xref: /openbmc/linux/drivers/clk/clk.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 #include <linux/stringify.h>
28 
29 #include "clk.h"
30 
31 static DEFINE_SPINLOCK(enable_lock);
32 static DEFINE_MUTEX(prepare_lock);
33 
34 static struct task_struct *prepare_owner;
35 static struct task_struct *enable_owner;
36 
37 static int prepare_refcnt;
38 static int enable_refcnt;
39 
40 static HLIST_HEAD(clk_root_list);
41 static HLIST_HEAD(clk_orphan_list);
42 static LIST_HEAD(clk_notifier_list);
43 
44 /***    private data structures    ***/
45 
46 struct clk_core {
47 	const char		*name;
48 	const struct clk_ops	*ops;
49 	struct clk_hw		*hw;
50 	struct module		*owner;
51 	struct device		*dev;
52 	struct clk_core		*parent;
53 	const char		**parent_names;
54 	struct clk_core		**parents;
55 	u8			num_parents;
56 	u8			new_parent_index;
57 	unsigned long		rate;
58 	unsigned long		req_rate;
59 	unsigned long		new_rate;
60 	struct clk_core		*new_parent;
61 	struct clk_core		*new_child;
62 	unsigned long		flags;
63 	bool			orphan;
64 	unsigned int		enable_count;
65 	unsigned int		prepare_count;
66 	unsigned int		protect_count;
67 	unsigned long		min_rate;
68 	unsigned long		max_rate;
69 	unsigned long		accuracy;
70 	int			phase;
71 	struct hlist_head	children;
72 	struct hlist_node	child_node;
73 	struct hlist_head	clks;
74 	unsigned int		notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 	struct dentry		*dentry;
77 	struct hlist_node	debug_node;
78 #endif
79 	struct kref		ref;
80 };
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
84 
85 struct clk {
86 	struct clk_core	*core;
87 	const char *dev_id;
88 	const char *con_id;
89 	unsigned long min_rate;
90 	unsigned long max_rate;
91 	unsigned int exclusive_count;
92 	struct hlist_node clks_node;
93 };
94 
95 /***           runtime pm          ***/
96 static int clk_pm_runtime_get(struct clk_core *core)
97 {
98 	int ret = 0;
99 
100 	if (!core->dev)
101 		return 0;
102 
103 	ret = pm_runtime_get_sync(core->dev);
104 	return ret < 0 ? ret : 0;
105 }
106 
107 static void clk_pm_runtime_put(struct clk_core *core)
108 {
109 	if (!core->dev)
110 		return;
111 
112 	pm_runtime_put_sync(core->dev);
113 }
114 
115 /***           locking             ***/
116 static void clk_prepare_lock(void)
117 {
118 	if (!mutex_trylock(&prepare_lock)) {
119 		if (prepare_owner == current) {
120 			prepare_refcnt++;
121 			return;
122 		}
123 		mutex_lock(&prepare_lock);
124 	}
125 	WARN_ON_ONCE(prepare_owner != NULL);
126 	WARN_ON_ONCE(prepare_refcnt != 0);
127 	prepare_owner = current;
128 	prepare_refcnt = 1;
129 }
130 
131 static void clk_prepare_unlock(void)
132 {
133 	WARN_ON_ONCE(prepare_owner != current);
134 	WARN_ON_ONCE(prepare_refcnt == 0);
135 
136 	if (--prepare_refcnt)
137 		return;
138 	prepare_owner = NULL;
139 	mutex_unlock(&prepare_lock);
140 }
141 
142 static unsigned long clk_enable_lock(void)
143 	__acquires(enable_lock)
144 {
145 	unsigned long flags;
146 
147 	/*
148 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 	 * we already hold the lock. So, in that case, we rely only on
150 	 * reference counting.
151 	 */
152 	if (!IS_ENABLED(CONFIG_SMP) ||
153 	    !spin_trylock_irqsave(&enable_lock, flags)) {
154 		if (enable_owner == current) {
155 			enable_refcnt++;
156 			__acquire(enable_lock);
157 			if (!IS_ENABLED(CONFIG_SMP))
158 				local_save_flags(flags);
159 			return flags;
160 		}
161 		spin_lock_irqsave(&enable_lock, flags);
162 	}
163 	WARN_ON_ONCE(enable_owner != NULL);
164 	WARN_ON_ONCE(enable_refcnt != 0);
165 	enable_owner = current;
166 	enable_refcnt = 1;
167 	return flags;
168 }
169 
170 static void clk_enable_unlock(unsigned long flags)
171 	__releases(enable_lock)
172 {
173 	WARN_ON_ONCE(enable_owner != current);
174 	WARN_ON_ONCE(enable_refcnt == 0);
175 
176 	if (--enable_refcnt) {
177 		__release(enable_lock);
178 		return;
179 	}
180 	enable_owner = NULL;
181 	spin_unlock_irqrestore(&enable_lock, flags);
182 }
183 
184 static bool clk_core_rate_is_protected(struct clk_core *core)
185 {
186 	return core->protect_count;
187 }
188 
189 static bool clk_core_is_prepared(struct clk_core *core)
190 {
191 	bool ret = false;
192 
193 	/*
194 	 * .is_prepared is optional for clocks that can prepare
195 	 * fall back to software usage counter if it is missing
196 	 */
197 	if (!core->ops->is_prepared)
198 		return core->prepare_count;
199 
200 	if (!clk_pm_runtime_get(core)) {
201 		ret = core->ops->is_prepared(core->hw);
202 		clk_pm_runtime_put(core);
203 	}
204 
205 	return ret;
206 }
207 
208 static bool clk_core_is_enabled(struct clk_core *core)
209 {
210 	bool ret = false;
211 
212 	/*
213 	 * .is_enabled is only mandatory for clocks that gate
214 	 * fall back to software usage counter if .is_enabled is missing
215 	 */
216 	if (!core->ops->is_enabled)
217 		return core->enable_count;
218 
219 	/*
220 	 * Check if clock controller's device is runtime active before
221 	 * calling .is_enabled callback. If not, assume that clock is
222 	 * disabled, because we might be called from atomic context, from
223 	 * which pm_runtime_get() is not allowed.
224 	 * This function is called mainly from clk_disable_unused_subtree,
225 	 * which ensures proper runtime pm activation of controller before
226 	 * taking enable spinlock, but the below check is needed if one tries
227 	 * to call it from other places.
228 	 */
229 	if (core->dev) {
230 		pm_runtime_get_noresume(core->dev);
231 		if (!pm_runtime_active(core->dev)) {
232 			ret = false;
233 			goto done;
234 		}
235 	}
236 
237 	ret = core->ops->is_enabled(core->hw);
238 done:
239 	if (core->dev)
240 		pm_runtime_put(core->dev);
241 
242 	return ret;
243 }
244 
245 /***    helper functions   ***/
246 
247 const char *__clk_get_name(const struct clk *clk)
248 {
249 	return !clk ? NULL : clk->core->name;
250 }
251 EXPORT_SYMBOL_GPL(__clk_get_name);
252 
253 const char *clk_hw_get_name(const struct clk_hw *hw)
254 {
255 	return hw->core->name;
256 }
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
258 
259 struct clk_hw *__clk_get_hw(struct clk *clk)
260 {
261 	return !clk ? NULL : clk->core->hw;
262 }
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
264 
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
266 {
267 	return hw->core->num_parents;
268 }
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
270 
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
272 {
273 	return hw->core->parent ? hw->core->parent->hw : NULL;
274 }
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
276 
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 					     struct clk_core *core)
279 {
280 	struct clk_core *child;
281 	struct clk_core *ret;
282 
283 	if (!strcmp(core->name, name))
284 		return core;
285 
286 	hlist_for_each_entry(child, &core->children, child_node) {
287 		ret = __clk_lookup_subtree(name, child);
288 		if (ret)
289 			return ret;
290 	}
291 
292 	return NULL;
293 }
294 
295 static struct clk_core *clk_core_lookup(const char *name)
296 {
297 	struct clk_core *root_clk;
298 	struct clk_core *ret;
299 
300 	if (!name)
301 		return NULL;
302 
303 	/* search the 'proper' clk tree first */
304 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 		ret = __clk_lookup_subtree(name, root_clk);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	/* if not found, then search the orphan tree */
311 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 		ret = __clk_lookup_subtree(name, root_clk);
313 		if (ret)
314 			return ret;
315 	}
316 
317 	return NULL;
318 }
319 
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
321 							 u8 index)
322 {
323 	if (!core || index >= core->num_parents)
324 		return NULL;
325 
326 	if (!core->parents[index])
327 		core->parents[index] =
328 				clk_core_lookup(core->parent_names[index]);
329 
330 	return core->parents[index];
331 }
332 
333 struct clk_hw *
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
335 {
336 	struct clk_core *parent;
337 
338 	parent = clk_core_get_parent_by_index(hw->core, index);
339 
340 	return !parent ? NULL : parent->hw;
341 }
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
343 
344 unsigned int __clk_get_enable_count(struct clk *clk)
345 {
346 	return !clk ? 0 : clk->core->enable_count;
347 }
348 
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
350 {
351 	unsigned long ret;
352 
353 	if (!core) {
354 		ret = 0;
355 		goto out;
356 	}
357 
358 	ret = core->rate;
359 
360 	if (!core->num_parents)
361 		goto out;
362 
363 	if (!core->parent)
364 		ret = 0;
365 
366 out:
367 	return ret;
368 }
369 
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
371 {
372 	return clk_core_get_rate_nolock(hw->core);
373 }
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
375 
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
377 {
378 	if (!core)
379 		return 0;
380 
381 	return core->accuracy;
382 }
383 
384 unsigned long __clk_get_flags(struct clk *clk)
385 {
386 	return !clk ? 0 : clk->core->flags;
387 }
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
389 
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
391 {
392 	return hw->core->flags;
393 }
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
395 
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
397 {
398 	return clk_core_is_prepared(hw->core);
399 }
400 
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
402 {
403 	return clk_core_rate_is_protected(hw->core);
404 }
405 
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
407 {
408 	return clk_core_is_enabled(hw->core);
409 }
410 
411 bool __clk_is_enabled(struct clk *clk)
412 {
413 	if (!clk)
414 		return false;
415 
416 	return clk_core_is_enabled(clk->core);
417 }
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
419 
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 			   unsigned long best, unsigned long flags)
422 {
423 	if (flags & CLK_MUX_ROUND_CLOSEST)
424 		return abs(now - rate) < abs(best - rate);
425 
426 	return now <= rate && now > best;
427 }
428 
429 int clk_mux_determine_rate_flags(struct clk_hw *hw,
430 				 struct clk_rate_request *req,
431 				 unsigned long flags)
432 {
433 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 	int i, num_parents, ret;
435 	unsigned long best = 0;
436 	struct clk_rate_request parent_req = *req;
437 
438 	/* if NO_REPARENT flag set, pass through to current parent */
439 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 		parent = core->parent;
441 		if (core->flags & CLK_SET_RATE_PARENT) {
442 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
443 						   &parent_req);
444 			if (ret)
445 				return ret;
446 
447 			best = parent_req.rate;
448 		} else if (parent) {
449 			best = clk_core_get_rate_nolock(parent);
450 		} else {
451 			best = clk_core_get_rate_nolock(core);
452 		}
453 
454 		goto out;
455 	}
456 
457 	/* find the parent that can provide the fastest rate <= rate */
458 	num_parents = core->num_parents;
459 	for (i = 0; i < num_parents; i++) {
460 		parent = clk_core_get_parent_by_index(core, i);
461 		if (!parent)
462 			continue;
463 
464 		if (core->flags & CLK_SET_RATE_PARENT) {
465 			parent_req = *req;
466 			ret = __clk_determine_rate(parent->hw, &parent_req);
467 			if (ret)
468 				continue;
469 		} else {
470 			parent_req.rate = clk_core_get_rate_nolock(parent);
471 		}
472 
473 		if (mux_is_better_rate(req->rate, parent_req.rate,
474 				       best, flags)) {
475 			best_parent = parent;
476 			best = parent_req.rate;
477 		}
478 	}
479 
480 	if (!best_parent)
481 		return -EINVAL;
482 
483 out:
484 	if (best_parent)
485 		req->best_parent_hw = best_parent->hw;
486 	req->best_parent_rate = best;
487 	req->rate = best;
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
492 
493 struct clk *__clk_lookup(const char *name)
494 {
495 	struct clk_core *core = clk_core_lookup(name);
496 
497 	return !core ? NULL : core->hw->clk;
498 }
499 
500 static void clk_core_get_boundaries(struct clk_core *core,
501 				    unsigned long *min_rate,
502 				    unsigned long *max_rate)
503 {
504 	struct clk *clk_user;
505 
506 	*min_rate = core->min_rate;
507 	*max_rate = core->max_rate;
508 
509 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
510 		*min_rate = max(*min_rate, clk_user->min_rate);
511 
512 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
513 		*max_rate = min(*max_rate, clk_user->max_rate);
514 }
515 
516 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
517 			   unsigned long max_rate)
518 {
519 	hw->core->min_rate = min_rate;
520 	hw->core->max_rate = max_rate;
521 }
522 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
523 
524 /*
525  * Helper for finding best parent to provide a given frequency. This can be used
526  * directly as a determine_rate callback (e.g. for a mux), or from a more
527  * complex clock that may combine a mux with other operations.
528  */
529 int __clk_mux_determine_rate(struct clk_hw *hw,
530 			     struct clk_rate_request *req)
531 {
532 	return clk_mux_determine_rate_flags(hw, req, 0);
533 }
534 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
535 
536 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
537 				     struct clk_rate_request *req)
538 {
539 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
540 }
541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
542 
543 /***        clk api        ***/
544 
545 static void clk_core_rate_unprotect(struct clk_core *core)
546 {
547 	lockdep_assert_held(&prepare_lock);
548 
549 	if (!core)
550 		return;
551 
552 	if (WARN(core->protect_count == 0,
553 	    "%s already unprotected\n", core->name))
554 		return;
555 
556 	if (--core->protect_count > 0)
557 		return;
558 
559 	clk_core_rate_unprotect(core->parent);
560 }
561 
562 static int clk_core_rate_nuke_protect(struct clk_core *core)
563 {
564 	int ret;
565 
566 	lockdep_assert_held(&prepare_lock);
567 
568 	if (!core)
569 		return -EINVAL;
570 
571 	if (core->protect_count == 0)
572 		return 0;
573 
574 	ret = core->protect_count;
575 	core->protect_count = 1;
576 	clk_core_rate_unprotect(core);
577 
578 	return ret;
579 }
580 
581 /**
582  * clk_rate_exclusive_put - release exclusivity over clock rate control
583  * @clk: the clk over which the exclusivity is released
584  *
585  * clk_rate_exclusive_put() completes a critical section during which a clock
586  * consumer cannot tolerate any other consumer making any operation on the
587  * clock which could result in a rate change or rate glitch. Exclusive clocks
588  * cannot have their rate changed, either directly or indirectly due to changes
589  * further up the parent chain of clocks. As a result, clocks up parent chain
590  * also get under exclusive control of the calling consumer.
