1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 if (!core->rpm_enabled) 112 return 0; 113 114 return pm_runtime_resume_and_get(core->dev); 115 } 116 117 static void clk_pm_runtime_put(struct clk_core *core) 118 { 119 if (!core->rpm_enabled) 120 return; 121 122 pm_runtime_put_sync(core->dev); 123 } 124 125 /*** locking ***/ 126 static void clk_prepare_lock(void) 127 { 128 if (!mutex_trylock(&prepare_lock)) { 129 if (prepare_owner == current) { 130 prepare_refcnt++; 131 return; 132 } 133 mutex_lock(&prepare_lock); 134 } 135 WARN_ON_ONCE(prepare_owner != NULL); 136 WARN_ON_ONCE(prepare_refcnt != 0); 137 prepare_owner = current; 138 prepare_refcnt = 1; 139 } 140 141 static void clk_prepare_unlock(void) 142 { 143 WARN_ON_ONCE(prepare_owner != current); 144 WARN_ON_ONCE(prepare_refcnt == 0); 145 146 if (--prepare_refcnt) 147 return; 148 prepare_owner = NULL; 149 mutex_unlock(&prepare_lock); 150 } 151 152 static unsigned long clk_enable_lock(void) 153 __acquires(enable_lock) 154 { 155 unsigned long flags; 156 157 /* 158 * On UP systems, spin_trylock_irqsave() always returns true, even if 159 * we already hold the lock. So, in that case, we rely only on 160 * reference counting. 161 */ 162 if (!IS_ENABLED(CONFIG_SMP) || 163 !spin_trylock_irqsave(&enable_lock, flags)) { 164 if (enable_owner == current) { 165 enable_refcnt++; 166 __acquire(enable_lock); 167 if (!IS_ENABLED(CONFIG_SMP)) 168 local_save_flags(flags); 169 return flags; 170 } 171 spin_lock_irqsave(&enable_lock, flags); 172 } 173 WARN_ON_ONCE(enable_owner != NULL); 174 WARN_ON_ONCE(enable_refcnt != 0); 175 enable_owner = current; 176 enable_refcnt = 1; 177 return flags; 178 } 179 180 static void clk_enable_unlock(unsigned long flags) 181 __releases(enable_lock) 182 { 183 WARN_ON_ONCE(enable_owner != current); 184 WARN_ON_ONCE(enable_refcnt == 0); 185 186 if (--enable_refcnt) { 187 __release(enable_lock); 188 return; 189 } 190 enable_owner = NULL; 191 spin_unlock_irqrestore(&enable_lock, flags); 192 } 193 194 static bool clk_core_rate_is_protected(struct clk_core *core) 195 { 196 return core->protect_count; 197 } 198 199 static bool clk_core_is_prepared(struct clk_core *core) 200 { 201 bool ret = false; 202 203 /* 204 * .is_prepared is optional for clocks that can prepare 205 * fall back to software usage counter if it is missing 206 */ 207 if (!core->ops->is_prepared) 208 return core->prepare_count; 209 210 if (!clk_pm_runtime_get(core)) { 211 ret = core->ops->is_prepared(core->hw); 212 clk_pm_runtime_put(core); 213 } 214 215 return ret; 216 } 217 218 static bool clk_core_is_enabled(struct clk_core *core) 219 { 220 bool ret = false; 221 222 /* 223 * .is_enabled is only mandatory for clocks that gate 224 * fall back to software usage counter if .is_enabled is missing 225 */ 226 if (!core->ops->is_enabled) 227 return core->enable_count; 228 229 /* 230 * Check if clock controller's device is runtime active before 231 * calling .is_enabled callback. If not, assume that clock is 232 * disabled, because we might be called from atomic context, from 233 * which pm_runtime_get() is not allowed. 234 * This function is called mainly from clk_disable_unused_subtree, 235 * which ensures proper runtime pm activation of controller before 236 * taking enable spinlock, but the below check is needed if one tries 237 * to call it from other places. 238 */ 239 if (core->rpm_enabled) { 240 pm_runtime_get_noresume(core->dev); 241 if (!pm_runtime_active(core->dev)) { 242 ret = false; 243 goto done; 244 } 245 } 246 247 /* 248 * This could be called with the enable lock held, or from atomic 249 * context. If the parent isn't enabled already, we can't do 250 * anything here. We can also assume this clock isn't enabled. 251 */ 252 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 253 if (!clk_core_is_enabled(core->parent)) { 254 ret = false; 255 goto done; 256 } 257 258 ret = core->ops->is_enabled(core->hw); 259 done: 260 if (core->rpm_enabled) 261 pm_runtime_put(core->dev); 262 263 return ret; 264 } 265 266 /*** helper functions ***/ 267 268 const char *__clk_get_name(const struct clk *clk) 269 { 270 return !clk ? NULL : clk->core->name; 271 } 272 EXPORT_SYMBOL_GPL(__clk_get_name); 273 274 const char *clk_hw_get_name(const struct clk_hw *hw) 275 { 276 return hw->core->name; 277 } 278 EXPORT_SYMBOL_GPL(clk_hw_get_name); 279 280 struct clk_hw *__clk_get_hw(struct clk *clk) 281 { 282 return !clk ? NULL : clk->core->hw; 283 } 284 EXPORT_SYMBOL_GPL(__clk_get_hw); 285 286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 287 { 288 return hw->core->num_parents; 289 } 290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 291 292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 293 { 294 return hw->core->parent ? hw->core->parent->hw : NULL; 295 } 296 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 297 298 static struct clk_core *__clk_lookup_subtree(const char *name, 299 struct clk_core *core) 300 { 301 struct clk_core *child; 302 struct clk_core *ret; 303 304 if (!strcmp(core->name, name)) 305 return core; 306 307 hlist_for_each_entry(child, &core->children, child_node) { 308 ret = __clk_lookup_subtree(name, child); 309 if (ret) 310 return ret; 311 } 312 313 return NULL; 314 } 315 316 static struct clk_core *clk_core_lookup(const char *name) 317 { 318 struct clk_core *root_clk; 319 struct clk_core *ret; 320 321 if (!name) 322 return NULL; 323 324 /* search the 'proper' clk tree first */ 325 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 326 ret = __clk_lookup_subtree(name, root_clk); 327 if (ret) 328 return ret; 329 } 330 331 /* if not found, then search the orphan tree */ 332 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 333 ret = __clk_lookup_subtree(name, root_clk); 334 if (ret) 335 return ret; 336 } 337 338 return NULL; 339 } 340 341 #ifdef CONFIG_OF 342 static int of_parse_clkspec(const struct device_node *np, int index, 343 const char *name, struct of_phandle_args *out_args); 344 static struct clk_hw * 345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 346 #else 347 static inline int of_parse_clkspec(const struct device_node *np, int index, 348 const char *name, 349 struct of_phandle_args *out_args) 350 { 351 return -ENOENT; 352 } 353 static inline struct clk_hw * 354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 355 { 356 return ERR_PTR(-ENOENT); 357 } 358 #endif 359 360 /** 361 * clk_core_get - Find the clk_core parent of a clk 362 * @core: clk to find parent of 363 * @p_index: parent index to search for 364 * 365 * This is the preferred method for clk providers to find the parent of a 366 * clk when that parent is external to the clk controller. The parent_names 367 * array is indexed and treated as a local name matching a string in the device 368 * node's 'clock-names' property or as the 'con_id' matching the device's 369 * dev_name() in a clk_lookup. This allows clk providers to use their own 370 * namespace instead of looking for a globally unique parent string. 371 * 372 * For example the following DT snippet would allow a clock registered by the 373 * clock-controller@c001 that has a clk_init_data::parent_data array 374 * with 'xtal' in the 'name' member to find the clock provided by the 375 * clock-controller@f00abcd without needing to get the globally unique name of 376 * the xtal clk. 377 * 378 * parent: clock-controller@f00abcd { 379 * reg = <0xf00abcd 0xabcd>; 380 * #clock-cells = <0>; 381 * }; 382 * 383 * clock-controller@c001 { 384 * reg = <0xc001 0xf00d>; 385 * clocks = <&parent>; 386 * clock-names = "xtal"; 387 * #clock-cells = <1>; 388 * }; 389 * 390 * Returns: -ENOENT when the provider can't be found or the clk doesn't 391 * exist in the provider or the name can't be found in the DT node or 392 * in a clkdev lookup. NULL when the provider knows about the clk but it 393 * isn't provided on this system. 394 * A valid clk_core pointer when the clk can be found in the provider. 395 */ 396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 397 { 398 const char *name = core->parents[p_index].fw_name; 399 int index = core->parents[p_index].index; 400 struct clk_hw *hw = ERR_PTR(-ENOENT); 401 struct device *dev = core->dev; 402 const char *dev_id = dev ? dev_name(dev) : NULL; 403 struct device_node *np = core->of_node; 404 struct of_phandle_args clkspec; 405 406 if (np && (name || index >= 0) && 407 !of_parse_clkspec(np, index, name, &clkspec)) { 408 hw = of_clk_get_hw_from_clkspec(&clkspec); 409 of_node_put(clkspec.np); 410 } else if (name) { 411 /* 412 * If the DT search above couldn't find the provider fallback to 413 * looking up via clkdev based clk_lookups. 414 */ 415 hw = clk_find_hw(dev_id, name); 416 } 417 418 if (IS_ERR(hw)) 419 return ERR_CAST(hw); 420 421 return hw->core; 422 } 423 424 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 425 { 426 struct clk_parent_map *entry = &core->parents[index]; 427 struct clk_core *parent; 428 429 if (entry->hw) { 430 parent = entry->hw->core; 431 } else { 432 parent = clk_core_get(core, index); 433 if (PTR_ERR(parent) == -ENOENT && entry->name) 434 parent = clk_core_lookup(entry->name); 435 } 436 437 /* 438 * We have a direct reference but it isn't registered yet? 439 * Orphan it and let clk_reparent() update the orphan status 440 * when the parent is registered. 441 */ 442 if (!parent) 443 parent = ERR_PTR(-EPROBE_DEFER); 444 445 /* Only cache it if it's not an error */ 446 if (!IS_ERR(parent)) 447 entry->core = parent; 448 } 449 450 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 451 u8 index) 452 { 453 if (!core || index >= core->num_parents || !core->parents) 454 return NULL; 455 456 if (!core->parents[index].core) 457 clk_core_fill_parent_index(core, index); 458 459 return core->parents[index].core; 460 } 461 462 struct clk_hw * 463 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 464 { 465 struct clk_core *parent; 466 467 parent = clk_core_get_parent_by_index(hw->core, index); 468 469 return !parent ? NULL : parent->hw; 470 } 471 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 472 473 unsigned int __clk_get_enable_count(struct clk *clk) 474 { 475 return !clk ? 0 : clk->core->enable_count; 476 } 477 478 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 479 { 480 if (!core) 481 return 0; 482 483 if (!core->num_parents || core->parent) 484 return core->rate; 485 486 /* 487 * Clk must have a parent because num_parents > 0 but the parent isn't 488 * known yet. Best to return 0 as the rate of this clk until we can 489 * properly recalc the rate based on the parent's rate. 490 */ 491 return 0; 492 } 493 494 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 495 { 496 return clk_core_get_rate_nolock(hw->core); 497 } 498 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 499 500 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 501 { 502 if (!core) 503 return 0; 504 505 return core->accuracy; 506 } 507 508 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 509 { 510 return hw->core->flags; 511 } 512 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 513 514 bool clk_hw_is_prepared(const struct clk_hw *hw) 515 { 516 return clk_core_is_prepared(hw->core); 517 } 518 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 519 520 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 521 { 522 return clk_core_rate_is_protected(hw->core); 523 } 524 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 525 526 bool clk_hw_is_enabled(const struct clk_hw *hw) 527 { 528 return clk_core_is_enabled(hw->core); 529 } 530 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 531 532 bool __clk_is_enabled(struct clk *clk) 533 { 534 if (!clk) 535 return false; 536 537 return clk_core_is_enabled(clk->core); 538 } 539 EXPORT_SYMBOL_GPL(__clk_is_enabled); 540 541 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 542 unsigned long best, unsigned long flags) 543 { 544 if (flags & CLK_MUX_ROUND_CLOSEST) 545 return abs(now - rate) < abs(best - rate); 546 547 return now <= rate && now > best; 548 } 549 550 static void clk_core_init_rate_req(struct clk_core * const core, 551 struct clk_rate_request *req, 552 unsigned long rate); 553 554 static int clk_core_round_rate_nolock(struct clk_core *core, 555 struct clk_rate_request *req); 556 557 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 558 { 559 struct clk_core *tmp; 560 unsigned int i; 561 562 /* Optimize for the case where the parent is already the parent. */ 563 if (core->parent == parent) 564 return true; 565 566 for (i = 0; i < core->num_parents; i++) { 567 tmp = clk_core_get_parent_by_index(core, i); 568 if (!tmp) 569 continue; 570 571 if (tmp == parent) 572 return true; 573 } 574 575 return false; 576 } 577 578 static void 579 clk_core_forward_rate_req(struct clk_core *core, 580 const struct clk_rate_request *old_req, 581 struct clk_core *parent, 582 struct clk_rate_request *req, 583 unsigned long parent_rate) 584 { 585 if (WARN_ON(!clk_core_has_parent(core, parent))) 586 return; 587 588 clk_core_init_rate_req(parent, req, parent_rate); 589 590 if (req->min_rate < old_req->min_rate) 591 req->min_rate = old_req->min_rate; 592 593 if (req->max_rate > old_req->max_rate) 594 req->max_rate = old_req->max_rate; 595 } 596 597 static int 598 clk_core_determine_rate_no_reparent(struct clk_hw *hw, 599 struct clk_rate_request *req) 600 { 601 struct clk_core *core = hw->core; 602 struct clk_core *parent = core->parent; 603 unsigned long best; 604 int ret; 605 606 if (core->flags & CLK_SET_RATE_PARENT) { 607 struct clk_rate_request parent_req; 608 609 if (!parent) { 610 req->rate = 0; 611 return 0; 612 } 613 614 clk_core_forward_rate_req(core, req, parent, &parent_req, 615 req->rate); 616 617 trace_clk_rate_request_start(&parent_req); 618 619 ret = clk_core_round_rate_nolock(parent, &parent_req); 620 if (ret) 621 return ret; 622 623 trace_clk_rate_request_done(&parent_req); 624 625 best = parent_req.rate; 626 } else if (parent) { 627 best = clk_core_get_rate_nolock(parent); 628 } else { 629 best = clk_core_get_rate_nolock(core); 630 } 631 632 req->rate = best; 633 634 return 0; 635 } 636 637 int clk_mux_determine_rate_flags(struct clk_hw *hw, 638 struct clk_rate_request *req, 639 unsigned long flags) 640 { 641 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 642 int i, num_parents, ret; 643 unsigned long best = 0; 644 645 /* if NO_REPARENT flag set, pass through to current parent */ 646 if (core->flags & CLK_SET_RATE_NO_REPARENT) 647 return clk_core_determine_rate_no_reparent(hw, req); 648 649 /* find the parent that can provide the fastest rate <= rate */ 650 num_parents = core->num_parents; 651 for (i = 0; i < num_parents; i++) { 652 unsigned long parent_rate; 653 654 parent = clk_core_get_parent_by_index(core, i); 655 if (!parent) 656 continue; 657 658 if (core->flags & CLK_SET_RATE_PARENT) { 659 struct clk_rate_request parent_req; 660 661 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 662 663 trace_clk_rate_request_start(&parent_req); 664 665 ret = clk_core_round_rate_nolock(parent, &parent_req); 666 if (ret) 667 continue; 668 669 trace_clk_rate_request_done(&parent_req); 670 671 parent_rate = parent_req.rate; 672 } else { 673 parent_rate = clk_core_get_rate_nolock(parent); 674 } 675 676 if (mux_is_better_rate(req->rate, parent_rate, 677 best, flags)) { 678 best_parent = parent; 679 best = parent_rate; 680 } 681 } 682 683 if (!best_parent) 684 return -EINVAL; 685 686 req->best_parent_hw = best_parent->hw; 687 req->best_parent_rate = best; 688 req->rate = best; 689 690 return 0; 691 } 692 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 693 694 struct clk *__clk_lookup(const char *name) 695 { 696 struct clk_core *core = clk_core_lookup(name); 697 698 return !core ? NULL : core->hw->clk; 699 } 700 701 static void clk_core_get_boundaries(struct clk_core *core, 702 unsigned long *min_rate, 703 unsigned long *max_rate) 704 { 705 struct clk *clk_user; 706 707 lockdep_assert_held(&prepare_lock); 708 709 *min_rate = core->min_rate; 710 *max_rate = core->max_rate; 711 712 hlist_for_each_entry(clk_user, &core->clks, clks_node) 713 *min_rate = max(*min_rate, clk_user->min_rate); 714 715 hlist_for_each_entry(clk_user, &core->clks, clks_node) 716 *max_rate = min(*max_rate, clk_user->max_rate); 717 } 718 719 /* 720 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 721 * @hw: the hw clk we want to get the range from 722 * @min_rate: pointer to the variable that will hold the minimum 723 * @max_rate: pointer to the variable that will hold the maximum 724 * 725 * Fills the @min_rate and @max_rate variables with the minimum and 726 * maximum that clock can reach. 727 */ 728 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 729 unsigned long *max_rate) 730 { 731 clk_core_get_boundaries(hw->core, min_rate, max_rate); 732 } 733 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 734 735 static bool clk_core_check_boundaries(struct clk_core *core, 736 unsigned long min_rate, 737 unsigned long max_rate) 738 { 739 struct clk *user; 740 741 lockdep_assert_held(&prepare_lock); 742 743 if (min_rate > core->max_rate || max_rate < core->min_rate) 744 return false; 745 746 hlist_for_each_entry(user, &core->clks, clks_node) 747 if (min_rate > user->max_rate || max_rate < user->min_rate) 748 return false; 749 750 return true; 751 } 752 753 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 754 unsigned long max_rate) 755 { 756 hw->core->min_rate = min_rate; 757 hw->core->max_rate = max_rate; 758 } 759 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 760 761 /* 762 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 763 * @hw: mux type clk to determine rate on 764 * @req: rate request, also used to return preferred parent and frequencies 765 * 766 * Helper for finding best parent to provide a given frequency. This can be used 767 * directly as a determine_rate callback (e.g. for a mux), or from a more 768 * complex clock that may combine a mux with other operations. 769 * 770 * Returns: 0 on success, -EERROR value on error 771 */ 772 int __clk_mux_determine_rate(struct clk_hw *hw, 773 struct clk_rate_request *req) 774 { 775 return clk_mux_determine_rate_flags(hw, req, 0); 776 } 777 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 778 779 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 780 struct clk_rate_request *req) 781 { 782 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 783 } 784 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 785 786 /* 787 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent 788 * @hw: mux type clk to determine rate on 789 * @req: rate request, also used to return preferred frequency 790 * 791 * Helper for finding best parent rate to provide a given frequency. 792 * This can be used directly as a determine_rate callback (e.g. for a 793 * mux), or from a more complex clock that may combine a mux with other 794 * operations. 