xref: /openbmc/linux/drivers/clk/clk.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	ret = core->ops->is_enabled(core->hw);
255 done:
256 	if (core->rpm_enabled)
257 		pm_runtime_put(core->dev);
258 
259 	return ret;
260 }
261 
262 /***    helper functions   ***/
263 
264 const char *__clk_get_name(const struct clk *clk)
265 {
266 	return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269 
270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 	return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275 
276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 	return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281 
282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 	return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287 
288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 	return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 			    const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 				   const char *name,
345 				   struct of_phandle_args *out_args)
346 {
347 	return -ENOENT;
348 }
349 static inline struct clk_hw *
350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 	return ERR_PTR(-ENOENT);
353 }
354 #endif
355 
356 /**
357  * clk_core_get - Find the clk_core parent of a clk
358  * @core: clk to find parent of
359  * @p_index: parent index to search for
360  *
361  * This is the preferred method for clk providers to find the parent of a
362  * clk when that parent is external to the clk controller. The parent_names
363  * array is indexed and treated as a local name matching a string in the device
364  * node's 'clock-names' property or as the 'con_id' matching the device's
365  * dev_name() in a clk_lookup. This allows clk providers to use their own
366  * namespace instead of looking for a globally unique parent string.
367  *
368  * For example the following DT snippet would allow a clock registered by the
369  * clock-controller@c001 that has a clk_init_data::parent_data array
370  * with 'xtal' in the 'name' member to find the clock provided by the
371  * clock-controller@f00abcd without needing to get the globally unique name of
372  * the xtal clk.
373  *
374  *      parent: clock-controller@f00abcd {
375  *              reg = <0xf00abcd 0xabcd>;
376  *              #clock-cells = <0>;
377  *      };
378  *
379  *      clock-controller@c001 {
380  *              reg = <0xc001 0xf00d>;
381  *              clocks = <&parent>;
382  *              clock-names = "xtal";
383  *              #clock-cells = <1>;
384  *      };
385  *
386  * Returns: -ENOENT when the provider can't be found or the clk doesn't
387  * exist in the provider or the name can't be found in the DT node or
388  * in a clkdev lookup. NULL when the provider knows about the clk but it
389  * isn't provided on this system.
390  * A valid clk_core pointer when the clk can be found in the provider.
391  */
392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 	const char *name = core->parents[p_index].fw_name;
395 	int index = core->parents[p_index].index;
396 	struct clk_hw *hw = ERR_PTR(-ENOENT);
397 	struct device *dev = core->dev;
398 	const char *dev_id = dev ? dev_name(dev) : NULL;
399 	struct device_node *np = core->of_node;
400 	struct of_phandle_args clkspec;
401 
402 	if (np && (name || index >= 0) &&
403 	    !of_parse_clkspec(np, index, name, &clkspec)) {
404 		hw = of_clk_get_hw_from_clkspec(&clkspec);
405 		of_node_put(clkspec.np);
406 	} else if (name) {
407 		/*
408 		 * If the DT search above couldn't find the provider fallback to
409 		 * looking up via clkdev based clk_lookups.
410 		 */
411 		hw = clk_find_hw(dev_id, name);
412 	}
413 
414 	if (IS_ERR(hw))
415 		return ERR_CAST(hw);
416 
417 	return hw->core;
418 }
419 
420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 	struct clk_parent_map *entry = &core->parents[index];
423 	struct clk_core *parent = ERR_PTR(-ENOENT);
424 
425 	if (entry->hw) {
426 		parent = entry->hw->core;
427 		/*
428 		 * We have a direct reference but it isn't registered yet?
429 		 * Orphan it and let clk_reparent() update the orphan status
430 		 * when the parent is registered.
431 		 */
432 		if (!parent)
433 			parent = ERR_PTR(-EPROBE_DEFER);
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/* Only cache it if it's not an error */
441 	if (!IS_ERR(parent))
442 		entry->core = parent;
443 }
444 
445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 							 u8 index)
447 {
448 	if (!core || index >= core->num_parents || !core->parents)
449 		return NULL;
450 
451 	if (!core->parents[index].core)
452 		clk_core_fill_parent_index(core, index);
453 
454 	return core->parents[index].core;
455 }
456 
457 struct clk_hw *
458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459 {
460 	struct clk_core *parent;
461 
462 	parent = clk_core_get_parent_by_index(hw->core, index);
463 
464 	return !parent ? NULL : parent->hw;
465 }
466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467 
468 unsigned int __clk_get_enable_count(struct clk *clk)
469 {
470 	return !clk ? 0 : clk->core->enable_count;
471 }
472 
473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474 {
475 	if (!core)
476 		return 0;
477 
478 	if (!core->num_parents || core->parent)
479 		return core->rate;
480 
481 	/*
482 	 * Clk must have a parent because num_parents > 0 but the parent isn't
483 	 * known yet. Best to return 0 as the rate of this clk until we can
484 	 * properly recalc the rate based on the parent's rate.
485 	 */
486 	return 0;
487 }
488 
489 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490 {
491 	return clk_core_get_rate_nolock(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494 
495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
496 {
497 	if (!core)
498 		return 0;
499 
500 	return core->accuracy;
501 }
502 
503 unsigned long __clk_get_flags(struct clk *clk)
504 {
505 	return !clk ? 0 : clk->core->flags;
506 }
507 EXPORT_SYMBOL_GPL(__clk_get_flags);
508 
509 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
510 {
511 	return hw->core->flags;
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
514 
515 bool clk_hw_is_prepared(const struct clk_hw *hw)
516 {
517 	return clk_core_is_prepared(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
520 
521 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
522 {
523 	return clk_core_rate_is_protected(hw->core);
524 }
525 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
526 
527 bool clk_hw_is_enabled(const struct clk_hw *hw)
528 {
529 	return clk_core_is_enabled(hw->core);
530 }
531 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
532 
533 bool __clk_is_enabled(struct clk *clk)
534 {
535 	if (!clk)
536 		return false;
537 
538 	return clk_core_is_enabled(clk->core);
539 }
540 EXPORT_SYMBOL_GPL(__clk_is_enabled);
541 
542 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
543 			   unsigned long best, unsigned long flags)
544 {
545 	if (flags & CLK_MUX_ROUND_CLOSEST)
546 		return abs(now - rate) < abs(best - rate);
547 
548 	return now <= rate && now > best;
549 }
550 
551 int clk_mux_determine_rate_flags(struct clk_hw *hw,
552 				 struct clk_rate_request *req,
553 				 unsigned long flags)
554 {
555 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
556 	int i, num_parents, ret;
557 	unsigned long best = 0;
558 	struct clk_rate_request parent_req = *req;
559 
560 	/* if NO_REPARENT flag set, pass through to current parent */
561 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
562 		parent = core->parent;
563 		if (core->flags & CLK_SET_RATE_PARENT) {
564 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
565 						   &parent_req);
566 			if (ret)
567 				return ret;
568 
569 			best = parent_req.rate;
570 		} else if (parent) {
571 			best = clk_core_get_rate_nolock(parent);
572 		} else {
573 			best = clk_core_get_rate_nolock(core);
574 		}
575 
576 		goto out;
577 	}
578 
579 	/* find the parent that can provide the fastest rate <= rate */
580 	num_parents = core->num_parents;
581 	for (i = 0; i < num_parents; i++) {
582 		parent = clk_core_get_parent_by_index(core, i);
583 		if (!parent)
584 			continue;
585 
586 		if (core->flags & CLK_SET_RATE_PARENT) {
587 			parent_req = *req;
588 			ret = __clk_determine_rate(parent->hw, &parent_req);
589 			if (ret)
590 				continue;
591 		} else {
592 			parent_req.rate = clk_core_get_rate_nolock(parent);
593 		}
594 
595 		if (mux_is_better_rate(req->rate, parent_req.rate,
596 				       best, flags)) {
597 			best_parent = parent;
598 			best = parent_req.rate;
599 		}
600 	}
601 
602 	if (!best_parent)
603 		return -EINVAL;
604 
605 out:
606 	if (best_parent)
607 		req->best_parent_hw = best_parent->hw;
608 	req->best_parent_rate = best;
609 	req->rate = best;
610 
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
614 
615 struct clk *__clk_lookup(const char *name)
616 {
617 	struct clk_core *core = clk_core_lookup(name);
618 
619 	return !core ? NULL : core->hw->clk;
620 }
621 
622 static void clk_core_get_boundaries(struct clk_core *core,
623 				    unsigned long *min_rate,
624 				    unsigned long *max_rate)
625 {
626 	struct clk *clk_user;
627 
628 	lockdep_assert_held(&prepare_lock);
629 
630 	*min_rate = core->min_rate;
631 	*max_rate = core->max_rate;
632 
633 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
634 		*min_rate = max(*min_rate, clk_user->min_rate);
635 
636 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
637 		*max_rate = min(*max_rate, clk_user->max_rate);
638 }
639 
640 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
641 			   unsigned long max_rate)
642 {
643 	hw->core->min_rate = min_rate;
644 	hw->core->max_rate = max_rate;
645 }
646 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
647 
648 /*
649  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
650  * @hw: mux type clk to determine rate on
651  * @req: rate request, also used to return preferred parent and frequencies
652  *
653  * Helper for finding best parent to provide a given frequency. This can be used
654  * directly as a determine_rate callback (e.g. for a mux), or from a more
655  * complex clock that may combine a mux with other operations.
656  *
657  * Returns: 0 on success, -EERROR value on error
658  */
659 int __clk_mux_determine_rate(struct clk_hw *hw,
660 			     struct clk_rate_request *req)
661 {
662 	return clk_mux_determine_rate_flags(hw, req, 0);
663 }
664 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
665 
666 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
667 				     struct clk_rate_request *req)
668 {
669 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
670 }
671 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
672 
673 /***        clk api        ***/
674 
675 static void clk_core_rate_unprotect(struct clk_core *core)
676 {
677 	lockdep_assert_held(&prepare_lock);
678 
679 	if (!core)
680 		return;
681 
682 	if (WARN(core->protect_count == 0,
683 	    "%s already unprotected\n", core->name))
684 		return;
685 
686 	if (--core->protect_count > 0)
687 		return;
688 
689 	clk_core_rate_unprotect(core->parent);
690 }
691 
692 static int clk_core_rate_nuke_protect(struct clk_core *core)
693 {
694 	int ret;
695 
696 	lockdep_assert_held(&prepare_lock);
697 
698 	if (!core)
699 		return -EINVAL;
700 
701 	if (core->protect_count == 0)
702 		return 0;
703 
704 	ret = core->protect_count;
705 	core->protect_count = 1;
706 	clk_core_rate_unprotect(core);
707 
708 	return ret;
709 }
710 
711 /**
712  * clk_rate_exclusive_put - release exclusivity over clock rate control
713  * @clk: the clk over which the exclusivity is released
714  *
715  * clk_rate_exclusive_put() completes a critical section during which a clock
716  * consumer cannot tolerate any other consumer making any operation on the
717  * clock which could result in a rate change or rate glitch. Exclusive clocks
718  * cannot have their rate changed, either directly or indirectly due to changes
719  * further up the parent chain of clocks. As a result, clocks up parent chain
720  * also get under exclusive control of the calling consumer.
721  *
722  * If exlusivity is claimed more than once on clock, even by the same consumer,
723  * the rate effectively gets locked as exclusivity can't be preempted.
724  *
725  * Calls to clk_rate_exclusive_put() must be balanced with calls to
726  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
727  * error status.
728  */
729 void clk_rate_exclusive_put(struct clk *clk)
730 {
731 	if (!clk)
732 		return;
733 
734 	clk_prepare_lock();
735 
736 	/*
737 	 * if there is something wrong with this consumer protect count, stop
738 	 * here before messing with the provider
739 	 */
740 	if (WARN_ON(clk->exclusive_count <= 0))
741 		goto out;
742 
743 	clk_core_rate_unprotect(clk->core);
744 	clk->exclusive_count--;
745 out:
746 	clk_prepare_unlock();
747 }
748 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
749 
750 static void clk_core_rate_protect(struct clk_core *core)
751 {
752 	lockdep_assert_held(&prepare_lock);
753 
754 	if (!core)
755 		return;
756 
757 	if (core->protect_count == 0)
758 		clk_core_rate_protect(core->parent);
759 
760 	core->protect_count++;
761 }
762 
763 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
764 {
765 	lockdep_assert_held(&prepare_lock);
766 
767 	if (!core)
768 		return;
769 
770 	if (count == 0)
771 		return;
772 
773 	clk_core_rate_protect(core);
774 	core->protect_count = count;
775 }
776 
777 /**
778  * clk_rate_exclusive_get - get exclusivity over the clk rate control
779  * @clk: the clk over which the exclusity of rate control is requested
780  *
781  * clk_rate_exclusive_get() begins a critical section during which a clock
782  * consumer cannot tolerate any other consumer making any operation on the
783  * clock which could result in a rate change or rate glitch. Exclusive clocks
784  * cannot have their rate changed, either directly or indirectly due to changes
785  * further up the parent chain of clocks. As a result, clocks up parent chain
786  * also get under exclusive control of the calling consumer.
787  *
788  * If exlusivity is claimed more than once on clock, even by the same consumer,
789  * the rate effectively gets locked as exclusivity can't be preempted.
790  *
791  * Calls to clk_rate_exclusive_get() should be balanced with calls to
792  * clk_rate_exclusive_put(). Calls to this function may sleep.
793  * Returns 0 on success, -EERROR otherwise
794  */
795 int clk_rate_exclusive_get(struct clk *clk)
796 {
797 	if (!clk)
798 		return 0;
799 
800 	clk_prepare_lock();
801 	clk_core_rate_protect(clk->core);
802 	clk->exclusive_count++;
803 	clk_prepare_unlock();
804 
805 	return 0;
806 }
807 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
808 
809 static void clk_core_unprepare(struct clk_core *core)
810 {
811 	lockdep_assert_held(&prepare_lock);
812 
813 	if (!core)
814 		return;
815 
816 	if (WARN(core->prepare_count == 0,
817 	    "%s already unprepared\n", core->name))
818 		return;
819 
820 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
821 	    "Unpreparing critical %s\n", core->name))
822 		return;
823 
824 	if (core->flags & CLK_SET_RATE_GATE)
825 		clk_core_rate_unprotect(core);
826 
827 	if (--core->prepare_count > 0)
828 		return;
829 
830 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
831 
832 	trace_clk_unprepare(core);
833 
834 	if (core->ops->unprepare)
835 		core->ops->unprepare(core->hw);
836 
837 	clk_pm_runtime_put(core);
838 
839 	trace_clk_unprepare_complete(core);
840 	clk_core_unprepare(core->parent);
841 }
842 
843 static void clk_core_unprepare_lock(struct clk_core *core)
844 {
845 	clk_prepare_lock();
846 	clk_core_unprepare(core);
847 	clk_prepare_unlock();
848 }
849 
850 /**
851  * clk_unprepare - undo preparation of a clock source
852  * @clk: the clk being unprepared
853  *
854  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
855  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
856  * if the operation may sleep.  One example is a clk which is accessed over
857  * I2c.  In the complex case a clk gate operation may require a fast and a slow
858  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
859  * exclusive.  In fact clk_disable must be called before clk_unprepare.
860  */
861 void clk_unprepare(struct clk *clk)
862 {
863 	if (IS_ERR_OR_NULL(clk))
864 		return;
865 
866 	clk_core_unprepare_lock(clk->core);
867 }
868 EXPORT_SYMBOL_GPL(clk_unprepare);
869 
870 static int clk_core_prepare(struct clk_core *core)
871 {
872 	int ret = 0;
873 
874 	lockdep_assert_held(&prepare_lock);
875 
876 	if (!core)
877 		return 0;
878 
879 	if (core->prepare_count == 0) {
880 		ret = clk_pm_runtime_get(core);
881 		if (ret)
882 			return ret;
883 
884 		ret = clk_core_prepare(core->parent);
885 		if (ret)
886 			goto runtime_put;
887 
888 		trace_clk_prepare(core);
889 
890 		if (core->ops->prepare)
891 			ret = core->ops->prepare(core->hw);
892 
893 		trace_clk_prepare_complete(core);
894 
895 		if (ret)
896 			goto unprepare;
897 	}
898 
899 	core->prepare_count++;
900 
901 	/*
902 	 * CLK_SET_RATE_GATE is a special case of clock protection
903 	 * Instead of a consumer claiming exclusive rate control, it is
904 	 * actually the provider which prevents any consumer from making any
905 	 * operation which could result in a rate change or rate glitch while
906 	 * the clock is prepared.
907 	 */
908 	if (core->flags & CLK_SET_RATE_GATE)
909 		clk_core_rate_protect(core);
910 
911 	return 0;
912 unprepare:
913 	clk_core_unprepare(core->parent);
914 runtime_put:
915 	clk_pm_runtime_put(core);
916 	return ret;
917 }
918 
919 static int clk_core_prepare_lock(struct clk_core *core)
920 {
921 	int ret;
922 
923 	clk_prepare_lock();
924 	ret = clk_core_prepare(core);
925 	clk_prepare_unlock();
926 
927 	return ret;
928 }
929 
930 /**
931  * clk_prepare - prepare a clock source
932  * @clk: the clk being prepared
933  *
934  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
935  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
936  * operation may sleep.  One example is a clk which is accessed over I2c.  In
937  * the complex case a clk ungate operation may require a fast and a slow part.