591  *
592  * If exlusivity is claimed more than once on clock, even by the same consumer,
593  * the rate effectively gets locked as exclusivity can't be preempted.
594  *
595  * Calls to clk_rate_exclusive_put() must be balanced with calls to
596  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
597  * error status.
598  */
599 void clk_rate_exclusive_put(struct clk *clk)
600 {
601 	if (!clk)
602 		return;
603 
604 	clk_prepare_lock();
605 
606 	/*
607 	 * if there is something wrong with this consumer protect count, stop
608 	 * here before messing with the provider
609 	 */
610 	if (WARN_ON(clk->exclusive_count <= 0))
611 		goto out;
612 
613 	clk_core_rate_unprotect(clk->core);
614 	clk->exclusive_count--;
615 out:
616 	clk_prepare_unlock();
617 }
618 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
619 
620 static void clk_core_rate_protect(struct clk_core *core)
621 {
622 	lockdep_assert_held(&prepare_lock);
623 
624 	if (!core)
625 		return;
626 
627 	if (core->protect_count == 0)
628 		clk_core_rate_protect(core->parent);
629 
630 	core->protect_count++;
631 }
632 
633 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
634 {
635 	lockdep_assert_held(&prepare_lock);
636 
637 	if (!core)
638 		return;
639 
640 	if (count == 0)
641 		return;
642 
643 	clk_core_rate_protect(core);
644 	core->protect_count = count;
645 }
646 
647 /**
648  * clk_rate_exclusive_get - get exclusivity over the clk rate control
649  * @clk: the clk over which the exclusity of rate control is requested
650  *
651  * clk_rate_exlusive_get() begins a critical section during which a clock
652  * consumer cannot tolerate any other consumer making any operation on the
653  * clock which could result in a rate change or rate glitch. Exclusive clocks
654  * cannot have their rate changed, either directly or indirectly due to changes
655  * further up the parent chain of clocks. As a result, clocks up parent chain
656  * also get under exclusive control of the calling consumer.
657  *
658  * If exlusivity is claimed more than once on clock, even by the same consumer,
659  * the rate effectively gets locked as exclusivity can't be preempted.
660  *
661  * Calls to clk_rate_exclusive_get() should be balanced with calls to
662  * clk_rate_exclusive_put(). Calls to this function may sleep.
663  * Returns 0 on success, -EERROR otherwise
664  */
665 int clk_rate_exclusive_get(struct clk *clk)
666 {
667 	if (!clk)
668 		return 0;
669 
670 	clk_prepare_lock();
671 	clk_core_rate_protect(clk->core);
672 	clk->exclusive_count++;
673 	clk_prepare_unlock();
674 
675 	return 0;
676 }
677 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
678 
679 static void clk_core_unprepare(struct clk_core *core)
680 {
681 	lockdep_assert_held(&prepare_lock);
682 
683 	if (!core)
684 		return;
685 
686 	if (WARN(core->prepare_count == 0,
687 	    "%s already unprepared\n", core->name))
688 		return;
689 
690 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
691 	    "Unpreparing critical %s\n", core->name))
692 		return;
693 
694 	if (--core->prepare_count > 0)
695 		return;
696 
697 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
698 
699 	trace_clk_unprepare(core);
700 
701 	if (core->ops->unprepare)
702 		core->ops->unprepare(core->hw);
703 
704 	clk_pm_runtime_put(core);
705 
706 	trace_clk_unprepare_complete(core);
707 	clk_core_unprepare(core->parent);
708 }
709 
710 static void clk_core_unprepare_lock(struct clk_core *core)
711 {
712 	clk_prepare_lock();
713 	clk_core_unprepare(core);
714 	clk_prepare_unlock();
715 }
716 
717 /**
718  * clk_unprepare - undo preparation of a clock source
719  * @clk: the clk being unprepared
720  *
721  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
722  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
723  * if the operation may sleep.  One example is a clk which is accessed over
724  * I2c.  In the complex case a clk gate operation may require a fast and a slow
725  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
726  * exclusive.  In fact clk_disable must be called before clk_unprepare.
727  */
728 void clk_unprepare(struct clk *clk)
729 {
730 	if (IS_ERR_OR_NULL(clk))
731 		return;
732 
733 	clk_core_unprepare_lock(clk->core);
734 }
735 EXPORT_SYMBOL_GPL(clk_unprepare);
736 
737 static int clk_core_prepare(struct clk_core *core)
738 {
739 	int ret = 0;
740 
741 	lockdep_assert_held(&prepare_lock);
742 
743 	if (!core)
744 		return 0;
745 
746 	if (core->prepare_count == 0) {
747 		ret = clk_pm_runtime_get(core);
748 		if (ret)
749 			return ret;
750 
751 		ret = clk_core_prepare(core->parent);
752 		if (ret)
753 			goto runtime_put;
754 
755 		trace_clk_prepare(core);
756 
757 		if (core->ops->prepare)
758 			ret = core->ops->prepare(core->hw);
759 
760 		trace_clk_prepare_complete(core);
761 
762 		if (ret)
763 			goto unprepare;
764 	}
765 
766 	core->prepare_count++;
767 
768 	return 0;
769 unprepare:
770 	clk_core_unprepare(core->parent);
771 runtime_put:
772 	clk_pm_runtime_put(core);
773 	return ret;
774 }
775 
776 static int clk_core_prepare_lock(struct clk_core *core)
777 {
778 	int ret;
779 
780 	clk_prepare_lock();
781 	ret = clk_core_prepare(core);
782 	clk_prepare_unlock();
783 
784 	return ret;
785 }
786 
787 /**
788  * clk_prepare - prepare a clock source
789  * @clk: the clk being prepared
790  *
791  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
792  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
793  * operation may sleep.  One example is a clk which is accessed over I2c.  In
794  * the complex case a clk ungate operation may require a fast and a slow part.
795  * It is this reason that clk_prepare and clk_enable are not mutually
796  * exclusive.  In fact clk_prepare must be called before clk_enable.
797  * Returns 0 on success, -EERROR otherwise.
798  */
799 int clk_prepare(struct clk *clk)
800 {
801 	if (!clk)
802 		return 0;
803 
804 	return clk_core_prepare_lock(clk->core);
805 }
806 EXPORT_SYMBOL_GPL(clk_prepare);
807 
808 static void clk_core_disable(struct clk_core *core)
809 {
810 	lockdep_assert_held(&enable_lock);
811 
812 	if (!core)
813 		return;
814 
815 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
816 		return;
817 
818 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
819 	    "Disabling critical %s\n", core->name))
820 		return;
821 
822 	if (--core->enable_count > 0)
823 		return;
824 
825 	trace_clk_disable_rcuidle(core);
826 
827 	if (core->ops->disable)
828 		core->ops->disable(core->hw);
829 
830 	trace_clk_disable_complete_rcuidle(core);
831 
832 	clk_core_disable(core->parent);
833 }
834 
835 static void clk_core_disable_lock(struct clk_core *core)
836 {
837 	unsigned long flags;
838 
839 	flags = clk_enable_lock();
840 	clk_core_disable(core);
841 	clk_enable_unlock(flags);
842 }
843 
844 /**
845  * clk_disable - gate a clock
846  * @clk: the clk being gated
847  *
848  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
849  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
850  * clk if the operation is fast and will never sleep.  One example is a
851  * SoC-internal clk which is controlled via simple register writes.  In the
852  * complex case a clk gate operation may require a fast and a slow part.  It is
853  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
854  * In fact clk_disable must be called before clk_unprepare.
855  */
856 void clk_disable(struct clk *clk)
857 {
858 	if (IS_ERR_OR_NULL(clk))
859 		return;
860 
861 	clk_core_disable_lock(clk->core);
862 }
863 EXPORT_SYMBOL_GPL(clk_disable);
864 
865 static int clk_core_enable(struct clk_core *core)
866 {
867 	int ret = 0;
868 
869 	lockdep_assert_held(&enable_lock);
870 
871 	if (!core)
872 		return 0;
873 
874 	if (WARN(core->prepare_count == 0,
875 	    "Enabling unprepared %s\n", core->name))
876 		return -ESHUTDOWN;
877 
878 	if (core->enable_count == 0) {
879 		ret = clk_core_enable(core->parent);
880 
881 		if (ret)
882 			return ret;
883 
884 		trace_clk_enable_rcuidle(core);
885 
886 		if (core->ops->enable)
887 			ret = core->ops->enable(core->hw);
888 
889 		trace_clk_enable_complete_rcuidle(core);
890 
891 		if (ret) {
892 			clk_core_disable(core->parent);
893 			return ret;
894 		}
895 	}
896 
897 	core->enable_count++;
898 	return 0;
899 }
900 
901 static int clk_core_enable_lock(struct clk_core *core)
902 {
903 	unsigned long flags;
904 	int ret;
905 
906 	flags = clk_enable_lock();
907 	ret = clk_core_enable(core);
908 	clk_enable_unlock(flags);
909 
910 	return ret;
911 }
912 
913 /**
914  * clk_enable - ungate a clock
915  * @clk: the clk being ungated
916  *
917  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
918  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
919  * if the operation will never sleep.  One example is a SoC-internal clk which
920  * is controlled via simple register writes.  In the complex case a clk ungate
921  * operation may require a fast and a slow part.  It is this reason that
922  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
923  * must be called before clk_enable.  Returns 0 on success, -EERROR
924  * otherwise.
925  */
926 int clk_enable(struct clk *clk)
927 {
928 	if (!clk)
929 		return 0;
930 
931 	return clk_core_enable_lock(clk->core);
932 }
933 EXPORT_SYMBOL_GPL(clk_enable);
934 
935 static int clk_core_prepare_enable(struct clk_core *core)
936 {
937 	int ret;
938 
939 	ret = clk_core_prepare_lock(core);
940 	if (ret)
941 		return ret;
942 
943 	ret = clk_core_enable_lock(core);
944 	if (ret)
945 		clk_core_unprepare_lock(core);
946 
947 	return ret;
948 }
949 
950 static void clk_core_disable_unprepare(struct clk_core *core)
951 {
952 	clk_core_disable_lock(core);
953 	clk_core_unprepare_lock(core);
954 }
955 
956 static void clk_unprepare_unused_subtree(struct clk_core *core)
957 {
958 	struct clk_core *child;
959 
960 	lockdep_assert_held(&prepare_lock);
961 
962 	hlist_for_each_entry(child, &core->children, child_node)
963 		clk_unprepare_unused_subtree(child);
964 
965 	if (core->prepare_count)
966 		return;
967 
968 	if (core->flags & CLK_IGNORE_UNUSED)
969 		return;
970 
971 	if (clk_pm_runtime_get(core))
972 		return;
973 
974 	if (clk_core_is_prepared(core)) {
975 		trace_clk_unprepare(core);
976 		if (core->ops->unprepare_unused)
977 			core->ops->unprepare_unused(core->hw);
978 		else if (core->ops->unprepare)
979 			core->ops->unprepare(core->hw);
980 		trace_clk_unprepare_complete(core);
981 	}
982 
983 	clk_pm_runtime_put(core);
984 }
985 
986 static void clk_disable_unused_subtree(struct clk_core *core)
987 {
988 	struct clk_core *child;
989 	unsigned long flags;
990 
991 	lockdep_assert_held(&prepare_lock);
992 
993 	hlist_for_each_entry(child, &core->children, child_node)
994 		clk_disable_unused_subtree(child);
995 
996 	if (core->flags & CLK_OPS_PARENT_ENABLE)
997 		clk_core_prepare_enable(core->parent);
998 
999 	if (clk_pm_runtime_get(core))
1000 		goto unprepare_out;
1001 
1002 	flags = clk_enable_lock();
1003 
1004 	if (core->enable_count)
1005 		goto unlock_out;
1006 
1007 	if (core->flags & CLK_IGNORE_UNUSED)
1008 		goto unlock_out;
1009 
1010 	/*
1011 	 * some gate clocks have special needs during the disable-unused
1012 	 * sequence.  call .disable_unused if available, otherwise fall
1013 	 * back to .disable
1014 	 */
1015 	if (clk_core_is_enabled(core)) {
1016 		trace_clk_disable(core);
1017 		if (core->ops->disable_unused)
1018 			core->ops->disable_unused(core->hw);
1019 		else if (core->ops->disable)
1020 			core->ops->disable(core->hw);
1021 		trace_clk_disable_complete(core);
1022 	}
1023 
1024 unlock_out:
1025 	clk_enable_unlock(flags);
1026 	clk_pm_runtime_put(core);
1027 unprepare_out:
1028 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1029 		clk_core_disable_unprepare(core->parent);
1030 }
1031 
1032 static bool clk_ignore_unused;
1033 static int __init clk_ignore_unused_setup(char *__unused)
1034 {
1035 	clk_ignore_unused = true;
1036 	return 1;
1037 }
1038 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1039 
1040 static int clk_disable_unused(void)
1041 {
1042 	struct clk_core *core;
1043 
1044 	if (clk_ignore_unused) {
1045 		pr_warn("clk: Not disabling unused clocks\n");
1046 		return 0;
1047 	}
1048 
1049 	clk_prepare_lock();
1050 
1051 	hlist_for_each_entry(core, &clk_root_list, child_node)
1052 		clk_disable_unused_subtree(core);
1053 
1054 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1055 		clk_disable_unused_subtree(core);
1056 
1057 	hlist_for_each_entry(core, &clk_root_list, child_node)
1058 		clk_unprepare_unused_subtree(core);
1059 
1060 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1061 		clk_unprepare_unused_subtree(core);
1062 
1063 	clk_prepare_unlock();
1064 
1065 	return 0;
1066 }
1067 late_initcall_sync(clk_disable_unused);
1068 
1069 static int clk_core_determine_round_nolock(struct clk_core *core,
1070 					   struct clk_rate_request *req)
1071 {
1072 	long rate;
1073 
1074 	lockdep_assert_held(&prepare_lock);
1075 
1076 	if (!core)
1077 		return 0;
1078 
1079 	/*
1080 	 * At this point, core protection will be disabled if
1081 	 * - if the provider is not protected at all
1082 	 * - if the calling consumer is the only one which has exclusivity
1083 	 *   over the provider
1084 	 */
1085 	if (clk_core_rate_is_protected(core)) {
1086 		req->rate = core->rate;
1087 	} else if (core->ops->determine_rate) {
1088 		return core->ops->determine_rate(core->hw, req);
1089 	} else if (core->ops->round_rate) {
1090 		rate = core->ops->round_rate(core->hw, req->rate,
1091 					     &req->best_parent_rate);
1092 		if (rate < 0)
1093 			return rate;
1094 
1095 		req->rate = rate;
1096 	} else {
1097 		return -EINVAL;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static void clk_core_init_rate_req(struct clk_core * const core,
1104 				   struct clk_rate_request *req)
1105 {
1106 	struct clk_core *parent;
1107 
1108 	if (WARN_ON(!core || !req))
1109 		return;
1110 
1111 	parent = core->parent;
1112 	if (parent) {
1113 		req->best_parent_hw = parent->hw;
1114 		req->best_parent_rate = parent->rate;
1115 	} else {
1116 		req->best_parent_hw = NULL;
1117 		req->best_parent_rate = 0;
1118 	}
1119 }
1120 
1121 static bool clk_core_can_round(struct clk_core * const core)
1122 {
1123 	if (core->ops->determine_rate || core->ops->round_rate)
1124 		return true;
1125 
1126 	return false;
1127 }
1128 
1129 static int clk_core_round_rate_nolock(struct clk_core *core,
1130 				      struct clk_rate_request *req)
1131 {
1132 	lockdep_assert_held(&prepare_lock);
1133 
1134 	if (!core) {
1135 		req->rate = 0;
1136 		return 0;
1137 	}
1138 
1139 	clk_core_init_rate_req(core, req);
1140 
1141 	if (clk_core_can_round(core))
1142 		return clk_core_determine_round_nolock(core, req);
1143 	else if (core->flags & CLK_SET_RATE_PARENT)
1144 		return clk_core_round_rate_nolock(core->parent, req);
1145 
1146 	req->rate = core->rate;
1147 	return 0;
1148 }
1149 
1150 /**
1151  * __clk_determine_rate - get the closest rate actually supported by a clock
1152  * @hw: determine the rate of this clock
1153  * @req: target rate request
1154  *
1155  * Useful for clk_ops such as .set_rate and .determine_rate.