795 * 796 * Returns: 0 on success, -EERROR value on error 797 */ 798 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw, 799 struct clk_rate_request *req) 800 { 801 return clk_core_determine_rate_no_reparent(hw, req); 802 } 803 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent); 804 805 /*** clk api ***/ 806 807 static void clk_core_rate_unprotect(struct clk_core *core) 808 { 809 lockdep_assert_held(&prepare_lock); 810 811 if (!core) 812 return; 813 814 if (WARN(core->protect_count == 0, 815 "%s already unprotected\n", core->name)) 816 return; 817 818 if (--core->protect_count > 0) 819 return; 820 821 clk_core_rate_unprotect(core->parent); 822 } 823 824 static int clk_core_rate_nuke_protect(struct clk_core *core) 825 { 826 int ret; 827 828 lockdep_assert_held(&prepare_lock); 829 830 if (!core) 831 return -EINVAL; 832 833 if (core->protect_count == 0) 834 return 0; 835 836 ret = core->protect_count; 837 core->protect_count = 1; 838 clk_core_rate_unprotect(core); 839 840 return ret; 841 } 842 843 /** 844 * clk_rate_exclusive_put - release exclusivity over clock rate control 845 * @clk: the clk over which the exclusivity is released 846 * 847 * clk_rate_exclusive_put() completes a critical section during which a clock 848 * consumer cannot tolerate any other consumer making any operation on the 849 * clock which could result in a rate change or rate glitch. Exclusive clocks 850 * cannot have their rate changed, either directly or indirectly due to changes 851 * further up the parent chain of clocks. As a result, clocks up parent chain 852 * also get under exclusive control of the calling consumer. 853 * 854 * If exlusivity is claimed more than once on clock, even by the same consumer, 855 * the rate effectively gets locked as exclusivity can't be preempted. 856 * 857 * Calls to clk_rate_exclusive_put() must be balanced with calls to 858 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 859 * error status. 860 */ 861 void clk_rate_exclusive_put(struct clk *clk) 862 { 863 if (!clk) 864 return; 865 866 clk_prepare_lock(); 867 868 /* 869 * if there is something wrong with this consumer protect count, stop 870 * here before messing with the provider 871 */ 872 if (WARN_ON(clk->exclusive_count <= 0)) 873 goto out; 874 875 clk_core_rate_unprotect(clk->core); 876 clk->exclusive_count--; 877 out: 878 clk_prepare_unlock(); 879 } 880 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 881 882 static void clk_core_rate_protect(struct clk_core *core) 883 { 884 lockdep_assert_held(&prepare_lock); 885 886 if (!core) 887 return; 888 889 if (core->protect_count == 0) 890 clk_core_rate_protect(core->parent); 891 892 core->protect_count++; 893 } 894 895 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 896 { 897 lockdep_assert_held(&prepare_lock); 898 899 if (!core) 900 return; 901 902 if (count == 0) 903 return; 904 905 clk_core_rate_protect(core); 906 core->protect_count = count; 907 } 908 909 /** 910 * clk_rate_exclusive_get - get exclusivity over the clk rate control 911 * @clk: the clk over which the exclusity of rate control is requested 912 * 913 * clk_rate_exclusive_get() begins a critical section during which a clock 914 * consumer cannot tolerate any other consumer making any operation on the 915 * clock which could result in a rate change or rate glitch. Exclusive clocks 916 * cannot have their rate changed, either directly or indirectly due to changes 917 * further up the parent chain of clocks. As a result, clocks up parent chain 918 * also get under exclusive control of the calling consumer. 919 * 920 * If exlusivity is claimed more than once on clock, even by the same consumer, 921 * the rate effectively gets locked as exclusivity can't be preempted. 922 * 923 * Calls to clk_rate_exclusive_get() should be balanced with calls to 924 * clk_rate_exclusive_put(). Calls to this function may sleep. 925 * Returns 0 on success, -EERROR otherwise 926 */ 927 int clk_rate_exclusive_get(struct clk *clk) 928 { 929 if (!clk) 930 return 0; 931 932 clk_prepare_lock(); 933 clk_core_rate_protect(clk->core); 934 clk->exclusive_count++; 935 clk_prepare_unlock(); 936 937 return 0; 938 } 939 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 940 941 static void clk_core_unprepare(struct clk_core *core) 942 { 943 lockdep_assert_held(&prepare_lock); 944 945 if (!core) 946 return; 947 948 if (WARN(core->prepare_count == 0, 949 "%s already unprepared\n", core->name)) 950 return; 951 952 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 953 "Unpreparing critical %s\n", core->name)) 954 return; 955 956 if (core->flags & CLK_SET_RATE_GATE) 957 clk_core_rate_unprotect(core); 958 959 if (--core->prepare_count > 0) 960 return; 961 962 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 963 964 trace_clk_unprepare(core); 965 966 if (core->ops->unprepare) 967 core->ops->unprepare(core->hw); 968 969 trace_clk_unprepare_complete(core); 970 clk_core_unprepare(core->parent); 971 clk_pm_runtime_put(core); 972 } 973 974 static void clk_core_unprepare_lock(struct clk_core *core) 975 { 976 clk_prepare_lock(); 977 clk_core_unprepare(core); 978 clk_prepare_unlock(); 979 } 980 981 /** 982 * clk_unprepare - undo preparation of a clock source 983 * @clk: the clk being unprepared 984 * 985 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 986 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 987 * if the operation may sleep. One example is a clk which is accessed over 988 * I2c. In the complex case a clk gate operation may require a fast and a slow 989 * part. It is this reason that clk_unprepare and clk_disable are not mutually 990 * exclusive. In fact clk_disable must be called before clk_unprepare. 991 */ 992 void clk_unprepare(struct clk *clk) 993 { 994 if (IS_ERR_OR_NULL(clk)) 995 return; 996 997 clk_core_unprepare_lock(clk->core); 998 } 999 EXPORT_SYMBOL_GPL(clk_unprepare); 1000 1001 static int clk_core_prepare(struct clk_core *core) 1002 { 1003 int ret = 0; 1004 1005 lockdep_assert_held(&prepare_lock); 1006 1007 if (!core) 1008 return 0; 1009 1010 if (core->prepare_count == 0) { 1011 ret = clk_pm_runtime_get(core); 1012 if (ret) 1013 return ret; 1014 1015 ret = clk_core_prepare(core->parent); 1016 if (ret) 1017 goto runtime_put; 1018 1019 trace_clk_prepare(core); 1020 1021 if (core->ops->prepare) 1022 ret = core->ops->prepare(core->hw); 1023 1024 trace_clk_prepare_complete(core); 1025 1026 if (ret) 1027 goto unprepare; 1028 } 1029 1030 core->prepare_count++; 1031 1032 /* 1033 * CLK_SET_RATE_GATE is a special case of clock protection 1034 * Instead of a consumer claiming exclusive rate control, it is 1035 * actually the provider which prevents any consumer from making any 1036 * operation which could result in a rate change or rate glitch while 1037 * the clock is prepared. 1038 */ 1039 if (core->flags & CLK_SET_RATE_GATE) 1040 clk_core_rate_protect(core); 1041 1042 return 0; 1043 unprepare: 1044 clk_core_unprepare(core->parent); 1045 runtime_put: 1046 clk_pm_runtime_put(core); 1047 return ret; 1048 } 1049 1050 static int clk_core_prepare_lock(struct clk_core *core) 1051 { 1052 int ret; 1053 1054 clk_prepare_lock(); 1055 ret = clk_core_prepare(core); 1056 clk_prepare_unlock(); 1057 1058 return ret; 1059 } 1060 1061 /** 1062 * clk_prepare - prepare a clock source 1063 * @clk: the clk being prepared 1064 * 1065 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1066 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1067 * operation may sleep. One example is a clk which is accessed over I2c. In 1068 * the complex case a clk ungate operation may require a fast and a slow part. 1069 * It is this reason that clk_prepare and clk_enable are not mutually 1070 * exclusive. In fact clk_prepare must be called before clk_enable. 1071 * Returns 0 on success, -EERROR otherwise. 1072 */ 1073 int clk_prepare(struct clk *clk) 1074 { 1075 if (!clk) 1076 return 0; 1077 1078 return clk_core_prepare_lock(clk->core); 1079 } 1080 EXPORT_SYMBOL_GPL(clk_prepare); 1081 1082 static void clk_core_disable(struct clk_core *core) 1083 { 1084 lockdep_assert_held(&enable_lock); 1085 1086 if (!core) 1087 return; 1088 1089 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1090 return; 1091 1092 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1093 "Disabling critical %s\n", core->name)) 1094 return; 1095 1096 if (--core->enable_count > 0) 1097 return; 1098 1099 trace_clk_disable(core); 1100 1101 if (core->ops->disable) 1102 core->ops->disable(core->hw); 1103 1104 trace_clk_disable_complete(core); 1105 1106 clk_core_disable(core->parent); 1107 } 1108 1109 static void clk_core_disable_lock(struct clk_core *core) 1110 { 1111 unsigned long flags; 1112 1113 flags = clk_enable_lock(); 1114 clk_core_disable(core); 1115 clk_enable_unlock(flags); 1116 } 1117 1118 /** 1119 * clk_disable - gate a clock 1120 * @clk: the clk being gated 1121 * 1122 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1123 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1124 * clk if the operation is fast and will never sleep. One example is a 1125 * SoC-internal clk which is controlled via simple register writes. In the 1126 * complex case a clk gate operation may require a fast and a slow part. It is 1127 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1128 * In fact clk_disable must be called before clk_unprepare. 1129 */ 1130 void clk_disable(struct clk *clk) 1131 { 1132 if (IS_ERR_OR_NULL(clk)) 1133 return; 1134 1135 clk_core_disable_lock(clk->core); 1136 } 1137 EXPORT_SYMBOL_GPL(clk_disable); 1138 1139 static int clk_core_enable(struct clk_core *core) 1140 { 1141 int ret = 0; 1142 1143 lockdep_assert_held(&enable_lock); 1144 1145 if (!core) 1146 return 0; 1147 1148 if (WARN(core->prepare_count == 0, 1149 "Enabling unprepared %s\n", core->name)) 1150 return -ESHUTDOWN; 1151 1152 if (core->enable_count == 0) { 1153 ret = clk_core_enable(core->parent); 1154 1155 if (ret) 1156 return ret; 1157 1158 trace_clk_enable(core); 1159 1160 if (core->ops->enable) 1161 ret = core->ops->enable(core->hw); 1162 1163 trace_clk_enable_complete(core); 1164 1165 if (ret) { 1166 clk_core_disable(core->parent); 1167 return ret; 1168 } 1169 } 1170 1171 core->enable_count++; 1172 return 0; 1173 } 1174 1175 static int clk_core_enable_lock(struct clk_core *core) 1176 { 1177 unsigned long flags; 1178 int ret; 1179 1180 flags = clk_enable_lock(); 1181 ret = clk_core_enable(core); 1182 clk_enable_unlock(flags); 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * clk_gate_restore_context - restore context for poweroff 1189 * @hw: the clk_hw pointer of clock whose state is to be restored 1190 * 1191 * The clock gate restore context function enables or disables 1192 * the gate clocks based on the enable_count. This is done in cases 1193 * where the clock context is lost and based on the enable_count 1194 * the clock either needs to be enabled/disabled. This 1195 * helps restore the state of gate clocks. 1196 */ 1197 void clk_gate_restore_context(struct clk_hw *hw) 1198 { 1199 struct clk_core *core = hw->core; 1200 1201 if (core->enable_count) 1202 core->ops->enable(hw); 1203 else 1204 core->ops->disable(hw); 1205 } 1206 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1207 1208 static int clk_core_save_context(struct clk_core *core) 1209 { 1210 struct clk_core *child; 1211 int ret = 0; 1212 1213 hlist_for_each_entry(child, &core->children, child_node) { 1214 ret = clk_core_save_context(child); 1215 if (ret < 0) 1216 return ret; 1217 } 1218 1219 if (core->ops && core->ops->save_context) 1220 ret = core->ops->save_context(core->hw); 1221 1222 return ret; 1223 } 1224 1225 static void clk_core_restore_context(struct clk_core *core) 1226 { 1227 struct clk_core *child; 1228 1229 if (core->ops && core->ops->restore_context) 1230 core->ops->restore_context(core->hw); 1231 1232 hlist_for_each_entry(child, &core->children, child_node) 1233 clk_core_restore_context(child); 1234 } 1235 1236 /** 1237 * clk_save_context - save clock context for poweroff 1238 * 1239 * Saves the context of the clock register for powerstates in which the 1240 * contents of the registers will be lost. Occurs deep within the suspend 1241 * code. Returns 0 on success. 1242 */ 1243 int clk_save_context(void) 1244 { 1245 struct clk_core *clk; 1246 int ret; 1247 1248 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1249 ret = clk_core_save_context(clk); 1250 if (ret < 0) 1251 return ret; 1252 } 1253 1254 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1255 ret = clk_core_save_context(clk); 1256 if (ret < 0) 1257 return ret; 1258 } 1259 1260 return 0; 1261 } 1262 EXPORT_SYMBOL_GPL(clk_save_context); 1263 1264 /** 1265 * clk_restore_context - restore clock context after poweroff 1266 * 1267 * Restore the saved clock context upon resume. 1268 * 1269 */ 1270 void clk_restore_context(void) 1271 { 1272 struct clk_core *core; 1273 1274 hlist_for_each_entry(core, &clk_root_list, child_node) 1275 clk_core_restore_context(core); 1276 1277 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1278 clk_core_restore_context(core); 1279 } 1280 EXPORT_SYMBOL_GPL(clk_restore_context); 1281 1282 /** 1283 * clk_enable - ungate a clock 1284 * @clk: the clk being ungated 1285 * 1286 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1287 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1288 * if the operation will never sleep. One example is a SoC-internal clk which 1289 * is controlled via simple register writes. In the complex case a clk ungate 1290 * operation may require a fast and a slow part. It is this reason that 1291 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1292 * must be called before clk_enable. Returns 0 on success, -EERROR 1293 * otherwise. 1294 */ 1295 int clk_enable(struct clk *clk) 1296 { 1297 if (!clk) 1298 return 0; 1299 1300 return clk_core_enable_lock(clk->core); 1301 } 1302 EXPORT_SYMBOL_GPL(clk_enable); 1303 1304 /** 1305 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1306 * @clk: clock source 1307 * 1308 * Returns true if clk_prepare() implicitly enables the clock, effectively 1309 * making clk_enable()/clk_disable() no-ops, false otherwise. 1310 * 1311 * This is of interest mainly to power management code where actually 1312 * disabling the clock also requires unpreparing it to have any material 1313 * effect. 1314 * 1315 * Regardless of the value returned here, the caller must always invoke 1316 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1317 * to be right. 1318 */ 1319 bool clk_is_enabled_when_prepared(struct clk *clk) 1320 { 1321 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1322 } 1323 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1324 1325 static int clk_core_prepare_enable(struct clk_core *core) 1326 { 1327 int ret; 1328 1329 ret = clk_core_prepare_lock(core); 1330 if (ret) 1331 return ret; 1332 1333 ret = clk_core_enable_lock(core); 1334 if (ret) 1335 clk_core_unprepare_lock(core); 1336 1337 return ret; 1338 } 1339 1340 static void clk_core_disable_unprepare(struct clk_core *core) 1341 { 1342 clk_core_disable_lock(core); 1343 clk_core_unprepare_lock(core); 1344 } 1345 1346 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1347 { 1348 struct clk_core *child; 1349 1350 lockdep_assert_held(&prepare_lock); 1351 1352 hlist_for_each_entry(child, &core->children, child_node) 1353 clk_unprepare_unused_subtree(child); 1354 1355 if (core->prepare_count) 1356 return; 1357 1358 if (core->flags & CLK_IGNORE_UNUSED) 1359 return; 1360 1361 if (clk_pm_runtime_get(core)) 1362 return; 1363 1364 if (clk_core_is_prepared(core)) { 1365 trace_clk_unprepare(core); 1366 if (core->ops->unprepare_unused) 1367 core->ops->unprepare_unused(core->hw); 1368 else if (core->ops->unprepare) 1369 core->ops->unprepare(core->hw); 1370 trace_clk_unprepare_complete(core); 1371 } 1372 1373 clk_pm_runtime_put(core); 1374 } 1375 1376 static void __init clk_disable_unused_subtree(struct clk_core *core) 1377 { 1378 struct clk_core *child; 1379 unsigned long flags; 1380 1381 lockdep_assert_held(&prepare_lock); 1382 1383 hlist_for_each_entry(child, &core->children, child_node) 1384 clk_disable_unused_subtree(child); 1385 1386 if (core->flags & CLK_OPS_PARENT_ENABLE) 1387 clk_core_prepare_enable(core->parent); 1388 1389 if (clk_pm_runtime_get(core)) 1390 goto unprepare_out; 1391 1392 flags = clk_enable_lock(); 1393 1394 if (core->enable_count) 1395 goto unlock_out; 1396 1397 if (core->flags & CLK_IGNORE_UNUSED) 1398 goto unlock_out; 1399 1400 /* 1401 * some gate clocks have special needs during the disable-unused 1402 * sequence. call .disable_unused if available, otherwise fall 1403 * back to .disable 1404 */ 1405 if (clk_core_is_enabled(core)) { 1406 trace_clk_disable(core); 1407 if (core->ops->disable_unused) 1408 core->ops->disable_unused(core->hw); 1409 else if (core->ops->disable) 1410 core->ops->disable(core->hw); 1411 trace_clk_disable_complete(core); 1412 } 1413 1414 unlock_out: 1415 clk_enable_unlock(flags); 1416 clk_pm_runtime_put(core); 1417 unprepare_out: 1418 if (core->flags & CLK_OPS_PARENT_ENABLE) 1419 clk_core_disable_unprepare(core->parent); 1420 } 1421 1422 static bool clk_ignore_unused __initdata; 1423 static int __init clk_ignore_unused_setup(char *__unused) 1424 { 1425 clk_ignore_unused = true; 1426 return 1; 1427 } 1428 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1429 1430 static int __init clk_disable_unused(void) 1431 { 1432 struct clk_core *core; 1433 1434 if (clk_ignore_unused) { 1435 pr_warn("clk: Not disabling unused clocks\n"); 1436 return 0; 1437 } 1438 1439 pr_info("clk: Disabling unused clocks\n"); 1440 1441 clk_prepare_lock(); 1442 1443 hlist_for_each_entry(core, &clk_root_list, child_node) 1444 clk_disable_unused_subtree(core); 1445 1446 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1447 clk_disable_unused_subtree(core); 1448 1449 hlist_for_each_entry(core, &clk_root_list, child_node) 1450 clk_unprepare_unused_subtree(core); 1451 1452 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1453 clk_unprepare_unused_subtree(core); 1454 1455 clk_prepare_unlock(); 1456 1457 return 0; 1458 } 1459 late_initcall_sync(clk_disable_unused); 1460 1461 static int clk_core_determine_round_nolock(struct clk_core *core, 1462 struct clk_rate_request *req) 1463 { 1464 long rate; 1465 1466 lockdep_assert_held(&prepare_lock); 1467 1468 if (!core) 1469 return 0; 1470 1471 /* 1472 * Some clock providers hand-craft their clk_rate_requests and 1473 * might not fill min_rate and max_rate. 1474 * 1475 * If it's the case, clamping the rate is equivalent to setting 1476 * the rate to 0 which is bad. Skip the clamping but complain so 1477 * that it gets fixed, hopefully. 