xref: /openbmc/linux/drivers/clk/clk.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 	struct clk_core *child;
178 
179 	lockdep_assert_held(&prepare_lock);
180 
181 	hlist_for_each_entry(child, &core->children, child_node)
182 		clk_unprepare_unused_subtree(child);
183 
184 	if (core->prepare_count)
185 		return;
186 
187 	if (core->flags & CLK_IGNORE_UNUSED)
188 		return;
189 
190 	if (clk_core_is_prepared(core)) {
191 		trace_clk_unprepare(core);
192 		if (core->ops->unprepare_unused)
193 			core->ops->unprepare_unused(core->hw);
194 		else if (core->ops->unprepare)
195 			core->ops->unprepare(core->hw);
196 		trace_clk_unprepare_complete(core);
197 	}
198 }
199 
200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 	struct clk_core *child;
203 	unsigned long flags;
204 
205 	lockdep_assert_held(&prepare_lock);
206 
207 	hlist_for_each_entry(child, &core->children, child_node)
208 		clk_disable_unused_subtree(child);
209 
210 	flags = clk_enable_lock();
211 
212 	if (core->enable_count)
213 		goto unlock_out;
214 
215 	if (core->flags & CLK_IGNORE_UNUSED)
216 		goto unlock_out;
217 
218 	/*
219 	 * some gate clocks have special needs during the disable-unused
220 	 * sequence.  call .disable_unused if available, otherwise fall
221 	 * back to .disable
222 	 */
223 	if (clk_core_is_enabled(core)) {
224 		trace_clk_disable(core);
225 		if (core->ops->disable_unused)
226 			core->ops->disable_unused(core->hw);
227 		else if (core->ops->disable)
228 			core->ops->disable(core->hw);
229 		trace_clk_disable_complete(core);
230 	}
231 
232 unlock_out:
233 	clk_enable_unlock(flags);
234 }
235 
236 static bool clk_ignore_unused;
237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 	clk_ignore_unused = true;
240 	return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243 
244 static int clk_disable_unused(void)
245 {
246 	struct clk_core *core;
247 
248 	if (clk_ignore_unused) {
249 		pr_warn("clk: Not disabling unused clocks\n");
250 		return 0;
251 	}
252 
253 	clk_prepare_lock();
254 
255 	hlist_for_each_entry(core, &clk_root_list, child_node)
256 		clk_disable_unused_subtree(core);
257 
258 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 		clk_disable_unused_subtree(core);
260 
261 	hlist_for_each_entry(core, &clk_root_list, child_node)
262 		clk_unprepare_unused_subtree(core);
263 
264 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 		clk_unprepare_unused_subtree(core);
266 
267 	clk_prepare_unlock();
268 
269 	return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272 
273 /***    helper functions   ***/
274 
275 const char *__clk_get_name(struct clk *clk)
276 {
277 	return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280 
281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 	return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286 
287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 	return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292 
293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 	return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298 
299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 	return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304 
305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 					     struct clk_core *core)
307 {
308 	struct clk_core *child;
309 	struct clk_core *ret;
310 
311 	if (!strcmp(core->name, name))
312 		return core;
313 
314 	hlist_for_each_entry(child, &core->children, child_node) {
315 		ret = __clk_lookup_subtree(name, child);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	return NULL;
321 }
322 
323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 	struct clk_core *root_clk;
326 	struct clk_core *ret;
327 
328 	if (!name)
329 		return NULL;
330 
331 	/* search the 'proper' clk tree first */
332 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	/* if not found, then search the orphan tree */
339 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 		ret = __clk_lookup_subtree(name, root_clk);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	return NULL;
346 }
347 
348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 							 u8 index)
350 {
351 	if (!core || index >= core->num_parents)
352 		return NULL;
353 	else if (!core->parents)
354 		return clk_core_lookup(core->parent_names[index]);
355 	else if (!core->parents[index])
356 		return core->parents[index] =
357 			clk_core_lookup(core->parent_names[index]);
358 	else
359 		return core->parents[index];
360 }
361 
362 struct clk_hw *
363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
364 {
365 	struct clk_core *parent;
366 
367 	parent = clk_core_get_parent_by_index(hw->core, index);
368 
369 	return !parent ? NULL : parent->hw;
370 }
371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
372 
373 unsigned int __clk_get_enable_count(struct clk *clk)
374 {
375 	return !clk ? 0 : clk->core->enable_count;
376 }
377 
378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
379 {
380 	unsigned long ret;
381 
382 	if (!core) {
383 		ret = 0;
384 		goto out;
385 	}
386 
387 	ret = core->rate;
388 
389 	if (core->flags & CLK_IS_ROOT)
390 		goto out;
391 
392 	if (!core->parent)
393 		ret = 0;
394 
395 out:
396 	return ret;
397 }
398 
399 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
400 {
401 	return clk_core_get_rate_nolock(hw->core);
402 }
403 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
404 
405 static unsigned long __clk_get_accuracy(struct clk_core *core)
406 {
407 	if (!core)
408 		return 0;
409 
410 	return core->accuracy;
411 }
412 
413 unsigned long __clk_get_flags(struct clk *clk)
414 {
415 	return !clk ? 0 : clk->core->flags;
416 }
417 EXPORT_SYMBOL_GPL(__clk_get_flags);
418 
419 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
420 {
421 	return hw->core->flags;
422 }
423 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
424 
425 bool clk_hw_is_prepared(const struct clk_hw *hw)
426 {
427 	return clk_core_is_prepared(hw->core);
428 }
429 
430 bool __clk_is_enabled(struct clk *clk)
431 {
432 	if (!clk)
433 		return false;
434 
435 	return clk_core_is_enabled(clk->core);
436 }
437 EXPORT_SYMBOL_GPL(__clk_is_enabled);
438 
439 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
440 			   unsigned long best, unsigned long flags)
441 {
442 	if (flags & CLK_MUX_ROUND_CLOSEST)
443 		return abs(now - rate) < abs(best - rate);
444 
445 	return now <= rate && now > best;
446 }
447 
448 static int
449 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
450 			     unsigned long flags)
451 {
452 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
453 	int i, num_parents, ret;
454 	unsigned long best = 0;
455 	struct clk_rate_request parent_req = *req;
456 
457 	/* if NO_REPARENT flag set, pass through to current parent */
458 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
459 		parent = core->parent;
460 		if (core->flags & CLK_SET_RATE_PARENT) {
461 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
462 						   &parent_req);
463 			if (ret)
464 				return ret;
465 
466 			best = parent_req.rate;
467 		} else if (parent) {
468 			best = clk_core_get_rate_nolock(parent);
469 		} else {
470 			best = clk_core_get_rate_nolock(core);
471 		}
472 
473 		goto out;
474 	}
475 
476 	/* find the parent that can provide the fastest rate <= rate */
477 	num_parents = core->num_parents;
478 	for (i = 0; i < num_parents; i++) {
479 		parent = clk_core_get_parent_by_index(core, i);
480 		if (!parent)
481 			continue;
482 
483 		if (core->flags & CLK_SET_RATE_PARENT) {
484 			parent_req = *req;
485 			ret = __clk_determine_rate(parent->hw, &parent_req);
486 			if (ret)
487 				continue;
488 		} else {
489 			parent_req.rate = clk_core_get_rate_nolock(parent);
490 		}
491 
492 		if (mux_is_better_rate(req->rate, parent_req.rate,
493 				       best, flags)) {
494 			best_parent = parent;
495 			best = parent_req.rate;
496 		}
497 	}
498 
499 	if (!best_parent)
500 		return -EINVAL;
501 
502 out:
503 	if (best_parent)
504 		req->best_parent_hw = best_parent->hw;
505 	req->best_parent_rate = best;
506 	req->rate = best;
507 
508 	return 0;
509 }
510 
511 struct clk *__clk_lookup(const char *name)
512 {
513 	struct clk_core *core = clk_core_lookup(name);
514 
515 	return !core ? NULL : core->hw->clk;
516 }
517 
518 static void clk_core_get_boundaries(struct clk_core *core,
519 				    unsigned long *min_rate,
520 				    unsigned long *max_rate)
521 {
522 	struct clk *clk_user;
523 
524 	*min_rate = core->min_rate;
525 	*max_rate = core->max_rate;
526 
527 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
528 		*min_rate = max(*min_rate, clk_user->min_rate);
529 
530 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
531 		*max_rate = min(*max_rate, clk_user->max_rate);
532 }
533 
534 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
535 			   unsigned long max_rate)
536 {
537 	hw->core->min_rate = min_rate;
538 	hw->core->max_rate = max_rate;
539 }
540 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
541 
542 /*
543  * Helper for finding best parent to provide a given frequency. This can be used
544  * directly as a determine_rate callback (e.g. for a mux), or from a more
545  * complex clock that may combine a mux with other operations.
546  */
547 int __clk_mux_determine_rate(struct clk_hw *hw,
548 			     struct clk_rate_request *req)
549 {
550 	return clk_mux_determine_rate_flags(hw, req, 0);
551 }
552 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
553 
554 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
555 				     struct clk_rate_request *req)
556 {
557 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
558 }
559 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
560 
561 /***        clk api        ***/
562 
563 static void clk_core_unprepare(struct clk_core *core)
564 {
565 	lockdep_assert_held(&prepare_lock);
566 
567 	if (!core)
568 		return;
569 
570 	if (WARN_ON(core->prepare_count == 0))
571 		return;
572 
573 	if (--core->prepare_count > 0)
574 		return;
575 
576 	WARN_ON(core->enable_count > 0);
577 
578 	trace_clk_unprepare(core);
579 
580 	if (core->ops->unprepare)
581 		core->ops->unprepare(core->hw);
582 
583 	trace_clk_unprepare_complete(core);
584 	clk_core_unprepare(core->parent);
585 }
586 
587 /**
588  * clk_unprepare - undo preparation of a clock source
589  * @clk: the clk being unprepared
590  *
591  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
592  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
593  * if the operation may sleep.  One example is a clk which is accessed over
594  * I2c.  In the complex case a clk gate operation may require a fast and a slow
595  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
596  * exclusive.  In fact clk_disable must be called before clk_unprepare.
597  */
598 void clk_unprepare(struct clk *clk)
599 {
600 	if (IS_ERR_OR_NULL(clk))
601 		return;
602 
603 	clk_prepare_lock();
604 	clk_core_unprepare(clk->core);
605 	clk_prepare_unlock();
606 }
607 EXPORT_SYMBOL_GPL(clk_unprepare);
608 
609 static int clk_core_prepare(struct clk_core *core)
610 {
611 	int ret = 0;
612 
613 	lockdep_assert_held(&prepare_lock);
614 
615 	if (!core)
616 		return 0;
617 
618 	if (core->prepare_count == 0) {
619 		ret = clk_core_prepare(core->parent);
620 		if (ret)
621 			return ret;
622 
623 		trace_clk_prepare(core);
624 
625 		if (core->ops->prepare)
626 			ret = core->ops->prepare(core->hw);
627 
628 		trace_clk_prepare_complete(core);
629 
630 		if (ret) {
631 			clk_core_unprepare(core->parent);
632 			return ret;
633 		}
634 	}
635 
636 	core->prepare_count++;
637 
638 	return 0;
639 }
640 
641 /**
642  * clk_prepare - prepare a clock source
643  * @clk: the clk being prepared
644  *
645  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
646  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
647  * operation may sleep.  One example is a clk which is accessed over I2c.  In
648  * the complex case a clk ungate operation may require a fast and a slow part.