1156  */
1157 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1158 {
1159 	if (!hw) {
1160 		req->rate = 0;
1161 		return 0;
1162 	}
1163 
1164 	return clk_core_round_rate_nolock(hw->core, req);
1165 }
1166 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1167 
1168 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1169 {
1170 	int ret;
1171 	struct clk_rate_request req;
1172 
1173 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1174 	req.rate = rate;
1175 
1176 	ret = clk_core_round_rate_nolock(hw->core, &req);
1177 	if (ret)
1178 		return 0;
1179 
1180 	return req.rate;
1181 }
1182 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1183 
1184 /**
1185  * clk_round_rate - round the given rate for a clk
1186  * @clk: the clk for which we are rounding a rate
1187  * @rate: the rate which is to be rounded
1188  *
1189  * Takes in a rate as input and rounds it to a rate that the clk can actually
1190  * use which is then returned.  If clk doesn't support round_rate operation
1191  * then the parent rate is returned.
1192  */
1193 long clk_round_rate(struct clk *clk, unsigned long rate)
1194 {
1195 	struct clk_rate_request req;
1196 	int ret;
1197 
1198 	if (!clk)
1199 		return 0;
1200 
1201 	clk_prepare_lock();
1202 
1203 	if (clk->exclusive_count)
1204 		clk_core_rate_unprotect(clk->core);
1205 
1206 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1207 	req.rate = rate;
1208 
1209 	ret = clk_core_round_rate_nolock(clk->core, &req);
1210 
1211 	if (clk->exclusive_count)
1212 		clk_core_rate_protect(clk->core);
1213 
1214 	clk_prepare_unlock();
1215 
1216 	if (ret)
1217 		return ret;
1218 
1219 	return req.rate;
1220 }
1221 EXPORT_SYMBOL_GPL(clk_round_rate);
1222 
1223 /**
1224  * __clk_notify - call clk notifier chain
1225  * @core: clk that is changing rate
1226  * @msg: clk notifier type (see include/linux/clk.h)
1227  * @old_rate: old clk rate
1228  * @new_rate: new clk rate
1229  *
1230  * Triggers a notifier call chain on the clk rate-change notification
1231  * for 'clk'.  Passes a pointer to the struct clk and the previous
1232  * and current rates to the notifier callback.  Intended to be called by
1233  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1234  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1235  * a driver returns that.
1236  */
1237 static int __clk_notify(struct clk_core *core, unsigned long msg,
1238 		unsigned long old_rate, unsigned long new_rate)
1239 {
1240 	struct clk_notifier *cn;
1241 	struct clk_notifier_data cnd;
1242 	int ret = NOTIFY_DONE;
1243 
1244 	cnd.old_rate = old_rate;
1245 	cnd.new_rate = new_rate;
1246 
1247 	list_for_each_entry(cn, &clk_notifier_list, node) {
1248 		if (cn->clk->core == core) {
1249 			cnd.clk = cn->clk;
1250 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1251 					&cnd);
1252 			if (ret & NOTIFY_STOP_MASK)
1253 				return ret;
1254 		}
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * __clk_recalc_accuracies
1262  * @core: first clk in the subtree
1263  *
1264  * Walks the subtree of clks starting with clk and recalculates accuracies as
1265  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1266  * callback then it is assumed that the clock will take on the accuracy of its
1267  * parent.
1268  */
1269 static void __clk_recalc_accuracies(struct clk_core *core)
1270 {
1271 	unsigned long parent_accuracy = 0;
1272 	struct clk_core *child;
1273 
1274 	lockdep_assert_held(&prepare_lock);
1275 
1276 	if (core->parent)
1277 		parent_accuracy = core->parent->accuracy;
1278 
1279 	if (core->ops->recalc_accuracy)
1280 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1281 							  parent_accuracy);
1282 	else
1283 		core->accuracy = parent_accuracy;
1284 
1285 	hlist_for_each_entry(child, &core->children, child_node)
1286 		__clk_recalc_accuracies(child);
1287 }
1288 
1289 static long clk_core_get_accuracy(struct clk_core *core)
1290 {
1291 	unsigned long accuracy;
1292 
1293 	clk_prepare_lock();
1294 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1295 		__clk_recalc_accuracies(core);
1296 
1297 	accuracy = __clk_get_accuracy(core);
1298 	clk_prepare_unlock();
1299 
1300 	return accuracy;
1301 }
1302 
1303 /**
1304  * clk_get_accuracy - return the accuracy of clk
1305  * @clk: the clk whose accuracy is being returned
1306  *
1307  * Simply returns the cached accuracy of the clk, unless
1308  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1309  * issued.
1310  * If clk is NULL then returns 0.
1311  */
1312 long clk_get_accuracy(struct clk *clk)
1313 {
1314 	if (!clk)
1315 		return 0;
1316 
1317 	return clk_core_get_accuracy(clk->core);
1318 }
1319 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1320 
1321 static unsigned long clk_recalc(struct clk_core *core,
1322 				unsigned long parent_rate)
1323 {
1324 	unsigned long rate = parent_rate;
1325 
1326 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1327 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1328 		clk_pm_runtime_put(core);
1329 	}
1330 	return rate;
1331 }
1332 
1333 /**
1334  * __clk_recalc_rates
1335  * @core: first clk in the subtree
1336  * @msg: notification type (see include/linux/clk.h)
1337  *
1338  * Walks the subtree of clks starting with clk and recalculates rates as it
1339  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1340  * it is assumed that the clock will take on the rate of its parent.
1341  *
1342  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1343  * if necessary.
1344  */
1345 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1346 {
1347 	unsigned long old_rate;
1348 	unsigned long parent_rate = 0;
1349 	struct clk_core *child;
1350 
1351 	lockdep_assert_held(&prepare_lock);
1352 
1353 	old_rate = core->rate;
1354 
1355 	if (core->parent)
1356 		parent_rate = core->parent->rate;
1357 
1358 	core->rate = clk_recalc(core, parent_rate);
1359 
1360 	/*
1361 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1362 	 * & ABORT_RATE_CHANGE notifiers
1363 	 */
1364 	if (core->notifier_count && msg)
1365 		__clk_notify(core, msg, old_rate, core->rate);
1366 
1367 	hlist_for_each_entry(child, &core->children, child_node)
1368 		__clk_recalc_rates(child, msg);
1369 }
1370 
1371 static unsigned long clk_core_get_rate(struct clk_core *core)
1372 {
1373 	unsigned long rate;
1374 
1375 	clk_prepare_lock();
1376 
1377 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1378 		__clk_recalc_rates(core, 0);
1379 
1380 	rate = clk_core_get_rate_nolock(core);
1381 	clk_prepare_unlock();
1382 
1383 	return rate;
1384 }
1385 
1386 /**
1387  * clk_get_rate - return the rate of clk
1388  * @clk: the clk whose rate is being returned
1389  *
1390  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1391  * is set, which means a recalc_rate will be issued.
1392  * If clk is NULL then returns 0.
1393  */
1394 unsigned long clk_get_rate(struct clk *clk)
1395 {
1396 	if (!clk)
1397 		return 0;
1398 
1399 	return clk_core_get_rate(clk->core);
1400 }
1401 EXPORT_SYMBOL_GPL(clk_get_rate);
1402 
1403 static int clk_fetch_parent_index(struct clk_core *core,
1404 				  struct clk_core *parent)
1405 {
1406 	int i;
1407 
1408 	if (!parent)
1409 		return -EINVAL;
1410 
1411 	for (i = 0; i < core->num_parents; i++)
1412 		if (clk_core_get_parent_by_index(core, i) == parent)
1413 			return i;
1414 
1415 	return -EINVAL;
1416 }
1417 
1418 /*
1419  * Update the orphan status of @core and all its children.
1420  */
1421 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1422 {
1423 	struct clk_core *child;
1424 
1425 	core->orphan = is_orphan;
1426 
1427 	hlist_for_each_entry(child, &core->children, child_node)
1428 		clk_core_update_orphan_status(child, is_orphan);
1429 }
1430 
1431 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1432 {
1433 	bool was_orphan = core->orphan;
1434 
1435 	hlist_del(&core->child_node);
1436 
1437 	if (new_parent) {
1438 		bool becomes_orphan = new_parent->orphan;
1439 
1440 		/* avoid duplicate POST_RATE_CHANGE notifications */
1441 		if (new_parent->new_child == core)
1442 			new_parent->new_child = NULL;
1443 
1444 		hlist_add_head(&core->child_node, &new_parent->children);
1445 
1446 		if (was_orphan != becomes_orphan)
1447 			clk_core_update_orphan_status(core, becomes_orphan);
1448 	} else {
1449 		hlist_add_head(&core->child_node, &clk_orphan_list);
1450 		if (!was_orphan)
1451 			clk_core_update_orphan_status(core, true);
1452 	}
1453 
1454 	core->parent = new_parent;
1455 }
1456 
1457 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1458 					   struct clk_core *parent)
1459 {
1460 	unsigned long flags;
1461 	struct clk_core *old_parent = core->parent;
1462 
1463 	/*
1464 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1465 	 *
1466 	 * 2. Migrate prepare state between parents and prevent race with
1467 	 * clk_enable().
1468 	 *
1469 	 * If the clock is not prepared, then a race with
1470 	 * clk_enable/disable() is impossible since we already have the
1471 	 * prepare lock (future calls to clk_enable() need to be preceded by
1472 	 * a clk_prepare()).
1473 	 *
1474 	 * If the clock is prepared, migrate the prepared state to the new
1475 	 * parent and also protect against a race with clk_enable() by
1476 	 * forcing the clock and the new parent on.  This ensures that all
1477 	 * future calls to clk_enable() are practically NOPs with respect to
1478 	 * hardware and software states.
1479 	 *
1480 	 * See also: Comment for clk_set_parent() below.
1481 	 */
1482 
1483 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1484 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1485 		clk_core_prepare_enable(old_parent);
1486 		clk_core_prepare_enable(parent);
1487 	}
1488 
1489 	/* migrate prepare count if > 0 */
1490 	if (core->prepare_count) {
1491 		clk_core_prepare_enable(parent);
1492 		clk_core_enable_lock(core);
1493 	}
1494 
1495 	/* update the clk tree topology */
1496 	flags = clk_enable_lock();
1497 	clk_reparent(core, parent);
1498 	clk_enable_unlock(flags);
1499 
1500 	return old_parent;
1501 }
1502 
1503 static void __clk_set_parent_after(struct clk_core *core,
1504 				   struct clk_core *parent,
1505 				   struct clk_core *old_parent)
1506 {
1507 	/*
1508 	 * Finish the migration of prepare state and undo the changes done
1509 	 * for preventing a race with clk_enable().
1510 	 */
1511 	if (core->prepare_count) {
1512 		clk_core_disable_lock(core);
1513 		clk_core_disable_unprepare(old_parent);
1514 	}
1515 
1516 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1517 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1518 		clk_core_disable_unprepare(parent);
1519 		clk_core_disable_unprepare(old_parent);
1520 	}
1521 }
1522 
1523 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1524 			    u8 p_index)
1525 {
1526 	unsigned long flags;
1527 	int ret = 0;
1528 	struct clk_core *old_parent;
1529 
1530 	old_parent = __clk_set_parent_before(core, parent);
1531 
1532 	trace_clk_set_parent(core, parent);
1533 
1534 	/* change clock input source */
1535 	if (parent && core->ops->set_parent)
1536 		ret = core->ops->set_parent(core->hw, p_index);
1537 
1538 	trace_clk_set_parent_complete(core, parent);
1539 
1540 	if (ret) {
1541 		flags = clk_enable_lock();
1542 		clk_reparent(core, old_parent);
1543 		clk_enable_unlock(flags);
1544 		__clk_set_parent_after(core, old_parent, parent);
1545 
1546 		return ret;
1547 	}
1548 
1549 	__clk_set_parent_after(core, parent, old_parent);
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * __clk_speculate_rates
1556  * @core: first clk in the subtree
1557  * @parent_rate: the "future" rate of clk's parent
1558  *
1559  * Walks the subtree of clks starting with clk, speculating rates as it
1560  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1561  *
1562  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1563  * pre-rate change notifications and returns early if no clks in the
1564  * subtree have subscribed to the notifications.  Note that if a clk does not
1565  * implement the .recalc_rate callback then it is assumed that the clock will
1566  * take on the rate of its parent.
