440 		return -ENOMEM;
4441 
4442 	ret = clk_notifier_register(clk, nb);
4443 	if (!ret) {
4444 		devres->clk = clk;
4445 		devres->nb = nb;
4446 	} else {
4447 		devres_free(devres);
4448 	}
4449 
4450 	return ret;
4451 }
4452 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4453 
4454 #ifdef CONFIG_OF
4455 static void clk_core_reparent_orphans(void)
4456 {
4457 	clk_prepare_lock();
4458 	clk_core_reparent_orphans_nolock();
4459 	clk_prepare_unlock();
4460 }
4461 
4462 /**
4463  * struct of_clk_provider - Clock provider registration structure
4464  * @link: Entry in global list of clock providers
4465  * @node: Pointer to device tree node of clock provider
4466  * @get: Get clock callback.  Returns NULL or a struct clk for the
4467  *       given clock specifier
4468  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4469  *       struct clk_hw for the given clock specifier
4470  * @data: context pointer to be passed into @get callback
4471  */
4472 struct of_clk_provider {
4473 	struct list_head link;
4474 
4475 	struct device_node *node;
4476 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4477 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4478 	void *data;
4479 };
4480 
4481 extern struct of_device_id __clk_of_table;
4482 static const struct of_device_id __clk_of_table_sentinel
4483 	__used __section("__clk_of_table_end");
4484 
4485 static LIST_HEAD(of_clk_providers);
4486 static DEFINE_MUTEX(of_clk_mutex);
4487 
4488 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4489 				     void *data)
4490 {
4491 	return data;
4492 }
4493 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4494 
4495 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4496 {
4497 	return data;
4498 }
4499 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4500 
4501 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4502 {
4503 	struct clk_onecell_data *clk_data = data;
4504 	unsigned int idx = clkspec->args[0];
4505 
4506 	if (idx >= clk_data->clk_num) {
4507 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4508 		return ERR_PTR(-EINVAL);
4509 	}
4510 
4511 	return clk_data->clks[idx];
4512 }
4513 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4514 
4515 struct clk_hw *
4516 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4517 {
4518 	struct clk_hw_onecell_data *hw_data = data;
4519 	unsigned int idx = clkspec->args[0];
4520 
4521 	if (idx >= hw_data->num) {
4522 		pr_err("%s: invalid index %u\n", __func__, idx);
4523 		return ERR_PTR(-EINVAL);
4524 	}
4525 
4526 	return hw_data->hws[idx];
4527 }
4528 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4529 
4530 /**
4531  * of_clk_add_provider() - Register a clock provider for a node
4532  * @np: Device node pointer associated with clock provider
4533  * @clk_src_get: callback for decoding clock
4534  * @data: context pointer for @clk_src_get callback.
4535  *
4536  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4537  */
4538 int of_clk_add_provider(struct device_node *np,
4539 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4540 						   void *data),
4541 			void *data)
4542 {
4543 	struct of_clk_provider *cp;
4544 	int ret;
4545 
4546 	if (!np)
4547 		return 0;
4548 
4549 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4550 	if (!cp)
4551 		return -ENOMEM;
4552 
4553 	cp->node = of_node_get(np);
4554 	cp->data = data;
4555 	cp->get = clk_src_get;
4556 
4557 	mutex_lock(&of_clk_mutex);
4558 	list_add(&cp->link, &of_clk_providers);
4559 	mutex_unlock(&of_clk_mutex);
4560 	pr_debug("Added clock from %pOF\n", np);
4561 
4562 	clk_core_reparent_orphans();
4563 
4564 	ret = of_clk_set_defaults(np, true);
4565 	if (ret < 0)
4566 		of_clk_del_provider(np);
4567 
4568 	fwnode_dev_initialized(&np->fwnode, true);
4569 
4570 	return ret;
4571 }
4572 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4573 
4574 /**
4575  * of_clk_add_hw_provider() - Register a clock provider for a node
4576  * @np: Device node pointer associated with clock provider
4577  * @get: callback for decoding clk_hw
4578  * @data: context pointer for @get callback.
