xref: /openbmc/linux/drivers/clk/clk.c (revision d89775fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	ret = core->ops->is_enabled(core->hw);
255 done:
256 	if (core->rpm_enabled)
257 		pm_runtime_put(core->dev);
258 
259 	return ret;
260 }
261 
262 /***    helper functions   ***/
263 
264 const char *__clk_get_name(const struct clk *clk)
265 {
266 	return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269 
270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 	return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275 
276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 	return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281 
282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 	return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287 
288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 	return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 			    const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 				   const char *name,
345 				   struct of_phandle_args *out_args)
346 {
347 	return -ENOENT;
348 }
349 static inline struct clk_hw *
350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 	return ERR_PTR(-ENOENT);
353 }
354 #endif
355 
356 /**
357  * clk_core_get - Find the clk_core parent of a clk
358  * @core: clk to find parent of
359  * @p_index: parent index to search for
360  *
361  * This is the preferred method for clk providers to find the parent of a
362  * clk when that parent is external to the clk controller. The parent_names
363  * array is indexed and treated as a local name matching a string in the device
364  * node's 'clock-names' property or as the 'con_id' matching the device's
365  * dev_name() in a clk_lookup. This allows clk providers to use their own
366  * namespace instead of looking for a globally unique parent string.
367  *
368  * For example the following DT snippet would allow a clock registered by the
369  * clock-controller@c001 that has a clk_init_data::parent_data array
370  * with 'xtal' in the 'name' member to find the clock provided by the
371  * clock-controller@f00abcd without needing to get the globally unique name of
372  * the xtal clk.
373  *
374  *      parent: clock-controller@f00abcd {
375  *              reg = <0xf00abcd 0xabcd>;
376  *              #clock-cells = <0>;
377  *      };
378  *
379  *      clock-controller@c001 {
380  *              reg = <0xc001 0xf00d>;
381  *              clocks = <&parent>;
382  *              clock-names = "xtal";
383  *              #clock-cells = <1>;
384  *      };
385  *
386  * Returns: -ENOENT when the provider can't be found or the clk doesn't
387  * exist in the provider or the name can't be found in the DT node or
388  * in a clkdev lookup. NULL when the provider knows about the clk but it
389  * isn't provided on this system.
390  * A valid clk_core pointer when the clk can be found in the provider.
391  */
392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 	const char *name = core->parents[p_index].fw_name;
395 	int index = core->parents[p_index].index;
396 	struct clk_hw *hw = ERR_PTR(-ENOENT);
397 	struct device *dev = core->dev;
398 	const char *dev_id = dev ? dev_name(dev) : NULL;
399 	struct device_node *np = core->of_node;
400 	struct of_phandle_args clkspec;
401 
402 	if (np && (name || index >= 0) &&
403 	    !of_parse_clkspec(np, index, name, &clkspec)) {
404 		hw = of_clk_get_hw_from_clkspec(&clkspec);
405 		of_node_put(clkspec.np);
406 	} else if (name) {
407 		/*
408 		 * If the DT search above couldn't find the provider fallback to
409 		 * looking up via clkdev based clk_lookups.
410 		 */
411 		hw = clk_find_hw(dev_id, name);
412 	}
413 
414 	if (IS_ERR(hw))
415 		return ERR_CAST(hw);
416 
417 	return hw->core;
418 }
419 
420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 	struct clk_parent_map *entry = &core->parents[index];
423 	struct clk_core *parent = ERR_PTR(-ENOENT);
424 
425 	if (entry->hw) {
426 		parent = entry->hw->core;
427 		/*
428 		 * We have a direct reference but it isn't registered yet?
429 		 * Orphan it and let clk_reparent() update the orphan status
430 		 * when the parent is registered.