938  * It is this reason that clk_prepare and clk_enable are not mutually
939  * exclusive.  In fact clk_prepare must be called before clk_enable.
940  * Returns 0 on success, -EERROR otherwise.
941  */
942 int clk_prepare(struct clk *clk)
943 {
944 	if (!clk)
945 		return 0;
946 
947 	return clk_core_prepare_lock(clk->core);
948 }
949 EXPORT_SYMBOL_GPL(clk_prepare);
950 
951 static void clk_core_disable(struct clk_core *core)
952 {
953 	lockdep_assert_held(&enable_lock);
954 
955 	if (!core)
956 		return;
957 
958 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
959 		return;
960 
961 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
962 	    "Disabling critical %s\n", core->name))
963 		return;
964 
965 	if (--core->enable_count > 0)
966 		return;
967 
968 	trace_clk_disable_rcuidle(core);
969 
970 	if (core->ops->disable)
971 		core->ops->disable(core->hw);
972 
973 	trace_clk_disable_complete_rcuidle(core);
974 
975 	clk_core_disable(core->parent);
976 }
977 
978 static void clk_core_disable_lock(struct clk_core *core)
979 {
980 	unsigned long flags;
981 
982 	flags = clk_enable_lock();
983 	clk_core_disable(core);
984 	clk_enable_unlock(flags);
985 }
986 
987 /**
988  * clk_disable - gate a clock
989  * @clk: the clk being gated
990  *
991  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
992  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
993  * clk if the operation is fast and will never sleep.  One example is a
994  * SoC-internal clk which is controlled via simple register writes.  In the
995  * complex case a clk gate operation may require a fast and a slow part.  It is
996  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
997  * In fact clk_disable must be called before clk_unprepare.
998  */
999 void clk_disable(struct clk *clk)
1000 {
1001 	if (IS_ERR_OR_NULL(clk))
1002 		return;
1003 
1004 	clk_core_disable_lock(clk->core);
1005 }
1006 EXPORT_SYMBOL_GPL(clk_disable);
1007 
1008 static int clk_core_enable(struct clk_core *core)
1009 {
1010 	int ret = 0;
1011 
1012 	lockdep_assert_held(&enable_lock);
1013 
1014 	if (!core)
1015 		return 0;
1016 
1017 	if (WARN(core->prepare_count == 0,
1018 	    "Enabling unprepared %s\n", core->name))
1019 		return -ESHUTDOWN;
1020 
1021 	if (core->enable_count == 0) {
1022 		ret = clk_core_enable(core->parent);
1023 
1024 		if (ret)
1025 			return ret;
1026 
1027 		trace_clk_enable_rcuidle(core);
1028 
1029 		if (core->ops->enable)
1030 			ret = core->ops->enable(core->hw);
1031 
1032 		trace_clk_enable_complete_rcuidle(core);
1033 
1034 		if (ret) {
1035 			clk_core_disable(core->parent);
1036 			return ret;
1037 		}
1038 	}
1039 
1040 	core->enable_count++;
1041 	return 0;
1042 }
1043 
1044 static int clk_core_enable_lock(struct clk_core *core)
1045 {
1046 	unsigned long flags;
1047 	int ret;
1048 
1049 	flags = clk_enable_lock();
1050 	ret = clk_core_enable(core);
1051 	clk_enable_unlock(flags);
1052 
1053 	return ret;
1054 }
1055 
1056 /**
1057  * clk_gate_restore_context - restore context for poweroff
1058  * @hw: the clk_hw pointer of clock whose state is to be restored
1059  *
1060  * The clock gate restore context function enables or disables
1061  * the gate clocks based on the enable_count. This is done in cases
1062  * where the clock context is lost and based on the enable_count
1063  * the clock either needs to be enabled/disabled. This
1064  * helps restore the state of gate clocks.
1065  */
1066 void clk_gate_restore_context(struct clk_hw *hw)
1067 {
1068 	struct clk_core *core = hw->core;
1069 
1070 	if (core->enable_count)
1071 		core->ops->enable(hw);
1072 	else
1073 		core->ops->disable(hw);
1074 }
1075 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1076 
1077 static int clk_core_save_context(struct clk_core *core)
1078 {
1079 	struct clk_core *child;
1080 	int ret = 0;
1081 
1082 	hlist_for_each_entry(child, &core->children, child_node) {
1083 		ret = clk_core_save_context(child);
1084 		if (ret < 0)
1085 			return ret;
1086 	}
1087 
1088 	if (core->ops && core->ops->save_context)
1089 		ret = core->ops->save_context(core->hw);
1090 
1091 	return ret;
1092 }
1093 
1094 static void clk_core_restore_context(struct clk_core *core)
1095 {
1096 	struct clk_core *child;
1097 
1098 	if (core->ops && core->ops->restore_context)
1099 		core->ops->restore_context(core->hw);
1100 
1101 	hlist_for_each_entry(child, &core->children, child_node)
1102 		clk_core_restore_context(child);
1103 }
1104 
1105 /**
1106  * clk_save_context - save clock context for poweroff
1107  *
1108  * Saves the context of the clock register for powerstates in which the
1109  * contents of the registers will be lost. Occurs deep within the suspend
1110  * code.  Returns 0 on success.
1111  */
1112 int clk_save_context(void)
1113 {
1114 	struct clk_core *clk;
1115 	int ret;
1116 
1117 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1118 		ret = clk_core_save_context(clk);
1119 		if (ret < 0)
1120 			return ret;
1121 	}
1122 
1123 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1124 		ret = clk_core_save_context(clk);
1125 		if (ret < 0)
1126 			return ret;
1127 	}
1128 
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(clk_save_context);
1132 
1133 /**
1134  * clk_restore_context - restore clock context after poweroff
1135  *
1136  * Restore the saved clock context upon resume.
1137  *
1138  */
1139 void clk_restore_context(void)
1140 {
1141 	struct clk_core *core;
1142 
1143 	hlist_for_each_entry(core, &clk_root_list, child_node)
1144 		clk_core_restore_context(core);
1145 
1146 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1147 		clk_core_restore_context(core);
1148 }
1149 EXPORT_SYMBOL_GPL(clk_restore_context);
1150 
1151 /**
1152  * clk_enable - ungate a clock
1153  * @clk: the clk being ungated
1154  *
1155  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1156  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1157  * if the operation will never sleep.  One example is a SoC-internal clk which
1158  * is controlled via simple register writes.  In the complex case a clk ungate
1159  * operation may require a fast and a slow part.  It is this reason that
1160  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1161  * must be called before clk_enable.  Returns 0 on success, -EERROR
1162  * otherwise.
1163  */
1164 int clk_enable(struct clk *clk)
1165 {
1166 	if (!clk)
1167 		return 0;
1168 
1169 	return clk_core_enable_lock(clk->core);
1170 }
1171 EXPORT_SYMBOL_GPL(clk_enable);
1172 
1173 static int clk_core_prepare_enable(struct clk_core *core)
1174 {
1175 	int ret;
1176 
1177 	ret = clk_core_prepare_lock(core);
1178 	if (ret)
1179 		return ret;
1180 
1181 	ret = clk_core_enable_lock(core);
1182 	if (ret)
1183 		clk_core_unprepare_lock(core);
1184 
1185 	return ret;
1186 }
1187 
1188 static void clk_core_disable_unprepare(struct clk_core *core)
1189 {
1190 	clk_core_disable_lock(core);
1191 	clk_core_unprepare_lock(core);
1192 }
1193 
1194 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1195 {
1196 	struct clk_core *child;
1197 
1198 	lockdep_assert_held(&prepare_lock);
1199 
1200 	hlist_for_each_entry(child, &core->children, child_node)
1201 		clk_unprepare_unused_subtree(child);
1202 
1203 	if (core->prepare_count)
1204 		return;
1205 
1206 	if (core->flags & CLK_IGNORE_UNUSED)
1207 		return;
1208 
1209 	if (clk_pm_runtime_get(core))
1210 		return;
1211 
1212 	if (clk_core_is_prepared(core)) {
1213 		trace_clk_unprepare(core);
1214 		if (core->ops->unprepare_unused)
1215 			core->ops->unprepare_unused(core->hw);
1216 		else if (core->ops->unprepare)
1217 			core->ops->unprepare(core->hw);
1218 		trace_clk_unprepare_complete(core);
1219 	}
1220 
1221 	clk_pm_runtime_put(core);
1222 }
1223 
1224 static void __init clk_disable_unused_subtree(struct clk_core *core)
1225 {
1226 	struct clk_core *child;
1227 	unsigned long flags;
1228 
1229 	lockdep_assert_held(&prepare_lock);
1230 
1231 	hlist_for_each_entry(child, &core->children, child_node)
1232 		clk_disable_unused_subtree(child);
1233 
1234 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1235 		clk_core_prepare_enable(core->parent);
1236 
1237 	if (clk_pm_runtime_get(core))
1238 		goto unprepare_out;
1239 
1240 	flags = clk_enable_lock();
1241 
1242 	if (core->enable_count)
1243 		goto unlock_out;
1244 
1245 	if (core->flags & CLK_IGNORE_UNUSED)
1246 		goto unlock_out;
1247 
1248 	/*
1249 	 * some gate clocks have special needs during the disable-unused
1250 	 * sequence.  call .disable_unused if available, otherwise fall
1251 	 * back to .disable
1252 	 */
1253 	if (clk_core_is_enabled(core)) {
1254 		trace_clk_disable(core);
1255 		if (core->ops->disable_unused)
1256 			core->ops->disable_unused(core->hw);
1257 		else if (core->ops->disable)
1258 			core->ops->disable(core->hw);
1259 		trace_clk_disable_complete(core);
1260 	}
1261 
1262 unlock_out:
1263 	clk_enable_unlock(flags);
1264 	clk_pm_runtime_put(core);
1265 unprepare_out:
1266 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1267 		clk_core_disable_unprepare(core->parent);
1268 }
1269 
1270 static bool clk_ignore_unused __initdata;
1271 static int __init clk_ignore_unused_setup(char *__unused)
1272 {
1273 	clk_ignore_unused = true;
1274 	return 1;
1275 }
1276 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1277 
1278 static int __init clk_disable_unused(void)
1279 {
1280 	struct clk_core *core;
1281 
1282 	if (clk_ignore_unused) {
1283 		pr_warn("clk: Not disabling unused clocks\n");
1284 		return 0;
1285 	}
1286 
1287 	clk_prepare_lock();
1288 
1289 	hlist_for_each_entry(core, &clk_root_list, child_node)
1290 		clk_disable_unused_subtree(core);
1291 
1292 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293 		clk_disable_unused_subtree(core);
1294 
1295 	hlist_for_each_entry(core, &clk_root_list, child_node)
1296 		clk_unprepare_unused_subtree(core);
1297 
1298 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1299 		clk_unprepare_unused_subtree(core);
1300 
1301 	clk_prepare_unlock();
1302 
1303 	return 0;
1304 }
1305 late_initcall_sync(clk_disable_unused);
1306 
1307 static int clk_core_determine_round_nolock(struct clk_core *core,
1308 					   struct clk_rate_request *req)
1309 {
1310 	long rate;
1311 
1312 	lockdep_assert_held(&prepare_lock);
1313 
1314 	if (!core)
1315 		return 0;
1316 
1317 	/*
1318 	 * At this point, core protection will be disabled if
1319 	 * - if the provider is not protected at all
1320 	 * - if the calling consumer is the only one which has exclusivity
1321 	 *   over the provider
1322 	 */
1323 	if (clk_core_rate_is_protected(core)) {
1324 		req->rate = core->rate;
1325 	} else if (core->ops->determine_rate) {
1326 		return core->ops->determine_rate(core->hw, req);
1327 	} else if (core->ops->round_rate) {
1328 		rate = core->ops->round_rate(core->hw, req->rate,
1329 					     &req->best_parent_rate);
1330 		if (rate < 0)
1331 			return rate;
1332 
1333 		req->rate = rate;
1334 	} else {
1335 		return -EINVAL;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static void clk_core_init_rate_req(struct clk_core * const core,
1342 				   struct clk_rate_request *req)
1343 {
1344 	struct clk_core *parent;
1345 
1346 	if (WARN_ON(!core || !req))
1347 		return;
1348 
1349 	parent = core->parent;
1350 	if (parent) {
1351 		req->best_parent_hw = parent->hw;
1352 		req->best_parent_rate = parent->rate;
1353 	} else {
1354 		req->best_parent_hw = NULL;
1355 		req->best_parent_rate = 0;
1356 	}
1357 }
1358 
1359 static bool clk_core_can_round(struct clk_core * const core)
1360 {
1361 	return core->ops->determine_rate || core->ops->round_rate;
1362 }
1363 
1364 static int clk_core_round_rate_nolock(struct clk_core *core,
1365 				      struct clk_rate_request *req)
1366 {
1367 	lockdep_assert_held(&prepare_lock);
1368 
1369 	if (!core) {
1370 		req->rate = 0;
1371 		return 0;
1372 	}
1373 
1374 	clk_core_init_rate_req(core, req);
1375 
1376 	if (clk_core_can_round(core))
1377 		return clk_core_determine_round_nolock(core, req);
1378 	else if (core->flags & CLK_SET_RATE_PARENT)
1379 		return clk_core_round_rate_nolock(core->parent, req);
1380 
1381 	req->rate = core->rate;
1382 	return 0;
1383 }
1384 
1385 /**
1386  * __clk_determine_rate - get the closest rate actually supported by a clock
1387  * @hw: determine the rate of this clock
1388  * @req: target rate request
1389  *
1390  * Useful for clk_ops such as .set_rate and .determine_rate.
1391  */
1392 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1393 {
1394 	if (!hw) {
1395 		req->rate = 0;
1396 		return 0;
1397 	}
1398 
1399 	return clk_core_round_rate_nolock(hw->core, req);
1400 }
1401 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1402 
1403 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1404 {
1405 	int ret;
1406 	struct clk_rate_request req;
1407 
1408 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1409 	req.rate = rate;
1410 
1411 	ret = clk_core_round_rate_nolock(hw->core, &req);
1412 	if (ret)
1413 		return 0;
1414 
1415 	return req.rate;
1416 }
1417 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1418 
1419 /**
1420  * clk_round_rate - round the given rate for a clk
1421  * @clk: the clk for which we are rounding a rate
1422  * @rate: the rate which is to be rounded
1423  *
1424  * Takes in a rate as input and rounds it to a rate that the clk can actually
1425  * use which is then returned.  If clk doesn't support round_rate operation
1426  * then the parent rate is returned.
1427  */
1428 long clk_round_rate(struct clk *clk, unsigned long rate)
1429 {
1430 	struct clk_rate_request req;
1431 	int ret;
1432 
1433 	if (!clk)
1434 		return 0;
1435 
1436 	clk_prepare_lock();
1437 
1438 	if (clk->exclusive_count)
1439 		clk_core_rate_unprotect(clk->core);
1440 
1441 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1442 	req.rate = rate;
1443 
1444 	ret = clk_core_round_rate_nolock(clk->core, &req);
1445 
1446 	if (clk->exclusive_count)
1447 		clk_core_rate_protect(clk->core);
1448 
1449 	clk_prepare_unlock();
1450 
1451 	if (ret)
1452 		return ret;
1453 
1454 	return req.rate;
1455 }
1456 EXPORT_SYMBOL_GPL(clk_round_rate);
1457 
1458 /**
1459  * __clk_notify - call clk notifier chain
1460  * @core: clk that is changing rate
1461  * @msg: clk notifier type (see include/linux/clk.h)
1462  * @old_rate: old clk rate
1463  * @new_rate: new clk rate
1464  *
1465  * Triggers a notifier call chain on the clk rate-change notification
1466  * for 'clk'.  Passes a pointer to the struct clk and the previous
1467  * and current rates to the notifier callback.  Intended to be called by
1468  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1469  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1470  * a driver returns that.
1471  */
1472 static int __clk_notify(struct clk_core *core, unsigned long msg,
1473 		unsigned long old_rate, unsigned long new_rate)
1474 {
1475 	struct clk_notifier *cn;
1476 	struct clk_notifier_data cnd;
1477 	int ret = NOTIFY_DONE;
1478 
1479 	cnd.old_rate = old_rate;
1480 	cnd.new_rate = new_rate;
1481 
1482 	list_for_each_entry(cn, &clk_notifier_list, node) {
1483 		if (cn->clk->core == core) {
1484 			cnd.clk = cn->clk;
1485 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1486 					&cnd);
1487 			if (ret & NOTIFY_STOP_MASK)
1488 				return ret;
1489 		}
1490 	}
1491 
1492 	return ret;
1493 }
1494 
1495 /**
1496  * __clk_recalc_accuracies
1497  * @core: first clk in the subtree
1498  *
1499  * Walks the subtree of clks starting with clk and recalculates accuracies as
1500  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1501  * callback then it is assumed that the clock will take on the accuracy of its
1502  * parent.