4579  */
4580 int of_clk_add_hw_provider(struct device_node *np,
4581 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4582 						 void *data),
4583 			   void *data)
4584 {
4585 	struct of_clk_provider *cp;
4586 	int ret;
4587 
4588 	if (!np)
4589 		return 0;
4590 
4591 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4592 	if (!cp)
4593 		return -ENOMEM;
4594 
4595 	cp->node = of_node_get(np);
4596 	cp->data = data;
4597 	cp->get_hw = get;
4598 
4599 	mutex_lock(&of_clk_mutex);
4600 	list_add(&cp->link, &of_clk_providers);
4601 	mutex_unlock(&of_clk_mutex);
4602 	pr_debug("Added clk_hw provider from %pOF\n", np);
4603 
4604 	clk_core_reparent_orphans();
4605 
4606 	ret = of_clk_set_defaults(np, true);
4607 	if (ret < 0)
4608 		of_clk_del_provider(np);
4609 
4610 	fwnode_dev_initialized(&np->fwnode, true);
4611 
4612 	return ret;
4613 }
4614 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4615 
4616 static void devm_of_clk_release_provider(struct device *dev, void *res)
4617 {
4618 	of_clk_del_provider(*(struct device_node **)res);
4619 }
4620 
4621 /*
4622  * We allow a child device to use its parent device as the clock provider node
4623  * for cases like MFD sub-devices where the child device driver wants to use
4624  * devm_*() APIs but not list the device in DT as a sub-node.
4625  */
4626 static struct device_node *get_clk_provider_node(struct device *dev)
4627 {
4628 	struct device_node *np, *parent_np;
4629 
4630 	np = dev->of_node;
4631 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4632 
4633 	if (!of_find_property(np, "#clock-cells", NULL))
4634 		if (of_find_property(parent_np, "#clock-cells", NULL))
4635 			np = parent_np;
4636 
4637 	return np;
4638 }
4639 
4640 /**
4641  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4642  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4643  * @get: callback for decoding clk_hw
4644  * @data: context pointer for @get callback
4645  *
4646  * Registers clock provider for given device's node. If the device has no DT
4647  * node or if the device node lacks of clock provider information (#clock-cells)
4648  * then the parent device's node is scanned for this information. If parent node
4649  * has the #clock-cells then it is used in registration. Provider is
4650  * automatically released at device exit.
4651  *
4652  * Return: 0 on success or an errno on failure.
4653  */
4654 int devm_of_clk_add_hw_provider(struct device *dev,
4655 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4656 					      void *data),
4657 			void *data)
4658 {
4659 	struct device_node **ptr, *np;
4660 	int ret;
4661 
4662 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4663 			   GFP_KERNEL);
4664 	if (!ptr)
4665 		return -ENOMEM;
4666 
4667 	np = get_clk_provider_node(dev);
4668 	ret = of_clk_add_hw_provider(np, get, data);
4669 	if (!ret) {
4670 		*ptr = np;
4671 		devres_add(dev, ptr);
4672 	} else {
4673 		devres_free(ptr);
4674 	}
4675 
4676 	return ret;
4677 }
4678 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4679 
4680 /**
4681  * of_clk_del_provider() - Remove a previously registered clock provider
4682  * @np: Device node pointer associated with clock provider
4683  */
4684 void of_clk_del_provider(struct device_node *np)
4685 {
4686 	struct of_clk_provider *cp;
4687 
4688 	if (!np)
4689 		return;
4690 
4691 	mutex_lock(&of_clk_mutex);
4692 	list_for_each_entry(cp, &of_clk_providers, link) {
4693 		if (cp->node == np) {
4694 			list_del(&cp->link);
4695 			fwnode_dev_initialized(&np->fwnode, false);
4696 			of_node_put(cp->node);
4697 			kfree(cp);
4698 			break;
4699 		}
4700 	}
4701 	mutex_unlock(&of_clk_mutex);
4702 }
4703 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4704 
4705 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4706 {
4707 	struct device_node **np = res;
4708 
4709 	if (WARN_ON(!np || !*np))
4710 		return 0;
4711 
4712 	return *np == data;
4713 }
4714 
4715 /**
4716  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4717  * @dev: Device to whose lifetime the clock provider was bound
4718  */
4719 void devm_of_clk_del_provider(struct device *dev)
4720 {
4721 	int ret;
4722 	struct device_node *np = get_clk_provider_node(dev);
4723 
4724 	ret = devres_release(dev, devm_of_clk_release_provider,
4725 			     devm_clk_provider_match, np);
4726 
4727 	WARN_ON(ret);
4728 }
4729 EXPORT_SYMBOL(devm_of_clk_del_provider);
4730 
4731 /**
4732  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4733  * @np: device node to parse clock specifier from
4734  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4735  * @name: clock name to find and parse. If name is NULL, the index is used
4736  * @out_args: Result of parsing the clock specifier
4737  *
4738  * Parses a device node's "clocks" and "clock-names" properties to find the
4739  * phandle and cells for the index or name that is desired. The resulting clock
4740  * specifier is placed into @out_args, or an errno is returned when there's a
4741  * parsing error. The @index argument is ignored if @name is non-NULL.
