xref: /openbmc/linux/drivers/clk/clk.c (revision dea54fba)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
175 /***    helper functions   ***/
176 
177 const char *__clk_get_name(const struct clk *clk)
178 {
179 	return !clk ? NULL : clk->core->name;
180 }
181 EXPORT_SYMBOL_GPL(__clk_get_name);
182 
183 const char *clk_hw_get_name(const struct clk_hw *hw)
184 {
185 	return hw->core->name;
186 }
187 EXPORT_SYMBOL_GPL(clk_hw_get_name);
188 
189 struct clk_hw *__clk_get_hw(struct clk *clk)
190 {
191 	return !clk ? NULL : clk->core->hw;
192 }
193 EXPORT_SYMBOL_GPL(__clk_get_hw);
194 
195 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
196 {
197 	return hw->core->num_parents;
198 }
199 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
200 
201 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
202 {
203 	return hw->core->parent ? hw->core->parent->hw : NULL;
204 }
205 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
206 
207 static struct clk_core *__clk_lookup_subtree(const char *name,
208 					     struct clk_core *core)
209 {
210 	struct clk_core *child;
211 	struct clk_core *ret;
212 
213 	if (!strcmp(core->name, name))
214 		return core;
215 
216 	hlist_for_each_entry(child, &core->children, child_node) {
217 		ret = __clk_lookup_subtree(name, child);
218 		if (ret)
219 			return ret;
220 	}
221 
222 	return NULL;
223 }
224 
225 static struct clk_core *clk_core_lookup(const char *name)
226 {
227 	struct clk_core *root_clk;
228 	struct clk_core *ret;
229 
230 	if (!name)
231 		return NULL;
232 
233 	/* search the 'proper' clk tree first */
234 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
235 		ret = __clk_lookup_subtree(name, root_clk);
236 		if (ret)
237 			return ret;
238 	}
239 
240 	/* if not found, then search the orphan tree */
241 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
242 		ret = __clk_lookup_subtree(name, root_clk);
243 		if (ret)
244 			return ret;
245 	}
246 
247 	return NULL;
248 }
249 
250 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
251 							 u8 index)
252 {
253 	if (!core || index >= core->num_parents)
254 		return NULL;
255 
256 	if (!core->parents[index])
257 		core->parents[index] =
258 				clk_core_lookup(core->parent_names[index]);
259 
260 	return core->parents[index];
261 }
262 
263 struct clk_hw *
264 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
265 {
266 	struct clk_core *parent;
267 
268 	parent = clk_core_get_parent_by_index(hw->core, index);
269 
270 	return !parent ? NULL : parent->hw;
271 }
272 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
273 
274 unsigned int __clk_get_enable_count(struct clk *clk)
275 {
276 	return !clk ? 0 : clk->core->enable_count;
277 }
278 
279 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
280 {
281 	unsigned long ret;
282 
283 	if (!core) {
284 		ret = 0;
285 		goto out;
286 	}
287 
288 	ret = core->rate;
289 
290 	if (!core->num_parents)
291 		goto out;
292 
293 	if (!core->parent)
294 		ret = 0;
295 
296 out:
297 	return ret;
298 }
299 
300 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
301 {
302 	return clk_core_get_rate_nolock(hw->core);
303 }
304 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
305 
306 static unsigned long __clk_get_accuracy(struct clk_core *core)
307 {
308 	if (!core)
309 		return 0;
310 
311 	return core->accuracy;
312 }
313 
314 unsigned long __clk_get_flags(struct clk *clk)
315 {
316 	return !clk ? 0 : clk->core->flags;
317 }
318 EXPORT_SYMBOL_GPL(__clk_get_flags);
319 
320 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
321 {
322 	return hw->core->flags;
323 }
324 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
325 
326 bool clk_hw_is_prepared(const struct clk_hw *hw)
327 {
328 	return clk_core_is_prepared(hw->core);
329 }
330 
331 bool clk_hw_is_enabled(const struct clk_hw *hw)
332 {
333 	return clk_core_is_enabled(hw->core);
334 }
335 
336 bool __clk_is_enabled(struct clk *clk)
337 {
338 	if (!clk)
339 		return false;
340 
341 	return clk_core_is_enabled(clk->core);
342 }
343 EXPORT_SYMBOL_GPL(__clk_is_enabled);
344 
345 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
346 			   unsigned long best, unsigned long flags)
347 {
348 	if (flags & CLK_MUX_ROUND_CLOSEST)
349 		return abs(now - rate) < abs(best - rate);
350 
351 	return now <= rate && now > best;
352 }
353 
354 static int
355 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
356 			     unsigned long flags)
357 {
358 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
359 	int i, num_parents, ret;
360 	unsigned long best = 0;
361 	struct clk_rate_request parent_req = *req;
362 
363 	/* if NO_REPARENT flag set, pass through to current parent */
364 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
365 		parent = core->parent;
366 		if (core->flags & CLK_SET_RATE_PARENT) {
367 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
368 						   &parent_req);
369 			if (ret)
370 				return ret;
371 
372 			best = parent_req.rate;
373 		} else if (parent) {
374 			best = clk_core_get_rate_nolock(parent);
375 		} else {
376 			best = clk_core_get_rate_nolock(core);
377 		}
378 
379 		goto out;
380 	}
381 
382 	/* find the parent that can provide the fastest rate <= rate */
383 	num_parents = core->num_parents;
384 	for (i = 0; i < num_parents; i++) {
385 		parent = clk_core_get_parent_by_index(core, i);
386 		if (!parent)
387 			continue;
388 
389 		if (core->flags & CLK_SET_RATE_PARENT) {
390 			parent_req = *req;
391 			ret = __clk_determine_rate(parent->hw, &parent_req);
392 			if (ret)
393 				continue;
394 		} else {
395 			parent_req.rate = clk_core_get_rate_nolock(parent);
396 		}
397 
398 		if (mux_is_better_rate(req->rate, parent_req.rate,
399 				       best, flags)) {
400 			best_parent = parent;
401 			best = parent_req.rate;
402 		}
403 	}
404 
405 	if (!best_parent)
406 		return -EINVAL;
407 
408 out:
409 	if (best_parent)
410 		req->best_parent_hw = best_parent->hw;
411 	req->best_parent_rate = best;
412 	req->rate = best;
413 
414 	return 0;
415 }
416 
417 struct clk *__clk_lookup(const char *name)
418 {
419 	struct clk_core *core = clk_core_lookup(name);
420 
421 	return !core ? NULL : core->hw->clk;
422 }
423 
424 static void clk_core_get_boundaries(struct clk_core *core,
425 				    unsigned long *min_rate,
426 				    unsigned long *max_rate)
427 {
428 	struct clk *clk_user;
429 
430 	*min_rate = core->min_rate;
431 	*max_rate = core->max_rate;
432 
433 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
434 		*min_rate = max(*min_rate, clk_user->min_rate);
435 
436 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
437 		*max_rate = min(*max_rate, clk_user->max_rate);
438 }
439 
440 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
441 			   unsigned long max_rate)
442 {
443 	hw->core->min_rate = min_rate;
444 	hw->core->max_rate = max_rate;
445 }
446 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
447 
448 /*
449  * Helper for finding best parent to provide a given frequency. This can be used
450  * directly as a determine_rate callback (e.g. for a mux), or from a more
451  * complex clock that may combine a mux with other operations.
452  */
453 int __clk_mux_determine_rate(struct clk_hw *hw,
454 			     struct clk_rate_request *req)
455 {
456 	return clk_mux_determine_rate_flags(hw, req, 0);
457 }
458 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
459 
460 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
461 				     struct clk_rate_request *req)
462 {
463 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
464 }
465 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
466 
467 /***        clk api        ***/
468 
469 static void clk_core_unprepare(struct clk_core *core)
470 {
471 	lockdep_assert_held(&prepare_lock);
472 
473 	if (!core)
474 		return;
475 
476 	if (WARN_ON(core->prepare_count == 0))
477 		return;
478 
479 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
480 		return;
481 
482 	if (--core->prepare_count > 0)
483 		return;
484 
485 	WARN_ON(core->enable_count > 0);
486 
487 	trace_clk_unprepare(core);
488 
489 	if (core->ops->unprepare)
490 		core->ops->unprepare(core->hw);
491 
492 	trace_clk_unprepare_complete(core);
493 	clk_core_unprepare(core->parent);
494 }
495 
496 static void clk_core_unprepare_lock(struct clk_core *core)
497 {
498 	clk_prepare_lock();
499 	clk_core_unprepare(core);
500 	clk_prepare_unlock();
501 }
502 
503 /**
504  * clk_unprepare - undo preparation of a clock source
505  * @clk: the clk being unprepared
506  *
507  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
508  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
509  * if the operation may sleep.  One example is a clk which is accessed over
510  * I2c.  In the complex case a clk gate operation may require a fast and a slow
511  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
512  * exclusive.  In fact clk_disable must be called before clk_unprepare.
513  */
514 void clk_unprepare(struct clk *clk)
515 {
516 	if (IS_ERR_OR_NULL(clk))
517 		return;
518 
519 	clk_core_unprepare_lock(clk->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_unprepare);
522 
523 static int clk_core_prepare(struct clk_core *core)
524 {
525 	int ret = 0;
526 
527 	lockdep_assert_held(&prepare_lock);
528 
529 	if (!core)
530 		return 0;
531 
532 	if (core->prepare_count == 0) {
533 		ret = clk_core_prepare(core->parent);
534 		if (ret)
535 			return ret;
536 
537 		trace_clk_prepare(core);
538 
539 		if (core->ops->prepare)
540 			ret = core->ops->prepare(core->hw);
541 
542 		trace_clk_prepare_complete(core);
543 
544 		if (ret) {
545 			clk_core_unprepare(core->parent);
546 			return ret;
547 		}
548 	}
549 
550 	core->prepare_count++;
551 
552 	return 0;
553 }
554 
555 static int clk_core_prepare_lock(struct clk_core *core)
556 {
557 	int ret;
558 
559 	clk_prepare_lock();
560 	ret = clk_core_prepare(core);
561 	clk_prepare_unlock();
562 
563 	return ret;
564 }
565 
566 /**
567  * clk_prepare - prepare a clock source
568  * @clk: the clk being prepared
569  *
570  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
571  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
572  * operation may sleep.  One example is a clk which is accessed over I2c.  In
573  * the complex case a clk ungate operation may require a fast and a slow part.
574  * It is this reason that clk_prepare and clk_enable are not mutually
575  * exclusive.  In fact clk_prepare must be called before clk_enable.
576  * Returns 0 on success, -EERROR otherwise.
577  */
578 int clk_prepare(struct clk *clk)
579 {
580 	if (!clk)
581 		return 0;
582 
583 	return clk_core_prepare_lock(clk->core);
584 }
585 EXPORT_SYMBOL_GPL(clk_prepare);
586 
587 static void clk_core_disable(struct clk_core *core)
588 {
589 	lockdep_assert_held(&enable_lock);
590 
591 	if (!core)
592 		return;
593 
594 	if (WARN_ON(core->enable_count == 0))
595 		return;
596 
597 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
598 		return;
599 
600 	if (--core->enable_count > 0)
601 		return;
602 
603 	trace_clk_disable_rcuidle(core);
604 
605 	if (core->ops->disable)
606 		core->ops->disable(core->hw);
607 
608 	trace_clk_disable_complete_rcuidle(core);
609 
610 	clk_core_disable(core->parent);
611 }
612 
613 static void clk_core_disable_lock(struct clk_core *core)
614 {
615 	unsigned long flags;
616 
617 	flags = clk_enable_lock();
618 	clk_core_disable(core);
619 	clk_enable_unlock(flags);
620 }
621 
622 /**
623  * clk_disable - gate a clock
624  * @clk: the clk being gated
625  *
626  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
627  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
628  * clk if the operation is fast and will never sleep.  One example is a
629  * SoC-internal clk which is controlled via simple register writes.  In the
630  * complex case a clk gate operation may require a fast and a slow part.  It is
631  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
632  * In fact clk_disable must be called before clk_unprepare.