1567  */
1568 static int __clk_speculate_rates(struct clk_core *core,
1569 				 unsigned long parent_rate)
1570 {
1571 	struct clk_core *child;
1572 	unsigned long new_rate;
1573 	int ret = NOTIFY_DONE;
1574 
1575 	lockdep_assert_held(&prepare_lock);
1576 
1577 	new_rate = clk_recalc(core, parent_rate);
1578 
1579 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1580 	if (core->notifier_count)
1581 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1582 
1583 	if (ret & NOTIFY_STOP_MASK) {
1584 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1585 				__func__, core->name, ret);
1586 		goto out;
1587 	}
1588 
1589 	hlist_for_each_entry(child, &core->children, child_node) {
1590 		ret = __clk_speculate_rates(child, new_rate);
1591 		if (ret & NOTIFY_STOP_MASK)
1592 			break;
1593 	}
1594 
1595 out:
1596 	return ret;
1597 }
1598 
1599 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1600 			     struct clk_core *new_parent, u8 p_index)
1601 {
1602 	struct clk_core *child;
1603 
1604 	core->new_rate = new_rate;
1605 	core->new_parent = new_parent;
1606 	core->new_parent_index = p_index;
1607 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1608 	core->new_child = NULL;
1609 	if (new_parent && new_parent != core->parent)
1610 		new_parent->new_child = core;
1611 
1612 	hlist_for_each_entry(child, &core->children, child_node) {
1613 		child->new_rate = clk_recalc(child, new_rate);
1614 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1615 	}
1616 }
1617 
1618 /*
1619  * calculate the new rates returning the topmost clock that has to be
1620  * changed.
1621  */
1622 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1623 					   unsigned long rate)
1624 {
1625 	struct clk_core *top = core;
1626 	struct clk_core *old_parent, *parent;
1627 	unsigned long best_parent_rate = 0;
1628 	unsigned long new_rate;
1629 	unsigned long min_rate;
1630 	unsigned long max_rate;
1631 	int p_index = 0;
1632 	long ret;
1633 
1634 	/* sanity */
1635 	if (IS_ERR_OR_NULL(core))
1636 		return NULL;
1637 
1638 	/* save parent rate, if it exists */
1639 	parent = old_parent = core->parent;
1640 	if (parent)
1641 		best_parent_rate = parent->rate;
1642 
1643 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1644 
1645 	/* find the closest rate and parent clk/rate */
1646 	if (clk_core_can_round(core)) {
1647 		struct clk_rate_request req;
1648 
1649 		req.rate = rate;
1650 		req.min_rate = min_rate;
1651 		req.max_rate = max_rate;
1652 
1653 		clk_core_init_rate_req(core, &req);
1654 
1655 		ret = clk_core_determine_round_nolock(core, &req);
1656 		if (ret < 0)
1657 			return NULL;
1658 
1659 		best_parent_rate = req.best_parent_rate;
1660 		new_rate = req.rate;
1661 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1662 
1663 		if (new_rate < min_rate || new_rate > max_rate)
1664 			return NULL;
1665 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1666 		/* pass-through clock without adjustable parent */
1667 		core->new_rate = core->rate;
1668 		return NULL;
1669 	} else {
1670 		/* pass-through clock with adjustable parent */
1671 		top = clk_calc_new_rates(parent, rate);
1672 		new_rate = parent->new_rate;
1673 		goto out;
1674 	}
1675 
1676 	/* some clocks must be gated to change parent */
1677 	if (parent != old_parent &&
1678 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1679 		pr_debug("%s: %s not gated but wants to reparent\n",
1680 			 __func__, core->name);
1681 		return NULL;
1682 	}
1683 
1684 	/* try finding the new parent index */
1685 	if (parent && core->num_parents > 1) {
1686 		p_index = clk_fetch_parent_index(core, parent);
1687 		if (p_index < 0) {
1688 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1689 				 __func__, parent->name, core->name);
1690 			return NULL;
1691 		}
1692 	}
1693 
1694 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1695 	    best_parent_rate != parent->rate)
1696 		top = clk_calc_new_rates(parent, best_parent_rate);
1697 
1698 out:
1699 	clk_calc_subtree(core, new_rate, parent, p_index);
1700 
1701 	return top;
1702 }
1703 
1704 /*
1705  * Notify about rate changes in a subtree. Always walk down the whole tree
1706  * so that in case of an error we can walk down the whole tree again and
1707  * abort the change.
1708  */
1709 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1710 						  unsigned long event)
1711 {
1712 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1713 	int ret = NOTIFY_DONE;
1714 
1715 	if (core->rate == core->new_rate)
1716 		return NULL;
1717 
1718 	if (core->notifier_count) {
1719 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1720 		if (ret & NOTIFY_STOP_MASK)
1721 			fail_clk = core;
1722 	}
1723 
1724 	hlist_for_each_entry(child, &core->children, child_node) {
1725 		/* Skip children who will be reparented to another clock */
1726 		if (child->new_parent && child->new_parent != core)
1727 			continue;
1728 		tmp_clk = clk_propagate_rate_change(child, event);
1729 		if (tmp_clk)
1730 			fail_clk = tmp_clk;
1731 	}
1732 
1733 	/* handle the new child who might not be in core->children yet */
1734 	if (core->new_child) {
1735 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1736 		if (tmp_clk)
1737 			fail_clk = tmp_clk;
1738 	}
1739 
1740 	return fail_clk;
1741 }
1742 
1743 /*
1744  * walk down a subtree and set the new rates notifying the rate
1745  * change on the way
1746  */
1747 static void clk_change_rate(struct clk_core *core)
1748 {
1749 	struct clk_core *child;
1750 	struct hlist_node *tmp;
1751 	unsigned long old_rate;
1752 	unsigned long best_parent_rate = 0;
1753 	bool skip_set_rate = false;
1754 	struct clk_core *old_parent;
1755 	struct clk_core *parent = NULL;
1756 
1757 	old_rate = core->rate;
1758 
1759 	if (core->new_parent) {
1760 		parent = core->new_parent;
1761 		best_parent_rate = core->new_parent->rate;
1762 	} else if (core->parent) {
1763 		parent = core->parent;
1764 		best_parent_rate = core->parent->rate;
1765 	}
1766 
1767 	if (clk_pm_runtime_get(core))
1768 		return;
1769 
1770 	if (core->flags & CLK_SET_RATE_UNGATE) {
1771 		unsigned long flags;
1772 
1773 		clk_core_prepare(core);
1774 		flags = clk_enable_lock();
1775 		clk_core_enable(core);
1776 		clk_enable_unlock(flags);
1777 	}
1778 
1779 	if (core->new_parent && core->new_parent != core->parent) {
1780 		old_parent = __clk_set_parent_before(core, core->new_parent);
1781 		trace_clk_set_parent(core, core->new_parent);
1782 
1783 		if (core->ops->set_rate_and_parent) {
1784 			skip_set_rate = true;
1785 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1786 					best_parent_rate,
1787 					core->new_parent_index);
1788 		} else if (core->ops->set_parent) {
1789 			core->ops->set_parent(core->hw, core->new_parent_index);
1790 		}
1791 
1792 		trace_clk_set_parent_complete(core, core->new_parent);
1793 		__clk_set_parent_after(core, core->new_parent, old_parent);
1794 	}
1795 
1796 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1797 		clk_core_prepare_enable(parent);
1798 
1799 	trace_clk_set_rate(core, core->new_rate);
1800 
1801 	if (!skip_set_rate && core->ops->set_rate)
1802 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1803 
1804 	trace_clk_set_rate_complete(core, core->new_rate);
1805 
1806 	core->rate = clk_recalc(core, best_parent_rate);
1807 
1808 	if (core->flags & CLK_SET_RATE_UNGATE) {
1809 		unsigned long flags;
1810 
1811 		flags = clk_enable_lock();
1812 		clk_core_disable(core);
1813 		clk_enable_unlock(flags);
1814 		clk_core_unprepare(core);
1815 	}
1816 
1817 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1818 		clk_core_disable_unprepare(parent);
1819 
1820 	if (core->notifier_count && old_rate != core->rate)
1821 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1822 
1823 	if (core->flags & CLK_RECALC_NEW_RATES)
1824 		(void)clk_calc_new_rates(core, core->new_rate);
1825 
1826 	/*
1827 	 * Use safe iteration, as change_rate can actually swap parents
1828 	 * for certain clock types.
1829 	 */
1830 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1831 		/* Skip children who will be reparented to another clock */
1832 		if (child->new_parent && child->new_parent != core)
1833 			continue;
1834 		clk_change_rate(child);
1835 	}
1836 
1837 	/* handle the new child who might not be in core->children yet */
1838 	if (core->new_child)
1839 		clk_change_rate(core->new_child);
1840 
1841 	clk_pm_runtime_put(core);
1842 }
1843 
1844 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1845 						     unsigned long req_rate)
1846 {
1847 	int ret, cnt;
1848 	struct clk_rate_request req;
1849 
1850 	lockdep_assert_held(&prepare_lock);
1851 
1852 	if (!core)
1853 		return 0;
1854 
1855 	/* simulate what the rate would be if it could be freely set */
1856 	cnt = clk_core_rate_nuke_protect(core);
1857 	if (cnt < 0)
1858 		return cnt;
1859 
1860 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1861 	req.rate = req_rate;
1862 
1863 	ret = clk_core_round_rate_nolock(core, &req);
1864 
1865 	/* restore the protection */
1866 	clk_core_rate_restore_protect(core, cnt);
1867 
1868 	return ret ? 0 : req.rate;
1869 }
1870 
1871 static int clk_core_set_rate_nolock(struct clk_core *core,
1872 				    unsigned long req_rate)
1873 {
1874 	struct clk_core *top, *fail_clk;
1875 	unsigned long rate;
1876 	int ret = 0;
1877 
1878 	if (!core)
1879 		return 0;
1880 
1881 	rate = clk_core_req_round_rate_nolock(core, req_rate);
1882 
1883 	/* bail early if nothing to do */
1884 	if (rate == clk_core_get_rate_nolock(core))
1885 		return 0;
1886 
1887 	/* fail on a direct rate set of a protected provider */
1888 	if (clk_core_rate_is_protected(core))
1889 		return -EBUSY;
1890 
1891 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1892 		return -EBUSY;
1893 
1894 	/* calculate new rates and get the topmost changed clock */
1895 	top = clk_calc_new_rates(core, req_rate);
1896 	if (!top)
1897 		return -EINVAL;
1898 
1899 	ret = clk_pm_runtime_get(core);
1900 	if (ret)
1901 		return ret;
1902 
1903 	/* notify that we are about to change rates */
1904 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1905 	if (fail_clk) {
1906 		pr_debug("%s: failed to set %s rate\n", __func__,
1907 				fail_clk->name);
1908 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1909 		ret = -EBUSY;
1910 		goto err;
1911 	}
1912 
1913 	/* change the rates */
1914 	clk_change_rate(top);
1915 
1916 	core->req_rate = req_rate;
1917 err:
1918 	clk_pm_runtime_put(core);
1919 
1920 	return ret;
1921 }
1922 
1923 /**
1924  * clk_set_rate - specify a new rate for clk
1925  * @clk: the clk whose rate is being changed
1926  * @rate: the new rate for clk
1927  *
1928  * In the simplest case clk_set_rate will only adjust the rate of clk.
1929  *
1930  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1931  * propagate up to clk's parent; whether or not this happens depends on the
1932  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1933  * after calling .round_rate then upstream parent propagation is ignored.  If
1934  * *parent_rate comes back with a new rate for clk's parent then we propagate
1935  * up to clk's parent and set its rate.  Upward propagation will continue
1936  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1937  * .round_rate stops requesting changes to clk's parent_rate.
1938  *
1939  * Rate changes are accomplished via tree traversal that also recalculates the
1940  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1941  *
1942  * Returns 0 on success, -EERROR otherwise.
1943  */
1944 int clk_set_rate(struct clk *clk, unsigned long rate)
1945 {
1946 	int ret;
1947 
1948 	if (!clk)
1949 		return 0;
1950 
1951 	/* prevent racing with updates to the clock topology */
1952 	clk_prepare_lock();
1953 
1954 	if (clk->exclusive_count)
1955 		clk_core_rate_unprotect(clk->core);
1956 
1957 	ret = clk_core_set_rate_nolock(clk->core, rate);
1958 
1959 	if (clk->exclusive_count)
1960 		clk_core_rate_protect(clk->core);
1961 
1962 	clk_prepare_unlock();
1963 
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(clk_set_rate);
1967 
1968 /**
1969  * clk_set_rate_exclusive - specify a new rate get exclusive control
1970  * @clk: the clk whose rate is being changed
1971  * @rate: the new rate for clk
1972  *
1973  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1974  * within a critical section
1975  *
1976  * This can be used initially to ensure that at least 1 consumer is
1977  * statisfied when several consumers are competing for exclusivity over the
1978  * same clock provider.
1979  *
1980  * The exclusivity is not applied if setting the rate failed.
1981  *
1982  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1983  * clk_rate_exclusive_put().
1984  *
1985  * Returns 0 on success, -EERROR otherwise.
1986  */
1987 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1988 {
1989 	int ret;
1990 
1991 	if (!clk)
1992 		return 0;
1993 
1994 	/* prevent racing with updates to the clock topology */
1995 	clk_prepare_lock();
1996 
1997 	/*
1998 	 * The temporary protection removal is not here, on purpose
1999 	 * This function is meant to be used instead of clk_rate_protect,
2000 	 * so before the consumer code path protect the clock provider
2001 	 */
2002 
2003 	ret = clk_core_set_rate_nolock(clk->core, rate);
2004 	if (!ret) {
2005 		clk_core_rate_protect(clk->core);
2006 		clk->exclusive_count++;
2007 	}
2008 
2009 	clk_prepare_unlock();
2010 
2011 	return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2014 
2015 /**
2016  * clk_set_rate_range - set a rate range for a clock source
2017  * @clk: clock source
2018  * @min: desired minimum clock rate in Hz, inclusive
2019  * @max: desired maximum clock rate in Hz, inclusive
2020  *
2021  * Returns success (0) or negative errno.