1503  */
1504 static void __clk_recalc_accuracies(struct clk_core *core)
1505 {
1506 	unsigned long parent_accuracy = 0;
1507 	struct clk_core *child;
1508 
1509 	lockdep_assert_held(&prepare_lock);
1510 
1511 	if (core->parent)
1512 		parent_accuracy = core->parent->accuracy;
1513 
1514 	if (core->ops->recalc_accuracy)
1515 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1516 							  parent_accuracy);
1517 	else
1518 		core->accuracy = parent_accuracy;
1519 
1520 	hlist_for_each_entry(child, &core->children, child_node)
1521 		__clk_recalc_accuracies(child);
1522 }
1523 
1524 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1525 {
1526 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1527 		__clk_recalc_accuracies(core);
1528 
1529 	return clk_core_get_accuracy_no_lock(core);
1530 }
1531 
1532 /**
1533  * clk_get_accuracy - return the accuracy of clk
1534  * @clk: the clk whose accuracy is being returned
1535  *
1536  * Simply returns the cached accuracy of the clk, unless
1537  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1538  * issued.
1539  * If clk is NULL then returns 0.
1540  */
1541 long clk_get_accuracy(struct clk *clk)
1542 {
1543 	long accuracy;
1544 
1545 	if (!clk)
1546 		return 0;
1547 
1548 	clk_prepare_lock();
1549 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1550 	clk_prepare_unlock();
1551 
1552 	return accuracy;
1553 }
1554 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1555 
1556 static unsigned long clk_recalc(struct clk_core *core,
1557 				unsigned long parent_rate)
1558 {
1559 	unsigned long rate = parent_rate;
1560 
1561 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1562 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1563 		clk_pm_runtime_put(core);
1564 	}
1565 	return rate;
1566 }
1567 
1568 /**
1569  * __clk_recalc_rates
1570  * @core: first clk in the subtree
1571  * @msg: notification type (see include/linux/clk.h)
1572  *
1573  * Walks the subtree of clks starting with clk and recalculates rates as it
1574  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1575  * it is assumed that the clock will take on the rate of its parent.
1576  *
1577  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1578  * if necessary.
1579  */
1580 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1581 {
1582 	unsigned long old_rate;
1583 	unsigned long parent_rate = 0;
1584 	struct clk_core *child;
1585 
1586 	lockdep_assert_held(&prepare_lock);
1587 
1588 	old_rate = core->rate;
1589 
1590 	if (core->parent)
1591 		parent_rate = core->parent->rate;
1592 
1593 	core->rate = clk_recalc(core, parent_rate);
1594 
1595 	/*
1596 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1597 	 * & ABORT_RATE_CHANGE notifiers
1598 	 */
1599 	if (core->notifier_count && msg)
1600 		__clk_notify(core, msg, old_rate, core->rate);
1601 
1602 	hlist_for_each_entry(child, &core->children, child_node)
1603 		__clk_recalc_rates(child, msg);
1604 }
1605 
1606 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1607 {
1608 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1609 		__clk_recalc_rates(core, 0);
1610 
1611 	return clk_core_get_rate_nolock(core);
1612 }
1613 
1614 /**
1615  * clk_get_rate - return the rate of clk
1616  * @clk: the clk whose rate is being returned
1617  *
1618  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1619  * is set, which means a recalc_rate will be issued.
1620  * If clk is NULL then returns 0.
1621  */
1622 unsigned long clk_get_rate(struct clk *clk)
1623 {
1624 	unsigned long rate;
1625 
1626 	if (!clk)
1627 		return 0;
1628 
1629 	clk_prepare_lock();
1630 	rate = clk_core_get_rate_recalc(clk->core);
1631 	clk_prepare_unlock();
1632 
1633 	return rate;
1634 }
1635 EXPORT_SYMBOL_GPL(clk_get_rate);
1636 
1637 static int clk_fetch_parent_index(struct clk_core *core,
1638 				  struct clk_core *parent)
1639 {
1640 	int i;
1641 
1642 	if (!parent)
1643 		return -EINVAL;
1644 
1645 	for (i = 0; i < core->num_parents; i++) {
1646 		/* Found it first try! */
1647 		if (core->parents[i].core == parent)
1648 			return i;
1649 
1650 		/* Something else is here, so keep looking */
1651 		if (core->parents[i].core)
1652 			continue;
1653 
1654 		/* Maybe core hasn't been cached but the hw is all we know? */
1655 		if (core->parents[i].hw) {
1656 			if (core->parents[i].hw == parent->hw)
1657 				break;
1658 
1659 			/* Didn't match, but we're expecting a clk_hw */
1660 			continue;
1661 		}
1662 
1663 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1664 		if (parent == clk_core_get(core, i))
1665 			break;
1666 
1667 		/* Fallback to comparing globally unique names */
1668 		if (core->parents[i].name &&
1669 		    !strcmp(parent->name, core->parents[i].name))
1670 			break;
1671 	}
1672 
1673 	if (i == core->num_parents)
1674 		return -EINVAL;
1675 
1676 	core->parents[i].core = parent;
1677 	return i;
1678 }
1679 
1680 /**
1681  * clk_hw_get_parent_index - return the index of the parent clock
1682  * @hw: clk_hw associated with the clk being consumed
1683  *
1684  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1685  * clock does not have a current parent.
1686  */
1687 int clk_hw_get_parent_index(struct clk_hw *hw)
1688 {
1689 	struct clk_hw *parent = clk_hw_get_parent(hw);
1690 
1691 	if (WARN_ON(parent == NULL))
1692 		return -EINVAL;
1693 
1694 	return clk_fetch_parent_index(hw->core, parent->core);
1695 }
1696 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1697 
1698 /*
1699  * Update the orphan status of @core and all its children.
1700  */
1701 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1702 {
1703 	struct clk_core *child;
1704 
1705 	core->orphan = is_orphan;
1706 
1707 	hlist_for_each_entry(child, &core->children, child_node)
1708 		clk_core_update_orphan_status(child, is_orphan);
1709 }
1710 
1711 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1712 {
1713 	bool was_orphan = core->orphan;
1714 
1715 	hlist_del(&core->child_node);
1716 
1717 	if (new_parent) {
1718 		bool becomes_orphan = new_parent->orphan;
1719 
1720 		/* avoid duplicate POST_RATE_CHANGE notifications */
1721 		if (new_parent->new_child == core)
1722 			new_parent->new_child = NULL;
1723 
1724 		hlist_add_head(&core->child_node, &new_parent->children);
1725 
1726 		if (was_orphan != becomes_orphan)
1727 			clk_core_update_orphan_status(core, becomes_orphan);
1728 	} else {
1729 		hlist_add_head(&core->child_node, &clk_orphan_list);
1730 		if (!was_orphan)
1731 			clk_core_update_orphan_status(core, true);
1732 	}
1733 
1734 	core->parent = new_parent;
1735 }
1736 
1737 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1738 					   struct clk_core *parent)
1739 {
1740 	unsigned long flags;
1741 	struct clk_core *old_parent = core->parent;
1742 
1743 	/*
1744 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1745 	 *
1746 	 * 2. Migrate prepare state between parents and prevent race with
1747 	 * clk_enable().
1748 	 *
1749 	 * If the clock is not prepared, then a race with
1750 	 * clk_enable/disable() is impossible since we already have the
1751 	 * prepare lock (future calls to clk_enable() need to be preceded by
1752 	 * a clk_prepare()).
1753 	 *
1754 	 * If the clock is prepared, migrate the prepared state to the new
1755 	 * parent and also protect against a race with clk_enable() by
1756 	 * forcing the clock and the new parent on.  This ensures that all
1757 	 * future calls to clk_enable() are practically NOPs with respect to
1758 	 * hardware and software states.
1759 	 *
1760 	 * See also: Comment for clk_set_parent() below.
1761 	 */
1762 
1763 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1764 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1765 		clk_core_prepare_enable(old_parent);
1766 		clk_core_prepare_enable(parent);
1767 	}
1768 
1769 	/* migrate prepare count if > 0 */
1770 	if (core->prepare_count) {
1771 		clk_core_prepare_enable(parent);
1772 		clk_core_enable_lock(core);
1773 	}
1774 
1775 	/* update the clk tree topology */
1776 	flags = clk_enable_lock();
1777 	clk_reparent(core, parent);
1778 	clk_enable_unlock(flags);
1779 
1780 	return old_parent;
1781 }
1782 
1783 static void __clk_set_parent_after(struct clk_core *core,
1784 				   struct clk_core *parent,
1785 				   struct clk_core *old_parent)
1786 {
1787 	/*
1788 	 * Finish the migration of prepare state and undo the changes done
1789 	 * for preventing a race with clk_enable().
1790 	 */
1791 	if (core->prepare_count) {
1792 		clk_core_disable_lock(core);
1793 		clk_core_disable_unprepare(old_parent);
1794 	}
1795 
1796 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1797 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1798 		clk_core_disable_unprepare(parent);
1799 		clk_core_disable_unprepare(old_parent);
1800 	}
1801 }
1802 
1803 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1804 			    u8 p_index)
1805 {
1806 	unsigned long flags;
1807 	int ret = 0;
1808 	struct clk_core *old_parent;
1809 
1810 	old_parent = __clk_set_parent_before(core, parent);
1811 
1812 	trace_clk_set_parent(core, parent);
1813 
1814 	/* change clock input source */
1815 	if (parent && core->ops->set_parent)
1816 		ret = core->ops->set_parent(core->hw, p_index);
1817 
1818 	trace_clk_set_parent_complete(core, parent);
1819 
1820 	if (ret) {
1821 		flags = clk_enable_lock();
1822 		clk_reparent(core, old_parent);
1823 		clk_enable_unlock(flags);
1824 		__clk_set_parent_after(core, old_parent, parent);
1825 
1826 		return ret;
1827 	}
1828 
1829 	__clk_set_parent_after(core, parent, old_parent);
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * __clk_speculate_rates
1836  * @core: first clk in the subtree
1837  * @parent_rate: the "future" rate of clk's parent
1838  *
1839  * Walks the subtree of clks starting with clk, speculating rates as it
1840  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1841  *
1842  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1843  * pre-rate change notifications and returns early if no clks in the
1844  * subtree have subscribed to the notifications.  Note that if a clk does not
1845  * implement the .recalc_rate callback then it is assumed that the clock will
1846  * take on the rate of its parent.
1847  */
1848 static int __clk_speculate_rates(struct clk_core *core,
1849 				 unsigned long parent_rate)
1850 {
1851 	struct clk_core *child;
1852 	unsigned long new_rate;
1853 	int ret = NOTIFY_DONE;
1854 
1855 	lockdep_assert_held(&prepare_lock);
1856 
1857 	new_rate = clk_recalc(core, parent_rate);
1858 
1859 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1860 	if (core->notifier_count)
1861 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1862 
1863 	if (ret & NOTIFY_STOP_MASK) {
1864 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1865 				__func__, core->name, ret);
1866 		goto out;
1867 	}
1868 
1869 	hlist_for_each_entry(child, &core->children, child_node) {
1870 		ret = __clk_speculate_rates(child, new_rate);
1871 		if (ret & NOTIFY_STOP_MASK)
1872 			break;
1873 	}
1874 
1875 out:
1876 	return ret;
1877 }
1878 
1879 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1880 			     struct clk_core *new_parent, u8 p_index)
1881 {
1882 	struct clk_core *child;
1883 
1884 	core->new_rate = new_rate;
1885 	core->new_parent = new_parent;
1886 	core->new_parent_index = p_index;
1887 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1888 	core->new_child = NULL;
1889 	if (new_parent && new_parent != core->parent)
1890 		new_parent->new_child = core;
1891 
1892 	hlist_for_each_entry(child, &core->children, child_node) {
1893 		child->new_rate = clk_recalc(child, new_rate);
1894 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1895 	}
1896 }
1897 
1898 /*
1899  * calculate the new rates returning the topmost clock that has to be
1900  * changed.
1901  */
1902 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1903 					   unsigned long rate)
1904 {
1905 	struct clk_core *top = core;
1906 	struct clk_core *old_parent, *parent;
1907 	unsigned long best_parent_rate = 0;
1908 	unsigned long new_rate;
1909 	unsigned long min_rate;
1910 	unsigned long max_rate;
1911 	int p_index = 0;
1912 	long ret;
1913 
1914 	/* sanity */
1915 	if (IS_ERR_OR_NULL(core))
1916 		return NULL;
1917 
1918 	/* save parent rate, if it exists */
1919 	parent = old_parent = core->parent;
1920 	if (parent)
1921 		best_parent_rate = parent->rate;
1922 
1923 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1924 
1925 	/* find the closest rate and parent clk/rate */
1926 	if (clk_core_can_round(core)) {
1927 		struct clk_rate_request req;
1928 
1929 		req.rate = rate;
1930 		req.min_rate = min_rate;
1931 		req.max_rate = max_rate;
1932 
1933 		clk_core_init_rate_req(core, &req);
1934 
1935 		ret = clk_core_determine_round_nolock(core, &req);
1936 		if (ret < 0)
1937 			return NULL;
1938 
1939 		best_parent_rate = req.best_parent_rate;
1940 		new_rate = req.rate;
1941 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1942 
1943 		if (new_rate < min_rate || new_rate > max_rate)
1944 			return NULL;
1945 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1946 		/* pass-through clock without adjustable parent */
1947 		core->new_rate = core->rate;
1948 		return NULL;
1949 	} else {
1950 		/* pass-through clock with adjustable parent */
1951 		top = clk_calc_new_rates(parent, rate);
1952 		new_rate = parent->new_rate;
1953 		goto out;
1954 	}
1955 
1956 	/* some clocks must be gated to change parent */
1957 	if (parent != old_parent &&
1958 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1959 		pr_debug("%s: %s not gated but wants to reparent\n",
1960 			 __func__, core->name);
1961 		return NULL;
1962 	}
1963 
1964 	/* try finding the new parent index */
1965 	if (parent && core->num_parents > 1) {
1966 		p_index = clk_fetch_parent_index(core, parent);
1967 		if (p_index < 0) {
1968 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1969 				 __func__, parent->name, core->name);
1970 			return NULL;
1971 		}
1972 	}
1973 
1974 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1975 	    best_parent_rate != parent->rate)
1976 		top = clk_calc_new_rates(parent, best_parent_rate);
1977 
1978 out:
1979 	clk_calc_subtree(core, new_rate, parent, p_index);
1980 
1981 	return top;
1982 }
1983 
1984 /*
1985  * Notify about rate changes in a subtree. Always walk down the whole tree
1986  * so that in case of an error we can walk down the whole tree again and
1987  * abort the change.
1988  */
1989 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1990 						  unsigned long event)
1991 {
1992 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1993 	int ret = NOTIFY_DONE;
1994 
1995 	if (core->rate == core->new_rate)
1996 		return NULL;
1997 
1998 	if (core->notifier_count) {
1999 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2000 		if (ret & NOTIFY_STOP_MASK)
2001 			fail_clk = core;
2002 	}
2003 
2004 	hlist_for_each_entry(child, &core->children, child_node) {
2005 		/* Skip children who will be reparented to another clock */
2006 		if (child->new_parent && child->new_parent != core)
2007 			continue;
2008 		tmp_clk = clk_propagate_rate_change(child, event);
2009 		if (tmp_clk)
2010 			fail_clk = tmp_clk;
2011 	}
2012 
2013 	/* handle the new child who might not be in core->children yet */
2014 	if (core->new_child) {
2015 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2016 		if (tmp_clk)
2017 			fail_clk = tmp_clk;
2018 	}
2019 
2020 	return fail_clk;
2021 }
2022 
2023 /*
2024  * walk down a subtree and set the new rates notifying the rate
2025  * change on the way
2026  */
2027 static void clk_change_rate(struct clk_core *core)
2028 {
2029 	struct clk_core *child;
2030 	struct hlist_node *tmp;
2031 	unsigned long old_rate;
2032 	unsigned long best_parent_rate = 0;
2033 	bool skip_set_rate = false;
2034 	struct clk_core *old_parent;
2035 	struct clk_core *parent = NULL;
2036 
2037 	old_rate = core->rate;
2038 
2039 	if (core->new_parent) {
2040 		parent = core->new_parent;
2041 		best_parent_rate = core->new_parent->rate;
2042 	} else if (core->parent) {
2043 		parent = core->parent;
2044 		best_parent_rate = core->parent->rate;
2045 	}
2046 
2047 	if (clk_pm_runtime_get(core))
2048 		return;
2049 
2050 	if (core->flags & CLK_SET_RATE_UNGATE) {
2051 		unsigned long flags;
2052 
2053 		clk_core_prepare(core);
2054 		flags = clk_enable_lock();
2055 		clk_core_enable(core);
2056 		clk_enable_unlock(flags);
2057 	}
2058 
2059 	if (core->new_parent && core->new_parent != core->parent) {
2060 		old_parent = __clk_set_parent_before(core, core->new_parent);
2061 		trace_clk_set_parent(core, core->new_parent);
2062 
2063 		if (core->ops->set_rate_and_parent) {
2064 			skip_set_rate = true;
2065 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2066 					best_parent_rate,
2067 					core->new_parent_index);
2068 		} else if (core->ops->set_parent) {
2069 			core->ops->set_parent(core->hw, core->new_parent_index);
2070 		}
2071 
2072 		trace_clk_set_parent_complete(core, core->new_parent);
2073 		__clk_set_parent_after(core, core->new_parent, old_parent);
2074 	}
2075 
2076 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2077 		clk_core_prepare_enable(parent);
2078 
2079 	trace_clk_set_rate(core, core->new_rate);
2080 
2081 	if (!skip_set_rate && core->ops->set_rate)
2082 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2083 
2084 	trace_clk_set_rate_complete(core, core->new_rate);
2085 
2086 	core->rate = clk_recalc(core, best_parent_rate);
2087 
2088 	if (core->flags & CLK_SET_RATE_UNGATE) {
2089 		unsigned long flags;
2090 
2091 		flags = clk_enable_lock();
2092 		clk_core_disable(core);
2093 		clk_enable_unlock(flags);
2094 		clk_core_unprepare(core);
2095 	}
2096 
2097 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2098 		clk_core_disable_unprepare(parent);
2099 
2100 	if (core->notifier_count && old_rate != core->rate)
2101 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2102 
2103 	if (core->flags & CLK_RECALC_NEW_RATES)
2104 		(void)clk_calc_new_rates(core, core->new_rate);
2105 
2106 	/*
2107 	 * Use safe iteration, as change_rate can actually swap parents
2108 	 * for certain clock types.