1478 */ 1479 if (!req->min_rate && !req->max_rate) 1480 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1481 __func__, core->name); 1482 else 1483 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1484 1485 /* 1486 * At this point, core protection will be disabled 1487 * - if the provider is not protected at all 1488 * - if the calling consumer is the only one which has exclusivity 1489 * over the provider 1490 */ 1491 if (clk_core_rate_is_protected(core)) { 1492 req->rate = core->rate; 1493 } else if (core->ops->determine_rate) { 1494 return core->ops->determine_rate(core->hw, req); 1495 } else if (core->ops->round_rate) { 1496 rate = core->ops->round_rate(core->hw, req->rate, 1497 &req->best_parent_rate); 1498 if (rate < 0) 1499 return rate; 1500 1501 req->rate = rate; 1502 } else { 1503 return -EINVAL; 1504 } 1505 1506 return 0; 1507 } 1508 1509 static void clk_core_init_rate_req(struct clk_core * const core, 1510 struct clk_rate_request *req, 1511 unsigned long rate) 1512 { 1513 struct clk_core *parent; 1514 1515 if (WARN_ON(!req)) 1516 return; 1517 1518 memset(req, 0, sizeof(*req)); 1519 req->max_rate = ULONG_MAX; 1520 1521 if (!core) 1522 return; 1523 1524 req->core = core; 1525 req->rate = rate; 1526 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1527 1528 parent = core->parent; 1529 if (parent) { 1530 req->best_parent_hw = parent->hw; 1531 req->best_parent_rate = parent->rate; 1532 } else { 1533 req->best_parent_hw = NULL; 1534 req->best_parent_rate = 0; 1535 } 1536 } 1537 1538 /** 1539 * clk_hw_init_rate_request - Initializes a clk_rate_request 1540 * @hw: the clk for which we want to submit a rate request 1541 * @req: the clk_rate_request structure we want to initialise 1542 * @rate: the rate which is to be requested 1543 * 1544 * Initializes a clk_rate_request structure to submit to 1545 * __clk_determine_rate() or similar functions. 1546 */ 1547 void clk_hw_init_rate_request(const struct clk_hw *hw, 1548 struct clk_rate_request *req, 1549 unsigned long rate) 1550 { 1551 if (WARN_ON(!hw || !req)) 1552 return; 1553 1554 clk_core_init_rate_req(hw->core, req, rate); 1555 } 1556 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1557 1558 /** 1559 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1560 * @hw: the original clock that got the rate request 1561 * @old_req: the original clk_rate_request structure we want to forward 1562 * @parent: the clk we want to forward @old_req to 1563 * @req: the clk_rate_request structure we want to initialise 1564 * @parent_rate: The rate which is to be requested to @parent 1565 * 1566 * Initializes a clk_rate_request structure to submit to a clock parent 1567 * in __clk_determine_rate() or similar functions. 1568 */ 1569 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1570 const struct clk_rate_request *old_req, 1571 const struct clk_hw *parent, 1572 struct clk_rate_request *req, 1573 unsigned long parent_rate) 1574 { 1575 if (WARN_ON(!hw || !old_req || !parent || !req)) 1576 return; 1577 1578 clk_core_forward_rate_req(hw->core, old_req, 1579 parent->core, req, 1580 parent_rate); 1581 } 1582 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request); 1583 1584 static bool clk_core_can_round(struct clk_core * const core) 1585 { 1586 return core->ops->determine_rate || core->ops->round_rate; 1587 } 1588 1589 static int clk_core_round_rate_nolock(struct clk_core *core, 1590 struct clk_rate_request *req) 1591 { 1592 int ret; 1593 1594 lockdep_assert_held(&prepare_lock); 1595 1596 if (!core) { 1597 req->rate = 0; 1598 return 0; 1599 } 1600 1601 if (clk_core_can_round(core)) 1602 return clk_core_determine_round_nolock(core, req); 1603 1604 if (core->flags & CLK_SET_RATE_PARENT) { 1605 struct clk_rate_request parent_req; 1606 1607 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1608 1609 trace_clk_rate_request_start(&parent_req); 1610 1611 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1612 if (ret) 1613 return ret; 1614 1615 trace_clk_rate_request_done(&parent_req); 1616 1617 req->best_parent_rate = parent_req.rate; 1618 req->rate = parent_req.rate; 1619 1620 return 0; 1621 } 1622 1623 req->rate = core->rate; 1624 return 0; 1625 } 1626 1627 /** 1628 * __clk_determine_rate - get the closest rate actually supported by a clock 1629 * @hw: determine the rate of this clock 1630 * @req: target rate request 1631 * 1632 * Useful for clk_ops such as .set_rate and .determine_rate. 1633 */ 1634 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1635 { 1636 if (!hw) { 1637 req->rate = 0; 1638 return 0; 1639 } 1640 1641 return clk_core_round_rate_nolock(hw->core, req); 1642 } 1643 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1644 1645 /** 1646 * clk_hw_round_rate() - round the given rate for a hw clk 1647 * @hw: the hw clk for which we are rounding a rate 1648 * @rate: the rate which is to be rounded 1649 * 1650 * Takes in a rate as input and rounds it to a rate that the clk can actually 1651 * use. 1652 * 1653 * Context: prepare_lock must be held. 1654 * For clk providers to call from within clk_ops such as .round_rate, 1655 * .determine_rate. 1656 * 1657 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1658 * else returns the parent rate. 1659 */ 1660 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1661 { 1662 int ret; 1663 struct clk_rate_request req; 1664 1665 clk_core_init_rate_req(hw->core, &req, rate); 1666 1667 trace_clk_rate_request_start(&req); 1668 1669 ret = clk_core_round_rate_nolock(hw->core, &req); 1670 if (ret) 1671 return 0; 1672 1673 trace_clk_rate_request_done(&req); 1674 1675 return req.rate; 1676 } 1677 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1678 1679 /** 1680 * clk_round_rate - round the given rate for a clk 1681 * @clk: the clk for which we are rounding a rate 1682 * @rate: the rate which is to be rounded 1683 * 1684 * Takes in a rate as input and rounds it to a rate that the clk can actually 1685 * use which is then returned. If clk doesn't support round_rate operation 1686 * then the parent rate is returned. 1687 */ 1688 long clk_round_rate(struct clk *clk, unsigned long rate) 1689 { 1690 struct clk_rate_request req; 1691 int ret; 1692 1693 if (!clk) 1694 return 0; 1695 1696 clk_prepare_lock(); 1697 1698 if (clk->exclusive_count) 1699 clk_core_rate_unprotect(clk->core); 1700 1701 clk_core_init_rate_req(clk->core, &req, rate); 1702 1703 trace_clk_rate_request_start(&req); 1704 1705 ret = clk_core_round_rate_nolock(clk->core, &req); 1706 1707 trace_clk_rate_request_done(&req); 1708 1709 if (clk->exclusive_count) 1710 clk_core_rate_protect(clk->core); 1711 1712 clk_prepare_unlock(); 1713 1714 if (ret) 1715 return ret; 1716 1717 return req.rate; 1718 } 1719 EXPORT_SYMBOL_GPL(clk_round_rate); 1720 1721 /** 1722 * __clk_notify - call clk notifier chain 1723 * @core: clk that is changing rate 1724 * @msg: clk notifier type (see include/linux/clk.h) 1725 * @old_rate: old clk rate 1726 * @new_rate: new clk rate 1727 * 1728 * Triggers a notifier call chain on the clk rate-change notification 1729 * for 'clk'. Passes a pointer to the struct clk and the previous 1730 * and current rates to the notifier callback. Intended to be called by 1731 * internal clock code only. Returns NOTIFY_DONE from the last driver 1732 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1733 * a driver returns that. 1734 */ 1735 static int __clk_notify(struct clk_core *core, unsigned long msg, 1736 unsigned long old_rate, unsigned long new_rate) 1737 { 1738 struct clk_notifier *cn; 1739 struct clk_notifier_data cnd; 1740 int ret = NOTIFY_DONE; 1741 1742 cnd.old_rate = old_rate; 1743 cnd.new_rate = new_rate; 1744 1745 list_for_each_entry(cn, &clk_notifier_list, node) { 1746 if (cn->clk->core == core) { 1747 cnd.clk = cn->clk; 1748 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1749 &cnd); 1750 if (ret & NOTIFY_STOP_MASK) 1751 return ret; 1752 } 1753 } 1754 1755 return ret; 1756 } 1757 1758 /** 1759 * __clk_recalc_accuracies 1760 * @core: first clk in the subtree 1761 * 1762 * Walks the subtree of clks starting with clk and recalculates accuracies as 1763 * it goes. Note that if a clk does not implement the .recalc_accuracy 1764 * callback then it is assumed that the clock will take on the accuracy of its 1765 * parent. 1766 */ 1767 static void __clk_recalc_accuracies(struct clk_core *core) 1768 { 1769 unsigned long parent_accuracy = 0; 1770 struct clk_core *child; 1771 1772 lockdep_assert_held(&prepare_lock); 1773 1774 if (core->parent) 1775 parent_accuracy = core->parent->accuracy; 1776 1777 if (core->ops->recalc_accuracy) 1778 core->accuracy = core->ops->recalc_accuracy(core->hw, 1779 parent_accuracy); 1780 else 1781 core->accuracy = parent_accuracy; 1782 1783 hlist_for_each_entry(child, &core->children, child_node) 1784 __clk_recalc_accuracies(child); 1785 } 1786 1787 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1788 { 1789 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1790 __clk_recalc_accuracies(core); 1791 1792 return clk_core_get_accuracy_no_lock(core); 1793 } 1794 1795 /** 1796 * clk_get_accuracy - return the accuracy of clk 1797 * @clk: the clk whose accuracy is being returned 1798 * 1799 * Simply returns the cached accuracy of the clk, unless 1800 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1801 * issued. 1802 * If clk is NULL then returns 0. 1803 */ 1804 long clk_get_accuracy(struct clk *clk) 1805 { 1806 long accuracy; 1807 1808 if (!clk) 1809 return 0; 1810 1811 clk_prepare_lock(); 1812 accuracy = clk_core_get_accuracy_recalc(clk->core); 1813 clk_prepare_unlock(); 1814 1815 return accuracy; 1816 } 1817 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1818 1819 static unsigned long clk_recalc(struct clk_core *core, 1820 unsigned long parent_rate) 1821 { 1822 unsigned long rate = parent_rate; 1823 1824 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1825 rate = core->ops->recalc_rate(core->hw, parent_rate); 1826 clk_pm_runtime_put(core); 1827 } 1828 return rate; 1829 } 1830 1831 /** 1832 * __clk_recalc_rates 1833 * @core: first clk in the subtree 1834 * @update_req: Whether req_rate should be updated with the new rate 1835 * @msg: notification type (see include/linux/clk.h) 1836 * 1837 * Walks the subtree of clks starting with clk and recalculates rates as it 1838 * goes. Note that if a clk does not implement the .recalc_rate callback then 1839 * it is assumed that the clock will take on the rate of its parent. 1840 * 1841 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1842 * if necessary. 1843 */ 1844 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1845 unsigned long msg) 1846 { 1847 unsigned long old_rate; 1848 unsigned long parent_rate = 0; 1849 struct clk_core *child; 1850 1851 lockdep_assert_held(&prepare_lock); 1852 1853 old_rate = core->rate; 1854 1855 if (core->parent) 1856 parent_rate = core->parent->rate; 1857 1858 core->rate = clk_recalc(core, parent_rate); 1859 if (update_req) 1860 core->req_rate = core->rate; 1861 1862 /* 1863 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1864 * & ABORT_RATE_CHANGE notifiers 1865 */ 1866 if (core->notifier_count && msg) 1867 __clk_notify(core, msg, old_rate, core->rate); 1868 1869 hlist_for_each_entry(child, &core->children, child_node) 1870 __clk_recalc_rates(child, update_req, msg); 1871 } 1872 1873 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1874 { 1875 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1876 __clk_recalc_rates(core, false, 0); 1877 1878 return clk_core_get_rate_nolock(core); 1879 } 1880 1881 /** 1882 * clk_get_rate - return the rate of clk 1883 * @clk: the clk whose rate is being returned 1884 * 1885 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1886 * is set, which means a recalc_rate will be issued. Can be called regardless of 1887 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1888 * 0. 1889 */ 1890 unsigned long clk_get_rate(struct clk *clk) 1891 { 1892 unsigned long rate; 1893 1894 if (!clk) 1895 return 0; 1896 1897 clk_prepare_lock(); 1898 rate = clk_core_get_rate_recalc(clk->core); 1899 clk_prepare_unlock(); 1900 1901 return rate; 1902 } 1903 EXPORT_SYMBOL_GPL(clk_get_rate); 1904 1905 static int clk_fetch_parent_index(struct clk_core *core, 1906 struct clk_core *parent) 1907 { 1908 int i; 1909 1910 if (!parent) 1911 return -EINVAL; 1912 1913 for (i = 0; i < core->num_parents; i++) { 1914 /* Found it first try! */ 1915 if (core->parents[i].core == parent) 1916 return i; 1917 1918 /* Something else is here, so keep looking */ 1919 if (core->parents[i].core) 1920 continue; 1921 1922 /* Maybe core hasn't been cached but the hw is all we know? */ 1923 if (core->parents[i].hw) { 1924 if (core->parents[i].hw == parent->hw) 1925 break; 1926 1927 /* Didn't match, but we're expecting a clk_hw */ 1928 continue; 1929 } 1930 1931 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1932 if (parent == clk_core_get(core, i)) 1933 break; 1934 1935 /* Fallback to comparing globally unique names */ 1936 if (core->parents[i].name && 1937 !strcmp(parent->name, core->parents[i].name)) 1938 break; 1939 } 1940 1941 if (i == core->num_parents) 1942 return -EINVAL; 1943 1944 core->parents[i].core = parent; 1945 return i; 1946 } 1947 1948 /** 1949 * clk_hw_get_parent_index - return the index of the parent clock 1950 * @hw: clk_hw associated with the clk being consumed 1951 * 1952 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1953 * clock does not have a current parent. 1954 */ 1955 int clk_hw_get_parent_index(struct clk_hw *hw) 1956 { 1957 struct clk_hw *parent = clk_hw_get_parent(hw); 1958 1959 if (WARN_ON(parent == NULL)) 1960 return -EINVAL; 1961 1962 return clk_fetch_parent_index(hw->core, parent->core); 1963 } 1964 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1965 1966 /* 1967 * Update the orphan status of @core and all its children. 1968 */ 1969 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1970 { 1971 struct clk_core *child; 1972 1973 core->orphan = is_orphan; 1974 1975 hlist_for_each_entry(child, &core->children, child_node) 1976 clk_core_update_orphan_status(child, is_orphan); 1977 } 1978 1979 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1980 { 1981 bool was_orphan = core->orphan; 1982 1983 hlist_del(&core->child_node); 1984 1985 if (new_parent) { 1986 bool becomes_orphan = new_parent->orphan; 1987 1988 /* avoid duplicate POST_RATE_CHANGE notifications */ 1989 if (new_parent->new_child == core) 1990 new_parent->new_child = NULL; 1991 1992 hlist_add_head(&core->child_node, &new_parent->children); 1993 1994 if (was_orphan != becomes_orphan) 1995 clk_core_update_orphan_status(core, becomes_orphan); 1996 } else { 1997 hlist_add_head(&core->child_node, &clk_orphan_list); 1998 if (!was_orphan) 1999 clk_core_update_orphan_status(core, true); 2000 } 2001 2002 core->parent = new_parent; 2003 } 2004 2005 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 2006 struct clk_core *parent) 2007 { 2008 unsigned long flags; 2009 struct clk_core *old_parent = core->parent; 2010 2011 /* 2012 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 2013 * 2014 * 2. Migrate prepare state between parents and prevent race with 2015 * clk_enable(). 2016 * 2017 * If the clock is not prepared, then a race with 2018 * clk_enable/disable() is impossible since we already have the 2019 * prepare lock (future calls to clk_enable() need to be preceded by 2020 * a clk_prepare()). 2021 * 2022 * If the clock is prepared, migrate the prepared state to the new 2023 * parent and also protect against a race with clk_enable() by 2024 * forcing the clock and the new parent on. This ensures that all 2025 * future calls to clk_enable() are practically NOPs with respect to 2026 * hardware and software states. 2027 * 2028 * See also: Comment for clk_set_parent() below. 2029 */ 2030 2031 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 2032 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2033 clk_core_prepare_enable(old_parent); 2034 clk_core_prepare_enable(parent); 2035 } 2036 2037 /* migrate prepare count if > 0 */ 2038 if (core->prepare_count) { 2039 clk_core_prepare_enable(parent); 2040 clk_core_enable_lock(core); 2041 } 2042 2043 /* update the clk tree topology */ 2044 flags = clk_enable_lock(); 2045 clk_reparent(core, parent); 2046 clk_enable_unlock(flags); 2047 2048 return old_parent; 2049 } 2050 2051 static void __clk_set_parent_after(struct clk_core *core, 2052 struct clk_core *parent, 2053 struct clk_core *old_parent) 2054 { 2055 /* 2056 * Finish the migration of prepare state and undo the changes done 2057 * for preventing a race with clk_enable(). 2058 */ 2059 if (core->prepare_count) { 2060 clk_core_disable_lock(core); 2061 clk_core_disable_unprepare(old_parent); 2062 } 2063 2064 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2065 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2066 clk_core_disable_unprepare(parent); 2067 clk_core_disable_unprepare(old_parent); 2068 } 2069 } 2070 2071 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2072 u8 p_index) 2073 { 2074 unsigned long flags; 2075 int ret = 0; 2076 struct clk_core *old_parent; 2077 2078 old_parent = __clk_set_parent_before(core, parent); 2079 2080 trace_clk_set_parent(core, parent); 2081 2082 /* change clock input source */ 2083 if (parent && core->ops->set_parent) 2084 ret = core->ops->set_parent(core->hw, p_index); 2085 2086 trace_clk_set_parent_complete(core, parent); 2087 2088 if (ret) { 2089 flags = clk_enable_lock(); 2090 clk_reparent(core, old_parent); 2091 clk_enable_unlock(flags); 2092 2093 __clk_set_parent_after(core, old_parent, parent); 2094 2095 return ret; 2096 } 2097 2098 __clk_set_parent_after(core, parent, old_parent); 2099 2100 return 0; 2101 } 2102 2103 /** 2104 * __clk_speculate_rates 2105 * @core: first clk in the subtree 2106 * @parent_rate: the "future" rate of clk's parent 2107 * 2108 * Walks the subtree of clks starting with clk, speculating rates as it 2109 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2110 * 2111 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2112 * pre-rate change notifications and returns early if no clks in the 2113 * subtree have subscribed to the notifications. Note that if a clk does not 2114 * implement the .recalc_rate callback then it is assumed that the clock will 2115 * take on the rate of its parent. 2116 */ 2117 static int __clk_speculate_rates(struct clk_core *core, 2118 unsigned long parent_rate) 2119 { 2120 struct clk_core *child; 2121 unsigned long new_rate; 2122 int ret = NOTIFY_DONE; 2123 2124 lockdep_assert_held(&prepare_lock); 2125 2126 new_rate = clk_recalc(core, parent_rate); 2127 2128 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2129 if (core->notifier_count) 2130 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2131 2132 if (ret & NOTIFY_STOP_MASK) { 2133 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2134 __func__, core->name, ret); 2135 goto out; 2136 } 2137 2138 hlist_for_each_entry(child, &core->children, child_node) { 2139 ret = __clk_speculate_rates(child, new_rate); 2140 if (ret & NOTIFY_STOP_MASK) 2141 break; 2142 } 2143 2144 out: 2145 return ret; 2146 } 2147 2148 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2149 struct clk_core *new_parent, u8 p_index) 2150 { 2151 struct clk_core *child; 2152 2153 core->new_rate = new_rate; 2154 core->new_parent = new_parent; 2155 core->new_parent_index = p_index; 2156 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2157 core->new_child = NULL; 2158 if (new_parent && new_parent != core->parent) 2159 new_parent->new_child = core; 2160 2161 hlist_for_each_entry(child, &core->children, child_node) { 2162 child->new_rate = clk_recalc(child, new_rate); 2163 clk_calc_subtree(child, child->new_rate, NULL, 0); 2164 } 2165 } 2166 2167 /* 2168 * calculate the new rates returning the topmost clock that has to be 2169 * changed. 