2022  */
2023 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2024 {
2025 	int ret = 0;
2026 	unsigned long old_min, old_max, rate;
2027 
2028 	if (!clk)
2029 		return 0;
2030 
2031 	if (min > max) {
2032 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2033 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2034 		       min, max);
2035 		return -EINVAL;
2036 	}
2037 
2038 	clk_prepare_lock();
2039 
2040 	if (clk->exclusive_count)
2041 		clk_core_rate_unprotect(clk->core);
2042 
2043 	/* Save the current values in case we need to rollback the change */
2044 	old_min = clk->min_rate;
2045 	old_max = clk->max_rate;
2046 	clk->min_rate = min;
2047 	clk->max_rate = max;
2048 
2049 	rate = clk_core_get_rate_nolock(clk->core);
2050 	if (rate < min || rate > max) {
2051 		/*
2052 		 * FIXME:
2053 		 * We are in bit of trouble here, current rate is outside the
2054 		 * the requested range. We are going try to request appropriate
2055 		 * range boundary but there is a catch. It may fail for the
2056 		 * usual reason (clock broken, clock protected, etc) but also
2057 		 * because:
2058 		 * - round_rate() was not favorable and fell on the wrong
2059 		 *   side of the boundary
2060 		 * - the determine_rate() callback does not really check for
2061 		 *   this corner case when determining the rate
2062 		 */
2063 
2064 		if (rate < min)
2065 			rate = min;
2066 		else
2067 			rate = max;
2068 
2069 		ret = clk_core_set_rate_nolock(clk->core, rate);
2070 		if (ret) {
2071 			/* rollback the changes */
2072 			clk->min_rate = old_min;
2073 			clk->max_rate = old_max;
2074 		}
2075 	}
2076 
2077 	if (clk->exclusive_count)
2078 		clk_core_rate_protect(clk->core);
2079 
2080 	clk_prepare_unlock();
2081 
2082 	return ret;
2083 }
2084 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2085 
2086 /**
2087  * clk_set_min_rate - set a minimum clock rate for a clock source
2088  * @clk: clock source
2089  * @rate: desired minimum clock rate in Hz, inclusive
2090  *
2091  * Returns success (0) or negative errno.
2092  */
2093 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2094 {
2095 	if (!clk)
2096 		return 0;
2097 
2098 	return clk_set_rate_range(clk, rate, clk->max_rate);
2099 }
2100 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2101 
2102 /**
2103  * clk_set_max_rate - set a maximum clock rate for a clock source
2104  * @clk: clock source
2105  * @rate: desired maximum clock rate in Hz, inclusive
2106  *
2107  * Returns success (0) or negative errno.
2108  */
2109 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2110 {
2111 	if (!clk)
2112 		return 0;
2113 
2114 	return clk_set_rate_range(clk, clk->min_rate, rate);
2115 }
2116 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2117 
2118 /**
2119  * clk_get_parent - return the parent of a clk
2120  * @clk: the clk whose parent gets returned
2121  *
2122  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2123  */
2124 struct clk *clk_get_parent(struct clk *clk)
2125 {
2126 	struct clk *parent;
2127 
2128 	if (!clk)
2129 		return NULL;
2130 
2131 	clk_prepare_lock();
2132 	/* TODO: Create a per-user clk and change callers to call clk_put */
2133 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2134 	clk_prepare_unlock();
2135 
2136 	return parent;
2137 }
2138 EXPORT_SYMBOL_GPL(clk_get_parent);
2139 
2140 static struct clk_core *__clk_init_parent(struct clk_core *core)
2141 {
2142 	u8 index = 0;
2143 
2144 	if (core->num_parents > 1 && core->ops->get_parent)
2145 		index = core->ops->get_parent(core->hw);
2146 
2147 	return clk_core_get_parent_by_index(core, index);
2148 }
2149 
2150 static void clk_core_reparent(struct clk_core *core,
2151 				  struct clk_core *new_parent)
2152 {
2153 	clk_reparent(core, new_parent);
2154 	__clk_recalc_accuracies(core);
2155 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2156 }
2157 
2158 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2159 {
2160 	if (!hw)
2161 		return;
2162 
2163 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2164 }
2165 
2166 /**
2167  * clk_has_parent - check if a clock is a possible parent for another
2168  * @clk: clock source
2169  * @parent: parent clock source
2170  *
2171  * This function can be used in drivers that need to check that a clock can be
2172  * the parent of another without actually changing the parent.
2173  *
2174  * Returns true if @parent is a possible parent for @clk, false otherwise.
2175  */
2176 bool clk_has_parent(struct clk *clk, struct clk *parent)
2177 {
2178 	struct clk_core *core, *parent_core;
2179 
2180 	/* NULL clocks should be nops, so return success if either is NULL. */
2181 	if (!clk || !parent)
2182 		return true;
2183 
2184 	core = clk->core;
2185 	parent_core = parent->core;
2186 
2187 	/* Optimize for the case where the parent is already the parent. */
2188 	if (core->parent == parent_core)
2189 		return true;
2190 
2191 	return match_string(core->parent_names, core->num_parents,
2192 			    parent_core->name) >= 0;
2193 }
2194 EXPORT_SYMBOL_GPL(clk_has_parent);
2195 
2196 static int clk_core_set_parent_nolock(struct clk_core *core,
2197 				      struct clk_core *parent)
2198 {
2199 	int ret = 0;
2200 	int p_index = 0;
2201 	unsigned long p_rate = 0;
2202 
2203 	lockdep_assert_held(&prepare_lock);
2204 
2205 	if (!core)
2206 		return 0;
2207 
2208 	if (core->parent == parent)
2209 		return 0;
2210 
2211 	/* verify ops for for multi-parent clks */
2212 	if (core->num_parents > 1 && !core->ops->set_parent)
2213 		return -EPERM;
2214 
2215 	/* check that we are allowed to re-parent if the clock is in use */
2216 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2217 		return -EBUSY;
2218 
2219 	if (clk_core_rate_is_protected(core))
2220 		return -EBUSY;
2221 
2222 	/* try finding the new parent index */
2223 	if (parent) {
2224 		p_index = clk_fetch_parent_index(core, parent);
2225 		if (p_index < 0) {
2226 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2227 					__func__, parent->name, core->name);
2228 			return p_index;
2229 		}
2230 		p_rate = parent->rate;
2231 	}
2232 
2233 	ret = clk_pm_runtime_get(core);
2234 	if (ret)
2235 		return ret;
2236 
2237 	/* propagate PRE_RATE_CHANGE notifications */
2238 	ret = __clk_speculate_rates(core, p_rate);
2239 
2240 	/* abort if a driver objects */
2241 	if (ret & NOTIFY_STOP_MASK)
2242 		goto runtime_put;
2243 
2244 	/* do the re-parent */
2245 	ret = __clk_set_parent(core, parent, p_index);
2246 
2247 	/* propagate rate an accuracy recalculation accordingly */
2248 	if (ret) {
2249 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2250 	} else {
2251 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2252 		__clk_recalc_accuracies(core);
2253 	}
2254 
2255 runtime_put:
2256 	clk_pm_runtime_put(core);
2257 
2258 	return ret;
2259 }
2260 
2261 /**
2262  * clk_set_parent - switch the parent of a mux clk
2263  * @clk: the mux clk whose input we are switching
2264  * @parent: the new input to clk
2265  *
2266  * Re-parent clk to use parent as its new input source.  If clk is in
2267  * prepared state, the clk will get enabled for the duration of this call. If
2268  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2269  * that, the reparenting is glitchy in hardware, etc), use the
2270  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2271  *
2272  * After successfully changing clk's parent clk_set_parent will update the
2273  * clk topology, sysfs topology and propagate rate recalculation via
2274  * __clk_recalc_rates.
2275  *
2276  * Returns 0 on success, -EERROR otherwise.
2277  */
2278 int clk_set_parent(struct clk *clk, struct clk *parent)
2279 {
2280 	int ret;
2281 
2282 	if (!clk)
2283 		return 0;
2284 
2285 	clk_prepare_lock();
2286 
2287 	if (clk->exclusive_count)
2288 		clk_core_rate_unprotect(clk->core);
2289 
2290 	ret = clk_core_set_parent_nolock(clk->core,
2291 					 parent ? parent->core : NULL);
2292 
2293 	if (clk->exclusive_count)
2294 		clk_core_rate_protect(clk->core);
2295 
2296 	clk_prepare_unlock();
2297 
2298 	return ret;
2299 }
2300 EXPORT_SYMBOL_GPL(clk_set_parent);
2301 
2302 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2303 {
2304 	int ret = -EINVAL;
2305 
2306 	lockdep_assert_held(&prepare_lock);
2307 
2308 	if (!core)
2309 		return 0;
2310 
2311 	if (clk_core_rate_is_protected(core))
2312 		return -EBUSY;
2313 
2314 	trace_clk_set_phase(core, degrees);
2315 
2316 	if (core->ops->set_phase) {
2317 		ret = core->ops->set_phase(core->hw, degrees);
2318 		if (!ret)
2319 			core->phase = degrees;
2320 	}
2321 
2322 	trace_clk_set_phase_complete(core, degrees);
2323 
2324 	return ret;
2325 }
2326 
2327 /**
2328  * clk_set_phase - adjust the phase shift of a clock signal
2329  * @clk: clock signal source
2330  * @degrees: number of degrees the signal is shifted
2331  *
2332  * Shifts the phase of a clock signal by the specified
2333  * degrees. Returns 0 on success, -EERROR otherwise.
2334  *
2335  * This function makes no distinction about the input or reference
2336  * signal that we adjust the clock signal phase against. For example
2337  * phase locked-loop clock signal generators we may shift phase with
2338  * respect to feedback clock signal input, but for other cases the
2339  * clock phase may be shifted with respect to some other, unspecified
2340  * signal.
2341  *
2342  * Additionally the concept of phase shift does not propagate through
2343  * the clock tree hierarchy, which sets it apart from clock rates and
2344  * clock accuracy. A parent clock phase attribute does not have an
2345  * impact on the phase attribute of a child clock.
2346  */
2347 int clk_set_phase(struct clk *clk, int degrees)
2348 {
2349 	int ret;
2350 
2351 	if (!clk)
2352 		return 0;
2353 
2354 	/* sanity check degrees */
2355 	degrees %= 360;
2356 	if (degrees < 0)
2357 		degrees += 360;
2358 
2359 	clk_prepare_lock();
2360 
2361 	if (clk->exclusive_count)
2362 		clk_core_rate_unprotect(clk->core);
2363 
2364 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2365 
2366 	if (clk->exclusive_count)
2367 		clk_core_rate_protect(clk->core);
2368 
2369 	clk_prepare_unlock();
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(clk_set_phase);
2374 
2375 static int clk_core_get_phase(struct clk_core *core)
2376 {
2377 	int ret;
2378 
2379 	clk_prepare_lock();
2380 	/* Always try to update cached phase if possible */
2381 	if (core->ops->get_phase)
2382 		core->phase = core->ops->get_phase(core->hw);
2383 	ret = core->phase;
2384 	clk_prepare_unlock();
2385 
2386 	return ret;
2387 }
2388 
2389 /**
2390  * clk_get_phase - return the phase shift of a clock signal
2391  * @clk: clock signal source
2392  *
2393  * Returns the phase shift of a clock node in degrees, otherwise returns
2394  * -EERROR.
2395  */
2396 int clk_get_phase(struct clk *clk)
2397 {
2398 	if (!clk)
2399 		return 0;
2400 
2401 	return clk_core_get_phase(clk->core);
2402 }
2403 EXPORT_SYMBOL_GPL(clk_get_phase);
2404 
2405 /**
2406  * clk_is_match - check if two clk's point to the same hardware clock
2407  * @p: clk compared against q
2408  * @q: clk compared against p
2409  *
2410  * Returns true if the two struct clk pointers both point to the same hardware
2411  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2412  * share the same struct clk_core object.
2413  *
2414  * Returns false otherwise. Note that two NULL clks are treated as matching.