2109 	 */
2110 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2111 		/* Skip children who will be reparented to another clock */
2112 		if (child->new_parent && child->new_parent != core)
2113 			continue;
2114 		clk_change_rate(child);
2115 	}
2116 
2117 	/* handle the new child who might not be in core->children yet */
2118 	if (core->new_child)
2119 		clk_change_rate(core->new_child);
2120 
2121 	clk_pm_runtime_put(core);
2122 }
2123 
2124 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2125 						     unsigned long req_rate)
2126 {
2127 	int ret, cnt;
2128 	struct clk_rate_request req;
2129 
2130 	lockdep_assert_held(&prepare_lock);
2131 
2132 	if (!core)
2133 		return 0;
2134 
2135 	/* simulate what the rate would be if it could be freely set */
2136 	cnt = clk_core_rate_nuke_protect(core);
2137 	if (cnt < 0)
2138 		return cnt;
2139 
2140 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2141 	req.rate = req_rate;
2142 
2143 	ret = clk_core_round_rate_nolock(core, &req);
2144 
2145 	/* restore the protection */
2146 	clk_core_rate_restore_protect(core, cnt);
2147 
2148 	return ret ? 0 : req.rate;
2149 }
2150 
2151 static int clk_core_set_rate_nolock(struct clk_core *core,
2152 				    unsigned long req_rate)
2153 {
2154 	struct clk_core *top, *fail_clk;
2155 	unsigned long rate;
2156 	int ret = 0;
2157 
2158 	if (!core)
2159 		return 0;
2160 
2161 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2162 
2163 	/* bail early if nothing to do */
2164 	if (rate == clk_core_get_rate_nolock(core))
2165 		return 0;
2166 
2167 	/* fail on a direct rate set of a protected provider */
2168 	if (clk_core_rate_is_protected(core))
2169 		return -EBUSY;
2170 
2171 	/* calculate new rates and get the topmost changed clock */
2172 	top = clk_calc_new_rates(core, req_rate);
2173 	if (!top)
2174 		return -EINVAL;
2175 
2176 	ret = clk_pm_runtime_get(core);
2177 	if (ret)
2178 		return ret;
2179 
2180 	/* notify that we are about to change rates */
2181 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2182 	if (fail_clk) {
2183 		pr_debug("%s: failed to set %s rate\n", __func__,
2184 				fail_clk->name);
2185 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2186 		ret = -EBUSY;
2187 		goto err;
2188 	}
2189 
2190 	/* change the rates */
2191 	clk_change_rate(top);
2192 
2193 	core->req_rate = req_rate;
2194 err:
2195 	clk_pm_runtime_put(core);
2196 
2197 	return ret;
2198 }
2199 
2200 /**
2201  * clk_set_rate - specify a new rate for clk
2202  * @clk: the clk whose rate is being changed
2203  * @rate: the new rate for clk
2204  *
2205  * In the simplest case clk_set_rate will only adjust the rate of clk.
2206  *
2207  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2208  * propagate up to clk's parent; whether or not this happens depends on the
2209  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2210  * after calling .round_rate then upstream parent propagation is ignored.  If
2211  * *parent_rate comes back with a new rate for clk's parent then we propagate
2212  * up to clk's parent and set its rate.  Upward propagation will continue
2213  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2214  * .round_rate stops requesting changes to clk's parent_rate.
2215  *
2216  * Rate changes are accomplished via tree traversal that also recalculates the
2217  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2218  *
2219  * Returns 0 on success, -EERROR otherwise.
2220  */
2221 int clk_set_rate(struct clk *clk, unsigned long rate)
2222 {
2223 	int ret;
2224 
2225 	if (!clk)
2226 		return 0;
2227 
2228 	/* prevent racing with updates to the clock topology */
2229 	clk_prepare_lock();
2230 
2231 	if (clk->exclusive_count)
2232 		clk_core_rate_unprotect(clk->core);
2233 
2234 	ret = clk_core_set_rate_nolock(clk->core, rate);
2235 
2236 	if (clk->exclusive_count)
2237 		clk_core_rate_protect(clk->core);
2238 
2239 	clk_prepare_unlock();
2240 
2241 	return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(clk_set_rate);
2244 
2245 /**
2246  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2247  * @clk: the clk whose rate is being changed
2248  * @rate: the new rate for clk
2249  *
2250  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2251  * within a critical section
2252  *
2253  * This can be used initially to ensure that at least 1 consumer is
2254  * satisfied when several consumers are competing for exclusivity over the
2255  * same clock provider.
2256  *
2257  * The exclusivity is not applied if setting the rate failed.
2258  *
2259  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2260  * clk_rate_exclusive_put().
2261  *
2262  * Returns 0 on success, -EERROR otherwise.
2263  */
2264 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2265 {
2266 	int ret;
2267 
2268 	if (!clk)
2269 		return 0;
2270 
2271 	/* prevent racing with updates to the clock topology */
2272 	clk_prepare_lock();
2273 
2274 	/*
2275 	 * The temporary protection removal is not here, on purpose
2276 	 * This function is meant to be used instead of clk_rate_protect,
2277 	 * so before the consumer code path protect the clock provider
2278 	 */
2279 
2280 	ret = clk_core_set_rate_nolock(clk->core, rate);
2281 	if (!ret) {
2282 		clk_core_rate_protect(clk->core);
2283 		clk->exclusive_count++;
2284 	}
2285 
2286 	clk_prepare_unlock();
2287 
2288 	return ret;
2289 }
2290 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2291 
2292 /**
2293  * clk_set_rate_range - set a rate range for a clock source
2294  * @clk: clock source
2295  * @min: desired minimum clock rate in Hz, inclusive
2296  * @max: desired maximum clock rate in Hz, inclusive
2297  *
2298  * Returns success (0) or negative errno.
2299  */
2300 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2301 {
2302 	int ret = 0;
2303 	unsigned long old_min, old_max, rate;
2304 
2305 	if (!clk)
2306 		return 0;
2307 
2308 	if (min > max) {
2309 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2310 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2311 		       min, max);
2312 		return -EINVAL;
2313 	}
2314 
2315 	clk_prepare_lock();
2316 
2317 	if (clk->exclusive_count)
2318 		clk_core_rate_unprotect(clk->core);
2319 
2320 	/* Save the current values in case we need to rollback the change */
2321 	old_min = clk->min_rate;
2322 	old_max = clk->max_rate;
2323 	clk->min_rate = min;
2324 	clk->max_rate = max;
2325 
2326 	rate = clk_core_get_rate_nolock(clk->core);
2327 	if (rate < min || rate > max) {
2328 		/*
2329 		 * FIXME:
2330 		 * We are in bit of trouble here, current rate is outside the
2331 		 * the requested range. We are going try to request appropriate
2332 		 * range boundary but there is a catch. It may fail for the
2333 		 * usual reason (clock broken, clock protected, etc) but also
2334 		 * because:
2335 		 * - round_rate() was not favorable and fell on the wrong
2336 		 *   side of the boundary
2337 		 * - the determine_rate() callback does not really check for
2338 		 *   this corner case when determining the rate
2339 		 */
2340 
2341 		if (rate < min)
2342 			rate = min;
2343 		else
2344 			rate = max;
2345 
2346 		ret = clk_core_set_rate_nolock(clk->core, rate);
2347 		if (ret) {
2348 			/* rollback the changes */
2349 			clk->min_rate = old_min;
2350 			clk->max_rate = old_max;
2351 		}
2352 	}
2353 
2354 	if (clk->exclusive_count)
2355 		clk_core_rate_protect(clk->core);
2356 
2357 	clk_prepare_unlock();
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2362 
2363 /**
2364  * clk_set_min_rate - set a minimum clock rate for a clock source
2365  * @clk: clock source
2366  * @rate: desired minimum clock rate in Hz, inclusive
2367  *
2368  * Returns success (0) or negative errno.
2369  */
2370 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2371 {
2372 	if (!clk)
2373 		return 0;
2374 
2375 	return clk_set_rate_range(clk, rate, clk->max_rate);
2376 }
2377 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2378 
2379 /**
2380  * clk_set_max_rate - set a maximum clock rate for a clock source
2381  * @clk: clock source
2382  * @rate: desired maximum clock rate in Hz, inclusive
2383  *
2384  * Returns success (0) or negative errno.
2385  */
2386 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2387 {
2388 	if (!clk)
2389 		return 0;
2390 
2391 	return clk_set_rate_range(clk, clk->min_rate, rate);
2392 }
2393 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2394 
2395 /**
2396  * clk_get_parent - return the parent of a clk
2397  * @clk: the clk whose parent gets returned
2398  *
2399  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2400  */
2401 struct clk *clk_get_parent(struct clk *clk)
2402 {
2403 	struct clk *parent;
2404 
2405 	if (!clk)
2406 		return NULL;
2407 
2408 	clk_prepare_lock();
2409 	/* TODO: Create a per-user clk and change callers to call clk_put */
2410 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2411 	clk_prepare_unlock();
2412 
2413 	return parent;
2414 }
2415 EXPORT_SYMBOL_GPL(clk_get_parent);
2416 
2417 static struct clk_core *__clk_init_parent(struct clk_core *core)
2418 {
2419 	u8 index = 0;
2420 
2421 	if (core->num_parents > 1 && core->ops->get_parent)
2422 		index = core->ops->get_parent(core->hw);
2423 
2424 	return clk_core_get_parent_by_index(core, index);
2425 }
2426 
2427 static void clk_core_reparent(struct clk_core *core,
2428 				  struct clk_core *new_parent)
2429 {
2430 	clk_reparent(core, new_parent);
2431 	__clk_recalc_accuracies(core);
2432 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2433 }
2434 
2435 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2436 {
2437 	if (!hw)
2438 		return;
2439 
2440 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2441 }
2442 
2443 /**
2444  * clk_has_parent - check if a clock is a possible parent for another
2445  * @clk: clock source
2446  * @parent: parent clock source
2447  *
2448  * This function can be used in drivers that need to check that a clock can be
2449  * the parent of another without actually changing the parent.
2450  *
2451  * Returns true if @parent is a possible parent for @clk, false otherwise.
2452  */
2453 bool clk_has_parent(struct clk *clk, struct clk *parent)
2454 {
2455 	struct clk_core *core, *parent_core;
2456 	int i;
2457 
2458 	/* NULL clocks should be nops, so return success if either is NULL. */
2459 	if (!clk || !parent)
2460 		return true;
2461 
2462 	core = clk->core;
2463 	parent_core = parent->core;
2464 
2465 	/* Optimize for the case where the parent is already the parent. */
2466 	if (core->parent == parent_core)
2467 		return true;
2468 
2469 	for (i = 0; i < core->num_parents; i++)
2470 		if (!strcmp(core->parents[i].name, parent_core->name))
2471 			return true;
2472 
2473 	return false;
2474 }
2475 EXPORT_SYMBOL_GPL(clk_has_parent);
2476 
2477 static int clk_core_set_parent_nolock(struct clk_core *core,
2478 				      struct clk_core *parent)
2479 {
2480 	int ret = 0;
2481 	int p_index = 0;
2482 	unsigned long p_rate = 0;
2483 
2484 	lockdep_assert_held(&prepare_lock);
2485 
2486 	if (!core)
2487 		return 0;
2488 
2489 	if (core->parent == parent)
2490 		return 0;
2491 
2492 	/* verify ops for multi-parent clks */
2493 	if (core->num_parents > 1 && !core->ops->set_parent)
2494 		return -EPERM;
2495 
2496 	/* check that we are allowed to re-parent if the clock is in use */
2497 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2498 		return -EBUSY;
2499 
2500 	if (clk_core_rate_is_protected(core))
2501 		return -EBUSY;
2502 
2503 	/* try finding the new parent index */
2504 	if (parent) {
2505 		p_index = clk_fetch_parent_index(core, parent);
2506 		if (p_index < 0) {
2507 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2508 					__func__, parent->name, core->name);
2509 			return p_index;
2510 		}
2511 		p_rate = parent->rate;
2512 	}
2513 
2514 	ret = clk_pm_runtime_get(core);
2515 	if (ret)
2516 		return ret;
2517 
2518 	/* propagate PRE_RATE_CHANGE notifications */
2519 	ret = __clk_speculate_rates(core, p_rate);
2520 
2521 	/* abort if a driver objects */
2522 	if (ret & NOTIFY_STOP_MASK)
2523 		goto runtime_put;
2524 
2525 	/* do the re-parent */
2526 	ret = __clk_set_parent(core, parent, p_index);
2527 
2528 	/* propagate rate an accuracy recalculation accordingly */
2529 	if (ret) {
2530 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2531 	} else {
2532 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2533 		__clk_recalc_accuracies(core);
2534 	}
2535 
2536 runtime_put:
2537 	clk_pm_runtime_put(core);
2538 
2539 	return ret;
2540 }
2541 
2542 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2543 {
2544 	return clk_core_set_parent_nolock(hw->core, parent->core);
2545 }
2546 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2547 
2548 /**
2549  * clk_set_parent - switch the parent of a mux clk
2550  * @clk: the mux clk whose input we are switching
2551  * @parent: the new input to clk
2552  *
2553  * Re-parent clk to use parent as its new input source.  If clk is in
2554  * prepared state, the clk will get enabled for the duration of this call. If
2555  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2556  * that, the reparenting is glitchy in hardware, etc), use the
2557  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2558  *
2559  * After successfully changing clk's parent clk_set_parent will update the
2560  * clk topology, sysfs topology and propagate rate recalculation via
2561  * __clk_recalc_rates.
2562  *
2563  * Returns 0 on success, -EERROR otherwise.
2564  */
2565 int clk_set_parent(struct clk *clk, struct clk *parent)
2566 {
2567 	int ret;
2568 
2569 	if (!clk)
2570 		return 0;
2571 
2572 	clk_prepare_lock();
2573 
2574 	if (clk->exclusive_count)
2575 		clk_core_rate_unprotect(clk->core);
2576 
2577 	ret = clk_core_set_parent_nolock(clk->core,
2578 					 parent ? parent->core : NULL);
2579 
2580 	if (clk->exclusive_count)
2581 		clk_core_rate_protect(clk->core);
2582 
2583 	clk_prepare_unlock();
2584 
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL_GPL(clk_set_parent);
2588 
2589 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2590 {
2591 	int ret = -EINVAL;
2592 
2593 	lockdep_assert_held(&prepare_lock);
2594 
2595 	if (!core)
2596 		return 0;
2597 
2598 	if (clk_core_rate_is_protected(core))
2599 		return -EBUSY;
2600 
2601 	trace_clk_set_phase(core, degrees);
2602 
2603 	if (core->ops->set_phase) {
2604 		ret = core->ops->set_phase(core->hw, degrees);
2605 		if (!ret)
2606 			core->phase = degrees;
2607 	}
2608 
2609 	trace_clk_set_phase_complete(core, degrees);
2610 
2611 	return ret;
2612 }
2613 
2614 /**
2615  * clk_set_phase - adjust the phase shift of a clock signal
2616  * @clk: clock signal source
2617  * @degrees: number of degrees the signal is shifted
2618  *
2619  * Shifts the phase of a clock signal by the specified
2620  * degrees. Returns 0 on success, -EERROR otherwise.
2621  *
2622  * This function makes no distinction about the input or reference
2623  * signal that we adjust the clock signal phase against. For example
2624  * phase locked-loop clock signal generators we may shift phase with
2625  * respect to feedback clock signal input, but for other cases the
2626  * clock phase may be shifted with respect to some other, unspecified
2627  * signal.
2628  *
2629  * Additionally the concept of phase shift does not propagate through
2630  * the clock tree hierarchy, which sets it apart from clock rates and
2631  * clock accuracy. A parent clock phase attribute does not have an
2632  * impact on the phase attribute of a child clock.