633  */
634 void clk_disable(struct clk *clk)
635 {
636 	if (IS_ERR_OR_NULL(clk))
637 		return;
638 
639 	clk_core_disable_lock(clk->core);
640 }
641 EXPORT_SYMBOL_GPL(clk_disable);
642 
643 static int clk_core_enable(struct clk_core *core)
644 {
645 	int ret = 0;
646 
647 	lockdep_assert_held(&enable_lock);
648 
649 	if (!core)
650 		return 0;
651 
652 	if (WARN_ON(core->prepare_count == 0))
653 		return -ESHUTDOWN;
654 
655 	if (core->enable_count == 0) {
656 		ret = clk_core_enable(core->parent);
657 
658 		if (ret)
659 			return ret;
660 
661 		trace_clk_enable_rcuidle(core);
662 
663 		if (core->ops->enable)
664 			ret = core->ops->enable(core->hw);
665 
666 		trace_clk_enable_complete_rcuidle(core);
667 
668 		if (ret) {
669 			clk_core_disable(core->parent);
670 			return ret;
671 		}
672 	}
673 
674 	core->enable_count++;
675 	return 0;
676 }
677 
678 static int clk_core_enable_lock(struct clk_core *core)
679 {
680 	unsigned long flags;
681 	int ret;
682 
683 	flags = clk_enable_lock();
684 	ret = clk_core_enable(core);
685 	clk_enable_unlock(flags);
686 
687 	return ret;
688 }
689 
690 /**
691  * clk_enable - ungate a clock
692  * @clk: the clk being ungated
693  *
694  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
695  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
696  * if the operation will never sleep.  One example is a SoC-internal clk which
697  * is controlled via simple register writes.  In the complex case a clk ungate
698  * operation may require a fast and a slow part.  It is this reason that
699  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
700  * must be called before clk_enable.  Returns 0 on success, -EERROR
701  * otherwise.
702  */
703 int clk_enable(struct clk *clk)
704 {
705 	if (!clk)
706 		return 0;
707 
708 	return clk_core_enable_lock(clk->core);
709 }
710 EXPORT_SYMBOL_GPL(clk_enable);
711 
712 static int clk_core_prepare_enable(struct clk_core *core)
713 {
714 	int ret;
715 
716 	ret = clk_core_prepare_lock(core);
717 	if (ret)
718 		return ret;
719 
720 	ret = clk_core_enable_lock(core);
721 	if (ret)
722 		clk_core_unprepare_lock(core);
723 
724 	return ret;
725 }
726 
727 static void clk_core_disable_unprepare(struct clk_core *core)
728 {
729 	clk_core_disable_lock(core);
730 	clk_core_unprepare_lock(core);
731 }
732 
733 static void clk_unprepare_unused_subtree(struct clk_core *core)
734 {
735 	struct clk_core *child;
736 
737 	lockdep_assert_held(&prepare_lock);
738 
739 	hlist_for_each_entry(child, &core->children, child_node)
740 		clk_unprepare_unused_subtree(child);
741 
742 	if (core->prepare_count)
743 		return;
744 
745 	if (core->flags & CLK_IGNORE_UNUSED)
746 		return;
747 
748 	if (clk_core_is_prepared(core)) {
749 		trace_clk_unprepare(core);
750 		if (core->ops->unprepare_unused)
751 			core->ops->unprepare_unused(core->hw);
752 		else if (core->ops->unprepare)
753 			core->ops->unprepare(core->hw);
754 		trace_clk_unprepare_complete(core);
755 	}
756 }
757 
758 static void clk_disable_unused_subtree(struct clk_core *core)
759 {
760 	struct clk_core *child;
761 	unsigned long flags;
762 
763 	lockdep_assert_held(&prepare_lock);
764 
765 	hlist_for_each_entry(child, &core->children, child_node)
766 		clk_disable_unused_subtree(child);
767 
768 	if (core->flags & CLK_OPS_PARENT_ENABLE)
769 		clk_core_prepare_enable(core->parent);
770 
771 	flags = clk_enable_lock();
772 
773 	if (core->enable_count)
774 		goto unlock_out;
775 
776 	if (core->flags & CLK_IGNORE_UNUSED)
777 		goto unlock_out;
778 
779 	/*
780 	 * some gate clocks have special needs during the disable-unused
781 	 * sequence.  call .disable_unused if available, otherwise fall
782 	 * back to .disable
783 	 */
784 	if (clk_core_is_enabled(core)) {
785 		trace_clk_disable(core);
786 		if (core->ops->disable_unused)
787 			core->ops->disable_unused(core->hw);
788 		else if (core->ops->disable)
789 			core->ops->disable(core->hw);
790 		trace_clk_disable_complete(core);
791 	}
792 
793 unlock_out:
794 	clk_enable_unlock(flags);
795 	if (core->flags & CLK_OPS_PARENT_ENABLE)
796 		clk_core_disable_unprepare(core->parent);
797 }
798 
799 static bool clk_ignore_unused;
800 static int __init clk_ignore_unused_setup(char *__unused)
801 {
802 	clk_ignore_unused = true;
803 	return 1;
804 }
805 __setup("clk_ignore_unused", clk_ignore_unused_setup);
806 
807 static int clk_disable_unused(void)
808 {
809 	struct clk_core *core;
810 
811 	if (clk_ignore_unused) {
812 		pr_warn("clk: Not disabling unused clocks\n");
813 		return 0;
814 	}
815 
816 	clk_prepare_lock();
817 
818 	hlist_for_each_entry(core, &clk_root_list, child_node)
819 		clk_disable_unused_subtree(core);
820 
821 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
822 		clk_disable_unused_subtree(core);
823 
824 	hlist_for_each_entry(core, &clk_root_list, child_node)
825 		clk_unprepare_unused_subtree(core);
826 
827 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
828 		clk_unprepare_unused_subtree(core);
829 
830 	clk_prepare_unlock();
831 
832 	return 0;
833 }
834 late_initcall_sync(clk_disable_unused);
835 
836 static int clk_core_round_rate_nolock(struct clk_core *core,
837 				      struct clk_rate_request *req)
838 {
839 	struct clk_core *parent;
840 	long rate;
841 
842 	lockdep_assert_held(&prepare_lock);
843 
844 	if (!core)
845 		return 0;
846 
847 	parent = core->parent;
848 	if (parent) {
849 		req->best_parent_hw = parent->hw;
850 		req->best_parent_rate = parent->rate;
851 	} else {
852 		req->best_parent_hw = NULL;
853 		req->best_parent_rate = 0;
854 	}
855 
856 	if (core->ops->determine_rate) {
857 		return core->ops->determine_rate(core->hw, req);
858 	} else if (core->ops->round_rate) {
859 		rate = core->ops->round_rate(core->hw, req->rate,
860 					     &req->best_parent_rate);
861 		if (rate < 0)
862 			return rate;
863 
864 		req->rate = rate;
865 	} else if (core->flags & CLK_SET_RATE_PARENT) {
866 		return clk_core_round_rate_nolock(parent, req);
867 	} else {
868 		req->rate = core->rate;
869 	}
870 
871 	return 0;
872 }
873 
874 /**
875  * __clk_determine_rate - get the closest rate actually supported by a clock
876  * @hw: determine the rate of this clock
877  * @req: target rate request
878  *
879  * Useful for clk_ops such as .set_rate and .determine_rate.
880  */
881 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
882 {
883 	if (!hw) {
884 		req->rate = 0;
885 		return 0;
886 	}
887 
888 	return clk_core_round_rate_nolock(hw->core, req);
889 }
890 EXPORT_SYMBOL_GPL(__clk_determine_rate);
891 
892 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
893 {
894 	int ret;
895 	struct clk_rate_request req;
896 
897 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
898 	req.rate = rate;
899 
900 	ret = clk_core_round_rate_nolock(hw->core, &req);
901 	if (ret)
902 		return 0;
903 
904 	return req.rate;
905 }
906 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
907 
908 /**
909  * clk_round_rate - round the given rate for a clk
910  * @clk: the clk for which we are rounding a rate
911  * @rate: the rate which is to be rounded
912  *
913  * Takes in a rate as input and rounds it to a rate that the clk can actually
914  * use which is then returned.  If clk doesn't support round_rate operation
915  * then the parent rate is returned.
916  */
917 long clk_round_rate(struct clk *clk, unsigned long rate)
918 {
919 	struct clk_rate_request req;
920 	int ret;
921 
922 	if (!clk)
923 		return 0;
924 
925 	clk_prepare_lock();
926 
927 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
928 	req.rate = rate;
929 
930 	ret = clk_core_round_rate_nolock(clk->core, &req);
931 	clk_prepare_unlock();
932 
933 	if (ret)
934 		return ret;
935 
936 	return req.rate;
937 }
938 EXPORT_SYMBOL_GPL(clk_round_rate);
939 
940 /**
941  * __clk_notify - call clk notifier chain
942  * @core: clk that is changing rate
943  * @msg: clk notifier type (see include/linux/clk.h)
944  * @old_rate: old clk rate
945  * @new_rate: new clk rate
946  *
947  * Triggers a notifier call chain on the clk rate-change notification
948  * for 'clk'.  Passes a pointer to the struct clk and the previous
949  * and current rates to the notifier callback.  Intended to be called by
950  * internal clock code only.  Returns NOTIFY_DONE from the last driver
951  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
952  * a driver returns that.
953  */
954 static int __clk_notify(struct clk_core *core, unsigned long msg,
955 		unsigned long old_rate, unsigned long new_rate)
956 {
957 	struct clk_notifier *cn;
958 	struct clk_notifier_data cnd;
959 	int ret = NOTIFY_DONE;
960 
961 	cnd.old_rate = old_rate;
962 	cnd.new_rate = new_rate;
963 
964 	list_for_each_entry(cn, &clk_notifier_list, node) {
965 		if (cn->clk->core == core) {
966 			cnd.clk = cn->clk;
967 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
968 					&cnd);
969 			if (ret & NOTIFY_STOP_MASK)
970 				return ret;
971 		}
972 	}
973 
974 	return ret;
975 }
976 
977 /**
978  * __clk_recalc_accuracies
979  * @core: first clk in the subtree
980  *
981  * Walks the subtree of clks starting with clk and recalculates accuracies as
982  * it goes.  Note that if a clk does not implement the .recalc_accuracy
983  * callback then it is assumed that the clock will take on the accuracy of its
984  * parent.
985  */
986 static void __clk_recalc_accuracies(struct clk_core *core)
987 {
988 	unsigned long parent_accuracy = 0;
989 	struct clk_core *child;
990 
991 	lockdep_assert_held(&prepare_lock);
992 
993 	if (core->parent)
994 		parent_accuracy = core->parent->accuracy;
995 
996 	if (core->ops->recalc_accuracy)
997 		core->accuracy = core->ops->recalc_accuracy(core->hw,
998 							  parent_accuracy);
999 	else
1000 		core->accuracy = parent_accuracy;
1001 
1002 	hlist_for_each_entry(child, &core->children, child_node)
1003 		__clk_recalc_accuracies(child);
1004 }
1005 
1006 static long clk_core_get_accuracy(struct clk_core *core)
1007 {
1008 	unsigned long accuracy;
1009 
1010 	clk_prepare_lock();
1011 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1012 		__clk_recalc_accuracies(core);
1013 
1014 	accuracy = __clk_get_accuracy(core);
1015 	clk_prepare_unlock();
1016 
1017 	return accuracy;
1018 }
1019 
1020 /**
1021  * clk_get_accuracy - return the accuracy of clk
1022  * @clk: the clk whose accuracy is being returned
1023  *
1024  * Simply returns the cached accuracy of the clk, unless
1025  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1026  * issued.
1027  * If clk is NULL then returns 0.
1028  */
1029 long clk_get_accuracy(struct clk *clk)
1030 {
1031 	if (!clk)
1032 		return 0;
1033 
1034 	return clk_core_get_accuracy(clk->core);
1035 }
1036 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1037 
1038 static unsigned long clk_recalc(struct clk_core *core,
1039 				unsigned long parent_rate)
1040 {
1041 	if (core->ops->recalc_rate)
1042 		return core->ops->recalc_rate(core->hw, parent_rate);
1043 	return parent_rate;
1044 }
1045 
1046 /**
1047  * __clk_recalc_rates
1048  * @core: first clk in the subtree
1049  * @msg: notification type (see include/linux/clk.h)
1050  *
1051  * Walks the subtree of clks starting with clk and recalculates rates as it
1052  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1053  * it is assumed that the clock will take on the rate of its parent.
1054  *
1055  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1056  * if necessary.