2170 */ 2171 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2172 unsigned long rate) 2173 { 2174 struct clk_core *top = core; 2175 struct clk_core *old_parent, *parent; 2176 unsigned long best_parent_rate = 0; 2177 unsigned long new_rate; 2178 unsigned long min_rate; 2179 unsigned long max_rate; 2180 int p_index = 0; 2181 long ret; 2182 2183 /* sanity */ 2184 if (IS_ERR_OR_NULL(core)) 2185 return NULL; 2186 2187 /* save parent rate, if it exists */ 2188 parent = old_parent = core->parent; 2189 if (parent) 2190 best_parent_rate = parent->rate; 2191 2192 clk_core_get_boundaries(core, &min_rate, &max_rate); 2193 2194 /* find the closest rate and parent clk/rate */ 2195 if (clk_core_can_round(core)) { 2196 struct clk_rate_request req; 2197 2198 clk_core_init_rate_req(core, &req, rate); 2199 2200 trace_clk_rate_request_start(&req); 2201 2202 ret = clk_core_determine_round_nolock(core, &req); 2203 if (ret < 0) 2204 return NULL; 2205 2206 trace_clk_rate_request_done(&req); 2207 2208 best_parent_rate = req.best_parent_rate; 2209 new_rate = req.rate; 2210 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2211 2212 if (new_rate < min_rate || new_rate > max_rate) 2213 return NULL; 2214 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2215 /* pass-through clock without adjustable parent */ 2216 core->new_rate = core->rate; 2217 return NULL; 2218 } else { 2219 /* pass-through clock with adjustable parent */ 2220 top = clk_calc_new_rates(parent, rate); 2221 new_rate = parent->new_rate; 2222 goto out; 2223 } 2224 2225 /* some clocks must be gated to change parent */ 2226 if (parent != old_parent && 2227 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2228 pr_debug("%s: %s not gated but wants to reparent\n", 2229 __func__, core->name); 2230 return NULL; 2231 } 2232 2233 /* try finding the new parent index */ 2234 if (parent && core->num_parents > 1) { 2235 p_index = clk_fetch_parent_index(core, parent); 2236 if (p_index < 0) { 2237 pr_debug("%s: clk %s can not be parent of clk %s\n", 2238 __func__, parent->name, core->name); 2239 return NULL; 2240 } 2241 } 2242 2243 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2244 best_parent_rate != parent->rate) 2245 top = clk_calc_new_rates(parent, best_parent_rate); 2246 2247 out: 2248 clk_calc_subtree(core, new_rate, parent, p_index); 2249 2250 return top; 2251 } 2252 2253 /* 2254 * Notify about rate changes in a subtree. Always walk down the whole tree 2255 * so that in case of an error we can walk down the whole tree again and 2256 * abort the change. 2257 */ 2258 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2259 unsigned long event) 2260 { 2261 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2262 int ret = NOTIFY_DONE; 2263 2264 if (core->rate == core->new_rate) 2265 return NULL; 2266 2267 if (core->notifier_count) { 2268 ret = __clk_notify(core, event, core->rate, core->new_rate); 2269 if (ret & NOTIFY_STOP_MASK) 2270 fail_clk = core; 2271 } 2272 2273 hlist_for_each_entry(child, &core->children, child_node) { 2274 /* Skip children who will be reparented to another clock */ 2275 if (child->new_parent && child->new_parent != core) 2276 continue; 2277 tmp_clk = clk_propagate_rate_change(child, event); 2278 if (tmp_clk) 2279 fail_clk = tmp_clk; 2280 } 2281 2282 /* handle the new child who might not be in core->children yet */ 2283 if (core->new_child) { 2284 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2285 if (tmp_clk) 2286 fail_clk = tmp_clk; 2287 } 2288 2289 return fail_clk; 2290 } 2291 2292 /* 2293 * walk down a subtree and set the new rates notifying the rate 2294 * change on the way 2295 */ 2296 static void clk_change_rate(struct clk_core *core) 2297 { 2298 struct clk_core *child; 2299 struct hlist_node *tmp; 2300 unsigned long old_rate; 2301 unsigned long best_parent_rate = 0; 2302 bool skip_set_rate = false; 2303 struct clk_core *old_parent; 2304 struct clk_core *parent = NULL; 2305 2306 old_rate = core->rate; 2307 2308 if (core->new_parent) { 2309 parent = core->new_parent; 2310 best_parent_rate = core->new_parent->rate; 2311 } else if (core->parent) { 2312 parent = core->parent; 2313 best_parent_rate = core->parent->rate; 2314 } 2315 2316 if (clk_pm_runtime_get(core)) 2317 return; 2318 2319 if (core->flags & CLK_SET_RATE_UNGATE) { 2320 clk_core_prepare(core); 2321 clk_core_enable_lock(core); 2322 } 2323 2324 if (core->new_parent && core->new_parent != core->parent) { 2325 old_parent = __clk_set_parent_before(core, core->new_parent); 2326 trace_clk_set_parent(core, core->new_parent); 2327 2328 if (core->ops->set_rate_and_parent) { 2329 skip_set_rate = true; 2330 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2331 best_parent_rate, 2332 core->new_parent_index); 2333 } else if (core->ops->set_parent) { 2334 core->ops->set_parent(core->hw, core->new_parent_index); 2335 } 2336 2337 trace_clk_set_parent_complete(core, core->new_parent); 2338 __clk_set_parent_after(core, core->new_parent, old_parent); 2339 } 2340 2341 if (core->flags & CLK_OPS_PARENT_ENABLE) 2342 clk_core_prepare_enable(parent); 2343 2344 trace_clk_set_rate(core, core->new_rate); 2345 2346 if (!skip_set_rate && core->ops->set_rate) 2347 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2348 2349 trace_clk_set_rate_complete(core, core->new_rate); 2350 2351 core->rate = clk_recalc(core, best_parent_rate); 2352 2353 if (core->flags & CLK_SET_RATE_UNGATE) { 2354 clk_core_disable_lock(core); 2355 clk_core_unprepare(core); 2356 } 2357 2358 if (core->flags & CLK_OPS_PARENT_ENABLE) 2359 clk_core_disable_unprepare(parent); 2360 2361 if (core->notifier_count && old_rate != core->rate) 2362 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2363 2364 if (core->flags & CLK_RECALC_NEW_RATES) 2365 (void)clk_calc_new_rates(core, core->new_rate); 2366 2367 /* 2368 * Use safe iteration, as change_rate can actually swap parents 2369 * for certain clock types. 2370 */ 2371 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2372 /* Skip children who will be reparented to another clock */ 2373 if (child->new_parent && child->new_parent != core) 2374 continue; 2375 clk_change_rate(child); 2376 } 2377 2378 /* handle the new child who might not be in core->children yet */ 2379 if (core->new_child) 2380 clk_change_rate(core->new_child); 2381 2382 clk_pm_runtime_put(core); 2383 } 2384 2385 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2386 unsigned long req_rate) 2387 { 2388 int ret, cnt; 2389 struct clk_rate_request req; 2390 2391 lockdep_assert_held(&prepare_lock); 2392 2393 if (!core) 2394 return 0; 2395 2396 /* simulate what the rate would be if it could be freely set */ 2397 cnt = clk_core_rate_nuke_protect(core); 2398 if (cnt < 0) 2399 return cnt; 2400 2401 clk_core_init_rate_req(core, &req, req_rate); 2402 2403 trace_clk_rate_request_start(&req); 2404 2405 ret = clk_core_round_rate_nolock(core, &req); 2406 2407 trace_clk_rate_request_done(&req); 2408 2409 /* restore the protection */ 2410 clk_core_rate_restore_protect(core, cnt); 2411 2412 return ret ? 0 : req.rate; 2413 } 2414 2415 static int clk_core_set_rate_nolock(struct clk_core *core, 2416 unsigned long req_rate) 2417 { 2418 struct clk_core *top, *fail_clk; 2419 unsigned long rate; 2420 int ret; 2421 2422 if (!core) 2423 return 0; 2424 2425 rate = clk_core_req_round_rate_nolock(core, req_rate); 2426 2427 /* bail early if nothing to do */ 2428 if (rate == clk_core_get_rate_nolock(core)) 2429 return 0; 2430 2431 /* fail on a direct rate set of a protected provider */ 2432 if (clk_core_rate_is_protected(core)) 2433 return -EBUSY; 2434 2435 /* calculate new rates and get the topmost changed clock */ 2436 top = clk_calc_new_rates(core, req_rate); 2437 if (!top) 2438 return -EINVAL; 2439 2440 ret = clk_pm_runtime_get(core); 2441 if (ret) 2442 return ret; 2443 2444 /* notify that we are about to change rates */ 2445 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2446 if (fail_clk) { 2447 pr_debug("%s: failed to set %s rate\n", __func__, 2448 fail_clk->name); 2449 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2450 ret = -EBUSY; 2451 goto err; 2452 } 2453 2454 /* change the rates */ 2455 clk_change_rate(top); 2456 2457 core->req_rate = req_rate; 2458 err: 2459 clk_pm_runtime_put(core); 2460 2461 return ret; 2462 } 2463 2464 /** 2465 * clk_set_rate - specify a new rate for clk 2466 * @clk: the clk whose rate is being changed 2467 * @rate: the new rate for clk 2468 * 2469 * In the simplest case clk_set_rate will only adjust the rate of clk. 2470 * 2471 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2472 * propagate up to clk's parent; whether or not this happens depends on the 2473 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2474 * after calling .round_rate then upstream parent propagation is ignored. If 2475 * *parent_rate comes back with a new rate for clk's parent then we propagate 2476 * up to clk's parent and set its rate. Upward propagation will continue 2477 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2478 * .round_rate stops requesting changes to clk's parent_rate. 2479 * 2480 * Rate changes are accomplished via tree traversal that also recalculates the 2481 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2482 * 2483 * Returns 0 on success, -EERROR otherwise. 2484 */ 2485 int clk_set_rate(struct clk *clk, unsigned long rate) 2486 { 2487 int ret; 2488 2489 if (!clk) 2490 return 0; 2491 2492 /* prevent racing with updates to the clock topology */ 2493 clk_prepare_lock(); 2494 2495 if (clk->exclusive_count) 2496 clk_core_rate_unprotect(clk->core); 2497 2498 ret = clk_core_set_rate_nolock(clk->core, rate); 2499 2500 if (clk->exclusive_count) 2501 clk_core_rate_protect(clk->core); 2502 2503 clk_prepare_unlock(); 2504 2505 return ret; 2506 } 2507 EXPORT_SYMBOL_GPL(clk_set_rate); 2508 2509 /** 2510 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2511 * @clk: the clk whose rate is being changed 2512 * @rate: the new rate for clk 2513 * 2514 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2515 * within a critical section 2516 * 2517 * This can be used initially to ensure that at least 1 consumer is 2518 * satisfied when several consumers are competing for exclusivity over the 2519 * same clock provider. 2520 * 2521 * The exclusivity is not applied if setting the rate failed. 2522 * 2523 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2524 * clk_rate_exclusive_put(). 2525 * 2526 * Returns 0 on success, -EERROR otherwise. 2527 */ 2528 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2529 { 2530 int ret; 2531 2532 if (!clk) 2533 return 0; 2534 2535 /* prevent racing with updates to the clock topology */ 2536 clk_prepare_lock(); 2537 2538 /* 2539 * The temporary protection removal is not here, on purpose 2540 * This function is meant to be used instead of clk_rate_protect, 2541 * so before the consumer code path protect the clock provider 2542 */ 2543 2544 ret = clk_core_set_rate_nolock(clk->core, rate); 2545 if (!ret) { 2546 clk_core_rate_protect(clk->core); 2547 clk->exclusive_count++; 2548 } 2549 2550 clk_prepare_unlock(); 2551 2552 return ret; 2553 } 2554 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2555 2556 static int clk_set_rate_range_nolock(struct clk *clk, 2557 unsigned long min, 2558 unsigned long max) 2559 { 2560 int ret = 0; 2561 unsigned long old_min, old_max, rate; 2562 2563 lockdep_assert_held(&prepare_lock); 2564 2565 if (!clk) 2566 return 0; 2567 2568 trace_clk_set_rate_range(clk->core, min, max); 2569 2570 if (min > max) { 2571 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2572 __func__, clk->core->name, clk->dev_id, clk->con_id, 2573 min, max); 2574 return -EINVAL; 2575 } 2576 2577 if (clk->exclusive_count) 2578 clk_core_rate_unprotect(clk->core); 2579 2580 /* Save the current values in case we need to rollback the change */ 2581 old_min = clk->min_rate; 2582 old_max = clk->max_rate; 2583 clk->min_rate = min; 2584 clk->max_rate = max; 2585 2586 if (!clk_core_check_boundaries(clk->core, min, max)) { 2587 ret = -EINVAL; 2588 goto out; 2589 } 2590 2591 rate = clk->core->req_rate; 2592 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2593 rate = clk_core_get_rate_recalc(clk->core); 2594 2595 /* 2596 * Since the boundaries have been changed, let's give the 2597 * opportunity to the provider to adjust the clock rate based on 2598 * the new boundaries. 2599 * 2600 * We also need to handle the case where the clock is currently 2601 * outside of the boundaries. Clamping the last requested rate 2602 * to the current minimum and maximum will also handle this. 2603 * 2604 * FIXME: 2605 * There is a catch. It may fail for the usual reason (clock 2606 * broken, clock protected, etc) but also because: 2607 * - round_rate() was not favorable and fell on the wrong 2608 * side of the boundary 2609 * - the determine_rate() callback does not really check for 2610 * this corner case when determining the rate 2611 */ 2612 rate = clamp(rate, min, max); 2613 ret = clk_core_set_rate_nolock(clk->core, rate); 2614 if (ret) { 2615 /* rollback the changes */ 2616 clk->min_rate = old_min; 2617 clk->max_rate = old_max; 2618 } 2619 2620 out: 2621 if (clk->exclusive_count) 2622 clk_core_rate_protect(clk->core); 2623 2624 return ret; 2625 } 2626 2627 /** 2628 * clk_set_rate_range - set a rate range for a clock source 2629 * @clk: clock source 2630 * @min: desired minimum clock rate in Hz, inclusive 2631 * @max: desired maximum clock rate in Hz, inclusive 2632 * 2633 * Return: 0 for success or negative errno on failure. 2634 */ 2635 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2636 { 2637 int ret; 2638 2639 if (!clk) 2640 return 0; 2641 2642 clk_prepare_lock(); 2643 2644 ret = clk_set_rate_range_nolock(clk, min, max); 2645 2646 clk_prepare_unlock(); 2647 2648 return ret; 2649 } 2650 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2651 2652 /** 2653 * clk_set_min_rate - set a minimum clock rate for a clock source 2654 * @clk: clock source 2655 * @rate: desired minimum clock rate in Hz, inclusive 2656 * 2657 * Returns success (0) or negative errno. 2658 */ 2659 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2660 { 2661 if (!clk) 2662 return 0; 2663 2664 trace_clk_set_min_rate(clk->core, rate); 2665 2666 return clk_set_rate_range(clk, rate, clk->max_rate); 2667 } 2668 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2669 2670 /** 2671 * clk_set_max_rate - set a maximum clock rate for a clock source 2672 * @clk: clock source 2673 * @rate: desired maximum clock rate in Hz, inclusive 2674 * 2675 * Returns success (0) or negative errno. 2676 */ 2677 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2678 { 2679 if (!clk) 2680 return 0; 2681 2682 trace_clk_set_max_rate(clk->core, rate); 2683 2684 return clk_set_rate_range(clk, clk->min_rate, rate); 2685 } 2686 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2687 2688 /** 2689 * clk_get_parent - return the parent of a clk 2690 * @clk: the clk whose parent gets returned 2691 * 2692 * Simply returns clk->parent. Returns NULL if clk is NULL. 2693 */ 2694 struct clk *clk_get_parent(struct clk *clk) 2695 { 2696 struct clk *parent; 2697 2698 if (!clk) 2699 return NULL; 2700 2701 clk_prepare_lock(); 2702 /* TODO: Create a per-user clk and change callers to call clk_put */ 2703 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2704 clk_prepare_unlock(); 2705 2706 return parent; 2707 } 2708 EXPORT_SYMBOL_GPL(clk_get_parent); 2709 2710 static struct clk_core *__clk_init_parent(struct clk_core *core) 2711 { 2712 u8 index = 0; 2713 2714 if (core->num_parents > 1 && core->ops->get_parent) 2715 index = core->ops->get_parent(core->hw); 2716 2717 return clk_core_get_parent_by_index(core, index); 2718 } 2719 2720 static void clk_core_reparent(struct clk_core *core, 2721 struct clk_core *new_parent) 2722 { 2723 clk_reparent(core, new_parent); 2724 __clk_recalc_accuracies(core); 2725 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2726 } 2727 2728 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2729 { 2730 if (!hw) 2731 return; 2732 2733 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2734 } 2735 2736 /** 2737 * clk_has_parent - check if a clock is a possible parent for another 2738 * @clk: clock source 2739 * @parent: parent clock source 2740 * 2741 * This function can be used in drivers that need to check that a clock can be 2742 * the parent of another without actually changing the parent. 2743 * 2744 * Returns true if @parent is a possible parent for @clk, false otherwise. 2745 */ 2746 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2747 { 2748 /* NULL clocks should be nops, so return success if either is NULL. */ 2749 if (!clk || !parent) 2750 return true; 2751 2752 return clk_core_has_parent(clk->core, parent->core); 2753 } 2754 EXPORT_SYMBOL_GPL(clk_has_parent); 2755 2756 static int clk_core_set_parent_nolock(struct clk_core *core, 2757 struct clk_core *parent) 2758 { 2759 int ret = 0; 2760 int p_index = 0; 2761 unsigned long p_rate = 0; 2762 2763 lockdep_assert_held(&prepare_lock); 2764 2765 if (!core) 2766 return 0; 2767 2768 if (core->parent == parent) 2769 return 0; 2770 2771 /* verify ops for multi-parent clks */ 2772 if (core->num_parents > 1 && !core->ops->set_parent) 2773 return -EPERM; 2774 2775 /* check that we are allowed to re-parent if the clock is in use */ 2776 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2777 return -EBUSY; 2778 2779 if (clk_core_rate_is_protected(core)) 2780 return -EBUSY; 2781 2782 /* try finding the new parent index */ 2783 if (parent) { 2784 p_index = clk_fetch_parent_index(core, parent); 2785 if (p_index < 0) { 2786 pr_debug("%s: clk %s can not be parent of clk %s\n", 2787 __func__, parent->name, core->name); 2788 return p_index; 2789 } 2790 p_rate = parent->rate; 2791 } 2792 2793 ret = clk_pm_runtime_get(core); 2794 if (ret) 2795 return ret; 2796 2797 /* propagate PRE_RATE_CHANGE notifications */ 2798 ret = __clk_speculate_rates(core, p_rate); 2799 2800 /* abort if a driver objects */ 2801 if (ret & NOTIFY_STOP_MASK) 2802 goto runtime_put; 2803 2804 /* do the re-parent */ 2805 ret = __clk_set_parent(core, parent, p_index); 2806 2807 /* propagate rate an accuracy recalculation accordingly */ 2808 if (ret) { 2809 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2810 } else { 2811 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2812 __clk_recalc_accuracies(core); 2813 } 2814 2815 runtime_put: 2816 clk_pm_runtime_put(core); 2817 2818 return ret; 2819 } 2820 2821 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2822 { 2823 return clk_core_set_parent_nolock(hw->core, parent->core); 2824 } 2825 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2826 2827 /** 2828 * clk_set_parent - switch the parent of a mux clk 2829 * @clk: the mux clk whose input we are switching 2830 * @parent: the new input to clk 2831 * 2832 * Re-parent clk to use parent as its new input source. If clk is in 2833 * prepared state, the clk will get enabled for the duration of this call. If 2834 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2835 * that, the reparenting is glitchy in hardware, etc), use the 2836 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2837 * 2838 * After successfully changing clk's parent clk_set_parent will update the 2839 * clk topology, sysfs topology and propagate rate recalculation via 2840 * __clk_recalc_rates. 