2633  */
2634 int clk_set_phase(struct clk *clk, int degrees)
2635 {
2636 	int ret;
2637 
2638 	if (!clk)
2639 		return 0;
2640 
2641 	/* sanity check degrees */
2642 	degrees %= 360;
2643 	if (degrees < 0)
2644 		degrees += 360;
2645 
2646 	clk_prepare_lock();
2647 
2648 	if (clk->exclusive_count)
2649 		clk_core_rate_unprotect(clk->core);
2650 
2651 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2652 
2653 	if (clk->exclusive_count)
2654 		clk_core_rate_protect(clk->core);
2655 
2656 	clk_prepare_unlock();
2657 
2658 	return ret;
2659 }
2660 EXPORT_SYMBOL_GPL(clk_set_phase);
2661 
2662 static int clk_core_get_phase(struct clk_core *core)
2663 {
2664 	int ret;
2665 
2666 	lockdep_assert_held(&prepare_lock);
2667 	if (!core->ops->get_phase)
2668 		return 0;
2669 
2670 	/* Always try to update cached phase if possible */
2671 	ret = core->ops->get_phase(core->hw);
2672 	if (ret >= 0)
2673 		core->phase = ret;
2674 
2675 	return ret;
2676 }
2677 
2678 /**
2679  * clk_get_phase - return the phase shift of a clock signal
2680  * @clk: clock signal source
2681  *
2682  * Returns the phase shift of a clock node in degrees, otherwise returns
2683  * -EERROR.
2684  */
2685 int clk_get_phase(struct clk *clk)
2686 {
2687 	int ret;
2688 
2689 	if (!clk)
2690 		return 0;
2691 
2692 	clk_prepare_lock();
2693 	ret = clk_core_get_phase(clk->core);
2694 	clk_prepare_unlock();
2695 
2696 	return ret;
2697 }
2698 EXPORT_SYMBOL_GPL(clk_get_phase);
2699 
2700 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2701 {
2702 	/* Assume a default value of 50% */
2703 	core->duty.num = 1;
2704 	core->duty.den = 2;
2705 }
2706 
2707 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2708 
2709 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2710 {
2711 	struct clk_duty *duty = &core->duty;
2712 	int ret = 0;
2713 
2714 	if (!core->ops->get_duty_cycle)
2715 		return clk_core_update_duty_cycle_parent_nolock(core);
2716 
2717 	ret = core->ops->get_duty_cycle(core->hw, duty);
2718 	if (ret)
2719 		goto reset;
2720 
2721 	/* Don't trust the clock provider too much */
2722 	if (duty->den == 0 || duty->num > duty->den) {
2723 		ret = -EINVAL;
2724 		goto reset;
2725 	}
2726 
2727 	return 0;
2728 
2729 reset:
2730 	clk_core_reset_duty_cycle_nolock(core);
2731 	return ret;
2732 }
2733 
2734 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2735 {
2736 	int ret = 0;
2737 
2738 	if (core->parent &&
2739 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2740 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2741 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2742 	} else {
2743 		clk_core_reset_duty_cycle_nolock(core);
2744 	}
2745 
2746 	return ret;
2747 }
2748 
2749 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2750 						 struct clk_duty *duty);
2751 
2752 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2753 					  struct clk_duty *duty)
2754 {
2755 	int ret;
2756 
2757 	lockdep_assert_held(&prepare_lock);
2758 
2759 	if (clk_core_rate_is_protected(core))
2760 		return -EBUSY;
2761 
2762 	trace_clk_set_duty_cycle(core, duty);
2763 
2764 	if (!core->ops->set_duty_cycle)
2765 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2766 
2767 	ret = core->ops->set_duty_cycle(core->hw, duty);
2768 	if (!ret)
2769 		memcpy(&core->duty, duty, sizeof(*duty));
2770 
2771 	trace_clk_set_duty_cycle_complete(core, duty);
2772 
2773 	return ret;
2774 }
2775 
2776 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2777 						 struct clk_duty *duty)
2778 {
2779 	int ret = 0;
2780 
2781 	if (core->parent &&
2782 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2783 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2784 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2785 	}
2786 
2787 	return ret;
2788 }
2789 
2790 /**
2791  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2792  * @clk: clock signal source
2793  * @num: numerator of the duty cycle ratio to be applied
2794  * @den: denominator of the duty cycle ratio to be applied
2795  *
2796  * Apply the duty cycle ratio if the ratio is valid and the clock can
2797  * perform this operation
2798  *
2799  * Returns (0) on success, a negative errno otherwise.
2800  */
2801 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2802 {
2803 	int ret;
2804 	struct clk_duty duty;
2805 
2806 	if (!clk)
2807 		return 0;
2808 
2809 	/* sanity check the ratio */
2810 	if (den == 0 || num > den)
2811 		return -EINVAL;
2812 
2813 	duty.num = num;
2814 	duty.den = den;
2815 
2816 	clk_prepare_lock();
2817 
2818 	if (clk->exclusive_count)
2819 		clk_core_rate_unprotect(clk->core);
2820 
2821 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2822 
2823 	if (clk->exclusive_count)
2824 		clk_core_rate_protect(clk->core);
2825 
2826 	clk_prepare_unlock();
2827 
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2831 
2832 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2833 					  unsigned int scale)
2834 {
2835 	struct clk_duty *duty = &core->duty;
2836 	int ret;
2837 
2838 	clk_prepare_lock();
2839 
2840 	ret = clk_core_update_duty_cycle_nolock(core);
2841 	if (!ret)
2842 		ret = mult_frac(scale, duty->num, duty->den);
2843 
2844 	clk_prepare_unlock();
2845 
2846 	return ret;
2847 }
2848 
2849 /**
2850  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2851  * @clk: clock signal source
2852  * @scale: scaling factor to be applied to represent the ratio as an integer
2853  *
2854  * Returns the duty cycle ratio of a clock node multiplied by the provided
2855  * scaling factor, or negative errno on error.
2856  */
2857 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2858 {
2859 	if (!clk)
2860 		return 0;
2861 
2862 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2863 }
2864 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2865 
2866 /**
2867  * clk_is_match - check if two clk's point to the same hardware clock
2868  * @p: clk compared against q
2869  * @q: clk compared against p
2870  *
2871  * Returns true if the two struct clk pointers both point to the same hardware
2872  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2873  * share the same struct clk_core object.
2874  *
2875  * Returns false otherwise. Note that two NULL clks are treated as matching.
2876  */
2877 bool clk_is_match(const struct clk *p, const struct clk *q)
2878 {
2879 	/* trivial case: identical struct clk's or both NULL */
2880 	if (p == q)
2881 		return true;
2882 
2883 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2884 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2885 		if (p->core == q->core)
2886 			return true;
2887 
2888 	return false;
2889 }
2890 EXPORT_SYMBOL_GPL(clk_is_match);
2891 
2892 /***        debugfs support        ***/
2893 
2894 #ifdef CONFIG_DEBUG_FS
2895 #include <linux/debugfs.h>
2896 
2897 static struct dentry *rootdir;
2898 static int inited = 0;
2899 static DEFINE_MUTEX(clk_debug_lock);
2900 static HLIST_HEAD(clk_debug_list);
2901 
2902 static struct hlist_head *orphan_list[] = {
2903 	&clk_orphan_list,
2904 	NULL,
2905 };
2906 
2907 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2908 				 int level)
2909 {
2910 	int phase;
2911 
2912 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2913 		   level * 3 + 1, "",
2914 		   30 - level * 3, c->name,
2915 		   c->enable_count, c->prepare_count, c->protect_count,
2916 		   clk_core_get_rate_recalc(c),
2917 		   clk_core_get_accuracy_recalc(c));
2918 
2919 	phase = clk_core_get_phase(c);
2920 	if (phase >= 0)
2921 		seq_printf(s, "%5d", phase);
2922 	else
2923 		seq_puts(s, "-----");
2924 
2925 	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
2926 }
2927 
2928 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2929 				     int level)
2930 {
2931 	struct clk_core *child;
2932 
2933 	clk_summary_show_one(s, c, level);
2934 
2935 	hlist_for_each_entry(child, &c->children, child_node)
2936 		clk_summary_show_subtree(s, child, level + 1);
2937 }
2938 
2939 static int clk_summary_show(struct seq_file *s, void *data)
2940 {
2941 	struct clk_core *c;
2942 	struct hlist_head **lists = (struct hlist_head **)s->private;
2943 
2944 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2945 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2946 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2947 
2948 	clk_prepare_lock();
2949 
2950 	for (; *lists; lists++)
2951 		hlist_for_each_entry(c, *lists, child_node)
2952 			clk_summary_show_subtree(s, c, 0);
2953 
2954 	clk_prepare_unlock();
2955 
2956 	return 0;
2957 }
2958 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2959 
2960 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2961 {
2962 	int phase;
2963 	unsigned long min_rate, max_rate;
2964 
2965 	clk_core_get_boundaries(c, &min_rate, &max_rate);
2966 
2967 	/* This should be JSON format, i.e. elements separated with a comma */
2968 	seq_printf(s, "\"%s\": { ", c->name);
2969 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2970 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2971 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2972 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
2973 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2974 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2975 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
2976 	phase = clk_core_get_phase(c);
2977 	if (phase >= 0)
2978 		seq_printf(s, "\"phase\": %d,", phase);
2979 	seq_printf(s, "\"duty_cycle\": %u",
2980 		   clk_core_get_scaled_duty_cycle(c, 100000));
2981 }
2982 
2983 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2984 {
2985 	struct clk_core *child;
2986 
2987 	clk_dump_one(s, c, level);
2988 
2989 	hlist_for_each_entry(child, &c->children, child_node) {
2990 		seq_putc(s, ',');
2991 		clk_dump_subtree(s, child, level + 1);
2992 	}
2993 
2994 	seq_putc(s, '}');
2995 }
2996 
2997 static int clk_dump_show(struct seq_file *s, void *data)
2998 {
2999 	struct clk_core *c;
3000 	bool first_node = true;
3001 	struct hlist_head **lists = (struct hlist_head **)s->private;
3002 
3003 	seq_putc(s, '{');
3004 	clk_prepare_lock();
3005 
3006 	for (; *lists; lists++) {
3007 		hlist_for_each_entry(c, *lists, child_node) {
3008 			if (!first_node)
3009 				seq_putc(s, ',');
3010 			first_node = false;
3011 			clk_dump_subtree(s, c, 0);
3012 		}
3013 	}
3014 
3015 	clk_prepare_unlock();
3016 
3017 	seq_puts(s, "}\n");
3018 	return 0;
3019 }
3020 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3021 
3022 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3023 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3024 /*
3025  * This can be dangerous, therefore don't provide any real compile time
3026  * configuration option for this feature.
3027  * People who want to use this will need to modify the source code directly.
3028  */
3029 static int clk_rate_set(void *data, u64 val)
3030 {
3031 	struct clk_core *core = data;
3032 	int ret;
3033 
3034 	clk_prepare_lock();
3035 	ret = clk_core_set_rate_nolock(core, val);
3036 	clk_prepare_unlock();
3037 
3038 	return ret;
3039 }
3040 
3041 #define clk_rate_mode	0644
3042 #else
3043 #define clk_rate_set	NULL
3044 #define clk_rate_mode	0444
3045 #endif
3046 
3047 static int clk_rate_get(void *data, u64 *val)
3048 {
3049 	struct clk_core *core = data;
3050 
3051 	*val = core->rate;
3052 	return 0;
3053 }
3054 
3055 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3056 
3057 static const struct {
3058 	unsigned long flag;
3059 	const char *name;
3060 } clk_flags[] = {
3061 #define ENTRY(f) { f, #f }
3062 	ENTRY(CLK_SET_RATE_GATE),
3063 	ENTRY(CLK_SET_PARENT_GATE),
3064 	ENTRY(CLK_SET_RATE_PARENT),
3065 	ENTRY(CLK_IGNORE_UNUSED),
3066 	ENTRY(CLK_GET_RATE_NOCACHE),
3067 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3068 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3069 	ENTRY(CLK_RECALC_NEW_RATES),
3070 	ENTRY(CLK_SET_RATE_UNGATE),
3071 	ENTRY(CLK_IS_CRITICAL),
3072 	ENTRY(CLK_OPS_PARENT_ENABLE),
3073 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3074 #undef ENTRY
3075 };
3076 
3077 static int clk_flags_show(struct seq_file *s, void *data)
3078 {
3079 	struct clk_core *core = s->private;
3080 	unsigned long flags = core->flags;
3081 	unsigned int i;
3082 
3083 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3084 		if (flags & clk_flags[i].flag) {
3085 			seq_printf(s, "%s\n", clk_flags[i].name);
3086 			flags &= ~clk_flags[i].flag;
3087 		}
3088 	}
3089 	if (flags) {
3090 		/* Unknown flags */
3091 		seq_printf(s, "0x%lx\n", flags);
3092 	}
3093 
3094 	return 0;
3095 }
3096 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3097 
3098 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3099 				 unsigned int i, char terminator)
3100 {
3101 	struct clk_core *parent;
3102 
3103 	/*
3104 	 * Go through the following options to fetch a parent's name.
3105 	 *
3106 	 * 1. Fetch the registered parent clock and use its name
3107 	 * 2. Use the global (fallback) name if specified
3108 	 * 3. Use the local fw_name if provided
3109 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3110 	 *
3111 	 * This may still fail in some cases, such as when the parent is
3112 	 * specified directly via a struct clk_hw pointer, but it isn't
3113 	 * registered (yet).
3114 	 */
3115 	parent = clk_core_get_parent_by_index(core, i);
3116 	if (parent)
3117 		seq_puts(s, parent->name);
3118 	else if (core->parents[i].name)
3119 		seq_puts(s, core->parents[i].name);
3120 	else if (core->parents[i].fw_name)
3121 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3122 	else if (core->parents[i].index >= 0)
3123 		seq_puts(s,
3124 			 of_clk_get_parent_name(core->of_node,
3125 						core->parents[i].index));
3126 	else
3127 		seq_puts(s, "(missing)");
3128 
3129 	seq_putc(s, terminator);
3130 }
3131 
3132 static int possible_parents_show(struct seq_file *s, void *data)
3133 {
3134 	struct clk_core *core = s->private;
3135 	int i;
3136 
3137 	for (i = 0; i < core->num_parents - 1; i++)
3138 		possible_parent_show(s, core, i, ' ');
3139 
3140 	possible_parent_show(s, core, i, '\n');
3141 
3142 	return 0;
3143 }
3144 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3145 
3146 static int current_parent_show(struct seq_file *s, void *data)
3147 {
3148 	struct clk_core *core = s->private;
3149 
3150 	if (core->parent)
3151 		seq_printf(s, "%s\n", core->parent->name);
3152 
3153 	return 0;
3154 }
3155 DEFINE_SHOW_ATTRIBUTE(current_parent);
3156 
3157 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3158 {
3159 	struct clk_core *core = s->private;
3160 	struct clk_duty *duty = &core->duty;
3161 
3162 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3163 
3164 	return 0;
3165 }
3166 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3167 
3168 static int clk_min_rate_show(struct seq_file *s, void *data)
3169 {
3170 	struct clk_core *core = s->private;
3171 	unsigned long min_rate, max_rate;
3172 
3173 	clk_prepare_lock();
3174 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3175 	clk_prepare_unlock();
3176 	seq_printf(s, "%lu\n", min_rate);
3177 
3178 	return 0;
3179 }
3180 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3181 
3182 static int clk_max_rate_show(struct seq_file *s, void *data)
3183 {
3184 	struct clk_core *core = s->private;
3185 	unsigned long min_rate, max_rate;
3186 
3187 	clk_prepare_lock();
3188 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3189 	clk_prepare_unlock();
3190 	seq_printf(s, "%lu\n", max_rate);
3191 
3192 	return 0;
3193 }
3194 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3195 
3196 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3197 {
3198 	struct dentry *root;
3199 
3200 	if (!core || !pdentry)
3201 		return;
3202 
3203 	root = debugfs_create_dir(core->name, pdentry);
3204 	core->dentry = root;
3205 
3206 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3207 			    &clk_rate_fops);
3208 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3209 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3210 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3211 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3212 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3213 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3214 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3215 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3216 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3217 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3218 			    &clk_duty_cycle_fops);
3219 
3220 	if (core->num_parents > 0)
3221 		debugfs_create_file("clk_parent", 0444, root, core,
3222 				    &current_parent_fops);
3223 
3224 	if (core->num_parents > 1)
3225 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3226 				    &possible_parents_fops);
3227 
3228 	if (core->ops->debug_init)
3229 		core->ops->debug_init(core->hw, core->dentry);
3230 }
3231 
3232 /**
3233  * clk_debug_register - add a clk node to the debugfs clk directory
3234  * @core: the clk being added to the debugfs clk directory
3235  *
3236  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3237  * initialized.  Otherwise it bails out early since the debugfs clk directory
3238  * will be created lazily by clk_debug_init as part of a late_initcall.
3239  */
3240 static void clk_debug_register(struct clk_core *core)
3241 {
3242 	mutex_lock(&clk_debug_lock);
3243 	hlist_add_head(&core->debug_node, &clk_debug_list);
3244 	if (inited)
3245 		clk_debug_create_one(core, rootdir);
3246 	mutex_unlock(&clk_debug_lock);
3247 }
3248 
3249  /**
3250  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3251  * @core: the clk being removed from the debugfs clk directory
3252  *
3253  * Dynamically removes a clk and all its child nodes from the
3254  * debugfs clk directory if clk->dentry points to debugfs created by
3255  * clk_debug_register in __clk_core_init.