649  * It is this reason that clk_prepare and clk_enable are not mutually
650  * exclusive.  In fact clk_prepare must be called before clk_enable.
651  * Returns 0 on success, -EERROR otherwise.
652  */
653 int clk_prepare(struct clk *clk)
654 {
655 	int ret;
656 
657 	if (!clk)
658 		return 0;
659 
660 	clk_prepare_lock();
661 	ret = clk_core_prepare(clk->core);
662 	clk_prepare_unlock();
663 
664 	return ret;
665 }
666 EXPORT_SYMBOL_GPL(clk_prepare);
667 
668 static void clk_core_disable(struct clk_core *core)
669 {
670 	lockdep_assert_held(&enable_lock);
671 
672 	if (!core)
673 		return;
674 
675 	if (WARN_ON(core->enable_count == 0))
676 		return;
677 
678 	if (--core->enable_count > 0)
679 		return;
680 
681 	trace_clk_disable(core);
682 
683 	if (core->ops->disable)
684 		core->ops->disable(core->hw);
685 
686 	trace_clk_disable_complete(core);
687 
688 	clk_core_disable(core->parent);
689 }
690 
691 /**
692  * clk_disable - gate a clock
693  * @clk: the clk being gated
694  *
695  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
696  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
697  * clk if the operation is fast and will never sleep.  One example is a
698  * SoC-internal clk which is controlled via simple register writes.  In the
699  * complex case a clk gate operation may require a fast and a slow part.  It is
700  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
701  * In fact clk_disable must be called before clk_unprepare.
702  */
703 void clk_disable(struct clk *clk)
704 {
705 	unsigned long flags;
706 
707 	if (IS_ERR_OR_NULL(clk))
708 		return;
709 
710 	flags = clk_enable_lock();
711 	clk_core_disable(clk->core);
712 	clk_enable_unlock(flags);
713 }
714 EXPORT_SYMBOL_GPL(clk_disable);
715 
716 static int clk_core_enable(struct clk_core *core)
717 {
718 	int ret = 0;
719 
720 	lockdep_assert_held(&enable_lock);
721 
722 	if (!core)
723 		return 0;
724 
725 	if (WARN_ON(core->prepare_count == 0))
726 		return -ESHUTDOWN;
727 
728 	if (core->enable_count == 0) {
729 		ret = clk_core_enable(core->parent);
730 
731 		if (ret)
732 			return ret;
733 
734 		trace_clk_enable(core);
735 
736 		if (core->ops->enable)
737 			ret = core->ops->enable(core->hw);
738 
739 		trace_clk_enable_complete(core);
740 
741 		if (ret) {
742 			clk_core_disable(core->parent);
743 			return ret;
744 		}
745 	}
746 
747 	core->enable_count++;
748 	return 0;
749 }
750 
751 /**
752  * clk_enable - ungate a clock
753  * @clk: the clk being ungated
754  *
755  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
756  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
757  * if the operation will never sleep.  One example is a SoC-internal clk which
758  * is controlled via simple register writes.  In the complex case a clk ungate
759  * operation may require a fast and a slow part.  It is this reason that
760  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
761  * must be called before clk_enable.  Returns 0 on success, -EERROR
762  * otherwise.
763  */
764 int clk_enable(struct clk *clk)
765 {
766 	unsigned long flags;
767 	int ret;
768 
769 	if (!clk)
770 		return 0;
771 
772 	flags = clk_enable_lock();
773 	ret = clk_core_enable(clk->core);
774 	clk_enable_unlock(flags);
775 
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(clk_enable);
779 
780 static int clk_core_round_rate_nolock(struct clk_core *core,
781 				      struct clk_rate_request *req)
782 {
783 	struct clk_core *parent;
784 	long rate;
785 
786 	lockdep_assert_held(&prepare_lock);
787 
788 	if (!core)
789 		return 0;
790 
791 	parent = core->parent;
792 	if (parent) {
793 		req->best_parent_hw = parent->hw;
794 		req->best_parent_rate = parent->rate;
795 	} else {
796 		req->best_parent_hw = NULL;
797 		req->best_parent_rate = 0;
798 	}
799 
800 	if (core->ops->determine_rate) {
801 		return core->ops->determine_rate(core->hw, req);
802 	} else if (core->ops->round_rate) {
803 		rate = core->ops->round_rate(core->hw, req->rate,
804 					     &req->best_parent_rate);
805 		if (rate < 0)
806 			return rate;
807 
808 		req->rate = rate;
809 	} else if (core->flags & CLK_SET_RATE_PARENT) {
810 		return clk_core_round_rate_nolock(parent, req);
811 	} else {
812 		req->rate = core->rate;
813 	}
814 
815 	return 0;
816 }
817 
818 /**
819  * __clk_determine_rate - get the closest rate actually supported by a clock
820  * @hw: determine the rate of this clock
821  * @rate: target rate
822  * @min_rate: returned rate must be greater than this rate
823  * @max_rate: returned rate must be less than this rate
824  *
825  * Useful for clk_ops such as .set_rate and .determine_rate.
826  */
827 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
828 {
829 	if (!hw) {
830 		req->rate = 0;
831 		return 0;
832 	}
833 
834 	return clk_core_round_rate_nolock(hw->core, req);
835 }
836 EXPORT_SYMBOL_GPL(__clk_determine_rate);
837 
838 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
839 {
840 	int ret;
841 	struct clk_rate_request req;
842 
843 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
844 	req.rate = rate;
845 
846 	ret = clk_core_round_rate_nolock(hw->core, &req);
847 	if (ret)
848 		return 0;
849 
850 	return req.rate;
851 }
852 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
853 
854 /**
855  * clk_round_rate - round the given rate for a clk
856  * @clk: the clk for which we are rounding a rate
857  * @rate: the rate which is to be rounded
858  *
859  * Takes in a rate as input and rounds it to a rate that the clk can actually
860  * use which is then returned.  If clk doesn't support round_rate operation
861  * then the parent rate is returned.
862  */
863 long clk_round_rate(struct clk *clk, unsigned long rate)
864 {
865 	struct clk_rate_request req;
866 	int ret;
867 
868 	if (!clk)
869 		return 0;
870 
871 	clk_prepare_lock();
872 
873 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
874 	req.rate = rate;
875 
876 	ret = clk_core_round_rate_nolock(clk->core, &req);
877 	clk_prepare_unlock();
878 
879 	if (ret)
880 		return ret;
881 
882 	return req.rate;
883 }
884 EXPORT_SYMBOL_GPL(clk_round_rate);
885 
886 /**
887  * __clk_notify - call clk notifier chain
888  * @core: clk that is changing rate
889  * @msg: clk notifier type (see include/linux/clk.h)
890  * @old_rate: old clk rate
891  * @new_rate: new clk rate
892  *
893  * Triggers a notifier call chain on the clk rate-change notification
894  * for 'clk'.  Passes a pointer to the struct clk and the previous
895  * and current rates to the notifier callback.  Intended to be called by
896  * internal clock code only.  Returns NOTIFY_DONE from the last driver
897  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
898  * a driver returns that.
899  */
900 static int __clk_notify(struct clk_core *core, unsigned long msg,
901 		unsigned long old_rate, unsigned long new_rate)
902 {
903 	struct clk_notifier *cn;
904 	struct clk_notifier_data cnd;
905 	int ret = NOTIFY_DONE;
906 
907 	cnd.old_rate = old_rate;
908 	cnd.new_rate = new_rate;
909 
910 	list_for_each_entry(cn, &clk_notifier_list, node) {
911 		if (cn->clk->core == core) {
912 			cnd.clk = cn->clk;
913 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
914 					&cnd);
915 		}
916 	}
917 
918 	return ret;
919 }
920 
921 /**
922  * __clk_recalc_accuracies
923  * @core: first clk in the subtree
924  *
925  * Walks the subtree of clks starting with clk and recalculates accuracies as
926  * it goes.  Note that if a clk does not implement the .recalc_accuracy
927  * callback then it is assumed that the clock will take on the accuracy of its
928  * parent.
929  */
930 static void __clk_recalc_accuracies(struct clk_core *core)
931 {
932 	unsigned long parent_accuracy = 0;
933 	struct clk_core *child;
934 
935 	lockdep_assert_held(&prepare_lock);
936 
937 	if (core->parent)
938 		parent_accuracy = core->parent->accuracy;
939 
940 	if (core->ops->recalc_accuracy)
941 		core->accuracy = core->ops->recalc_accuracy(core->hw,
942 							  parent_accuracy);
943 	else
944 		core->accuracy = parent_accuracy;
945 
946 	hlist_for_each_entry(child, &core->children, child_node)
947 		__clk_recalc_accuracies(child);
948 }
949 
950 static long clk_core_get_accuracy(struct clk_core *core)
951 {
952 	unsigned long accuracy;
953 
954 	clk_prepare_lock();
955 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
956 		__clk_recalc_accuracies(core);
957 
958 	accuracy = __clk_get_accuracy(core);
959 	clk_prepare_unlock();
960 
961 	return accuracy;
962 }
963 
964 /**
965  * clk_get_accuracy - return the accuracy of clk
966  * @clk: the clk whose accuracy is being returned
967  *
968  * Simply returns the cached accuracy of the clk, unless
969  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
970  * issued.
971  * If clk is NULL then returns 0.
972  */
973 long clk_get_accuracy(struct clk *clk)
974 {
975 	if (!clk)
976 		return 0;
977 
978 	return clk_core_get_accuracy(clk->core);
979 }
980 EXPORT_SYMBOL_GPL(clk_get_accuracy);
981 
982 static unsigned long clk_recalc(struct clk_core *core,
983 				unsigned long parent_rate)
984 {
985 	if (core->ops->recalc_rate)
986 		return core->ops->recalc_rate(core->hw, parent_rate);
987 	return parent_rate;
988 }
989 
990 /**
991  * __clk_recalc_rates
992  * @core: first clk in the subtree
993  * @msg: notification type (see include/linux/clk.h)
994  *
995  * Walks the subtree of clks starting with clk and recalculates rates as it
996  * goes.  Note that if a clk does not implement the .recalc_rate callback then
997  * it is assumed that the clock will take on the rate of its parent.
998  *
999  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1000  * if necessary.