1057  */
1058 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1059 {
1060 	unsigned long old_rate;
1061 	unsigned long parent_rate = 0;
1062 	struct clk_core *child;
1063 
1064 	lockdep_assert_held(&prepare_lock);
1065 
1066 	old_rate = core->rate;
1067 
1068 	if (core->parent)
1069 		parent_rate = core->parent->rate;
1070 
1071 	core->rate = clk_recalc(core, parent_rate);
1072 
1073 	/*
1074 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1075 	 * & ABORT_RATE_CHANGE notifiers
1076 	 */
1077 	if (core->notifier_count && msg)
1078 		__clk_notify(core, msg, old_rate, core->rate);
1079 
1080 	hlist_for_each_entry(child, &core->children, child_node)
1081 		__clk_recalc_rates(child, msg);
1082 }
1083 
1084 static unsigned long clk_core_get_rate(struct clk_core *core)
1085 {
1086 	unsigned long rate;
1087 
1088 	clk_prepare_lock();
1089 
1090 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1091 		__clk_recalc_rates(core, 0);
1092 
1093 	rate = clk_core_get_rate_nolock(core);
1094 	clk_prepare_unlock();
1095 
1096 	return rate;
1097 }
1098 
1099 /**
1100  * clk_get_rate - return the rate of clk
1101  * @clk: the clk whose rate is being returned
1102  *
1103  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1104  * is set, which means a recalc_rate will be issued.
1105  * If clk is NULL then returns 0.
1106  */
1107 unsigned long clk_get_rate(struct clk *clk)
1108 {
1109 	if (!clk)
1110 		return 0;
1111 
1112 	return clk_core_get_rate(clk->core);
1113 }
1114 EXPORT_SYMBOL_GPL(clk_get_rate);
1115 
1116 static int clk_fetch_parent_index(struct clk_core *core,
1117 				  struct clk_core *parent)
1118 {
1119 	int i;
1120 
1121 	if (!parent)
1122 		return -EINVAL;
1123 
1124 	for (i = 0; i < core->num_parents; i++)
1125 		if (clk_core_get_parent_by_index(core, i) == parent)
1126 			return i;
1127 
1128 	return -EINVAL;
1129 }
1130 
1131 /*
1132  * Update the orphan status of @core and all its children.
1133  */
1134 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1135 {
1136 	struct clk_core *child;
1137 
1138 	core->orphan = is_orphan;
1139 
1140 	hlist_for_each_entry(child, &core->children, child_node)
1141 		clk_core_update_orphan_status(child, is_orphan);
1142 }
1143 
1144 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1145 {
1146 	bool was_orphan = core->orphan;
1147 
1148 	hlist_del(&core->child_node);
1149 
1150 	if (new_parent) {
1151 		bool becomes_orphan = new_parent->orphan;
1152 
1153 		/* avoid duplicate POST_RATE_CHANGE notifications */
1154 		if (new_parent->new_child == core)
1155 			new_parent->new_child = NULL;
1156 
1157 		hlist_add_head(&core->child_node, &new_parent->children);
1158 
1159 		if (was_orphan != becomes_orphan)
1160 			clk_core_update_orphan_status(core, becomes_orphan);
1161 	} else {
1162 		hlist_add_head(&core->child_node, &clk_orphan_list);
1163 		if (!was_orphan)
1164 			clk_core_update_orphan_status(core, true);
1165 	}
1166 
1167 	core->parent = new_parent;
1168 }
1169 
1170 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1171 					   struct clk_core *parent)
1172 {
1173 	unsigned long flags;
1174 	struct clk_core *old_parent = core->parent;
1175 
1176 	/*
1177 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1178 	 *
1179 	 * 2. Migrate prepare state between parents and prevent race with
1180 	 * clk_enable().
1181 	 *
1182 	 * If the clock is not prepared, then a race with
1183 	 * clk_enable/disable() is impossible since we already have the
1184 	 * prepare lock (future calls to clk_enable() need to be preceded by
1185 	 * a clk_prepare()).
1186 	 *
1187 	 * If the clock is prepared, migrate the prepared state to the new
1188 	 * parent and also protect against a race with clk_enable() by
1189 	 * forcing the clock and the new parent on.  This ensures that all
1190 	 * future calls to clk_enable() are practically NOPs with respect to
1191 	 * hardware and software states.
1192 	 *
1193 	 * See also: Comment for clk_set_parent() below.
1194 	 */
1195 
1196 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1197 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1198 		clk_core_prepare_enable(old_parent);
1199 		clk_core_prepare_enable(parent);
1200 	}
1201 
1202 	/* migrate prepare count if > 0 */
1203 	if (core->prepare_count) {
1204 		clk_core_prepare_enable(parent);
1205 		clk_core_enable_lock(core);
1206 	}
1207 
1208 	/* update the clk tree topology */
1209 	flags = clk_enable_lock();
1210 	clk_reparent(core, parent);
1211 	clk_enable_unlock(flags);
1212 
1213 	return old_parent;
1214 }
1215 
1216 static void __clk_set_parent_after(struct clk_core *core,
1217 				   struct clk_core *parent,
1218 				   struct clk_core *old_parent)
1219 {
1220 	/*
1221 	 * Finish the migration of prepare state and undo the changes done
1222 	 * for preventing a race with clk_enable().
1223 	 */
1224 	if (core->prepare_count) {
1225 		clk_core_disable_lock(core);
1226 		clk_core_disable_unprepare(old_parent);
1227 	}
1228 
1229 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1230 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1231 		clk_core_disable_unprepare(parent);
1232 		clk_core_disable_unprepare(old_parent);
1233 	}
1234 }
1235 
1236 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1237 			    u8 p_index)
1238 {
1239 	unsigned long flags;
1240 	int ret = 0;
1241 	struct clk_core *old_parent;
1242 
1243 	old_parent = __clk_set_parent_before(core, parent);
1244 
1245 	trace_clk_set_parent(core, parent);
1246 
1247 	/* change clock input source */
1248 	if (parent && core->ops->set_parent)
1249 		ret = core->ops->set_parent(core->hw, p_index);
1250 
1251 	trace_clk_set_parent_complete(core, parent);
1252 
1253 	if (ret) {
1254 		flags = clk_enable_lock();
1255 		clk_reparent(core, old_parent);
1256 		clk_enable_unlock(flags);
1257 		__clk_set_parent_after(core, old_parent, parent);
1258 
1259 		return ret;
1260 	}
1261 
1262 	__clk_set_parent_after(core, parent, old_parent);
1263 
1264 	return 0;
1265 }
1266 
1267 /**
1268  * __clk_speculate_rates
1269  * @core: first clk in the subtree
1270  * @parent_rate: the "future" rate of clk's parent
1271  *
1272  * Walks the subtree of clks starting with clk, speculating rates as it
1273  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1274  *
1275  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1276  * pre-rate change notifications and returns early if no clks in the
1277  * subtree have subscribed to the notifications.  Note that if a clk does not
1278  * implement the .recalc_rate callback then it is assumed that the clock will
1279  * take on the rate of its parent.
1280  */
1281 static int __clk_speculate_rates(struct clk_core *core,
1282 				 unsigned long parent_rate)
1283 {
1284 	struct clk_core *child;
1285 	unsigned long new_rate;
1286 	int ret = NOTIFY_DONE;
1287 
1288 	lockdep_assert_held(&prepare_lock);
1289 
1290 	new_rate = clk_recalc(core, parent_rate);
1291 
1292 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1293 	if (core->notifier_count)
1294 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1295 
1296 	if (ret & NOTIFY_STOP_MASK) {
1297 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1298 				__func__, core->name, ret);
1299 		goto out;
1300 	}
1301 
1302 	hlist_for_each_entry(child, &core->children, child_node) {
1303 		ret = __clk_speculate_rates(child, new_rate);
1304 		if (ret & NOTIFY_STOP_MASK)
1305 			break;
1306 	}
1307 
1308 out:
1309 	return ret;
1310 }
1311 
1312 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1313 			     struct clk_core *new_parent, u8 p_index)
1314 {
1315 	struct clk_core *child;
1316 
1317 	core->new_rate = new_rate;
1318 	core->new_parent = new_parent;
1319 	core->new_parent_index = p_index;
1320 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1321 	core->new_child = NULL;
1322 	if (new_parent && new_parent != core->parent)
1323 		new_parent->new_child = core;
1324 
1325 	hlist_for_each_entry(child, &core->children, child_node) {
1326 		child->new_rate = clk_recalc(child, new_rate);
1327 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1328 	}
1329 }
1330 
1331 /*
1332  * calculate the new rates returning the topmost clock that has to be
1333  * changed.
1334  */
1335 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1336 					   unsigned long rate)
1337 {
1338 	struct clk_core *top = core;
1339 	struct clk_core *old_parent, *parent;
1340 	unsigned long best_parent_rate = 0;
1341 	unsigned long new_rate;
1342 	unsigned long min_rate;
1343 	unsigned long max_rate;
1344 	int p_index = 0;
1345 	long ret;
1346 
1347 	/* sanity */
1348 	if (IS_ERR_OR_NULL(core))
1349 		return NULL;
1350 
1351 	/* save parent rate, if it exists */
1352 	parent = old_parent = core->parent;
1353 	if (parent)
1354 		best_parent_rate = parent->rate;
1355 
1356 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1357 
1358 	/* find the closest rate and parent clk/rate */
1359 	if (core->ops->determine_rate) {
1360 		struct clk_rate_request req;
1361 
1362 		req.rate = rate;
1363 		req.min_rate = min_rate;
1364 		req.max_rate = max_rate;
1365 		if (parent) {
1366 			req.best_parent_hw = parent->hw;
1367 			req.best_parent_rate = parent->rate;
1368 		} else {
1369 			req.best_parent_hw = NULL;
1370 			req.best_parent_rate = 0;
1371 		}
1372 
1373 		ret = core->ops->determine_rate(core->hw, &req);
1374 		if (ret < 0)
1375 			return NULL;
1376 
1377 		best_parent_rate = req.best_parent_rate;
1378 		new_rate = req.rate;
1379 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1380 	} else if (core->ops->round_rate) {
1381 		ret = core->ops->round_rate(core->hw, rate,
1382 					    &best_parent_rate);
1383 		if (ret < 0)
1384 			return NULL;
1385 
1386 		new_rate = ret;
1387 		if (new_rate < min_rate || new_rate > max_rate)
1388 			return NULL;
1389 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1390 		/* pass-through clock without adjustable parent */
1391 		core->new_rate = core->rate;
1392 		return NULL;
1393 	} else {
1394 		/* pass-through clock with adjustable parent */
1395 		top = clk_calc_new_rates(parent, rate);
1396 		new_rate = parent->new_rate;
1397 		goto out;
1398 	}
1399 
1400 	/* some clocks must be gated to change parent */
1401 	if (parent != old_parent &&
1402 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1403 		pr_debug("%s: %s not gated but wants to reparent\n",
1404 			 __func__, core->name);
1405 		return NULL;
1406 	}
1407 
1408 	/* try finding the new parent index */
1409 	if (parent && core->num_parents > 1) {
1410 		p_index = clk_fetch_parent_index(core, parent);
1411 		if (p_index < 0) {
1412 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1413 				 __func__, parent->name, core->name);
1414 			return NULL;
1415 		}
1416 	}
1417 
1418 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1419 	    best_parent_rate != parent->rate)
1420 		top = clk_calc_new_rates(parent, best_parent_rate);
1421 
1422 out:
1423 	clk_calc_subtree(core, new_rate, parent, p_index);
1424 
1425 	return top;
1426 }
1427 
1428 /*
1429  * Notify about rate changes in a subtree. Always walk down the whole tree
1430  * so that in case of an error we can walk down the whole tree again and
1431  * abort the change.