3256  */
3257 static void clk_debug_unregister(struct clk_core *core)
3258 {
3259 	mutex_lock(&clk_debug_lock);
3260 	hlist_del_init(&core->debug_node);
3261 	debugfs_remove_recursive(core->dentry);
3262 	core->dentry = NULL;
3263 	mutex_unlock(&clk_debug_lock);
3264 }
3265 
3266 /**
3267  * clk_debug_init - lazily populate the debugfs clk directory
3268  *
3269  * clks are often initialized very early during boot before memory can be
3270  * dynamically allocated and well before debugfs is setup. This function
3271  * populates the debugfs clk directory once at boot-time when we know that
3272  * debugfs is setup. It should only be called once at boot-time, all other clks
3273  * added dynamically will be done so with clk_debug_register.
3274  */
3275 static int __init clk_debug_init(void)
3276 {
3277 	struct clk_core *core;
3278 
3279 	rootdir = debugfs_create_dir("clk", NULL);
3280 
3281 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3282 			    &clk_summary_fops);
3283 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3284 			    &clk_dump_fops);
3285 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3286 			    &clk_summary_fops);
3287 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3288 			    &clk_dump_fops);
3289 
3290 	mutex_lock(&clk_debug_lock);
3291 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3292 		clk_debug_create_one(core, rootdir);
3293 
3294 	inited = 1;
3295 	mutex_unlock(&clk_debug_lock);
3296 
3297 	return 0;
3298 }
3299 late_initcall(clk_debug_init);
3300 #else
3301 static inline void clk_debug_register(struct clk_core *core) { }
3302 static inline void clk_debug_unregister(struct clk_core *core)
3303 {
3304 }
3305 #endif
3306 
3307 static void clk_core_reparent_orphans_nolock(void)
3308 {
3309 	struct clk_core *orphan;
3310 	struct hlist_node *tmp2;
3311 
3312 	/*
3313 	 * walk the list of orphan clocks and reparent any that newly finds a
3314 	 * parent.
3315 	 */
3316 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3317 		struct clk_core *parent = __clk_init_parent(orphan);
3318 
3319 		/*
3320 		 * We need to use __clk_set_parent_before() and _after() to
3321 		 * to properly migrate any prepare/enable count of the orphan
3322 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3323 		 * are enabled during init but might not have a parent yet.
3324 		 */
3325 		if (parent) {
3326 			/* update the clk tree topology */
3327 			__clk_set_parent_before(orphan, parent);
3328 			__clk_set_parent_after(orphan, parent, NULL);
3329 			__clk_recalc_accuracies(orphan);
3330 			__clk_recalc_rates(orphan, 0);
3331 		}
3332 	}
3333 }
3334 
3335 /**
3336  * __clk_core_init - initialize the data structures in a struct clk_core
3337  * @core:	clk_core being initialized
3338  *
3339  * Initializes the lists in struct clk_core, queries the hardware for the
3340  * parent and rate and sets them both.
3341  */
3342 static int __clk_core_init(struct clk_core *core)
3343 {
3344 	int ret;
3345 	struct clk_core *parent;
3346 	unsigned long rate;
3347 	int phase;
3348 
3349 	if (!core)
3350 		return -EINVAL;
3351 
3352 	clk_prepare_lock();
3353 
3354 	ret = clk_pm_runtime_get(core);
3355 	if (ret)
3356 		goto unlock;
3357 
3358 	/* check to see if a clock with this name is already registered */
3359 	if (clk_core_lookup(core->name)) {
3360 		pr_debug("%s: clk %s already initialized\n",
3361 				__func__, core->name);
3362 		ret = -EEXIST;
3363 		goto out;
3364 	}
3365 
3366 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3367 	if (core->ops->set_rate &&
3368 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3369 	      core->ops->recalc_rate)) {
3370 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3371 		       __func__, core->name);
3372 		ret = -EINVAL;
3373 		goto out;
3374 	}
3375 
3376 	if (core->ops->set_parent && !core->ops->get_parent) {
3377 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3378 		       __func__, core->name);
3379 		ret = -EINVAL;
3380 		goto out;
3381 	}
3382 
3383 	if (core->num_parents > 1 && !core->ops->get_parent) {
3384 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3385 		       __func__, core->name);
3386 		ret = -EINVAL;
3387 		goto out;
3388 	}
3389 
3390 	if (core->ops->set_rate_and_parent &&
3391 			!(core->ops->set_parent && core->ops->set_rate)) {
3392 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3393 				__func__, core->name);
3394 		ret = -EINVAL;
3395 		goto out;
3396 	}
3397 
3398 	/*
3399 	 * optional platform-specific magic
3400 	 *
3401 	 * The .init callback is not used by any of the basic clock types, but
3402 	 * exists for weird hardware that must perform initialization magic for
3403 	 * CCF to get an accurate view of clock for any other callbacks. It may
3404 	 * also be used needs to perform dynamic allocations. Such allocation
3405 	 * must be freed in the terminate() callback.
3406 	 * This callback shall not be used to initialize the parameters state,
3407 	 * such as rate, parent, etc ...
3408 	 *
3409 	 * If it exist, this callback should called before any other callback of
3410 	 * the clock
3411 	 */
3412 	if (core->ops->init) {
3413 		ret = core->ops->init(core->hw);
3414 		if (ret)
3415 			goto out;
3416 	}
3417 
3418 	parent = core->parent = __clk_init_parent(core);
3419 
3420 	/*
3421 	 * Populate core->parent if parent has already been clk_core_init'd. If
3422 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3423 	 * list.  If clk doesn't have any parents then place it in the root
3424 	 * clk list.
3425 	 *
3426 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3427 	 * clocks and re-parent any that are children of the clock currently
3428 	 * being clk_init'd.
3429 	 */
3430 	if (parent) {
3431 		hlist_add_head(&core->child_node, &parent->children);
3432 		core->orphan = parent->orphan;
3433 	} else if (!core->num_parents) {
3434 		hlist_add_head(&core->child_node, &clk_root_list);
3435 		core->orphan = false;
3436 	} else {
3437 		hlist_add_head(&core->child_node, &clk_orphan_list);
3438 		core->orphan = true;
3439 	}
3440 
3441 	/*
3442 	 * Set clk's accuracy.  The preferred method is to use
3443 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3444 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3445 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3446 	 * clock).
3447 	 */
3448 	if (core->ops->recalc_accuracy)
3449 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3450 					clk_core_get_accuracy_no_lock(parent));
3451 	else if (parent)
3452 		core->accuracy = parent->accuracy;
3453 	else
3454 		core->accuracy = 0;
3455 
3456 	/*
3457 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3458 	 * Since a phase is by definition relative to its parent, just
3459 	 * query the current clock phase, or just assume it's in phase.
3460 	 */
3461 	phase = clk_core_get_phase(core);
3462 	if (phase < 0) {
3463 		ret = phase;
3464 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3465 			core->name);
3466 		goto out;
3467 	}
3468 
3469 	/*
3470 	 * Set clk's duty cycle.
3471 	 */
3472 	clk_core_update_duty_cycle_nolock(core);
3473 
3474 	/*
3475 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3476 	 * simple clocks and lazy developers the default fallback is to use the
3477 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3478 	 * then rate is set to zero.
3479 	 */
3480 	if (core->ops->recalc_rate)
3481 		rate = core->ops->recalc_rate(core->hw,
3482 				clk_core_get_rate_nolock(parent));
3483 	else if (parent)
3484 		rate = parent->rate;
3485 	else
3486 		rate = 0;
3487 	core->rate = core->req_rate = rate;
3488 
3489 	/*
3490 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3491 	 * don't get accidentally disabled when walking the orphan tree and
3492 	 * reparenting clocks
3493 	 */
3494 	if (core->flags & CLK_IS_CRITICAL) {
3495 		unsigned long flags;
3496 
3497 		ret = clk_core_prepare(core);
3498 		if (ret) {
3499 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3500 			       __func__, core->name);
3501 			goto out;
3502 		}
3503 
3504 		flags = clk_enable_lock();
3505 		ret = clk_core_enable(core);
3506 		clk_enable_unlock(flags);
3507 		if (ret) {
3508 			pr_warn("%s: critical clk '%s' failed to enable\n",
3509 			       __func__, core->name);
3510 			clk_core_unprepare(core);
3511 			goto out;
3512 		}
3513 	}
3514 
3515 	clk_core_reparent_orphans_nolock();
3516 
3517 
3518 	kref_init(&core->ref);
3519 out:
3520 	clk_pm_runtime_put(core);
3521 unlock:
3522 	if (ret)
3523 		hlist_del_init(&core->child_node);
3524 
3525 	clk_prepare_unlock();
3526 
3527 	if (!ret)
3528 		clk_debug_register(core);
3529 
3530 	return ret;
3531 }
3532 
3533 /**
3534  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3535  * @core: clk to add consumer to
3536  * @clk: consumer to link to a clk
3537  */
3538 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3539 {
3540 	clk_prepare_lock();
3541 	hlist_add_head(&clk->clks_node, &core->clks);
3542 	clk_prepare_unlock();
3543 }
3544 
3545 /**
3546  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3547  * @clk: consumer to unlink
3548  */
3549 static void clk_core_unlink_consumer(struct clk *clk)
3550 {
3551 	lockdep_assert_held(&prepare_lock);
3552 	hlist_del(&clk->clks_node);
3553 }
3554 
3555 /**
3556  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3557  * @core: clk to allocate a consumer for
3558  * @dev_id: string describing device name
3559  * @con_id: connection ID string on device
3560  *
3561  * Returns: clk consumer left unlinked from the consumer list
3562  */
3563 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3564 			     const char *con_id)
3565 {
3566 	struct clk *clk;
3567 
3568 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3569 	if (!clk)
3570 		return ERR_PTR(-ENOMEM);
3571 
3572 	clk->core = core;
3573 	clk->dev_id = dev_id;
3574 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3575 	clk->max_rate = ULONG_MAX;
3576 
3577 	return clk;
3578 }
3579 
3580 /**
3581  * free_clk - Free a clk consumer
3582  * @clk: clk consumer to free
3583  *
3584  * Note, this assumes the clk has been unlinked from the clk_core consumer
3585  * list.
3586  */
3587 static void free_clk(struct clk *clk)
3588 {
3589 	kfree_const(clk->con_id);
3590 	kfree(clk);
3591 }
3592 
3593 /**
3594  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3595  * a clk_hw
3596  * @dev: clk consumer device
3597  * @hw: clk_hw associated with the clk being consumed
3598  * @dev_id: string describing device name
3599  * @con_id: connection ID string on device
3600  *
3601  * This is the main function used to create a clk pointer for use by clk
3602  * consumers. It connects a consumer to the clk_core and clk_hw structures
3603  * used by the framework and clk provider respectively.
3604  */
3605 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3606 			      const char *dev_id, const char *con_id)
3607 {
3608 	struct clk *clk;
3609 	struct clk_core *core;
3610 
3611 	/* This is to allow this function to be chained to others */
3612 	if (IS_ERR_OR_NULL(hw))
3613 		return ERR_CAST(hw);
3614 
3615 	core = hw->core;
3616 	clk = alloc_clk(core, dev_id, con_id);
3617 	if (IS_ERR(clk))
3618 		return clk;
3619 	clk->dev = dev;
3620 
3621 	if (!try_module_get(core->owner)) {
3622 		free_clk(clk);
3623 		return ERR_PTR(-ENOENT);
3624 	}
3625 
3626 	kref_get(&core->ref);
3627 	clk_core_link_consumer(core, clk);
3628 
3629 	return clk;
3630 }
3631 
3632 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3633 {
3634 	const char *dst;
3635 
3636 	if (!src) {
3637 		if (must_exist)
3638 			return -EINVAL;
3639 		return 0;
3640 	}
3641 
3642 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3643 	if (!dst)
3644 		return -ENOMEM;
3645 
3646 	return 0;
3647 }
3648 
3649 static int clk_core_populate_parent_map(struct clk_core *core,
3650 					const struct clk_init_data *init)
3651 {
3652 	u8 num_parents = init->num_parents;
3653 	const char * const *parent_names = init->parent_names;
3654 	const struct clk_hw **parent_hws = init->parent_hws;
3655 	const struct clk_parent_data *parent_data = init->parent_data;
3656 	int i, ret = 0;
3657 	struct clk_parent_map *parents, *parent;
3658 
3659 	if (!num_parents)
3660 		return 0;
3661 
3662 	/*
3663 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3664 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3665 	 */
3666 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3667 	core->parents = parents;
3668 	if (!parents)
3669 		return -ENOMEM;
3670 
3671 	/* Copy everything over because it might be __initdata */
3672 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3673 		parent->index = -1;
3674 		if (parent_names) {
3675 			/* throw a WARN if any entries are NULL */
3676 			WARN(!parent_names[i],
3677 				"%s: invalid NULL in %s's .parent_names\n",
3678 				__func__, core->name);
3679 			ret = clk_cpy_name(&parent->name, parent_names[i],
3680 					   true);
3681 		} else if (parent_data) {
3682 			parent->hw = parent_data[i].hw;
3683 			parent->index = parent_data[i].index;
3684 			ret = clk_cpy_name(&parent->fw_name,
3685 					   parent_data[i].fw_name, false);
3686 			if (!ret)
3687 				ret = clk_cpy_name(&parent->name,
3688 						   parent_data[i].name,
3689 						   false);
3690 		} else if (parent_hws) {
3691 			parent->hw = parent_hws[i];
3692 		} else {
3693 			ret = -EINVAL;
3694 			WARN(1, "Must specify parents if num_parents > 0\n");
3695 		}
3696 
3697 		if (ret) {
3698 			do {
3699 				kfree_const(parents[i].name);
3700 				kfree_const(parents[i].fw_name);
3701 			} while (--i >= 0);
3702 			kfree(parents);
3703 
3704 			return ret;
3705 		}
3706 	}
3707 
3708 	return 0;
3709 }
3710 
3711 static void clk_core_free_parent_map(struct clk_core *core)
3712 {
3713 	int i = core->num_parents;
3714 
3715 	if (!core->num_parents)
3716 		return;
3717 
3718 	while (--i >= 0) {
3719 		kfree_const(core->parents[i].name);
3720 		kfree_const(core->parents[i].fw_name);
3721 	}
3722 
3723 	kfree(core->parents);
3724 }
3725 
3726 static struct clk *
3727 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3728 {
3729 	int ret;
3730 	struct clk_core *core;
3731 	const struct clk_init_data *init = hw->init;
3732 
3733 	/*
3734 	 * The init data is not supposed to be used outside of registration path.
3735 	 * Set it to NULL so that provider drivers can't use it either and so that
3736 	 * we catch use of hw->init early on in the core.
3737 	 */
3738 	hw->init = NULL;
3739 
3740 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3741 	if (!core) {
3742 		ret = -ENOMEM;
3743 		goto fail_out;
3744 	}
3745 
3746 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3747 	if (!core->name) {
3748 		ret = -ENOMEM;
3749 		goto fail_name;
3750 	}
3751 
3752 	if (WARN_ON(!init->ops)) {
3753 		ret = -EINVAL;
3754 		goto fail_ops;
3755 	}
3756 	core->ops = init->ops;
3757 
3758 	if (dev && pm_runtime_enabled(dev))
3759 		core->rpm_enabled = true;
3760 	core->dev = dev;
3761 	core->of_node = np;
3762 	if (dev && dev->driver)
3763 		core->owner = dev->driver->owner;
3764 	core->hw = hw;
3765 	core->flags = init->flags;
3766 	core->num_parents = init->num_parents;
3767 	core->min_rate = 0;
3768 	core->max_rate = ULONG_MAX;
3769 	hw->core = core;
3770 
3771 	ret = clk_core_populate_parent_map(core, init);
3772 	if (ret)
3773 		goto fail_parents;
3774 
3775 	INIT_HLIST_HEAD(&core->clks);
3776 
3777 	/*
3778 	 * Don't call clk_hw_create_clk() here because that would pin the
3779 	 * provider module to itself and prevent it from ever being removed.
3780 	 */
3781 	hw->clk = alloc_clk(core, NULL, NULL);
3782 	if (IS_ERR(hw->clk)) {
3783 		ret = PTR_ERR(hw->clk);
3784 		goto fail_create_clk;
3785 	}
3786 
3787 	clk_core_link_consumer(hw->core, hw->clk);
3788 
3789 	ret = __clk_core_init(core);
3790 	if (!ret)
3791 		return hw->clk;
3792 
3793 	clk_prepare_lock();
3794 	clk_core_unlink_consumer(hw->clk);
3795 	clk_prepare_unlock();
3796 
3797 	free_clk(hw->clk);
3798 	hw->clk = NULL;
3799 
3800 fail_create_clk:
3801 	clk_core_free_parent_map(core);
3802 fail_parents:
3803 fail_ops:
3804 	kfree_const(core->name);
3805 fail_name:
3806 	kfree(core);
3807 fail_out:
3808 	return ERR_PTR(ret);
3809 }
3810 
3811 /**
3812  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3813  * @dev: Device to get device node of
3814  *
3815  * Return: device node pointer of @dev, or the device node pointer of
3816  * @dev->parent if dev doesn't have a device node, or NULL if neither
3817  * @dev or @dev->parent have a device node.