1001  */
1002 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1003 {
1004 	unsigned long old_rate;
1005 	unsigned long parent_rate = 0;
1006 	struct clk_core *child;
1007 
1008 	lockdep_assert_held(&prepare_lock);
1009 
1010 	old_rate = core->rate;
1011 
1012 	if (core->parent)
1013 		parent_rate = core->parent->rate;
1014 
1015 	core->rate = clk_recalc(core, parent_rate);
1016 
1017 	/*
1018 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1019 	 * & ABORT_RATE_CHANGE notifiers
1020 	 */
1021 	if (core->notifier_count && msg)
1022 		__clk_notify(core, msg, old_rate, core->rate);
1023 
1024 	hlist_for_each_entry(child, &core->children, child_node)
1025 		__clk_recalc_rates(child, msg);
1026 }
1027 
1028 static unsigned long clk_core_get_rate(struct clk_core *core)
1029 {
1030 	unsigned long rate;
1031 
1032 	clk_prepare_lock();
1033 
1034 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1035 		__clk_recalc_rates(core, 0);
1036 
1037 	rate = clk_core_get_rate_nolock(core);
1038 	clk_prepare_unlock();
1039 
1040 	return rate;
1041 }
1042 
1043 /**
1044  * clk_get_rate - return the rate of clk
1045  * @clk: the clk whose rate is being returned
1046  *
1047  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1048  * is set, which means a recalc_rate will be issued.
1049  * If clk is NULL then returns 0.
1050  */
1051 unsigned long clk_get_rate(struct clk *clk)
1052 {
1053 	if (!clk)
1054 		return 0;
1055 
1056 	return clk_core_get_rate(clk->core);
1057 }
1058 EXPORT_SYMBOL_GPL(clk_get_rate);
1059 
1060 static int clk_fetch_parent_index(struct clk_core *core,
1061 				  struct clk_core *parent)
1062 {
1063 	int i;
1064 
1065 	if (!core->parents) {
1066 		core->parents = kcalloc(core->num_parents,
1067 					sizeof(struct clk *), GFP_KERNEL);
1068 		if (!core->parents)
1069 			return -ENOMEM;
1070 	}
1071 
1072 	/*
1073 	 * find index of new parent clock using cached parent ptrs,
1074 	 * or if not yet cached, use string name comparison and cache
1075 	 * them now to avoid future calls to clk_core_lookup.
1076 	 */
1077 	for (i = 0; i < core->num_parents; i++) {
1078 		if (core->parents[i] == parent)
1079 			return i;
1080 
1081 		if (core->parents[i])
1082 			continue;
1083 
1084 		if (!strcmp(core->parent_names[i], parent->name)) {
1085 			core->parents[i] = clk_core_lookup(parent->name);
1086 			return i;
1087 		}
1088 	}
1089 
1090 	return -EINVAL;
1091 }
1092 
1093 /*
1094  * Update the orphan status of @core and all its children.
1095  */
1096 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1097 {
1098 	struct clk_core *child;
1099 
1100 	core->orphan = is_orphan;
1101 
1102 	hlist_for_each_entry(child, &core->children, child_node)
1103 		clk_core_update_orphan_status(child, is_orphan);
1104 }
1105 
1106 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1107 {
1108 	bool was_orphan = core->orphan;
1109 
1110 	hlist_del(&core->child_node);
1111 
1112 	if (new_parent) {
1113 		bool becomes_orphan = new_parent->orphan;
1114 
1115 		/* avoid duplicate POST_RATE_CHANGE notifications */
1116 		if (new_parent->new_child == core)
1117 			new_parent->new_child = NULL;
1118 
1119 		hlist_add_head(&core->child_node, &new_parent->children);
1120 
1121 		if (was_orphan != becomes_orphan)
1122 			clk_core_update_orphan_status(core, becomes_orphan);
1123 	} else {
1124 		hlist_add_head(&core->child_node, &clk_orphan_list);
1125 		if (!was_orphan)
1126 			clk_core_update_orphan_status(core, true);
1127 	}
1128 
1129 	core->parent = new_parent;
1130 }
1131 
1132 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1133 					   struct clk_core *parent)
1134 {
1135 	unsigned long flags;
1136 	struct clk_core *old_parent = core->parent;
1137 
1138 	/*
1139 	 * Migrate prepare state between parents and prevent race with
1140 	 * clk_enable().
1141 	 *
1142 	 * If the clock is not prepared, then a race with
1143 	 * clk_enable/disable() is impossible since we already have the
1144 	 * prepare lock (future calls to clk_enable() need to be preceded by
1145 	 * a clk_prepare()).
1146 	 *
1147 	 * If the clock is prepared, migrate the prepared state to the new
1148 	 * parent and also protect against a race with clk_enable() by
1149 	 * forcing the clock and the new parent on.  This ensures that all
1150 	 * future calls to clk_enable() are practically NOPs with respect to
1151 	 * hardware and software states.
1152 	 *
1153 	 * See also: Comment for clk_set_parent() below.
1154 	 */
1155 	if (core->prepare_count) {
1156 		clk_core_prepare(parent);
1157 		flags = clk_enable_lock();
1158 		clk_core_enable(parent);
1159 		clk_core_enable(core);
1160 		clk_enable_unlock(flags);
1161 	}
1162 
1163 	/* update the clk tree topology */
1164 	flags = clk_enable_lock();
1165 	clk_reparent(core, parent);
1166 	clk_enable_unlock(flags);
1167 
1168 	return old_parent;
1169 }
1170 
1171 static void __clk_set_parent_after(struct clk_core *core,
1172 				   struct clk_core *parent,
1173 				   struct clk_core *old_parent)
1174 {
1175 	unsigned long flags;
1176 
1177 	/*
1178 	 * Finish the migration of prepare state and undo the changes done
1179 	 * for preventing a race with clk_enable().
1180 	 */
1181 	if (core->prepare_count) {
1182 		flags = clk_enable_lock();
1183 		clk_core_disable(core);
1184 		clk_core_disable(old_parent);
1185 		clk_enable_unlock(flags);
1186 		clk_core_unprepare(old_parent);
1187 	}
1188 }
1189 
1190 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1191 			    u8 p_index)
1192 {
1193 	unsigned long flags;
1194 	int ret = 0;
1195 	struct clk_core *old_parent;
1196 
1197 	old_parent = __clk_set_parent_before(core, parent);
1198 
1199 	trace_clk_set_parent(core, parent);
1200 
1201 	/* change clock input source */
1202 	if (parent && core->ops->set_parent)
1203 		ret = core->ops->set_parent(core->hw, p_index);
1204 
1205 	trace_clk_set_parent_complete(core, parent);
1206 
1207 	if (ret) {
1208 		flags = clk_enable_lock();
1209 		clk_reparent(core, old_parent);
1210 		clk_enable_unlock(flags);
1211 		__clk_set_parent_after(core, old_parent, parent);
1212 
1213 		return ret;
1214 	}
1215 
1216 	__clk_set_parent_after(core, parent, old_parent);
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * __clk_speculate_rates
1223  * @core: first clk in the subtree
1224  * @parent_rate: the "future" rate of clk's parent
1225  *
1226  * Walks the subtree of clks starting with clk, speculating rates as it
1227  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1228  *
1229  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1230  * pre-rate change notifications and returns early if no clks in the
1231  * subtree have subscribed to the notifications.  Note that if a clk does not
1232  * implement the .recalc_rate callback then it is assumed that the clock will
1233  * take on the rate of its parent.
1234  */
1235 static int __clk_speculate_rates(struct clk_core *core,
1236 				 unsigned long parent_rate)
1237 {
1238 	struct clk_core *child;
1239 	unsigned long new_rate;
1240 	int ret = NOTIFY_DONE;
1241 
1242 	lockdep_assert_held(&prepare_lock);
1243 
1244 	new_rate = clk_recalc(core, parent_rate);
1245 
1246 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1247 	if (core->notifier_count)
1248 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1249 
1250 	if (ret & NOTIFY_STOP_MASK) {
1251 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1252 				__func__, core->name, ret);
1253 		goto out;
1254 	}
1255 
1256 	hlist_for_each_entry(child, &core->children, child_node) {
1257 		ret = __clk_speculate_rates(child, new_rate);
1258 		if (ret & NOTIFY_STOP_MASK)
1259 			break;
1260 	}
1261 
1262 out:
1263 	return ret;
1264 }
1265 
1266 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1267 			     struct clk_core *new_parent, u8 p_index)
1268 {
1269 	struct clk_core *child;
1270 
1271 	core->new_rate = new_rate;
1272 	core->new_parent = new_parent;
1273 	core->new_parent_index = p_index;
1274 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1275 	core->new_child = NULL;
1276 	if (new_parent && new_parent != core->parent)
1277 		new_parent->new_child = core;
1278 
1279 	hlist_for_each_entry(child, &core->children, child_node) {
1280 		child->new_rate = clk_recalc(child, new_rate);
1281 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1282 	}
1283 }
1284 
1285 /*
1286  * calculate the new rates returning the topmost clock that has to be
1287  * changed.
1288  */
1289 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1290 					   unsigned long rate)
1291 {
1292 	struct clk_core *top = core;
1293 	struct clk_core *old_parent, *parent;
1294 	unsigned long best_parent_rate = 0;
1295 	unsigned long new_rate;
1296 	unsigned long min_rate;
1297 	unsigned long max_rate;
1298 	int p_index = 0;
1299 	long ret;
1300 
1301 	/* sanity */
1302 	if (IS_ERR_OR_NULL(core))
1303 		return NULL;
1304 
1305 	/* save parent rate, if it exists */
1306 	parent = old_parent = core->parent;
1307 	if (parent)
1308 		best_parent_rate = parent->rate;
1309 
1310 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1311 
1312 	/* find the closest rate and parent clk/rate */
1313 	if (core->ops->determine_rate) {
1314 		struct clk_rate_request req;
1315 
1316 		req.rate = rate;
1317 		req.min_rate = min_rate;
1318 		req.max_rate = max_rate;
1319 		if (parent) {
1320 			req.best_parent_hw = parent->hw;
1321 			req.best_parent_rate = parent->rate;
1322 		} else {
1323 			req.best_parent_hw = NULL;
1324 			req.best_parent_rate = 0;
1325 		}
1326 
1327 		ret = core->ops->determine_rate(core->hw, &req);
1328 		if (ret < 0)
1329 			return NULL;
1330 
1331 		best_parent_rate = req.best_parent_rate;
1332 		new_rate = req.rate;
1333 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1334 	} else if (core->ops->round_rate) {
1335 		ret = core->ops->round_rate(core->hw, rate,
1336 					    &best_parent_rate);
1337 		if (ret < 0)
1338 			return NULL;
1339 
1340 		new_rate = ret;
1341 		if (new_rate < min_rate || new_rate > max_rate)
1342 			return NULL;
1343 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1344 		/* pass-through clock without adjustable parent */
1345 		core->new_rate = core->rate;
1346 		return NULL;
1347 	} else {
1348 		/* pass-through clock with adjustable parent */
1349 		top = clk_calc_new_rates(parent, rate);
1350 		new_rate = parent->new_rate;
1351 		goto out;
1352 	}
1353 
1354 	/* some clocks must be gated to change parent */
1355 	if (parent != old_parent &&
1356 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1357 		pr_debug("%s: %s not gated but wants to reparent\n",
1358 			 __func__, core->name);
1359 		return NULL;
1360 	}
1361 
1362 	/* try finding the new parent index */
1363 	if (parent && core->num_parents > 1) {
1364 		p_index = clk_fetch_parent_index(core, parent);
1365 		if (p_index < 0) {
1366 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1367 				 __func__, parent->name, core->name);
1368 			return NULL;
1369 		}
1370 	}
1371 
1372 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1373 	    best_parent_rate != parent->rate)
1374 		top = clk_calc_new_rates(parent, best_parent_rate);
1375 
1376 out:
1377 	clk_calc_subtree(core, new_rate, parent, p_index);
1378 
1379 	return top;
1380 }
1381 
1382 /*
1383  * Notify about rate changes in a subtree. Always walk down the whole tree
1384  * so that in case of an error we can walk down the whole tree again and
1385  * abort the change.