2841 * 2842 * Returns 0 on success, -EERROR otherwise. 2843 */ 2844 int clk_set_parent(struct clk *clk, struct clk *parent) 2845 { 2846 int ret; 2847 2848 if (!clk) 2849 return 0; 2850 2851 clk_prepare_lock(); 2852 2853 if (clk->exclusive_count) 2854 clk_core_rate_unprotect(clk->core); 2855 2856 ret = clk_core_set_parent_nolock(clk->core, 2857 parent ? parent->core : NULL); 2858 2859 if (clk->exclusive_count) 2860 clk_core_rate_protect(clk->core); 2861 2862 clk_prepare_unlock(); 2863 2864 return ret; 2865 } 2866 EXPORT_SYMBOL_GPL(clk_set_parent); 2867 2868 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2869 { 2870 int ret = -EINVAL; 2871 2872 lockdep_assert_held(&prepare_lock); 2873 2874 if (!core) 2875 return 0; 2876 2877 if (clk_core_rate_is_protected(core)) 2878 return -EBUSY; 2879 2880 trace_clk_set_phase(core, degrees); 2881 2882 if (core->ops->set_phase) { 2883 ret = core->ops->set_phase(core->hw, degrees); 2884 if (!ret) 2885 core->phase = degrees; 2886 } 2887 2888 trace_clk_set_phase_complete(core, degrees); 2889 2890 return ret; 2891 } 2892 2893 /** 2894 * clk_set_phase - adjust the phase shift of a clock signal 2895 * @clk: clock signal source 2896 * @degrees: number of degrees the signal is shifted 2897 * 2898 * Shifts the phase of a clock signal by the specified 2899 * degrees. Returns 0 on success, -EERROR otherwise. 2900 * 2901 * This function makes no distinction about the input or reference 2902 * signal that we adjust the clock signal phase against. For example 2903 * phase locked-loop clock signal generators we may shift phase with 2904 * respect to feedback clock signal input, but for other cases the 2905 * clock phase may be shifted with respect to some other, unspecified 2906 * signal. 2907 * 2908 * Additionally the concept of phase shift does not propagate through 2909 * the clock tree hierarchy, which sets it apart from clock rates and 2910 * clock accuracy. A parent clock phase attribute does not have an 2911 * impact on the phase attribute of a child clock. 2912 */ 2913 int clk_set_phase(struct clk *clk, int degrees) 2914 { 2915 int ret; 2916 2917 if (!clk) 2918 return 0; 2919 2920 /* sanity check degrees */ 2921 degrees %= 360; 2922 if (degrees < 0) 2923 degrees += 360; 2924 2925 clk_prepare_lock(); 2926 2927 if (clk->exclusive_count) 2928 clk_core_rate_unprotect(clk->core); 2929 2930 ret = clk_core_set_phase_nolock(clk->core, degrees); 2931 2932 if (clk->exclusive_count) 2933 clk_core_rate_protect(clk->core); 2934 2935 clk_prepare_unlock(); 2936 2937 return ret; 2938 } 2939 EXPORT_SYMBOL_GPL(clk_set_phase); 2940 2941 static int clk_core_get_phase(struct clk_core *core) 2942 { 2943 int ret; 2944 2945 lockdep_assert_held(&prepare_lock); 2946 if (!core->ops->get_phase) 2947 return 0; 2948 2949 /* Always try to update cached phase if possible */ 2950 ret = core->ops->get_phase(core->hw); 2951 if (ret >= 0) 2952 core->phase = ret; 2953 2954 return ret; 2955 } 2956 2957 /** 2958 * clk_get_phase - return the phase shift of a clock signal 2959 * @clk: clock signal source 2960 * 2961 * Returns the phase shift of a clock node in degrees, otherwise returns 2962 * -EERROR. 2963 */ 2964 int clk_get_phase(struct clk *clk) 2965 { 2966 int ret; 2967 2968 if (!clk) 2969 return 0; 2970 2971 clk_prepare_lock(); 2972 ret = clk_core_get_phase(clk->core); 2973 clk_prepare_unlock(); 2974 2975 return ret; 2976 } 2977 EXPORT_SYMBOL_GPL(clk_get_phase); 2978 2979 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2980 { 2981 /* Assume a default value of 50% */ 2982 core->duty.num = 1; 2983 core->duty.den = 2; 2984 } 2985 2986 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2987 2988 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2989 { 2990 struct clk_duty *duty = &core->duty; 2991 int ret = 0; 2992 2993 if (!core->ops->get_duty_cycle) 2994 return clk_core_update_duty_cycle_parent_nolock(core); 2995 2996 ret = core->ops->get_duty_cycle(core->hw, duty); 2997 if (ret) 2998 goto reset; 2999 3000 /* Don't trust the clock provider too much */ 3001 if (duty->den == 0 || duty->num > duty->den) { 3002 ret = -EINVAL; 3003 goto reset; 3004 } 3005 3006 return 0; 3007 3008 reset: 3009 clk_core_reset_duty_cycle_nolock(core); 3010 return ret; 3011 } 3012 3013 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 3014 { 3015 int ret = 0; 3016 3017 if (core->parent && 3018 core->flags & CLK_DUTY_CYCLE_PARENT) { 3019 ret = clk_core_update_duty_cycle_nolock(core->parent); 3020 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3021 } else { 3022 clk_core_reset_duty_cycle_nolock(core); 3023 } 3024 3025 return ret; 3026 } 3027 3028 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3029 struct clk_duty *duty); 3030 3031 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 3032 struct clk_duty *duty) 3033 { 3034 int ret; 3035 3036 lockdep_assert_held(&prepare_lock); 3037 3038 if (clk_core_rate_is_protected(core)) 3039 return -EBUSY; 3040 3041 trace_clk_set_duty_cycle(core, duty); 3042 3043 if (!core->ops->set_duty_cycle) 3044 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3045 3046 ret = core->ops->set_duty_cycle(core->hw, duty); 3047 if (!ret) 3048 memcpy(&core->duty, duty, sizeof(*duty)); 3049 3050 trace_clk_set_duty_cycle_complete(core, duty); 3051 3052 return ret; 3053 } 3054 3055 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3056 struct clk_duty *duty) 3057 { 3058 int ret = 0; 3059 3060 if (core->parent && 3061 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3062 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3063 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3064 } 3065 3066 return ret; 3067 } 3068 3069 /** 3070 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3071 * @clk: clock signal source 3072 * @num: numerator of the duty cycle ratio to be applied 3073 * @den: denominator of the duty cycle ratio to be applied 3074 * 3075 * Apply the duty cycle ratio if the ratio is valid and the clock can 3076 * perform this operation 3077 * 3078 * Returns (0) on success, a negative errno otherwise. 3079 */ 3080 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3081 { 3082 int ret; 3083 struct clk_duty duty; 3084 3085 if (!clk) 3086 return 0; 3087 3088 /* sanity check the ratio */ 3089 if (den == 0 || num > den) 3090 return -EINVAL; 3091 3092 duty.num = num; 3093 duty.den = den; 3094 3095 clk_prepare_lock(); 3096 3097 if (clk->exclusive_count) 3098 clk_core_rate_unprotect(clk->core); 3099 3100 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3101 3102 if (clk->exclusive_count) 3103 clk_core_rate_protect(clk->core); 3104 3105 clk_prepare_unlock(); 3106 3107 return ret; 3108 } 3109 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3110 3111 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3112 unsigned int scale) 3113 { 3114 struct clk_duty *duty = &core->duty; 3115 int ret; 3116 3117 clk_prepare_lock(); 3118 3119 ret = clk_core_update_duty_cycle_nolock(core); 3120 if (!ret) 3121 ret = mult_frac(scale, duty->num, duty->den); 3122 3123 clk_prepare_unlock(); 3124 3125 return ret; 3126 } 3127 3128 /** 3129 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3130 * @clk: clock signal source 3131 * @scale: scaling factor to be applied to represent the ratio as an integer 3132 * 3133 * Returns the duty cycle ratio of a clock node multiplied by the provided 3134 * scaling factor, or negative errno on error. 3135 */ 3136 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3137 { 3138 if (!clk) 3139 return 0; 3140 3141 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3142 } 3143 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3144 3145 /** 3146 * clk_is_match - check if two clk's point to the same hardware clock 3147 * @p: clk compared against q 3148 * @q: clk compared against p 3149 * 3150 * Returns true if the two struct clk pointers both point to the same hardware 3151 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3152 * share the same struct clk_core object. 3153 * 3154 * Returns false otherwise. Note that two NULL clks are treated as matching. 3155 */ 3156 bool clk_is_match(const struct clk *p, const struct clk *q) 3157 { 3158 /* trivial case: identical struct clk's or both NULL */ 3159 if (p == q) 3160 return true; 3161 3162 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3163 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3164 if (p->core == q->core) 3165 return true; 3166 3167 return false; 3168 } 3169 EXPORT_SYMBOL_GPL(clk_is_match); 3170 3171 /*** debugfs support ***/ 3172 3173 #ifdef CONFIG_DEBUG_FS 3174 #include <linux/debugfs.h> 3175 3176 static struct dentry *rootdir; 3177 static int inited = 0; 3178 static DEFINE_MUTEX(clk_debug_lock); 3179 static HLIST_HEAD(clk_debug_list); 3180 3181 static struct hlist_head *orphan_list[] = { 3182 &clk_orphan_list, 3183 NULL, 3184 }; 3185 3186 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3187 int level) 3188 { 3189 int phase; 3190 3191 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 3192 level * 3 + 1, "", 3193 30 - level * 3, c->name, 3194 c->enable_count, c->prepare_count, c->protect_count, 3195 clk_core_get_rate_recalc(c), 3196 clk_core_get_accuracy_recalc(c)); 3197 3198 phase = clk_core_get_phase(c); 3199 if (phase >= 0) 3200 seq_printf(s, "%5d", phase); 3201 else 3202 seq_puts(s, "-----"); 3203 3204 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3205 3206 if (c->ops->is_enabled) 3207 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 3208 else if (!c->ops->enable) 3209 seq_printf(s, " %9c\n", 'Y'); 3210 else 3211 seq_printf(s, " %9c\n", '?'); 3212 } 3213 3214 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3215 int level) 3216 { 3217 struct clk_core *child; 3218 3219 clk_pm_runtime_get(c); 3220 clk_summary_show_one(s, c, level); 3221 clk_pm_runtime_put(c); 3222 3223 hlist_for_each_entry(child, &c->children, child_node) 3224 clk_summary_show_subtree(s, child, level + 1); 3225 } 3226 3227 static int clk_summary_show(struct seq_file *s, void *data) 3228 { 3229 struct clk_core *c; 3230 struct hlist_head **lists = s->private; 3231 3232 seq_puts(s, " enable prepare protect duty hardware\n"); 3233 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 3234 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3235 3236 clk_prepare_lock(); 3237 3238 for (; *lists; lists++) 3239 hlist_for_each_entry(c, *lists, child_node) 3240 clk_summary_show_subtree(s, c, 0); 3241 3242 clk_prepare_unlock(); 3243 3244 return 0; 3245 } 3246 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3247 3248 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3249 { 3250 int phase; 3251 unsigned long min_rate, max_rate; 3252 3253 clk_core_get_boundaries(c, &min_rate, &max_rate); 3254 3255 /* This should be JSON format, i.e. elements separated with a comma */ 3256 seq_printf(s, "\"%s\": { ", c->name); 3257 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3258 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3259 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3260 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3261 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3262 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3263 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3264 phase = clk_core_get_phase(c); 3265 if (phase >= 0) 3266 seq_printf(s, "\"phase\": %d,", phase); 3267 seq_printf(s, "\"duty_cycle\": %u", 3268 clk_core_get_scaled_duty_cycle(c, 100000)); 3269 } 3270 3271 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3272 { 3273 struct clk_core *child; 3274 3275 clk_dump_one(s, c, level); 3276 3277 hlist_for_each_entry(child, &c->children, child_node) { 3278 seq_putc(s, ','); 3279 clk_dump_subtree(s, child, level + 1); 3280 } 3281 3282 seq_putc(s, '}'); 3283 } 3284 3285 static int clk_dump_show(struct seq_file *s, void *data) 3286 { 3287 struct clk_core *c; 3288 bool first_node = true; 3289 struct hlist_head **lists = s->private; 3290 3291 seq_putc(s, '{'); 3292 clk_prepare_lock(); 3293 3294 for (; *lists; lists++) { 3295 hlist_for_each_entry(c, *lists, child_node) { 3296 if (!first_node) 3297 seq_putc(s, ','); 3298 first_node = false; 3299 clk_dump_subtree(s, c, 0); 3300 } 3301 } 3302 3303 clk_prepare_unlock(); 3304 3305 seq_puts(s, "}\n"); 3306 return 0; 3307 } 3308 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3309 3310 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3311 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3312 /* 3313 * This can be dangerous, therefore don't provide any real compile time 3314 * configuration option for this feature. 3315 * People who want to use this will need to modify the source code directly. 3316 */ 3317 static int clk_rate_set(void *data, u64 val) 3318 { 3319 struct clk_core *core = data; 3320 int ret; 3321 3322 clk_prepare_lock(); 3323 ret = clk_core_set_rate_nolock(core, val); 3324 clk_prepare_unlock(); 3325 3326 return ret; 3327 } 3328 3329 #define clk_rate_mode 0644 3330 3331 static int clk_prepare_enable_set(void *data, u64 val) 3332 { 3333 struct clk_core *core = data; 3334 int ret = 0; 3335 3336 if (val) 3337 ret = clk_prepare_enable(core->hw->clk); 3338 else 3339 clk_disable_unprepare(core->hw->clk); 3340 3341 return ret; 3342 } 3343 3344 static int clk_prepare_enable_get(void *data, u64 *val) 3345 { 3346 struct clk_core *core = data; 3347 3348 *val = core->enable_count && core->prepare_count; 3349 return 0; 3350 } 3351 3352 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3353 clk_prepare_enable_set, "%llu\n"); 3354 3355 #else 3356 #define clk_rate_set NULL 3357 #define clk_rate_mode 0444 3358 #endif 3359 3360 static int clk_rate_get(void *data, u64 *val) 3361 { 3362 struct clk_core *core = data; 3363 3364 clk_prepare_lock(); 3365 *val = clk_core_get_rate_recalc(core); 3366 clk_prepare_unlock(); 3367 3368 return 0; 3369 } 3370 3371 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3372 3373 static const struct { 3374 unsigned long flag; 3375 const char *name; 3376 } clk_flags[] = { 3377 #define ENTRY(f) { f, #f } 3378 ENTRY(CLK_SET_RATE_GATE), 3379 ENTRY(CLK_SET_PARENT_GATE), 3380 ENTRY(CLK_SET_RATE_PARENT), 3381 ENTRY(CLK_IGNORE_UNUSED), 3382 ENTRY(CLK_GET_RATE_NOCACHE), 3383 ENTRY(CLK_SET_RATE_NO_REPARENT), 3384 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3385 ENTRY(CLK_RECALC_NEW_RATES), 3386 ENTRY(CLK_SET_RATE_UNGATE), 3387 ENTRY(CLK_IS_CRITICAL), 3388 ENTRY(CLK_OPS_PARENT_ENABLE), 3389 ENTRY(CLK_DUTY_CYCLE_PARENT), 3390 #undef ENTRY 3391 }; 3392 3393 static int clk_flags_show(struct seq_file *s, void *data) 3394 { 3395 struct clk_core *core = s->private; 3396 unsigned long flags = core->flags; 3397 unsigned int i; 3398 3399 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3400 if (flags & clk_flags[i].flag) { 3401 seq_printf(s, "%s\n", clk_flags[i].name); 3402 flags &= ~clk_flags[i].flag; 3403 } 3404 } 3405 if (flags) { 3406 /* Unknown flags */ 3407 seq_printf(s, "0x%lx\n", flags); 3408 } 3409 3410 return 0; 3411 } 3412 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3413 3414 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3415 unsigned int i, char terminator) 3416 { 3417 struct clk_core *parent; 3418 3419 /* 3420 * Go through the following options to fetch a parent's name. 3421 * 3422 * 1. Fetch the registered parent clock and use its name 3423 * 2. Use the global (fallback) name if specified 3424 * 3. Use the local fw_name if provided 3425 * 4. Fetch parent clock's clock-output-name if DT index was set 3426 * 3427 * This may still fail in some cases, such as when the parent is 3428 * specified directly via a struct clk_hw pointer, but it isn't 3429 * registered (yet). 