1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 if (ret < 0) { 118 pm_runtime_put_noidle(core->dev); 119 return ret; 120 } 121 return 0; 122 } 123 124 static void clk_pm_runtime_put(struct clk_core *core) 125 { 126 if (!core->rpm_enabled) 127 return; 128 129 pm_runtime_put_sync(core->dev); 130 } 131 132 /*** locking ***/ 133 static void clk_prepare_lock(void) 134 { 135 if (!mutex_trylock(&prepare_lock)) { 136 if (prepare_owner == current) { 137 prepare_refcnt++; 138 return; 139 } 140 mutex_lock(&prepare_lock); 141 } 142 WARN_ON_ONCE(prepare_owner != NULL); 143 WARN_ON_ONCE(prepare_refcnt != 0); 144 prepare_owner = current; 145 prepare_refcnt = 1; 146 } 147 148 static void clk_prepare_unlock(void) 149 { 150 WARN_ON_ONCE(prepare_owner != current); 151 WARN_ON_ONCE(prepare_refcnt == 0); 152 153 if (--prepare_refcnt) 154 return; 155 prepare_owner = NULL; 156 mutex_unlock(&prepare_lock); 157 } 158 159 static unsigned long clk_enable_lock(void) 160 __acquires(enable_lock) 161 { 162 unsigned long flags; 163 164 /* 165 * On UP systems, spin_trylock_irqsave() always returns true, even if 166 * we already hold the lock. So, in that case, we rely only on 167 * reference counting. 168 */ 169 if (!IS_ENABLED(CONFIG_SMP) || 170 !spin_trylock_irqsave(&enable_lock, flags)) { 171 if (enable_owner == current) { 172 enable_refcnt++; 173 __acquire(enable_lock); 174 if (!IS_ENABLED(CONFIG_SMP)) 175 local_save_flags(flags); 176 return flags; 177 } 178 spin_lock_irqsave(&enable_lock, flags); 179 } 180 WARN_ON_ONCE(enable_owner != NULL); 181 WARN_ON_ONCE(enable_refcnt != 0); 182 enable_owner = current; 183 enable_refcnt = 1; 184 return flags; 185 } 186 187 static void clk_enable_unlock(unsigned long flags) 188 __releases(enable_lock) 189 { 190 WARN_ON_ONCE(enable_owner != current); 191 WARN_ON_ONCE(enable_refcnt == 0); 192 193 if (--enable_refcnt) { 194 __release(enable_lock); 195 return; 196 } 197 enable_owner = NULL; 198 spin_unlock_irqrestore(&enable_lock, flags); 199 } 200 201 static bool clk_core_rate_is_protected(struct clk_core *core) 202 { 203 return core->protect_count; 204 } 205 206 static bool clk_core_is_prepared(struct clk_core *core) 207 { 208 bool ret = false; 209 210 /* 211 * .is_prepared is optional for clocks that can prepare 212 * fall back to software usage counter if it is missing 213 */ 214 if (!core->ops->is_prepared) 215 return core->prepare_count; 216 217 if (!clk_pm_runtime_get(core)) { 218 ret = core->ops->is_prepared(core->hw); 219 clk_pm_runtime_put(core); 220 } 221 222 return ret; 223 } 224 225 static bool clk_core_is_enabled(struct clk_core *core) 226 { 227 bool ret = false; 228 229 /* 230 * .is_enabled is only mandatory for clocks that gate 231 * fall back to software usage counter if .is_enabled is missing 232 */ 233 if (!core->ops->is_enabled) 234 return core->enable_count; 235 236 /* 237 * Check if clock controller's device is runtime active before 238 * calling .is_enabled callback. If not, assume that clock is 239 * disabled, because we might be called from atomic context, from 240 * which pm_runtime_get() is not allowed. 241 * This function is called mainly from clk_disable_unused_subtree, 242 * which ensures proper runtime pm activation of controller before 243 * taking enable spinlock, but the below check is needed if one tries 244 * to call it from other places. 245 */ 246 if (core->rpm_enabled) { 247 pm_runtime_get_noresume(core->dev); 248 if (!pm_runtime_active(core->dev)) { 249 ret = false; 250 goto done; 251 } 252 } 253 254 ret = core->ops->is_enabled(core->hw); 255 done: 256 if (core->rpm_enabled) 257 pm_runtime_put(core->dev); 258 259 return ret; 260 } 261 262 /*** helper functions ***/ 263 264 const char *__clk_get_name(const struct clk *clk) 265 { 266 return !clk ? NULL : clk->core->name; 267 } 268 EXPORT_SYMBOL_GPL(__clk_get_name); 269 270 const char *clk_hw_get_name(const struct clk_hw *hw) 271 { 272 return hw->core->name; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_name); 275 276 struct clk_hw *__clk_get_hw(struct clk *clk) 277 { 278 return !clk ? NULL : clk->core->hw; 279 } 280 EXPORT_SYMBOL_GPL(__clk_get_hw); 281 282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 283 { 284 return hw->core->num_parents; 285 } 286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 287 288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 289 { 290 return hw->core->parent ? hw->core->parent->hw : NULL; 291 } 292 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 #ifdef CONFIG_OF 338 static int of_parse_clkspec(const struct device_node *np, int index, 339 const char *name, struct of_phandle_args *out_args); 340 static struct clk_hw * 341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 342 #else 343 static inline int of_parse_clkspec(const struct device_node *np, int index, 344 const char *name, 345 struct of_phandle_args *out_args) 346 { 347 return -ENOENT; 348 } 349 static inline struct clk_hw * 350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 351 { 352 return ERR_PTR(-ENOENT); 353 } 354 #endif 355 356 /** 357 * clk_core_get - Find the clk_core parent of a clk 358 * @core: clk to find parent of 359 * @p_index: parent index to search for 360 * 361 * This is the preferred method for clk providers to find the parent of a 362 * clk when that parent is external to the clk controller. The parent_names 363 * array is indexed and treated as a local name matching a string in the device 364 * node's 'clock-names' property or as the 'con_id' matching the device's 365 * dev_name() in a clk_lookup. This allows clk providers to use their own 366 * namespace instead of looking for a globally unique parent string. 367 * 368 * For example the following DT snippet would allow a clock registered by the 369 * clock-controller@c001 that has a clk_init_data::parent_data array 370 * with 'xtal' in the 'name' member to find the clock provided by the 371 * clock-controller@f00abcd without needing to get the globally unique name of 372 * the xtal clk. 373 * 374 * parent: clock-controller@f00abcd { 375 * reg = <0xf00abcd 0xabcd>; 376 * #clock-cells = <0>; 377 * }; 378 * 379 * clock-controller@c001 { 380 * reg = <0xc001 0xf00d>; 381 * clocks = <&parent>; 382 * clock-names = "xtal"; 383 * #clock-cells = <1>; 384 * }; 385 * 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't 387 * exist in the provider or the name can't be found in the DT node or 388 * in a clkdev lookup. NULL when the provider knows about the clk but it 389 * isn't provided on this system. 390 * A valid clk_core pointer when the clk can be found in the provider. 391 */ 392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 393 { 394 const char *name = core->parents[p_index].fw_name; 395 int index = core->parents[p_index].index; 396 struct clk_hw *hw = ERR_PTR(-ENOENT); 397 struct device *dev = core->dev; 398 const char *dev_id = dev ? dev_name(dev) : NULL; 399 struct device_node *np = core->of_node; 400 struct of_phandle_args clkspec; 401 402 if (np && (name || index >= 0) && 403 !of_parse_clkspec(np, index, name, &clkspec)) { 404 hw = of_clk_get_hw_from_clkspec(&clkspec); 405 of_node_put(clkspec.np); 406 } else if (name) { 407 /* 408 * If the DT search above couldn't find the provider fallback to 409 * looking up via clkdev based clk_lookups. 410 */ 411 hw = clk_find_hw(dev_id, name); 412 } 413 414 if (IS_ERR(hw)) 415 return ERR_CAST(hw); 416 417 return hw->core; 418 } 419 420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 421 { 422 struct clk_parent_map *entry = &core->parents[index]; 423 struct clk_core *parent = ERR_PTR(-ENOENT); 424 425 if (entry->hw) { 426 parent = entry->hw->core; 427 /* 428 * We have a direct reference but it isn't registered yet? 429 * Orphan it and let clk_reparent() update the orphan status 430 * when the parent is registered. 431 */ 432 if (!parent) 433 parent = ERR_PTR(-EPROBE_DEFER); 434 } else { 435 parent = clk_core_get(core, index); 436 if (PTR_ERR(parent) == -ENOENT && entry->name) 437 parent = clk_core_lookup(entry->name); 438 } 439 440 /* Only cache it if it's not an error */ 441 if (!IS_ERR(parent)) 442 entry->core = parent; 443 } 444 445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 446 u8 index) 447 { 448 if (!core || index >= core->num_parents || !core->parents) 449 return NULL; 450 451 if (!core->parents[index].core) 452 clk_core_fill_parent_index(core, index); 453 454 return core->parents[index].core; 455 } 456 457 struct clk_hw * 458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 459 { 460 struct clk_core *parent; 461 462 parent = clk_core_get_parent_by_index(hw->core, index); 463 464 return !parent ? NULL : parent->hw; 465 } 466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 467 468 unsigned int __clk_get_enable_count(struct clk *clk) 469 { 470 return !clk ? 0 : clk->core->enable_count; 471 } 472 473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 474 { 475 if (!core) 476 return 0; 477 478 if (!core->num_parents || core->parent) 479 return core->rate; 480 481 /* 482 * Clk must have a parent because num_parents > 0 but the parent isn't 483 * known yet. Best to return 0 as the rate of this clk until we can 484 * properly recalc the rate based on the parent's rate. 485 */ 486 return 0; 487 } 488 489 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 490 { 491 return clk_core_get_rate_nolock(hw->core); 492 } 493 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 494 495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 496 { 497 if (!core) 498 return 0; 499 500 return core->accuracy; 501 } 502 503 unsigned long __clk_get_flags(struct clk *clk) 504 { 505 return !clk ? 0 : clk->core->flags; 506 } 507 EXPORT_SYMBOL_GPL(__clk_get_flags); 508 509 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 510 { 511 return hw->core->flags; 512 } 513 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 514 515 bool clk_hw_is_prepared(const struct clk_hw *hw) 516 { 517 return clk_core_is_prepared(hw->core); 518 } 519 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 520 521 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 522 { 523 return clk_core_rate_is_protected(hw->core); 524 } 525 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 526 527 bool clk_hw_is_enabled(const struct clk_hw *hw) 528 { 529 return clk_core_is_enabled(hw->core); 530 } 531 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 532 533 bool __clk_is_enabled(struct clk *clk) 534 { 535 if (!clk) 536 return false; 537 538 return clk_core_is_enabled(clk->core); 539 } 540 EXPORT_SYMBOL_GPL(__clk_is_enabled); 541 542 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 543 unsigned long best, unsigned long flags) 544 { 545 if (flags & CLK_MUX_ROUND_CLOSEST) 546 return abs(now - rate) < abs(best - rate); 547 548 return now <= rate && now > best; 549 } 550 551 int clk_mux_determine_rate_flags(struct clk_hw *hw, 552 struct clk_rate_request *req, 553 unsigned long flags) 554 { 555 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 556 int i, num_parents, ret; 557 unsigned long best = 0; 558 struct clk_rate_request parent_req = *req; 559 560 /* if NO_REPARENT flag set, pass through to current parent */ 561 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 562 parent = core->parent; 563 if (core->flags & CLK_SET_RATE_PARENT) { 564 ret = __clk_determine_rate(parent ? parent->hw : NULL, 565 &parent_req); 566 if (ret) 567 return ret; 568 569 best = parent_req.rate; 570 } else if (parent) { 571 best = clk_core_get_rate_nolock(parent); 572 } else { 573 best = clk_core_get_rate_nolock(core); 574 } 575 576 goto out; 577 } 578 579 /* find the parent that can provide the fastest rate <= rate */ 580 num_parents = core->num_parents; 581 for (i = 0; i < num_parents; i++) { 582 parent = clk_core_get_parent_by_index(core, i); 583 if (!parent) 584 continue; 585 586 if (core->flags & CLK_SET_RATE_PARENT) { 587 parent_req = *req; 588 ret = __clk_determine_rate(parent->hw, &parent_req); 589 if (ret) 590 continue; 591 } else { 592 parent_req.rate = clk_core_get_rate_nolock(parent); 593 } 594 595 if (mux_is_better_rate(req->rate, parent_req.rate, 596 best, flags)) { 597 best_parent = parent; 598 best = parent_req.rate; 599 } 600 } 601 602 if (!best_parent) 603 return -EINVAL; 604 605 out: 606 if (best_parent) 607 req->best_parent_hw = best_parent->hw; 608 req->best_parent_rate = best; 609 req->rate = best; 610 611 return 0; 612 } 613 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 614 615 struct clk *__clk_lookup(const char *name) 616 { 617 struct clk_core *core = clk_core_lookup(name); 618 619 return !core ? NULL : core->hw->clk; 620 } 621 622 static void clk_core_get_boundaries(struct clk_core *core, 623 unsigned long *min_rate, 624 unsigned long *max_rate) 625 { 626 struct clk *clk_user; 627 628 lockdep_assert_held(&prepare_lock); 629 630 *min_rate = core->min_rate; 631 *max_rate = core->max_rate; 632 633 hlist_for_each_entry(clk_user, &core->clks, clks_node) 634 *min_rate = max(*min_rate, clk_user->min_rate); 635 636 hlist_for_each_entry(clk_user, &core->clks, clks_node) 637 *max_rate = min(*max_rate, clk_user->max_rate); 638 } 639 640 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 641 unsigned long max_rate) 642 { 643 hw->core->min_rate = min_rate; 644 hw->core->max_rate = max_rate; 645 } 646 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 647 648 /* 649 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 650 * @hw: mux type clk to determine rate on 651 * @req: rate request, also used to return preferred parent and frequencies 652 * 653 * Helper for finding best parent to provide a given frequency. This can be used 654 * directly as a determine_rate callback (e.g. for a mux), or from a more 655 * complex clock that may combine a mux with other operations. 656 * 657 * Returns: 0 on success, -EERROR value on error 658 */ 659 int __clk_mux_determine_rate(struct clk_hw *hw, 660 struct clk_rate_request *req) 661 { 662 return clk_mux_determine_rate_flags(hw, req, 0); 663 } 664 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 665 666 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 667 struct clk_rate_request *req) 668 { 669 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 670 } 671 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 672 673 /*** clk api ***/ 674 675 static void clk_core_rate_unprotect(struct clk_core *core) 676 { 677 lockdep_assert_held(&prepare_lock); 678 679 if (!core) 680 return; 681 682 if (WARN(core->protect_count == 0, 683 "%s already unprotected\n", core->name)) 684 return; 685 686 if (--core->protect_count > 0) 687 return; 688 689 clk_core_rate_unprotect(core->parent); 690 } 691 692 static int clk_core_rate_nuke_protect(struct clk_core *core) 693 { 694 int ret; 695 696 lockdep_assert_held(&prepare_lock); 697 698 if (!core) 699 return -EINVAL; 700 701 if (core->protect_count == 0) 702 return 0; 703 704 ret = core->protect_count; 705 core->protect_count = 1; 706 clk_core_rate_unprotect(core); 707 708 return ret; 709 } 710 711 /** 712 * clk_rate_exclusive_put - release exclusivity over clock rate control 713 * @clk: the clk over which the exclusivity is released 714 * 715 * clk_rate_exclusive_put() completes a critical section during which a clock 716 * consumer cannot tolerate any other consumer making any operation on the 717 * clock which could result in a rate change or rate glitch. Exclusive clocks 718 * cannot have their rate changed, either directly or indirectly due to changes 719 * further up the parent chain of clocks. As a result, clocks up parent chain 720 * also get under exclusive control of the calling consumer. 721 * 722 * If exlusivity is claimed more than once on clock, even by the same consumer, 723 * the rate effectively gets locked as exclusivity can't be preempted. 724 * 725 * Calls to clk_rate_exclusive_put() must be balanced with calls to 726 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 727 * error status. 728 */ 729 void clk_rate_exclusive_put(struct clk *clk) 730 { 731 if (!clk) 732 return; 733 734 clk_prepare_lock(); 735 736 /* 737 * if there is something wrong with this consumer protect count, stop 738 * here before messing with the provider 739 */ 740 if (WARN_ON(clk->exclusive_count <= 0)) 741 goto out; 742 743 clk_core_rate_unprotect(clk->core); 744 clk->exclusive_count--; 745 out: 746 clk_prepare_unlock(); 747 } 748 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 749 750 static void clk_core_rate_protect(struct clk_core *core) 751 { 752 lockdep_assert_held(&prepare_lock); 753 754 if (!core) 755 return; 756 757 if (core->protect_count == 0) 758 clk_core_rate_protect(core->parent); 759 760 core->protect_count++; 761 } 762 763 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 764 { 765 lockdep_assert_held(&prepare_lock); 766 767 if (!core) 768 return; 769 770 if (count == 0) 771 return; 772 773 clk_core_rate_protect(core); 774 core->protect_count = count; 775 } 776 777 /** 778 * clk_rate_exclusive_get - get exclusivity over the clk rate control 779 * @clk: the clk over which the exclusity of rate control is requested 780 * 781 * clk_rate_exclusive_get() begins a critical section during which a clock 782 * consumer cannot tolerate any other consumer making any operation on the 783 * clock which could result in a rate change or rate glitch. Exclusive clocks 784 * cannot have their rate changed, either directly or indirectly due to changes 785 * further up the parent chain of clocks. As a result, clocks up parent chain 786 * also get under exclusive control of the calling consumer. 