1386  */
1387 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1388 						  unsigned long event)
1389 {
1390 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1391 	int ret = NOTIFY_DONE;
1392 
1393 	if (core->rate == core->new_rate)
1394 		return NULL;
1395 
1396 	if (core->notifier_count) {
1397 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1398 		if (ret & NOTIFY_STOP_MASK)
1399 			fail_clk = core;
1400 	}
1401 
1402 	hlist_for_each_entry(child, &core->children, child_node) {
1403 		/* Skip children who will be reparented to another clock */
1404 		if (child->new_parent && child->new_parent != core)
1405 			continue;
1406 		tmp_clk = clk_propagate_rate_change(child, event);
1407 		if (tmp_clk)
1408 			fail_clk = tmp_clk;
1409 	}
1410 
1411 	/* handle the new child who might not be in core->children yet */
1412 	if (core->new_child) {
1413 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1414 		if (tmp_clk)
1415 			fail_clk = tmp_clk;
1416 	}
1417 
1418 	return fail_clk;
1419 }
1420 
1421 /*
1422  * walk down a subtree and set the new rates notifying the rate
1423  * change on the way
1424  */
1425 static void clk_change_rate(struct clk_core *core)
1426 {
1427 	struct clk_core *child;
1428 	struct hlist_node *tmp;
1429 	unsigned long old_rate;
1430 	unsigned long best_parent_rate = 0;
1431 	bool skip_set_rate = false;
1432 	struct clk_core *old_parent;
1433 
1434 	old_rate = core->rate;
1435 
1436 	if (core->new_parent)
1437 		best_parent_rate = core->new_parent->rate;
1438 	else if (core->parent)
1439 		best_parent_rate = core->parent->rate;
1440 
1441 	if (core->new_parent && core->new_parent != core->parent) {
1442 		old_parent = __clk_set_parent_before(core, core->new_parent);
1443 		trace_clk_set_parent(core, core->new_parent);
1444 
1445 		if (core->ops->set_rate_and_parent) {
1446 			skip_set_rate = true;
1447 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1448 					best_parent_rate,
1449 					core->new_parent_index);
1450 		} else if (core->ops->set_parent) {
1451 			core->ops->set_parent(core->hw, core->new_parent_index);
1452 		}
1453 
1454 		trace_clk_set_parent_complete(core, core->new_parent);
1455 		__clk_set_parent_after(core, core->new_parent, old_parent);
1456 	}
1457 
1458 	trace_clk_set_rate(core, core->new_rate);
1459 
1460 	if (!skip_set_rate && core->ops->set_rate)
1461 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1462 
1463 	trace_clk_set_rate_complete(core, core->new_rate);
1464 
1465 	core->rate = clk_recalc(core, best_parent_rate);
1466 
1467 	if (core->notifier_count && old_rate != core->rate)
1468 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1469 
1470 	if (core->flags & CLK_RECALC_NEW_RATES)
1471 		(void)clk_calc_new_rates(core, core->new_rate);
1472 
1473 	/*
1474 	 * Use safe iteration, as change_rate can actually swap parents
1475 	 * for certain clock types.
1476 	 */
1477 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1478 		/* Skip children who will be reparented to another clock */
1479 		if (child->new_parent && child->new_parent != core)
1480 			continue;
1481 		clk_change_rate(child);
1482 	}
1483 
1484 	/* handle the new child who might not be in core->children yet */
1485 	if (core->new_child)
1486 		clk_change_rate(core->new_child);
1487 }
1488 
1489 static int clk_core_set_rate_nolock(struct clk_core *core,
1490 				    unsigned long req_rate)
1491 {
1492 	struct clk_core *top, *fail_clk;
1493 	unsigned long rate = req_rate;
1494 	int ret = 0;
1495 
1496 	if (!core)
1497 		return 0;
1498 
1499 	/* bail early if nothing to do */
1500 	if (rate == clk_core_get_rate_nolock(core))
1501 		return 0;
1502 
1503 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1504 		return -EBUSY;
1505 
1506 	/* calculate new rates and get the topmost changed clock */
1507 	top = clk_calc_new_rates(core, rate);
1508 	if (!top)
1509 		return -EINVAL;
1510 
1511 	/* notify that we are about to change rates */
1512 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1513 	if (fail_clk) {
1514 		pr_debug("%s: failed to set %s rate\n", __func__,
1515 				fail_clk->name);
1516 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1517 		return -EBUSY;
1518 	}
1519 
1520 	/* change the rates */
1521 	clk_change_rate(top);
1522 
1523 	core->req_rate = req_rate;
1524 
1525 	return ret;
1526 }
1527 
1528 /**
1529  * clk_set_rate - specify a new rate for clk
1530  * @clk: the clk whose rate is being changed
1531  * @rate: the new rate for clk
1532  *
1533  * In the simplest case clk_set_rate will only adjust the rate of clk.
1534  *
1535  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1536  * propagate up to clk's parent; whether or not this happens depends on the
1537  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1538  * after calling .round_rate then upstream parent propagation is ignored.  If
1539  * *parent_rate comes back with a new rate for clk's parent then we propagate
1540  * up to clk's parent and set its rate.  Upward propagation will continue
1541  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1542  * .round_rate stops requesting changes to clk's parent_rate.
1543  *
1544  * Rate changes are accomplished via tree traversal that also recalculates the
1545  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1546  *
1547  * Returns 0 on success, -EERROR otherwise.
1548  */
1549 int clk_set_rate(struct clk *clk, unsigned long rate)
1550 {
1551 	int ret;
1552 
1553 	if (!clk)
1554 		return 0;
1555 
1556 	/* prevent racing with updates to the clock topology */
1557 	clk_prepare_lock();
1558 
1559 	ret = clk_core_set_rate_nolock(clk->core, rate);
1560 
1561 	clk_prepare_unlock();
1562 
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(clk_set_rate);
1566 
1567 /**
1568  * clk_set_rate_range - set a rate range for a clock source
1569  * @clk: clock source
1570  * @min: desired minimum clock rate in Hz, inclusive
1571  * @max: desired maximum clock rate in Hz, inclusive
1572  *
1573  * Returns success (0) or negative errno.
1574  */
1575 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1576 {
1577 	int ret = 0;
1578 
1579 	if (!clk)
1580 		return 0;
1581 
1582 	if (min > max) {
1583 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1584 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1585 		       min, max);
1586 		return -EINVAL;
1587 	}
1588 
1589 	clk_prepare_lock();
1590 
1591 	if (min != clk->min_rate || max != clk->max_rate) {
1592 		clk->min_rate = min;
1593 		clk->max_rate = max;
1594 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1595 	}
1596 
1597 	clk_prepare_unlock();
1598 
1599 	return ret;
1600 }
1601 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1602 
1603 /**
1604  * clk_set_min_rate - set a minimum clock rate for a clock source
1605  * @clk: clock source
1606  * @rate: desired minimum clock rate in Hz, inclusive
1607  *
1608  * Returns success (0) or negative errno.
1609  */
1610 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1611 {
1612 	if (!clk)
1613 		return 0;
1614 
1615 	return clk_set_rate_range(clk, rate, clk->max_rate);
1616 }
1617 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1618 
1619 /**
1620  * clk_set_max_rate - set a maximum clock rate for a clock source
1621  * @clk: clock source
1622  * @rate: desired maximum clock rate in Hz, inclusive
1623  *
1624  * Returns success (0) or negative errno.
1625  */
1626 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1627 {
1628 	if (!clk)
1629 		return 0;
1630 
1631 	return clk_set_rate_range(clk, clk->min_rate, rate);
1632 }
1633 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1634 
1635 /**
1636  * clk_get_parent - return the parent of a clk
1637  * @clk: the clk whose parent gets returned
1638  *
1639  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1640  */
1641 struct clk *clk_get_parent(struct clk *clk)
1642 {
1643 	struct clk *parent;
1644 
1645 	if (!clk)
1646 		return NULL;
1647 
1648 	clk_prepare_lock();
1649 	/* TODO: Create a per-user clk and change callers to call clk_put */
1650 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1651 	clk_prepare_unlock();
1652 
1653 	return parent;
1654 }
1655 EXPORT_SYMBOL_GPL(clk_get_parent);
1656 
1657 /*
1658  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1659  * optional for single-parent clocks.  Always call .get_parent if it is
1660  * available and WARN if it is missing for multi-parent clocks.
1661  *
1662  * For single-parent clocks without .get_parent, first check to see if the
1663  * .parents array exists, and if so use it to avoid an expensive tree
1664  * traversal.  If .parents does not exist then walk the tree.
1665  */
1666 static struct clk_core *__clk_init_parent(struct clk_core *core)
1667 {
1668 	struct clk_core *ret = NULL;
1669 	u8 index;
1670 
1671 	/* handle the trivial cases */
1672 
1673 	if (!core->num_parents)
1674 		goto out;
1675 
1676 	if (core->num_parents == 1) {
1677 		if (IS_ERR_OR_NULL(core->parent))
1678 			core->parent = clk_core_lookup(core->parent_names[0]);
1679 		ret = core->parent;
1680 		goto out;
1681 	}
1682 
1683 	if (!core->ops->get_parent) {
1684 		WARN(!core->ops->get_parent,
1685 			"%s: multi-parent clocks must implement .get_parent\n",
1686 			__func__);
1687 		goto out;
1688 	};
1689 
1690 	/*
1691 	 * Do our best to cache parent clocks in core->parents.  This prevents
1692 	 * unnecessary and expensive lookups.  We don't set core->parent here;
1693 	 * that is done by the calling function.
1694 	 */
1695 
1696 	index = core->ops->get_parent(core->hw);
1697 
1698 	if (!core->parents)
1699 		core->parents =
1700 			kcalloc(core->num_parents, sizeof(struct clk *),
1701 					GFP_KERNEL);
1702 
1703 	ret = clk_core_get_parent_by_index(core, index);
1704 
1705 out:
1706 	return ret;
1707 }
1708 
1709 static void clk_core_reparent(struct clk_core *core,
1710 				  struct clk_core *new_parent)
1711 {
1712 	clk_reparent(core, new_parent);
1713 	__clk_recalc_accuracies(core);
1714 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1715 }
1716 
1717 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1718 {
1719 	if (!hw)
1720 		return;
1721 
1722 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1723 }
1724 
1725 /**
1726  * clk_has_parent - check if a clock is a possible parent for another
1727  * @clk: clock source
1728  * @parent: parent clock source
1729  *
1730  * This function can be used in drivers that need to check that a clock can be
1731  * the parent of another without actually changing the parent.
1732  *
1733  * Returns true if @parent is a possible parent for @clk, false otherwise.