1432  */
1433 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1434 						  unsigned long event)
1435 {
1436 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1437 	int ret = NOTIFY_DONE;
1438 
1439 	if (core->rate == core->new_rate)
1440 		return NULL;
1441 
1442 	if (core->notifier_count) {
1443 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1444 		if (ret & NOTIFY_STOP_MASK)
1445 			fail_clk = core;
1446 	}
1447 
1448 	hlist_for_each_entry(child, &core->children, child_node) {
1449 		/* Skip children who will be reparented to another clock */
1450 		if (child->new_parent && child->new_parent != core)
1451 			continue;
1452 		tmp_clk = clk_propagate_rate_change(child, event);
1453 		if (tmp_clk)
1454 			fail_clk = tmp_clk;
1455 	}
1456 
1457 	/* handle the new child who might not be in core->children yet */
1458 	if (core->new_child) {
1459 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1460 		if (tmp_clk)
1461 			fail_clk = tmp_clk;
1462 	}
1463 
1464 	return fail_clk;
1465 }
1466 
1467 /*
1468  * walk down a subtree and set the new rates notifying the rate
1469  * change on the way
1470  */
1471 static void clk_change_rate(struct clk_core *core)
1472 {
1473 	struct clk_core *child;
1474 	struct hlist_node *tmp;
1475 	unsigned long old_rate;
1476 	unsigned long best_parent_rate = 0;
1477 	bool skip_set_rate = false;
1478 	struct clk_core *old_parent;
1479 	struct clk_core *parent = NULL;
1480 
1481 	old_rate = core->rate;
1482 
1483 	if (core->new_parent) {
1484 		parent = core->new_parent;
1485 		best_parent_rate = core->new_parent->rate;
1486 	} else if (core->parent) {
1487 		parent = core->parent;
1488 		best_parent_rate = core->parent->rate;
1489 	}
1490 
1491 	if (core->flags & CLK_SET_RATE_UNGATE) {
1492 		unsigned long flags;
1493 
1494 		clk_core_prepare(core);
1495 		flags = clk_enable_lock();
1496 		clk_core_enable(core);
1497 		clk_enable_unlock(flags);
1498 	}
1499 
1500 	if (core->new_parent && core->new_parent != core->parent) {
1501 		old_parent = __clk_set_parent_before(core, core->new_parent);
1502 		trace_clk_set_parent(core, core->new_parent);
1503 
1504 		if (core->ops->set_rate_and_parent) {
1505 			skip_set_rate = true;
1506 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1507 					best_parent_rate,
1508 					core->new_parent_index);
1509 		} else if (core->ops->set_parent) {
1510 			core->ops->set_parent(core->hw, core->new_parent_index);
1511 		}
1512 
1513 		trace_clk_set_parent_complete(core, core->new_parent);
1514 		__clk_set_parent_after(core, core->new_parent, old_parent);
1515 	}
1516 
1517 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1518 		clk_core_prepare_enable(parent);
1519 
1520 	trace_clk_set_rate(core, core->new_rate);
1521 
1522 	if (!skip_set_rate && core->ops->set_rate)
1523 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1524 
1525 	trace_clk_set_rate_complete(core, core->new_rate);
1526 
1527 	core->rate = clk_recalc(core, best_parent_rate);
1528 
1529 	if (core->flags & CLK_SET_RATE_UNGATE) {
1530 		unsigned long flags;
1531 
1532 		flags = clk_enable_lock();
1533 		clk_core_disable(core);
1534 		clk_enable_unlock(flags);
1535 		clk_core_unprepare(core);
1536 	}
1537 
1538 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1539 		clk_core_disable_unprepare(parent);
1540 
1541 	if (core->notifier_count && old_rate != core->rate)
1542 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1543 
1544 	if (core->flags & CLK_RECALC_NEW_RATES)
1545 		(void)clk_calc_new_rates(core, core->new_rate);
1546 
1547 	/*
1548 	 * Use safe iteration, as change_rate can actually swap parents
1549 	 * for certain clock types.
1550 	 */
1551 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1552 		/* Skip children who will be reparented to another clock */
1553 		if (child->new_parent && child->new_parent != core)
1554 			continue;
1555 		clk_change_rate(child);
1556 	}
1557 
1558 	/* handle the new child who might not be in core->children yet */
1559 	if (core->new_child)
1560 		clk_change_rate(core->new_child);
1561 }
1562 
1563 static int clk_core_set_rate_nolock(struct clk_core *core,
1564 				    unsigned long req_rate)
1565 {
1566 	struct clk_core *top, *fail_clk;
1567 	unsigned long rate = req_rate;
1568 
1569 	if (!core)
1570 		return 0;
1571 
1572 	/* bail early if nothing to do */
1573 	if (rate == clk_core_get_rate_nolock(core))
1574 		return 0;
1575 
1576 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1577 		return -EBUSY;
1578 
1579 	/* calculate new rates and get the topmost changed clock */
1580 	top = clk_calc_new_rates(core, rate);
1581 	if (!top)
1582 		return -EINVAL;
1583 
1584 	/* notify that we are about to change rates */
1585 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1586 	if (fail_clk) {
1587 		pr_debug("%s: failed to set %s rate\n", __func__,
1588 				fail_clk->name);
1589 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1590 		return -EBUSY;
1591 	}
1592 
1593 	/* change the rates */
1594 	clk_change_rate(top);
1595 
1596 	core->req_rate = req_rate;
1597 
1598 	return 0;
1599 }
1600 
1601 /**
1602  * clk_set_rate - specify a new rate for clk
1603  * @clk: the clk whose rate is being changed
1604  * @rate: the new rate for clk
1605  *
1606  * In the simplest case clk_set_rate will only adjust the rate of clk.
1607  *
1608  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1609  * propagate up to clk's parent; whether or not this happens depends on the
1610  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1611  * after calling .round_rate then upstream parent propagation is ignored.  If
1612  * *parent_rate comes back with a new rate for clk's parent then we propagate
1613  * up to clk's parent and set its rate.  Upward propagation will continue
1614  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1615  * .round_rate stops requesting changes to clk's parent_rate.
1616  *
1617  * Rate changes are accomplished via tree traversal that also recalculates the
1618  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1619  *
1620  * Returns 0 on success, -EERROR otherwise.
1621  */
1622 int clk_set_rate(struct clk *clk, unsigned long rate)
1623 {
1624 	int ret;
1625 
1626 	if (!clk)
1627 		return 0;
1628 
1629 	/* prevent racing with updates to the clock topology */
1630 	clk_prepare_lock();
1631 
1632 	ret = clk_core_set_rate_nolock(clk->core, rate);
1633 
1634 	clk_prepare_unlock();
1635 
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL_GPL(clk_set_rate);
1639 
1640 /**
1641  * clk_set_rate_range - set a rate range for a clock source
1642  * @clk: clock source
1643  * @min: desired minimum clock rate in Hz, inclusive
1644  * @max: desired maximum clock rate in Hz, inclusive
1645  *
1646  * Returns success (0) or negative errno.
1647  */
1648 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1649 {
1650 	int ret = 0;
1651 
1652 	if (!clk)
1653 		return 0;
1654 
1655 	if (min > max) {
1656 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1657 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1658 		       min, max);
1659 		return -EINVAL;
1660 	}
1661 
1662 	clk_prepare_lock();
1663 
1664 	if (min != clk->min_rate || max != clk->max_rate) {
1665 		clk->min_rate = min;
1666 		clk->max_rate = max;
1667 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1668 	}
1669 
1670 	clk_prepare_unlock();
1671 
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1675 
1676 /**
1677  * clk_set_min_rate - set a minimum clock rate for a clock source
1678  * @clk: clock source
1679  * @rate: desired minimum clock rate in Hz, inclusive
1680  *
1681  * Returns success (0) or negative errno.
1682  */
1683 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1684 {
1685 	if (!clk)
1686 		return 0;
1687 
1688 	return clk_set_rate_range(clk, rate, clk->max_rate);
1689 }
1690 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1691 
1692 /**
1693  * clk_set_max_rate - set a maximum clock rate for a clock source
1694  * @clk: clock source
1695  * @rate: desired maximum clock rate in Hz, inclusive
1696  *
1697  * Returns success (0) or negative errno.
1698  */
1699 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1700 {
1701 	if (!clk)
1702 		return 0;
1703 
1704 	return clk_set_rate_range(clk, clk->min_rate, rate);
1705 }
1706 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1707 
1708 /**
1709  * clk_get_parent - return the parent of a clk
1710  * @clk: the clk whose parent gets returned
1711  *
1712  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1713  */
1714 struct clk *clk_get_parent(struct clk *clk)
1715 {
1716 	struct clk *parent;
1717 
1718 	if (!clk)
1719 		return NULL;
1720 
1721 	clk_prepare_lock();
1722 	/* TODO: Create a per-user clk and change callers to call clk_put */
1723 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1724 	clk_prepare_unlock();
1725 
1726 	return parent;
1727 }
1728 EXPORT_SYMBOL_GPL(clk_get_parent);
1729 
1730 static struct clk_core *__clk_init_parent(struct clk_core *core)
1731 {
1732 	u8 index = 0;
1733 
1734 	if (core->num_parents > 1 && core->ops->get_parent)
1735 		index = core->ops->get_parent(core->hw);
1736 
1737 	return clk_core_get_parent_by_index(core, index);
1738 }
1739 
1740 static void clk_core_reparent(struct clk_core *core,
1741 				  struct clk_core *new_parent)
1742 {
1743 	clk_reparent(core, new_parent);
1744 	__clk_recalc_accuracies(core);
1745 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1746 }
1747 
1748 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1749 {
1750 	if (!hw)
1751 		return;
1752 
1753 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1754 }
1755 
1756 /**
1757  * clk_has_parent - check if a clock is a possible parent for another
1758  * @clk: clock source
1759  * @parent: parent clock source
1760  *
1761  * This function can be used in drivers that need to check that a clock can be
1762  * the parent of another without actually changing the parent.
1763  *
1764  * Returns true if @parent is a possible parent for @clk, false otherwise.
1765  */
1766 bool clk_has_parent(struct clk *clk, struct clk *parent)
1767 {
1768 	struct clk_core *core, *parent_core;
1769 	unsigned int i;
1770 
1771 	/* NULL clocks should be nops, so return success if either is NULL. */
1772 	if (!clk || !parent)
1773 		return true;
1774 
1775 	core = clk->core;
1776 	parent_core = parent->core;
1777 
1778 	/* Optimize for the case where the parent is already the parent. */
1779 	if (core->parent == parent_core)
1780 		return true;
1781 
1782 	for (i = 0; i < core->num_parents; i++)
1783 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1784 			return true;
1785 
1786 	return false;
1787 }
1788 EXPORT_SYMBOL_GPL(clk_has_parent);
1789 
1790 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1791 {
1792 	int ret = 0;
1793 	int p_index = 0;
1794 	unsigned long p_rate = 0;
1795 
1796 	if (!core)
1797 		return 0;
1798 
1799 	/* prevent racing with updates to the clock topology */
1800 	clk_prepare_lock();
1801 
1802 	if (core->parent == parent)
1803 		goto out;
1804 
1805 	/* verify ops for for multi-parent clks */
1806 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1807 		ret = -ENOSYS;
1808 		goto out;
1809 	}
1810 
1811 	/* check that we are allowed to re-parent if the clock is in use */
1812 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1813 		ret = -EBUSY;
1814 		goto out;
1815 	}
1816 
1817 	/* try finding the new parent index */
1818 	if (parent) {
1819 		p_index = clk_fetch_parent_index(core, parent);
1820 		if (p_index < 0) {
1821 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1822 					__func__, parent->name, core->name);
1823 			ret = p_index;
1824 			goto out;
1825 		}
1826 		p_rate = parent->rate;
1827 	}
1828 
1829 	/* propagate PRE_RATE_CHANGE notifications */
1830 	ret = __clk_speculate_rates(core, p_rate);
1831 
1832 	/* abort if a driver objects */
1833 	if (ret & NOTIFY_STOP_MASK)
1834 		goto out;
1835 
1836 	/* do the re-parent */
1837 	ret = __clk_set_parent(core, parent, p_index);
1838 
1839 	/* propagate rate an accuracy recalculation accordingly */
1840 	if (ret) {
1841 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1842 	} else {
1843 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1844 		__clk_recalc_accuracies(core);
1845 	}
1846 
1847 out:
1848 	clk_prepare_unlock();
1849 
1850 	return ret;
1851 }
1852 
1853 /**
1854  * clk_set_parent - switch the parent of a mux clk
1855  * @clk: the mux clk whose input we are switching
1856  * @parent: the new input to clk
1857  *
1858  * Re-parent clk to use parent as its new input source.  If clk is in
1859  * prepared state, the clk will get enabled for the duration of this call. If
1860  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1861  * that, the reparenting is glitchy in hardware, etc), use the
1862  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1863  *
1864  * After successfully changing clk's parent clk_set_parent will update the
1865  * clk topology, sysfs topology and propagate rate recalculation via
1866  * __clk_recalc_rates.