431 		 */
432 		if (!parent)
433 			parent = ERR_PTR(-EPROBE_DEFER);
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/* Only cache it if it's not an error */
441 	if (!IS_ERR(parent))
442 		entry->core = parent;
443 }
444 
445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 							 u8 index)
447 {
448 	if (!core || index >= core->num_parents || !core->parents)
449 		return NULL;
450 
451 	if (!core->parents[index].core)
452 		clk_core_fill_parent_index(core, index);
453 
454 	return core->parents[index].core;
455 }
456 
457 struct clk_hw *
458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459 {
460 	struct clk_core *parent;
461 
462 	parent = clk_core_get_parent_by_index(hw->core, index);
463 
464 	return !parent ? NULL : parent->hw;
465 }
466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467 
468 unsigned int __clk_get_enable_count(struct clk *clk)
469 {
470 	return !clk ? 0 : clk->core->enable_count;
471 }
472 
473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474 {
475 	if (!core)
476 		return 0;
477 
478 	if (!core->num_parents || core->parent)
479 		return core->rate;
480 
481 	/*
482 	 * Clk must have a parent because num_parents > 0 but the parent isn't
483 	 * known yet. Best to return 0 as the rate of this clk until we can
484 	 * properly recalc the rate based on the parent's rate.
485 	 */
486 	return 0;
487 }
488 
489 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490 {
491 	return clk_core_get_rate_nolock(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494 
495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
496 {
497 	if (!core)
498 		return 0;
499 
500 	return core->accuracy;
501 }
502 
503 unsigned long __clk_get_flags(struct clk *clk)
504 {
505 	return !clk ? 0 : clk->core->flags;
506 }
507 EXPORT_SYMBOL_GPL(__clk_get_flags);
508 
509 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
510 {
511 	return hw->core->flags;
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
514 
515 bool clk_hw_is_prepared(const struct clk_hw *hw)
516 {
517 	return clk_core_is_prepared(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
520 
521 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
522 {
523 	return clk_core_rate_is_protected(hw->core);
524 }
525 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
526 
527 bool clk_hw_is_enabled(const struct clk_hw *hw)
528 {
529 	return clk_core_is_enabled(hw->core);
530 }
531 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
532 
533 bool __clk_is_enabled(struct clk *clk)
534 {
535 	if (!clk)
536 		return false;
537 
538 	return clk_core_is_enabled(clk->core);
539 }
540 EXPORT_SYMBOL_GPL(__clk_is_enabled);
541 
542 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
543 			   unsigned long best, unsigned long flags)
544 {
545 	if (flags & CLK_MUX_ROUND_CLOSEST)
546 		return abs(now - rate) < abs(best - rate);
547 
548 	return now <= rate && now > best;
549 }
550 
551 int clk_mux_determine_rate_flags(struct clk_hw *hw,
552 				 struct clk_rate_request *req,
553 				 unsigned long flags)
554 {
555 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
556 	int i, num_parents, ret;
557 	unsigned long best = 0;
558 	struct clk_rate_request parent_req = *req;
559 
560 	/* if NO_REPARENT flag set, pass through to current parent */
561 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
562 		parent = core->parent;
563 		if (core->flags & CLK_SET_RATE_PARENT) {
564 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
565 						   &parent_req);
566 			if (ret)
567 				return ret;
568 
569 			best = parent_req.rate;
570 		} else if (parent) {
571 			best = clk_core_get_rate_nolock(parent);
572 		} else {
573 			best = clk_core_get_rate_nolock(core);
574 		}
575 
576 		goto out;
577 	}
578 
579 	/* find the parent that can provide the fastest rate <= rate */
580 	num_parents = core->num_parents;
581 	for (i = 0; i < num_parents; i++) {
582 		parent = clk_core_get_parent_by_index(core, i);
583 		if (!parent)
584 			continue;
585 
586 		if (core->flags & CLK_SET_RATE_PARENT) {
587 			parent_req = *req;