1734  */
1735 bool clk_has_parent(struct clk *clk, struct clk *parent)
1736 {
1737 	struct clk_core *core, *parent_core;
1738 	unsigned int i;
1739 
1740 	/* NULL clocks should be nops, so return success if either is NULL. */
1741 	if (!clk || !parent)
1742 		return true;
1743 
1744 	core = clk->core;
1745 	parent_core = parent->core;
1746 
1747 	/* Optimize for the case where the parent is already the parent. */
1748 	if (core->parent == parent_core)
1749 		return true;
1750 
1751 	for (i = 0; i < core->num_parents; i++)
1752 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1753 			return true;
1754 
1755 	return false;
1756 }
1757 EXPORT_SYMBOL_GPL(clk_has_parent);
1758 
1759 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1760 {
1761 	int ret = 0;
1762 	int p_index = 0;
1763 	unsigned long p_rate = 0;
1764 
1765 	if (!core)
1766 		return 0;
1767 
1768 	/* prevent racing with updates to the clock topology */
1769 	clk_prepare_lock();
1770 
1771 	if (core->parent == parent)
1772 		goto out;
1773 
1774 	/* verify ops for for multi-parent clks */
1775 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1776 		ret = -ENOSYS;
1777 		goto out;
1778 	}
1779 
1780 	/* check that we are allowed to re-parent if the clock is in use */
1781 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1782 		ret = -EBUSY;
1783 		goto out;
1784 	}
1785 
1786 	/* try finding the new parent index */
1787 	if (parent) {
1788 		p_index = clk_fetch_parent_index(core, parent);
1789 		p_rate = parent->rate;
1790 		if (p_index < 0) {
1791 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1792 					__func__, parent->name, core->name);
1793 			ret = p_index;
1794 			goto out;
1795 		}
1796 	}
1797 
1798 	/* propagate PRE_RATE_CHANGE notifications */
1799 	ret = __clk_speculate_rates(core, p_rate);
1800 
1801 	/* abort if a driver objects */
1802 	if (ret & NOTIFY_STOP_MASK)
1803 		goto out;
1804 
1805 	/* do the re-parent */
1806 	ret = __clk_set_parent(core, parent, p_index);
1807 
1808 	/* propagate rate an accuracy recalculation accordingly */
1809 	if (ret) {
1810 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1811 	} else {
1812 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1813 		__clk_recalc_accuracies(core);
1814 	}
1815 
1816 out:
1817 	clk_prepare_unlock();
1818 
1819 	return ret;
1820 }
1821 
1822 /**
1823  * clk_set_parent - switch the parent of a mux clk
1824  * @clk: the mux clk whose input we are switching
1825  * @parent: the new input to clk
1826  *
1827  * Re-parent clk to use parent as its new input source.  If clk is in
1828  * prepared state, the clk will get enabled for the duration of this call. If
1829  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1830  * that, the reparenting is glitchy in hardware, etc), use the
1831  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1832  *
1833  * After successfully changing clk's parent clk_set_parent will update the
1834  * clk topology, sysfs topology and propagate rate recalculation via
1835  * __clk_recalc_rates.
1836  *
1837  * Returns 0 on success, -EERROR otherwise.
1838  */
1839 int clk_set_parent(struct clk *clk, struct clk *parent)
1840 {
1841 	if (!clk)
1842 		return 0;
1843 
1844 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1845 }
1846 EXPORT_SYMBOL_GPL(clk_set_parent);
1847 
1848 /**
1849  * clk_set_phase - adjust the phase shift of a clock signal
1850  * @clk: clock signal source
1851  * @degrees: number of degrees the signal is shifted
1852  *
1853  * Shifts the phase of a clock signal by the specified
1854  * degrees. Returns 0 on success, -EERROR otherwise.
1855  *
1856  * This function makes no distinction about the input or reference
1857  * signal that we adjust the clock signal phase against. For example
1858  * phase locked-loop clock signal generators we may shift phase with
1859  * respect to feedback clock signal input, but for other cases the
1860  * clock phase may be shifted with respect to some other, unspecified
1861  * signal.
1862  *
1863  * Additionally the concept of phase shift does not propagate through
1864  * the clock tree hierarchy, which sets it apart from clock rates and
1865  * clock accuracy. A parent clock phase attribute does not have an
1866  * impact on the phase attribute of a child clock.
1867  */
1868 int clk_set_phase(struct clk *clk, int degrees)
1869 {
1870 	int ret = -EINVAL;
1871 
1872 	if (!clk)
1873 		return 0;
1874 
1875 	/* sanity check degrees */
1876 	degrees %= 360;
1877 	if (degrees < 0)
1878 		degrees += 360;
1879 
1880 	clk_prepare_lock();
1881 
1882 	trace_clk_set_phase(clk->core, degrees);
1883 
1884 	if (clk->core->ops->set_phase)
1885 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1886 
1887 	trace_clk_set_phase_complete(clk->core, degrees);
1888 
1889 	if (!ret)
1890 		clk->core->phase = degrees;
1891 
1892 	clk_prepare_unlock();
1893 
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL_GPL(clk_set_phase);
1897 
1898 static int clk_core_get_phase(struct clk_core *core)
1899 {
1900 	int ret;
1901 
1902 	clk_prepare_lock();
1903 	ret = core->phase;
1904 	clk_prepare_unlock();
1905 
1906 	return ret;
1907 }
1908 
1909 /**
1910  * clk_get_phase - return the phase shift of a clock signal
1911  * @clk: clock signal source
1912  *
1913  * Returns the phase shift of a clock node in degrees, otherwise returns
1914  * -EERROR.
1915  */
1916 int clk_get_phase(struct clk *clk)
1917 {
1918 	if (!clk)
1919 		return 0;
1920 
1921 	return clk_core_get_phase(clk->core);
1922 }
1923 EXPORT_SYMBOL_GPL(clk_get_phase);
1924 
1925 /**
1926  * clk_is_match - check if two clk's point to the same hardware clock
1927  * @p: clk compared against q
1928  * @q: clk compared against p
1929  *
1930  * Returns true if the two struct clk pointers both point to the same hardware
1931  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1932  * share the same struct clk_core object.
1933  *
1934  * Returns false otherwise. Note that two NULL clks are treated as matching.
1935  */
1936 bool clk_is_match(const struct clk *p, const struct clk *q)
1937 {
1938 	/* trivial case: identical struct clk's or both NULL */
1939 	if (p == q)
1940 		return true;
1941 
1942 	/* true if clk->core pointers match. Avoid derefing garbage */
1943 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1944 		if (p->core == q->core)
1945 			return true;
1946 
1947 	return false;
1948 }
1949 EXPORT_SYMBOL_GPL(clk_is_match);
1950 
1951 /***        debugfs support        ***/
1952 
1953 #ifdef CONFIG_DEBUG_FS
1954 #include <linux/debugfs.h>
1955 
1956 static struct dentry *rootdir;
1957 static int inited = 0;
1958 static DEFINE_MUTEX(clk_debug_lock);
1959 static HLIST_HEAD(clk_debug_list);
1960 
1961 static struct hlist_head *all_lists[] = {
1962 	&clk_root_list,
1963 	&clk_orphan_list,
1964 	NULL,
1965 };
1966 
1967 static struct hlist_head *orphan_list[] = {
1968 	&clk_orphan_list,
1969 	NULL,
1970 };
1971 
1972 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1973 				 int level)
1974 {
1975 	if (!c)
1976 		return;
1977 
1978 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1979 		   level * 3 + 1, "",
1980 		   30 - level * 3, c->name,
1981 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1982 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
1983 }
1984 
1985 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1986 				     int level)
1987 {
1988 	struct clk_core *child;
1989 
1990 	if (!c)
1991 		return;
1992 
1993 	clk_summary_show_one(s, c, level);
1994 
1995 	hlist_for_each_entry(child, &c->children, child_node)
1996 		clk_summary_show_subtree(s, child, level + 1);
1997 }
1998 
1999 static int clk_summary_show(struct seq_file *s, void *data)
2000 {
2001 	struct clk_core *c;
2002 	struct hlist_head **lists = (struct hlist_head **)s->private;
2003 
2004 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2005 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2006 
2007 	clk_prepare_lock();
2008 
2009 	for (; *lists; lists++)
2010 		hlist_for_each_entry(c, *lists, child_node)
2011 			clk_summary_show_subtree(s, c, 0);
2012 
2013 	clk_prepare_unlock();
2014 
2015 	return 0;
2016 }
2017 
2018 
2019 static int clk_summary_open(struct inode *inode, struct file *file)
2020 {
2021 	return single_open(file, clk_summary_show, inode->i_private);
2022 }
2023 
2024 static const struct file_operations clk_summary_fops = {
2025 	.open		= clk_summary_open,
2026 	.read		= seq_read,
2027 	.llseek		= seq_lseek,
2028 	.release	= single_release,
2029 };
2030 
2031 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2032 {
2033 	if (!c)
2034 		return;
2035 
2036 	/* This should be JSON format, i.e. elements separated with a comma */
2037 	seq_printf(s, "\"%s\": { ", c->name);
2038 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2039 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2040 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2041 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2042 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2043 }
2044 
2045 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2046 {
2047 	struct clk_core *child;
2048 
2049 	if (!c)
2050 		return;
2051 
2052 	clk_dump_one(s, c, level);
2053 
2054 	hlist_for_each_entry(child, &c->children, child_node) {
2055 		seq_printf(s, ",");
2056 		clk_dump_subtree(s, child, level + 1);
2057 	}
2058 
2059 	seq_printf(s, "}");
2060 }
2061 
2062 static int clk_dump(struct seq_file *s, void *data)
2063 {
2064 	struct clk_core *c;
2065 	bool first_node = true;
2066 	struct hlist_head **lists = (struct hlist_head **)s->private;
2067 
2068 	seq_printf(s, "{");
2069 
2070 	clk_prepare_lock();
2071 
2072 	for (; *lists; lists++) {
2073 		hlist_for_each_entry(c, *lists, child_node) {
2074 			if (!first_node)
2075 				seq_puts(s, ",");
2076 			first_node = false;
2077 			clk_dump_subtree(s, c, 0);
2078 		}
2079 	}
2080 
2081 	clk_prepare_unlock();
2082 
2083 	seq_puts(s, "}\n");
2084 	return 0;
2085 }
2086 
2087 
2088 static int clk_dump_open(struct inode *inode, struct file *file)
2089 {
2090 	return single_open(file, clk_dump, inode->i_private);
2091 }
2092 
2093 static const struct file_operations clk_dump_fops = {
2094 	.open		= clk_dump_open,
2095 	.read		= seq_read,
2096 	.llseek		= seq_lseek,
2097 	.release	= single_release,
2098 };
2099 
2100 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2101 {
2102 	struct dentry *d;
2103 	int ret = -ENOMEM;
2104 
2105 	if (!core || !pdentry) {
2106 		ret = -EINVAL;
2107 		goto out;
2108 	}
2109 
2110 	d = debugfs_create_dir(core->name, pdentry);
2111 	if (!d)
2112 		goto out;
2113 
2114 	core->dentry = d;
2115 
2116 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2117 			(u32 *)&core->rate);
2118 	if (!d)
2119 		goto err_out;
2120 
2121 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2122 			(u32 *)&core->accuracy);
2123 	if (!d)
2124 		goto err_out;
2125 
2126 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2127 			(u32 *)&core->phase);
2128 	if (!d)
2129 		goto err_out;
2130 
2131 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2132 			(u32 *)&core->flags);
2133 	if (!d)
2134 		goto err_out;
2135 
2136 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2137 			(u32 *)&core->prepare_count);
2138 	if (!d)
2139 		goto err_out;
2140 
2141 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2142 			(u32 *)&core->enable_count);
2143 	if (!d)
2144 		goto err_out;
2145 
2146 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2147 			(u32 *)&core->notifier_count);
2148 	if (!d)
2149 		goto err_out;
2150 
2151 	if (core->ops->debug_init) {
2152 		ret = core->ops->debug_init(core->hw, core->dentry);
2153 		if (ret)
2154 			goto err_out;
2155 	}
2156 
2157 	ret = 0;
2158 	goto out;
2159 
2160 err_out:
2161 	debugfs_remove_recursive(core->dentry);
2162 	core->dentry = NULL;
2163 out:
2164 	return ret;
2165 }
2166 
2167 /**
2168  * clk_debug_register - add a clk node to the debugfs clk directory
2169  * @core: the clk being added to the debugfs clk directory
2170  *
2171  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2172  * initialized.  Otherwise it bails out early since the debugfs clk directory
2173  * will be created lazily by clk_debug_init as part of a late_initcall.