1867  *
1868  * Returns 0 on success, -EERROR otherwise.
1869  */
1870 int clk_set_parent(struct clk *clk, struct clk *parent)
1871 {
1872 	if (!clk)
1873 		return 0;
1874 
1875 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1876 }
1877 EXPORT_SYMBOL_GPL(clk_set_parent);
1878 
1879 /**
1880  * clk_set_phase - adjust the phase shift of a clock signal
1881  * @clk: clock signal source
1882  * @degrees: number of degrees the signal is shifted
1883  *
1884  * Shifts the phase of a clock signal by the specified
1885  * degrees. Returns 0 on success, -EERROR otherwise.
1886  *
1887  * This function makes no distinction about the input or reference
1888  * signal that we adjust the clock signal phase against. For example
1889  * phase locked-loop clock signal generators we may shift phase with
1890  * respect to feedback clock signal input, but for other cases the
1891  * clock phase may be shifted with respect to some other, unspecified
1892  * signal.
1893  *
1894  * Additionally the concept of phase shift does not propagate through
1895  * the clock tree hierarchy, which sets it apart from clock rates and
1896  * clock accuracy. A parent clock phase attribute does not have an
1897  * impact on the phase attribute of a child clock.
1898  */
1899 int clk_set_phase(struct clk *clk, int degrees)
1900 {
1901 	int ret = -EINVAL;
1902 
1903 	if (!clk)
1904 		return 0;
1905 
1906 	/* sanity check degrees */
1907 	degrees %= 360;
1908 	if (degrees < 0)
1909 		degrees += 360;
1910 
1911 	clk_prepare_lock();
1912 
1913 	trace_clk_set_phase(clk->core, degrees);
1914 
1915 	if (clk->core->ops->set_phase)
1916 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1917 
1918 	trace_clk_set_phase_complete(clk->core, degrees);
1919 
1920 	if (!ret)
1921 		clk->core->phase = degrees;
1922 
1923 	clk_prepare_unlock();
1924 
1925 	return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(clk_set_phase);
1928 
1929 static int clk_core_get_phase(struct clk_core *core)
1930 {
1931 	int ret;
1932 
1933 	clk_prepare_lock();
1934 	ret = core->phase;
1935 	clk_prepare_unlock();
1936 
1937 	return ret;
1938 }
1939 
1940 /**
1941  * clk_get_phase - return the phase shift of a clock signal
1942  * @clk: clock signal source
1943  *
1944  * Returns the phase shift of a clock node in degrees, otherwise returns
1945  * -EERROR.
1946  */
1947 int clk_get_phase(struct clk *clk)
1948 {
1949 	if (!clk)
1950 		return 0;
1951 
1952 	return clk_core_get_phase(clk->core);
1953 }
1954 EXPORT_SYMBOL_GPL(clk_get_phase);
1955 
1956 /**
1957  * clk_is_match - check if two clk's point to the same hardware clock
1958  * @p: clk compared against q
1959  * @q: clk compared against p
1960  *
1961  * Returns true if the two struct clk pointers both point to the same hardware
1962  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1963  * share the same struct clk_core object.
1964  *
1965  * Returns false otherwise. Note that two NULL clks are treated as matching.
1966  */
1967 bool clk_is_match(const struct clk *p, const struct clk *q)
1968 {
1969 	/* trivial case: identical struct clk's or both NULL */
1970 	if (p == q)
1971 		return true;
1972 
1973 	/* true if clk->core pointers match. Avoid dereferencing garbage */
1974 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1975 		if (p->core == q->core)
1976 			return true;
1977 
1978 	return false;
1979 }
1980 EXPORT_SYMBOL_GPL(clk_is_match);
1981 
1982 /***        debugfs support        ***/
1983 
1984 #ifdef CONFIG_DEBUG_FS
1985 #include <linux/debugfs.h>
1986 
1987 static struct dentry *rootdir;
1988 static int inited = 0;
1989 static DEFINE_MUTEX(clk_debug_lock);
1990 static HLIST_HEAD(clk_debug_list);
1991 
1992 static struct hlist_head *all_lists[] = {
1993 	&clk_root_list,
1994 	&clk_orphan_list,
1995 	NULL,
1996 };
1997 
1998 static struct hlist_head *orphan_list[] = {
1999 	&clk_orphan_list,
2000 	NULL,
2001 };
2002 
2003 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2004 				 int level)
2005 {
2006 	if (!c)
2007 		return;
2008 
2009 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2010 		   level * 3 + 1, "",
2011 		   30 - level * 3, c->name,
2012 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
2013 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
2014 }
2015 
2016 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2017 				     int level)
2018 {
2019 	struct clk_core *child;
2020 
2021 	if (!c)
2022 		return;
2023 
2024 	clk_summary_show_one(s, c, level);
2025 
2026 	hlist_for_each_entry(child, &c->children, child_node)
2027 		clk_summary_show_subtree(s, child, level + 1);
2028 }
2029 
2030 static int clk_summary_show(struct seq_file *s, void *data)
2031 {
2032 	struct clk_core *c;
2033 	struct hlist_head **lists = (struct hlist_head **)s->private;
2034 
2035 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2036 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2037 
2038 	clk_prepare_lock();
2039 
2040 	for (; *lists; lists++)
2041 		hlist_for_each_entry(c, *lists, child_node)
2042 			clk_summary_show_subtree(s, c, 0);
2043 
2044 	clk_prepare_unlock();
2045 
2046 	return 0;
2047 }
2048 
2049 
2050 static int clk_summary_open(struct inode *inode, struct file *file)
2051 {
2052 	return single_open(file, clk_summary_show, inode->i_private);
2053 }
2054 
2055 static const struct file_operations clk_summary_fops = {
2056 	.open		= clk_summary_open,
2057 	.read		= seq_read,
2058 	.llseek		= seq_lseek,
2059 	.release	= single_release,
2060 };
2061 
2062 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2063 {
2064 	if (!c)
2065 		return;
2066 
2067 	/* This should be JSON format, i.e. elements separated with a comma */
2068 	seq_printf(s, "\"%s\": { ", c->name);
2069 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2070 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2071 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2072 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2073 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2074 }
2075 
2076 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2077 {
2078 	struct clk_core *child;
2079 
2080 	if (!c)
2081 		return;
2082 
2083 	clk_dump_one(s, c, level);
2084 
2085 	hlist_for_each_entry(child, &c->children, child_node) {
2086 		seq_putc(s, ',');
2087 		clk_dump_subtree(s, child, level + 1);
2088 	}
2089 
2090 	seq_putc(s, '}');
2091 }
2092 
2093 static int clk_dump(struct seq_file *s, void *data)
2094 {
2095 	struct clk_core *c;
2096 	bool first_node = true;
2097 	struct hlist_head **lists = (struct hlist_head **)s->private;
2098 
2099 	seq_putc(s, '{');
2100 	clk_prepare_lock();
2101 
2102 	for (; *lists; lists++) {
2103 		hlist_for_each_entry(c, *lists, child_node) {
2104 			if (!first_node)
2105 				seq_putc(s, ',');
2106 			first_node = false;
2107 			clk_dump_subtree(s, c, 0);
2108 		}
2109 	}
2110 
2111 	clk_prepare_unlock();
2112 
2113 	seq_puts(s, "}\n");
2114 	return 0;
2115 }
2116 
2117 
2118 static int clk_dump_open(struct inode *inode, struct file *file)
2119 {
2120 	return single_open(file, clk_dump, inode->i_private);
2121 }
2122 
2123 static const struct file_operations clk_dump_fops = {
2124 	.open		= clk_dump_open,
2125 	.read		= seq_read,
2126 	.llseek		= seq_lseek,
2127 	.release	= single_release,
2128 };
2129 
2130 static int possible_parents_dump(struct seq_file *s, void *data)
2131 {
2132 	struct clk_core *core = s->private;
2133 	int i;
2134 
2135 	for (i = 0; i < core->num_parents - 1; i++)
2136 		seq_printf(s, "%s ", core->parent_names[i]);
2137 
2138 	seq_printf(s, "%s\n", core->parent_names[i]);
2139 
2140 	return 0;
2141 }
2142 
2143 static int possible_parents_open(struct inode *inode, struct file *file)
2144 {
2145 	return single_open(file, possible_parents_dump, inode->i_private);
2146 }
2147 
2148 static const struct file_operations possible_parents_fops = {
2149 	.open		= possible_parents_open,
2150 	.read		= seq_read,
2151 	.llseek		= seq_lseek,
2152 	.release	= single_release,
2153 };
2154 
2155 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2156 {
2157 	struct dentry *d;
2158 	int ret = -ENOMEM;
2159 
2160 	if (!core || !pdentry) {
2161 		ret = -EINVAL;
2162 		goto out;
2163 	}
2164 
2165 	d = debugfs_create_dir(core->name, pdentry);
2166 	if (!d)
2167 		goto out;
2168 
2169 	core->dentry = d;
2170 
2171 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2172 			(u32 *)&core->rate);
2173 	if (!d)
2174 		goto err_out;
2175 
2176 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2177 			(u32 *)&core->accuracy);
2178 	if (!d)
2179 		goto err_out;
2180 
2181 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2182 			(u32 *)&core->phase);
2183 	if (!d)
2184 		goto err_out;
2185 
2186 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2187 			(u32 *)&core->flags);
2188 	if (!d)
2189 		goto err_out;
2190 
2191 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2192 			(u32 *)&core->prepare_count);
2193 	if (!d)
2194 		goto err_out;
2195 
2196 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2197 			(u32 *)&core->enable_count);
2198 	if (!d)
2199 		goto err_out;
2200 
2201 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2202 			(u32 *)&core->notifier_count);
2203 	if (!d)
2204 		goto err_out;
2205 
2206 	if (core->num_parents > 1) {
2207 		d = debugfs_create_file("clk_possible_parents", S_IRUGO,
2208 				core->dentry, core, &possible_parents_fops);
2209 		if (!d)
2210 			goto err_out;
2211 	}
2212 
2213 	if (core->ops->debug_init) {
2214 		ret = core->ops->debug_init(core->hw, core->dentry);
2215 		if (ret)
2216 			goto err_out;
2217 	}
2218 
2219 	ret = 0;
2220 	goto out;
2221 
2222 err_out:
2223 	debugfs_remove_recursive(core->dentry);
2224 	core->dentry = NULL;
2225 out:
2226 	return ret;
2227 }
2228 
2229 /**
2230  * clk_debug_register - add a clk node to the debugfs clk directory
2231  * @core: the clk being added to the debugfs clk directory
2232  *
2233  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2234  * initialized.  Otherwise it bails out early since the debugfs clk directory
2235  * will be created lazily by clk_debug_init as part of a late_initcall.
2236  */
2237 static int clk_debug_register(struct clk_core *core)
2238 {
2239 	int ret = 0;
2240 
2241 	mutex_lock(&clk_debug_lock);
2242 	hlist_add_head(&core->debug_node, &clk_debug_list);
2243 
2244 	if (!inited)
2245 		goto unlock;
2246 
2247 	ret = clk_debug_create_one(core, rootdir);
2248 unlock:
2249 	mutex_unlock(&clk_debug_lock);
2250 
2251 	return ret;
2252 }
2253 
2254  /**
2255  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2256  * @core: the clk being removed from the debugfs clk directory
2257  *
2258  * Dynamically removes a clk and all its child nodes from the
2259  * debugfs clk directory if clk->dentry points to debugfs created by
2260  * clk_debug_register in __clk_core_init.
2261  */
2262 static void clk_debug_unregister(struct clk_core *core)
2263 {
2264 	mutex_lock(&clk_debug_lock);
2265 	hlist_del_init(&core->debug_node);
2266 	debugfs_remove_recursive(core->dentry);
2267 	core->dentry = NULL;
2268 	mutex_unlock(&clk_debug_lock);
2269 }
2270 
2271 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2272 				void *data, const struct file_operations *fops)
2273 {
2274 	struct dentry *d = NULL;
2275 
2276 	if (hw->core->dentry)
2277 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2278 					fops);
2279 
2280 	return d;
2281 }
2282 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2283 
2284 /**
2285  * clk_debug_init - lazily populate the debugfs clk directory
2286  *
2287  * clks are often initialized very early during boot before memory can be
2288  * dynamically allocated and well before debugfs is setup. This function
2289  * populates the debugfs clk directory once at boot-time when we know that
2290  * debugfs is setup. It should only be called once at boot-time, all other clks
2291  * added dynamically will be done so with clk_debug_register.