3818  */
3819 static struct device_node *dev_or_parent_of_node(struct device *dev)
3820 {
3821 	struct device_node *np;
3822 
3823 	if (!dev)
3824 		return NULL;
3825 
3826 	np = dev_of_node(dev);
3827 	if (!np)
3828 		np = dev_of_node(dev->parent);
3829 
3830 	return np;
3831 }
3832 
3833 /**
3834  * clk_register - allocate a new clock, register it and return an opaque cookie
3835  * @dev: device that is registering this clock
3836  * @hw: link to hardware-specific clock data
3837  *
3838  * clk_register is the *deprecated* interface for populating the clock tree with
3839  * new clock nodes. Use clk_hw_register() instead.
3840  *
3841  * Returns: a pointer to the newly allocated struct clk which
3842  * cannot be dereferenced by driver code but may be used in conjunction with the
3843  * rest of the clock API.  In the event of an error clk_register will return an
3844  * error code; drivers must test for an error code after calling clk_register.
3845  */
3846 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3847 {
3848 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3849 }
3850 EXPORT_SYMBOL_GPL(clk_register);
3851 
3852 /**
3853  * clk_hw_register - register a clk_hw and return an error code
3854  * @dev: device that is registering this clock
3855  * @hw: link to hardware-specific clock data
3856  *
3857  * clk_hw_register is the primary interface for populating the clock tree with
3858  * new clock nodes. It returns an integer equal to zero indicating success or
3859  * less than zero indicating failure. Drivers must test for an error code after
3860  * calling clk_hw_register().
3861  */
3862 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3863 {
3864 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3865 			       hw));
3866 }
3867 EXPORT_SYMBOL_GPL(clk_hw_register);
3868 
3869 /*
3870  * of_clk_hw_register - register a clk_hw and return an error code
3871  * @node: device_node of device that is registering this clock
3872  * @hw: link to hardware-specific clock data
3873  *
3874  * of_clk_hw_register() is the primary interface for populating the clock tree
3875  * with new clock nodes when a struct device is not available, but a struct
3876  * device_node is. It returns an integer equal to zero indicating success or
3877  * less than zero indicating failure. Drivers must test for an error code after
3878  * calling of_clk_hw_register().
3879  */
3880 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3881 {
3882 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3883 }
3884 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3885 
3886 /* Free memory allocated for a clock. */
3887 static void __clk_release(struct kref *ref)
3888 {
3889 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3890 
3891 	lockdep_assert_held(&prepare_lock);
3892 
3893 	clk_core_free_parent_map(core);
3894 	kfree_const(core->name);
3895 	kfree(core);
3896 }
3897 
3898 /*
3899  * Empty clk_ops for unregistered clocks. These are used temporarily
3900  * after clk_unregister() was called on a clock and until last clock
3901  * consumer calls clk_put() and the struct clk object is freed.
3902  */
3903 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3904 {
3905 	return -ENXIO;
3906 }
3907 
3908 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3909 {
3910 	WARN_ON_ONCE(1);
3911 }
3912 
3913 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3914 					unsigned long parent_rate)
3915 {
3916 	return -ENXIO;
3917 }
3918 
3919 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3920 {
3921 	return -ENXIO;
3922 }
3923 
3924 static const struct clk_ops clk_nodrv_ops = {
3925 	.enable		= clk_nodrv_prepare_enable,
3926 	.disable	= clk_nodrv_disable_unprepare,
3927 	.prepare	= clk_nodrv_prepare_enable,
3928 	.unprepare	= clk_nodrv_disable_unprepare,
3929 	.set_rate	= clk_nodrv_set_rate,
3930 	.set_parent	= clk_nodrv_set_parent,
3931 };
3932 
3933 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3934 						struct clk_core *target)
3935 {
3936 	int i;
3937 	struct clk_core *child;
3938 
3939 	for (i = 0; i < root->num_parents; i++)
3940 		if (root->parents[i].core == target)
3941 			root->parents[i].core = NULL;
3942 
3943 	hlist_for_each_entry(child, &root->children, child_node)
3944 		clk_core_evict_parent_cache_subtree(child, target);
3945 }
3946 
3947 /* Remove this clk from all parent caches */
3948 static void clk_core_evict_parent_cache(struct clk_core *core)
3949 {
3950 	struct hlist_head **lists;
3951 	struct clk_core *root;
3952 
3953 	lockdep_assert_held(&prepare_lock);
3954 
3955 	for (lists = all_lists; *lists; lists++)
3956 		hlist_for_each_entry(root, *lists, child_node)
3957 			clk_core_evict_parent_cache_subtree(root, core);
3958 
3959 }
3960 
3961 /**
3962  * clk_unregister - unregister a currently registered clock
3963  * @clk: clock to unregister
3964  */
3965 void clk_unregister(struct clk *clk)
3966 {
3967 	unsigned long flags;
3968 	const struct clk_ops *ops;
3969 
3970 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3971 		return;
3972 
3973 	clk_debug_unregister(clk->core);
3974 
3975 	clk_prepare_lock();
3976 
3977 	ops = clk->core->ops;
3978 	if (ops == &clk_nodrv_ops) {
3979 		pr_err("%s: unregistered clock: %s\n", __func__,
3980 		       clk->core->name);
3981 		goto unlock;
3982 	}
3983 	/*
3984 	 * Assign empty clock ops for consumers that might still hold
3985 	 * a reference to this clock.
3986 	 */
3987 	flags = clk_enable_lock();
3988 	clk->core->ops = &clk_nodrv_ops;
3989 	clk_enable_unlock(flags);
3990 
3991 	if (ops->terminate)
3992 		ops->terminate(clk->core->hw);
3993 
3994 	if (!hlist_empty(&clk->core->children)) {
3995 		struct clk_core *child;
3996 		struct hlist_node *t;
3997 
3998 		/* Reparent all children to the orphan list. */
3999 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4000 					  child_node)
4001 			clk_core_set_parent_nolock(child, NULL);
4002 	}
4003 
4004 	clk_core_evict_parent_cache(clk->core);
4005 
4006 	hlist_del_init(&clk->core->child_node);
4007 
4008 	if (clk->core->prepare_count)
4009 		pr_warn("%s: unregistering prepared clock: %s\n",
4010 					__func__, clk->core->name);
4011 
4012 	if (clk->core->protect_count)
4013 		pr_warn("%s: unregistering protected clock: %s\n",
4014 					__func__, clk->core->name);
4015 
4016 	kref_put(&clk->core->ref, __clk_release);
4017 	free_clk(clk);
4018 unlock:
4019 	clk_prepare_unlock();
4020 }
4021 EXPORT_SYMBOL_GPL(clk_unregister);
4022 
4023 /**
4024  * clk_hw_unregister - unregister a currently registered clk_hw
4025  * @hw: hardware-specific clock data to unregister
4026  */
4027 void clk_hw_unregister(struct clk_hw *hw)
4028 {
4029 	clk_unregister(hw->clk);
4030 }
4031 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4032 
4033 static void devm_clk_release(struct device *dev, void *res)
4034 {
4035 	clk_unregister(*(struct clk **)res);
4036 }
4037 
4038 static void devm_clk_hw_release(struct device *dev, void *res)
4039 {
4040 	clk_hw_unregister(*(struct clk_hw **)res);
4041 }
4042 
4043 /**
4044  * devm_clk_register - resource managed clk_register()
4045  * @dev: device that is registering this clock
4046  * @hw: link to hardware-specific clock data
4047  *
4048  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4049  *
4050  * Clocks returned from this function are automatically clk_unregister()ed on
4051  * driver detach. See clk_register() for more information.
4052  */
4053 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4054 {
4055 	struct clk *clk;
4056 	struct clk **clkp;
4057 
4058 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4059 	if (!clkp)
4060 		return ERR_PTR(-ENOMEM);
4061 
4062 	clk = clk_register(dev, hw);
4063 	if (!IS_ERR(clk)) {
4064 		*clkp = clk;
4065 		devres_add(dev, clkp);
4066 	} else {
4067 		devres_free(clkp);
4068 	}
4069 
4070 	return clk;
4071 }
4072 EXPORT_SYMBOL_GPL(devm_clk_register);
4073 
4074 /**
4075  * devm_clk_hw_register - resource managed clk_hw_register()
4076  * @dev: device that is registering this clock
4077  * @hw: link to hardware-specific clock data
4078  *
4079  * Managed clk_hw_register(). Clocks registered by this function are
4080  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4081  * for more information.
4082  */
4083 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4084 {
4085 	struct clk_hw **hwp;
4086 	int ret;
4087 
4088 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4089 	if (!hwp)
4090 		return -ENOMEM;
4091 
4092 	ret = clk_hw_register(dev, hw);
4093 	if (!ret) {
4094 		*hwp = hw;
4095 		devres_add(dev, hwp);
4096 	} else {
4097 		devres_free(hwp);
4098 	}
4099 
4100 	return ret;
4101 }
4102 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4103 
4104 static int devm_clk_match(struct device *dev, void *res, void *data)
4105 {
4106 	struct clk *c = res;
4107 	if (WARN_ON(!c))
4108 		return 0;
4109 	return c == data;
4110 }
4111 
4112 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4113 {
4114 	struct clk_hw *hw = res;
4115 
4116 	if (WARN_ON(!hw))
4117 		return 0;
4118 	return hw == data;
4119 }
4120 
4121 /**
4122  * devm_clk_unregister - resource managed clk_unregister()
4123  * @clk: clock to unregister
4124  *
4125  * Deallocate a clock allocated with devm_clk_register(). Normally
4126  * this function will not need to be called and the resource management
4127  * code will ensure that the resource is freed.
4128  */
4129 void devm_clk_unregister(struct device *dev, struct clk *clk)
4130 {
4131 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4132 }
4133 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4134 
4135 /**
4136  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4137  * @dev: device that is unregistering the hardware-specific clock data
4138  * @hw: link to hardware-specific clock data
4139  *
4140  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4141  * this function will not need to be called and the resource management
4142  * code will ensure that the resource is freed.
4143  */
4144 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4145 {
4146 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4147 				hw));
4148 }
4149 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4150 
4151 /*
4152  * clkdev helpers
4153  */
4154 
4155 void __clk_put(struct clk *clk)
4156 {
4157 	struct module *owner;
4158 
4159 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4160 		return;
4161 
4162 	clk_prepare_lock();
4163 
4164 	/*
4165 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4166 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4167 	 * and by that same consumer
4168 	 */
4169 	if (WARN_ON(clk->exclusive_count)) {
4170 		/* We voiced our concern, let's sanitize the situation */
4171 		clk->core->protect_count -= (clk->exclusive_count - 1);
4172 		clk_core_rate_unprotect(clk->core);
4173 		clk->exclusive_count = 0;
4174 	}
4175 
4176 	hlist_del(&clk->clks_node);
4177 	if (clk->min_rate > clk->core->req_rate ||
4178 	    clk->max_rate < clk->core->req_rate)
4179 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4180 
4181 	owner = clk->core->owner;
4182 	kref_put(&clk->core->ref, __clk_release);
4183 
4184 	clk_prepare_unlock();
4185 
4186 	module_put(owner);
4187 
4188 	free_clk(clk);
4189 }
4190 
4191 /***        clk rate change notifiers        ***/
4192 
4193 /**
4194  * clk_notifier_register - add a clk rate change notifier
4195  * @clk: struct clk * to watch
4196  * @nb: struct notifier_block * with callback info
4197  *
4198  * Request notification when clk's rate changes.  This uses an SRCU
4199  * notifier because we want it to block and notifier unregistrations are
4200  * uncommon.  The callbacks associated with the notifier must not
4201  * re-enter into the clk framework by calling any top-level clk APIs;
4202  * this will cause a nested prepare_lock mutex.
4203  *
4204  * In all notification cases (pre, post and abort rate change) the original
4205  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4206  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4207  *
4208  * clk_notifier_register() must be called from non-atomic context.
4209  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4210  * allocation failure; otherwise, passes along the return value of
4211  * srcu_notifier_chain_register().
4212  */
4213 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4214 {
4215 	struct clk_notifier *cn;
4216 	int ret = -ENOMEM;
4217 
4218 	if (!clk || !nb)
4219 		return -EINVAL;
4220 
4221 	clk_prepare_lock();
4222 
4223 	/* search the list of notifiers for this clk */
4224 	list_for_each_entry(cn, &clk_notifier_list, node)
4225 		if (cn->clk == clk)
4226 			break;
4227 
4228 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4229 	if (cn->clk != clk) {
4230 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4231 		if (!cn)
4232 			goto out;
4233 
4234 		cn->clk = clk;
4235 		srcu_init_notifier_head(&cn->notifier_head);
4236 
4237 		list_add(&cn->node, &clk_notifier_list);
4238 	}
4239 
4240 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4241 
4242 	clk->core->notifier_count++;
4243 
4244 out:
4245 	clk_prepare_unlock();
4246 
4247 	return ret;
4248 }
4249 EXPORT_SYMBOL_GPL(clk_notifier_register);
4250 
4251 /**
4252  * clk_notifier_unregister - remove a clk rate change notifier
4253  * @clk: struct clk *
4254  * @nb: struct notifier_block * with callback info
4255  *
4256  * Request no further notification for changes to 'clk' and frees memory
4257  * allocated in clk_notifier_register.
4258  *
4259  * Returns -EINVAL if called with null arguments; otherwise, passes
4260  * along the return value of srcu_notifier_chain_unregister().
4261  */
4262 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4263 {
4264 	struct clk_notifier *cn = NULL;
4265 	int ret = -EINVAL;
4266 
4267 	if (!clk || !nb)
4268 		return -EINVAL;
4269 
4270 	clk_prepare_lock();
4271 
4272 	list_for_each_entry(cn, &clk_notifier_list, node)
4273 		if (cn->clk == clk)
4274 			break;
4275 
4276 	if (cn->clk == clk) {
4277 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4278 
4279 		clk->core->notifier_count--;
4280 
4281 		/* XXX the notifier code should handle this better */
4282 		if (!cn->notifier_head.head) {
4283 			srcu_cleanup_notifier_head(&cn->notifier_head);
4284 			list_del(&cn->node);
4285 			kfree(cn);
4286 		}
4287 
4288 	} else {
4289 		ret = -ENOENT;
4290 	}
4291 
4292 	clk_prepare_unlock();
4293 
4294 	return ret;
4295 }
4296 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4297 
4298 #ifdef CONFIG_OF
4299 static void clk_core_reparent_orphans(void)
4300 {
4301 	clk_prepare_lock();
4302 	clk_core_reparent_orphans_nolock();
4303 	clk_prepare_unlock();
4304 }
4305 
4306 /**
4307  * struct of_clk_provider - Clock provider registration structure
4308  * @link: Entry in global list of clock providers
4309  * @node: Pointer to device tree node of clock provider
4310  * @get: Get clock callback.  Returns NULL or a struct clk for the
4311  *       given clock specifier
4312  * @data: context pointer to be passed into @get callback
4313  */
4314 struct of_clk_provider {
4315 	struct list_head link;
4316 
4317 	struct device_node *node;
4318 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4319 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4320 	void *data;
4321 };
4322 
4323 extern struct of_device_id __clk_of_table;
4324 static const struct of_device_id __clk_of_table_sentinel
4325 	__used __section(__clk_of_table_end);
4326 
4327 static LIST_HEAD(of_clk_providers);
4328 static DEFINE_MUTEX(of_clk_mutex);
4329 
4330 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4331 				     void *data)
4332 {
4333 	return data;
4334 }
4335 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4336 
4337 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4338 {
4339 	return data;
4340 }
4341 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4342 
4343 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4344 {
4345 	struct clk_onecell_data *clk_data = data;
4346 	unsigned int idx = clkspec->args[0];
4347 
4348 	if (idx >= clk_data->clk_num) {
4349 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4350 		return ERR_PTR(-EINVAL);
4351 	}
4352 
4353 	return clk_data->clks[idx];
4354 }
4355 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4356 
4357 struct clk_hw *
4358 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4359 {
4360 	struct clk_hw_onecell_data *hw_data = data;
4361 	unsigned int idx = clkspec->args[0];
4362 
4363 	if (idx >= hw_data->num) {
4364 		pr_err("%s: invalid index %u\n", __func__, idx);
4365 		return ERR_PTR(-EINVAL);
4366 	}
4367 
4368 	return hw_data->hws[idx];
4369 }
4370 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4371 
4372 /**
4373  * of_clk_add_provider() - Register a clock provider for a node
4374  * @np: Device node pointer associated with clock provider
4375  * @clk_src_get: callback for decoding clock
4376  * @data: context pointer for @clk_src_get callback.
4377  *
4378  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4379  */
4380 int of_clk_add_provider(struct device_node *np,
4381 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4382 						   void *data),
4383 			void *data)
4384 {
4385 	struct of_clk_provider *cp;
4386 	int ret;
4387 
4388 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4389 	if (!cp)
4390 		return -ENOMEM;
4391 
4392 	cp->node = of_node_get(np);
4393 	cp->data = data;
4394 	cp->get = clk_src_get;
4395 
4396 	mutex_lock(&of_clk_mutex);
4397 	list_add(&cp->link, &of_clk_providers);
4398 	mutex_unlock(&of_clk_mutex);
4399 	pr_debug("Added clock from %pOF\n", np);
4400 
4401 	clk_core_reparent_orphans();
4402 
4403 	ret = of_clk_set_defaults(np, true);
4404 	if (ret < 0)
4405 		of_clk_del_provider(np);
4406 
4407 	return ret;
4408 }
4409 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4410 
4411 /**
4412  * of_clk_add_hw_provider() - Register a clock provider for a node
4413  * @np: Device node pointer associated with clock provider
4414  * @get: callback for decoding clk_hw
4415  * @data: context pointer for @get callback.