2174  */
2175 static int clk_debug_register(struct clk_core *core)
2176 {
2177 	int ret = 0;
2178 
2179 	mutex_lock(&clk_debug_lock);
2180 	hlist_add_head(&core->debug_node, &clk_debug_list);
2181 
2182 	if (!inited)
2183 		goto unlock;
2184 
2185 	ret = clk_debug_create_one(core, rootdir);
2186 unlock:
2187 	mutex_unlock(&clk_debug_lock);
2188 
2189 	return ret;
2190 }
2191 
2192  /**
2193  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2194  * @core: the clk being removed from the debugfs clk directory
2195  *
2196  * Dynamically removes a clk and all its child nodes from the
2197  * debugfs clk directory if clk->dentry points to debugfs created by
2198  * clk_debug_register in __clk_init.
2199  */
2200 static void clk_debug_unregister(struct clk_core *core)
2201 {
2202 	mutex_lock(&clk_debug_lock);
2203 	hlist_del_init(&core->debug_node);
2204 	debugfs_remove_recursive(core->dentry);
2205 	core->dentry = NULL;
2206 	mutex_unlock(&clk_debug_lock);
2207 }
2208 
2209 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2210 				void *data, const struct file_operations *fops)
2211 {
2212 	struct dentry *d = NULL;
2213 
2214 	if (hw->core->dentry)
2215 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2216 					fops);
2217 
2218 	return d;
2219 }
2220 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2221 
2222 /**
2223  * clk_debug_init - lazily populate the debugfs clk directory
2224  *
2225  * clks are often initialized very early during boot before memory can be
2226  * dynamically allocated and well before debugfs is setup. This function
2227  * populates the debugfs clk directory once at boot-time when we know that
2228  * debugfs is setup. It should only be called once at boot-time, all other clks
2229  * added dynamically will be done so with clk_debug_register.
2230  */
2231 static int __init clk_debug_init(void)
2232 {
2233 	struct clk_core *core;
2234 	struct dentry *d;
2235 
2236 	rootdir = debugfs_create_dir("clk", NULL);
2237 
2238 	if (!rootdir)
2239 		return -ENOMEM;
2240 
2241 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2242 				&clk_summary_fops);
2243 	if (!d)
2244 		return -ENOMEM;
2245 
2246 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2247 				&clk_dump_fops);
2248 	if (!d)
2249 		return -ENOMEM;
2250 
2251 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2252 				&orphan_list, &clk_summary_fops);
2253 	if (!d)
2254 		return -ENOMEM;
2255 
2256 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2257 				&orphan_list, &clk_dump_fops);
2258 	if (!d)
2259 		return -ENOMEM;
2260 
2261 	mutex_lock(&clk_debug_lock);
2262 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2263 		clk_debug_create_one(core, rootdir);
2264 
2265 	inited = 1;
2266 	mutex_unlock(&clk_debug_lock);
2267 
2268 	return 0;
2269 }
2270 late_initcall(clk_debug_init);
2271 #else
2272 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2273 static inline void clk_debug_reparent(struct clk_core *core,
2274 				      struct clk_core *new_parent)
2275 {
2276 }
2277 static inline void clk_debug_unregister(struct clk_core *core)
2278 {
2279 }
2280 #endif
2281 
2282 /**
2283  * __clk_init - initialize the data structures in a struct clk
2284  * @dev:	device initializing this clk, placeholder for now
2285  * @clk:	clk being initialized
2286  *
2287  * Initializes the lists in struct clk_core, queries the hardware for the
2288  * parent and rate and sets them both.
2289  */
2290 static int __clk_init(struct device *dev, struct clk *clk_user)
2291 {
2292 	int i, ret = 0;
2293 	struct clk_core *orphan;
2294 	struct hlist_node *tmp2;
2295 	struct clk_core *core;
2296 	unsigned long rate;
2297 
2298 	if (!clk_user)
2299 		return -EINVAL;
2300 
2301 	core = clk_user->core;
2302 
2303 	clk_prepare_lock();
2304 
2305 	/* check to see if a clock with this name is already registered */
2306 	if (clk_core_lookup(core->name)) {
2307 		pr_debug("%s: clk %s already initialized\n",
2308 				__func__, core->name);
2309 		ret = -EEXIST;
2310 		goto out;
2311 	}
2312 
2313 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2314 	if (core->ops->set_rate &&
2315 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2316 	      core->ops->recalc_rate)) {
2317 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2318 				__func__, core->name);
2319 		ret = -EINVAL;
2320 		goto out;
2321 	}
2322 
2323 	if (core->ops->set_parent && !core->ops->get_parent) {
2324 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2325 				__func__, core->name);
2326 		ret = -EINVAL;
2327 		goto out;
2328 	}
2329 
2330 	if (core->ops->set_rate_and_parent &&
2331 			!(core->ops->set_parent && core->ops->set_rate)) {
2332 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2333 				__func__, core->name);
2334 		ret = -EINVAL;
2335 		goto out;
2336 	}
2337 
2338 	/* throw a WARN if any entries in parent_names are NULL */
2339 	for (i = 0; i < core->num_parents; i++)
2340 		WARN(!core->parent_names[i],
2341 				"%s: invalid NULL in %s's .parent_names\n",
2342 				__func__, core->name);
2343 
2344 	/*
2345 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2346 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2347 	 * in to clk_init during early boot; thus any access to core->parents[]
2348 	 * must always check for a NULL pointer and try to populate it if
2349 	 * necessary.
2350 	 *
2351 	 * If core->parents is not NULL we skip this entire block.  This allows
2352 	 * for clock drivers to statically initialize core->parents.
2353 	 */
2354 	if (core->num_parents > 1 && !core->parents) {
2355 		core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2356 					GFP_KERNEL);
2357 		/*
2358 		 * clk_core_lookup returns NULL for parents that have not been
2359 		 * clk_init'd; thus any access to clk->parents[] must check
2360 		 * for a NULL pointer.  We can always perform lazy lookups for
2361 		 * missing parents later on.
2362 		 */
2363 		if (core->parents)
2364 			for (i = 0; i < core->num_parents; i++)
2365 				core->parents[i] =
2366 					clk_core_lookup(core->parent_names[i]);
2367 	}
2368 
2369 	core->parent = __clk_init_parent(core);
2370 
2371 	/*
2372 	 * Populate core->parent if parent has already been __clk_init'd.  If
2373 	 * parent has not yet been __clk_init'd then place clk in the orphan
2374 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2375 	 * clk list.
2376 	 *
2377 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2378 	 * clocks and re-parent any that are children of the clock currently
2379 	 * being clk_init'd.
2380 	 */
2381 	if (core->parent) {
2382 		hlist_add_head(&core->child_node,
2383 				&core->parent->children);
2384 		core->orphan = core->parent->orphan;
2385 	} else if (core->flags & CLK_IS_ROOT) {
2386 		hlist_add_head(&core->child_node, &clk_root_list);
2387 		core->orphan = false;
2388 	} else {
2389 		hlist_add_head(&core->child_node, &clk_orphan_list);
2390 		core->orphan = true;
2391 	}
2392 
2393 	/*
2394 	 * Set clk's accuracy.  The preferred method is to use
2395 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2396 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2397 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2398 	 * clock).
2399 	 */
2400 	if (core->ops->recalc_accuracy)
2401 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2402 					__clk_get_accuracy(core->parent));
2403 	else if (core->parent)
2404 		core->accuracy = core->parent->accuracy;
2405 	else
2406 		core->accuracy = 0;
2407 
2408 	/*
2409 	 * Set clk's phase.
2410 	 * Since a phase is by definition relative to its parent, just
2411 	 * query the current clock phase, or just assume it's in phase.
2412 	 */
2413 	if (core->ops->get_phase)
2414 		core->phase = core->ops->get_phase(core->hw);
2415 	else
2416 		core->phase = 0;
2417 
2418 	/*
2419 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2420 	 * simple clocks and lazy developers the default fallback is to use the
2421 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2422 	 * then rate is set to zero.
2423 	 */
2424 	if (core->ops->recalc_rate)
2425 		rate = core->ops->recalc_rate(core->hw,
2426 				clk_core_get_rate_nolock(core->parent));
2427 	else if (core->parent)
2428 		rate = core->parent->rate;
2429 	else
2430 		rate = 0;
2431 	core->rate = core->req_rate = rate;
2432 
2433 	/*
2434 	 * walk the list of orphan clocks and reparent any that are children of
2435 	 * this clock
2436 	 */
2437 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2438 		if (orphan->num_parents && orphan->ops->get_parent) {
2439 			i = orphan->ops->get_parent(orphan->hw);
2440 			if (i >= 0 && i < orphan->num_parents &&
2441 			    !strcmp(core->name, orphan->parent_names[i]))
2442 				clk_core_reparent(orphan, core);
2443 			continue;
2444 		}
2445 
2446 		for (i = 0; i < orphan->num_parents; i++)
2447 			if (!strcmp(core->name, orphan->parent_names[i])) {
2448 				clk_core_reparent(orphan, core);
2449 				break;
2450 			}
2451 	 }
2452 
2453 	/*
2454 	 * optional platform-specific magic
2455 	 *
2456 	 * The .init callback is not used by any of the basic clock types, but
2457 	 * exists for weird hardware that must perform initialization magic.
2458 	 * Please consider other ways of solving initialization problems before
2459 	 * using this callback, as its use is discouraged.