2292  */
2293 static int __init clk_debug_init(void)
2294 {
2295 	struct clk_core *core;
2296 	struct dentry *d;
2297 
2298 	rootdir = debugfs_create_dir("clk", NULL);
2299 
2300 	if (!rootdir)
2301 		return -ENOMEM;
2302 
2303 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2304 				&clk_summary_fops);
2305 	if (!d)
2306 		return -ENOMEM;
2307 
2308 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2309 				&clk_dump_fops);
2310 	if (!d)
2311 		return -ENOMEM;
2312 
2313 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2314 				&orphan_list, &clk_summary_fops);
2315 	if (!d)
2316 		return -ENOMEM;
2317 
2318 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2319 				&orphan_list, &clk_dump_fops);
2320 	if (!d)
2321 		return -ENOMEM;
2322 
2323 	mutex_lock(&clk_debug_lock);
2324 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2325 		clk_debug_create_one(core, rootdir);
2326 
2327 	inited = 1;
2328 	mutex_unlock(&clk_debug_lock);
2329 
2330 	return 0;
2331 }
2332 late_initcall(clk_debug_init);
2333 #else
2334 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2335 static inline void clk_debug_reparent(struct clk_core *core,
2336 				      struct clk_core *new_parent)
2337 {
2338 }
2339 static inline void clk_debug_unregister(struct clk_core *core)
2340 {
2341 }
2342 #endif
2343 
2344 /**
2345  * __clk_core_init - initialize the data structures in a struct clk_core
2346  * @core:	clk_core being initialized
2347  *
2348  * Initializes the lists in struct clk_core, queries the hardware for the
2349  * parent and rate and sets them both.
2350  */
2351 static int __clk_core_init(struct clk_core *core)
2352 {
2353 	int i, ret = 0;
2354 	struct clk_core *orphan;
2355 	struct hlist_node *tmp2;
2356 	unsigned long rate;
2357 
2358 	if (!core)
2359 		return -EINVAL;
2360 
2361 	clk_prepare_lock();
2362 
2363 	/* check to see if a clock with this name is already registered */
2364 	if (clk_core_lookup(core->name)) {
2365 		pr_debug("%s: clk %s already initialized\n",
2366 				__func__, core->name);
2367 		ret = -EEXIST;
2368 		goto out;
2369 	}
2370 
2371 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2372 	if (core->ops->set_rate &&
2373 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2374 	      core->ops->recalc_rate)) {
2375 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2376 		       __func__, core->name);
2377 		ret = -EINVAL;
2378 		goto out;
2379 	}
2380 
2381 	if (core->ops->set_parent && !core->ops->get_parent) {
2382 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2383 		       __func__, core->name);
2384 		ret = -EINVAL;
2385 		goto out;
2386 	}
2387 
2388 	if (core->num_parents > 1 && !core->ops->get_parent) {
2389 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2390 		       __func__, core->name);
2391 		ret = -EINVAL;
2392 		goto out;
2393 	}
2394 
2395 	if (core->ops->set_rate_and_parent &&
2396 			!(core->ops->set_parent && core->ops->set_rate)) {
2397 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2398 				__func__, core->name);
2399 		ret = -EINVAL;
2400 		goto out;
2401 	}
2402 
2403 	/* throw a WARN if any entries in parent_names are NULL */
2404 	for (i = 0; i < core->num_parents; i++)
2405 		WARN(!core->parent_names[i],
2406 				"%s: invalid NULL in %s's .parent_names\n",
2407 				__func__, core->name);
2408 
2409 	core->parent = __clk_init_parent(core);
2410 
2411 	/*
2412 	 * Populate core->parent if parent has already been clk_core_init'd. If
2413 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2414 	 * list.  If clk doesn't have any parents then place it in the root
2415 	 * clk list.
2416 	 *
2417 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2418 	 * clocks and re-parent any that are children of the clock currently
2419 	 * being clk_init'd.
2420 	 */
2421 	if (core->parent) {
2422 		hlist_add_head(&core->child_node,
2423 				&core->parent->children);
2424 		core->orphan = core->parent->orphan;
2425 	} else if (!core->num_parents) {
2426 		hlist_add_head(&core->child_node, &clk_root_list);
2427 		core->orphan = false;
2428 	} else {
2429 		hlist_add_head(&core->child_node, &clk_orphan_list);
2430 		core->orphan = true;
2431 	}
2432 
2433 	/*
2434 	 * Set clk's accuracy.  The preferred method is to use
2435 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2436 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2437 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2438 	 * clock).
2439 	 */
2440 	if (core->ops->recalc_accuracy)
2441 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2442 					__clk_get_accuracy(core->parent));
2443 	else if (core->parent)
2444 		core->accuracy = core->parent->accuracy;
2445 	else
2446 		core->accuracy = 0;
2447 
2448 	/*
2449 	 * Set clk's phase.
2450 	 * Since a phase is by definition relative to its parent, just
2451 	 * query the current clock phase, or just assume it's in phase.
2452 	 */
2453 	if (core->ops->get_phase)
2454 		core->phase = core->ops->get_phase(core->hw);
2455 	else
2456 		core->phase = 0;
2457 
2458 	/*
2459 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2460 	 * simple clocks and lazy developers the default fallback is to use the
2461 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2462 	 * then rate is set to zero.
2463 	 */
2464 	if (core->ops->recalc_rate)
2465 		rate = core->ops->recalc_rate(core->hw,
2466 				clk_core_get_rate_nolock(core->parent));
2467 	else if (core->parent)
2468 		rate = core->parent->rate;
2469 	else
2470 		rate = 0;
2471 	core->rate = core->req_rate = rate;
2472 
2473 	/*
2474 	 * walk the list of orphan clocks and reparent any that newly finds a
2475 	 * parent.
2476 	 */
2477 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2478 		struct clk_core *parent = __clk_init_parent(orphan);
2479 
2480 		/*
2481 		 * we could call __clk_set_parent, but that would result in a
2482 		 * redundant call to the .set_rate op, if it exists
2483 		 */
2484 		if (parent) {
2485 			__clk_set_parent_before(orphan, parent);
2486 			__clk_set_parent_after(orphan, parent, NULL);
2487 			__clk_recalc_accuracies(orphan);
2488 			__clk_recalc_rates(orphan, 0);
2489 		}
2490 	}
2491 
2492 	/*
2493 	 * optional platform-specific magic
2494 	 *
2495 	 * The .init callback is not used by any of the basic clock types, but
2496 	 * exists for weird hardware that must perform initialization magic.
2497 	 * Please consider other ways of solving initialization problems before
2498 	 * using this callback, as its use is discouraged.
2499 	 */
2500 	if (core->ops->init)
2501 		core->ops->init(core->hw);
2502 
2503 	if (core->flags & CLK_IS_CRITICAL) {
2504 		unsigned long flags;
2505 
2506 		clk_core_prepare(core);
2507 
2508 		flags = clk_enable_lock();
2509 		clk_core_enable(core);
2510 		clk_enable_unlock(flags);
2511 	}
2512 
2513 	kref_init(&core->ref);
2514 out:
2515 	clk_prepare_unlock();
2516 
2517 	if (!ret)
2518 		clk_debug_register(core);
2519 
2520 	return ret;
2521 }
2522 
2523 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2524 			     const char *con_id)
2525 {
2526 	struct clk *clk;
2527 
2528 	/* This is to allow this function to be chained to others */
2529 	if (IS_ERR_OR_NULL(hw))
2530 		return ERR_CAST(hw);
2531 
2532 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2533 	if (!clk)
2534 		return ERR_PTR(-ENOMEM);
2535 
2536 	clk->core = hw->core;
2537 	clk->dev_id = dev_id;
2538 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2539 	clk->max_rate = ULONG_MAX;
2540 
2541 	clk_prepare_lock();
2542 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2543 	clk_prepare_unlock();
2544 
2545 	return clk;
2546 }
2547 
2548 void __clk_free_clk(struct clk *clk)
2549 {
2550 	clk_prepare_lock();
2551 	hlist_del(&clk->clks_node);
2552 	clk_prepare_unlock();
2553 
2554 	kfree_const(clk->con_id);
2555 	kfree(clk);
2556 }
2557 
2558 /**
2559  * clk_register - allocate a new clock, register it and return an opaque cookie
2560  * @dev: device that is registering this clock
2561  * @hw: link to hardware-specific clock data
2562  *
2563  * clk_register is the primary interface for populating the clock tree with new
2564  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2565  * cannot be dereferenced by driver code but may be used in conjunction with the
2566  * rest of the clock API.  In the event of an error clk_register will return an
2567  * error code; drivers must test for an error code after calling clk_register.
2568  */
2569 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2570 {
2571 	int i, ret;
2572 	struct clk_core *core;
2573 
2574 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2575 	if (!core) {
2576 		ret = -ENOMEM;
2577 		goto fail_out;
2578 	}
2579 
2580 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2581 	if (!core->name) {
2582 		ret = -ENOMEM;
2583 		goto fail_name;
2584 	}
2585 	core->ops = hw->init->ops;
2586 	if (dev && dev->driver)
2587 		core->owner = dev->driver->owner;
2588 	core->hw = hw;
2589 	core->flags = hw->init->flags;
2590 	core->num_parents = hw->init->num_parents;
2591 	core->min_rate = 0;
2592 	core->max_rate = ULONG_MAX;
2593 	hw->core = core;
2594 
2595 	/* allocate local copy in case parent_names is __initdata */
2596 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2597 					GFP_KERNEL);
2598 
2599 	if (!core->parent_names) {
2600 		ret = -ENOMEM;
2601 		goto fail_parent_names;
2602 	}
2603 
2604 
2605 	/* copy each string name in case parent_names is __initdata */
2606 	for (i = 0; i < core->num_parents; i++) {
2607 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2608 						GFP_KERNEL);
2609 		if (!core->parent_names[i]) {
2610 			ret = -ENOMEM;
2611 			goto fail_parent_names_copy;
2612 		}
2613 	}
2614 
2615 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2616 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2617 				GFP_KERNEL);
2618 	if (!core->parents) {
2619 		ret = -ENOMEM;
2620 		goto fail_parents;
2621 	};
2622 
2623 	INIT_HLIST_HEAD(&core->clks);
2624 
2625 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2626 	if (IS_ERR(hw->clk)) {
2627 		ret = PTR_ERR(hw->clk);
2628 		goto fail_parents;
2629 	}
2630 
2631 	ret = __clk_core_init(core);
2632 	if (!ret)
2633 		return hw->clk;
2634 
2635 	__clk_free_clk(hw->clk);
2636 	hw->clk = NULL;
2637 
2638 fail_parents:
2639 	kfree(core->parents);
2640 fail_parent_names_copy:
2641 	while (--i >= 0)
2642 		kfree_const(core->parent_names[i]);
2643 	kfree(core->parent_names);
2644 fail_parent_names:
2645 	kfree_const(core->name);
2646 fail_name:
2647 	kfree(core);
2648 fail_out:
2649 	return ERR_PTR(ret);
2650 }
2651 EXPORT_SYMBOL_GPL(clk_register);
2652 
2653 /**
2654  * clk_hw_register - register a clk_hw and return an error code
2655  * @dev: device that is registering this clock
2656  * @hw: link to hardware-specific clock data
2657  *
2658  * clk_hw_register is the primary interface for populating the clock tree with
2659  * new clock nodes. It returns an integer equal to zero indicating success or
2660  * less than zero indicating failure. Drivers must test for an error code after
2661  * calling clk_hw_register().
2662  */
2663 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2664 {
2665 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2666 }
2667 EXPORT_SYMBOL_GPL(clk_hw_register);
2668 
2669 /* Free memory allocated for a clock. */
2670 static void __clk_release(struct kref *ref)
2671 {
2672 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2673 	int i = core->num_parents;
2674 
2675 	lockdep_assert_held(&prepare_lock);
2676 
2677 	kfree(core->parents);
2678 	while (--i >= 0)
2679 		kfree_const(core->parent_names[i]);
2680 
2681 	kfree(core->parent_names);
2682 	kfree_const(core->name);
2683 	kfree(core);
2684 }
2685 
2686 /*
2687  * Empty clk_ops for unregistered clocks. These are used temporarily
2688  * after clk_unregister() was called on a clock and until last clock
2689  * consumer calls clk_put() and the struct clk object is freed.