2415  */
2416 bool clk_is_match(const struct clk *p, const struct clk *q)
2417 {
2418 	/* trivial case: identical struct clk's or both NULL */
2419 	if (p == q)
2420 		return true;
2421 
2422 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2423 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2424 		if (p->core == q->core)
2425 			return true;
2426 
2427 	return false;
2428 }
2429 EXPORT_SYMBOL_GPL(clk_is_match);
2430 
2431 /***        debugfs support        ***/
2432 
2433 #ifdef CONFIG_DEBUG_FS
2434 #include <linux/debugfs.h>
2435 
2436 static struct dentry *rootdir;
2437 static int inited = 0;
2438 static DEFINE_MUTEX(clk_debug_lock);
2439 static HLIST_HEAD(clk_debug_list);
2440 
2441 static struct hlist_head *all_lists[] = {
2442 	&clk_root_list,
2443 	&clk_orphan_list,
2444 	NULL,
2445 };
2446 
2447 static struct hlist_head *orphan_list[] = {
2448 	&clk_orphan_list,
2449 	NULL,
2450 };
2451 
2452 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2453 				 int level)
2454 {
2455 	if (!c)
2456 		return;
2457 
2458 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2459 		   level * 3 + 1, "",
2460 		   30 - level * 3, c->name,
2461 		   c->enable_count, c->prepare_count, c->protect_count,
2462 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2463 		   clk_core_get_phase(c));
2464 }
2465 
2466 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2467 				     int level)
2468 {
2469 	struct clk_core *child;
2470 
2471 	if (!c)
2472 		return;
2473 
2474 	clk_summary_show_one(s, c, level);
2475 
2476 	hlist_for_each_entry(child, &c->children, child_node)
2477 		clk_summary_show_subtree(s, child, level + 1);
2478 }
2479 
2480 static int clk_summary_show(struct seq_file *s, void *data)
2481 {
2482 	struct clk_core *c;
2483 	struct hlist_head **lists = (struct hlist_head **)s->private;
2484 
2485 	seq_puts(s, "                                 enable  prepare  protect                               \n");
2486 	seq_puts(s, "   clock                          count    count    count        rate   accuracy   phase\n");
2487 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2488 
2489 	clk_prepare_lock();
2490 
2491 	for (; *lists; lists++)
2492 		hlist_for_each_entry(c, *lists, child_node)
2493 			clk_summary_show_subtree(s, c, 0);
2494 
2495 	clk_prepare_unlock();
2496 
2497 	return 0;
2498 }
2499 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2500 
2501 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2502 {
2503 	if (!c)
2504 		return;
2505 
2506 	/* This should be JSON format, i.e. elements separated with a comma */
2507 	seq_printf(s, "\"%s\": { ", c->name);
2508 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2509 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2510 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2511 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2512 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2513 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2514 }
2515 
2516 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2517 {
2518 	struct clk_core *child;
2519 
2520 	if (!c)
2521 		return;
2522 
2523 	clk_dump_one(s, c, level);
2524 
2525 	hlist_for_each_entry(child, &c->children, child_node) {
2526 		seq_putc(s, ',');
2527 		clk_dump_subtree(s, child, level + 1);
2528 	}
2529 
2530 	seq_putc(s, '}');
2531 }
2532 
2533 static int clk_dump_show(struct seq_file *s, void *data)
2534 {
2535 	struct clk_core *c;
2536 	bool first_node = true;
2537 	struct hlist_head **lists = (struct hlist_head **)s->private;
2538 
2539 	seq_putc(s, '{');
2540 	clk_prepare_lock();
2541 
2542 	for (; *lists; lists++) {
2543 		hlist_for_each_entry(c, *lists, child_node) {
2544 			if (!first_node)
2545 				seq_putc(s, ',');
2546 			first_node = false;
2547 			clk_dump_subtree(s, c, 0);
2548 		}
2549 	}
2550 
2551 	clk_prepare_unlock();
2552 
2553 	seq_puts(s, "}\n");
2554 	return 0;
2555 }
2556 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2557 
2558 static const struct {
2559 	unsigned long flag;
2560 	const char *name;
2561 } clk_flags[] = {
2562 #define ENTRY(f) { f, __stringify(f) }
2563 	ENTRY(CLK_SET_RATE_GATE),
2564 	ENTRY(CLK_SET_PARENT_GATE),
2565 	ENTRY(CLK_SET_RATE_PARENT),
2566 	ENTRY(CLK_IGNORE_UNUSED),
2567 	ENTRY(CLK_IS_BASIC),
2568 	ENTRY(CLK_GET_RATE_NOCACHE),
2569 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2570 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2571 	ENTRY(CLK_RECALC_NEW_RATES),
2572 	ENTRY(CLK_SET_RATE_UNGATE),
2573 	ENTRY(CLK_IS_CRITICAL),
2574 	ENTRY(CLK_OPS_PARENT_ENABLE),
2575 #undef ENTRY
2576 };
2577 
2578 static int clk_flags_show(struct seq_file *s, void *data)
2579 {
2580 	struct clk_core *core = s->private;
2581 	unsigned long flags = core->flags;
2582 	unsigned int i;
2583 
2584 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2585 		if (flags & clk_flags[i].flag) {
2586 			seq_printf(s, "%s\n", clk_flags[i].name);
2587 			flags &= ~clk_flags[i].flag;
2588 		}
2589 	}
2590 	if (flags) {
2591 		/* Unknown flags */
2592 		seq_printf(s, "0x%lx\n", flags);
2593 	}
2594 
2595 	return 0;
2596 }
2597 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2598 
2599 static int possible_parents_show(struct seq_file *s, void *data)
2600 {
2601 	struct clk_core *core = s->private;
2602 	int i;
2603 
2604 	for (i = 0; i < core->num_parents - 1; i++)
2605 		seq_printf(s, "%s ", core->parent_names[i]);
2606 
2607 	seq_printf(s, "%s\n", core->parent_names[i]);
2608 
2609 	return 0;
2610 }
2611 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2612 
2613 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2614 {
2615 	struct dentry *root;
2616 
2617 	if (!core || !pdentry)
2618 		return;
2619 
2620 	root = debugfs_create_dir(core->name, pdentry);
2621 	core->dentry = root;
2622 
2623 	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
2624 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
2625 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
2626 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
2627 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
2628 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
2629 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
2630 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
2631 
2632 	if (core->num_parents > 1)
2633 		debugfs_create_file("clk_possible_parents", 0444, root, core,
2634 				    &possible_parents_fops);
2635 
2636 	if (core->ops->debug_init)
2637 		core->ops->debug_init(core->hw, core->dentry);
2638 }
2639 
2640 /**
2641  * clk_debug_register - add a clk node to the debugfs clk directory
2642  * @core: the clk being added to the debugfs clk directory
2643  *
2644  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2645  * initialized.  Otherwise it bails out early since the debugfs clk directory
2646  * will be created lazily by clk_debug_init as part of a late_initcall.
2647  */
2648 static void clk_debug_register(struct clk_core *core)
2649 {
2650 	mutex_lock(&clk_debug_lock);
2651 	hlist_add_head(&core->debug_node, &clk_debug_list);
2652 	if (inited)
2653 		clk_debug_create_one(core, rootdir);
2654 	mutex_unlock(&clk_debug_lock);
2655 }
2656 
2657  /**
2658  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2659  * @core: the clk being removed from the debugfs clk directory
2660  *
2661  * Dynamically removes a clk and all its child nodes from the
2662  * debugfs clk directory if clk->dentry points to debugfs created by
2663  * clk_debug_register in __clk_core_init.
2664  */
2665 static void clk_debug_unregister(struct clk_core *core)
2666 {
2667 	mutex_lock(&clk_debug_lock);
2668 	hlist_del_init(&core->debug_node);
2669 	debugfs_remove_recursive(core->dentry);
2670 	core->dentry = NULL;
2671 	mutex_unlock(&clk_debug_lock);
2672 }
2673 
2674 /**
2675  * clk_debug_init - lazily populate the debugfs clk directory
2676  *
2677  * clks are often initialized very early during boot before memory can be
2678  * dynamically allocated and well before debugfs is setup. This function
2679  * populates the debugfs clk directory once at boot-time when we know that
2680  * debugfs is setup. It should only be called once at boot-time, all other clks
2681  * added dynamically will be done so with clk_debug_register.
2682  */
2683 static int __init clk_debug_init(void)
2684 {
2685 	struct clk_core *core;
2686 
2687 	rootdir = debugfs_create_dir("clk", NULL);
2688 
2689 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2690 			    &clk_summary_fops);
2691 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2692 			    &clk_dump_fops);
2693 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
2694 			    &clk_summary_fops);
2695 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
2696 			    &clk_dump_fops);
2697 
2698 	mutex_lock(&clk_debug_lock);
2699 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2700 		clk_debug_create_one(core, rootdir);
2701 
2702 	inited = 1;
2703 	mutex_unlock(&clk_debug_lock);
2704 
2705 	return 0;
2706 }
2707 late_initcall(clk_debug_init);
2708 #else
2709 static inline void clk_debug_register(struct clk_core *core) { }
2710 static inline void clk_debug_reparent(struct clk_core *core,
2711 				      struct clk_core *new_parent)
2712 {
2713 }
2714 static inline void clk_debug_unregister(struct clk_core *core)
2715 {
2716 }
2717 #endif
2718 
2719 /**
2720  * __clk_core_init - initialize the data structures in a struct clk_core
2721  * @core:	clk_core being initialized
2722  *
2723  * Initializes the lists in struct clk_core, queries the hardware for the
2724  * parent and rate and sets them both.
2725  */
2726 static int __clk_core_init(struct clk_core *core)
2727 {
2728 	int i, ret;
2729 	struct clk_core *orphan;
2730 	struct hlist_node *tmp2;
2731 	unsigned long rate;
2732 
2733 	if (!core)
2734 		return -EINVAL;
2735 
2736 	clk_prepare_lock();
2737 
2738 	ret = clk_pm_runtime_get(core);
2739 	if (ret)
2740 		goto unlock;
2741 
2742 	/* check to see if a clock with this name is already registered */
2743 	if (clk_core_lookup(core->name)) {
2744 		pr_debug("%s: clk %s already initialized\n",
2745 				__func__, core->name);
2746 		ret = -EEXIST;
2747 		goto out;
2748 	}
2749 
2750 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
2751 	if (core->ops->set_rate &&
2752 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2753 	      core->ops->recalc_rate)) {
2754 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2755 		       __func__, core->name);
2756 		ret = -EINVAL;
2757 		goto out;
2758 	}
2759 
2760 	if (core->ops->set_parent && !core->ops->get_parent) {
2761 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2762 		       __func__, core->name);
2763 		ret = -EINVAL;
2764 		goto out;
2765 	}
2766 
2767 	if (core->num_parents > 1 && !core->ops->get_parent) {
2768 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2769 		       __func__, core->name);
2770 		ret = -EINVAL;
2771 		goto out;
2772 	}
2773 
2774 	if (core->ops->set_rate_and_parent &&
2775 			!(core->ops->set_parent && core->ops->set_rate)) {
2776 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2777 				__func__, core->name);
2778 		ret = -EINVAL;
2779 		goto out;
2780 	}
2781 
2782 	/* throw a WARN if any entries in parent_names are NULL */
2783 	for (i = 0; i < core->num_parents; i++)
2784 		WARN(!core->parent_names[i],
2785 				"%s: invalid NULL in %s's .parent_names\n",
2786 				__func__, core->name);
2787 
2788 	core->parent = __clk_init_parent(core);
2789 
2790 	/*
2791 	 * Populate core->parent if parent has already been clk_core_init'd. If
2792 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2793 	 * list.  If clk doesn't have any parents then place it in the root
2794 	 * clk list.
2795 	 *
2796 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2797 	 * clocks and re-parent any that are children of the clock currently
2798 	 * being clk_init'd.
2799 	 */
2800 	if (core->parent) {
2801 		hlist_add_head(&core->child_node,
2802 				&core->parent->children);
2803 		core->orphan = core->parent->orphan;
2804 	} else if (!core->num_parents) {
2805 		hlist_add_head(&core->child_node, &clk_root_list);
2806 		core->orphan = false;
2807 	} else {
2808 		hlist_add_head(&core->child_node, &clk_orphan_list);
2809 		core->orphan = true;
2810 	}
2811 
2812 	/*
2813 	 * optional platform-specific magic
2814 	 *
2815 	 * The .init callback is not used by any of the basic clock types, but
2816 	 * exists for weird hardware that must perform initialization magic.
2817 	 * Please consider other ways of solving initialization problems before
2818 	 * using this callback, as its use is discouraged.
2819 	 */
2820 	if (core->ops->init)
2821 		core->ops->init(core->hw);
2822 
2823 	/*
2824 	 * Set clk's accuracy.  The preferred method is to use
2825 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2826 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2827 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2828 	 * clock).
2829 	 */
2830 	if (core->ops->recalc_accuracy)
2831 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2832 					__clk_get_accuracy(core->parent));
2833 	else if (core->parent)
2834 		core->accuracy = core->parent->accuracy;
2835 	else
2836 		core->accuracy = 0;
2837 
2838 	/*
2839 	 * Set clk's phase.
2840 	 * Since a phase is by definition relative to its parent, just
2841 	 * query the current clock phase, or just assume it's in phase.
2842 	 */
2843 	if (core->ops->get_phase)
2844 		core->phase = core->ops->get_phase(core->hw);
2845 	else
2846 		core->phase = 0;
2847 
2848 	/*
2849 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2850 	 * simple clocks and lazy developers the default fallback is to use the
2851 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2852 	 * then rate is set to zero.
2853 	 */
2854 	if (core->ops->recalc_rate)
2855 		rate = core->ops->recalc_rate(core->hw,
2856 				clk_core_get_rate_nolock(core->parent));
2857 	else if (core->parent)
2858 		rate = core->parent->rate;
2859 	else
2860 		rate = 0;
2861 	core->rate = core->req_rate = rate;
2862 
2863 	/*
2864 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2865 	 * don't get accidentally disabled when walking the orphan tree and
2866 	 * reparenting clocks
2867 	 */
2868 	if (core->flags & CLK_IS_CRITICAL) {
2869 		unsigned long flags;
2870 
2871 		clk_core_prepare(core);
2872 
2873 		flags = clk_enable_lock();
2874 		clk_core_enable(core);
2875 		clk_enable_unlock(flags);
2876 	}
2877 
2878 	/*
2879 	 * walk the list of orphan clocks and reparent any that newly finds a
2880 	 * parent.
2881 	 */
2882 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2883 		struct clk_core *parent = __clk_init_parent(orphan);
2884 
2885 		/*
2886 		 * We need to use __clk_set_parent_before() and _after() to
2887 		 * to properly migrate any prepare/enable count of the orphan
2888 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
2889 		 * are enabled during init but might not have a parent yet.
2890 		 */
2891 		if (parent) {
2892 			/* update the clk tree topology */
2893 			__clk_set_parent_before(orphan, parent);
2894 			__clk_set_parent_after(orphan, parent, NULL);
2895 			__clk_recalc_accuracies(orphan);
2896 			__clk_recalc_rates(orphan, 0);
2897 		}
2898 	}
2899 
2900 	kref_init(&core->ref);
2901 out:
2902 	clk_pm_runtime_put(core);
2903 unlock:
2904 	clk_prepare_unlock();
2905 
2906 	if (!ret)
2907 		clk_debug_register(core);
2908 
2909 	return ret;
2910 }
2911 
2912 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2913 			     const char *con_id)
2914 {
2915 	struct clk *clk;
2916 
2917 	/* This is to allow this function to be chained to others */
2918 	if (IS_ERR_OR_NULL(hw))
2919 		return ERR_CAST(hw);
2920 
2921 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2922 	if (!clk)
2923 		return ERR_PTR(-ENOMEM);
2924 
2925 	clk->core = hw->core;
2926 	clk->dev_id = dev_id;
2927 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2928 	clk->max_rate = ULONG_MAX;
2929 
2930 	clk_prepare_lock();
2931 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2932 	clk_prepare_unlock();
2933 
2934 	return clk;
2935 }
2936 
2937 void __clk_free_clk(struct clk *clk)
2938 {
2939 	clk_prepare_lock();
2940 	hlist_del(&clk->clks_node);
2941 	clk_prepare_unlock();
2942 
2943 	kfree_const(clk->con_id);
2944 	kfree(clk);
2945 }
2946 
2947 /**
2948  * clk_register - allocate a new clock, register it and return an opaque cookie
2949  * @dev: device that is registering this clock
2950  * @hw: link to hardware-specific clock data
2951  *
2952  * clk_register is the primary interface for populating the clock tree with new
2953  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2954  * cannot be dereferenced by driver code but may be used in conjunction with the
2955  * rest of the clock API.  In the event of an error clk_register will return an
2956  * error code; drivers must test for an error code after calling clk_register.