787 * 788 * If exlusivity is claimed more than once on clock, even by the same consumer, 789 * the rate effectively gets locked as exclusivity can't be preempted. 790 * 791 * Calls to clk_rate_exclusive_get() should be balanced with calls to 792 * clk_rate_exclusive_put(). Calls to this function may sleep. 793 * Returns 0 on success, -EERROR otherwise 794 */ 795 int clk_rate_exclusive_get(struct clk *clk) 796 { 797 if (!clk) 798 return 0; 799 800 clk_prepare_lock(); 801 clk_core_rate_protect(clk->core); 802 clk->exclusive_count++; 803 clk_prepare_unlock(); 804 805 return 0; 806 } 807 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 808 809 static void clk_core_unprepare(struct clk_core *core) 810 { 811 lockdep_assert_held(&prepare_lock); 812 813 if (!core) 814 return; 815 816 if (WARN(core->prepare_count == 0, 817 "%s already unprepared\n", core->name)) 818 return; 819 820 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 821 "Unpreparing critical %s\n", core->name)) 822 return; 823 824 if (core->flags & CLK_SET_RATE_GATE) 825 clk_core_rate_unprotect(core); 826 827 if (--core->prepare_count > 0) 828 return; 829 830 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 831 832 trace_clk_unprepare(core); 833 834 if (core->ops->unprepare) 835 core->ops->unprepare(core->hw); 836 837 clk_pm_runtime_put(core); 838 839 trace_clk_unprepare_complete(core); 840 clk_core_unprepare(core->parent); 841 } 842 843 static void clk_core_unprepare_lock(struct clk_core *core) 844 { 845 clk_prepare_lock(); 846 clk_core_unprepare(core); 847 clk_prepare_unlock(); 848 } 849 850 /** 851 * clk_unprepare - undo preparation of a clock source 852 * @clk: the clk being unprepared 853 * 854 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 855 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 856 * if the operation may sleep. One example is a clk which is accessed over 857 * I2c. In the complex case a clk gate operation may require a fast and a slow 858 * part. It is this reason that clk_unprepare and clk_disable are not mutually 859 * exclusive. In fact clk_disable must be called before clk_unprepare. 860 */ 861 void clk_unprepare(struct clk *clk) 862 { 863 if (IS_ERR_OR_NULL(clk)) 864 return; 865 866 clk_core_unprepare_lock(clk->core); 867 } 868 EXPORT_SYMBOL_GPL(clk_unprepare); 869 870 static int clk_core_prepare(struct clk_core *core) 871 { 872 int ret = 0; 873 874 lockdep_assert_held(&prepare_lock); 875 876 if (!core) 877 return 0; 878 879 if (core->prepare_count == 0) { 880 ret = clk_pm_runtime_get(core); 881 if (ret) 882 return ret; 883 884 ret = clk_core_prepare(core->parent); 885 if (ret) 886 goto runtime_put; 887 888 trace_clk_prepare(core); 889 890 if (core->ops->prepare) 891 ret = core->ops->prepare(core->hw); 892 893 trace_clk_prepare_complete(core); 894 895 if (ret) 896 goto unprepare; 897 } 898 899 core->prepare_count++; 900 901 /* 902 * CLK_SET_RATE_GATE is a special case of clock protection 903 * Instead of a consumer claiming exclusive rate control, it is 904 * actually the provider which prevents any consumer from making any 905 * operation which could result in a rate change or rate glitch while 906 * the clock is prepared. 907 */ 908 if (core->flags & CLK_SET_RATE_GATE) 909 clk_core_rate_protect(core); 910 911 return 0; 912 unprepare: 913 clk_core_unprepare(core->parent); 914 runtime_put: 915 clk_pm_runtime_put(core); 916 return ret; 917 } 918 919 static int clk_core_prepare_lock(struct clk_core *core) 920 { 921 int ret; 922 923 clk_prepare_lock(); 924 ret = clk_core_prepare(core); 925 clk_prepare_unlock(); 926 927 return ret; 928 } 929 930 /** 931 * clk_prepare - prepare a clock source 932 * @clk: the clk being prepared 933 * 934 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 935 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 936 * operation may sleep. One example is a clk which is accessed over I2c. In 937 * the complex case a clk ungate operation may require a fast and a slow part. 938 * It is this reason that clk_prepare and clk_enable are not mutually 939 * exclusive. In fact clk_prepare must be called before clk_enable. 940 * Returns 0 on success, -EERROR otherwise. 941 */ 942 int clk_prepare(struct clk *clk) 943 { 944 if (!clk) 945 return 0; 946 947 return clk_core_prepare_lock(clk->core); 948 } 949 EXPORT_SYMBOL_GPL(clk_prepare); 950 951 static void clk_core_disable(struct clk_core *core) 952 { 953 lockdep_assert_held(&enable_lock); 954 955 if (!core) 956 return; 957 958 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 959 return; 960 961 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 962 "Disabling critical %s\n", core->name)) 963 return; 964 965 if (--core->enable_count > 0) 966 return; 967 968 trace_clk_disable_rcuidle(core); 969 970 if (core->ops->disable) 971 core->ops->disable(core->hw); 972 973 trace_clk_disable_complete_rcuidle(core); 974 975 clk_core_disable(core->parent); 976 } 977 978 static void clk_core_disable_lock(struct clk_core *core) 979 { 980 unsigned long flags; 981 982 flags = clk_enable_lock(); 983 clk_core_disable(core); 984 clk_enable_unlock(flags); 985 } 986 987 /** 988 * clk_disable - gate a clock 989 * @clk: the clk being gated 990 * 991 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 992 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 993 * clk if the operation is fast and will never sleep. One example is a 994 * SoC-internal clk which is controlled via simple register writes. In the 995 * complex case a clk gate operation may require a fast and a slow part. It is 996 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 997 * In fact clk_disable must be called before clk_unprepare. 998 */ 999 void clk_disable(struct clk *clk) 1000 { 1001 if (IS_ERR_OR_NULL(clk)) 1002 return; 1003 1004 clk_core_disable_lock(clk->core); 1005 } 1006 EXPORT_SYMBOL_GPL(clk_disable); 1007 1008 static int clk_core_enable(struct clk_core *core) 1009 { 1010 int ret = 0; 1011 1012 lockdep_assert_held(&enable_lock); 1013 1014 if (!core) 1015 return 0; 1016 1017 if (WARN(core->prepare_count == 0, 1018 "Enabling unprepared %s\n", core->name)) 1019 return -ESHUTDOWN; 1020 1021 if (core->enable_count == 0) { 1022 ret = clk_core_enable(core->parent); 1023 1024 if (ret) 1025 return ret; 1026 1027 trace_clk_enable_rcuidle(core); 1028 1029 if (core->ops->enable) 1030 ret = core->ops->enable(core->hw); 1031 1032 trace_clk_enable_complete_rcuidle(core); 1033 1034 if (ret) { 1035 clk_core_disable(core->parent); 1036 return ret; 1037 } 1038 } 1039 1040 core->enable_count++; 1041 return 0; 1042 } 1043 1044 static int clk_core_enable_lock(struct clk_core *core) 1045 { 1046 unsigned long flags; 1047 int ret; 1048 1049 flags = clk_enable_lock(); 1050 ret = clk_core_enable(core); 1051 clk_enable_unlock(flags); 1052 1053 return ret; 1054 } 1055 1056 /** 1057 * clk_gate_restore_context - restore context for poweroff 1058 * @hw: the clk_hw pointer of clock whose state is to be restored 1059 * 1060 * The clock gate restore context function enables or disables 1061 * the gate clocks based on the enable_count. This is done in cases 1062 * where the clock context is lost and based on the enable_count 1063 * the clock either needs to be enabled/disabled. This 1064 * helps restore the state of gate clocks. 1065 */ 1066 void clk_gate_restore_context(struct clk_hw *hw) 1067 { 1068 struct clk_core *core = hw->core; 1069 1070 if (core->enable_count) 1071 core->ops->enable(hw); 1072 else 1073 core->ops->disable(hw); 1074 } 1075 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1076 1077 static int clk_core_save_context(struct clk_core *core) 1078 { 1079 struct clk_core *child; 1080 int ret = 0; 1081 1082 hlist_for_each_entry(child, &core->children, child_node) { 1083 ret = clk_core_save_context(child); 1084 if (ret < 0) 1085 return ret; 1086 } 1087 1088 if (core->ops && core->ops->save_context) 1089 ret = core->ops->save_context(core->hw); 1090 1091 return ret; 1092 } 1093 1094 static void clk_core_restore_context(struct clk_core *core) 1095 { 1096 struct clk_core *child; 1097 1098 if (core->ops && core->ops->restore_context) 1099 core->ops->restore_context(core->hw); 1100 1101 hlist_for_each_entry(child, &core->children, child_node) 1102 clk_core_restore_context(child); 1103 } 1104 1105 /** 1106 * clk_save_context - save clock context for poweroff 1107 * 1108 * Saves the context of the clock register for powerstates in which the 1109 * contents of the registers will be lost. Occurs deep within the suspend 1110 * code. Returns 0 on success. 1111 */ 1112 int clk_save_context(void) 1113 { 1114 struct clk_core *clk; 1115 int ret; 1116 1117 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1118 ret = clk_core_save_context(clk); 1119 if (ret < 0) 1120 return ret; 1121 } 1122 1123 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1124 ret = clk_core_save_context(clk); 1125 if (ret < 0) 1126 return ret; 1127 } 1128 1129 return 0; 1130 } 1131 EXPORT_SYMBOL_GPL(clk_save_context); 1132 1133 /** 1134 * clk_restore_context - restore clock context after poweroff 1135 * 1136 * Restore the saved clock context upon resume. 1137 * 1138 */ 1139 void clk_restore_context(void) 1140 { 1141 struct clk_core *core; 1142 1143 hlist_for_each_entry(core, &clk_root_list, child_node) 1144 clk_core_restore_context(core); 1145 1146 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1147 clk_core_restore_context(core); 1148 } 1149 EXPORT_SYMBOL_GPL(clk_restore_context); 1150 1151 /** 1152 * clk_enable - ungate a clock 1153 * @clk: the clk being ungated 1154 * 1155 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1156 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1157 * if the operation will never sleep. One example is a SoC-internal clk which 1158 * is controlled via simple register writes. In the complex case a clk ungate 1159 * operation may require a fast and a slow part. It is this reason that 1160 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1161 * must be called before clk_enable. Returns 0 on success, -EERROR 1162 * otherwise. 1163 */ 1164 int clk_enable(struct clk *clk) 1165 { 1166 if (!clk) 1167 return 0; 1168 1169 return clk_core_enable_lock(clk->core); 1170 } 1171 EXPORT_SYMBOL_GPL(clk_enable); 1172 1173 static int clk_core_prepare_enable(struct clk_core *core) 1174 { 1175 int ret; 1176 1177 ret = clk_core_prepare_lock(core); 1178 if (ret) 1179 return ret; 1180 1181 ret = clk_core_enable_lock(core); 1182 if (ret) 1183 clk_core_unprepare_lock(core); 1184 1185 return ret; 1186 } 1187 1188 static void clk_core_disable_unprepare(struct clk_core *core) 1189 { 1190 clk_core_disable_lock(core); 1191 clk_core_unprepare_lock(core); 1192 } 1193 1194 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1195 { 1196 struct clk_core *child; 1197 1198 lockdep_assert_held(&prepare_lock); 1199 1200 hlist_for_each_entry(child, &core->children, child_node) 1201 clk_unprepare_unused_subtree(child); 1202 1203 if (core->prepare_count) 1204 return; 1205 1206 if (core->flags & CLK_IGNORE_UNUSED) 1207 return; 1208 1209 if (clk_pm_runtime_get(core)) 1210 return; 1211 1212 if (clk_core_is_prepared(core)) { 1213 trace_clk_unprepare(core); 1214 if (core->ops->unprepare_unused) 1215 core->ops->unprepare_unused(core->hw); 1216 else if (core->ops->unprepare) 1217 core->ops->unprepare(core->hw); 1218 trace_clk_unprepare_complete(core); 1219 } 1220 1221 clk_pm_runtime_put(core); 1222 } 1223 1224 static void __init clk_disable_unused_subtree(struct clk_core *core) 1225 { 1226 struct clk_core *child; 1227 unsigned long flags; 1228 1229 lockdep_assert_held(&prepare_lock); 1230 1231 hlist_for_each_entry(child, &core->children, child_node) 1232 clk_disable_unused_subtree(child); 1233 1234 if (core->flags & CLK_OPS_PARENT_ENABLE) 1235 clk_core_prepare_enable(core->parent); 1236 1237 if (clk_pm_runtime_get(core)) 1238 goto unprepare_out; 1239 1240 flags = clk_enable_lock(); 1241 1242 if (core->enable_count) 1243 goto unlock_out; 1244 1245 if (core->flags & CLK_IGNORE_UNUSED) 1246 goto unlock_out; 1247 1248 /* 1249 * some gate clocks have special needs during the disable-unused 1250 * sequence. call .disable_unused if available, otherwise fall 1251 * back to .disable 1252 */ 1253 if (clk_core_is_enabled(core)) { 1254 trace_clk_disable(core); 1255 if (core->ops->disable_unused) 1256 core->ops->disable_unused(core->hw); 1257 else if (core->ops->disable) 1258 core->ops->disable(core->hw); 1259 trace_clk_disable_complete(core); 1260 } 1261 1262 unlock_out: 1263 clk_enable_unlock(flags); 1264 clk_pm_runtime_put(core); 1265 unprepare_out: 1266 if (core->flags & CLK_OPS_PARENT_ENABLE) 1267 clk_core_disable_unprepare(core->parent); 1268 } 1269 1270 static bool clk_ignore_unused __initdata; 1271 static int __init clk_ignore_unused_setup(char *__unused) 1272 { 1273 clk_ignore_unused = true; 1274 return 1; 1275 } 1276 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1277 1278 static int __init clk_disable_unused(void) 1279 { 1280 struct clk_core *core; 1281 1282 if (clk_ignore_unused) { 1283 pr_warn("clk: Not disabling unused clocks\n"); 1284 return 0; 1285 } 1286 1287 clk_prepare_lock(); 1288 1289 hlist_for_each_entry(core, &clk_root_list, child_node) 1290 clk_disable_unused_subtree(core); 1291 1292 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1293 clk_disable_unused_subtree(core); 1294 1295 hlist_for_each_entry(core, &clk_root_list, child_node) 1296 clk_unprepare_unused_subtree(core); 1297 1298 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1299 clk_unprepare_unused_subtree(core); 1300 1301 clk_prepare_unlock(); 1302 1303 return 0; 1304 } 1305 late_initcall_sync(clk_disable_unused); 1306 1307 static int clk_core_determine_round_nolock(struct clk_core *core, 1308 struct clk_rate_request *req) 1309 { 1310 long rate; 1311 1312 lockdep_assert_held(&prepare_lock); 1313 1314 if (!core) 1315 return 0; 1316 1317 /* 1318 * At this point, core protection will be disabled if 1319 * - if the provider is not protected at all 1320 * - if the calling consumer is the only one which has exclusivity 1321 * over the provider 1322 */ 1323 if (clk_core_rate_is_protected(core)) { 1324 req->rate = core->rate; 1325 } else if (core->ops->determine_rate) { 1326 return core->ops->determine_rate(core->hw, req); 1327 } else if (core->ops->round_rate) { 1328 rate = core->ops->round_rate(core->hw, req->rate, 1329 &req->best_parent_rate); 1330 if (rate < 0) 1331 return rate; 1332 1333 req->rate = rate; 1334 } else { 1335 return -EINVAL; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static void clk_core_init_rate_req(struct clk_core * const core, 1342 struct clk_rate_request *req) 1343 { 1344 struct clk_core *parent; 1345 1346 if (WARN_ON(!core || !req)) 1347 return; 1348 1349 parent = core->parent; 1350 if (parent) { 1351 req->best_parent_hw = parent->hw; 1352 req->best_parent_rate = parent->rate; 1353 } else { 1354 req->best_parent_hw = NULL; 1355 req->best_parent_rate = 0; 1356 } 1357 } 1358 1359 static bool clk_core_can_round(struct clk_core * const core) 1360 { 1361 return core->ops->determine_rate || core->ops->round_rate; 1362 } 1363 1364 static int clk_core_round_rate_nolock(struct clk_core *core, 1365 struct clk_rate_request *req) 1366 { 1367 lockdep_assert_held(&prepare_lock); 1368 1369 if (!core) { 1370 req->rate = 0; 1371 return 0; 1372 } 1373 1374 clk_core_init_rate_req(core, req); 1375 1376 if (clk_core_can_round(core)) 1377 return clk_core_determine_round_nolock(core, req); 1378 else if (core->flags & CLK_SET_RATE_PARENT) 1379 return clk_core_round_rate_nolock(core->parent, req); 1380 1381 req->rate = core->rate; 1382 return 0; 1383 } 1384 1385 /** 1386 * __clk_determine_rate - get the closest rate actually supported by a clock 1387 * @hw: determine the rate of this clock 1388 * @req: target rate request 1389 * 1390 * Useful for clk_ops such as .set_rate and .determine_rate. 1391 */ 1392 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1393 { 1394 if (!hw) { 1395 req->rate = 0; 1396 return 0; 1397 } 1398 1399 return clk_core_round_rate_nolock(hw->core, req); 1400 } 1401 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1402 1403 /** 1404 * clk_hw_round_rate() - round the given rate for a hw clk 1405 * @hw: the hw clk for which we are rounding a rate 1406 * @rate: the rate which is to be rounded 1407 * 1408 * Takes in a rate as input and rounds it to a rate that the clk can actually 1409 * use. 1410 * 1411 * Context: prepare_lock must be held. 1412 * For clk providers to call from within clk_ops such as .round_rate, 1413 * .determine_rate. 1414 * 1415 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1416 * else returns the parent rate. 1417 */ 1418 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1419 { 1420 int ret; 1421 struct clk_rate_request req; 1422 1423 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1424 req.rate = rate; 1425 1426 ret = clk_core_round_rate_nolock(hw->core, &req); 1427 if (ret) 1428 return 0; 1429 1430 return req.rate; 1431 } 1432 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1433 1434 /** 1435 * clk_round_rate - round the given rate for a clk 1436 * @clk: the clk for which we are rounding a rate 1437 * @rate: the rate which is to be rounded 1438 * 1439 * Takes in a rate as input and rounds it to a rate that the clk can actually 1440 * use which is then returned. If clk doesn't support round_rate operation 1441 * then the parent rate is returned. 