2690  */
2691 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2692 {
2693 	return -ENXIO;
2694 }
2695 
2696 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2697 {
2698 	WARN_ON_ONCE(1);
2699 }
2700 
2701 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2702 					unsigned long parent_rate)
2703 {
2704 	return -ENXIO;
2705 }
2706 
2707 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2708 {
2709 	return -ENXIO;
2710 }
2711 
2712 static const struct clk_ops clk_nodrv_ops = {
2713 	.enable		= clk_nodrv_prepare_enable,
2714 	.disable	= clk_nodrv_disable_unprepare,
2715 	.prepare	= clk_nodrv_prepare_enable,
2716 	.unprepare	= clk_nodrv_disable_unprepare,
2717 	.set_rate	= clk_nodrv_set_rate,
2718 	.set_parent	= clk_nodrv_set_parent,
2719 };
2720 
2721 /**
2722  * clk_unregister - unregister a currently registered clock
2723  * @clk: clock to unregister
2724  */
2725 void clk_unregister(struct clk *clk)
2726 {
2727 	unsigned long flags;
2728 
2729 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2730 		return;
2731 
2732 	clk_debug_unregister(clk->core);
2733 
2734 	clk_prepare_lock();
2735 
2736 	if (clk->core->ops == &clk_nodrv_ops) {
2737 		pr_err("%s: unregistered clock: %s\n", __func__,
2738 		       clk->core->name);
2739 		goto unlock;
2740 	}
2741 	/*
2742 	 * Assign empty clock ops for consumers that might still hold
2743 	 * a reference to this clock.
2744 	 */
2745 	flags = clk_enable_lock();
2746 	clk->core->ops = &clk_nodrv_ops;
2747 	clk_enable_unlock(flags);
2748 
2749 	if (!hlist_empty(&clk->core->children)) {
2750 		struct clk_core *child;
2751 		struct hlist_node *t;
2752 
2753 		/* Reparent all children to the orphan list. */
2754 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2755 					  child_node)
2756 			clk_core_set_parent(child, NULL);
2757 	}
2758 
2759 	hlist_del_init(&clk->core->child_node);
2760 
2761 	if (clk->core->prepare_count)
2762 		pr_warn("%s: unregistering prepared clock: %s\n",
2763 					__func__, clk->core->name);
2764 	kref_put(&clk->core->ref, __clk_release);
2765 unlock:
2766 	clk_prepare_unlock();
2767 }
2768 EXPORT_SYMBOL_GPL(clk_unregister);
2769 
2770 /**
2771  * clk_hw_unregister - unregister a currently registered clk_hw
2772  * @hw: hardware-specific clock data to unregister
2773  */
2774 void clk_hw_unregister(struct clk_hw *hw)
2775 {
2776 	clk_unregister(hw->clk);
2777 }
2778 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2779 
2780 static void devm_clk_release(struct device *dev, void *res)
2781 {
2782 	clk_unregister(*(struct clk **)res);
2783 }
2784 
2785 static void devm_clk_hw_release(struct device *dev, void *res)
2786 {
2787 	clk_hw_unregister(*(struct clk_hw **)res);
2788 }
2789 
2790 /**
2791  * devm_clk_register - resource managed clk_register()
2792  * @dev: device that is registering this clock
2793  * @hw: link to hardware-specific clock data
2794  *
2795  * Managed clk_register(). Clocks returned from this function are
2796  * automatically clk_unregister()ed on driver detach. See clk_register() for
2797  * more information.
2798  */
2799 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2800 {
2801 	struct clk *clk;
2802 	struct clk **clkp;
2803 
2804 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2805 	if (!clkp)
2806 		return ERR_PTR(-ENOMEM);
2807 
2808 	clk = clk_register(dev, hw);
2809 	if (!IS_ERR(clk)) {
2810 		*clkp = clk;
2811 		devres_add(dev, clkp);
2812 	} else {
2813 		devres_free(clkp);
2814 	}
2815 
2816 	return clk;
2817 }
2818 EXPORT_SYMBOL_GPL(devm_clk_register);
2819 
2820 /**
2821  * devm_clk_hw_register - resource managed clk_hw_register()
2822  * @dev: device that is registering this clock
2823  * @hw: link to hardware-specific clock data
2824  *
2825  * Managed clk_hw_register(). Clocks registered by this function are
2826  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2827  * for more information.
2828  */
2829 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2830 {
2831 	struct clk_hw **hwp;
2832 	int ret;
2833 
2834 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2835 	if (!hwp)
2836 		return -ENOMEM;
2837 
2838 	ret = clk_hw_register(dev, hw);
2839 	if (!ret) {
2840 		*hwp = hw;
2841 		devres_add(dev, hwp);
2842 	} else {
2843 		devres_free(hwp);
2844 	}
2845 
2846 	return ret;
2847 }
2848 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2849 
2850 static int devm_clk_match(struct device *dev, void *res, void *data)
2851 {
2852 	struct clk *c = res;
2853 	if (WARN_ON(!c))
2854 		return 0;
2855 	return c == data;
2856 }
2857 
2858 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2859 {
2860 	struct clk_hw *hw = res;
2861 
2862 	if (WARN_ON(!hw))
2863 		return 0;
2864 	return hw == data;
2865 }
2866 
2867 /**
2868  * devm_clk_unregister - resource managed clk_unregister()
2869  * @clk: clock to unregister
2870  *
2871  * Deallocate a clock allocated with devm_clk_register(). Normally
2872  * this function will not need to be called and the resource management
2873  * code will ensure that the resource is freed.
2874  */
2875 void devm_clk_unregister(struct device *dev, struct clk *clk)
2876 {
2877 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2878 }
2879 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2880 
2881 /**
2882  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2883  * @dev: device that is unregistering the hardware-specific clock data
2884  * @hw: link to hardware-specific clock data
2885  *
2886  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2887  * this function will not need to be called and the resource management
2888  * code will ensure that the resource is freed.
2889  */
2890 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2891 {
2892 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2893 				hw));
2894 }
2895 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2896 
2897 /*
2898  * clkdev helpers
2899  */
2900 int __clk_get(struct clk *clk)
2901 {
2902 	struct clk_core *core = !clk ? NULL : clk->core;
2903 
2904 	if (core) {
2905 		if (!try_module_get(core->owner))
2906 			return 0;
2907 
2908 		kref_get(&core->ref);
2909 	}
2910 	return 1;
2911 }
2912 
2913 void __clk_put(struct clk *clk)
2914 {
2915 	struct module *owner;
2916 
2917 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2918 		return;
2919 
2920 	clk_prepare_lock();
2921 
2922 	hlist_del(&clk->clks_node);
2923 	if (clk->min_rate > clk->core->req_rate ||
2924 	    clk->max_rate < clk->core->req_rate)
2925 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2926 
2927 	owner = clk->core->owner;
2928 	kref_put(&clk->core->ref, __clk_release);
2929 
2930 	clk_prepare_unlock();
2931 
2932 	module_put(owner);
2933 
2934 	kfree(clk);
2935 }
2936 
2937 /***        clk rate change notifiers        ***/
2938 
2939 /**
2940  * clk_notifier_register - add a clk rate change notifier
2941  * @clk: struct clk * to watch
2942  * @nb: struct notifier_block * with callback info
2943  *
2944  * Request notification when clk's rate changes.  This uses an SRCU
2945  * notifier because we want it to block and notifier unregistrations are
2946  * uncommon.  The callbacks associated with the notifier must not
2947  * re-enter into the clk framework by calling any top-level clk APIs;
2948  * this will cause a nested prepare_lock mutex.
2949  *
2950  * In all notification cases (pre, post and abort rate change) the original
2951  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2952  * and the new frequency is passed via struct clk_notifier_data.new_rate.
2953  *
2954  * clk_notifier_register() must be called from non-atomic context.
2955  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2956  * allocation failure; otherwise, passes along the return value of
2957  * srcu_notifier_chain_register().
2958  */
2959 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2960 {
2961 	struct clk_notifier *cn;
2962 	int ret = -ENOMEM;
2963 
2964 	if (!clk || !nb)
2965 		return -EINVAL;
2966 
2967 	clk_prepare_lock();
2968 
2969 	/* search the list of notifiers for this clk */
2970 	list_for_each_entry(cn, &clk_notifier_list, node)
2971 		if (cn->clk == clk)
2972 			break;
2973 
2974 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2975 	if (cn->clk != clk) {
2976 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
2977 		if (!cn)
2978 			goto out;
2979 
2980 		cn->clk = clk;
2981 		srcu_init_notifier_head(&cn->notifier_head);
2982 
2983 		list_add(&cn->node, &clk_notifier_list);
2984 	}
2985 
2986 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2987 
2988 	clk->core->notifier_count++;
2989 
2990 out:
2991 	clk_prepare_unlock();
2992 
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(clk_notifier_register);
2996 
2997 /**
2998  * clk_notifier_unregister - remove a clk rate change notifier
2999  * @clk: struct clk *
3000  * @nb: struct notifier_block * with callback info
3001  *
3002  * Request no further notification for changes to 'clk' and frees memory
3003  * allocated in clk_notifier_register.
3004  *
3005  * Returns -EINVAL if called with null arguments; otherwise, passes
3006  * along the return value of srcu_notifier_chain_unregister().
3007  */
3008 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3009 {
3010 	struct clk_notifier *cn = NULL;
3011 	int ret = -EINVAL;
3012 
3013 	if (!clk || !nb)
3014 		return -EINVAL;
3015 
3016 	clk_prepare_lock();
3017 
3018 	list_for_each_entry(cn, &clk_notifier_list, node)
3019 		if (cn->clk == clk)
3020 			break;
3021 
3022 	if (cn->clk == clk) {
3023 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3024 
3025 		clk->core->notifier_count--;
3026 
3027 		/* XXX the notifier code should handle this better */
3028 		if (!cn->notifier_head.head) {
3029 			srcu_cleanup_notifier_head(&cn->notifier_head);
3030 			list_del(&cn->node);
3031 			kfree(cn);
3032 		}
3033 
3034 	} else {
3035 		ret = -ENOENT;
3036 	}
3037 
3038 	clk_prepare_unlock();
3039 
3040 	return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3043 
3044 #ifdef CONFIG_OF
3045 /**
3046  * struct of_clk_provider - Clock provider registration structure
3047  * @link: Entry in global list of clock providers
3048  * @node: Pointer to device tree node of clock provider
3049  * @get: Get clock callback.  Returns NULL or a struct clk for the
3050  *       given clock specifier
3051  * @data: context pointer to be passed into @get callback
3052  */
3053 struct of_clk_provider {
3054 	struct list_head link;
3055 
3056 	struct device_node *node;
3057 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3058 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3059 	void *data;
3060 };
3061 
3062 static const struct of_device_id __clk_of_table_sentinel
3063 	__used __section(__clk_of_table_end);
3064 
3065 static LIST_HEAD(of_clk_providers);
3066 static DEFINE_MUTEX(of_clk_mutex);
3067 
3068 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3069 				     void *data)
3070 {
3071 	return data;
3072 }
3073 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3074 
3075 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3076 {
3077 	return data;
3078 }
3079 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3080 
3081 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3082 {
3083 	struct clk_onecell_data *clk_data = data;
3084 	unsigned int idx = clkspec->args[0];
3085 
3086 	if (idx >= clk_data->clk_num) {
3087 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3088 		return ERR_PTR(-EINVAL);
3089 	}
3090 
3091 	return clk_data->clks[idx];
3092 }
3093 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3094 
3095 struct clk_hw *
3096 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3097 {
3098 	struct clk_hw_onecell_data *hw_data = data;
3099 	unsigned int idx = clkspec->args[0];
3100 
3101 	if (idx >= hw_data->num) {
3102 		pr_err("%s: invalid index %u\n", __func__, idx);
3103 		return ERR_PTR(-EINVAL);
3104 	}
3105 
3106 	return hw_data->hws[idx];
3107 }
3108 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3109 
3110 /**
3111  * of_clk_add_provider() - Register a clock provider for a node
3112  * @np: Device node pointer associated with clock provider
3113  * @clk_src_get: callback for decoding clock
3114  * @data: context pointer for @clk_src_get callback.