4742  *
4743  * Example:
4744  *
4745  * phandle1: clock-controller@1 {
4746  *	#clock-cells = <2>;
4747  * }
4748  *
4749  * phandle2: clock-controller@2 {
4750  *	#clock-cells = <1>;
4751  * }
4752  *
4753  * clock-consumer@3 {
4754  *	clocks = <&phandle1 1 2 &phandle2 3>;
4755  *	clock-names = "name1", "name2";
4756  * }
4757  *
4758  * To get a device_node for `clock-controller@2' node you may call this
4759  * function a few different ways:
4760  *
4761  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4762  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4763  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4764  *
4765  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4766  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4767  * the "clock-names" property of @np.
4768  */
4769 static int of_parse_clkspec(const struct device_node *np, int index,
4770 			    const char *name, struct of_phandle_args *out_args)
4771 {
4772 	int ret = -ENOENT;
4773 
4774 	/* Walk up the tree of devices looking for a clock property that matches */
4775 	while (np) {
4776 		/*
4777 		 * For named clocks, first look up the name in the
4778 		 * "clock-names" property.  If it cannot be found, then index
4779 		 * will be an error code and of_parse_phandle_with_args() will
4780 		 * return -EINVAL.
4781 		 */
4782 		if (name)
4783 			index = of_property_match_string(np, "clock-names", name);
4784 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4785 						 index, out_args);
4786 		if (!ret)
4787 			break;
4788 		if (name && index >= 0)
4789 			break;
4790 
4791 		/*
4792 		 * No matching clock found on this node.  If the parent node
4793 		 * has a "clock-ranges" property, then we can try one of its
4794 		 * clocks.
4795 		 */
4796 		np = np->parent;
4797 		if (np && !of_get_property(np, "clock-ranges", NULL))
4798 			break;
4799 		index = 0;
4800 	}
4801 
4802 	return ret;
4803 }
4804 
4805 static struct clk_hw *
4806 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4807 			      struct of_phandle_args *clkspec)
4808 {
4809 	struct clk *clk;
4810 
4811 	if (provider->get_hw)
4812 		return provider->get_hw(clkspec, provider->data);
4813 
4814 	clk = provider->get(clkspec, provider->data);
4815 	if (IS_ERR(clk))
4816 		return ERR_CAST(clk);
4817 	return __clk_get_hw(clk);
4818 }
4819 
4820 static struct clk_hw *
4821 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4822 {
4823 	struct of_clk_provider *provider;
4824 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4825 
4826 	if (!clkspec)
4827 		return ERR_PTR(-EINVAL);
4828 
4829 	mutex_lock(&of_clk_mutex);
4830 	list_for_each_entry(provider, &of_clk_providers, link) {
4831 		if (provider->node == clkspec->np) {
4832 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4833 			if (!IS_ERR(hw))
4834 				break;
4835 		}
4836 	}
4837 	mutex_unlock(&of_clk_mutex);
4838 
4839 	return hw;
4840 }
4841 
4842 /**
4843  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4844  * @clkspec: pointer to a clock specifier data structure
4845  *
4846  * This function looks up a struct clk from the registered list of clock
4847  * providers, an input is a clock specifier data structure as returned
4848  * from the of_parse_phandle_with_args() function call.