588 			ret = __clk_determine_rate(parent->hw, &parent_req);
589 			if (ret)
590 				continue;
591 		} else {
592 			parent_req.rate = clk_core_get_rate_nolock(parent);
593 		}
594 
595 		if (mux_is_better_rate(req->rate, parent_req.rate,
596 				       best, flags)) {
597 			best_parent = parent;
598 			best = parent_req.rate;
599 		}
600 	}
601 
602 	if (!best_parent)
603 		return -EINVAL;
604 
605 out:
606 	if (best_parent)
607 		req->best_parent_hw = best_parent->hw;
608 	req->best_parent_rate = best;
609 	req->rate = best;
610 
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
614 
615 struct clk *__clk_lookup(const char *name)
616 {
617 	struct clk_core *core = clk_core_lookup(name);
618 
619 	return !core ? NULL : core->hw->clk;
620 }
621 
622 static void clk_core_get_boundaries(struct clk_core *core,
623 				    unsigned long *min_rate,
624 				    unsigned long *max_rate)
625 {
626 	struct clk *clk_user;
627 
628 	lockdep_assert_held(&prepare_lock);
629 
630 	*min_rate = core->min_rate;
631 	*max_rate = core->max_rate;
632 
633 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
634 		*min_rate = max(*min_rate, clk_user->min_rate);
635 
636 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
637 		*max_rate = min(*max_rate, clk_user->max_rate);
638 }
639 
640 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
641 			   unsigned long max_rate)
642 {
643 	hw->core->min_rate = min_rate;
644 	hw->core->max_rate = max_rate;
645 }
646 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
647 
648 /*
649  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
650  * @hw: mux type clk to determine rate on
651  * @req: rate request, also used to return preferred parent and frequencies
652  *
653  * Helper for finding best parent to provide a given frequency. This can be used
654  * directly as a determine_rate callback (e.g. for a mux), or from a more
655  * complex clock that may combine a mux with other operations.
656  *
657  * Returns: 0 on success, -EERROR value on error
658  */
659 int __clk_mux_determine_rate(struct clk_hw *hw,
660 			     struct clk_rate_request *req)
661 {
662 	return clk_mux_determine_rate_flags(hw, req, 0);
663 }
664 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
665 
666 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
667 				     struct clk_rate_request *req)
668 {
669 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
670 }
671 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
672 
673 /***        clk api        ***/
674 
675 static void clk_core_rate_unprotect(struct clk_core *core)
676 {
677 	lockdep_assert_held(&prepare_lock);
678 
679 	if (!core)
680 		return;
681 
682 	if (WARN(core->protect_count == 0,
683 	    "%s already unprotected\n", core->name))
684 		return;
685 
686 	if (--core->protect_count > 0)
687 		return;
688 
689 	clk_core_rate_unprotect(core->parent);
690 }
691 
692 static int clk_core_rate_nuke_protect(struct clk_core *core)
693 {
694 	int ret;
695 
696 	lockdep_assert_held(&prepare_lock);
697 
698 	if (!core)
699 		return -EINVAL;
700 
701 	if (core->protect_count == 0)
702 		return 0;
703 
704 	ret = core->protect_count;
705 	core->protect_count = 1;
706 	clk_core_rate_unprotect(core);
707 
708 	return ret;
709 }
710 
711 /**
712  * clk_rate_exclusive_put - release exclusivity over clock rate control
713  * @clk: the clk over which the exclusivity is released
714  *
715  * clk_rate_exclusive_put() completes a critical section during which a clock
716  * consumer cannot tolerate any other consumer making any operation on the
717  * clock which could result in a rate change or rate glitch. Exclusive clocks
718  * cannot have their rate changed, either directly or indirectly due to changes
719  * further up the parent chain of clocks. As a result, clocks up parent chain
720  * also get under exclusive control of the calling consumer.
721  *
722  * If exlusivity is claimed more than once on clock, even by the same consumer,
723  * the rate effectively gets locked as exclusivity can't be preempted.