3430 */ 3431 parent = clk_core_get_parent_by_index(core, i); 3432 if (parent) 3433 seq_puts(s, parent->name); 3434 else if (core->parents[i].name) 3435 seq_puts(s, core->parents[i].name); 3436 else if (core->parents[i].fw_name) 3437 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3438 else if (core->parents[i].index >= 0) 3439 seq_puts(s, 3440 of_clk_get_parent_name(core->of_node, 3441 core->parents[i].index)); 3442 else 3443 seq_puts(s, "(missing)"); 3444 3445 seq_putc(s, terminator); 3446 } 3447 3448 static int possible_parents_show(struct seq_file *s, void *data) 3449 { 3450 struct clk_core *core = s->private; 3451 int i; 3452 3453 for (i = 0; i < core->num_parents - 1; i++) 3454 possible_parent_show(s, core, i, ' '); 3455 3456 possible_parent_show(s, core, i, '\n'); 3457 3458 return 0; 3459 } 3460 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3461 3462 static int current_parent_show(struct seq_file *s, void *data) 3463 { 3464 struct clk_core *core = s->private; 3465 3466 if (core->parent) 3467 seq_printf(s, "%s\n", core->parent->name); 3468 3469 return 0; 3470 } 3471 DEFINE_SHOW_ATTRIBUTE(current_parent); 3472 3473 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3474 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3475 size_t count, loff_t *ppos) 3476 { 3477 struct seq_file *s = file->private_data; 3478 struct clk_core *core = s->private; 3479 struct clk_core *parent; 3480 u8 idx; 3481 int err; 3482 3483 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3484 if (err < 0) 3485 return err; 3486 3487 parent = clk_core_get_parent_by_index(core, idx); 3488 if (!parent) 3489 return -ENOENT; 3490 3491 clk_prepare_lock(); 3492 err = clk_core_set_parent_nolock(core, parent); 3493 clk_prepare_unlock(); 3494 if (err) 3495 return err; 3496 3497 return count; 3498 } 3499 3500 static const struct file_operations current_parent_rw_fops = { 3501 .open = current_parent_open, 3502 .write = current_parent_write, 3503 .read = seq_read, 3504 .llseek = seq_lseek, 3505 .release = single_release, 3506 }; 3507 #endif 3508 3509 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3510 { 3511 struct clk_core *core = s->private; 3512 struct clk_duty *duty = &core->duty; 3513 3514 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3515 3516 return 0; 3517 } 3518 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3519 3520 static int clk_min_rate_show(struct seq_file *s, void *data) 3521 { 3522 struct clk_core *core = s->private; 3523 unsigned long min_rate, max_rate; 3524 3525 clk_prepare_lock(); 3526 clk_core_get_boundaries(core, &min_rate, &max_rate); 3527 clk_prepare_unlock(); 3528 seq_printf(s, "%lu\n", min_rate); 3529 3530 return 0; 3531 } 3532 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3533 3534 static int clk_max_rate_show(struct seq_file *s, void *data) 3535 { 3536 struct clk_core *core = s->private; 3537 unsigned long min_rate, max_rate; 3538 3539 clk_prepare_lock(); 3540 clk_core_get_boundaries(core, &min_rate, &max_rate); 3541 clk_prepare_unlock(); 3542 seq_printf(s, "%lu\n", max_rate); 3543 3544 return 0; 3545 } 3546 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3547 3548 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3549 { 3550 struct dentry *root; 3551 3552 if (!core || !pdentry) 3553 return; 3554 3555 root = debugfs_create_dir(core->name, pdentry); 3556 core->dentry = root; 3557 3558 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3559 &clk_rate_fops); 3560 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3561 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3562 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3563 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3564 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3565 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3566 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3567 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3568 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3569 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3570 &clk_duty_cycle_fops); 3571 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3572 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3573 &clk_prepare_enable_fops); 3574 3575 if (core->num_parents > 1) 3576 debugfs_create_file("clk_parent", 0644, root, core, 3577 ¤t_parent_rw_fops); 3578 else 3579 #endif 3580 if (core->num_parents > 0) 3581 debugfs_create_file("clk_parent", 0444, root, core, 3582 ¤t_parent_fops); 3583 3584 if (core->num_parents > 1) 3585 debugfs_create_file("clk_possible_parents", 0444, root, core, 3586 &possible_parents_fops); 3587 3588 if (core->ops->debug_init) 3589 core->ops->debug_init(core->hw, core->dentry); 3590 } 3591 3592 /** 3593 * clk_debug_register - add a clk node to the debugfs clk directory 3594 * @core: the clk being added to the debugfs clk directory 3595 * 3596 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3597 * initialized. Otherwise it bails out early since the debugfs clk directory 3598 * will be created lazily by clk_debug_init as part of a late_initcall. 3599 */ 3600 static void clk_debug_register(struct clk_core *core) 3601 { 3602 mutex_lock(&clk_debug_lock); 3603 hlist_add_head(&core->debug_node, &clk_debug_list); 3604 if (inited) 3605 clk_debug_create_one(core, rootdir); 3606 mutex_unlock(&clk_debug_lock); 3607 } 3608 3609 /** 3610 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3611 * @core: the clk being removed from the debugfs clk directory 3612 * 3613 * Dynamically removes a clk and all its child nodes from the 3614 * debugfs clk directory if clk->dentry points to debugfs created by 3615 * clk_debug_register in __clk_core_init. 3616 */ 3617 static void clk_debug_unregister(struct clk_core *core) 3618 { 3619 mutex_lock(&clk_debug_lock); 3620 hlist_del_init(&core->debug_node); 3621 debugfs_remove_recursive(core->dentry); 3622 core->dentry = NULL; 3623 mutex_unlock(&clk_debug_lock); 3624 } 3625 3626 /** 3627 * clk_debug_init - lazily populate the debugfs clk directory 3628 * 3629 * clks are often initialized very early during boot before memory can be 3630 * dynamically allocated and well before debugfs is setup. This function 3631 * populates the debugfs clk directory once at boot-time when we know that 3632 * debugfs is setup. It should only be called once at boot-time, all other clks 3633 * added dynamically will be done so with clk_debug_register. 3634 */ 3635 static int __init clk_debug_init(void) 3636 { 3637 struct clk_core *core; 3638 3639 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3640 pr_warn("\n"); 3641 pr_warn("********************************************************************\n"); 3642 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3643 pr_warn("** **\n"); 3644 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3645 pr_warn("** **\n"); 3646 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3647 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3648 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3649 pr_warn("** **\n"); 3650 pr_warn("** If you see this message and you are not debugging the **\n"); 3651 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3652 pr_warn("** **\n"); 3653 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3654 pr_warn("********************************************************************\n"); 3655 #endif 3656 3657 rootdir = debugfs_create_dir("clk", NULL); 3658 3659 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3660 &clk_summary_fops); 3661 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3662 &clk_dump_fops); 3663 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3664 &clk_summary_fops); 3665 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3666 &clk_dump_fops); 3667 3668 mutex_lock(&clk_debug_lock); 3669 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3670 clk_debug_create_one(core, rootdir); 3671 3672 inited = 1; 3673 mutex_unlock(&clk_debug_lock); 3674 3675 return 0; 3676 } 3677 late_initcall(clk_debug_init); 3678 #else 3679 static inline void clk_debug_register(struct clk_core *core) { } 3680 static inline void clk_debug_unregister(struct clk_core *core) 3681 { 3682 } 3683 #endif 3684 3685 static void clk_core_reparent_orphans_nolock(void) 3686 { 3687 struct clk_core *orphan; 3688 struct hlist_node *tmp2; 3689 3690 /* 3691 * walk the list of orphan clocks and reparent any that newly finds a 3692 * parent. 3693 */ 3694 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3695 struct clk_core *parent = __clk_init_parent(orphan); 3696 3697 /* 3698 * We need to use __clk_set_parent_before() and _after() to 3699 * properly migrate any prepare/enable count of the orphan 3700 * clock. This is important for CLK_IS_CRITICAL clocks, which 3701 * are enabled during init but might not have a parent yet. 3702 */ 3703 if (parent) { 3704 /* update the clk tree topology */ 3705 __clk_set_parent_before(orphan, parent); 3706 __clk_set_parent_after(orphan, parent, NULL); 3707 __clk_recalc_accuracies(orphan); 3708 __clk_recalc_rates(orphan, true, 0); 3709 3710 /* 3711 * __clk_init_parent() will set the initial req_rate to 3712 * 0 if the clock doesn't have clk_ops::recalc_rate and 3713 * is an orphan when it's registered. 3714 * 3715 * 'req_rate' is used by clk_set_rate_range() and 3716 * clk_put() to trigger a clk_set_rate() call whenever 3717 * the boundaries are modified. Let's make sure 3718 * 'req_rate' is set to something non-zero so that 3719 * clk_set_rate_range() doesn't drop the frequency. 3720 */ 3721 orphan->req_rate = orphan->rate; 3722 } 3723 } 3724 } 3725 3726 /** 3727 * __clk_core_init - initialize the data structures in a struct clk_core 3728 * @core: clk_core being initialized 3729 * 3730 * Initializes the lists in struct clk_core, queries the hardware for the 3731 * parent and rate and sets them both. 3732 */ 3733 static int __clk_core_init(struct clk_core *core) 3734 { 3735 int ret; 3736 struct clk_core *parent; 3737 unsigned long rate; 3738 int phase; 3739 3740 clk_prepare_lock(); 3741 3742 /* 3743 * Set hw->core after grabbing the prepare_lock to synchronize with 3744 * callers of clk_core_fill_parent_index() where we treat hw->core 3745 * being NULL as the clk not being registered yet. This is crucial so 3746 * that clks aren't parented until their parent is fully registered. 3747 */ 3748 core->hw->core = core; 3749 3750 ret = clk_pm_runtime_get(core); 3751 if (ret) 3752 goto unlock; 3753 3754 /* check to see if a clock with this name is already registered */ 3755 if (clk_core_lookup(core->name)) { 3756 pr_debug("%s: clk %s already initialized\n", 3757 __func__, core->name); 3758 ret = -EEXIST; 3759 goto out; 3760 } 3761 3762 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3763 if (core->ops->set_rate && 3764 !((core->ops->round_rate || core->ops->determine_rate) && 3765 core->ops->recalc_rate)) { 3766 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3767 __func__, core->name); 3768 ret = -EINVAL; 3769 goto out; 3770 } 3771 3772 if (core->ops->set_parent && !core->ops->get_parent) { 3773 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3774 __func__, core->name); 3775 ret = -EINVAL; 3776 goto out; 3777 } 3778 3779 if (core->num_parents > 1 && !core->ops->get_parent) { 3780 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3781 __func__, core->name); 3782 ret = -EINVAL; 3783 goto out; 3784 } 3785 3786 if (core->ops->set_rate_and_parent && 3787 !(core->ops->set_parent && core->ops->set_rate)) { 3788 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3789 __func__, core->name); 3790 ret = -EINVAL; 3791 goto out; 3792 } 3793 3794 /* 3795 * optional platform-specific magic 3796 * 3797 * The .init callback is not used by any of the basic clock types, but 3798 * exists for weird hardware that must perform initialization magic for 3799 * CCF to get an accurate view of clock for any other callbacks. It may 3800 * also be used needs to perform dynamic allocations. Such allocation 3801 * must be freed in the terminate() callback. 3802 * This callback shall not be used to initialize the parameters state, 3803 * such as rate, parent, etc ... 3804 * 3805 * If it exist, this callback should called before any other callback of 3806 * the clock 3807 */ 3808 if (core->ops->init) { 3809 ret = core->ops->init(core->hw); 3810 if (ret) 3811 goto out; 3812 } 3813 3814 parent = core->parent = __clk_init_parent(core); 3815 3816 /* 3817 * Populate core->parent if parent has already been clk_core_init'd. If 3818 * parent has not yet been clk_core_init'd then place clk in the orphan 3819 * list. If clk doesn't have any parents then place it in the root 3820 * clk list. 3821 * 3822 * Every time a new clk is clk_init'd then we walk the list of orphan 3823 * clocks and re-parent any that are children of the clock currently 3824 * being clk_init'd. 3825 */ 3826 if (parent) { 3827 hlist_add_head(&core->child_node, &parent->children); 3828 core->orphan = parent->orphan; 3829 } else if (!core->num_parents) { 3830 hlist_add_head(&core->child_node, &clk_root_list); 3831 core->orphan = false; 3832 } else { 3833 hlist_add_head(&core->child_node, &clk_orphan_list); 3834 core->orphan = true; 3835 } 3836 3837 /* 3838 * Set clk's accuracy. The preferred method is to use 3839 * .recalc_accuracy. For simple clocks and lazy developers the default 3840 * fallback is to use the parent's accuracy. If a clock doesn't have a 3841 * parent (or is orphaned) then accuracy is set to zero (perfect 3842 * clock). 3843 */ 3844 if (core->ops->recalc_accuracy) 3845 core->accuracy = core->ops->recalc_accuracy(core->hw, 3846 clk_core_get_accuracy_no_lock(parent)); 3847 else if (parent) 3848 core->accuracy = parent->accuracy; 3849 else 3850 core->accuracy = 0; 3851 3852 /* 3853 * Set clk's phase by clk_core_get_phase() caching the phase. 3854 * Since a phase is by definition relative to its parent, just 3855 * query the current clock phase, or just assume it's in phase. 3856 */ 3857 phase = clk_core_get_phase(core); 3858 if (phase < 0) { 3859 ret = phase; 3860 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3861 core->name); 3862 goto out; 3863 } 3864 3865 /* 3866 * Set clk's duty cycle. 3867 */ 3868 clk_core_update_duty_cycle_nolock(core); 3869 3870 /* 3871 * Set clk's rate. The preferred method is to use .recalc_rate. For 3872 * simple clocks and lazy developers the default fallback is to use the 3873 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3874 * then rate is set to zero. 3875 */ 3876 if (core->ops->recalc_rate) 3877 rate = core->ops->recalc_rate(core->hw, 3878 clk_core_get_rate_nolock(parent)); 3879 else if (parent) 3880 rate = parent->rate; 3881 else 3882 rate = 0; 3883 core->rate = core->req_rate = rate; 3884 3885 /* 3886 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3887 * don't get accidentally disabled when walking the orphan tree and 3888 * reparenting clocks 3889 */ 3890 if (core->flags & CLK_IS_CRITICAL) { 3891 ret = clk_core_prepare(core); 3892 if (ret) { 3893 pr_warn("%s: critical clk '%s' failed to prepare\n", 3894 __func__, core->name); 3895 goto out; 3896 } 3897 3898 ret = clk_core_enable_lock(core); 3899 if (ret) { 3900 pr_warn("%s: critical clk '%s' failed to enable\n", 3901 __func__, core->name); 3902 clk_core_unprepare(core); 3903 goto out; 3904 } 3905 } 3906 3907 clk_core_reparent_orphans_nolock(); 3908 3909 kref_init(&core->ref); 3910 out: 3911 clk_pm_runtime_put(core); 3912 unlock: 3913 if (ret) { 3914 hlist_del_init(&core->child_node); 3915 core->hw->core = NULL; 3916 } 3917 3918 clk_prepare_unlock(); 3919 3920 if (!ret) 3921 clk_debug_register(core); 3922 3923 return ret; 3924 } 3925 3926 /** 3927 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3928 * @core: clk to add consumer to 3929 * @clk: consumer to link to a clk 3930 */ 3931 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3932 { 3933 clk_prepare_lock(); 3934 hlist_add_head(&clk->clks_node, &core->clks); 3935 clk_prepare_unlock(); 3936 } 3937 3938 /** 3939 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3940 * @clk: consumer to unlink 3941 */ 3942 static void clk_core_unlink_consumer(struct clk *clk) 3943 { 3944 lockdep_assert_held(&prepare_lock); 3945 hlist_del(&clk->clks_node); 3946 } 3947 3948 /** 3949 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3950 * @core: clk to allocate a consumer for 3951 * @dev_id: string describing device name 3952 * @con_id: connection ID string on device 3953 * 3954 * Returns: clk consumer left unlinked from the consumer list 3955 */ 3956 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3957 const char *con_id) 3958 { 3959 struct clk *clk; 3960 3961 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3962 if (!clk) 3963 return ERR_PTR(-ENOMEM); 3964 3965 clk->core = core; 3966 clk->dev_id = dev_id; 3967 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3968 clk->max_rate = ULONG_MAX; 3969 3970 return clk; 3971 } 3972 3973 /** 3974 * free_clk - Free a clk consumer 3975 * @clk: clk consumer to free 3976 * 3977 * Note, this assumes the clk has been unlinked from the clk_core consumer 3978 * list. 3979 */ 3980 static void free_clk(struct clk *clk) 3981 { 3982 kfree_const(clk->con_id); 3983 kfree(clk); 3984 } 3985 3986 /** 3987 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3988 * a clk_hw 3989 * @dev: clk consumer device 3990 * @hw: clk_hw associated with the clk being consumed 3991 * @dev_id: string describing device name 3992 * @con_id: connection ID string on device 3993 * 3994 * This is the main function used to create a clk pointer for use by clk 3995 * consumers. It connects a consumer to the clk_core and clk_hw structures 3996 * used by the framework and clk provider respectively. 3997 */ 3998 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3999 const char *dev_id, const char *con_id) 4000 { 4001 struct clk *clk; 4002 struct clk_core *core; 4003 4004 /* This is to allow this function to be chained to others */ 4005 if (IS_ERR_OR_NULL(hw)) 4006 return ERR_CAST(hw); 4007 4008 core = hw->core; 4009 clk = alloc_clk(core, dev_id, con_id); 4010 if (IS_ERR(clk)) 4011 return clk; 4012 clk->dev = dev; 4013 4014 if (!try_module_get(core->owner)) { 4015 free_clk(clk); 4016 return ERR_PTR(-ENOENT); 4017 } 4018 4019 kref_get(&core->ref); 4020 clk_core_link_consumer(core, clk); 4021 4022 return clk; 4023 } 4024 4025 /** 4026 * clk_hw_get_clk - get clk consumer given an clk_hw 4027 * @hw: clk_hw associated with the clk being consumed 4028 * @con_id: connection ID string on device 4029 * 4030 * Returns: new clk consumer 4031 * This is the function to be used by providers which need 4032 * to get a consumer clk and act on the clock element 4033 * Calls to this function must be balanced with calls clk_put() 4034 */ 4035 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4036 { 4037 struct device *dev = hw->core->dev; 4038 const char *name = dev ? dev_name(dev) : NULL; 4039 4040 return clk_hw_create_clk(dev, hw, name, con_id); 4041 } 4042 EXPORT_SYMBOL(clk_hw_get_clk); 4043 4044 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4045 { 4046 const char *dst; 4047 4048 if (!src) { 4049 if (must_exist) 4050 return -EINVAL; 4051 return 0; 4052 } 4053 4054 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4055 if (!dst) 4056 return -ENOMEM; 4057 4058 return 0; 4059 } 4060 4061 static int clk_core_populate_parent_map(struct clk_core *core, 4062 const struct clk_init_data *init) 4063 { 4064 u8 num_parents = init->num_parents; 4065 const char * const *parent_names = init->parent_names; 4066 const struct clk_hw **parent_hws = init->parent_hws; 4067 const struct clk_parent_data *parent_data = init->parent_data; 4068 int i, ret = 0; 4069 struct clk_parent_map *parents, *parent; 4070 4071 if (!num_parents) 4072 return 0; 4073 4074 /* 4075 * Avoid unnecessary string look-ups of clk_core's possible parents by 4076 * having a cache of names/clk_hw pointers to clk_core pointers. 