4849  */
4850 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4851 {
4852 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4853 
4854 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4855 }
4856 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4857 
4858 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4859 			     const char *con_id)
4860 {
4861 	int ret;
4862 	struct clk_hw *hw;
4863 	struct of_phandle_args clkspec;
4864 
4865 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4866 	if (ret)
4867 		return ERR_PTR(ret);
4868 
4869 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4870 	of_node_put(clkspec.np);
4871 
4872 	return hw;
4873 }
4874 
4875 static struct clk *__of_clk_get(struct device_node *np,
4876 				int index, const char *dev_id,
4877 				const char *con_id)
4878 {
4879 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4880 
4881 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4882 }
4883 
4884 struct clk *of_clk_get(struct device_node *np, int index)
4885 {
4886 	return __of_clk_get(np, index, np->full_name, NULL);
4887 }
4888 EXPORT_SYMBOL(of_clk_get);
4889 
4890 /**
4891  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4892  * @np: pointer to clock consumer node
4893  * @name: name of consumer's clock input, or NULL for the first clock reference
4894  *
4895  * This function parses the clocks and clock-names properties,
4896  * and uses them to look up the struct clk from the registered list of clock
4897  * providers.
4898  */
4899 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4900 {
4901 	if (!np)
4902 		return ERR_PTR(-ENOENT);
4903 
4904 	return __of_clk_get(np, 0, np->full_name, name);
4905 }
4906 EXPORT_SYMBOL(of_clk_get_by_name);
4907 
4908 /**
4909  * of_clk_get_parent_count() - Count the number of clocks a device node has
4910  * @np: device node to count
4911  *
4912  * Returns: The number of clocks that are possible parents of this node
4913  */
4914 unsigned int of_clk_get_parent_count(const struct device_node *np)
4915 {
4916 	int count;
4917 
4918 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4919 	if (count < 0)
4920 		return 0;
4921 
4922 	return count;
4923 }
4924 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4925 
4926 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4927 {
4928 	struct of_phandle_args clkspec;
4929 	struct property *prop;
4930 	const char *clk_name;
4931 	const __be32 *vp;
4932 	u32 pv;
4933 	int rc;
4934 	int count;
4935 	struct clk *clk;
4936 
4937 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4938 					&clkspec);
4939 	if (rc)
4940 		return NULL;
4941 
4942 	index = clkspec.args_count ? clkspec.args[0] : 0;
4943 	count = 0;
4944 
4945 	/* if there is an indices property, use it to transfer the index
4946 	 * specified into an array offset for the clock-output-names property.
4947 	 */
4948 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4949 		if (index == pv) {
4950 			index = count;
4951 			break;
4952 		}
4953 		count++;
4954 	}
4955 	/* We went off the end of 'clock-indices' without finding it */
4956 	if (prop && !vp)
4957 		return NULL;
4958 
4959 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4960 					  index,
4961 					  &clk_name) < 0) {
4962 		/*
4963 		 * Best effort to get the name if the clock has been
4964 		 * registered with the framework. If the clock isn't
4965 		 * registered, we return the node name as the name of
4966 		 * the clock as long as #clock-cells = 0.
4967 		 */
4968 		clk = of_clk_get_from_provider(&clkspec);
4969 		if (IS_ERR(clk)) {
4970 			if (clkspec.args_count == 0)
4971 				clk_name = clkspec.np->name;
4972 			else
4973 				clk_name = NULL;
4974 		} else {
4975 			clk_name = __clk_get_name(clk);
4976 			clk_put(clk);
4977 		}
4978 	}
4979 
4980 
4981 	of_node_put(clkspec.np);
4982 	return clk_name;
4983 }
4984 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4985 
4986 /**
4987  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4988  * number of parents
4989  * @np: Device node pointer associated with clock provider
4990  * @parents: pointer to char array that hold the parents' names
4991  * @size: size of the @parents array
4992  *
4993  * Return: number of parents for the clock node.
4994  */
4995 int of_clk_parent_fill(struct device_node *np, const char **parents,
4996 		       unsigned int size)
4997 {
4998 	unsigned int i = 0;
4999 
5000 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5001 		i++;
5002 
5003 	return i;
5004 }
5005 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5006 
5007 struct clock_provider {
5008 	void (*clk_init_cb)(struct device_node *);
5009 	struct device_node *np;
5010 	struct list_head node;
5011 };
5012 
5013 /*
5014  * This function looks for a parent clock. If there is one, then it
5015  * checks that the provider for this parent clock was initialized, in
5016  * this case the parent clock will be ready.