1442 */ 1443 long clk_round_rate(struct clk *clk, unsigned long rate) 1444 { 1445 struct clk_rate_request req; 1446 int ret; 1447 1448 if (!clk) 1449 return 0; 1450 1451 clk_prepare_lock(); 1452 1453 if (clk->exclusive_count) 1454 clk_core_rate_unprotect(clk->core); 1455 1456 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1457 req.rate = rate; 1458 1459 ret = clk_core_round_rate_nolock(clk->core, &req); 1460 1461 if (clk->exclusive_count) 1462 clk_core_rate_protect(clk->core); 1463 1464 clk_prepare_unlock(); 1465 1466 if (ret) 1467 return ret; 1468 1469 return req.rate; 1470 } 1471 EXPORT_SYMBOL_GPL(clk_round_rate); 1472 1473 /** 1474 * __clk_notify - call clk notifier chain 1475 * @core: clk that is changing rate 1476 * @msg: clk notifier type (see include/linux/clk.h) 1477 * @old_rate: old clk rate 1478 * @new_rate: new clk rate 1479 * 1480 * Triggers a notifier call chain on the clk rate-change notification 1481 * for 'clk'. Passes a pointer to the struct clk and the previous 1482 * and current rates to the notifier callback. Intended to be called by 1483 * internal clock code only. Returns NOTIFY_DONE from the last driver 1484 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1485 * a driver returns that. 1486 */ 1487 static int __clk_notify(struct clk_core *core, unsigned long msg, 1488 unsigned long old_rate, unsigned long new_rate) 1489 { 1490 struct clk_notifier *cn; 1491 struct clk_notifier_data cnd; 1492 int ret = NOTIFY_DONE; 1493 1494 cnd.old_rate = old_rate; 1495 cnd.new_rate = new_rate; 1496 1497 list_for_each_entry(cn, &clk_notifier_list, node) { 1498 if (cn->clk->core == core) { 1499 cnd.clk = cn->clk; 1500 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1501 &cnd); 1502 if (ret & NOTIFY_STOP_MASK) 1503 return ret; 1504 } 1505 } 1506 1507 return ret; 1508 } 1509 1510 /** 1511 * __clk_recalc_accuracies 1512 * @core: first clk in the subtree 1513 * 1514 * Walks the subtree of clks starting with clk and recalculates accuracies as 1515 * it goes. Note that if a clk does not implement the .recalc_accuracy 1516 * callback then it is assumed that the clock will take on the accuracy of its 1517 * parent. 1518 */ 1519 static void __clk_recalc_accuracies(struct clk_core *core) 1520 { 1521 unsigned long parent_accuracy = 0; 1522 struct clk_core *child; 1523 1524 lockdep_assert_held(&prepare_lock); 1525 1526 if (core->parent) 1527 parent_accuracy = core->parent->accuracy; 1528 1529 if (core->ops->recalc_accuracy) 1530 core->accuracy = core->ops->recalc_accuracy(core->hw, 1531 parent_accuracy); 1532 else 1533 core->accuracy = parent_accuracy; 1534 1535 hlist_for_each_entry(child, &core->children, child_node) 1536 __clk_recalc_accuracies(child); 1537 } 1538 1539 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1540 { 1541 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1542 __clk_recalc_accuracies(core); 1543 1544 return clk_core_get_accuracy_no_lock(core); 1545 } 1546 1547 /** 1548 * clk_get_accuracy - return the accuracy of clk 1549 * @clk: the clk whose accuracy is being returned 1550 * 1551 * Simply returns the cached accuracy of the clk, unless 1552 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1553 * issued. 1554 * If clk is NULL then returns 0. 1555 */ 1556 long clk_get_accuracy(struct clk *clk) 1557 { 1558 long accuracy; 1559 1560 if (!clk) 1561 return 0; 1562 1563 clk_prepare_lock(); 1564 accuracy = clk_core_get_accuracy_recalc(clk->core); 1565 clk_prepare_unlock(); 1566 1567 return accuracy; 1568 } 1569 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1570 1571 static unsigned long clk_recalc(struct clk_core *core, 1572 unsigned long parent_rate) 1573 { 1574 unsigned long rate = parent_rate; 1575 1576 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1577 rate = core->ops->recalc_rate(core->hw, parent_rate); 1578 clk_pm_runtime_put(core); 1579 } 1580 return rate; 1581 } 1582 1583 /** 1584 * __clk_recalc_rates 1585 * @core: first clk in the subtree 1586 * @msg: notification type (see include/linux/clk.h) 1587 * 1588 * Walks the subtree of clks starting with clk and recalculates rates as it 1589 * goes. Note that if a clk does not implement the .recalc_rate callback then 1590 * it is assumed that the clock will take on the rate of its parent. 1591 * 1592 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1593 * if necessary. 1594 */ 1595 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1596 { 1597 unsigned long old_rate; 1598 unsigned long parent_rate = 0; 1599 struct clk_core *child; 1600 1601 lockdep_assert_held(&prepare_lock); 1602 1603 old_rate = core->rate; 1604 1605 if (core->parent) 1606 parent_rate = core->parent->rate; 1607 1608 core->rate = clk_recalc(core, parent_rate); 1609 1610 /* 1611 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1612 * & ABORT_RATE_CHANGE notifiers 1613 */ 1614 if (core->notifier_count && msg) 1615 __clk_notify(core, msg, old_rate, core->rate); 1616 1617 hlist_for_each_entry(child, &core->children, child_node) 1618 __clk_recalc_rates(child, msg); 1619 } 1620 1621 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1622 { 1623 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1624 __clk_recalc_rates(core, 0); 1625 1626 return clk_core_get_rate_nolock(core); 1627 } 1628 1629 /** 1630 * clk_get_rate - return the rate of clk 1631 * @clk: the clk whose rate is being returned 1632 * 1633 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1634 * is set, which means a recalc_rate will be issued. 1635 * If clk is NULL then returns 0. 1636 */ 1637 unsigned long clk_get_rate(struct clk *clk) 1638 { 1639 unsigned long rate; 1640 1641 if (!clk) 1642 return 0; 1643 1644 clk_prepare_lock(); 1645 rate = clk_core_get_rate_recalc(clk->core); 1646 clk_prepare_unlock(); 1647 1648 return rate; 1649 } 1650 EXPORT_SYMBOL_GPL(clk_get_rate); 1651 1652 static int clk_fetch_parent_index(struct clk_core *core, 1653 struct clk_core *parent) 1654 { 1655 int i; 1656 1657 if (!parent) 1658 return -EINVAL; 1659 1660 for (i = 0; i < core->num_parents; i++) { 1661 /* Found it first try! */ 1662 if (core->parents[i].core == parent) 1663 return i; 1664 1665 /* Something else is here, so keep looking */ 1666 if (core->parents[i].core) 1667 continue; 1668 1669 /* Maybe core hasn't been cached but the hw is all we know? */ 1670 if (core->parents[i].hw) { 1671 if (core->parents[i].hw == parent->hw) 1672 break; 1673 1674 /* Didn't match, but we're expecting a clk_hw */ 1675 continue; 1676 } 1677 1678 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1679 if (parent == clk_core_get(core, i)) 1680 break; 1681 1682 /* Fallback to comparing globally unique names */ 1683 if (core->parents[i].name && 1684 !strcmp(parent->name, core->parents[i].name)) 1685 break; 1686 } 1687 1688 if (i == core->num_parents) 1689 return -EINVAL; 1690 1691 core->parents[i].core = parent; 1692 return i; 1693 } 1694 1695 /** 1696 * clk_hw_get_parent_index - return the index of the parent clock 1697 * @hw: clk_hw associated with the clk being consumed 1698 * 1699 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1700 * clock does not have a current parent. 1701 */ 1702 int clk_hw_get_parent_index(struct clk_hw *hw) 1703 { 1704 struct clk_hw *parent = clk_hw_get_parent(hw); 1705 1706 if (WARN_ON(parent == NULL)) 1707 return -EINVAL; 1708 1709 return clk_fetch_parent_index(hw->core, parent->core); 1710 } 1711 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1712 1713 /* 1714 * Update the orphan status of @core and all its children. 1715 */ 1716 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1717 { 1718 struct clk_core *child; 1719 1720 core->orphan = is_orphan; 1721 1722 hlist_for_each_entry(child, &core->children, child_node) 1723 clk_core_update_orphan_status(child, is_orphan); 1724 } 1725 1726 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1727 { 1728 bool was_orphan = core->orphan; 1729 1730 hlist_del(&core->child_node); 1731 1732 if (new_parent) { 1733 bool becomes_orphan = new_parent->orphan; 1734 1735 /* avoid duplicate POST_RATE_CHANGE notifications */ 1736 if (new_parent->new_child == core) 1737 new_parent->new_child = NULL; 1738 1739 hlist_add_head(&core->child_node, &new_parent->children); 1740 1741 if (was_orphan != becomes_orphan) 1742 clk_core_update_orphan_status(core, becomes_orphan); 1743 } else { 1744 hlist_add_head(&core->child_node, &clk_orphan_list); 1745 if (!was_orphan) 1746 clk_core_update_orphan_status(core, true); 1747 } 1748 1749 core->parent = new_parent; 1750 } 1751 1752 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1753 struct clk_core *parent) 1754 { 1755 unsigned long flags; 1756 struct clk_core *old_parent = core->parent; 1757 1758 /* 1759 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1760 * 1761 * 2. Migrate prepare state between parents and prevent race with 1762 * clk_enable(). 1763 * 1764 * If the clock is not prepared, then a race with 1765 * clk_enable/disable() is impossible since we already have the 1766 * prepare lock (future calls to clk_enable() need to be preceded by 1767 * a clk_prepare()). 1768 * 1769 * If the clock is prepared, migrate the prepared state to the new 1770 * parent and also protect against a race with clk_enable() by 1771 * forcing the clock and the new parent on. This ensures that all 1772 * future calls to clk_enable() are practically NOPs with respect to 1773 * hardware and software states. 1774 * 1775 * See also: Comment for clk_set_parent() below. 1776 */ 1777 1778 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1779 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1780 clk_core_prepare_enable(old_parent); 1781 clk_core_prepare_enable(parent); 1782 } 1783 1784 /* migrate prepare count if > 0 */ 1785 if (core->prepare_count) { 1786 clk_core_prepare_enable(parent); 1787 clk_core_enable_lock(core); 1788 } 1789 1790 /* update the clk tree topology */ 1791 flags = clk_enable_lock(); 1792 clk_reparent(core, parent); 1793 clk_enable_unlock(flags); 1794 1795 return old_parent; 1796 } 1797 1798 static void __clk_set_parent_after(struct clk_core *core, 1799 struct clk_core *parent, 1800 struct clk_core *old_parent) 1801 { 1802 /* 1803 * Finish the migration of prepare state and undo the changes done 1804 * for preventing a race with clk_enable(). 1805 */ 1806 if (core->prepare_count) { 1807 clk_core_disable_lock(core); 1808 clk_core_disable_unprepare(old_parent); 1809 } 1810 1811 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1812 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1813 clk_core_disable_unprepare(parent); 1814 clk_core_disable_unprepare(old_parent); 1815 } 1816 } 1817 1818 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1819 u8 p_index) 1820 { 1821 unsigned long flags; 1822 int ret = 0; 1823 struct clk_core *old_parent; 1824 1825 old_parent = __clk_set_parent_before(core, parent); 1826 1827 trace_clk_set_parent(core, parent); 1828 1829 /* change clock input source */ 1830 if (parent && core->ops->set_parent) 1831 ret = core->ops->set_parent(core->hw, p_index); 1832 1833 trace_clk_set_parent_complete(core, parent); 1834 1835 if (ret) { 1836 flags = clk_enable_lock(); 1837 clk_reparent(core, old_parent); 1838 clk_enable_unlock(flags); 1839 __clk_set_parent_after(core, old_parent, parent); 1840 1841 return ret; 1842 } 1843 1844 __clk_set_parent_after(core, parent, old_parent); 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * __clk_speculate_rates 1851 * @core: first clk in the subtree 1852 * @parent_rate: the "future" rate of clk's parent 1853 * 1854 * Walks the subtree of clks starting with clk, speculating rates as it 1855 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1856 * 1857 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1858 * pre-rate change notifications and returns early if no clks in the 1859 * subtree have subscribed to the notifications. Note that if a clk does not 1860 * implement the .recalc_rate callback then it is assumed that the clock will 1861 * take on the rate of its parent. 1862 */ 1863 static int __clk_speculate_rates(struct clk_core *core, 1864 unsigned long parent_rate) 1865 { 1866 struct clk_core *child; 1867 unsigned long new_rate; 1868 int ret = NOTIFY_DONE; 1869 1870 lockdep_assert_held(&prepare_lock); 1871 1872 new_rate = clk_recalc(core, parent_rate); 1873 1874 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1875 if (core->notifier_count) 1876 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1877 1878 if (ret & NOTIFY_STOP_MASK) { 1879 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1880 __func__, core->name, ret); 1881 goto out; 1882 } 1883 1884 hlist_for_each_entry(child, &core->children, child_node) { 1885 ret = __clk_speculate_rates(child, new_rate); 1886 if (ret & NOTIFY_STOP_MASK) 1887 break; 1888 } 1889 1890 out: 1891 return ret; 1892 } 1893 1894 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1895 struct clk_core *new_parent, u8 p_index) 1896 { 1897 struct clk_core *child; 1898 1899 core->new_rate = new_rate; 1900 core->new_parent = new_parent; 1901 core->new_parent_index = p_index; 1902 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1903 core->new_child = NULL; 1904 if (new_parent && new_parent != core->parent) 1905 new_parent->new_child = core; 1906 1907 hlist_for_each_entry(child, &core->children, child_node) { 1908 child->new_rate = clk_recalc(child, new_rate); 1909 clk_calc_subtree(child, child->new_rate, NULL, 0); 1910 } 1911 } 1912 1913 /* 1914 * calculate the new rates returning the topmost clock that has to be 1915 * changed. 1916 */ 1917 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1918 unsigned long rate) 1919 { 1920 struct clk_core *top = core; 1921 struct clk_core *old_parent, *parent; 1922 unsigned long best_parent_rate = 0; 1923 unsigned long new_rate; 1924 unsigned long min_rate; 1925 unsigned long max_rate; 1926 int p_index = 0; 1927 long ret; 1928 1929 /* sanity */ 1930 if (IS_ERR_OR_NULL(core)) 1931 return NULL; 1932 1933 /* save parent rate, if it exists */ 1934 parent = old_parent = core->parent; 1935 if (parent) 1936 best_parent_rate = parent->rate; 1937 1938 clk_core_get_boundaries(core, &min_rate, &max_rate); 1939 1940 /* find the closest rate and parent clk/rate */ 1941 if (clk_core_can_round(core)) { 1942 struct clk_rate_request req; 1943 1944 req.rate = rate; 1945 req.min_rate = min_rate; 1946 req.max_rate = max_rate; 1947 1948 clk_core_init_rate_req(core, &req); 1949 1950 ret = clk_core_determine_round_nolock(core, &req); 1951 if (ret < 0) 1952 return NULL; 1953 1954 best_parent_rate = req.best_parent_rate; 1955 new_rate = req.rate; 1956 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1957 1958 if (new_rate < min_rate || new_rate > max_rate) 1959 return NULL; 1960 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1961 /* pass-through clock without adjustable parent */ 1962 core->new_rate = core->rate; 1963 return NULL; 1964 } else { 1965 /* pass-through clock with adjustable parent */ 1966 top = clk_calc_new_rates(parent, rate); 1967 new_rate = parent->new_rate; 1968 goto out; 1969 } 1970 1971 /* some clocks must be gated to change parent */ 1972 if (parent != old_parent && 1973 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1974 pr_debug("%s: %s not gated but wants to reparent\n", 1975 __func__, core->name); 1976 return NULL; 1977 } 1978 1979 /* try finding the new parent index */ 1980 if (parent && core->num_parents > 1) { 1981 p_index = clk_fetch_parent_index(core, parent); 1982 if (p_index < 0) { 1983 pr_debug("%s: clk %s can not be parent of clk %s\n", 1984 __func__, parent->name, core->name); 1985 return NULL; 1986 } 1987 } 1988 1989 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1990 best_parent_rate != parent->rate) 1991 top = clk_calc_new_rates(parent, best_parent_rate); 1992 1993 out: 1994 clk_calc_subtree(core, new_rate, parent, p_index); 1995 1996 return top; 1997 } 1998 1999 /* 2000 * Notify about rate changes in a subtree. Always walk down the whole tree 2001 * so that in case of an error we can walk down the whole tree again and 2002 * abort the change. 