724  *
725  * Calls to clk_rate_exclusive_put() must be balanced with calls to
726  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
727  * error status.
728  */
729 void clk_rate_exclusive_put(struct clk *clk)
730 {
731 	if (!clk)
732 		return;
733 
734 	clk_prepare_lock();
735 
736 	/*
737 	 * if there is something wrong with this consumer protect count, stop
738 	 * here before messing with the provider
739 	 */
740 	if (WARN_ON(clk->exclusive_count <= 0))
741 		goto out;
742 
743 	clk_core_rate_unprotect(clk->core);
744 	clk->exclusive_count--;
745 out:
746 	clk_prepare_unlock();
747 }
748 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
749 
750 static void clk_core_rate_protect(struct clk_core *core)
751 {
752 	lockdep_assert_held(&prepare_lock);
753 
754 	if (!core)
755 		return;
756 
757 	if (core->protect_count == 0)
758 		clk_core_rate_protect(core->parent);
759 
760 	core->protect_count++;
761 }
762 
763 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
764 {
765 	lockdep_assert_held(&prepare_lock);
766 
767 	if (!core)
768 		return;
769 
770 	if (count == 0)
771 		return;
772 
773 	clk_core_rate_protect(core);
774 	core->protect_count = count;
775 }
776 
777 /**
778  * clk_rate_exclusive_get - get exclusivity over the clk rate control
779  * @clk: the clk over which the exclusity of rate control is requested
780  *
781  * clk_rate_exclusive_get() begins a critical section during which a clock
782  * consumer cannot tolerate any other consumer making any operation on the
783  * clock which could result in a rate change or rate glitch. Exclusive clocks
784  * cannot have their rate changed, either directly or indirectly due to changes
785  * further up the parent chain of clocks. As a result, clocks up parent chain
786  * also get under exclusive control of the calling consumer.
787  *
788  * If exlusivity is claimed more than once on clock, even by the same consumer,
789  * the rate effectively gets locked as exclusivity can't be preempted.
790  *
791  * Calls to clk_rate_exclusive_get() should be balanced with calls to
792  * clk_rate_exclusive_put(). Calls to this function may sleep.
793  * Returns 0 on success, -EERROR otherwise
794  */
795 int clk_rate_exclusive_get(struct clk *clk)
796 {
797 	if (!clk)
798 		return 0;
799 
800 	clk_prepare_lock();
801 	clk_core_rate_protect(clk->core);
802 	clk->exclusive_count++;
803 	clk_prepare_unlock();
804 
805 	return 0;
806 }
807 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
808 
809 static void clk_core_unprepare(struct clk_core *core)
810 {
811 	lockdep_assert_held(&prepare_lock);
812 
813 	if (!core)
814 		return;
815 
816 	if (WARN(core->prepare_count == 0,
817 	    "%s already unprepared\n", core->name))
818 		return;
819 
820 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
821 	    "Unpreparing critical %s\n", core->name))
822 		return;
823 
824 	if (core->flags & CLK_SET_RATE_GATE)
825 		clk_core_rate_unprotect(core);
826 
827 	if (--core->prepare_count > 0)
828 		return;
829 
830 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
831 
832 	trace_clk_unprepare(core);
833 
834 	if (core->ops->unprepare)
835 		core->ops->unprepare(core->hw);
836 
837 	clk_pm_runtime_put(core);
838 
839 	trace_clk_unprepare_complete(core);
840 	clk_core_unprepare(core->parent);
841 }
842 
843 static void clk_core_unprepare_lock(struct clk_core *core)
844 {
845 	clk_prepare_lock();
846 	clk_core_unprepare(core);
847 	clk_prepare_unlock();
848 }
849 
850 /**
851  * clk_unprepare - undo preparation of a clock source
852  * @clk: the clk being unprepared
853  *
854  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
855  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
856  * if the operation may sleep.  One example is a clk which is accessed over
857  * I2c.  In the complex case a clk gate operation may require a fast and a slow
858  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
859  * exclusive.  In fact clk_disable must be called before clk_unprepare.