2957  */
2958 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2959 {
2960 	int i, ret;
2961 	struct clk_core *core;
2962 
2963 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2964 	if (!core) {
2965 		ret = -ENOMEM;
2966 		goto fail_out;
2967 	}
2968 
2969 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2970 	if (!core->name) {
2971 		ret = -ENOMEM;
2972 		goto fail_name;
2973 	}
2974 
2975 	if (WARN_ON(!hw->init->ops)) {
2976 		ret = -EINVAL;
2977 		goto fail_ops;
2978 	}
2979 	core->ops = hw->init->ops;
2980 
2981 	if (dev && pm_runtime_enabled(dev))
2982 		core->dev = dev;
2983 	if (dev && dev->driver)
2984 		core->owner = dev->driver->owner;
2985 	core->hw = hw;
2986 	core->flags = hw->init->flags;
2987 	core->num_parents = hw->init->num_parents;
2988 	core->min_rate = 0;
2989 	core->max_rate = ULONG_MAX;
2990 	hw->core = core;
2991 
2992 	/* allocate local copy in case parent_names is __initdata */
2993 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2994 					GFP_KERNEL);
2995 
2996 	if (!core->parent_names) {
2997 		ret = -ENOMEM;
2998 		goto fail_parent_names;
2999 	}
3000 
3001 
3002 	/* copy each string name in case parent_names is __initdata */
3003 	for (i = 0; i < core->num_parents; i++) {
3004 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3005 						GFP_KERNEL);
3006 		if (!core->parent_names[i]) {
3007 			ret = -ENOMEM;
3008 			goto fail_parent_names_copy;
3009 		}
3010 	}
3011 
3012 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3013 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3014 				GFP_KERNEL);
3015 	if (!core->parents) {
3016 		ret = -ENOMEM;
3017 		goto fail_parents;
3018 	};
3019 
3020 	INIT_HLIST_HEAD(&core->clks);
3021 
3022 	hw->clk = __clk_create_clk(hw, NULL, NULL);
3023 	if (IS_ERR(hw->clk)) {
3024 		ret = PTR_ERR(hw->clk);
3025 		goto fail_parents;
3026 	}
3027 
3028 	ret = __clk_core_init(core);
3029 	if (!ret)
3030 		return hw->clk;
3031 
3032 	__clk_free_clk(hw->clk);
3033 	hw->clk = NULL;
3034 
3035 fail_parents:
3036 	kfree(core->parents);
3037 fail_parent_names_copy:
3038 	while (--i >= 0)
3039 		kfree_const(core->parent_names[i]);
3040 	kfree(core->parent_names);
3041 fail_parent_names:
3042 fail_ops:
3043 	kfree_const(core->name);
3044 fail_name:
3045 	kfree(core);
3046 fail_out:
3047 	return ERR_PTR(ret);
3048 }
3049 EXPORT_SYMBOL_GPL(clk_register);
3050 
3051 /**
3052  * clk_hw_register - register a clk_hw and return an error code
3053  * @dev: device that is registering this clock
3054  * @hw: link to hardware-specific clock data
3055  *
3056  * clk_hw_register is the primary interface for populating the clock tree with
3057  * new clock nodes. It returns an integer equal to zero indicating success or
3058  * less than zero indicating failure. Drivers must test for an error code after
3059  * calling clk_hw_register().
3060  */
3061 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3062 {
3063 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3064 }
3065 EXPORT_SYMBOL_GPL(clk_hw_register);
3066 
3067 /* Free memory allocated for a clock. */
3068 static void __clk_release(struct kref *ref)
3069 {
3070 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3071 	int i = core->num_parents;
3072 
3073 	lockdep_assert_held(&prepare_lock);
3074 
3075 	kfree(core->parents);
3076 	while (--i >= 0)
3077 		kfree_const(core->parent_names[i]);
3078 
3079 	kfree(core->parent_names);
3080 	kfree_const(core->name);
3081 	kfree(core);
3082 }
3083 
3084 /*
3085  * Empty clk_ops for unregistered clocks. These are used temporarily
3086  * after clk_unregister() was called on a clock and until last clock
3087  * consumer calls clk_put() and the struct clk object is freed.
3088  */
3089 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3090 {
3091 	return -ENXIO;
3092 }
3093 
3094 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3095 {
3096 	WARN_ON_ONCE(1);
3097 }
3098 
3099 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3100 					unsigned long parent_rate)
3101 {
3102 	return -ENXIO;
3103 }
3104 
3105 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3106 {
3107 	return -ENXIO;
3108 }
3109 
3110 static const struct clk_ops clk_nodrv_ops = {
3111 	.enable		= clk_nodrv_prepare_enable,
3112 	.disable	= clk_nodrv_disable_unprepare,
3113 	.prepare	= clk_nodrv_prepare_enable,
3114 	.unprepare	= clk_nodrv_disable_unprepare,
3115 	.set_rate	= clk_nodrv_set_rate,
3116 	.set_parent	= clk_nodrv_set_parent,
3117 };
3118 
3119 /**
3120  * clk_unregister - unregister a currently registered clock
3121  * @clk: clock to unregister
3122  */
3123 void clk_unregister(struct clk *clk)
3124 {
3125 	unsigned long flags;
3126 
3127 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3128 		return;
3129 
3130 	clk_debug_unregister(clk->core);
3131 
3132 	clk_prepare_lock();
3133 
3134 	if (clk->core->ops == &clk_nodrv_ops) {
3135 		pr_err("%s: unregistered clock: %s\n", __func__,
3136 		       clk->core->name);
3137 		goto unlock;
3138 	}
3139 	/*
3140 	 * Assign empty clock ops for consumers that might still hold
3141 	 * a reference to this clock.
3142 	 */
3143 	flags = clk_enable_lock();
3144 	clk->core->ops = &clk_nodrv_ops;
3145 	clk_enable_unlock(flags);
3146 
3147 	if (!hlist_empty(&clk->core->children)) {
3148 		struct clk_core *child;
3149 		struct hlist_node *t;
3150 
3151 		/* Reparent all children to the orphan list. */
3152 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3153 					  child_node)
3154 			clk_core_set_parent_nolock(child, NULL);
3155 	}
3156 
3157 	hlist_del_init(&clk->core->child_node);
3158 
3159 	if (clk->core->prepare_count)
3160 		pr_warn("%s: unregistering prepared clock: %s\n",
3161 					__func__, clk->core->name);
3162 
3163 	if (clk->core->protect_count)
3164 		pr_warn("%s: unregistering protected clock: %s\n",
3165 					__func__, clk->core->name);
3166 
3167 	kref_put(&clk->core->ref, __clk_release);
3168 unlock:
3169 	clk_prepare_unlock();
3170 }
3171 EXPORT_SYMBOL_GPL(clk_unregister);
3172 
3173 /**
3174  * clk_hw_unregister - unregister a currently registered clk_hw
3175  * @hw: hardware-specific clock data to unregister
3176  */
3177 void clk_hw_unregister(struct clk_hw *hw)
3178 {
3179 	clk_unregister(hw->clk);
3180 }
3181 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3182 
3183 static void devm_clk_release(struct device *dev, void *res)
3184 {
3185 	clk_unregister(*(struct clk **)res);
3186 }
3187 
3188 static void devm_clk_hw_release(struct device *dev, void *res)
3189 {
3190 	clk_hw_unregister(*(struct clk_hw **)res);
3191 }
3192 
3193 /**
3194  * devm_clk_register - resource managed clk_register()
3195  * @dev: device that is registering this clock
3196  * @hw: link to hardware-specific clock data
3197  *
3198  * Managed clk_register(). Clocks returned from this function are
3199  * automatically clk_unregister()ed on driver detach. See clk_register() for
3200  * more information.
3201  */
3202 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3203 {
3204 	struct clk *clk;
3205 	struct clk **clkp;
3206 
3207 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3208 	if (!clkp)
3209 		return ERR_PTR(-ENOMEM);
3210 
3211 	clk = clk_register(dev, hw);
3212 	if (!IS_ERR(clk)) {
3213 		*clkp = clk;
3214 		devres_add(dev, clkp);
3215 	} else {
3216 		devres_free(clkp);
3217 	}
3218 
3219 	return clk;
3220 }
3221 EXPORT_SYMBOL_GPL(devm_clk_register);
3222 
3223 /**
3224  * devm_clk_hw_register - resource managed clk_hw_register()
3225  * @dev: device that is registering this clock
3226  * @hw: link to hardware-specific clock data
3227  *
3228  * Managed clk_hw_register(). Clocks registered by this function are
3229  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3230  * for more information.
3231  */
3232 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3233 {
3234 	struct clk_hw **hwp;
3235 	int ret;
3236 
3237 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3238 	if (!hwp)
3239 		return -ENOMEM;
3240 
3241 	ret = clk_hw_register(dev, hw);
3242 	if (!ret) {
3243 		*hwp = hw;
3244 		devres_add(dev, hwp);
3245 	} else {
3246 		devres_free(hwp);
3247 	}
3248 
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3252 
3253 static int devm_clk_match(struct device *dev, void *res, void *data)
3254 {
3255 	struct clk *c = res;
3256 	if (WARN_ON(!c))
3257 		return 0;
3258 	return c == data;
3259 }
3260 
3261 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3262 {
3263 	struct clk_hw *hw = res;
3264 
3265 	if (WARN_ON(!hw))
3266 		return 0;
3267 	return hw == data;
3268 }
3269 
3270 /**
3271  * devm_clk_unregister - resource managed clk_unregister()
3272  * @clk: clock to unregister
3273  *
3274  * Deallocate a clock allocated with devm_clk_register(). Normally
3275  * this function will not need to be called and the resource management
3276  * code will ensure that the resource is freed.
3277  */
3278 void devm_clk_unregister(struct device *dev, struct clk *clk)
3279 {
3280 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3281 }
3282 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3283 
3284 /**
3285  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3286  * @dev: device that is unregistering the hardware-specific clock data
3287  * @hw: link to hardware-specific clock data
3288  *
3289  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3290  * this function will not need to be called and the resource management
3291  * code will ensure that the resource is freed.
3292  */
3293 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3294 {
3295 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3296 				hw));
3297 }
3298 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3299 
3300 /*
3301  * clkdev helpers
3302  */
3303 int __clk_get(struct clk *clk)
3304 {
3305 	struct clk_core *core = !clk ? NULL : clk->core;
3306 
3307 	if (core) {
3308 		if (!try_module_get(core->owner))
3309 			return 0;
3310 
3311 		kref_get(&core->ref);
3312 	}
3313 	return 1;
3314 }
3315 
3316 void __clk_put(struct clk *clk)
3317 {
3318 	struct module *owner;
3319 
3320 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3321 		return;
3322 
3323 	clk_prepare_lock();
3324 
3325 	/*
3326 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3327 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3328 	 * and by that same consumer
3329 	 */
3330 	if (WARN_ON(clk->exclusive_count)) {
3331 		/* We voiced our concern, let's sanitize the situation */
3332 		clk->core->protect_count -= (clk->exclusive_count - 1);
3333 		clk_core_rate_unprotect(clk->core);
3334 		clk->exclusive_count = 0;
3335 	}
3336 
3337 	hlist_del(&clk->clks_node);
3338 	if (clk->min_rate > clk->core->req_rate ||
3339 	    clk->max_rate < clk->core->req_rate)
3340 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3341 
3342 	owner = clk->core->owner;
3343 	kref_put(&clk->core->ref, __clk_release);
3344 
3345 	clk_prepare_unlock();
3346 
3347 	module_put(owner);
3348 
3349 	kfree(clk);
3350 }
3351 
3352 /***        clk rate change notifiers        ***/
3353 
3354 /**
3355  * clk_notifier_register - add a clk rate change notifier
3356  * @clk: struct clk * to watch
3357  * @nb: struct notifier_block * with callback info
3358  *
3359  * Request notification when clk's rate changes.  This uses an SRCU
3360  * notifier because we want it to block and notifier unregistrations are
3361  * uncommon.  The callbacks associated with the notifier must not
3362  * re-enter into the clk framework by calling any top-level clk APIs;
3363  * this will cause a nested prepare_lock mutex.
3364  *
3365  * In all notification cases (pre, post and abort rate change) the original
3366  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3367  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3368  *
3369  * clk_notifier_register() must be called from non-atomic context.
3370  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3371  * allocation failure; otherwise, passes along the return value of
3372  * srcu_notifier_chain_register().
3373  */
3374 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3375 {
3376 	struct clk_notifier *cn;
3377 	int ret = -ENOMEM;
3378 
3379 	if (!clk || !nb)
3380 		return -EINVAL;
3381 
3382 	clk_prepare_lock();
3383 
3384 	/* search the list of notifiers for this clk */
3385 	list_for_each_entry(cn, &clk_notifier_list, node)
3386 		if (cn->clk == clk)
3387 			break;
3388 
3389 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3390 	if (cn->clk != clk) {
3391 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3392 		if (!cn)
3393 			goto out;
3394 
3395 		cn->clk = clk;
3396 		srcu_init_notifier_head(&cn->notifier_head);
3397 
3398 		list_add(&cn->node, &clk_notifier_list);
3399 	}
3400 
3401 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3402 
3403 	clk->core->notifier_count++;
3404 
3405 out:
3406 	clk_prepare_unlock();
3407 
3408 	return ret;
3409 }
3410 EXPORT_SYMBOL_GPL(clk_notifier_register);
3411 
3412 /**
3413  * clk_notifier_unregister - remove a clk rate change notifier
3414  * @clk: struct clk *
3415  * @nb: struct notifier_block * with callback info
3416  *
3417  * Request no further notification for changes to 'clk' and frees memory
3418  * allocated in clk_notifier_register.
3419  *
3420  * Returns -EINVAL if called with null arguments; otherwise, passes
3421  * along the return value of srcu_notifier_chain_unregister().
3422  */
3423 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3424 {
3425 	struct clk_notifier *cn = NULL;
3426 	int ret = -EINVAL;
3427 
3428 	if (!clk || !nb)
3429 		return -EINVAL;
3430 
3431 	clk_prepare_lock();
3432 
3433 	list_for_each_entry(cn, &clk_notifier_list, node)
3434 		if (cn->clk == clk)
3435 			break;
3436 
3437 	if (cn->clk == clk) {
3438 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3439 
3440 		clk->core->notifier_count--;
3441 
3442 		/* XXX the notifier code should handle this better */
3443 		if (!cn->notifier_head.head) {
3444 			srcu_cleanup_notifier_head(&cn->notifier_head);
3445 			list_del(&cn->node);
3446 			kfree(cn);
3447 		}
3448 
3449 	} else {
3450 		ret = -ENOENT;
3451 	}
3452 
3453 	clk_prepare_unlock();
3454 
3455 	return ret;
3456 }
3457 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3458 
3459 #ifdef CONFIG_OF
3460 /**
3461  * struct of_clk_provider - Clock provider registration structure
3462  * @link: Entry in global list of clock providers
3463  * @node: Pointer to device tree node of clock provider
3464  * @get: Get clock callback.  Returns NULL or a struct clk for the
3465  *       given clock specifier
3466  * @data: context pointer to be passed into @get callback
3467  */
3468 struct of_clk_provider {
3469 	struct list_head link;
3470 
3471 	struct device_node *node;
3472 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3473 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3474 	void *data;
3475 };
3476 
3477 static const struct of_device_id __clk_of_table_sentinel
3478 	__used __section(__clk_of_table_end);
3479 
3480 static LIST_HEAD(of_clk_providers);
3481 static DEFINE_MUTEX(of_clk_mutex);
3482 
3483 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3484 				     void *data)
3485 {
3486 	return data;
3487 }
3488 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3489 
3490 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3491 {
3492 	return data;
3493 }
3494 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3495 
3496 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3497 {
3498 	struct clk_onecell_data *clk_data = data;
3499 	unsigned int idx = clkspec->args[0];
3500 
3501 	if (idx >= clk_data->clk_num) {
3502 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3503 		return ERR_PTR(-EINVAL);
3504 	}
3505 
3506 	return clk_data->clks[idx];
3507 }
3508 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3509 
3510 struct clk_hw *
3511 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3512 {
3513 	struct clk_hw_onecell_data *hw_data = data;
3514 	unsigned int idx = clkspec->args[0];
3515 
3516 	if (idx >= hw_data->num) {
3517 		pr_err("%s: invalid index %u\n", __func__, idx);
3518 		return ERR_PTR(-EINVAL);
3519 	}
3520 
3521 	return hw_data->hws[idx];
3522 }
3523 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3524 
3525 /**
3526  * of_clk_add_provider() - Register a clock provider for a node
3527  * @np: Device node pointer associated with clock provider
3528  * @clk_src_get: callback for decoding clock
3529  * @data: context pointer for @clk_src_get callback.