2003 */ 2004 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2005 unsigned long event) 2006 { 2007 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2008 int ret = NOTIFY_DONE; 2009 2010 if (core->rate == core->new_rate) 2011 return NULL; 2012 2013 if (core->notifier_count) { 2014 ret = __clk_notify(core, event, core->rate, core->new_rate); 2015 if (ret & NOTIFY_STOP_MASK) 2016 fail_clk = core; 2017 } 2018 2019 hlist_for_each_entry(child, &core->children, child_node) { 2020 /* Skip children who will be reparented to another clock */ 2021 if (child->new_parent && child->new_parent != core) 2022 continue; 2023 tmp_clk = clk_propagate_rate_change(child, event); 2024 if (tmp_clk) 2025 fail_clk = tmp_clk; 2026 } 2027 2028 /* handle the new child who might not be in core->children yet */ 2029 if (core->new_child) { 2030 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2031 if (tmp_clk) 2032 fail_clk = tmp_clk; 2033 } 2034 2035 return fail_clk; 2036 } 2037 2038 /* 2039 * walk down a subtree and set the new rates notifying the rate 2040 * change on the way 2041 */ 2042 static void clk_change_rate(struct clk_core *core) 2043 { 2044 struct clk_core *child; 2045 struct hlist_node *tmp; 2046 unsigned long old_rate; 2047 unsigned long best_parent_rate = 0; 2048 bool skip_set_rate = false; 2049 struct clk_core *old_parent; 2050 struct clk_core *parent = NULL; 2051 2052 old_rate = core->rate; 2053 2054 if (core->new_parent) { 2055 parent = core->new_parent; 2056 best_parent_rate = core->new_parent->rate; 2057 } else if (core->parent) { 2058 parent = core->parent; 2059 best_parent_rate = core->parent->rate; 2060 } 2061 2062 if (clk_pm_runtime_get(core)) 2063 return; 2064 2065 if (core->flags & CLK_SET_RATE_UNGATE) { 2066 unsigned long flags; 2067 2068 clk_core_prepare(core); 2069 flags = clk_enable_lock(); 2070 clk_core_enable(core); 2071 clk_enable_unlock(flags); 2072 } 2073 2074 if (core->new_parent && core->new_parent != core->parent) { 2075 old_parent = __clk_set_parent_before(core, core->new_parent); 2076 trace_clk_set_parent(core, core->new_parent); 2077 2078 if (core->ops->set_rate_and_parent) { 2079 skip_set_rate = true; 2080 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2081 best_parent_rate, 2082 core->new_parent_index); 2083 } else if (core->ops->set_parent) { 2084 core->ops->set_parent(core->hw, core->new_parent_index); 2085 } 2086 2087 trace_clk_set_parent_complete(core, core->new_parent); 2088 __clk_set_parent_after(core, core->new_parent, old_parent); 2089 } 2090 2091 if (core->flags & CLK_OPS_PARENT_ENABLE) 2092 clk_core_prepare_enable(parent); 2093 2094 trace_clk_set_rate(core, core->new_rate); 2095 2096 if (!skip_set_rate && core->ops->set_rate) 2097 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2098 2099 trace_clk_set_rate_complete(core, core->new_rate); 2100 2101 core->rate = clk_recalc(core, best_parent_rate); 2102 2103 if (core->flags & CLK_SET_RATE_UNGATE) { 2104 unsigned long flags; 2105 2106 flags = clk_enable_lock(); 2107 clk_core_disable(core); 2108 clk_enable_unlock(flags); 2109 clk_core_unprepare(core); 2110 } 2111 2112 if (core->flags & CLK_OPS_PARENT_ENABLE) 2113 clk_core_disable_unprepare(parent); 2114 2115 if (core->notifier_count && old_rate != core->rate) 2116 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2117 2118 if (core->flags & CLK_RECALC_NEW_RATES) 2119 (void)clk_calc_new_rates(core, core->new_rate); 2120 2121 /* 2122 * Use safe iteration, as change_rate can actually swap parents 2123 * for certain clock types. 2124 */ 2125 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2126 /* Skip children who will be reparented to another clock */ 2127 if (child->new_parent && child->new_parent != core) 2128 continue; 2129 clk_change_rate(child); 2130 } 2131 2132 /* handle the new child who might not be in core->children yet */ 2133 if (core->new_child) 2134 clk_change_rate(core->new_child); 2135 2136 clk_pm_runtime_put(core); 2137 } 2138 2139 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2140 unsigned long req_rate) 2141 { 2142 int ret, cnt; 2143 struct clk_rate_request req; 2144 2145 lockdep_assert_held(&prepare_lock); 2146 2147 if (!core) 2148 return 0; 2149 2150 /* simulate what the rate would be if it could be freely set */ 2151 cnt = clk_core_rate_nuke_protect(core); 2152 if (cnt < 0) 2153 return cnt; 2154 2155 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2156 req.rate = req_rate; 2157 2158 ret = clk_core_round_rate_nolock(core, &req); 2159 2160 /* restore the protection */ 2161 clk_core_rate_restore_protect(core, cnt); 2162 2163 return ret ? 0 : req.rate; 2164 } 2165 2166 static int clk_core_set_rate_nolock(struct clk_core *core, 2167 unsigned long req_rate) 2168 { 2169 struct clk_core *top, *fail_clk; 2170 unsigned long rate; 2171 int ret = 0; 2172 2173 if (!core) 2174 return 0; 2175 2176 rate = clk_core_req_round_rate_nolock(core, req_rate); 2177 2178 /* bail early if nothing to do */ 2179 if (rate == clk_core_get_rate_nolock(core)) 2180 return 0; 2181 2182 /* fail on a direct rate set of a protected provider */ 2183 if (clk_core_rate_is_protected(core)) 2184 return -EBUSY; 2185 2186 /* calculate new rates and get the topmost changed clock */ 2187 top = clk_calc_new_rates(core, req_rate); 2188 if (!top) 2189 return -EINVAL; 2190 2191 ret = clk_pm_runtime_get(core); 2192 if (ret) 2193 return ret; 2194 2195 /* notify that we are about to change rates */ 2196 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2197 if (fail_clk) { 2198 pr_debug("%s: failed to set %s rate\n", __func__, 2199 fail_clk->name); 2200 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2201 ret = -EBUSY; 2202 goto err; 2203 } 2204 2205 /* change the rates */ 2206 clk_change_rate(top); 2207 2208 core->req_rate = req_rate; 2209 err: 2210 clk_pm_runtime_put(core); 2211 2212 return ret; 2213 } 2214 2215 /** 2216 * clk_set_rate - specify a new rate for clk 2217 * @clk: the clk whose rate is being changed 2218 * @rate: the new rate for clk 2219 * 2220 * In the simplest case clk_set_rate will only adjust the rate of clk. 2221 * 2222 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2223 * propagate up to clk's parent; whether or not this happens depends on the 2224 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2225 * after calling .round_rate then upstream parent propagation is ignored. If 2226 * *parent_rate comes back with a new rate for clk's parent then we propagate 2227 * up to clk's parent and set its rate. Upward propagation will continue 2228 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2229 * .round_rate stops requesting changes to clk's parent_rate. 2230 * 2231 * Rate changes are accomplished via tree traversal that also recalculates the 2232 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2233 * 2234 * Returns 0 on success, -EERROR otherwise. 2235 */ 2236 int clk_set_rate(struct clk *clk, unsigned long rate) 2237 { 2238 int ret; 2239 2240 if (!clk) 2241 return 0; 2242 2243 /* prevent racing with updates to the clock topology */ 2244 clk_prepare_lock(); 2245 2246 if (clk->exclusive_count) 2247 clk_core_rate_unprotect(clk->core); 2248 2249 ret = clk_core_set_rate_nolock(clk->core, rate); 2250 2251 if (clk->exclusive_count) 2252 clk_core_rate_protect(clk->core); 2253 2254 clk_prepare_unlock(); 2255 2256 return ret; 2257 } 2258 EXPORT_SYMBOL_GPL(clk_set_rate); 2259 2260 /** 2261 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2262 * @clk: the clk whose rate is being changed 2263 * @rate: the new rate for clk 2264 * 2265 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2266 * within a critical section 2267 * 2268 * This can be used initially to ensure that at least 1 consumer is 2269 * satisfied when several consumers are competing for exclusivity over the 2270 * same clock provider. 2271 * 2272 * The exclusivity is not applied if setting the rate failed. 2273 * 2274 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2275 * clk_rate_exclusive_put(). 2276 * 2277 * Returns 0 on success, -EERROR otherwise. 2278 */ 2279 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2280 { 2281 int ret; 2282 2283 if (!clk) 2284 return 0; 2285 2286 /* prevent racing with updates to the clock topology */ 2287 clk_prepare_lock(); 2288 2289 /* 2290 * The temporary protection removal is not here, on purpose 2291 * This function is meant to be used instead of clk_rate_protect, 2292 * so before the consumer code path protect the clock provider 2293 */ 2294 2295 ret = clk_core_set_rate_nolock(clk->core, rate); 2296 if (!ret) { 2297 clk_core_rate_protect(clk->core); 2298 clk->exclusive_count++; 2299 } 2300 2301 clk_prepare_unlock(); 2302 2303 return ret; 2304 } 2305 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2306 2307 /** 2308 * clk_set_rate_range - set a rate range for a clock source 2309 * @clk: clock source 2310 * @min: desired minimum clock rate in Hz, inclusive 2311 * @max: desired maximum clock rate in Hz, inclusive 2312 * 2313 * Returns success (0) or negative errno. 2314 */ 2315 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2316 { 2317 int ret = 0; 2318 unsigned long old_min, old_max, rate; 2319 2320 if (!clk) 2321 return 0; 2322 2323 if (min > max) { 2324 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2325 __func__, clk->core->name, clk->dev_id, clk->con_id, 2326 min, max); 2327 return -EINVAL; 2328 } 2329 2330 clk_prepare_lock(); 2331 2332 if (clk->exclusive_count) 2333 clk_core_rate_unprotect(clk->core); 2334 2335 /* Save the current values in case we need to rollback the change */ 2336 old_min = clk->min_rate; 2337 old_max = clk->max_rate; 2338 clk->min_rate = min; 2339 clk->max_rate = max; 2340 2341 rate = clk_core_get_rate_nolock(clk->core); 2342 if (rate < min || rate > max) { 2343 /* 2344 * FIXME: 2345 * We are in bit of trouble here, current rate is outside the 2346 * the requested range. We are going try to request appropriate 2347 * range boundary but there is a catch. It may fail for the 2348 * usual reason (clock broken, clock protected, etc) but also 2349 * because: 2350 * - round_rate() was not favorable and fell on the wrong 2351 * side of the boundary 2352 * - the determine_rate() callback does not really check for 2353 * this corner case when determining the rate 2354 */ 2355 2356 if (rate < min) 2357 rate = min; 2358 else 2359 rate = max; 2360 2361 ret = clk_core_set_rate_nolock(clk->core, rate); 2362 if (ret) { 2363 /* rollback the changes */ 2364 clk->min_rate = old_min; 2365 clk->max_rate = old_max; 2366 } 2367 } 2368 2369 if (clk->exclusive_count) 2370 clk_core_rate_protect(clk->core); 2371 2372 clk_prepare_unlock(); 2373 2374 return ret; 2375 } 2376 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2377 2378 /** 2379 * clk_set_min_rate - set a minimum clock rate for a clock source 2380 * @clk: clock source 2381 * @rate: desired minimum clock rate in Hz, inclusive 2382 * 2383 * Returns success (0) or negative errno. 2384 */ 2385 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2386 { 2387 if (!clk) 2388 return 0; 2389 2390 return clk_set_rate_range(clk, rate, clk->max_rate); 2391 } 2392 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2393 2394 /** 2395 * clk_set_max_rate - set a maximum clock rate for a clock source 2396 * @clk: clock source 2397 * @rate: desired maximum clock rate in Hz, inclusive 2398 * 2399 * Returns success (0) or negative errno. 2400 */ 2401 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2402 { 2403 if (!clk) 2404 return 0; 2405 2406 return clk_set_rate_range(clk, clk->min_rate, rate); 2407 } 2408 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2409 2410 /** 2411 * clk_get_parent - return the parent of a clk 2412 * @clk: the clk whose parent gets returned 2413 * 2414 * Simply returns clk->parent. Returns NULL if clk is NULL. 2415 */ 2416 struct clk *clk_get_parent(struct clk *clk) 2417 { 2418 struct clk *parent; 2419 2420 if (!clk) 2421 return NULL; 2422 2423 clk_prepare_lock(); 2424 /* TODO: Create a per-user clk and change callers to call clk_put */ 2425 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2426 clk_prepare_unlock(); 2427 2428 return parent; 2429 } 2430 EXPORT_SYMBOL_GPL(clk_get_parent); 2431 2432 static struct clk_core *__clk_init_parent(struct clk_core *core) 2433 { 2434 u8 index = 0; 2435 2436 if (core->num_parents > 1 && core->ops->get_parent) 2437 index = core->ops->get_parent(core->hw); 2438 2439 return clk_core_get_parent_by_index(core, index); 2440 } 2441 2442 static void clk_core_reparent(struct clk_core *core, 2443 struct clk_core *new_parent) 2444 { 2445 clk_reparent(core, new_parent); 2446 __clk_recalc_accuracies(core); 2447 __clk_recalc_rates(core, POST_RATE_CHANGE); 2448 } 2449 2450 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2451 { 2452 if (!hw) 2453 return; 2454 2455 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2456 } 2457 2458 /** 2459 * clk_has_parent - check if a clock is a possible parent for another 2460 * @clk: clock source 2461 * @parent: parent clock source 2462 * 2463 * This function can be used in drivers that need to check that a clock can be 2464 * the parent of another without actually changing the parent. 2465 * 2466 * Returns true if @parent is a possible parent for @clk, false otherwise. 2467 */ 2468 bool clk_has_parent(struct clk *clk, struct clk *parent) 2469 { 2470 struct clk_core *core, *parent_core; 2471 int i; 2472 2473 /* NULL clocks should be nops, so return success if either is NULL. */ 2474 if (!clk || !parent) 2475 return true; 2476 2477 core = clk->core; 2478 parent_core = parent->core; 2479 2480 /* Optimize for the case where the parent is already the parent. */ 2481 if (core->parent == parent_core) 2482 return true; 2483 2484 for (i = 0; i < core->num_parents; i++) 2485 if (!strcmp(core->parents[i].name, parent_core->name)) 2486 return true; 2487 2488 return false; 2489 } 2490 EXPORT_SYMBOL_GPL(clk_has_parent); 2491 2492 static int clk_core_set_parent_nolock(struct clk_core *core, 2493 struct clk_core *parent) 2494 { 2495 int ret = 0; 2496 int p_index = 0; 2497 unsigned long p_rate = 0; 2498 2499 lockdep_assert_held(&prepare_lock); 2500 2501 if (!core) 2502 return 0; 2503 2504 if (core->parent == parent) 2505 return 0; 2506 2507 /* verify ops for multi-parent clks */ 2508 if (core->num_parents > 1 && !core->ops->set_parent) 2509 return -EPERM; 2510 2511 /* check that we are allowed to re-parent if the clock is in use */ 2512 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2513 return -EBUSY; 2514 2515 if (clk_core_rate_is_protected(core)) 2516 return -EBUSY; 2517 2518 /* try finding the new parent index */ 2519 if (parent) { 2520 p_index = clk_fetch_parent_index(core, parent); 2521 if (p_index < 0) { 2522 pr_debug("%s: clk %s can not be parent of clk %s\n", 2523 __func__, parent->name, core->name); 2524 return p_index; 2525 } 2526 p_rate = parent->rate; 2527 } 2528 2529 ret = clk_pm_runtime_get(core); 2530 if (ret) 2531 return ret; 2532 2533 /* propagate PRE_RATE_CHANGE notifications */ 2534 ret = __clk_speculate_rates(core, p_rate); 2535 2536 /* abort if a driver objects */ 2537 if (ret & NOTIFY_STOP_MASK) 2538 goto runtime_put; 2539 2540 /* do the re-parent */ 2541 ret = __clk_set_parent(core, parent, p_index); 2542 2543 /* propagate rate an accuracy recalculation accordingly */ 2544 if (ret) { 2545 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2546 } else { 2547 __clk_recalc_rates(core, POST_RATE_CHANGE); 2548 __clk_recalc_accuracies(core); 2549 } 2550 2551 runtime_put: 2552 clk_pm_runtime_put(core); 2553 2554 return ret; 2555 } 2556 2557 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2558 { 2559 return clk_core_set_parent_nolock(hw->core, parent->core); 2560 } 2561 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2562 2563 /** 2564 * clk_set_parent - switch the parent of a mux clk 2565 * @clk: the mux clk whose input we are switching 2566 * @parent: the new input to clk 2567 * 2568 * Re-parent clk to use parent as its new input source. If clk is in 2569 * prepared state, the clk will get enabled for the duration of this call. If 2570 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2571 * that, the reparenting is glitchy in hardware, etc), use the 2572 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2573 * 2574 * After successfully changing clk's parent clk_set_parent will update the 2575 * clk topology, sysfs topology and propagate rate recalculation via 2576 * __clk_recalc_rates. 2577 * 2578 * Returns 0 on success, -EERROR otherwise. 2579 */ 2580 int clk_set_parent(struct clk *clk, struct clk *parent) 2581 { 2582 int ret; 2583 2584 if (!clk) 2585 return 0; 2586 2587 clk_prepare_lock(); 2588 2589 if (clk->exclusive_count) 2590 clk_core_rate_unprotect(clk->core); 2591 2592 ret = clk_core_set_parent_nolock(clk->core, 2593 parent ? parent->core : NULL); 2594 2595 if (clk->exclusive_count) 2596 clk_core_rate_protect(clk->core); 2597 2598 clk_prepare_unlock(); 2599 2600 return ret; 2601 } 2602 EXPORT_SYMBOL_GPL(clk_set_parent); 2603 2604 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2605 { 2606 int ret = -EINVAL; 2607 2608 lockdep_assert_held(&prepare_lock); 2609 2610 if (!core) 2611 return 0; 2612 2613 if (clk_core_rate_is_protected(core)) 2614 return -EBUSY; 2615 2616 trace_clk_set_phase(core, degrees); 2617 2618 if (core->ops->set_phase) { 2619 ret = core->ops->set_phase(core->hw, degrees); 2620 if (!ret) 2621 core->phase = degrees; 2622 } 2623 2624 trace_clk_set_phase_complete(core, degrees); 2625 2626 return ret; 2627 } 2628 2629 /** 2630 * clk_set_phase - adjust the phase shift of a clock signal 2631 * @clk: clock signal source 2632 * @degrees: number of degrees the signal is shifted 2633 * 2634 * Shifts the phase of a clock signal by the specified 2635 * degrees. Returns 0 on success, -EERROR otherwise. 