860  */
861 void clk_unprepare(struct clk *clk)
862 {
863 	if (IS_ERR_OR_NULL(clk))
864 		return;
865 
866 	clk_core_unprepare_lock(clk->core);
867 }
868 EXPORT_SYMBOL_GPL(clk_unprepare);
869 
870 static int clk_core_prepare(struct clk_core *core)
871 {
872 	int ret = 0;
873 
874 	lockdep_assert_held(&prepare_lock);
875 
876 	if (!core)
877 		return 0;
878 
879 	if (core->prepare_count == 0) {
880 		ret = clk_pm_runtime_get(core);
881 		if (ret)
882 			return ret;
883 
884 		ret = clk_core_prepare(core->parent);
885 		if (ret)
886 			goto runtime_put;
887 
888 		trace_clk_prepare(core);
889 
890 		if (core->ops->prepare)
891 			ret = core->ops->prepare(core->hw);
892 
893 		trace_clk_prepare_complete(core);
894 
895 		if (ret)
896 			goto unprepare;
897 	}
898 
899 	core->prepare_count++;
900 
901 	/*
902 	 * CLK_SET_RATE_GATE is a special case of clock protection
903 	 * Instead of a consumer claiming exclusive rate control, it is
904 	 * actually the provider which prevents any consumer from making any
905 	 * operation which could result in a rate change or rate glitch while
906 	 * the clock is prepared.
907 	 */
908 	if (core->flags & CLK_SET_RATE_GATE)
909 		clk_core_rate_protect(core);
910 
911 	return 0;
912 unprepare:
913 	clk_core_unprepare(core->parent);
914 runtime_put:
915 	clk_pm_runtime_put(core);
916 	return ret;
917 }
918 
919 static int clk_core_prepare_lock(struct clk_core *core)
920 {
921 	int ret;
922 
923 	clk_prepare_lock();
924 	ret = clk_core_prepare(core);
925 	clk_prepare_unlock();
926 
927 	return ret;
928 }
929 
930 /**
931  * clk_prepare - prepare a clock source
932  * @clk: the clk being prepared
933  *
934  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
935  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
936  * operation may sleep.  One example is a clk which is accessed over I2c.  In
937  * the complex case a clk ungate operation may require a fast and a slow part.
938  * It is this reason that clk_prepare and clk_enable are not mutually
939  * exclusive.  In fact clk_prepare must be called before clk_enable.
940  * Returns 0 on success, -EERROR otherwise.
941  */
942 int clk_prepare(struct clk *clk)
943 {
944 	if (!clk)
945 		return 0;
946 
947 	return clk_core_prepare_lock(clk->core);
948 }
949 EXPORT_SYMBOL_GPL(clk_prepare);
950 
951 static void clk_core_disable(struct clk_core *core)
952 {
953 	lockdep_assert_held(&enable_lock);
954 
955 	if (!core)
956 		return;
957 
958 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
959 		return;
960 
961 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
962 	    "Disabling critical %s\n", core->name))
963 		return;
964 
965 	if (--core->enable_count > 0)
966 		return;
967 
968 	trace_clk_disable_rcuidle(core);
969 
970 	if (core->ops->disable)
971 		core->ops->disable(core->hw);
972 
973 	trace_clk_disable_complete_rcuidle(core);
974 
975 	clk_core_disable(core->parent);
976 }
977 
978 static void clk_core_disable_lock(struct clk_core *core)
979 {
980 	unsigned long flags;
981 
982 	flags = clk_enable_lock();
983 	clk_core_disable(core);
984 	clk_enable_unlock(flags);
985 }
986 
987 /**
988  * clk_disable - gate a clock
989  * @clk: the clk being gated
990  *
991  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
992  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
993  * clk if the operation is fast and will never sleep.  One example is a
994  * SoC-internal clk which is controlled via simple register writes.  In the
995  * complex case a clk gate operation may require a fast and a slow part.  It is
996  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
997  * In fact clk_disable must be called before clk_unprepare.