4416  */
4417 int of_clk_add_hw_provider(struct device_node *np,
4418 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4419 						 void *data),
4420 			   void *data)
4421 {
4422 	struct of_clk_provider *cp;
4423 	int ret;
4424 
4425 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4426 	if (!cp)
4427 		return -ENOMEM;
4428 
4429 	cp->node = of_node_get(np);
4430 	cp->data = data;
4431 	cp->get_hw = get;
4432 
4433 	mutex_lock(&of_clk_mutex);
4434 	list_add(&cp->link, &of_clk_providers);
4435 	mutex_unlock(&of_clk_mutex);
4436 	pr_debug("Added clk_hw provider from %pOF\n", np);
4437 
4438 	clk_core_reparent_orphans();
4439 
4440 	ret = of_clk_set_defaults(np, true);
4441 	if (ret < 0)
4442 		of_clk_del_provider(np);
4443 
4444 	return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4447 
4448 static void devm_of_clk_release_provider(struct device *dev, void *res)
4449 {
4450 	of_clk_del_provider(*(struct device_node **)res);
4451 }
4452 
4453 /*
4454  * We allow a child device to use its parent device as the clock provider node
4455  * for cases like MFD sub-devices where the child device driver wants to use
4456  * devm_*() APIs but not list the device in DT as a sub-node.
4457  */
4458 static struct device_node *get_clk_provider_node(struct device *dev)
4459 {
4460 	struct device_node *np, *parent_np;
4461 
4462 	np = dev->of_node;
4463 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4464 
4465 	if (!of_find_property(np, "#clock-cells", NULL))
4466 		if (of_find_property(parent_np, "#clock-cells", NULL))
4467 			np = parent_np;
4468 
4469 	return np;
4470 }
4471 
4472 /**
4473  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4474  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4475  * @get: callback for decoding clk_hw
4476  * @data: context pointer for @get callback
4477  *
4478  * Registers clock provider for given device's node. If the device has no DT
4479  * node or if the device node lacks of clock provider information (#clock-cells)
4480  * then the parent device's node is scanned for this information. If parent node
4481  * has the #clock-cells then it is used in registration. Provider is
4482  * automatically released at device exit.
4483  *
4484  * Return: 0 on success or an errno on failure.
4485  */
4486 int devm_of_clk_add_hw_provider(struct device *dev,
4487 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4488 					      void *data),
4489 			void *data)
4490 {
4491 	struct device_node **ptr, *np;
4492 	int ret;
4493 
4494 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4495 			   GFP_KERNEL);
4496 	if (!ptr)
4497 		return -ENOMEM;
4498 
4499 	np = get_clk_provider_node(dev);
4500 	ret = of_clk_add_hw_provider(np, get, data);
4501 	if (!ret) {
4502 		*ptr = np;
4503 		devres_add(dev, ptr);
4504 	} else {
4505 		devres_free(ptr);
4506 	}
4507 
4508 	return ret;
4509 }
4510 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4511 
4512 /**
4513  * of_clk_del_provider() - Remove a previously registered clock provider
4514  * @np: Device node pointer associated with clock provider
4515  */
4516 void of_clk_del_provider(struct device_node *np)
4517 {
4518 	struct of_clk_provider *cp;
4519 
4520 	mutex_lock(&of_clk_mutex);
4521 	list_for_each_entry(cp, &of_clk_providers, link) {
4522 		if (cp->node == np) {
4523 			list_del(&cp->link);
4524 			of_node_put(cp->node);
4525 			kfree(cp);
4526 			break;
4527 		}
4528 	}
4529 	mutex_unlock(&of_clk_mutex);
4530 }
4531 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4532 
4533 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4534 {
4535 	struct device_node **np = res;
4536 
4537 	if (WARN_ON(!np || !*np))
4538 		return 0;
4539 
4540 	return *np == data;
4541 }
4542 
4543 /**
4544  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4545  * @dev: Device to whose lifetime the clock provider was bound
4546  */
4547 void devm_of_clk_del_provider(struct device *dev)
4548 {
4549 	int ret;
4550 	struct device_node *np = get_clk_provider_node(dev);
4551 
4552 	ret = devres_release(dev, devm_of_clk_release_provider,
4553 			     devm_clk_provider_match, np);
4554 
4555 	WARN_ON(ret);
4556 }
4557 EXPORT_SYMBOL(devm_of_clk_del_provider);
4558 
4559 /**
4560  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4561  * @np: device node to parse clock specifier from
4562  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4563  * @name: clock name to find and parse. If name is NULL, the index is used
4564  * @out_args: Result of parsing the clock specifier
4565  *
4566  * Parses a device node's "clocks" and "clock-names" properties to find the
4567  * phandle and cells for the index or name that is desired. The resulting clock
4568  * specifier is placed into @out_args, or an errno is returned when there's a
4569  * parsing error. The @index argument is ignored if @name is non-NULL.
4570  *
4571  * Example:
4572  *
4573  * phandle1: clock-controller@1 {
4574  *	#clock-cells = <2>;
4575  * }
4576  *
4577  * phandle2: clock-controller@2 {
4578  *	#clock-cells = <1>;
4579  * }
4580  *
4581  * clock-consumer@3 {
4582  *	clocks = <&phandle1 1 2 &phandle2 3>;
4583  *	clock-names = "name1", "name2";
4584  * }
4585  *
4586  * To get a device_node for `clock-controller@2' node you may call this
4587  * function a few different ways:
4588  *
4589  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4590  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4591  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4592  *
4593  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4594  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4595  * the "clock-names" property of @np.
4596  */
4597 static int of_parse_clkspec(const struct device_node *np, int index,
4598 			    const char *name, struct of_phandle_args *out_args)
4599 {
4600 	int ret = -ENOENT;
4601 
4602 	/* Walk up the tree of devices looking for a clock property that matches */
4603 	while (np) {
4604 		/*
4605 		 * For named clocks, first look up the name in the
4606 		 * "clock-names" property.  If it cannot be found, then index
4607 		 * will be an error code and of_parse_phandle_with_args() will
4608 		 * return -EINVAL.
4609 		 */
4610 		if (name)
4611 			index = of_property_match_string(np, "clock-names", name);
4612 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4613 						 index, out_args);
4614 		if (!ret)
4615 			break;
4616 		if (name && index >= 0)
4617 			break;
4618 
4619 		/*
4620 		 * No matching clock found on this node.  If the parent node
4621 		 * has a "clock-ranges" property, then we can try one of its
4622 		 * clocks.
4623 		 */
4624 		np = np->parent;
4625 		if (np && !of_get_property(np, "clock-ranges", NULL))
4626 			break;
4627 		index = 0;
4628 	}
4629 
4630 	return ret;
4631 }
4632 
4633 static struct clk_hw *
4634 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4635 			      struct of_phandle_args *clkspec)
4636 {
4637 	struct clk *clk;
4638 
4639 	if (provider->get_hw)
4640 		return provider->get_hw(clkspec, provider->data);
4641 
4642 	clk = provider->get(clkspec, provider->data);
4643 	if (IS_ERR(clk))
4644 		return ERR_CAST(clk);
4645 	return __clk_get_hw(clk);
4646 }
4647 
4648 static struct clk_hw *
4649 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4650 {
4651 	struct of_clk_provider *provider;
4652 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4653 
4654 	if (!clkspec)
4655 		return ERR_PTR(-EINVAL);
4656 
4657 	mutex_lock(&of_clk_mutex);
4658 	list_for_each_entry(provider, &of_clk_providers, link) {
4659 		if (provider->node == clkspec->np) {
4660 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4661 			if (!IS_ERR(hw))
4662 				break;
4663 		}
4664 	}
4665 	mutex_unlock(&of_clk_mutex);
4666 
4667 	return hw;
4668 }
4669 
4670 /**
4671  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4672  * @clkspec: pointer to a clock specifier data structure
4673  *
4674  * This function looks up a struct clk from the registered list of clock
4675  * providers, an input is a clock specifier data structure as returned
4676  * from the of_parse_phandle_with_args() function call.
4677  */
4678 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4679 {
4680 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4681 
4682 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4683 }
4684 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4685 
4686 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4687 			     const char *con_id)
4688 {
4689 	int ret;
4690 	struct clk_hw *hw;
4691 	struct of_phandle_args clkspec;
4692 
4693 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4694 	if (ret)
4695 		return ERR_PTR(ret);
4696 
4697 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4698 	of_node_put(clkspec.np);
4699 
4700 	return hw;
4701 }
4702 
4703 static struct clk *__of_clk_get(struct device_node *np,
4704 				int index, const char *dev_id,
4705 				const char *con_id)
4706 {
4707 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4708 
4709 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4710 }
4711 
4712 struct clk *of_clk_get(struct device_node *np, int index)
4713 {
4714 	return __of_clk_get(np, index, np->full_name, NULL);
4715 }
4716 EXPORT_SYMBOL(of_clk_get);
4717 
4718 /**
4719  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4720  * @np: pointer to clock consumer node
4721  * @name: name of consumer's clock input, or NULL for the first clock reference
4722  *
4723  * This function parses the clocks and clock-names properties,
4724  * and uses them to look up the struct clk from the registered list of clock
4725  * providers.
4726  */
4727 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4728 {
4729 	if (!np)
4730 		return ERR_PTR(-ENOENT);
4731 
4732 	return __of_clk_get(np, 0, np->full_name, name);
4733 }
4734 EXPORT_SYMBOL(of_clk_get_by_name);
4735 
4736 /**
4737  * of_clk_get_parent_count() - Count the number of clocks a device node has
4738  * @np: device node to count
4739  *
4740  * Returns: The number of clocks that are possible parents of this node
4741  */
4742 unsigned int of_clk_get_parent_count(const struct device_node *np)
4743 {
4744 	int count;
4745 
4746 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4747 	if (count < 0)
4748 		return 0;
4749 
4750 	return count;
4751 }
4752 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4753 
4754 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4755 {
4756 	struct of_phandle_args clkspec;
4757 	struct property *prop;
4758 	const char *clk_name;
4759 	const __be32 *vp;
4760 	u32 pv;
4761 	int rc;
4762 	int count;
4763 	struct clk *clk;
4764 
4765 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4766 					&clkspec);
4767 	if (rc)
4768 		return NULL;
4769 
4770 	index = clkspec.args_count ? clkspec.args[0] : 0;
4771 	count = 0;
4772 
4773 	/* if there is an indices property, use it to transfer the index
4774 	 * specified into an array offset for the clock-output-names property.
4775 	 */
4776 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4777 		if (index == pv) {
4778 			index = count;
4779 			break;
4780 		}
4781 		count++;
4782 	}
4783 	/* We went off the end of 'clock-indices' without finding it */
4784 	if (prop && !vp)
4785 		return NULL;
4786 
4787 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4788 					  index,
4789 					  &clk_name) < 0) {
4790 		/*
4791 		 * Best effort to get the name if the clock has been
4792 		 * registered with the framework. If the clock isn't
4793 		 * registered, we return the node name as the name of
4794 		 * the clock as long as #clock-cells = 0.
4795 		 */
4796 		clk = of_clk_get_from_provider(&clkspec);
4797 		if (IS_ERR(clk)) {
4798 			if (clkspec.args_count == 0)
4799 				clk_name = clkspec.np->name;
4800 			else
4801 				clk_name = NULL;
4802 		} else {
4803 			clk_name = __clk_get_name(clk);
4804 			clk_put(clk);
4805 		}
4806 	}
4807 
4808 
4809 	of_node_put(clkspec.np);
4810 	return clk_name;
4811 }
4812 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4813 
4814 /**
4815  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4816  * number of parents
4817  * @np: Device node pointer associated with clock provider
4818  * @parents: pointer to char array that hold the parents' names
4819  * @size: size of the @parents array
4820  *
4821  * Return: number of parents for the clock node.
4822  */
4823 int of_clk_parent_fill(struct device_node *np, const char **parents,
4824 		       unsigned int size)
4825 {
4826 	unsigned int i = 0;
4827 
4828 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4829 		i++;
4830 
4831 	return i;
4832 }
4833 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4834 
4835 struct clock_provider {
4836 	void (*clk_init_cb)(struct device_node *);
4837 	struct device_node *np;
4838 	struct list_head node;
4839 };
4840 
4841 /*
4842  * This function looks for a parent clock. If there is one, then it
4843  * checks that the provider for this parent clock was initialized, in
4844  * this case the parent clock will be ready.
4845  */
4846 static int parent_ready(struct device_node *np)
4847 {
4848 	int i = 0;
4849 
4850 	while (true) {
4851 		struct clk *clk = of_clk_get(np, i);
4852 
4853 		/* this parent is ready we can check the next one */
4854 		if (!IS_ERR(clk)) {
4855 			clk_put(clk);
4856 			i++;
4857 			continue;
4858 		}
4859 
4860 		/* at least one parent is not ready, we exit now */
4861 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4862 			return 0;
4863 
4864 		/*
4865 		 * Here we make assumption that the device tree is
4866 		 * written correctly. So an error means that there is
4867 		 * no more parent. As we didn't exit yet, then the
4868 		 * previous parent are ready. If there is no clock
4869 		 * parent, no need to wait for them, then we can
4870 		 * consider their absence as being ready
4871 		 */
4872 		return 1;
4873 	}
4874 }
4875 
4876 /**
4877  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4878  * @np: Device node pointer associated with clock provider
4879  * @index: clock index
4880  * @flags: pointer to top-level framework flags
4881  *
4882  * Detects if the clock-critical property exists and, if so, sets the
4883  * corresponding CLK_IS_CRITICAL flag.
4884  *
4885  * Do not use this function. It exists only for legacy Device Tree
4886  * bindings, such as the one-clock-per-node style that are outdated.
4887  * Those bindings typically put all clock data into .dts and the Linux
4888  * driver has no clock data, thus making it impossible to set this flag
4889  * correctly from the driver. Only those drivers may call
4890  * of_clk_detect_critical from their setup functions.
4891  *
4892  * Return: error code or zero on success
4893  */
4894 int of_clk_detect_critical(struct device_node *np, int index,
4895 			   unsigned long *flags)
4896 {
4897 	struct property *prop;
4898 	const __be32 *cur;
4899 	uint32_t idx;
4900 
4901 	if (!np || !flags)
4902 		return -EINVAL;
4903 
4904 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4905 		if (index == idx)
4906 			*flags |= CLK_IS_CRITICAL;
4907 
4908 	return 0;
4909 }
4910 
4911 /**
4912  * of_clk_init() - Scan and init clock providers from the DT
4913  * @matches: array of compatible values and init functions for providers.
4914  *
4915  * This function scans the device tree for matching clock providers
4916  * and calls their initialization functions. It also does it by trying
4917  * to follow the dependencies.
4918  */
4919 void __init of_clk_init(const struct of_device_id *matches)
4920 {
4921 	const struct of_device_id *match;
4922 	struct device_node *np;
4923 	struct clock_provider *clk_provider, *next;
4924 	bool is_init_done;
4925 	bool force = false;
4926 	LIST_HEAD(clk_provider_list);
4927 
4928 	if (!matches)
4929 		matches = &__clk_of_table;
4930 
4931 	/* First prepare the list of the clocks providers */
4932 	for_each_matching_node_and_match(np, matches, &match) {
4933 		struct clock_provider *parent;
4934 
4935 		if (!of_device_is_available(np))
4936 			continue;
4937 
4938 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4939 		if (!parent) {
4940 			list_for_each_entry_safe(clk_provider, next,
4941 						 &clk_provider_list, node) {
4942 				list_del(&clk_provider->node);
4943 				of_node_put(clk_provider->np);
4944 				kfree(clk_provider);
4945 			}
4946 			of_node_put(np);
4947 			return;
4948 		}
4949 
4950 		parent->clk_init_cb = match->data;
4951 		parent->np = of_node_get(np);
4952 		list_add_tail(&parent->node, &clk_provider_list);
4953 	}
4954 
4955 	while (!list_empty(&clk_provider_list)) {
4956 		is_init_done = false;
4957 		list_for_each_entry_safe(clk_provider, next,
4958 					&clk_provider_list, node) {
4959 			if (force || parent_ready(clk_provider->np)) {
4960 
4961 				/* Don't populate platform devices */
4962 				of_node_set_flag(clk_provider->np,
4963 						 OF_POPULATED);
4964 
4965 				clk_provider->clk_init_cb(clk_provider->np);
4966 				of_clk_set_defaults(clk_provider->np, true);
4967 
4968 				list_del(&clk_provider->node);
4969 				of_node_put(clk_provider->np);
4970 				kfree(clk_provider);
4971 				is_init_done = true;
4972 			}
4973 		}
4974 
4975 		/*
4976 		 * We didn't manage to initialize any of the
4977 		 * remaining providers during the last loop, so now we
4978 		 * initialize all the remaining ones unconditionally
4979 		 * in case the clock parent was not mandatory
4980 		 */
4981 		if (!is_init_done)
4982 			force = true;
4983 	}
4984 }
4985 #endif
4986