2636 * 2637 * This function makes no distinction about the input or reference 2638 * signal that we adjust the clock signal phase against. For example 2639 * phase locked-loop clock signal generators we may shift phase with 2640 * respect to feedback clock signal input, but for other cases the 2641 * clock phase may be shifted with respect to some other, unspecified 2642 * signal. 2643 * 2644 * Additionally the concept of phase shift does not propagate through 2645 * the clock tree hierarchy, which sets it apart from clock rates and 2646 * clock accuracy. A parent clock phase attribute does not have an 2647 * impact on the phase attribute of a child clock. 2648 */ 2649 int clk_set_phase(struct clk *clk, int degrees) 2650 { 2651 int ret; 2652 2653 if (!clk) 2654 return 0; 2655 2656 /* sanity check degrees */ 2657 degrees %= 360; 2658 if (degrees < 0) 2659 degrees += 360; 2660 2661 clk_prepare_lock(); 2662 2663 if (clk->exclusive_count) 2664 clk_core_rate_unprotect(clk->core); 2665 2666 ret = clk_core_set_phase_nolock(clk->core, degrees); 2667 2668 if (clk->exclusive_count) 2669 clk_core_rate_protect(clk->core); 2670 2671 clk_prepare_unlock(); 2672 2673 return ret; 2674 } 2675 EXPORT_SYMBOL_GPL(clk_set_phase); 2676 2677 static int clk_core_get_phase(struct clk_core *core) 2678 { 2679 int ret; 2680 2681 lockdep_assert_held(&prepare_lock); 2682 if (!core->ops->get_phase) 2683 return 0; 2684 2685 /* Always try to update cached phase if possible */ 2686 ret = core->ops->get_phase(core->hw); 2687 if (ret >= 0) 2688 core->phase = ret; 2689 2690 return ret; 2691 } 2692 2693 /** 2694 * clk_get_phase - return the phase shift of a clock signal 2695 * @clk: clock signal source 2696 * 2697 * Returns the phase shift of a clock node in degrees, otherwise returns 2698 * -EERROR. 2699 */ 2700 int clk_get_phase(struct clk *clk) 2701 { 2702 int ret; 2703 2704 if (!clk) 2705 return 0; 2706 2707 clk_prepare_lock(); 2708 ret = clk_core_get_phase(clk->core); 2709 clk_prepare_unlock(); 2710 2711 return ret; 2712 } 2713 EXPORT_SYMBOL_GPL(clk_get_phase); 2714 2715 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2716 { 2717 /* Assume a default value of 50% */ 2718 core->duty.num = 1; 2719 core->duty.den = 2; 2720 } 2721 2722 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2723 2724 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2725 { 2726 struct clk_duty *duty = &core->duty; 2727 int ret = 0; 2728 2729 if (!core->ops->get_duty_cycle) 2730 return clk_core_update_duty_cycle_parent_nolock(core); 2731 2732 ret = core->ops->get_duty_cycle(core->hw, duty); 2733 if (ret) 2734 goto reset; 2735 2736 /* Don't trust the clock provider too much */ 2737 if (duty->den == 0 || duty->num > duty->den) { 2738 ret = -EINVAL; 2739 goto reset; 2740 } 2741 2742 return 0; 2743 2744 reset: 2745 clk_core_reset_duty_cycle_nolock(core); 2746 return ret; 2747 } 2748 2749 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2750 { 2751 int ret = 0; 2752 2753 if (core->parent && 2754 core->flags & CLK_DUTY_CYCLE_PARENT) { 2755 ret = clk_core_update_duty_cycle_nolock(core->parent); 2756 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2757 } else { 2758 clk_core_reset_duty_cycle_nolock(core); 2759 } 2760 2761 return ret; 2762 } 2763 2764 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2765 struct clk_duty *duty); 2766 2767 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2768 struct clk_duty *duty) 2769 { 2770 int ret; 2771 2772 lockdep_assert_held(&prepare_lock); 2773 2774 if (clk_core_rate_is_protected(core)) 2775 return -EBUSY; 2776 2777 trace_clk_set_duty_cycle(core, duty); 2778 2779 if (!core->ops->set_duty_cycle) 2780 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2781 2782 ret = core->ops->set_duty_cycle(core->hw, duty); 2783 if (!ret) 2784 memcpy(&core->duty, duty, sizeof(*duty)); 2785 2786 trace_clk_set_duty_cycle_complete(core, duty); 2787 2788 return ret; 2789 } 2790 2791 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2792 struct clk_duty *duty) 2793 { 2794 int ret = 0; 2795 2796 if (core->parent && 2797 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2798 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2799 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2800 } 2801 2802 return ret; 2803 } 2804 2805 /** 2806 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2807 * @clk: clock signal source 2808 * @num: numerator of the duty cycle ratio to be applied 2809 * @den: denominator of the duty cycle ratio to be applied 2810 * 2811 * Apply the duty cycle ratio if the ratio is valid and the clock can 2812 * perform this operation 2813 * 2814 * Returns (0) on success, a negative errno otherwise. 2815 */ 2816 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2817 { 2818 int ret; 2819 struct clk_duty duty; 2820 2821 if (!clk) 2822 return 0; 2823 2824 /* sanity check the ratio */ 2825 if (den == 0 || num > den) 2826 return -EINVAL; 2827 2828 duty.num = num; 2829 duty.den = den; 2830 2831 clk_prepare_lock(); 2832 2833 if (clk->exclusive_count) 2834 clk_core_rate_unprotect(clk->core); 2835 2836 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2837 2838 if (clk->exclusive_count) 2839 clk_core_rate_protect(clk->core); 2840 2841 clk_prepare_unlock(); 2842 2843 return ret; 2844 } 2845 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2846 2847 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2848 unsigned int scale) 2849 { 2850 struct clk_duty *duty = &core->duty; 2851 int ret; 2852 2853 clk_prepare_lock(); 2854 2855 ret = clk_core_update_duty_cycle_nolock(core); 2856 if (!ret) 2857 ret = mult_frac(scale, duty->num, duty->den); 2858 2859 clk_prepare_unlock(); 2860 2861 return ret; 2862 } 2863 2864 /** 2865 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2866 * @clk: clock signal source 2867 * @scale: scaling factor to be applied to represent the ratio as an integer 2868 * 2869 * Returns the duty cycle ratio of a clock node multiplied by the provided 2870 * scaling factor, or negative errno on error. 2871 */ 2872 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2873 { 2874 if (!clk) 2875 return 0; 2876 2877 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2878 } 2879 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2880 2881 /** 2882 * clk_is_match - check if two clk's point to the same hardware clock 2883 * @p: clk compared against q 2884 * @q: clk compared against p 2885 * 2886 * Returns true if the two struct clk pointers both point to the same hardware 2887 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2888 * share the same struct clk_core object. 2889 * 2890 * Returns false otherwise. Note that two NULL clks are treated as matching. 2891 */ 2892 bool clk_is_match(const struct clk *p, const struct clk *q) 2893 { 2894 /* trivial case: identical struct clk's or both NULL */ 2895 if (p == q) 2896 return true; 2897 2898 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2899 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2900 if (p->core == q->core) 2901 return true; 2902 2903 return false; 2904 } 2905 EXPORT_SYMBOL_GPL(clk_is_match); 2906 2907 /*** debugfs support ***/ 2908 2909 #ifdef CONFIG_DEBUG_FS 2910 #include <linux/debugfs.h> 2911 2912 static struct dentry *rootdir; 2913 static int inited = 0; 2914 static DEFINE_MUTEX(clk_debug_lock); 2915 static HLIST_HEAD(clk_debug_list); 2916 2917 static struct hlist_head *orphan_list[] = { 2918 &clk_orphan_list, 2919 NULL, 2920 }; 2921 2922 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2923 int level) 2924 { 2925 int phase; 2926 2927 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2928 level * 3 + 1, "", 2929 30 - level * 3, c->name, 2930 c->enable_count, c->prepare_count, c->protect_count, 2931 clk_core_get_rate_recalc(c), 2932 clk_core_get_accuracy_recalc(c)); 2933 2934 phase = clk_core_get_phase(c); 2935 if (phase >= 0) 2936 seq_printf(s, "%5d", phase); 2937 else 2938 seq_puts(s, "-----"); 2939 2940 seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000)); 2941 } 2942 2943 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2944 int level) 2945 { 2946 struct clk_core *child; 2947 2948 clk_summary_show_one(s, c, level); 2949 2950 hlist_for_each_entry(child, &c->children, child_node) 2951 clk_summary_show_subtree(s, child, level + 1); 2952 } 2953 2954 static int clk_summary_show(struct seq_file *s, void *data) 2955 { 2956 struct clk_core *c; 2957 struct hlist_head **lists = (struct hlist_head **)s->private; 2958 2959 seq_puts(s, " enable prepare protect duty\n"); 2960 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2961 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2962 2963 clk_prepare_lock(); 2964 2965 for (; *lists; lists++) 2966 hlist_for_each_entry(c, *lists, child_node) 2967 clk_summary_show_subtree(s, c, 0); 2968 2969 clk_prepare_unlock(); 2970 2971 return 0; 2972 } 2973 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2974 2975 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2976 { 2977 int phase; 2978 unsigned long min_rate, max_rate; 2979 2980 clk_core_get_boundaries(c, &min_rate, &max_rate); 2981 2982 /* This should be JSON format, i.e. elements separated with a comma */ 2983 seq_printf(s, "\"%s\": { ", c->name); 2984 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2985 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2986 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2987 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 2988 seq_printf(s, "\"min_rate\": %lu,", min_rate); 2989 seq_printf(s, "\"max_rate\": %lu,", max_rate); 2990 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 2991 phase = clk_core_get_phase(c); 2992 if (phase >= 0) 2993 seq_printf(s, "\"phase\": %d,", phase); 2994 seq_printf(s, "\"duty_cycle\": %u", 2995 clk_core_get_scaled_duty_cycle(c, 100000)); 2996 } 2997 2998 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2999 { 3000 struct clk_core *child; 3001 3002 clk_dump_one(s, c, level); 3003 3004 hlist_for_each_entry(child, &c->children, child_node) { 3005 seq_putc(s, ','); 3006 clk_dump_subtree(s, child, level + 1); 3007 } 3008 3009 seq_putc(s, '}'); 3010 } 3011 3012 static int clk_dump_show(struct seq_file *s, void *data) 3013 { 3014 struct clk_core *c; 3015 bool first_node = true; 3016 struct hlist_head **lists = (struct hlist_head **)s->private; 3017 3018 seq_putc(s, '{'); 3019 clk_prepare_lock(); 3020 3021 for (; *lists; lists++) { 3022 hlist_for_each_entry(c, *lists, child_node) { 3023 if (!first_node) 3024 seq_putc(s, ','); 3025 first_node = false; 3026 clk_dump_subtree(s, c, 0); 3027 } 3028 } 3029 3030 clk_prepare_unlock(); 3031 3032 seq_puts(s, "}\n"); 3033 return 0; 3034 } 3035 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3036 3037 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3038 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3039 /* 3040 * This can be dangerous, therefore don't provide any real compile time 3041 * configuration option for this feature. 3042 * People who want to use this will need to modify the source code directly. 3043 */ 3044 static int clk_rate_set(void *data, u64 val) 3045 { 3046 struct clk_core *core = data; 3047 int ret; 3048 3049 clk_prepare_lock(); 3050 ret = clk_core_set_rate_nolock(core, val); 3051 clk_prepare_unlock(); 3052 3053 return ret; 3054 } 3055 3056 #define clk_rate_mode 0644 3057 #else 3058 #define clk_rate_set NULL 3059 #define clk_rate_mode 0444 3060 #endif 3061 3062 static int clk_rate_get(void *data, u64 *val) 3063 { 3064 struct clk_core *core = data; 3065 3066 *val = core->rate; 3067 return 0; 3068 } 3069 3070 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3071 3072 static const struct { 3073 unsigned long flag; 3074 const char *name; 3075 } clk_flags[] = { 3076 #define ENTRY(f) { f, #f } 3077 ENTRY(CLK_SET_RATE_GATE), 3078 ENTRY(CLK_SET_PARENT_GATE), 3079 ENTRY(CLK_SET_RATE_PARENT), 3080 ENTRY(CLK_IGNORE_UNUSED), 3081 ENTRY(CLK_GET_RATE_NOCACHE), 3082 ENTRY(CLK_SET_RATE_NO_REPARENT), 3083 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3084 ENTRY(CLK_RECALC_NEW_RATES), 3085 ENTRY(CLK_SET_RATE_UNGATE), 3086 ENTRY(CLK_IS_CRITICAL), 3087 ENTRY(CLK_OPS_PARENT_ENABLE), 3088 ENTRY(CLK_DUTY_CYCLE_PARENT), 3089 #undef ENTRY 3090 }; 3091 3092 static int clk_flags_show(struct seq_file *s, void *data) 3093 { 3094 struct clk_core *core = s->private; 3095 unsigned long flags = core->flags; 3096 unsigned int i; 3097 3098 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3099 if (flags & clk_flags[i].flag) { 3100 seq_printf(s, "%s\n", clk_flags[i].name); 3101 flags &= ~clk_flags[i].flag; 3102 } 3103 } 3104 if (flags) { 3105 /* Unknown flags */ 3106 seq_printf(s, "0x%lx\n", flags); 3107 } 3108 3109 return 0; 3110 } 3111 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3112 3113 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3114 unsigned int i, char terminator) 3115 { 3116 struct clk_core *parent; 3117 3118 /* 3119 * Go through the following options to fetch a parent's name. 3120 * 3121 * 1. Fetch the registered parent clock and use its name 3122 * 2. Use the global (fallback) name if specified 3123 * 3. Use the local fw_name if provided 3124 * 4. Fetch parent clock's clock-output-name if DT index was set 3125 * 3126 * This may still fail in some cases, such as when the parent is 3127 * specified directly via a struct clk_hw pointer, but it isn't 3128 * registered (yet). 3129 */ 3130 parent = clk_core_get_parent_by_index(core, i); 3131 if (parent) 3132 seq_puts(s, parent->name); 3133 else if (core->parents[i].name) 3134 seq_puts(s, core->parents[i].name); 3135 else if (core->parents[i].fw_name) 3136 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3137 else if (core->parents[i].index >= 0) 3138 seq_puts(s, 3139 of_clk_get_parent_name(core->of_node, 3140 core->parents[i].index)); 3141 else 3142 seq_puts(s, "(missing)"); 3143 3144 seq_putc(s, terminator); 3145 } 3146 3147 static int possible_parents_show(struct seq_file *s, void *data) 3148 { 3149 struct clk_core *core = s->private; 3150 int i; 3151 3152 for (i = 0; i < core->num_parents - 1; i++) 3153 possible_parent_show(s, core, i, ' '); 3154 3155 possible_parent_show(s, core, i, '\n'); 3156 3157 return 0; 3158 } 3159 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3160 3161 static int current_parent_show(struct seq_file *s, void *data) 3162 { 3163 struct clk_core *core = s->private; 3164 3165 if (core->parent) 3166 seq_printf(s, "%s\n", core->parent->name); 3167 3168 return 0; 3169 } 3170 DEFINE_SHOW_ATTRIBUTE(current_parent); 3171 3172 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3173 { 3174 struct clk_core *core = s->private; 3175 struct clk_duty *duty = &core->duty; 3176 3177 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3178 3179 return 0; 3180 } 3181 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3182 3183 static int clk_min_rate_show(struct seq_file *s, void *data) 3184 { 3185 struct clk_core *core = s->private; 3186 unsigned long min_rate, max_rate; 3187 3188 clk_prepare_lock(); 3189 clk_core_get_boundaries(core, &min_rate, &max_rate); 3190 clk_prepare_unlock(); 3191 seq_printf(s, "%lu\n", min_rate); 3192 3193 return 0; 3194 } 3195 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3196 3197 static int clk_max_rate_show(struct seq_file *s, void *data) 3198 { 3199 struct clk_core *core = s->private; 3200 unsigned long min_rate, max_rate; 3201 3202 clk_prepare_lock(); 3203 clk_core_get_boundaries(core, &min_rate, &max_rate); 3204 clk_prepare_unlock(); 3205 seq_printf(s, "%lu\n", max_rate); 3206 3207 return 0; 3208 } 3209 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3210 3211 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3212 { 3213 struct dentry *root; 3214 3215 if (!core || !pdentry) 3216 return; 3217 3218 root = debugfs_create_dir(core->name, pdentry); 3219 core->dentry = root; 3220 3221 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3222 &clk_rate_fops); 3223 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3224 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3225 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3226 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3227 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3228 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3229 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3230 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3231 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3232 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3233 &clk_duty_cycle_fops); 3234 3235 if (core->num_parents > 0) 3236 debugfs_create_file("clk_parent", 0444, root, core, 3237 ¤t_parent_fops); 3238 3239 if (core->num_parents > 1) 3240 debugfs_create_file("clk_possible_parents", 0444, root, core, 3241 &possible_parents_fops); 3242 3243 if (core->ops->debug_init) 3244 core->ops->debug_init(core->hw, core->dentry); 3245 } 3246 3247 /** 3248 * clk_debug_register - add a clk node to the debugfs clk directory 3249 * @core: the clk being added to the debugfs clk directory 3250 * 3251 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3252 * initialized. Otherwise it bails out early since the debugfs clk directory 3253 * will be created lazily by clk_debug_init as part of a late_initcall. 