5017  */
5018 static int parent_ready(struct device_node *np)
5019 {
5020 	int i = 0;
5021 
5022 	while (true) {
5023 		struct clk *clk = of_clk_get(np, i);
5024 
5025 		/* this parent is ready we can check the next one */
5026 		if (!IS_ERR(clk)) {
5027 			clk_put(clk);
5028 			i++;
5029 			continue;
5030 		}
5031 
5032 		/* at least one parent is not ready, we exit now */
5033 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5034 			return 0;
5035 
5036 		/*
5037 		 * Here we make assumption that the device tree is
5038 		 * written correctly. So an error means that there is
5039 		 * no more parent. As we didn't exit yet, then the
5040 		 * previous parent are ready. If there is no clock
5041 		 * parent, no need to wait for them, then we can
5042 		 * consider their absence as being ready
5043 		 */
5044 		return 1;
5045 	}
5046 }
5047 
5048 /**
5049  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5050  * @np: Device node pointer associated with clock provider
5051  * @index: clock index
5052  * @flags: pointer to top-level framework flags
5053  *
5054  * Detects if the clock-critical property exists and, if so, sets the
5055  * corresponding CLK_IS_CRITICAL flag.
5056  *
5057  * Do not use this function. It exists only for legacy Device Tree
5058  * bindings, such as the one-clock-per-node style that are outdated.
5059  * Those bindings typically put all clock data into .dts and the Linux
5060  * driver has no clock data, thus making it impossible to set this flag
5061  * correctly from the driver. Only those drivers may call
5062  * of_clk_detect_critical from their setup functions.
5063  *
5064  * Return: error code or zero on success
5065  */
5066 int of_clk_detect_critical(struct device_node *np, int index,
5067 			   unsigned long *flags)
5068 {
5069 	struct property *prop;
5070 	const __be32 *cur;
5071 	uint32_t idx;
5072 
5073 	if (!np || !flags)
5074 		return -EINVAL;
5075 
5076 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5077 		if (index == idx)
5078 			*flags |= CLK_IS_CRITICAL;
5079 
5080 	return 0;
5081 }
5082 
5083 /**
5084  * of_clk_init() - Scan and init clock providers from the DT
5085  * @matches: array of compatible values and init functions for providers.
5086  *
5087  * This function scans the device tree for matching clock providers
5088  * and calls their initialization functions. It also does it by trying
5089  * to follow the dependencies.
5090  */
5091 void __init of_clk_init(const struct of_device_id *matches)
5092 {
5093 	const struct of_device_id *match;
5094 	struct device_node *np;
5095 	struct clock_provider *clk_provider, *next;
5096 	bool is_init_done;
5097 	bool force = false;
5098 	LIST_HEAD(clk_provider_list);
5099 
5100 	if (!matches)
5101 		matches = &__clk_of_table;
5102 
5103 	/* First prepare the list of the clocks providers */
5104 	for_each_matching_node_and_match(np, matches, &match) {
5105 		struct clock_provider *parent;
5106 
5107 		if (!of_device_is_available(np))
5108 			continue;
5109 
5110 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5111 		if (!parent) {
5112 			list_for_each_entry_safe(clk_provider, next,
5113 						 &clk_provider_list, node) {
5114 				list_del(&clk_provider->node);
5115 				of_node_put(clk_provider->np);
5116 				kfree(clk_provider);
5117 			}
5118 			of_node_put(np);
5119 			return;
5120 		}
5121 
5122 		parent->clk_init_cb = match->data;
5123 		parent->np = of_node_get(np);
5124 		list_add_tail(&parent->node, &clk_provider_list);
5125 	}
5126 
5127 	while (!list_empty(&clk_provider_list)) {
5128 		is_init_done = false;
5129 		list_for_each_entry_safe(clk_provider, next,
5130 					&clk_provider_list, node) {
5131 			if (force || parent_ready(clk_provider->np)) {
5132 
5133 				/* Don't populate platform devices */
5134 				of_node_set_flag(clk_provider->np,
5135 						 OF_POPULATED);
5136 
5137 				clk_provider->clk_init_cb(clk_provider->np);
5138 				of_clk_set_defaults(clk_provider->np, true);
5139 
5140 				list_del(&clk_provider->node);
5141 				of_node_put(clk_provider->np);
5142 				kfree(clk_provider);
5143 				is_init_done = true;
5144 			}
5145 		}
5146 
5147 		/*
5148 		 * We didn't manage to initialize any of the
5149 		 * remaining providers during the last loop, so now we
5150 		 * initialize all the remaining ones unconditionally
5151 		 * in case the clock parent was not mandatory
5152 		 */
5153 		if (!is_init_done)
5154 			force = true;
5155 	}
5156 }
5157 #endif
5158