2460 	 */
2461 	if (core->ops->init)
2462 		core->ops->init(core->hw);
2463 
2464 	kref_init(&core->ref);
2465 out:
2466 	clk_prepare_unlock();
2467 
2468 	if (!ret)
2469 		clk_debug_register(core);
2470 
2471 	return ret;
2472 }
2473 
2474 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2475 			     const char *con_id)
2476 {
2477 	struct clk *clk;
2478 
2479 	/* This is to allow this function to be chained to others */
2480 	if (!hw || IS_ERR(hw))
2481 		return (struct clk *) hw;
2482 
2483 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2484 	if (!clk)
2485 		return ERR_PTR(-ENOMEM);
2486 
2487 	clk->core = hw->core;
2488 	clk->dev_id = dev_id;
2489 	clk->con_id = con_id;
2490 	clk->max_rate = ULONG_MAX;
2491 
2492 	clk_prepare_lock();
2493 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2494 	clk_prepare_unlock();
2495 
2496 	return clk;
2497 }
2498 
2499 void __clk_free_clk(struct clk *clk)
2500 {
2501 	clk_prepare_lock();
2502 	hlist_del(&clk->clks_node);
2503 	clk_prepare_unlock();
2504 
2505 	kfree(clk);
2506 }
2507 
2508 /**
2509  * clk_register - allocate a new clock, register it and return an opaque cookie
2510  * @dev: device that is registering this clock
2511  * @hw: link to hardware-specific clock data
2512  *
2513  * clk_register is the primary interface for populating the clock tree with new
2514  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2515  * cannot be dereferenced by driver code but may be used in conjunction with the
2516  * rest of the clock API.  In the event of an error clk_register will return an
2517  * error code; drivers must test for an error code after calling clk_register.
2518  */
2519 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2520 {
2521 	int i, ret;
2522 	struct clk_core *core;
2523 
2524 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2525 	if (!core) {
2526 		ret = -ENOMEM;
2527 		goto fail_out;
2528 	}
2529 
2530 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2531 	if (!core->name) {
2532 		ret = -ENOMEM;
2533 		goto fail_name;
2534 	}
2535 	core->ops = hw->init->ops;
2536 	if (dev && dev->driver)
2537 		core->owner = dev->driver->owner;
2538 	core->hw = hw;
2539 	core->flags = hw->init->flags;
2540 	core->num_parents = hw->init->num_parents;
2541 	core->min_rate = 0;
2542 	core->max_rate = ULONG_MAX;
2543 	hw->core = core;
2544 
2545 	/* allocate local copy in case parent_names is __initdata */
2546 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2547 					GFP_KERNEL);
2548 
2549 	if (!core->parent_names) {
2550 		ret = -ENOMEM;
2551 		goto fail_parent_names;
2552 	}
2553 
2554 
2555 	/* copy each string name in case parent_names is __initdata */
2556 	for (i = 0; i < core->num_parents; i++) {
2557 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2558 						GFP_KERNEL);
2559 		if (!core->parent_names[i]) {
2560 			ret = -ENOMEM;
2561 			goto fail_parent_names_copy;
2562 		}
2563 	}
2564 
2565 	INIT_HLIST_HEAD(&core->clks);
2566 
2567 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2568 	if (IS_ERR(hw->clk)) {
2569 		ret = PTR_ERR(hw->clk);
2570 		goto fail_parent_names_copy;
2571 	}
2572 
2573 	ret = __clk_init(dev, hw->clk);
2574 	if (!ret)
2575 		return hw->clk;
2576 
2577 	__clk_free_clk(hw->clk);
2578 	hw->clk = NULL;
2579 
2580 fail_parent_names_copy:
2581 	while (--i >= 0)
2582 		kfree_const(core->parent_names[i]);
2583 	kfree(core->parent_names);
2584 fail_parent_names:
2585 	kfree_const(core->name);
2586 fail_name:
2587 	kfree(core);
2588 fail_out:
2589 	return ERR_PTR(ret);
2590 }
2591 EXPORT_SYMBOL_GPL(clk_register);
2592 
2593 /* Free memory allocated for a clock. */
2594 static void __clk_release(struct kref *ref)
2595 {
2596 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2597 	int i = core->num_parents;
2598 
2599 	lockdep_assert_held(&prepare_lock);
2600 
2601 	kfree(core->parents);
2602 	while (--i >= 0)
2603 		kfree_const(core->parent_names[i]);
2604 
2605 	kfree(core->parent_names);
2606 	kfree_const(core->name);
2607 	kfree(core);
2608 }
2609 
2610 /*
2611  * Empty clk_ops for unregistered clocks. These are used temporarily
2612  * after clk_unregister() was called on a clock and until last clock
2613  * consumer calls clk_put() and the struct clk object is freed.
2614  */
2615 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2616 {
2617 	return -ENXIO;
2618 }
2619 
2620 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2621 {
2622 	WARN_ON_ONCE(1);
2623 }
2624 
2625 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2626 					unsigned long parent_rate)
2627 {
2628 	return -ENXIO;
2629 }
2630 
2631 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2632 {
2633 	return -ENXIO;
2634 }
2635 
2636 static const struct clk_ops clk_nodrv_ops = {
2637 	.enable		= clk_nodrv_prepare_enable,
2638 	.disable	= clk_nodrv_disable_unprepare,
2639 	.prepare	= clk_nodrv_prepare_enable,
2640 	.unprepare	= clk_nodrv_disable_unprepare,
2641 	.set_rate	= clk_nodrv_set_rate,
2642 	.set_parent	= clk_nodrv_set_parent,
2643 };
2644 
2645 /**
2646  * clk_unregister - unregister a currently registered clock
2647  * @clk: clock to unregister
2648  */
2649 void clk_unregister(struct clk *clk)
2650 {
2651 	unsigned long flags;
2652 
2653 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2654 		return;
2655 
2656 	clk_debug_unregister(clk->core);
2657 
2658 	clk_prepare_lock();
2659 
2660 	if (clk->core->ops == &clk_nodrv_ops) {
2661 		pr_err("%s: unregistered clock: %s\n", __func__,
2662 		       clk->core->name);
2663 		return;
2664 	}
2665 	/*
2666 	 * Assign empty clock ops for consumers that might still hold
2667 	 * a reference to this clock.
2668 	 */
2669 	flags = clk_enable_lock();
2670 	clk->core->ops = &clk_nodrv_ops;
2671 	clk_enable_unlock(flags);
2672 
2673 	if (!hlist_empty(&clk->core->children)) {
2674 		struct clk_core *child;
2675 		struct hlist_node *t;
2676 
2677 		/* Reparent all children to the orphan list. */
2678 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2679 					  child_node)
2680 			clk_core_set_parent(child, NULL);
2681 	}
2682 
2683 	hlist_del_init(&clk->core->child_node);
2684 
2685 	if (clk->core->prepare_count)
2686 		pr_warn("%s: unregistering prepared clock: %s\n",
2687 					__func__, clk->core->name);
2688 	kref_put(&clk->core->ref, __clk_release);
2689 
2690 	clk_prepare_unlock();
2691 }
2692 EXPORT_SYMBOL_GPL(clk_unregister);
2693 
2694 static void devm_clk_release(struct device *dev, void *res)
2695 {
2696 	clk_unregister(*(struct clk **)res);
2697 }
2698 
2699 /**
2700  * devm_clk_register - resource managed clk_register()
2701  * @dev: device that is registering this clock
2702  * @hw: link to hardware-specific clock data
2703  *
2704  * Managed clk_register(). Clocks returned from this function are
2705  * automatically clk_unregister()ed on driver detach. See clk_register() for
2706  * more information.
2707  */
2708 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2709 {
2710 	struct clk *clk;
2711 	struct clk **clkp;
2712 
2713 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2714 	if (!clkp)
2715 		return ERR_PTR(-ENOMEM);
2716 
2717 	clk = clk_register(dev, hw);
2718 	if (!IS_ERR(clk)) {
2719 		*clkp = clk;
2720 		devres_add(dev, clkp);
2721 	} else {
2722 		devres_free(clkp);
2723 	}
2724 
2725 	return clk;
2726 }
2727 EXPORT_SYMBOL_GPL(devm_clk_register);
2728 
2729 static int devm_clk_match(struct device *dev, void *res, void *data)
2730 {
2731 	struct clk *c = res;
2732 	if (WARN_ON(!c))
2733 		return 0;
2734 	return c == data;
2735 }
2736 
2737 /**
2738  * devm_clk_unregister - resource managed clk_unregister()
2739  * @clk: clock to unregister
2740  *
2741  * Deallocate a clock allocated with devm_clk_register(). Normally
2742  * this function will not need to be called and the resource management
2743  * code will ensure that the resource is freed.
2744  */
2745 void devm_clk_unregister(struct device *dev, struct clk *clk)
2746 {
2747 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2748 }
2749 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2750 
2751 /*
2752  * clkdev helpers
2753  */
2754 int __clk_get(struct clk *clk)
2755 {
2756 	struct clk_core *core = !clk ? NULL : clk->core;
2757 
2758 	if (core) {
2759 		if (!try_module_get(core->owner))
2760 			return 0;
2761 
2762 		kref_get(&core->ref);
2763 	}
2764 	return 1;
2765 }
2766 
2767 void __clk_put(struct clk *clk)
2768 {
2769 	struct module *owner;
2770 
2771 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2772 		return;
2773 
2774 	clk_prepare_lock();
2775 
2776 	hlist_del(&clk->clks_node);
2777 	if (clk->min_rate > clk->core->req_rate ||
2778 	    clk->max_rate < clk->core->req_rate)
2779 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2780 
2781 	owner = clk->core->owner;
2782 	kref_put(&clk->core->ref, __clk_release);
2783 
2784 	clk_prepare_unlock();
2785 
2786 	module_put(owner);
2787 
2788 	kfree(clk);
2789 }
2790 
2791 /***        clk rate change notifiers        ***/
2792 
2793 /**
2794  * clk_notifier_register - add a clk rate change notifier
2795  * @clk: struct clk * to watch
2796  * @nb: struct notifier_block * with callback info
2797  *
2798  * Request notification when clk's rate changes.  This uses an SRCU
2799  * notifier because we want it to block and notifier unregistrations are
2800  * uncommon.  The callbacks associated with the notifier must not
2801  * re-enter into the clk framework by calling any top-level clk APIs;
2802  * this will cause a nested prepare_lock mutex.
2803  *
2804  * In all notification cases cases (pre, post and abort rate change) the
2805  * original clock rate is passed to the callback via struct
2806  * clk_notifier_data.old_rate and the new frequency is passed via struct
2807  * clk_notifier_data.new_rate.
2808  *
2809  * clk_notifier_register() must be called from non-atomic context.
2810  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2811  * allocation failure; otherwise, passes along the return value of
2812  * srcu_notifier_chain_register().
2813  */
2814 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2815 {
2816 	struct clk_notifier *cn;
2817 	int ret = -ENOMEM;
2818 
2819 	if (!clk || !nb)
2820 		return -EINVAL;
2821 
2822 	clk_prepare_lock();
2823 
2824 	/* search the list of notifiers for this clk */
2825 	list_for_each_entry(cn, &clk_notifier_list, node)
2826 		if (cn->clk == clk)
2827 			break;
2828 
2829 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2830 	if (cn->clk != clk) {
2831 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2832 		if (!cn)
2833 			goto out;
2834 
2835 		cn->clk = clk;
2836 		srcu_init_notifier_head(&cn->notifier_head);
2837 
2838 		list_add(&cn->node, &clk_notifier_list);
2839 	}
2840 
2841 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2842 
2843 	clk->core->notifier_count++;
2844 
2845 out:
2846 	clk_prepare_unlock();
2847 
2848 	return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(clk_notifier_register);
2851 
2852 /**
2853  * clk_notifier_unregister - remove a clk rate change notifier
2854  * @clk: struct clk *
2855  * @nb: struct notifier_block * with callback info
2856  *
2857  * Request no further notification for changes to 'clk' and frees memory
2858  * allocated in clk_notifier_register.