3254 */ 3255 static void clk_debug_register(struct clk_core *core) 3256 { 3257 mutex_lock(&clk_debug_lock); 3258 hlist_add_head(&core->debug_node, &clk_debug_list); 3259 if (inited) 3260 clk_debug_create_one(core, rootdir); 3261 mutex_unlock(&clk_debug_lock); 3262 } 3263 3264 /** 3265 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3266 * @core: the clk being removed from the debugfs clk directory 3267 * 3268 * Dynamically removes a clk and all its child nodes from the 3269 * debugfs clk directory if clk->dentry points to debugfs created by 3270 * clk_debug_register in __clk_core_init. 3271 */ 3272 static void clk_debug_unregister(struct clk_core *core) 3273 { 3274 mutex_lock(&clk_debug_lock); 3275 hlist_del_init(&core->debug_node); 3276 debugfs_remove_recursive(core->dentry); 3277 core->dentry = NULL; 3278 mutex_unlock(&clk_debug_lock); 3279 } 3280 3281 /** 3282 * clk_debug_init - lazily populate the debugfs clk directory 3283 * 3284 * clks are often initialized very early during boot before memory can be 3285 * dynamically allocated and well before debugfs is setup. This function 3286 * populates the debugfs clk directory once at boot-time when we know that 3287 * debugfs is setup. It should only be called once at boot-time, all other clks 3288 * added dynamically will be done so with clk_debug_register. 3289 */ 3290 static int __init clk_debug_init(void) 3291 { 3292 struct clk_core *core; 3293 3294 rootdir = debugfs_create_dir("clk", NULL); 3295 3296 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3297 &clk_summary_fops); 3298 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3299 &clk_dump_fops); 3300 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3301 &clk_summary_fops); 3302 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3303 &clk_dump_fops); 3304 3305 mutex_lock(&clk_debug_lock); 3306 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3307 clk_debug_create_one(core, rootdir); 3308 3309 inited = 1; 3310 mutex_unlock(&clk_debug_lock); 3311 3312 return 0; 3313 } 3314 late_initcall(clk_debug_init); 3315 #else 3316 static inline void clk_debug_register(struct clk_core *core) { } 3317 static inline void clk_debug_unregister(struct clk_core *core) 3318 { 3319 } 3320 #endif 3321 3322 static void clk_core_reparent_orphans_nolock(void) 3323 { 3324 struct clk_core *orphan; 3325 struct hlist_node *tmp2; 3326 3327 /* 3328 * walk the list of orphan clocks and reparent any that newly finds a 3329 * parent. 3330 */ 3331 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3332 struct clk_core *parent = __clk_init_parent(orphan); 3333 3334 /* 3335 * We need to use __clk_set_parent_before() and _after() to 3336 * to properly migrate any prepare/enable count of the orphan 3337 * clock. This is important for CLK_IS_CRITICAL clocks, which 3338 * are enabled during init but might not have a parent yet. 3339 */ 3340 if (parent) { 3341 /* update the clk tree topology */ 3342 __clk_set_parent_before(orphan, parent); 3343 __clk_set_parent_after(orphan, parent, NULL); 3344 __clk_recalc_accuracies(orphan); 3345 __clk_recalc_rates(orphan, 0); 3346 } 3347 } 3348 } 3349 3350 /** 3351 * __clk_core_init - initialize the data structures in a struct clk_core 3352 * @core: clk_core being initialized 3353 * 3354 * Initializes the lists in struct clk_core, queries the hardware for the 3355 * parent and rate and sets them both. 3356 */ 3357 static int __clk_core_init(struct clk_core *core) 3358 { 3359 int ret; 3360 struct clk_core *parent; 3361 unsigned long rate; 3362 int phase; 3363 3364 if (!core) 3365 return -EINVAL; 3366 3367 clk_prepare_lock(); 3368 3369 ret = clk_pm_runtime_get(core); 3370 if (ret) 3371 goto unlock; 3372 3373 /* check to see if a clock with this name is already registered */ 3374 if (clk_core_lookup(core->name)) { 3375 pr_debug("%s: clk %s already initialized\n", 3376 __func__, core->name); 3377 ret = -EEXIST; 3378 goto out; 3379 } 3380 3381 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3382 if (core->ops->set_rate && 3383 !((core->ops->round_rate || core->ops->determine_rate) && 3384 core->ops->recalc_rate)) { 3385 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3386 __func__, core->name); 3387 ret = -EINVAL; 3388 goto out; 3389 } 3390 3391 if (core->ops->set_parent && !core->ops->get_parent) { 3392 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3393 __func__, core->name); 3394 ret = -EINVAL; 3395 goto out; 3396 } 3397 3398 if (core->num_parents > 1 && !core->ops->get_parent) { 3399 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3400 __func__, core->name); 3401 ret = -EINVAL; 3402 goto out; 3403 } 3404 3405 if (core->ops->set_rate_and_parent && 3406 !(core->ops->set_parent && core->ops->set_rate)) { 3407 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3408 __func__, core->name); 3409 ret = -EINVAL; 3410 goto out; 3411 } 3412 3413 /* 3414 * optional platform-specific magic 3415 * 3416 * The .init callback is not used by any of the basic clock types, but 3417 * exists for weird hardware that must perform initialization magic for 3418 * CCF to get an accurate view of clock for any other callbacks. It may 3419 * also be used needs to perform dynamic allocations. Such allocation 3420 * must be freed in the terminate() callback. 3421 * This callback shall not be used to initialize the parameters state, 3422 * such as rate, parent, etc ... 3423 * 3424 * If it exist, this callback should called before any other callback of 3425 * the clock 3426 */ 3427 if (core->ops->init) { 3428 ret = core->ops->init(core->hw); 3429 if (ret) 3430 goto out; 3431 } 3432 3433 parent = core->parent = __clk_init_parent(core); 3434 3435 /* 3436 * Populate core->parent if parent has already been clk_core_init'd. If 3437 * parent has not yet been clk_core_init'd then place clk in the orphan 3438 * list. If clk doesn't have any parents then place it in the root 3439 * clk list. 3440 * 3441 * Every time a new clk is clk_init'd then we walk the list of orphan 3442 * clocks and re-parent any that are children of the clock currently 3443 * being clk_init'd. 3444 */ 3445 if (parent) { 3446 hlist_add_head(&core->child_node, &parent->children); 3447 core->orphan = parent->orphan; 3448 } else if (!core->num_parents) { 3449 hlist_add_head(&core->child_node, &clk_root_list); 3450 core->orphan = false; 3451 } else { 3452 hlist_add_head(&core->child_node, &clk_orphan_list); 3453 core->orphan = true; 3454 } 3455 3456 /* 3457 * Set clk's accuracy. The preferred method is to use 3458 * .recalc_accuracy. For simple clocks and lazy developers the default 3459 * fallback is to use the parent's accuracy. If a clock doesn't have a 3460 * parent (or is orphaned) then accuracy is set to zero (perfect 3461 * clock). 3462 */ 3463 if (core->ops->recalc_accuracy) 3464 core->accuracy = core->ops->recalc_accuracy(core->hw, 3465 clk_core_get_accuracy_no_lock(parent)); 3466 else if (parent) 3467 core->accuracy = parent->accuracy; 3468 else 3469 core->accuracy = 0; 3470 3471 /* 3472 * Set clk's phase by clk_core_get_phase() caching the phase. 3473 * Since a phase is by definition relative to its parent, just 3474 * query the current clock phase, or just assume it's in phase. 3475 */ 3476 phase = clk_core_get_phase(core); 3477 if (phase < 0) { 3478 ret = phase; 3479 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3480 core->name); 3481 goto out; 3482 } 3483 3484 /* 3485 * Set clk's duty cycle. 3486 */ 3487 clk_core_update_duty_cycle_nolock(core); 3488 3489 /* 3490 * Set clk's rate. The preferred method is to use .recalc_rate. For 3491 * simple clocks and lazy developers the default fallback is to use the 3492 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3493 * then rate is set to zero. 3494 */ 3495 if (core->ops->recalc_rate) 3496 rate = core->ops->recalc_rate(core->hw, 3497 clk_core_get_rate_nolock(parent)); 3498 else if (parent) 3499 rate = parent->rate; 3500 else 3501 rate = 0; 3502 core->rate = core->req_rate = rate; 3503 3504 /* 3505 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3506 * don't get accidentally disabled when walking the orphan tree and 3507 * reparenting clocks 3508 */ 3509 if (core->flags & CLK_IS_CRITICAL) { 3510 unsigned long flags; 3511 3512 ret = clk_core_prepare(core); 3513 if (ret) { 3514 pr_warn("%s: critical clk '%s' failed to prepare\n", 3515 __func__, core->name); 3516 goto out; 3517 } 3518 3519 flags = clk_enable_lock(); 3520 ret = clk_core_enable(core); 3521 clk_enable_unlock(flags); 3522 if (ret) { 3523 pr_warn("%s: critical clk '%s' failed to enable\n", 3524 __func__, core->name); 3525 clk_core_unprepare(core); 3526 goto out; 3527 } 3528 } 3529 3530 clk_core_reparent_orphans_nolock(); 3531 3532 3533 kref_init(&core->ref); 3534 out: 3535 clk_pm_runtime_put(core); 3536 unlock: 3537 if (ret) 3538 hlist_del_init(&core->child_node); 3539 3540 clk_prepare_unlock(); 3541 3542 if (!ret) 3543 clk_debug_register(core); 3544 3545 return ret; 3546 } 3547 3548 /** 3549 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3550 * @core: clk to add consumer to 3551 * @clk: consumer to link to a clk 3552 */ 3553 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3554 { 3555 clk_prepare_lock(); 3556 hlist_add_head(&clk->clks_node, &core->clks); 3557 clk_prepare_unlock(); 3558 } 3559 3560 /** 3561 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3562 * @clk: consumer to unlink 3563 */ 3564 static void clk_core_unlink_consumer(struct clk *clk) 3565 { 3566 lockdep_assert_held(&prepare_lock); 3567 hlist_del(&clk->clks_node); 3568 } 3569 3570 /** 3571 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3572 * @core: clk to allocate a consumer for 3573 * @dev_id: string describing device name 3574 * @con_id: connection ID string on device 3575 * 3576 * Returns: clk consumer left unlinked from the consumer list 3577 */ 3578 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3579 const char *con_id) 3580 { 3581 struct clk *clk; 3582 3583 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3584 if (!clk) 3585 return ERR_PTR(-ENOMEM); 3586 3587 clk->core = core; 3588 clk->dev_id = dev_id; 3589 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3590 clk->max_rate = ULONG_MAX; 3591 3592 return clk; 3593 } 3594 3595 /** 3596 * free_clk - Free a clk consumer 3597 * @clk: clk consumer to free 3598 * 3599 * Note, this assumes the clk has been unlinked from the clk_core consumer 3600 * list. 3601 */ 3602 static void free_clk(struct clk *clk) 3603 { 3604 kfree_const(clk->con_id); 3605 kfree(clk); 3606 } 3607 3608 /** 3609 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3610 * a clk_hw 3611 * @dev: clk consumer device 3612 * @hw: clk_hw associated with the clk being consumed 3613 * @dev_id: string describing device name 3614 * @con_id: connection ID string on device 3615 * 3616 * This is the main function used to create a clk pointer for use by clk 3617 * consumers. It connects a consumer to the clk_core and clk_hw structures 3618 * used by the framework and clk provider respectively. 3619 */ 3620 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3621 const char *dev_id, const char *con_id) 3622 { 3623 struct clk *clk; 3624 struct clk_core *core; 3625 3626 /* This is to allow this function to be chained to others */ 3627 if (IS_ERR_OR_NULL(hw)) 3628 return ERR_CAST(hw); 3629 3630 core = hw->core; 3631 clk = alloc_clk(core, dev_id, con_id); 3632 if (IS_ERR(clk)) 3633 return clk; 3634 clk->dev = dev; 3635 3636 if (!try_module_get(core->owner)) { 3637 free_clk(clk); 3638 return ERR_PTR(-ENOENT); 3639 } 3640 3641 kref_get(&core->ref); 3642 clk_core_link_consumer(core, clk); 3643 3644 return clk; 3645 } 3646 3647 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3648 { 3649 const char *dst; 3650 3651 if (!src) { 3652 if (must_exist) 3653 return -EINVAL; 3654 return 0; 3655 } 3656 3657 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3658 if (!dst) 3659 return -ENOMEM; 3660 3661 return 0; 3662 } 3663 3664 static int clk_core_populate_parent_map(struct clk_core *core, 3665 const struct clk_init_data *init) 3666 { 3667 u8 num_parents = init->num_parents; 3668 const char * const *parent_names = init->parent_names; 3669 const struct clk_hw **parent_hws = init->parent_hws; 3670 const struct clk_parent_data *parent_data = init->parent_data; 3671 int i, ret = 0; 3672 struct clk_parent_map *parents, *parent; 3673 3674 if (!num_parents) 3675 return 0; 3676 3677 /* 3678 * Avoid unnecessary string look-ups of clk_core's possible parents by 3679 * having a cache of names/clk_hw pointers to clk_core pointers. 3680 */ 3681 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3682 core->parents = parents; 3683 if (!parents) 3684 return -ENOMEM; 3685 3686 /* Copy everything over because it might be __initdata */ 3687 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3688 parent->index = -1; 3689 if (parent_names) { 3690 /* throw a WARN if any entries are NULL */ 3691 WARN(!parent_names[i], 3692 "%s: invalid NULL in %s's .parent_names\n", 3693 __func__, core->name); 3694 ret = clk_cpy_name(&parent->name, parent_names[i], 3695 true); 3696 } else if (parent_data) { 3697 parent->hw = parent_data[i].hw; 3698 parent->index = parent_data[i].index; 3699 ret = clk_cpy_name(&parent->fw_name, 3700 parent_data[i].fw_name, false); 3701 if (!ret) 3702 ret = clk_cpy_name(&parent->name, 3703 parent_data[i].name, 3704 false); 3705 } else if (parent_hws) { 3706 parent->hw = parent_hws[i]; 3707 } else { 3708 ret = -EINVAL; 3709 WARN(1, "Must specify parents if num_parents > 0\n"); 3710 } 3711 3712 if (ret) { 3713 do { 3714 kfree_const(parents[i].name); 3715 kfree_const(parents[i].fw_name); 3716 } while (--i >= 0); 3717 kfree(parents); 3718 3719 return ret; 3720 } 3721 } 3722 3723 return 0; 3724 } 3725 3726 static void clk_core_free_parent_map(struct clk_core *core) 3727 { 3728 int i = core->num_parents; 3729 3730 if (!core->num_parents) 3731 return; 3732 3733 while (--i >= 0) { 3734 kfree_const(core->parents[i].name); 3735 kfree_const(core->parents[i].fw_name); 3736 } 3737 3738 kfree(core->parents); 3739 } 3740 3741 static struct clk * 3742 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3743 { 3744 int ret; 3745 struct clk_core *core; 3746 const struct clk_init_data *init = hw->init; 3747 3748 /* 3749 * The init data is not supposed to be used outside of registration path. 3750 * Set it to NULL so that provider drivers can't use it either and so that 3751 * we catch use of hw->init early on in the core. 3752 */ 3753 hw->init = NULL; 3754 3755 core = kzalloc(sizeof(*core), GFP_KERNEL); 3756 if (!core) { 3757 ret = -ENOMEM; 3758 goto fail_out; 3759 } 3760 3761 core->name = kstrdup_const(init->name, GFP_KERNEL); 3762 if (!core->name) { 3763 ret = -ENOMEM; 3764 goto fail_name; 3765 } 3766 3767 if (WARN_ON(!init->ops)) { 3768 ret = -EINVAL; 3769 goto fail_ops; 3770 } 3771 core->ops = init->ops; 3772 3773 if (dev && pm_runtime_enabled(dev)) 3774 core->rpm_enabled = true; 3775 core->dev = dev; 3776 core->of_node = np; 3777 if (dev && dev->driver) 3778 core->owner = dev->driver->owner; 3779 core->hw = hw; 3780 core->flags = init->flags; 3781 core->num_parents = init->num_parents; 3782 core->min_rate = 0; 3783 core->max_rate = ULONG_MAX; 3784 hw->core = core; 3785 3786 ret = clk_core_populate_parent_map(core, init); 3787 if (ret) 3788 goto fail_parents; 3789 3790 INIT_HLIST_HEAD(&core->clks); 3791 3792 /* 3793 * Don't call clk_hw_create_clk() here because that would pin the 3794 * provider module to itself and prevent it from ever being removed. 3795 */ 3796 hw->clk = alloc_clk(core, NULL, NULL); 3797 if (IS_ERR(hw->clk)) { 3798 ret = PTR_ERR(hw->clk); 3799 goto fail_create_clk; 3800 } 3801 3802 clk_core_link_consumer(hw->core, hw->clk); 3803 3804 ret = __clk_core_init(core); 3805 if (!ret) 3806 return hw->clk; 3807 3808 clk_prepare_lock(); 3809 clk_core_unlink_consumer(hw->clk); 3810 clk_prepare_unlock(); 3811 3812 free_clk(hw->clk); 3813 hw->clk = NULL; 3814 3815 fail_create_clk: 3816 clk_core_free_parent_map(core); 3817 fail_parents: 3818 fail_ops: 3819 kfree_const(core->name); 3820 fail_name: 3821 kfree(core); 3822 fail_out: 3823 return ERR_PTR(ret); 3824 } 3825 3826 /** 3827 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3828 * @dev: Device to get device node of 3829 * 3830 * Return: device node pointer of @dev, or the device node pointer of 3831 * @dev->parent if dev doesn't have a device node, or NULL if neither 3832 * @dev or @dev->parent have a device node. 3833 */ 3834 static struct device_node *dev_or_parent_of_node(struct device *dev) 3835 { 3836 struct device_node *np; 3837 3838 if (!dev) 3839 return NULL; 3840 3841 np = dev_of_node(dev); 3842 if (!np) 3843 np = dev_of_node(dev->parent); 3844 3845 return np; 3846 } 3847 3848 /** 3849 * clk_register - allocate a new clock, register it and return an opaque cookie 3850 * @dev: device that is registering this clock 3851 * @hw: link to hardware-specific clock data 3852 * 3853 * clk_register is the *deprecated* interface for populating the clock tree with 3854 * new clock nodes. Use clk_hw_register() instead. 