4077 */ 4078 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4079 core->parents = parents; 4080 if (!parents) 4081 return -ENOMEM; 4082 4083 /* Copy everything over because it might be __initdata */ 4084 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4085 parent->index = -1; 4086 if (parent_names) { 4087 /* throw a WARN if any entries are NULL */ 4088 WARN(!parent_names[i], 4089 "%s: invalid NULL in %s's .parent_names\n", 4090 __func__, core->name); 4091 ret = clk_cpy_name(&parent->name, parent_names[i], 4092 true); 4093 } else if (parent_data) { 4094 parent->hw = parent_data[i].hw; 4095 parent->index = parent_data[i].index; 4096 ret = clk_cpy_name(&parent->fw_name, 4097 parent_data[i].fw_name, false); 4098 if (!ret) 4099 ret = clk_cpy_name(&parent->name, 4100 parent_data[i].name, 4101 false); 4102 } else if (parent_hws) { 4103 parent->hw = parent_hws[i]; 4104 } else { 4105 ret = -EINVAL; 4106 WARN(1, "Must specify parents if num_parents > 0\n"); 4107 } 4108 4109 if (ret) { 4110 do { 4111 kfree_const(parents[i].name); 4112 kfree_const(parents[i].fw_name); 4113 } while (--i >= 0); 4114 kfree(parents); 4115 4116 return ret; 4117 } 4118 } 4119 4120 return 0; 4121 } 4122 4123 static void clk_core_free_parent_map(struct clk_core *core) 4124 { 4125 int i = core->num_parents; 4126 4127 if (!core->num_parents) 4128 return; 4129 4130 while (--i >= 0) { 4131 kfree_const(core->parents[i].name); 4132 kfree_const(core->parents[i].fw_name); 4133 } 4134 4135 kfree(core->parents); 4136 } 4137 4138 static struct clk * 4139 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4140 { 4141 int ret; 4142 struct clk_core *core; 4143 const struct clk_init_data *init = hw->init; 4144 4145 /* 4146 * The init data is not supposed to be used outside of registration path. 4147 * Set it to NULL so that provider drivers can't use it either and so that 4148 * we catch use of hw->init early on in the core. 4149 */ 4150 hw->init = NULL; 4151 4152 core = kzalloc(sizeof(*core), GFP_KERNEL); 4153 if (!core) { 4154 ret = -ENOMEM; 4155 goto fail_out; 4156 } 4157 4158 core->name = kstrdup_const(init->name, GFP_KERNEL); 4159 if (!core->name) { 4160 ret = -ENOMEM; 4161 goto fail_name; 4162 } 4163 4164 if (WARN_ON(!init->ops)) { 4165 ret = -EINVAL; 4166 goto fail_ops; 4167 } 4168 core->ops = init->ops; 4169 4170 if (dev && pm_runtime_enabled(dev)) 4171 core->rpm_enabled = true; 4172 core->dev = dev; 4173 core->of_node = np; 4174 if (dev && dev->driver) 4175 core->owner = dev->driver->owner; 4176 core->hw = hw; 4177 core->flags = init->flags; 4178 core->num_parents = init->num_parents; 4179 core->min_rate = 0; 4180 core->max_rate = ULONG_MAX; 4181 4182 ret = clk_core_populate_parent_map(core, init); 4183 if (ret) 4184 goto fail_parents; 4185 4186 INIT_HLIST_HEAD(&core->clks); 4187 4188 /* 4189 * Don't call clk_hw_create_clk() here because that would pin the 4190 * provider module to itself and prevent it from ever being removed. 4191 */ 4192 hw->clk = alloc_clk(core, NULL, NULL); 4193 if (IS_ERR(hw->clk)) { 4194 ret = PTR_ERR(hw->clk); 4195 goto fail_create_clk; 4196 } 4197 4198 clk_core_link_consumer(core, hw->clk); 4199 4200 ret = __clk_core_init(core); 4201 if (!ret) 4202 return hw->clk; 4203 4204 clk_prepare_lock(); 4205 clk_core_unlink_consumer(hw->clk); 4206 clk_prepare_unlock(); 4207 4208 free_clk(hw->clk); 4209 hw->clk = NULL; 4210 4211 fail_create_clk: 4212 clk_core_free_parent_map(core); 4213 fail_parents: 4214 fail_ops: 4215 kfree_const(core->name); 4216 fail_name: 4217 kfree(core); 4218 fail_out: 4219 return ERR_PTR(ret); 4220 } 4221 4222 /** 4223 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4224 * @dev: Device to get device node of 4225 * 4226 * Return: device node pointer of @dev, or the device node pointer of 4227 * @dev->parent if dev doesn't have a device node, or NULL if neither 4228 * @dev or @dev->parent have a device node. 4229 */ 4230 static struct device_node *dev_or_parent_of_node(struct device *dev) 4231 { 4232 struct device_node *np; 4233 4234 if (!dev) 4235 return NULL; 4236 4237 np = dev_of_node(dev); 4238 if (!np) 4239 np = dev_of_node(dev->parent); 4240 4241 return np; 4242 } 4243 4244 /** 4245 * clk_register - allocate a new clock, register it and return an opaque cookie 4246 * @dev: device that is registering this clock 4247 * @hw: link to hardware-specific clock data 4248 * 4249 * clk_register is the *deprecated* interface for populating the clock tree with 4250 * new clock nodes. Use clk_hw_register() instead. 4251 * 4252 * Returns: a pointer to the newly allocated struct clk which 4253 * cannot be dereferenced by driver code but may be used in conjunction with the 4254 * rest of the clock API. In the event of an error clk_register will return an 4255 * error code; drivers must test for an error code after calling clk_register. 4256 */ 4257 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4258 { 4259 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4260 } 4261 EXPORT_SYMBOL_GPL(clk_register); 4262 4263 /** 4264 * clk_hw_register - register a clk_hw and return an error code 4265 * @dev: device that is registering this clock 4266 * @hw: link to hardware-specific clock data 4267 * 4268 * clk_hw_register is the primary interface for populating the clock tree with 4269 * new clock nodes. It returns an integer equal to zero indicating success or 4270 * less than zero indicating failure. Drivers must test for an error code after 4271 * calling clk_hw_register(). 4272 */ 4273 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4274 { 4275 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4276 hw)); 4277 } 4278 EXPORT_SYMBOL_GPL(clk_hw_register); 4279 4280 /* 4281 * of_clk_hw_register - register a clk_hw and return an error code 4282 * @node: device_node of device that is registering this clock 4283 * @hw: link to hardware-specific clock data 4284 * 4285 * of_clk_hw_register() is the primary interface for populating the clock tree 4286 * with new clock nodes when a struct device is not available, but a struct 4287 * device_node is. It returns an integer equal to zero indicating success or 4288 * less than zero indicating failure. Drivers must test for an error code after 4289 * calling of_clk_hw_register(). 4290 */ 4291 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4292 { 4293 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4294 } 4295 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4296 4297 /* Free memory allocated for a clock. */ 4298 static void __clk_release(struct kref *ref) 4299 { 4300 struct clk_core *core = container_of(ref, struct clk_core, ref); 4301 4302 lockdep_assert_held(&prepare_lock); 4303 4304 clk_core_free_parent_map(core); 4305 kfree_const(core->name); 4306 kfree(core); 4307 } 4308 4309 /* 4310 * Empty clk_ops for unregistered clocks. These are used temporarily 4311 * after clk_unregister() was called on a clock and until last clock 4312 * consumer calls clk_put() and the struct clk object is freed. 4313 */ 4314 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4315 { 4316 return -ENXIO; 4317 } 4318 4319 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4320 { 4321 WARN_ON_ONCE(1); 4322 } 4323 4324 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4325 unsigned long parent_rate) 4326 { 4327 return -ENXIO; 4328 } 4329 4330 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4331 { 4332 return -ENXIO; 4333 } 4334 4335 static int clk_nodrv_determine_rate(struct clk_hw *hw, 4336 struct clk_rate_request *req) 4337 { 4338 return -ENXIO; 4339 } 4340 4341 static const struct clk_ops clk_nodrv_ops = { 4342 .enable = clk_nodrv_prepare_enable, 4343 .disable = clk_nodrv_disable_unprepare, 4344 .prepare = clk_nodrv_prepare_enable, 4345 .unprepare = clk_nodrv_disable_unprepare, 4346 .determine_rate = clk_nodrv_determine_rate, 4347 .set_rate = clk_nodrv_set_rate, 4348 .set_parent = clk_nodrv_set_parent, 4349 }; 4350 4351 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4352 const struct clk_core *target) 4353 { 4354 int i; 4355 struct clk_core *child; 4356 4357 for (i = 0; i < root->num_parents; i++) 4358 if (root->parents[i].core == target) 4359 root->parents[i].core = NULL; 4360 4361 hlist_for_each_entry(child, &root->children, child_node) 4362 clk_core_evict_parent_cache_subtree(child, target); 4363 } 4364 4365 /* Remove this clk from all parent caches */ 4366 static void clk_core_evict_parent_cache(struct clk_core *core) 4367 { 4368 const struct hlist_head **lists; 4369 struct clk_core *root; 4370 4371 lockdep_assert_held(&prepare_lock); 4372 4373 for (lists = all_lists; *lists; lists++) 4374 hlist_for_each_entry(root, *lists, child_node) 4375 clk_core_evict_parent_cache_subtree(root, core); 4376 4377 } 4378 4379 /** 4380 * clk_unregister - unregister a currently registered clock 4381 * @clk: clock to unregister 4382 */ 4383 void clk_unregister(struct clk *clk) 4384 { 4385 unsigned long flags; 4386 const struct clk_ops *ops; 4387 4388 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4389 return; 4390 4391 clk_debug_unregister(clk->core); 4392 4393 clk_prepare_lock(); 4394 4395 ops = clk->core->ops; 4396 if (ops == &clk_nodrv_ops) { 4397 pr_err("%s: unregistered clock: %s\n", __func__, 4398 clk->core->name); 4399 goto unlock; 4400 } 4401 /* 4402 * Assign empty clock ops for consumers that might still hold 4403 * a reference to this clock. 4404 */ 4405 flags = clk_enable_lock(); 4406 clk->core->ops = &clk_nodrv_ops; 4407 clk_enable_unlock(flags); 4408 4409 if (ops->terminate) 4410 ops->terminate(clk->core->hw); 4411 4412 if (!hlist_empty(&clk->core->children)) { 4413 struct clk_core *child; 4414 struct hlist_node *t; 4415 4416 /* Reparent all children to the orphan list. */ 4417 hlist_for_each_entry_safe(child, t, &clk->core->children, 4418 child_node) 4419 clk_core_set_parent_nolock(child, NULL); 4420 } 4421 4422 clk_core_evict_parent_cache(clk->core); 4423 4424 hlist_del_init(&clk->core->child_node); 4425 4426 if (clk->core->prepare_count) 4427 pr_warn("%s: unregistering prepared clock: %s\n", 4428 __func__, clk->core->name); 4429 4430 if (clk->core->protect_count) 4431 pr_warn("%s: unregistering protected clock: %s\n", 4432 __func__, clk->core->name); 4433 4434 kref_put(&clk->core->ref, __clk_release); 4435 free_clk(clk); 4436 unlock: 4437 clk_prepare_unlock(); 4438 } 4439 EXPORT_SYMBOL_GPL(clk_unregister); 4440 4441 /** 4442 * clk_hw_unregister - unregister a currently registered clk_hw 4443 * @hw: hardware-specific clock data to unregister 4444 */ 4445 void clk_hw_unregister(struct clk_hw *hw) 4446 { 4447 clk_unregister(hw->clk); 4448 } 4449 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4450 4451 static void devm_clk_unregister_cb(struct device *dev, void *res) 4452 { 4453 clk_unregister(*(struct clk **)res); 4454 } 4455 4456 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4457 { 4458 clk_hw_unregister(*(struct clk_hw **)res); 4459 } 4460 4461 /** 4462 * devm_clk_register - resource managed clk_register() 4463 * @dev: device that is registering this clock 4464 * @hw: link to hardware-specific clock data 4465 * 4466 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4467 * 4468 * Clocks returned from this function are automatically clk_unregister()ed on 4469 * driver detach. See clk_register() for more information. 4470 */ 4471 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4472 { 4473 struct clk *clk; 4474 struct clk **clkp; 4475 4476 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4477 if (!clkp) 4478 return ERR_PTR(-ENOMEM); 4479 4480 clk = clk_register(dev, hw); 4481 if (!IS_ERR(clk)) { 4482 *clkp = clk; 4483 devres_add(dev, clkp); 4484 } else { 4485 devres_free(clkp); 4486 } 4487 4488 return clk; 4489 } 4490 EXPORT_SYMBOL_GPL(devm_clk_register); 4491 4492 /** 4493 * devm_clk_hw_register - resource managed clk_hw_register() 4494 * @dev: device that is registering this clock 4495 * @hw: link to hardware-specific clock data 4496 * 4497 * Managed clk_hw_register(). Clocks registered by this function are 4498 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4499 * for more information. 4500 */ 4501 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4502 { 4503 struct clk_hw **hwp; 4504 int ret; 4505 4506 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4507 if (!hwp) 4508 return -ENOMEM; 4509 4510 ret = clk_hw_register(dev, hw); 4511 if (!ret) { 4512 *hwp = hw; 4513 devres_add(dev, hwp); 4514 } else { 4515 devres_free(hwp); 4516 } 4517 4518 return ret; 4519 } 4520 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4521 4522 static void devm_clk_release(struct device *dev, void *res) 4523 { 4524 clk_put(*(struct clk **)res); 4525 } 4526 4527 /** 4528 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4529 * @dev: device that is registering this clock 4530 * @hw: clk_hw associated with the clk being consumed 4531 * @con_id: connection ID string on device 4532 * 4533 * Managed clk_hw_get_clk(). Clocks got with this function are 4534 * automatically clk_put() on driver detach. See clk_put() 4535 * for more information. 4536 */ 4537 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4538 const char *con_id) 4539 { 4540 struct clk *clk; 4541 struct clk **clkp; 4542 4543 /* This should not happen because it would mean we have drivers 4544 * passing around clk_hw pointers instead of having the caller use 4545 * proper clk_get() style APIs 4546 */ 4547 WARN_ON_ONCE(dev != hw->core->dev); 4548 4549 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4550 if (!clkp) 4551 return ERR_PTR(-ENOMEM); 4552 4553 clk = clk_hw_get_clk(hw, con_id); 4554 if (!IS_ERR(clk)) { 4555 *clkp = clk; 4556 devres_add(dev, clkp); 4557 } else { 4558 devres_free(clkp); 4559 } 4560 4561 return clk; 4562 } 4563 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4564 4565 /* 4566 * clkdev helpers 4567 */ 4568 4569 void __clk_put(struct clk *clk) 4570 { 4571 struct module *owner; 4572 4573 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4574 return; 4575 4576 clk_prepare_lock(); 4577 4578 /* 4579 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4580 * given user should be balanced with calls to clk_rate_exclusive_put() 4581 * and by that same consumer 4582 */ 4583 if (WARN_ON(clk->exclusive_count)) { 4584 /* We voiced our concern, let's sanitize the situation */ 4585 clk->core->protect_count -= (clk->exclusive_count - 1); 4586 clk_core_rate_unprotect(clk->core); 4587 clk->exclusive_count = 0; 4588 } 4589 4590 hlist_del(&clk->clks_node); 4591 4592 /* If we had any boundaries on that clock, let's drop them. */ 4593 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4594 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4595 4596 owner = clk->core->owner; 4597 kref_put(&clk->core->ref, __clk_release); 4598 4599 clk_prepare_unlock(); 4600 4601 module_put(owner); 4602 4603 free_clk(clk); 4604 } 4605 4606 /*** clk rate change notifiers ***/ 4607 4608 /** 4609 * clk_notifier_register - add a clk rate change notifier 4610 * @clk: struct clk * to watch 4611 * @nb: struct notifier_block * with callback info 4612 * 4613 * Request notification when clk's rate changes. This uses an SRCU 4614 * notifier because we want it to block and notifier unregistrations are 4615 * uncommon. The callbacks associated with the notifier must not 4616 * re-enter into the clk framework by calling any top-level clk APIs; 4617 * this will cause a nested prepare_lock mutex. 4618 * 4619 * In all notification cases (pre, post and abort rate change) the original 4620 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4621 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4622 * 4623 * clk_notifier_register() must be called from non-atomic context. 4624 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4625 * allocation failure; otherwise, passes along the return value of 4626 * srcu_notifier_chain_register(). 4627 */ 4628 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4629 { 4630 struct clk_notifier *cn; 4631 int ret = -ENOMEM; 4632 4633 if (!clk || !nb) 4634 return -EINVAL; 4635 4636 clk_prepare_lock(); 4637 4638 /* search the list of notifiers for this clk */ 4639 list_for_each_entry(cn, &clk_notifier_list, node) 4640 if (cn->clk == clk) 4641 goto found; 4642 4643 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4644 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4645 if (!cn) 4646 goto out; 4647 4648 cn->clk = clk; 4649 srcu_init_notifier_head(&cn->notifier_head); 4650 4651 list_add(&cn->node, &clk_notifier_list); 4652 4653 found: 4654 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4655 4656 clk->core->notifier_count++; 4657 4658 out: 4659 clk_prepare_unlock(); 4660 4661 return ret; 4662 } 4663 EXPORT_SYMBOL_GPL(clk_notifier_register); 4664 4665 /** 4666 * clk_notifier_unregister - remove a clk rate change notifier 4667 * @clk: struct clk * 4668 * @nb: struct notifier_block * with callback info 4669 * 4670 * Request no further notification for changes to 'clk' and frees memory 4671 * allocated in clk_notifier_register. 4672 * 4673 * Returns -EINVAL if called with null arguments; otherwise, passes 4674 * along the return value of srcu_notifier_chain_unregister(). 4675 */ 4676 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4677 { 4678 struct clk_notifier *cn; 4679 int ret = -ENOENT; 4680 4681 if (!clk || !nb) 4682 return -EINVAL; 4683 4684 clk_prepare_lock(); 4685 4686 list_for_each_entry(cn, &clk_notifier_list, node) { 4687 if (cn->clk == clk) { 4688 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4689 4690 clk->core->notifier_count--; 4691 4692 /* XXX the notifier code should handle this better */ 4693 if (!cn->notifier_head.head) { 4694 srcu_cleanup_notifier_head(&cn->notifier_head); 4695 list_del(&cn->node); 4696 kfree(cn); 4697 } 4698 break; 4699 } 4700 } 4701 4702 clk_prepare_unlock(); 4703 4704 return ret; 4705 } 4706 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4707 4708 struct clk_notifier_devres { 4709 struct clk *clk; 4710 struct notifier_block *nb; 4711 }; 4712 4713 static void devm_clk_notifier_release(struct device *dev, void *res) 4714 { 4715 struct clk_notifier_devres *devres = res; 4716 4717 clk_notifier_unregister(devres->clk, devres->nb); 4718 } 4719 4720 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4721 struct notifier_block *nb) 4722 { 4723 struct clk_notifier_devres *devres; 4724 int ret; 4725 4726 devres = devres_alloc(devm_clk_notifier_release, 4727 sizeof(*devres), GFP_KERNEL); 4728 4729 if (!devres) 4730 return -ENOMEM; 4731 4732 ret = clk_notifier_register(clk, nb); 4733 if (!ret) { 4734 devres->clk = clk; 4735 devres->nb = nb; 4736 } else { 4737 devres_free(devres); 4738 } 4739 4740 return ret; 4741 } 4742 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4743 4744 #ifdef CONFIG_OF 4745 static void clk_core_reparent_orphans(void) 4746 { 4747 clk_prepare_lock(); 4748 clk_core_reparent_orphans_nolock(); 4749 clk_prepare_unlock(); 4750 } 4751 4752 /** 4753 * struct of_clk_provider - Clock provider registration structure 4754 * @link: Entry in global list of clock providers 4755 * @node: Pointer to device tree node of clock provider 4756 * @get: Get clock callback. Returns NULL or a struct clk for the 4757 * given clock specifier 4758 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4759 * struct clk_hw for the given clock specifier 4760 * @data: context pointer to be passed into @get callback 4761 */ 4762 struct of_clk_provider { 4763 struct list_head link; 4764 4765 struct device_node *node; 4766 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4767 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4768 void *data; 4769 }; 4770 4771 extern struct of_device_id __clk_of_table; 4772 static const struct of_device_id __clk_of_table_sentinel 4773 __used __section("__clk_of_table_end"); 4774 4775 static LIST_HEAD(of_clk_providers); 4776 static DEFINE_MUTEX(of_clk_mutex); 4777 4778 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4779 void *data) 4780 { 4781 return data; 4782 } 4783 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4784 4785 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4786 { 4787 return data; 4788 } 4789 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4790 4791 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4792 { 4793 struct clk_onecell_data *clk_data = data; 4794 unsigned int idx = clkspec->args[0]; 4795 4796 if (idx >= clk_data->clk_num) { 4797 pr_err("%s: invalid clock index %u\n", __func__, idx); 4798 return ERR_PTR(-EINVAL); 4799 } 4800 4801 return clk_data->clks[idx]; 4802 } 4803 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4804 4805 struct clk_hw * 4806 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4807 { 4808 struct clk_hw_onecell_data *hw_data = data; 4809 unsigned int idx = clkspec->args[0]; 4810 4811 if (idx >= hw_data->num) { 4812 pr_err("%s: invalid index %u\n", __func__, idx); 4813 return ERR_PTR(-EINVAL); 4814 } 4815 4816 return hw_data->hws[idx]; 4817 } 4818 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4819 4820 /** 4821 * of_clk_add_provider() - Register a clock provider for a node 4822 * @np: Device node pointer associated with clock provider 4823 * @clk_src_get: callback for decoding clock 4824 * @data: context pointer for @clk_src_get callback. 