998  */
999 void clk_disable(struct clk *clk)
1000 {
1001 	if (IS_ERR_OR_NULL(clk))
1002 		return;
1003 
1004 	clk_core_disable_lock(clk->core);
1005 }
1006 EXPORT_SYMBOL_GPL(clk_disable);
1007 
1008 static int clk_core_enable(struct clk_core *core)
1009 {
1010 	int ret = 0;
1011 
1012 	lockdep_assert_held(&enable_lock);
1013 
1014 	if (!core)
1015 		return 0;
1016 
1017 	if (WARN(core->prepare_count == 0,
1018 	    "Enabling unprepared %s\n", core->name))
1019 		return -ESHUTDOWN;
1020 
1021 	if (core->enable_count == 0) {
1022 		ret = clk_core_enable(core->parent);
1023 
1024 		if (ret)
1025 			return ret;
1026 
1027 		trace_clk_enable_rcuidle(core);
1028 
1029 		if (core->ops->enable)
1030 			ret = core->ops->enable(core->hw);
1031 
1032 		trace_clk_enable_complete_rcuidle(core);
1033 
1034 		if (ret) {
1035 			clk_core_disable(core->parent);
1036 			return ret;
1037 		}
1038 	}
1039 
1040 	core->enable_count++;
1041 	return 0;
1042 }
1043 
1044 static int clk_core_enable_lock(struct clk_core *core)
1045 {
1046 	unsigned long flags;
1047 	int ret;
1048 
1049 	flags = clk_enable_lock();
1050 	ret = clk_core_enable(core);
1051 	clk_enable_unlock(flags);
1052 
1053 	return ret;
1054 }
1055 
1056 /**
1057  * clk_gate_restore_context - restore context for poweroff
1058  * @hw: the clk_hw pointer of clock whose state is to be restored
1059  *
1060  * The clock gate restore context function enables or disables
1061  * the gate clocks based on the enable_count. This is done in cases
1062  * where the clock context is lost and based on the enable_count
1063  * the clock either needs to be enabled/disabled. This
1064  * helps restore the state of gate clocks.
1065  */
1066 void clk_gate_restore_context(struct clk_hw *hw)
1067 {
1068 	struct clk_core *core = hw->core;
1069 
1070 	if (core->enable_count)
1071 		core->ops->enable(hw);
1072 	else
1073 		core->ops->disable(hw);
1074 }
1075 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1076 
1077 static int clk_core_save_context(struct clk_core *core)
1078 {
1079 	struct clk_core *child;
1080 	int ret = 0;
1081 
1082 	hlist_for_each_entry(child, &core->children, child_node) {
1083 		ret = clk_core_save_context(child);
1084 		if (ret < 0)
1085 			return ret;
1086 	}
1087 
1088 	if (core->ops && core->ops->save_context)
1089 		ret = core->ops->save_context(core->hw);
1090 
1091 	return ret;
1092 }
1093 
1094 static void clk_core_restore_context(struct clk_core *core)
1095 {
1096 	struct clk_core *child;
1097 
1098 	if (core->ops && core->ops->restore_context)
1099 		core->ops->restore_context(core->hw);
1100 
1101 	hlist_for_each_entry(child, &core->children, child_node)
1102 		clk_core_restore_context(child);
1103 }
1104 
1105 /**
1106  * clk_save_context - save clock context for poweroff
1107  *
1108  * Saves the context of the clock register for powerstates in which the
1109  * contents of the registers will be lost. Occurs deep within the suspend
1110  * code.  Returns 0 on success.