3530  */
3531 int of_clk_add_provider(struct device_node *np,
3532 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3533 						   void *data),
3534 			void *data)
3535 {
3536 	struct of_clk_provider *cp;
3537 	int ret;
3538 
3539 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3540 	if (!cp)
3541 		return -ENOMEM;
3542 
3543 	cp->node = of_node_get(np);
3544 	cp->data = data;
3545 	cp->get = clk_src_get;
3546 
3547 	mutex_lock(&of_clk_mutex);
3548 	list_add(&cp->link, &of_clk_providers);
3549 	mutex_unlock(&of_clk_mutex);
3550 	pr_debug("Added clock from %pOF\n", np);
3551 
3552 	ret = of_clk_set_defaults(np, true);
3553 	if (ret < 0)
3554 		of_clk_del_provider(np);
3555 
3556 	return ret;
3557 }
3558 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3559 
3560 /**
3561  * of_clk_add_hw_provider() - Register a clock provider for a node
3562  * @np: Device node pointer associated with clock provider
3563  * @get: callback for decoding clk_hw
3564  * @data: context pointer for @get callback.
3565  */
3566 int of_clk_add_hw_provider(struct device_node *np,
3567 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3568 						 void *data),
3569 			   void *data)
3570 {
3571 	struct of_clk_provider *cp;
3572 	int ret;
3573 
3574 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3575 	if (!cp)
3576 		return -ENOMEM;
3577 
3578 	cp->node = of_node_get(np);
3579 	cp->data = data;
3580 	cp->get_hw = get;
3581 
3582 	mutex_lock(&of_clk_mutex);
3583 	list_add(&cp->link, &of_clk_providers);
3584 	mutex_unlock(&of_clk_mutex);
3585 	pr_debug("Added clk_hw provider from %pOF\n", np);
3586 
3587 	ret = of_clk_set_defaults(np, true);
3588 	if (ret < 0)
3589 		of_clk_del_provider(np);
3590 
3591 	return ret;
3592 }
3593 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3594 
3595 static void devm_of_clk_release_provider(struct device *dev, void *res)
3596 {
3597 	of_clk_del_provider(*(struct device_node **)res);
3598 }
3599 
3600 int devm_of_clk_add_hw_provider(struct device *dev,
3601 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3602 					      void *data),
3603 			void *data)
3604 {
3605 	struct device_node **ptr, *np;
3606 	int ret;
3607 
3608 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3609 			   GFP_KERNEL);
3610 	if (!ptr)
3611 		return -ENOMEM;
3612 
3613 	np = dev->of_node;
3614 	ret = of_clk_add_hw_provider(np, get, data);
3615 	if (!ret) {
3616 		*ptr = np;
3617 		devres_add(dev, ptr);
3618 	} else {
3619 		devres_free(ptr);
3620 	}
3621 
3622 	return ret;
3623 }
3624 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3625 
3626 /**
3627  * of_clk_del_provider() - Remove a previously registered clock provider
3628  * @np: Device node pointer associated with clock provider
3629  */
3630 void of_clk_del_provider(struct device_node *np)
3631 {
3632 	struct of_clk_provider *cp;
3633 
3634 	mutex_lock(&of_clk_mutex);
3635 	list_for_each_entry(cp, &of_clk_providers, link) {
3636 		if (cp->node == np) {
3637 			list_del(&cp->link);
3638 			of_node_put(cp->node);
3639 			kfree(cp);
3640 			break;
3641 		}
3642 	}
3643 	mutex_unlock(&of_clk_mutex);
3644 }
3645 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3646 
3647 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3648 {
3649 	struct device_node **np = res;
3650 
3651 	if (WARN_ON(!np || !*np))
3652 		return 0;
3653 
3654 	return *np == data;
3655 }
3656 
3657 void devm_of_clk_del_provider(struct device *dev)
3658 {
3659 	int ret;
3660 
3661 	ret = devres_release(dev, devm_of_clk_release_provider,
3662 			     devm_clk_provider_match, dev->of_node);
3663 
3664 	WARN_ON(ret);
3665 }
3666 EXPORT_SYMBOL(devm_of_clk_del_provider);
3667 
3668 static struct clk_hw *
3669 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3670 			      struct of_phandle_args *clkspec)
3671 {
3672 	struct clk *clk;
3673 
3674 	if (provider->get_hw)
3675 		return provider->get_hw(clkspec, provider->data);
3676 
3677 	clk = provider->get(clkspec, provider->data);
3678 	if (IS_ERR(clk))
3679 		return ERR_CAST(clk);
3680 	return __clk_get_hw(clk);
3681 }
3682 
3683 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3684 				       const char *dev_id, const char *con_id)
3685 {
3686 	struct of_clk_provider *provider;
3687 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3688 	struct clk_hw *hw;
3689 
3690 	if (!clkspec)
3691 		return ERR_PTR(-EINVAL);
3692 
3693 	/* Check if we have such a provider in our array */
3694 	mutex_lock(&of_clk_mutex);
3695 	list_for_each_entry(provider, &of_clk_providers, link) {
3696 		if (provider->node == clkspec->np) {
3697 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3698 			clk = __clk_create_clk(hw, dev_id, con_id);
3699 		}
3700 
3701 		if (!IS_ERR(clk)) {
3702 			if (!__clk_get(clk)) {
3703 				__clk_free_clk(clk);
3704 				clk = ERR_PTR(-ENOENT);
3705 			}
3706 
3707 			break;
3708 		}
3709 	}
3710 	mutex_unlock(&of_clk_mutex);
3711 
3712 	return clk;
3713 }
3714 
3715 /**
3716  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3717  * @clkspec: pointer to a clock specifier data structure
3718  *
3719  * This function looks up a struct clk from the registered list of clock
3720  * providers, an input is a clock specifier data structure as returned
3721  * from the of_parse_phandle_with_args() function call.
3722  */
3723 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3724 {
3725 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3726 }
3727 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3728 
3729 /**
3730  * of_clk_get_parent_count() - Count the number of clocks a device node has
3731  * @np: device node to count
3732  *
3733  * Returns: The number of clocks that are possible parents of this node
3734  */
3735 unsigned int of_clk_get_parent_count(struct device_node *np)
3736 {
3737 	int count;
3738 
3739 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3740 	if (count < 0)
3741 		return 0;
3742 
3743 	return count;
3744 }
3745 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3746 
3747 const char *of_clk_get_parent_name(struct device_node *np, int index)
3748 {
3749 	struct of_phandle_args clkspec;
3750 	struct property *prop;
3751 	const char *clk_name;
3752 	const __be32 *vp;
3753 	u32 pv;
3754 	int rc;
3755 	int count;
3756 	struct clk *clk;
3757 
3758 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3759 					&clkspec);
3760 	if (rc)
3761 		return NULL;
3762 
3763 	index = clkspec.args_count ? clkspec.args[0] : 0;
3764 	count = 0;
3765 
3766 	/* if there is an indices property, use it to transfer the index
3767 	 * specified into an array offset for the clock-output-names property.
3768 	 */
3769 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3770 		if (index == pv) {
3771 			index = count;
3772 			break;
3773 		}
3774 		count++;
3775 	}
3776 	/* We went off the end of 'clock-indices' without finding it */
3777 	if (prop && !vp)
3778 		return NULL;
3779 
3780 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3781 					  index,
3782 					  &clk_name) < 0) {
3783 		/*
3784 		 * Best effort to get the name if the clock has been
3785 		 * registered with the framework. If the clock isn't
3786 		 * registered, we return the node name as the name of
3787 		 * the clock as long as #clock-cells = 0.
3788 		 */
3789 		clk = of_clk_get_from_provider(&clkspec);
3790 		if (IS_ERR(clk)) {
3791 			if (clkspec.args_count == 0)
3792 				clk_name = clkspec.np->name;
3793 			else
3794 				clk_name = NULL;
3795 		} else {
3796 			clk_name = __clk_get_name(clk);
3797 			clk_put(clk);
3798 		}
3799 	}
3800 
3801 
3802 	of_node_put(clkspec.np);
3803 	return clk_name;
3804 }
3805 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3806 
3807 /**
3808  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3809  * number of parents
3810  * @np: Device node pointer associated with clock provider
3811  * @parents: pointer to char array that hold the parents' names
3812  * @size: size of the @parents array
3813  *
3814  * Return: number of parents for the clock node.
3815  */
3816 int of_clk_parent_fill(struct device_node *np, const char **parents,
3817 		       unsigned int size)
3818 {
3819 	unsigned int i = 0;
3820 
3821 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3822 		i++;
3823 
3824 	return i;
3825 }
3826 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3827 
3828 struct clock_provider {
3829 	void (*clk_init_cb)(struct device_node *);
3830 	struct device_node *np;
3831 	struct list_head node;
3832 };
3833 
3834 /*
3835  * This function looks for a parent clock. If there is one, then it
3836  * checks that the provider for this parent clock was initialized, in
3837  * this case the parent clock will be ready.
3838  */
3839 static int parent_ready(struct device_node *np)
3840 {
3841 	int i = 0;
3842 
3843 	while (true) {
3844 		struct clk *clk = of_clk_get(np, i);
3845 
3846 		/* this parent is ready we can check the next one */
3847 		if (!IS_ERR(clk)) {
3848 			clk_put(clk);
3849 			i++;
3850 			continue;
3851 		}
3852 
3853 		/* at least one parent is not ready, we exit now */
3854 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3855 			return 0;
3856 
3857 		/*
3858 		 * Here we make assumption that the device tree is
3859 		 * written correctly. So an error means that there is
3860 		 * no more parent. As we didn't exit yet, then the
3861 		 * previous parent are ready. If there is no clock
3862 		 * parent, no need to wait for them, then we can
3863 		 * consider their absence as being ready
3864 		 */
3865 		return 1;
3866 	}
3867 }
3868 
3869 /**
3870  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3871  * @np: Device node pointer associated with clock provider
3872  * @index: clock index
3873  * @flags: pointer to top-level framework flags
3874  *
3875  * Detects if the clock-critical property exists and, if so, sets the
3876  * corresponding CLK_IS_CRITICAL flag.
3877  *
3878  * Do not use this function. It exists only for legacy Device Tree
3879  * bindings, such as the one-clock-per-node style that are outdated.
3880  * Those bindings typically put all clock data into .dts and the Linux
3881  * driver has no clock data, thus making it impossible to set this flag
3882  * correctly from the driver. Only those drivers may call
3883  * of_clk_detect_critical from their setup functions.
3884  *
3885  * Return: error code or zero on success
3886  */
3887 int of_clk_detect_critical(struct device_node *np,
3888 					  int index, unsigned long *flags)
3889 {
3890 	struct property *prop;
3891 	const __be32 *cur;
3892 	uint32_t idx;
3893 
3894 	if (!np || !flags)
3895 		return -EINVAL;
3896 
3897 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3898 		if (index == idx)
3899 			*flags |= CLK_IS_CRITICAL;
3900 
3901 	return 0;
3902 }
3903 
3904 /**
3905  * of_clk_init() - Scan and init clock providers from the DT
3906  * @matches: array of compatible values and init functions for providers.
3907  *
3908  * This function scans the device tree for matching clock providers
3909  * and calls their initialization functions. It also does it by trying
3910  * to follow the dependencies.
3911  */
3912 void __init of_clk_init(const struct of_device_id *matches)
3913 {
3914 	const struct of_device_id *match;
3915 	struct device_node *np;
3916 	struct clock_provider *clk_provider, *next;
3917 	bool is_init_done;
3918 	bool force = false;
3919 	LIST_HEAD(clk_provider_list);
3920 
3921 	if (!matches)
3922 		matches = &__clk_of_table;
3923 
3924 	/* First prepare the list of the clocks providers */
3925 	for_each_matching_node_and_match(np, matches, &match) {
3926 		struct clock_provider *parent;
3927 
3928 		if (!of_device_is_available(np))
3929 			continue;
3930 
3931 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3932 		if (!parent) {
3933 			list_for_each_entry_safe(clk_provider, next,
3934 						 &clk_provider_list, node) {
3935 				list_del(&clk_provider->node);
3936 				of_node_put(clk_provider->np);
3937 				kfree(clk_provider);
3938 			}
3939 			of_node_put(np);
3940 			return;
3941 		}
3942 
3943 		parent->clk_init_cb = match->data;
3944 		parent->np = of_node_get(np);
3945 		list_add_tail(&parent->node, &clk_provider_list);
3946 	}
3947 
3948 	while (!list_empty(&clk_provider_list)) {
3949 		is_init_done = false;
3950 		list_for_each_entry_safe(clk_provider, next,
3951 					&clk_provider_list, node) {
3952 			if (force || parent_ready(clk_provider->np)) {
3953 
3954 				/* Don't populate platform devices */
3955 				of_node_set_flag(clk_provider->np,
3956 						 OF_POPULATED);
3957 
3958 				clk_provider->clk_init_cb(clk_provider->np);
3959 				of_clk_set_defaults(clk_provider->np, true);
3960 
3961 				list_del(&clk_provider->node);
3962 				of_node_put(clk_provider->np);
3963 				kfree(clk_provider);
3964 				is_init_done = true;
3965 			}
3966 		}
3967 
3968 		/*
3969 		 * We didn't manage to initialize any of the
3970 		 * remaining providers during the last loop, so now we
3971 		 * initialize all the remaining ones unconditionally
3972 		 * in case the clock parent was not mandatory
3973 		 */
3974 		if (!is_init_done)
3975 			force = true;
3976 	}
3977 }
3978 #endif
3979