3115  */
3116 int of_clk_add_provider(struct device_node *np,
3117 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3118 						   void *data),
3119 			void *data)
3120 {
3121 	struct of_clk_provider *cp;
3122 	int ret;
3123 
3124 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3125 	if (!cp)
3126 		return -ENOMEM;
3127 
3128 	cp->node = of_node_get(np);
3129 	cp->data = data;
3130 	cp->get = clk_src_get;
3131 
3132 	mutex_lock(&of_clk_mutex);
3133 	list_add(&cp->link, &of_clk_providers);
3134 	mutex_unlock(&of_clk_mutex);
3135 	pr_debug("Added clock from %s\n", np->full_name);
3136 
3137 	ret = of_clk_set_defaults(np, true);
3138 	if (ret < 0)
3139 		of_clk_del_provider(np);
3140 
3141 	return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3144 
3145 /**
3146  * of_clk_add_hw_provider() - Register a clock provider for a node
3147  * @np: Device node pointer associated with clock provider
3148  * @get: callback for decoding clk_hw
3149  * @data: context pointer for @get callback.
3150  */
3151 int of_clk_add_hw_provider(struct device_node *np,
3152 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3153 						 void *data),
3154 			   void *data)
3155 {
3156 	struct of_clk_provider *cp;
3157 	int ret;
3158 
3159 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3160 	if (!cp)
3161 		return -ENOMEM;
3162 
3163 	cp->node = of_node_get(np);
3164 	cp->data = data;
3165 	cp->get_hw = get;
3166 
3167 	mutex_lock(&of_clk_mutex);
3168 	list_add(&cp->link, &of_clk_providers);
3169 	mutex_unlock(&of_clk_mutex);
3170 	pr_debug("Added clk_hw provider from %s\n", np->full_name);
3171 
3172 	ret = of_clk_set_defaults(np, true);
3173 	if (ret < 0)
3174 		of_clk_del_provider(np);
3175 
3176 	return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3179 
3180 /**
3181  * of_clk_del_provider() - Remove a previously registered clock provider
3182  * @np: Device node pointer associated with clock provider
3183  */
3184 void of_clk_del_provider(struct device_node *np)
3185 {
3186 	struct of_clk_provider *cp;
3187 
3188 	mutex_lock(&of_clk_mutex);
3189 	list_for_each_entry(cp, &of_clk_providers, link) {
3190 		if (cp->node == np) {
3191 			list_del(&cp->link);
3192 			of_node_put(cp->node);
3193 			kfree(cp);
3194 			break;
3195 		}
3196 	}
3197 	mutex_unlock(&of_clk_mutex);
3198 }
3199 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3200 
3201 static struct clk_hw *
3202 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3203 			      struct of_phandle_args *clkspec)
3204 {
3205 	struct clk *clk;
3206 
3207 	if (provider->get_hw)
3208 		return provider->get_hw(clkspec, provider->data);
3209 
3210 	clk = provider->get(clkspec, provider->data);
3211 	if (IS_ERR(clk))
3212 		return ERR_CAST(clk);
3213 	return __clk_get_hw(clk);
3214 }
3215 
3216 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3217 				       const char *dev_id, const char *con_id)
3218 {
3219 	struct of_clk_provider *provider;
3220 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3221 	struct clk_hw *hw;
3222 
3223 	if (!clkspec)
3224 		return ERR_PTR(-EINVAL);
3225 
3226 	/* Check if we have such a provider in our array */
3227 	mutex_lock(&of_clk_mutex);
3228 	list_for_each_entry(provider, &of_clk_providers, link) {
3229 		if (provider->node == clkspec->np) {
3230 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3231 			clk = __clk_create_clk(hw, dev_id, con_id);
3232 		}
3233 
3234 		if (!IS_ERR(clk)) {
3235 			if (!__clk_get(clk)) {
3236 				__clk_free_clk(clk);
3237 				clk = ERR_PTR(-ENOENT);
3238 			}
3239 
3240 			break;
3241 		}
3242 	}
3243 	mutex_unlock(&of_clk_mutex);
3244 
3245 	return clk;
3246 }
3247 
3248 /**
3249  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3250  * @clkspec: pointer to a clock specifier data structure
3251  *
3252  * This function looks up a struct clk from the registered list of clock
3253  * providers, an input is a clock specifier data structure as returned
3254  * from the of_parse_phandle_with_args() function call.
3255  */
3256 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3257 {
3258 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3259 }
3260 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3261 
3262 /**
3263  * of_clk_get_parent_count() - Count the number of clocks a device node has
3264  * @np: device node to count
3265  *
3266  * Returns: The number of clocks that are possible parents of this node
3267  */
3268 unsigned int of_clk_get_parent_count(struct device_node *np)
3269 {
3270 	int count;
3271 
3272 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3273 	if (count < 0)
3274 		return 0;
3275 
3276 	return count;
3277 }
3278 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3279 
3280 const char *of_clk_get_parent_name(struct device_node *np, int index)
3281 {
3282 	struct of_phandle_args clkspec;
3283 	struct property *prop;
3284 	const char *clk_name;
3285 	const __be32 *vp;
3286 	u32 pv;
3287 	int rc;
3288 	int count;
3289 	struct clk *clk;
3290 
3291 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3292 					&clkspec);
3293 	if (rc)
3294 		return NULL;
3295 
3296 	index = clkspec.args_count ? clkspec.args[0] : 0;
3297 	count = 0;
3298 
3299 	/* if there is an indices property, use it to transfer the index
3300 	 * specified into an array offset for the clock-output-names property.
3301 	 */
3302 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3303 		if (index == pv) {
3304 			index = count;
3305 			break;
3306 		}
3307 		count++;
3308 	}
3309 	/* We went off the end of 'clock-indices' without finding it */
3310 	if (prop && !vp)
3311 		return NULL;
3312 
3313 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3314 					  index,
3315 					  &clk_name) < 0) {
3316 		/*
3317 		 * Best effort to get the name if the clock has been
3318 		 * registered with the framework. If the clock isn't
3319 		 * registered, we return the node name as the name of
3320 		 * the clock as long as #clock-cells = 0.
3321 		 */
3322 		clk = of_clk_get_from_provider(&clkspec);
3323 		if (IS_ERR(clk)) {
3324 			if (clkspec.args_count == 0)
3325 				clk_name = clkspec.np->name;
3326 			else
3327 				clk_name = NULL;
3328 		} else {
3329 			clk_name = __clk_get_name(clk);
3330 			clk_put(clk);
3331 		}
3332 	}
3333 
3334 
3335 	of_node_put(clkspec.np);
3336 	return clk_name;
3337 }
3338 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3339 
3340 /**
3341  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3342  * number of parents
3343  * @np: Device node pointer associated with clock provider
3344  * @parents: pointer to char array that hold the parents' names
3345  * @size: size of the @parents array
3346  *
3347  * Return: number of parents for the clock node.
3348  */
3349 int of_clk_parent_fill(struct device_node *np, const char **parents,
3350 		       unsigned int size)
3351 {
3352 	unsigned int i = 0;
3353 
3354 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3355 		i++;
3356 
3357 	return i;
3358 }
3359 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3360 
3361 struct clock_provider {
3362 	of_clk_init_cb_t clk_init_cb;
3363 	struct device_node *np;
3364 	struct list_head node;
3365 };
3366 
3367 /*
3368  * This function looks for a parent clock. If there is one, then it
3369  * checks that the provider for this parent clock was initialized, in
3370  * this case the parent clock will be ready.
3371  */
3372 static int parent_ready(struct device_node *np)
3373 {
3374 	int i = 0;
3375 
3376 	while (true) {
3377 		struct clk *clk = of_clk_get(np, i);
3378 
3379 		/* this parent is ready we can check the next one */
3380 		if (!IS_ERR(clk)) {
3381 			clk_put(clk);
3382 			i++;
3383 			continue;
3384 		}
3385 
3386 		/* at least one parent is not ready, we exit now */
3387 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3388 			return 0;
3389 
3390 		/*
3391 		 * Here we make assumption that the device tree is
3392 		 * written correctly. So an error means that there is
3393 		 * no more parent. As we didn't exit yet, then the
3394 		 * previous parent are ready. If there is no clock
3395 		 * parent, no need to wait for them, then we can
3396 		 * consider their absence as being ready
3397 		 */
3398 		return 1;
3399 	}
3400 }
3401 
3402 /**
3403  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3404  * @np: Device node pointer associated with clock provider
3405  * @index: clock index
3406  * @flags: pointer to clk_core->flags
3407  *
3408  * Detects if the clock-critical property exists and, if so, sets the
3409  * corresponding CLK_IS_CRITICAL flag.
3410  *
3411  * Do not use this function. It exists only for legacy Device Tree
3412  * bindings, such as the one-clock-per-node style that are outdated.
3413  * Those bindings typically put all clock data into .dts and the Linux
3414  * driver has no clock data, thus making it impossible to set this flag
3415  * correctly from the driver. Only those drivers may call
3416  * of_clk_detect_critical from their setup functions.
3417  *
3418  * Return: error code or zero on success
3419  */
3420 int of_clk_detect_critical(struct device_node *np,
3421 					  int index, unsigned long *flags)
3422 {
3423 	struct property *prop;
3424 	const __be32 *cur;
3425 	uint32_t idx;
3426 
3427 	if (!np || !flags)
3428 		return -EINVAL;
3429 
3430 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3431 		if (index == idx)
3432 			*flags |= CLK_IS_CRITICAL;
3433 
3434 	return 0;
3435 }
3436 
3437 /**
3438  * of_clk_init() - Scan and init clock providers from the DT
3439  * @matches: array of compatible values and init functions for providers.
3440  *
3441  * This function scans the device tree for matching clock providers
3442  * and calls their initialization functions. It also does it by trying
3443  * to follow the dependencies.
3444  */
3445 void __init of_clk_init(const struct of_device_id *matches)
3446 {
3447 	const struct of_device_id *match;
3448 	struct device_node *np;
3449 	struct clock_provider *clk_provider, *next;
3450 	bool is_init_done;
3451 	bool force = false;
3452 	LIST_HEAD(clk_provider_list);
3453 
3454 	if (!matches)
3455 		matches = &__clk_of_table;
3456 
3457 	/* First prepare the list of the clocks providers */
3458 	for_each_matching_node_and_match(np, matches, &match) {
3459 		struct clock_provider *parent;
3460 
3461 		if (!of_device_is_available(np))
3462 			continue;
3463 
3464 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3465 		if (!parent) {
3466 			list_for_each_entry_safe(clk_provider, next,
3467 						 &clk_provider_list, node) {
3468 				list_del(&clk_provider->node);
3469 				of_node_put(clk_provider->np);
3470 				kfree(clk_provider);
3471 			}
3472 			of_node_put(np);
3473 			return;
3474 		}
3475 
3476 		parent->clk_init_cb = match->data;
3477 		parent->np = of_node_get(np);
3478 		list_add_tail(&parent->node, &clk_provider_list);
3479 	}
3480 
3481 	while (!list_empty(&clk_provider_list)) {
3482 		is_init_done = false;
3483 		list_for_each_entry_safe(clk_provider, next,
3484 					&clk_provider_list, node) {
3485 			if (force || parent_ready(clk_provider->np)) {
3486 
3487 				/* Don't populate platform devices */
3488 				of_node_set_flag(clk_provider->np,
3489 						 OF_POPULATED);
3490 
3491 				clk_provider->clk_init_cb(clk_provider->np);
3492 				of_clk_set_defaults(clk_provider->np, true);
3493 
3494 				list_del(&clk_provider->node);
3495 				of_node_put(clk_provider->np);
3496 				kfree(clk_provider);
3497 				is_init_done = true;
3498 			}
3499 		}
3500 
3501 		/*
3502 		 * We didn't manage to initialize any of the
3503 		 * remaining providers during the last loop, so now we
3504 		 * initialize all the remaining ones unconditionally
3505 		 * in case the clock parent was not mandatory
3506 		 */
3507 		if (!is_init_done)
3508 			force = true;
3509 	}
3510 }
3511 #endif
3512