1111  */
1112 int clk_save_context(void)
1113 {
1114 	struct clk_core *clk;
1115 	int ret;
1116 
1117 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1118 		ret = clk_core_save_context(clk);
1119 		if (ret < 0)
1120 			return ret;
1121 	}
1122 
1123 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1124 		ret = clk_core_save_context(clk);
1125 		if (ret < 0)
1126 			return ret;
1127 	}
1128 
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(clk_save_context);
1132 
1133 /**
1134  * clk_restore_context - restore clock context after poweroff
1135  *
1136  * Restore the saved clock context upon resume.
1137  *
1138  */
1139 void clk_restore_context(void)
1140 {
1141 	struct clk_core *core;
1142 
1143 	hlist_for_each_entry(core, &clk_root_list, child_node)
1144 		clk_core_restore_context(core);
1145 
1146 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1147 		clk_core_restore_context(core);
1148 }
1149 EXPORT_SYMBOL_GPL(clk_restore_context);
1150 
1151 /**
1152  * clk_enable - ungate a clock
1153  * @clk: the clk being ungated
1154  *
1155  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1156  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1157  * if the operation will never sleep.  One example is a SoC-internal clk which
1158  * is controlled via simple register writes.  In the complex case a clk ungate
1159  * operation may require a fast and a slow part.  It is this reason that
1160  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1161  * must be called before clk_enable.  Returns 0 on success, -EERROR
1162  * otherwise.
1163  */
1164 int clk_enable(struct clk *clk)
1165 {
1166 	if (!clk)
1167 		return 0;
1168 
1169 	return clk_core_enable_lock(clk->core);
1170 }
1171 EXPORT_SYMBOL_GPL(clk_enable);
1172 
1173 static int clk_core_prepare_enable(struct clk_core *core)
1174 {
1175 	int ret;
1176 
1177 	ret = clk_core_prepare_lock(core);
1178 	if (ret)
1179 		return ret;
1180 
1181 	ret = clk_core_enable_lock(core);
1182 	if (ret)
1183 		clk_core_unprepare_lock(core);
1184 
1185 	return ret;
1186 }
1187 
1188 static void clk_core_disable_unprepare(struct clk_core *core)
1189 {
1190 	clk_core_disable_lock(core);
1191 	clk_core_unprepare_lock(core);
1192 }
1193 
1194 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1195 {
1196 	struct clk_core *child;
1197 
1198 	lockdep_assert_held(&prepare_lock);
1199 
1200 	hlist_for_each_entry(child, &core->children, child_node)
1201 		clk_unprepare_unused_subtree(child);
1202 
1203 	if (core->prepare_count)
1204 		return;
1205 
1206 	if (core->flags & CLK_IGNORE_UNUSED)
1207 		return;
1208 
1209 	if (clk_pm_runtime_get(core))
1210 		return;
1211 
1212 	if (clk_core_is_prepared(core)) {
1213 		trace_clk_unprepare(core);
1214 		if (core->ops->unprepare_unused)
1215 			core->ops->unprepare_unused(core->hw);
1216 		else if (core->ops->unprepare)
1217 			core->ops->unprepare(core->hw);
1218 		trace_clk_unprepare_complete(core);
1219 	}
1220 
1221 	clk_pm_runtime_put(core);
1222 }
1223 
1224 static void __init clk_disable_unused_subtree(struct clk_core *core)
1225 {
1226 	struct clk_core *child;
1227 	unsigned long flags;
1228 
1229 	lockdep_assert_held(&prepare_lock);
1230 
1231 	hlist_for_each_entry(child, &core->children, child_node)
1232 		clk_disable_unused_subtree(child);
1233 
1234 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1235 		clk_core_prepare_enable(core->parent);
1236 
1237 	if (clk_pm_runtime_get(core))
1238 		goto unprepare_out;