3855 * 3856 * Returns: a pointer to the newly allocated struct clk which 3857 * cannot be dereferenced by driver code but may be used in conjunction with the 3858 * rest of the clock API. In the event of an error clk_register will return an 3859 * error code; drivers must test for an error code after calling clk_register. 3860 */ 3861 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3862 { 3863 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 3864 } 3865 EXPORT_SYMBOL_GPL(clk_register); 3866 3867 /** 3868 * clk_hw_register - register a clk_hw and return an error code 3869 * @dev: device that is registering this clock 3870 * @hw: link to hardware-specific clock data 3871 * 3872 * clk_hw_register is the primary interface for populating the clock tree with 3873 * new clock nodes. It returns an integer equal to zero indicating success or 3874 * less than zero indicating failure. Drivers must test for an error code after 3875 * calling clk_hw_register(). 3876 */ 3877 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3878 { 3879 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 3880 hw)); 3881 } 3882 EXPORT_SYMBOL_GPL(clk_hw_register); 3883 3884 /* 3885 * of_clk_hw_register - register a clk_hw and return an error code 3886 * @node: device_node of device that is registering this clock 3887 * @hw: link to hardware-specific clock data 3888 * 3889 * of_clk_hw_register() is the primary interface for populating the clock tree 3890 * with new clock nodes when a struct device is not available, but a struct 3891 * device_node is. It returns an integer equal to zero indicating success or 3892 * less than zero indicating failure. Drivers must test for an error code after 3893 * calling of_clk_hw_register(). 3894 */ 3895 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3896 { 3897 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3898 } 3899 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3900 3901 /* Free memory allocated for a clock. */ 3902 static void __clk_release(struct kref *ref) 3903 { 3904 struct clk_core *core = container_of(ref, struct clk_core, ref); 3905 3906 lockdep_assert_held(&prepare_lock); 3907 3908 clk_core_free_parent_map(core); 3909 kfree_const(core->name); 3910 kfree(core); 3911 } 3912 3913 /* 3914 * Empty clk_ops for unregistered clocks. These are used temporarily 3915 * after clk_unregister() was called on a clock and until last clock 3916 * consumer calls clk_put() and the struct clk object is freed. 3917 */ 3918 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3919 { 3920 return -ENXIO; 3921 } 3922 3923 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3924 { 3925 WARN_ON_ONCE(1); 3926 } 3927 3928 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3929 unsigned long parent_rate) 3930 { 3931 return -ENXIO; 3932 } 3933 3934 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3935 { 3936 return -ENXIO; 3937 } 3938 3939 static const struct clk_ops clk_nodrv_ops = { 3940 .enable = clk_nodrv_prepare_enable, 3941 .disable = clk_nodrv_disable_unprepare, 3942 .prepare = clk_nodrv_prepare_enable, 3943 .unprepare = clk_nodrv_disable_unprepare, 3944 .set_rate = clk_nodrv_set_rate, 3945 .set_parent = clk_nodrv_set_parent, 3946 }; 3947 3948 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 3949 struct clk_core *target) 3950 { 3951 int i; 3952 struct clk_core *child; 3953 3954 for (i = 0; i < root->num_parents; i++) 3955 if (root->parents[i].core == target) 3956 root->parents[i].core = NULL; 3957 3958 hlist_for_each_entry(child, &root->children, child_node) 3959 clk_core_evict_parent_cache_subtree(child, target); 3960 } 3961 3962 /* Remove this clk from all parent caches */ 3963 static void clk_core_evict_parent_cache(struct clk_core *core) 3964 { 3965 struct hlist_head **lists; 3966 struct clk_core *root; 3967 3968 lockdep_assert_held(&prepare_lock); 3969 3970 for (lists = all_lists; *lists; lists++) 3971 hlist_for_each_entry(root, *lists, child_node) 3972 clk_core_evict_parent_cache_subtree(root, core); 3973 3974 } 3975 3976 /** 3977 * clk_unregister - unregister a currently registered clock 3978 * @clk: clock to unregister 3979 */ 3980 void clk_unregister(struct clk *clk) 3981 { 3982 unsigned long flags; 3983 const struct clk_ops *ops; 3984 3985 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3986 return; 3987 3988 clk_debug_unregister(clk->core); 3989 3990 clk_prepare_lock(); 3991 3992 ops = clk->core->ops; 3993 if (ops == &clk_nodrv_ops) { 3994 pr_err("%s: unregistered clock: %s\n", __func__, 3995 clk->core->name); 3996 goto unlock; 3997 } 3998 /* 3999 * Assign empty clock ops for consumers that might still hold 4000 * a reference to this clock. 4001 */ 4002 flags = clk_enable_lock(); 4003 clk->core->ops = &clk_nodrv_ops; 4004 clk_enable_unlock(flags); 4005 4006 if (ops->terminate) 4007 ops->terminate(clk->core->hw); 4008 4009 if (!hlist_empty(&clk->core->children)) { 4010 struct clk_core *child; 4011 struct hlist_node *t; 4012 4013 /* Reparent all children to the orphan list. */ 4014 hlist_for_each_entry_safe(child, t, &clk->core->children, 4015 child_node) 4016 clk_core_set_parent_nolock(child, NULL); 4017 } 4018 4019 clk_core_evict_parent_cache(clk->core); 4020 4021 hlist_del_init(&clk->core->child_node); 4022 4023 if (clk->core->prepare_count) 4024 pr_warn("%s: unregistering prepared clock: %s\n", 4025 __func__, clk->core->name); 4026 4027 if (clk->core->protect_count) 4028 pr_warn("%s: unregistering protected clock: %s\n", 4029 __func__, clk->core->name); 4030 4031 kref_put(&clk->core->ref, __clk_release); 4032 free_clk(clk); 4033 unlock: 4034 clk_prepare_unlock(); 4035 } 4036 EXPORT_SYMBOL_GPL(clk_unregister); 4037 4038 /** 4039 * clk_hw_unregister - unregister a currently registered clk_hw 4040 * @hw: hardware-specific clock data to unregister 4041 */ 4042 void clk_hw_unregister(struct clk_hw *hw) 4043 { 4044 clk_unregister(hw->clk); 4045 } 4046 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4047 4048 static void devm_clk_release(struct device *dev, void *res) 4049 { 4050 clk_unregister(*(struct clk **)res); 4051 } 4052 4053 static void devm_clk_hw_release(struct device *dev, void *res) 4054 { 4055 clk_hw_unregister(*(struct clk_hw **)res); 4056 } 4057 4058 /** 4059 * devm_clk_register - resource managed clk_register() 4060 * @dev: device that is registering this clock 4061 * @hw: link to hardware-specific clock data 4062 * 4063 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4064 * 4065 * Clocks returned from this function are automatically clk_unregister()ed on 4066 * driver detach. See clk_register() for more information. 4067 */ 4068 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4069 { 4070 struct clk *clk; 4071 struct clk **clkp; 4072 4073 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4074 if (!clkp) 4075 return ERR_PTR(-ENOMEM); 4076 4077 clk = clk_register(dev, hw); 4078 if (!IS_ERR(clk)) { 4079 *clkp = clk; 4080 devres_add(dev, clkp); 4081 } else { 4082 devres_free(clkp); 4083 } 4084 4085 return clk; 4086 } 4087 EXPORT_SYMBOL_GPL(devm_clk_register); 4088 4089 /** 4090 * devm_clk_hw_register - resource managed clk_hw_register() 4091 * @dev: device that is registering this clock 4092 * @hw: link to hardware-specific clock data 4093 * 4094 * Managed clk_hw_register(). Clocks registered by this function are 4095 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4096 * for more information. 4097 */ 4098 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4099 { 4100 struct clk_hw **hwp; 4101 int ret; 4102 4103 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 4104 if (!hwp) 4105 return -ENOMEM; 4106 4107 ret = clk_hw_register(dev, hw); 4108 if (!ret) { 4109 *hwp = hw; 4110 devres_add(dev, hwp); 4111 } else { 4112 devres_free(hwp); 4113 } 4114 4115 return ret; 4116 } 4117 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4118 4119 static int devm_clk_match(struct device *dev, void *res, void *data) 4120 { 4121 struct clk *c = res; 4122 if (WARN_ON(!c)) 4123 return 0; 4124 return c == data; 4125 } 4126 4127 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4128 { 4129 struct clk_hw *hw = res; 4130 4131 if (WARN_ON(!hw)) 4132 return 0; 4133 return hw == data; 4134 } 4135 4136 /** 4137 * devm_clk_unregister - resource managed clk_unregister() 4138 * @clk: clock to unregister 4139 * 4140 * Deallocate a clock allocated with devm_clk_register(). Normally 4141 * this function will not need to be called and the resource management 4142 * code will ensure that the resource is freed. 4143 */ 4144 void devm_clk_unregister(struct device *dev, struct clk *clk) 4145 { 4146 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 4147 } 4148 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4149 4150 /** 4151 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4152 * @dev: device that is unregistering the hardware-specific clock data 4153 * @hw: link to hardware-specific clock data 4154 * 4155 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4156 * this function will not need to be called and the resource management 4157 * code will ensure that the resource is freed. 4158 */ 4159 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4160 { 4161 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 4162 hw)); 4163 } 4164 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4165 4166 /* 4167 * clkdev helpers 4168 */ 4169 4170 void __clk_put(struct clk *clk) 4171 { 4172 struct module *owner; 4173 4174 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4175 return; 4176 4177 clk_prepare_lock(); 4178 4179 /* 4180 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4181 * given user should be balanced with calls to clk_rate_exclusive_put() 4182 * and by that same consumer 4183 */ 4184 if (WARN_ON(clk->exclusive_count)) { 4185 /* We voiced our concern, let's sanitize the situation */ 4186 clk->core->protect_count -= (clk->exclusive_count - 1); 4187 clk_core_rate_unprotect(clk->core); 4188 clk->exclusive_count = 0; 4189 } 4190 4191 hlist_del(&clk->clks_node); 4192 if (clk->min_rate > clk->core->req_rate || 4193 clk->max_rate < clk->core->req_rate) 4194 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4195 4196 owner = clk->core->owner; 4197 kref_put(&clk->core->ref, __clk_release); 4198 4199 clk_prepare_unlock(); 4200 4201 module_put(owner); 4202 4203 free_clk(clk); 4204 } 4205 4206 /*** clk rate change notifiers ***/ 4207 4208 /** 4209 * clk_notifier_register - add a clk rate change notifier 4210 * @clk: struct clk * to watch 4211 * @nb: struct notifier_block * with callback info 4212 * 4213 * Request notification when clk's rate changes. This uses an SRCU 4214 * notifier because we want it to block and notifier unregistrations are 4215 * uncommon. The callbacks associated with the notifier must not 4216 * re-enter into the clk framework by calling any top-level clk APIs; 4217 * this will cause a nested prepare_lock mutex. 4218 * 4219 * In all notification cases (pre, post and abort rate change) the original 4220 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4221 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4222 * 4223 * clk_notifier_register() must be called from non-atomic context. 4224 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4225 * allocation failure; otherwise, passes along the return value of 4226 * srcu_notifier_chain_register(). 4227 */ 4228 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4229 { 4230 struct clk_notifier *cn; 4231 int ret = -ENOMEM; 4232 4233 if (!clk || !nb) 4234 return -EINVAL; 4235 4236 clk_prepare_lock(); 4237 4238 /* search the list of notifiers for this clk */ 4239 list_for_each_entry(cn, &clk_notifier_list, node) 4240 if (cn->clk == clk) 4241 break; 4242 4243 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4244 if (cn->clk != clk) { 4245 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4246 if (!cn) 4247 goto out; 4248 4249 cn->clk = clk; 4250 srcu_init_notifier_head(&cn->notifier_head); 4251 4252 list_add(&cn->node, &clk_notifier_list); 4253 } 4254 4255 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4256 4257 clk->core->notifier_count++; 4258 4259 out: 4260 clk_prepare_unlock(); 4261 4262 return ret; 4263 } 4264 EXPORT_SYMBOL_GPL(clk_notifier_register); 4265 4266 /** 4267 * clk_notifier_unregister - remove a clk rate change notifier 4268 * @clk: struct clk * 4269 * @nb: struct notifier_block * with callback info 4270 * 4271 * Request no further notification for changes to 'clk' and frees memory 4272 * allocated in clk_notifier_register. 4273 * 4274 * Returns -EINVAL if called with null arguments; otherwise, passes 4275 * along the return value of srcu_notifier_chain_unregister(). 4276 */ 4277 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4278 { 4279 struct clk_notifier *cn = NULL; 4280 int ret = -EINVAL; 4281 4282 if (!clk || !nb) 4283 return -EINVAL; 4284 4285 clk_prepare_lock(); 4286 4287 list_for_each_entry(cn, &clk_notifier_list, node) 4288 if (cn->clk == clk) 4289 break; 4290 4291 if (cn->clk == clk) { 4292 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4293 4294 clk->core->notifier_count--; 4295 4296 /* XXX the notifier code should handle this better */ 4297 if (!cn->notifier_head.head) { 4298 srcu_cleanup_notifier_head(&cn->notifier_head); 4299 list_del(&cn->node); 4300 kfree(cn); 4301 } 4302 4303 } else { 4304 ret = -ENOENT; 4305 } 4306 4307 clk_prepare_unlock(); 4308 4309 return ret; 4310 } 4311 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4312 4313 #ifdef CONFIG_OF 4314 static void clk_core_reparent_orphans(void) 4315 { 4316 clk_prepare_lock(); 4317 clk_core_reparent_orphans_nolock(); 4318 clk_prepare_unlock(); 4319 } 4320 4321 /** 4322 * struct of_clk_provider - Clock provider registration structure 4323 * @link: Entry in global list of clock providers 4324 * @node: Pointer to device tree node of clock provider 4325 * @get: Get clock callback. Returns NULL or a struct clk for the 4326 * given clock specifier 4327 * @data: context pointer to be passed into @get callback 4328 */ 4329 struct of_clk_provider { 4330 struct list_head link; 4331 4332 struct device_node *node; 4333 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4334 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4335 void *data; 4336 }; 4337 4338 extern struct of_device_id __clk_of_table; 4339 static const struct of_device_id __clk_of_table_sentinel 4340 __used __section(__clk_of_table_end); 4341 4342 static LIST_HEAD(of_clk_providers); 4343 static DEFINE_MUTEX(of_clk_mutex); 4344 4345 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4346 void *data) 4347 { 4348 return data; 4349 } 4350 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4351 4352 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4353 { 4354 return data; 4355 } 4356 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4357 4358 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4359 { 4360 struct clk_onecell_data *clk_data = data; 4361 unsigned int idx = clkspec->args[0]; 4362 4363 if (idx >= clk_data->clk_num) { 4364 pr_err("%s: invalid clock index %u\n", __func__, idx); 4365 return ERR_PTR(-EINVAL); 4366 } 4367 4368 return clk_data->clks[idx]; 4369 } 4370 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4371 4372 struct clk_hw * 4373 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4374 { 4375 struct clk_hw_onecell_data *hw_data = data; 4376 unsigned int idx = clkspec->args[0]; 4377 4378 if (idx >= hw_data->num) { 4379 pr_err("%s: invalid index %u\n", __func__, idx); 4380 return ERR_PTR(-EINVAL); 4381 } 4382 4383 return hw_data->hws[idx]; 4384 } 4385 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4386 4387 /** 4388 * of_clk_add_provider() - Register a clock provider for a node 4389 * @np: Device node pointer associated with clock provider 4390 * @clk_src_get: callback for decoding clock 4391 * @data: context pointer for @clk_src_get callback. 4392 * 4393 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4394 */ 4395 int of_clk_add_provider(struct device_node *np, 4396 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4397 void *data), 4398 void *data) 4399 { 4400 struct of_clk_provider *cp; 4401 int ret; 4402 4403 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4404 if (!cp) 4405 return -ENOMEM; 4406 4407 cp->node = of_node_get(np); 4408 cp->data = data; 4409 cp->get = clk_src_get; 4410 4411 mutex_lock(&of_clk_mutex); 4412 list_add(&cp->link, &of_clk_providers); 4413 mutex_unlock(&of_clk_mutex); 4414 pr_debug("Added clock from %pOF\n", np); 4415 4416 clk_core_reparent_orphans(); 4417 4418 ret = of_clk_set_defaults(np, true); 4419 if (ret < 0) 4420 of_clk_del_provider(np); 4421 4422 return ret; 4423 } 4424 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4425 4426 /** 4427 * of_clk_add_hw_provider() - Register a clock provider for a node 4428 * @np: Device node pointer associated with clock provider 4429 * @get: callback for decoding clk_hw 4430 * @data: context pointer for @get callback. 