2859  *
2860  * Returns -EINVAL if called with null arguments; otherwise, passes
2861  * along the return value of srcu_notifier_chain_unregister().
2862  */
2863 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2864 {
2865 	struct clk_notifier *cn = NULL;
2866 	int ret = -EINVAL;
2867 
2868 	if (!clk || !nb)
2869 		return -EINVAL;
2870 
2871 	clk_prepare_lock();
2872 
2873 	list_for_each_entry(cn, &clk_notifier_list, node)
2874 		if (cn->clk == clk)
2875 			break;
2876 
2877 	if (cn->clk == clk) {
2878 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2879 
2880 		clk->core->notifier_count--;
2881 
2882 		/* XXX the notifier code should handle this better */
2883 		if (!cn->notifier_head.head) {
2884 			srcu_cleanup_notifier_head(&cn->notifier_head);
2885 			list_del(&cn->node);
2886 			kfree(cn);
2887 		}
2888 
2889 	} else {
2890 		ret = -ENOENT;
2891 	}
2892 
2893 	clk_prepare_unlock();
2894 
2895 	return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2898 
2899 #ifdef CONFIG_OF
2900 /**
2901  * struct of_clk_provider - Clock provider registration structure
2902  * @link: Entry in global list of clock providers
2903  * @node: Pointer to device tree node of clock provider
2904  * @get: Get clock callback.  Returns NULL or a struct clk for the
2905  *       given clock specifier
2906  * @data: context pointer to be passed into @get callback
2907  */
2908 struct of_clk_provider {
2909 	struct list_head link;
2910 
2911 	struct device_node *node;
2912 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2913 	void *data;
2914 };
2915 
2916 static const struct of_device_id __clk_of_table_sentinel
2917 	__used __section(__clk_of_table_end);
2918 
2919 static LIST_HEAD(of_clk_providers);
2920 static DEFINE_MUTEX(of_clk_mutex);
2921 
2922 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2923 				     void *data)
2924 {
2925 	return data;
2926 }
2927 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2928 
2929 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2930 {
2931 	struct clk_onecell_data *clk_data = data;
2932 	unsigned int idx = clkspec->args[0];
2933 
2934 	if (idx >= clk_data->clk_num) {
2935 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2936 		return ERR_PTR(-EINVAL);
2937 	}
2938 
2939 	return clk_data->clks[idx];
2940 }
2941 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2942 
2943 /**
2944  * of_clk_add_provider() - Register a clock provider for a node
2945  * @np: Device node pointer associated with clock provider
2946  * @clk_src_get: callback for decoding clock
2947  * @data: context pointer for @clk_src_get callback.
2948  */
2949 int of_clk_add_provider(struct device_node *np,
2950 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2951 						   void *data),
2952 			void *data)
2953 {
2954 	struct of_clk_provider *cp;
2955 	int ret;
2956 
2957 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2958 	if (!cp)
2959 		return -ENOMEM;
2960 
2961 	cp->node = of_node_get(np);
2962 	cp->data = data;
2963 	cp->get = clk_src_get;
2964 
2965 	mutex_lock(&of_clk_mutex);
2966 	list_add(&cp->link, &of_clk_providers);
2967 	mutex_unlock(&of_clk_mutex);
2968 	pr_debug("Added clock from %s\n", np->full_name);
2969 
2970 	ret = of_clk_set_defaults(np, true);
2971 	if (ret < 0)
2972 		of_clk_del_provider(np);
2973 
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2977 
2978 /**
2979  * of_clk_del_provider() - Remove a previously registered clock provider
2980  * @np: Device node pointer associated with clock provider
2981  */
2982 void of_clk_del_provider(struct device_node *np)
2983 {
2984 	struct of_clk_provider *cp;
2985 
2986 	mutex_lock(&of_clk_mutex);
2987 	list_for_each_entry(cp, &of_clk_providers, link) {
2988 		if (cp->node == np) {
2989 			list_del(&cp->link);
2990 			of_node_put(cp->node);
2991 			kfree(cp);
2992 			break;
2993 		}
2994 	}
2995 	mutex_unlock(&of_clk_mutex);
2996 }
2997 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2998 
2999 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3000 				       const char *dev_id, const char *con_id)
3001 {
3002 	struct of_clk_provider *provider;
3003 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3004 
3005 	if (!clkspec)
3006 		return ERR_PTR(-EINVAL);
3007 
3008 	/* Check if we have such a provider in our array */
3009 	mutex_lock(&of_clk_mutex);
3010 	list_for_each_entry(provider, &of_clk_providers, link) {
3011 		if (provider->node == clkspec->np)
3012 			clk = provider->get(clkspec, provider->data);
3013 		if (!IS_ERR(clk)) {
3014 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
3015 					       con_id);
3016 
3017 			if (!IS_ERR(clk) && !__clk_get(clk)) {
3018 				__clk_free_clk(clk);
3019 				clk = ERR_PTR(-ENOENT);
3020 			}
3021 
3022 			break;
3023 		}
3024 	}
3025 	mutex_unlock(&of_clk_mutex);
3026 
3027 	return clk;
3028 }
3029 
3030 /**
3031  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3032  * @clkspec: pointer to a clock specifier data structure
3033  *
3034  * This function looks up a struct clk from the registered list of clock
3035  * providers, an input is a clock specifier data structure as returned
3036  * from the of_parse_phandle_with_args() function call.
3037  */
3038 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3039 {
3040 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3041 }
3042 
3043 int of_clk_get_parent_count(struct device_node *np)
3044 {
3045 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3046 }
3047 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3048 
3049 const char *of_clk_get_parent_name(struct device_node *np, int index)
3050 {
3051 	struct of_phandle_args clkspec;
3052 	struct property *prop;
3053 	const char *clk_name;
3054 	const __be32 *vp;
3055 	u32 pv;
3056 	int rc;
3057 	int count;
3058 
3059 	if (index < 0)
3060 		return NULL;
3061 
3062 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3063 					&clkspec);
3064 	if (rc)
3065 		return NULL;
3066 
3067 	index = clkspec.args_count ? clkspec.args[0] : 0;
3068 	count = 0;
3069 
3070 	/* if there is an indices property, use it to transfer the index
3071 	 * specified into an array offset for the clock-output-names property.
3072 	 */
3073 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3074 		if (index == pv) {
3075 			index = count;
3076 			break;
3077 		}
3078 		count++;
3079 	}
3080 
3081 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3082 					  index,
3083 					  &clk_name) < 0)
3084 		clk_name = clkspec.np->name;
3085 
3086 	of_node_put(clkspec.np);
3087 	return clk_name;
3088 }
3089 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3090 
3091 /**
3092  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3093  * number of parents
3094  * @np: Device node pointer associated with clock provider
3095  * @parents: pointer to char array that hold the parents' names
3096  * @size: size of the @parents array
3097  *
3098  * Return: number of parents for the clock node.
3099  */
3100 int of_clk_parent_fill(struct device_node *np, const char **parents,
3101 		       unsigned int size)
3102 {
3103 	unsigned int i = 0;
3104 
3105 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3106 		i++;
3107 
3108 	return i;
3109 }
3110 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3111 
3112 struct clock_provider {
3113 	of_clk_init_cb_t clk_init_cb;
3114 	struct device_node *np;
3115 	struct list_head node;
3116 };
3117 
3118 /*
3119  * This function looks for a parent clock. If there is one, then it
3120  * checks that the provider for this parent clock was initialized, in
3121  * this case the parent clock will be ready.
3122  */
3123 static int parent_ready(struct device_node *np)
3124 {
3125 	int i = 0;
3126 
3127 	while (true) {
3128 		struct clk *clk = of_clk_get(np, i);
3129 
3130 		/* this parent is ready we can check the next one */
3131 		if (!IS_ERR(clk)) {
3132 			clk_put(clk);
3133 			i++;
3134 			continue;
3135 		}
3136 
3137 		/* at least one parent is not ready, we exit now */
3138 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3139 			return 0;
3140 
3141 		/*
3142 		 * Here we make assumption that the device tree is
3143 		 * written correctly. So an error means that there is
3144 		 * no more parent. As we didn't exit yet, then the
3145 		 * previous parent are ready. If there is no clock
3146 		 * parent, no need to wait for them, then we can
3147 		 * consider their absence as being ready
3148 		 */
3149 		return 1;
3150 	}
3151 }
3152 
3153 /**
3154  * of_clk_init() - Scan and init clock providers from the DT
3155  * @matches: array of compatible values and init functions for providers.
3156  *
3157  * This function scans the device tree for matching clock providers
3158  * and calls their initialization functions. It also does it by trying
3159  * to follow the dependencies.
3160  */
3161 void __init of_clk_init(const struct of_device_id *matches)
3162 {
3163 	const struct of_device_id *match;
3164 	struct device_node *np;
3165 	struct clock_provider *clk_provider, *next;
3166 	bool is_init_done;
3167 	bool force = false;
3168 	LIST_HEAD(clk_provider_list);
3169 
3170 	if (!matches)
3171 		matches = &__clk_of_table;
3172 
3173 	/* First prepare the list of the clocks providers */
3174 	for_each_matching_node_and_match(np, matches, &match) {
3175 		struct clock_provider *parent;
3176 
3177 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3178 		if (!parent) {
3179 			list_for_each_entry_safe(clk_provider, next,
3180 						 &clk_provider_list, node) {
3181 				list_del(&clk_provider->node);
3182 				kfree(clk_provider);
3183 			}
3184 			return;
3185 		}
3186 
3187 		parent->clk_init_cb = match->data;
3188 		parent->np = np;
3189 		list_add_tail(&parent->node, &clk_provider_list);
3190 	}
3191 
3192 	while (!list_empty(&clk_provider_list)) {
3193 		is_init_done = false;
3194 		list_for_each_entry_safe(clk_provider, next,
3195 					&clk_provider_list, node) {
3196 			if (force || parent_ready(clk_provider->np)) {
3197 
3198 				clk_provider->clk_init_cb(clk_provider->np);
3199 				of_clk_set_defaults(clk_provider->np, true);
3200 
3201 				list_del(&clk_provider->node);
3202 				kfree(clk_provider);
3203 				is_init_done = true;
3204 			}
3205 		}
3206 
3207 		/*
3208 		 * We didn't manage to initialize any of the
3209 		 * remaining providers during the last loop, so now we
3210 		 * initialize all the remaining ones unconditionally
3211 		 * in case the clock parent was not mandatory
3212 		 */
3213 		if (!is_init_done)
3214 			force = true;
3215 	}
3216 }
3217 #endif
3218