4825 * 4826 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4827 */ 4828 int of_clk_add_provider(struct device_node *np, 4829 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4830 void *data), 4831 void *data) 4832 { 4833 struct of_clk_provider *cp; 4834 int ret; 4835 4836 if (!np) 4837 return 0; 4838 4839 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4840 if (!cp) 4841 return -ENOMEM; 4842 4843 cp->node = of_node_get(np); 4844 cp->data = data; 4845 cp->get = clk_src_get; 4846 4847 mutex_lock(&of_clk_mutex); 4848 list_add(&cp->link, &of_clk_providers); 4849 mutex_unlock(&of_clk_mutex); 4850 pr_debug("Added clock from %pOF\n", np); 4851 4852 clk_core_reparent_orphans(); 4853 4854 ret = of_clk_set_defaults(np, true); 4855 if (ret < 0) 4856 of_clk_del_provider(np); 4857 4858 fwnode_dev_initialized(&np->fwnode, true); 4859 4860 return ret; 4861 } 4862 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4863 4864 /** 4865 * of_clk_add_hw_provider() - Register a clock provider for a node 4866 * @np: Device node pointer associated with clock provider 4867 * @get: callback for decoding clk_hw 4868 * @data: context pointer for @get callback. 4869 */ 4870 int of_clk_add_hw_provider(struct device_node *np, 4871 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4872 void *data), 4873 void *data) 4874 { 4875 struct of_clk_provider *cp; 4876 int ret; 4877 4878 if (!np) 4879 return 0; 4880 4881 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4882 if (!cp) 4883 return -ENOMEM; 4884 4885 cp->node = of_node_get(np); 4886 cp->data = data; 4887 cp->get_hw = get; 4888 4889 mutex_lock(&of_clk_mutex); 4890 list_add(&cp->link, &of_clk_providers); 4891 mutex_unlock(&of_clk_mutex); 4892 pr_debug("Added clk_hw provider from %pOF\n", np); 4893 4894 clk_core_reparent_orphans(); 4895 4896 ret = of_clk_set_defaults(np, true); 4897 if (ret < 0) 4898 of_clk_del_provider(np); 4899 4900 fwnode_dev_initialized(&np->fwnode, true); 4901 4902 return ret; 4903 } 4904 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4905 4906 static void devm_of_clk_release_provider(struct device *dev, void *res) 4907 { 4908 of_clk_del_provider(*(struct device_node **)res); 4909 } 4910 4911 /* 4912 * We allow a child device to use its parent device as the clock provider node 4913 * for cases like MFD sub-devices where the child device driver wants to use 4914 * devm_*() APIs but not list the device in DT as a sub-node. 4915 */ 4916 static struct device_node *get_clk_provider_node(struct device *dev) 4917 { 4918 struct device_node *np, *parent_np; 4919 4920 np = dev->of_node; 4921 parent_np = dev->parent ? dev->parent->of_node : NULL; 4922 4923 if (!of_property_present(np, "#clock-cells")) 4924 if (of_property_present(parent_np, "#clock-cells")) 4925 np = parent_np; 4926 4927 return np; 4928 } 4929 4930 /** 4931 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4932 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4933 * @get: callback for decoding clk_hw 4934 * @data: context pointer for @get callback 4935 * 4936 * Registers clock provider for given device's node. If the device has no DT 4937 * node or if the device node lacks of clock provider information (#clock-cells) 4938 * then the parent device's node is scanned for this information. If parent node 4939 * has the #clock-cells then it is used in registration. Provider is 4940 * automatically released at device exit. 4941 * 4942 * Return: 0 on success or an errno on failure. 4943 */ 4944 int devm_of_clk_add_hw_provider(struct device *dev, 4945 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4946 void *data), 4947 void *data) 4948 { 4949 struct device_node **ptr, *np; 4950 int ret; 4951 4952 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4953 GFP_KERNEL); 4954 if (!ptr) 4955 return -ENOMEM; 4956 4957 np = get_clk_provider_node(dev); 4958 ret = of_clk_add_hw_provider(np, get, data); 4959 if (!ret) { 4960 *ptr = np; 4961 devres_add(dev, ptr); 4962 } else { 4963 devres_free(ptr); 4964 } 4965 4966 return ret; 4967 } 4968 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4969 4970 /** 4971 * of_clk_del_provider() - Remove a previously registered clock provider 4972 * @np: Device node pointer associated with clock provider 4973 */ 4974 void of_clk_del_provider(struct device_node *np) 4975 { 4976 struct of_clk_provider *cp; 4977 4978 if (!np) 4979 return; 4980 4981 mutex_lock(&of_clk_mutex); 4982 list_for_each_entry(cp, &of_clk_providers, link) { 4983 if (cp->node == np) { 4984 list_del(&cp->link); 4985 fwnode_dev_initialized(&np->fwnode, false); 4986 of_node_put(cp->node); 4987 kfree(cp); 4988 break; 4989 } 4990 } 4991 mutex_unlock(&of_clk_mutex); 4992 } 4993 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4994 4995 /** 4996 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4997 * @np: device node to parse clock specifier from 4998 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4999 * @name: clock name to find and parse. If name is NULL, the index is used 5000 * @out_args: Result of parsing the clock specifier 5001 * 5002 * Parses a device node's "clocks" and "clock-names" properties to find the 5003 * phandle and cells for the index or name that is desired. The resulting clock 5004 * specifier is placed into @out_args, or an errno is returned when there's a 5005 * parsing error. The @index argument is ignored if @name is non-NULL. 5006 * 5007 * Example: 5008 * 5009 * phandle1: clock-controller@1 { 5010 * #clock-cells = <2>; 5011 * } 5012 * 5013 * phandle2: clock-controller@2 { 5014 * #clock-cells = <1>; 5015 * } 5016 * 5017 * clock-consumer@3 { 5018 * clocks = <&phandle1 1 2 &phandle2 3>; 5019 * clock-names = "name1", "name2"; 5020 * } 5021 * 5022 * To get a device_node for `clock-controller@2' node you may call this 5023 * function a few different ways: 5024 * 5025 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 5026 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 5027 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 5028 * 5029 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 5030 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 5031 * the "clock-names" property of @np. 5032 */ 5033 static int of_parse_clkspec(const struct device_node *np, int index, 5034 const char *name, struct of_phandle_args *out_args) 5035 { 5036 int ret = -ENOENT; 5037 5038 /* Walk up the tree of devices looking for a clock property that matches */ 5039 while (np) { 5040 /* 5041 * For named clocks, first look up the name in the 5042 * "clock-names" property. If it cannot be found, then index 5043 * will be an error code and of_parse_phandle_with_args() will 5044 * return -EINVAL. 5045 */ 5046 if (name) 5047 index = of_property_match_string(np, "clock-names", name); 5048 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5049 index, out_args); 5050 if (!ret) 5051 break; 5052 if (name && index >= 0) 5053 break; 5054 5055 /* 5056 * No matching clock found on this node. If the parent node 5057 * has a "clock-ranges" property, then we can try one of its 5058 * clocks. 5059 */ 5060 np = np->parent; 5061 if (np && !of_get_property(np, "clock-ranges", NULL)) 5062 break; 5063 index = 0; 5064 } 5065 5066 return ret; 5067 } 5068 5069 static struct clk_hw * 5070 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5071 struct of_phandle_args *clkspec) 5072 { 5073 struct clk *clk; 5074 5075 if (provider->get_hw) 5076 return provider->get_hw(clkspec, provider->data); 5077 5078 clk = provider->get(clkspec, provider->data); 5079 if (IS_ERR(clk)) 5080 return ERR_CAST(clk); 5081 return __clk_get_hw(clk); 5082 } 5083 5084 static struct clk_hw * 5085 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5086 { 5087 struct of_clk_provider *provider; 5088 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5089 5090 if (!clkspec) 5091 return ERR_PTR(-EINVAL); 5092 5093 mutex_lock(&of_clk_mutex); 5094 list_for_each_entry(provider, &of_clk_providers, link) { 5095 if (provider->node == clkspec->np) { 5096 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5097 if (!IS_ERR(hw)) 5098 break; 5099 } 5100 } 5101 mutex_unlock(&of_clk_mutex); 5102 5103 return hw; 5104 } 5105 5106 /** 5107 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5108 * @clkspec: pointer to a clock specifier data structure 5109 * 5110 * This function looks up a struct clk from the registered list of clock 5111 * providers, an input is a clock specifier data structure as returned 5112 * from the of_parse_phandle_with_args() function call. 5113 */ 5114 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5115 { 5116 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5117 5118 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5119 } 5120 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5121 5122 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5123 const char *con_id) 5124 { 5125 int ret; 5126 struct clk_hw *hw; 5127 struct of_phandle_args clkspec; 5128 5129 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5130 if (ret) 5131 return ERR_PTR(ret); 5132 5133 hw = of_clk_get_hw_from_clkspec(&clkspec); 5134 of_node_put(clkspec.np); 5135 5136 return hw; 5137 } 5138 5139 static struct clk *__of_clk_get(struct device_node *np, 5140 int index, const char *dev_id, 5141 const char *con_id) 5142 { 5143 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5144 5145 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5146 } 5147 5148 struct clk *of_clk_get(struct device_node *np, int index) 5149 { 5150 return __of_clk_get(np, index, np->full_name, NULL); 5151 } 5152 EXPORT_SYMBOL(of_clk_get); 5153 5154 /** 5155 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5156 * @np: pointer to clock consumer node 5157 * @name: name of consumer's clock input, or NULL for the first clock reference 5158 * 5159 * This function parses the clocks and clock-names properties, 5160 * and uses them to look up the struct clk from the registered list of clock 5161 * providers. 5162 */ 5163 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5164 { 5165 if (!np) 5166 return ERR_PTR(-ENOENT); 5167 5168 return __of_clk_get(np, 0, np->full_name, name); 5169 } 5170 EXPORT_SYMBOL(of_clk_get_by_name); 5171 5172 /** 5173 * of_clk_get_parent_count() - Count the number of clocks a device node has 5174 * @np: device node to count 5175 * 5176 * Returns: The number of clocks that are possible parents of this node 5177 */ 5178 unsigned int of_clk_get_parent_count(const struct device_node *np) 5179 { 5180 int count; 5181 5182 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5183 if (count < 0) 5184 return 0; 5185 5186 return count; 5187 } 5188 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5189 5190 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5191 { 5192 struct of_phandle_args clkspec; 5193 struct property *prop; 5194 const char *clk_name; 5195 const __be32 *vp; 5196 u32 pv; 5197 int rc; 5198 int count; 5199 struct clk *clk; 5200 5201 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5202 &clkspec); 5203 if (rc) 5204 return NULL; 5205 5206 index = clkspec.args_count ? clkspec.args[0] : 0; 5207 count = 0; 5208 5209 /* if there is an indices property, use it to transfer the index 5210 * specified into an array offset for the clock-output-names property. 5211 */ 5212 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5213 if (index == pv) { 5214 index = count; 5215 break; 5216 } 5217 count++; 5218 } 5219 /* We went off the end of 'clock-indices' without finding it */ 5220 if (prop && !vp) 5221 return NULL; 5222 5223 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5224 index, 5225 &clk_name) < 0) { 5226 /* 5227 * Best effort to get the name if the clock has been 5228 * registered with the framework. If the clock isn't 5229 * registered, we return the node name as the name of 5230 * the clock as long as #clock-cells = 0. 5231 */ 5232 clk = of_clk_get_from_provider(&clkspec); 5233 if (IS_ERR(clk)) { 5234 if (clkspec.args_count == 0) 5235 clk_name = clkspec.np->name; 5236 else 5237 clk_name = NULL; 5238 } else { 5239 clk_name = __clk_get_name(clk); 5240 clk_put(clk); 5241 } 5242 } 5243 5244 5245 of_node_put(clkspec.np); 5246 return clk_name; 5247 } 5248 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5249 5250 /** 5251 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5252 * number of parents 5253 * @np: Device node pointer associated with clock provider 5254 * @parents: pointer to char array that hold the parents' names 5255 * @size: size of the @parents array 5256 * 5257 * Return: number of parents for the clock node. 5258 */ 5259 int of_clk_parent_fill(struct device_node *np, const char **parents, 5260 unsigned int size) 5261 { 5262 unsigned int i = 0; 5263 5264 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5265 i++; 5266 5267 return i; 5268 } 5269 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5270 5271 struct clock_provider { 5272 void (*clk_init_cb)(struct device_node *); 5273 struct device_node *np; 5274 struct list_head node; 5275 }; 5276 5277 /* 5278 * This function looks for a parent clock. If there is one, then it 5279 * checks that the provider for this parent clock was initialized, in 5280 * this case the parent clock will be ready. 5281 */ 5282 static int parent_ready(struct device_node *np) 5283 { 5284 int i = 0; 5285 5286 while (true) { 5287 struct clk *clk = of_clk_get(np, i); 5288 5289 /* this parent is ready we can check the next one */ 5290 if (!IS_ERR(clk)) { 5291 clk_put(clk); 5292 i++; 5293 continue; 5294 } 5295 5296 /* at least one parent is not ready, we exit now */ 5297 if (PTR_ERR(clk) == -EPROBE_DEFER) 5298 return 0; 5299 5300 /* 5301 * Here we make assumption that the device tree is 5302 * written correctly. So an error means that there is 5303 * no more parent. As we didn't exit yet, then the 5304 * previous parent are ready. If there is no clock 5305 * parent, no need to wait for them, then we can 5306 * consider their absence as being ready 5307 */ 5308 return 1; 5309 } 5310 } 5311 5312 /** 5313 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5314 * @np: Device node pointer associated with clock provider 5315 * @index: clock index 5316 * @flags: pointer to top-level framework flags 5317 * 5318 * Detects if the clock-critical property exists and, if so, sets the 5319 * corresponding CLK_IS_CRITICAL flag. 5320 * 5321 * Do not use this function. It exists only for legacy Device Tree 5322 * bindings, such as the one-clock-per-node style that are outdated. 5323 * Those bindings typically put all clock data into .dts and the Linux 5324 * driver has no clock data, thus making it impossible to set this flag 5325 * correctly from the driver. Only those drivers may call 5326 * of_clk_detect_critical from their setup functions. 5327 * 5328 * Return: error code or zero on success 5329 */ 5330 int of_clk_detect_critical(struct device_node *np, int index, 5331 unsigned long *flags) 5332 { 5333 struct property *prop; 5334 const __be32 *cur; 5335 uint32_t idx; 5336 5337 if (!np || !flags) 5338 return -EINVAL; 5339 5340 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5341 if (index == idx) 5342 *flags |= CLK_IS_CRITICAL; 5343 5344 return 0; 5345 } 5346 5347 /** 5348 * of_clk_init() - Scan and init clock providers from the DT 5349 * @matches: array of compatible values and init functions for providers. 5350 * 5351 * This function scans the device tree for matching clock providers 5352 * and calls their initialization functions. It also does it by trying 5353 * to follow the dependencies. 5354 */ 5355 void __init of_clk_init(const struct of_device_id *matches) 5356 { 5357 const struct of_device_id *match; 5358 struct device_node *np; 5359 struct clock_provider *clk_provider, *next; 5360 bool is_init_done; 5361 bool force = false; 5362 LIST_HEAD(clk_provider_list); 5363 5364 if (!matches) 5365 matches = &__clk_of_table; 5366 5367 /* First prepare the list of the clocks providers */ 5368 for_each_matching_node_and_match(np, matches, &match) { 5369 struct clock_provider *parent; 5370 5371 if (!of_device_is_available(np)) 5372 continue; 5373 5374 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5375 if (!parent) { 5376 list_for_each_entry_safe(clk_provider, next, 5377 &clk_provider_list, node) { 5378 list_del(&clk_provider->node); 5379 of_node_put(clk_provider->np); 5380 kfree(clk_provider); 5381 } 5382 of_node_put(np); 5383 return; 5384 } 5385 5386 parent->clk_init_cb = match->data; 5387 parent->np = of_node_get(np); 5388 list_add_tail(&parent->node, &clk_provider_list); 5389 } 5390 5391 while (!list_empty(&clk_provider_list)) { 5392 is_init_done = false; 5393 list_for_each_entry_safe(clk_provider, next, 5394 &clk_provider_list, node) { 5395 if (force || parent_ready(clk_provider->np)) { 5396 5397 /* Don't populate platform devices */ 5398 of_node_set_flag(clk_provider->np, 5399 OF_POPULATED); 5400 5401 clk_provider->clk_init_cb(clk_provider->np); 5402 of_clk_set_defaults(clk_provider->np, true); 5403 5404 list_del(&clk_provider->node); 5405 of_node_put(clk_provider->np); 5406 kfree(clk_provider); 5407 is_init_done = true; 5408 } 5409 } 5410 5411 /* 5412 * We didn't manage to initialize any of the 5413 * remaining providers during the last loop, so now we 5414 * initialize all the remaining ones unconditionally 5415 * in case the clock parent was not mandatory 5416 */ 5417 if (!is_init_done) 5418 force = true; 5419 } 5420 } 5421 #endif 5422