4431 */ 4432 int of_clk_add_hw_provider(struct device_node *np, 4433 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4434 void *data), 4435 void *data) 4436 { 4437 struct of_clk_provider *cp; 4438 int ret; 4439 4440 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4441 if (!cp) 4442 return -ENOMEM; 4443 4444 cp->node = of_node_get(np); 4445 cp->data = data; 4446 cp->get_hw = get; 4447 4448 mutex_lock(&of_clk_mutex); 4449 list_add(&cp->link, &of_clk_providers); 4450 mutex_unlock(&of_clk_mutex); 4451 pr_debug("Added clk_hw provider from %pOF\n", np); 4452 4453 clk_core_reparent_orphans(); 4454 4455 ret = of_clk_set_defaults(np, true); 4456 if (ret < 0) 4457 of_clk_del_provider(np); 4458 4459 return ret; 4460 } 4461 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4462 4463 static void devm_of_clk_release_provider(struct device *dev, void *res) 4464 { 4465 of_clk_del_provider(*(struct device_node **)res); 4466 } 4467 4468 /* 4469 * We allow a child device to use its parent device as the clock provider node 4470 * for cases like MFD sub-devices where the child device driver wants to use 4471 * devm_*() APIs but not list the device in DT as a sub-node. 4472 */ 4473 static struct device_node *get_clk_provider_node(struct device *dev) 4474 { 4475 struct device_node *np, *parent_np; 4476 4477 np = dev->of_node; 4478 parent_np = dev->parent ? dev->parent->of_node : NULL; 4479 4480 if (!of_find_property(np, "#clock-cells", NULL)) 4481 if (of_find_property(parent_np, "#clock-cells", NULL)) 4482 np = parent_np; 4483 4484 return np; 4485 } 4486 4487 /** 4488 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4489 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4490 * @get: callback for decoding clk_hw 4491 * @data: context pointer for @get callback 4492 * 4493 * Registers clock provider for given device's node. If the device has no DT 4494 * node or if the device node lacks of clock provider information (#clock-cells) 4495 * then the parent device's node is scanned for this information. If parent node 4496 * has the #clock-cells then it is used in registration. Provider is 4497 * automatically released at device exit. 4498 * 4499 * Return: 0 on success or an errno on failure. 4500 */ 4501 int devm_of_clk_add_hw_provider(struct device *dev, 4502 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4503 void *data), 4504 void *data) 4505 { 4506 struct device_node **ptr, *np; 4507 int ret; 4508 4509 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4510 GFP_KERNEL); 4511 if (!ptr) 4512 return -ENOMEM; 4513 4514 np = get_clk_provider_node(dev); 4515 ret = of_clk_add_hw_provider(np, get, data); 4516 if (!ret) { 4517 *ptr = np; 4518 devres_add(dev, ptr); 4519 } else { 4520 devres_free(ptr); 4521 } 4522 4523 return ret; 4524 } 4525 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4526 4527 /** 4528 * of_clk_del_provider() - Remove a previously registered clock provider 4529 * @np: Device node pointer associated with clock provider 4530 */ 4531 void of_clk_del_provider(struct device_node *np) 4532 { 4533 struct of_clk_provider *cp; 4534 4535 mutex_lock(&of_clk_mutex); 4536 list_for_each_entry(cp, &of_clk_providers, link) { 4537 if (cp->node == np) { 4538 list_del(&cp->link); 4539 of_node_put(cp->node); 4540 kfree(cp); 4541 break; 4542 } 4543 } 4544 mutex_unlock(&of_clk_mutex); 4545 } 4546 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4547 4548 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4549 { 4550 struct device_node **np = res; 4551 4552 if (WARN_ON(!np || !*np)) 4553 return 0; 4554 4555 return *np == data; 4556 } 4557 4558 /** 4559 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4560 * @dev: Device to whose lifetime the clock provider was bound 4561 */ 4562 void devm_of_clk_del_provider(struct device *dev) 4563 { 4564 int ret; 4565 struct device_node *np = get_clk_provider_node(dev); 4566 4567 ret = devres_release(dev, devm_of_clk_release_provider, 4568 devm_clk_provider_match, np); 4569 4570 WARN_ON(ret); 4571 } 4572 EXPORT_SYMBOL(devm_of_clk_del_provider); 4573 4574 /** 4575 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4576 * @np: device node to parse clock specifier from 4577 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4578 * @name: clock name to find and parse. If name is NULL, the index is used 4579 * @out_args: Result of parsing the clock specifier 4580 * 4581 * Parses a device node's "clocks" and "clock-names" properties to find the 4582 * phandle and cells for the index or name that is desired. The resulting clock 4583 * specifier is placed into @out_args, or an errno is returned when there's a 4584 * parsing error. The @index argument is ignored if @name is non-NULL. 4585 * 4586 * Example: 4587 * 4588 * phandle1: clock-controller@1 { 4589 * #clock-cells = <2>; 4590 * } 4591 * 4592 * phandle2: clock-controller@2 { 4593 * #clock-cells = <1>; 4594 * } 4595 * 4596 * clock-consumer@3 { 4597 * clocks = <&phandle1 1 2 &phandle2 3>; 4598 * clock-names = "name1", "name2"; 4599 * } 4600 * 4601 * To get a device_node for `clock-controller@2' node you may call this 4602 * function a few different ways: 4603 * 4604 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4605 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4606 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4607 * 4608 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4609 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4610 * the "clock-names" property of @np. 4611 */ 4612 static int of_parse_clkspec(const struct device_node *np, int index, 4613 const char *name, struct of_phandle_args *out_args) 4614 { 4615 int ret = -ENOENT; 4616 4617 /* Walk up the tree of devices looking for a clock property that matches */ 4618 while (np) { 4619 /* 4620 * For named clocks, first look up the name in the 4621 * "clock-names" property. If it cannot be found, then index 4622 * will be an error code and of_parse_phandle_with_args() will 4623 * return -EINVAL. 4624 */ 4625 if (name) 4626 index = of_property_match_string(np, "clock-names", name); 4627 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4628 index, out_args); 4629 if (!ret) 4630 break; 4631 if (name && index >= 0) 4632 break; 4633 4634 /* 4635 * No matching clock found on this node. If the parent node 4636 * has a "clock-ranges" property, then we can try one of its 4637 * clocks. 4638 */ 4639 np = np->parent; 4640 if (np && !of_get_property(np, "clock-ranges", NULL)) 4641 break; 4642 index = 0; 4643 } 4644 4645 return ret; 4646 } 4647 4648 static struct clk_hw * 4649 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4650 struct of_phandle_args *clkspec) 4651 { 4652 struct clk *clk; 4653 4654 if (provider->get_hw) 4655 return provider->get_hw(clkspec, provider->data); 4656 4657 clk = provider->get(clkspec, provider->data); 4658 if (IS_ERR(clk)) 4659 return ERR_CAST(clk); 4660 return __clk_get_hw(clk); 4661 } 4662 4663 static struct clk_hw * 4664 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4665 { 4666 struct of_clk_provider *provider; 4667 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4668 4669 if (!clkspec) 4670 return ERR_PTR(-EINVAL); 4671 4672 mutex_lock(&of_clk_mutex); 4673 list_for_each_entry(provider, &of_clk_providers, link) { 4674 if (provider->node == clkspec->np) { 4675 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4676 if (!IS_ERR(hw)) 4677 break; 4678 } 4679 } 4680 mutex_unlock(&of_clk_mutex); 4681 4682 return hw; 4683 } 4684 4685 /** 4686 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4687 * @clkspec: pointer to a clock specifier data structure 4688 * 4689 * This function looks up a struct clk from the registered list of clock 4690 * providers, an input is a clock specifier data structure as returned 4691 * from the of_parse_phandle_with_args() function call. 4692 */ 4693 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4694 { 4695 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4696 4697 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4698 } 4699 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4700 4701 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4702 const char *con_id) 4703 { 4704 int ret; 4705 struct clk_hw *hw; 4706 struct of_phandle_args clkspec; 4707 4708 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4709 if (ret) 4710 return ERR_PTR(ret); 4711 4712 hw = of_clk_get_hw_from_clkspec(&clkspec); 4713 of_node_put(clkspec.np); 4714 4715 return hw; 4716 } 4717 4718 static struct clk *__of_clk_get(struct device_node *np, 4719 int index, const char *dev_id, 4720 const char *con_id) 4721 { 4722 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4723 4724 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4725 } 4726 4727 struct clk *of_clk_get(struct device_node *np, int index) 4728 { 4729 return __of_clk_get(np, index, np->full_name, NULL); 4730 } 4731 EXPORT_SYMBOL(of_clk_get); 4732 4733 /** 4734 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4735 * @np: pointer to clock consumer node 4736 * @name: name of consumer's clock input, or NULL for the first clock reference 4737 * 4738 * This function parses the clocks and clock-names properties, 4739 * and uses them to look up the struct clk from the registered list of clock 4740 * providers. 4741 */ 4742 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4743 { 4744 if (!np) 4745 return ERR_PTR(-ENOENT); 4746 4747 return __of_clk_get(np, 0, np->full_name, name); 4748 } 4749 EXPORT_SYMBOL(of_clk_get_by_name); 4750 4751 /** 4752 * of_clk_get_parent_count() - Count the number of clocks a device node has 4753 * @np: device node to count 4754 * 4755 * Returns: The number of clocks that are possible parents of this node 4756 */ 4757 unsigned int of_clk_get_parent_count(const struct device_node *np) 4758 { 4759 int count; 4760 4761 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4762 if (count < 0) 4763 return 0; 4764 4765 return count; 4766 } 4767 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4768 4769 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4770 { 4771 struct of_phandle_args clkspec; 4772 struct property *prop; 4773 const char *clk_name; 4774 const __be32 *vp; 4775 u32 pv; 4776 int rc; 4777 int count; 4778 struct clk *clk; 4779 4780 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4781 &clkspec); 4782 if (rc) 4783 return NULL; 4784 4785 index = clkspec.args_count ? clkspec.args[0] : 0; 4786 count = 0; 4787 4788 /* if there is an indices property, use it to transfer the index 4789 * specified into an array offset for the clock-output-names property. 4790 */ 4791 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4792 if (index == pv) { 4793 index = count; 4794 break; 4795 } 4796 count++; 4797 } 4798 /* We went off the end of 'clock-indices' without finding it */ 4799 if (prop && !vp) 4800 return NULL; 4801 4802 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4803 index, 4804 &clk_name) < 0) { 4805 /* 4806 * Best effort to get the name if the clock has been 4807 * registered with the framework. If the clock isn't 4808 * registered, we return the node name as the name of 4809 * the clock as long as #clock-cells = 0. 4810 */ 4811 clk = of_clk_get_from_provider(&clkspec); 4812 if (IS_ERR(clk)) { 4813 if (clkspec.args_count == 0) 4814 clk_name = clkspec.np->name; 4815 else 4816 clk_name = NULL; 4817 } else { 4818 clk_name = __clk_get_name(clk); 4819 clk_put(clk); 4820 } 4821 } 4822 4823 4824 of_node_put(clkspec.np); 4825 return clk_name; 4826 } 4827 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4828 4829 /** 4830 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4831 * number of parents 4832 * @np: Device node pointer associated with clock provider 4833 * @parents: pointer to char array that hold the parents' names 4834 * @size: size of the @parents array 4835 * 4836 * Return: number of parents for the clock node. 4837 */ 4838 int of_clk_parent_fill(struct device_node *np, const char **parents, 4839 unsigned int size) 4840 { 4841 unsigned int i = 0; 4842 4843 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4844 i++; 4845 4846 return i; 4847 } 4848 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4849 4850 struct clock_provider { 4851 void (*clk_init_cb)(struct device_node *); 4852 struct device_node *np; 4853 struct list_head node; 4854 }; 4855 4856 /* 4857 * This function looks for a parent clock. If there is one, then it 4858 * checks that the provider for this parent clock was initialized, in 4859 * this case the parent clock will be ready. 4860 */ 4861 static int parent_ready(struct device_node *np) 4862 { 4863 int i = 0; 4864 4865 while (true) { 4866 struct clk *clk = of_clk_get(np, i); 4867 4868 /* this parent is ready we can check the next one */ 4869 if (!IS_ERR(clk)) { 4870 clk_put(clk); 4871 i++; 4872 continue; 4873 } 4874 4875 /* at least one parent is not ready, we exit now */ 4876 if (PTR_ERR(clk) == -EPROBE_DEFER) 4877 return 0; 4878 4879 /* 4880 * Here we make assumption that the device tree is 4881 * written correctly. So an error means that there is 4882 * no more parent. As we didn't exit yet, then the 4883 * previous parent are ready. If there is no clock 4884 * parent, no need to wait for them, then we can 4885 * consider their absence as being ready 4886 */ 4887 return 1; 4888 } 4889 } 4890 4891 /** 4892 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4893 * @np: Device node pointer associated with clock provider 4894 * @index: clock index 4895 * @flags: pointer to top-level framework flags 4896 * 4897 * Detects if the clock-critical property exists and, if so, sets the 4898 * corresponding CLK_IS_CRITICAL flag. 4899 * 4900 * Do not use this function. It exists only for legacy Device Tree 4901 * bindings, such as the one-clock-per-node style that are outdated. 4902 * Those bindings typically put all clock data into .dts and the Linux 4903 * driver has no clock data, thus making it impossible to set this flag 4904 * correctly from the driver. Only those drivers may call 4905 * of_clk_detect_critical from their setup functions. 4906 * 4907 * Return: error code or zero on success 4908 */ 4909 int of_clk_detect_critical(struct device_node *np, int index, 4910 unsigned long *flags) 4911 { 4912 struct property *prop; 4913 const __be32 *cur; 4914 uint32_t idx; 4915 4916 if (!np || !flags) 4917 return -EINVAL; 4918 4919 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4920 if (index == idx) 4921 *flags |= CLK_IS_CRITICAL; 4922 4923 return 0; 4924 } 4925 4926 /** 4927 * of_clk_init() - Scan and init clock providers from the DT 4928 * @matches: array of compatible values and init functions for providers. 4929 * 4930 * This function scans the device tree for matching clock providers 4931 * and calls their initialization functions. It also does it by trying 4932 * to follow the dependencies. 4933 */ 4934 void __init of_clk_init(const struct of_device_id *matches) 4935 { 4936 const struct of_device_id *match; 4937 struct device_node *np; 4938 struct clock_provider *clk_provider, *next; 4939 bool is_init_done; 4940 bool force = false; 4941 LIST_HEAD(clk_provider_list); 4942 4943 if (!matches) 4944 matches = &__clk_of_table; 4945 4946 /* First prepare the list of the clocks providers */ 4947 for_each_matching_node_and_match(np, matches, &match) { 4948 struct clock_provider *parent; 4949 4950 if (!of_device_is_available(np)) 4951 continue; 4952 4953 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4954 if (!parent) { 4955 list_for_each_entry_safe(clk_provider, next, 4956 &clk_provider_list, node) { 4957 list_del(&clk_provider->node); 4958 of_node_put(clk_provider->np); 4959 kfree(clk_provider); 4960 } 4961 of_node_put(np); 4962 return; 4963 } 4964 4965 parent->clk_init_cb = match->data; 4966 parent->np = of_node_get(np); 4967 list_add_tail(&parent->node, &clk_provider_list); 4968 } 4969 4970 while (!list_empty(&clk_provider_list)) { 4971 is_init_done = false; 4972 list_for_each_entry_safe(clk_provider, next, 4973 &clk_provider_list, node) { 4974 if (force || parent_ready(clk_provider->np)) { 4975 4976 /* Don't populate platform devices */ 4977 of_node_set_flag(clk_provider->np, 4978 OF_POPULATED); 4979 4980 clk_provider->clk_init_cb(clk_provider->np); 4981 of_clk_set_defaults(clk_provider->np, true); 4982 4983 list_del(&clk_provider->node); 4984 of_node_put(clk_provider->np); 4985 kfree(clk_provider); 4986 is_init_done = true; 4987 } 4988 } 4989 4990 /* 4991 * We didn't manage to initialize any of the 4992 * remaining providers during the last loop, so now we 4993 * initialize all the remaining ones unconditionally 4994 * in case the clock parent was not mandatory 4995 */ 4996 if (!is_init_done) 4997 force = true; 4998 } 4999 } 5000 #endif 5001