1239 
1240 	flags = clk_enable_lock();
1241 
1242 	if (core->enable_count)
1243 		goto unlock_out;
1244 
1245 	if (core->flags & CLK_IGNORE_UNUSED)
1246 		goto unlock_out;
1247 
1248 	/*
1249 	 * some gate clocks have special needs during the disable-unused
1250 	 * sequence.  call .disable_unused if available, otherwise fall
1251 	 * back to .disable
1252 	 */
1253 	if (clk_core_is_enabled(core)) {
1254 		trace_clk_disable(core);
1255 		if (core->ops->disable_unused)
1256 			core->ops->disable_unused(core->hw);
1257 		else if (core->ops->disable)
1258 			core->ops->disable(core->hw);
1259 		trace_clk_disable_complete(core);
1260 	}
1261 
1262 unlock_out:
1263 	clk_enable_unlock(flags);
1264 	clk_pm_runtime_put(core);
1265 unprepare_out:
1266 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1267 		clk_core_disable_unprepare(core->parent);
1268 }
1269 
1270 static bool clk_ignore_unused __initdata;
1271 static int __init clk_ignore_unused_setup(char *__unused)
1272 {
1273 	clk_ignore_unused = true;
1274 	return 1;
1275 }
1276 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1277 
1278 static int __init clk_disable_unused(void)
1279 {
1280 	struct clk_core *core;
1281 
1282 	if (clk_ignore_unused) {
1283 		pr_warn("clk: Not disabling unused clocks\n");
1284 		return 0;
1285 	}
1286 
1287 	clk_prepare_lock();
1288 
1289 	hlist_for_each_entry(core, &clk_root_list, child_node)
1290 		clk_disable_unused_subtree(core);
1291 
1292 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293 		clk_disable_unused_subtree(core);
1294 
1295 	hlist_for_each_entry(core, &clk_root_list, child_node)
1296 		clk_unprepare_unused_subtree(core);
1297 
1298 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1299 		clk_unprepare_unused_subtree(core);
1300 
1301 	clk_prepare_unlock();
1302 
1303 	return 0;
1304 }
1305 late_initcall_sync(clk_disable_unused);
1306 
1307 static int clk_core_determine_round_nolock(struct clk_core *core,
1308 					   struct clk_rate_request *req)
1309 {
1310 	long rate;
1311 
1312 	lockdep_assert_held(&prepare_lock);
1313 
1314 	if (!core)
1315 		return 0;
1316 
1317 	/*
1318 	 * At this point, core protection will be disabled if
1319 	 * - if the provider is not protected at all
1320 	 * - if the calling consumer is the only one which has exclusivity
1321 	 *   over the provider
1322 	 */
1323 	if (clk_core_rate_is_protected(core)) {
1324 		req->rate = core->rate;
1325 	} else if (core->ops->determine_rate) {
1326 		return core->ops->determine_rate(core->hw, req);
1327 	} else if (core->ops->round_rate) {
1328 		rate = core->ops->round_rate(core->hw, req->rate,
1329 					     &req->best_parent_rate);
1330 		if (rate < 0)
1331 			return rate;
1332 
1333 		req->rate = rate;
1334 	} else {
1335 		return -EINVAL;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static void clk_core_init_rate_req(struct clk_core * const core,
1342 				   struct clk_rate_request *req)
1343 {
1344 	struct clk_core *parent;
1345 
1346 	if (WARN_ON(!core || !req))
1347 		return;
1348 
1349 	parent = core->parent;
1350 	if (parent) {
1351 		req->best_parent_hw = parent->hw;
1352 		req->best_parent_rate = parent->rate;
1353 	} else {
1354 		req->best_parent_hw = NULL;
1355 		req->best_parent_rate = 0;
1356 	}
1357 }
1358 
1359 static bool clk_core_can_round(struct clk_core * const core)
1360 {
1361 	return core->ops->determine_rate || core->ops->round_rate;
1362 }
1363 
1364 static int clk_core_round_rate_nolock(struct clk_core *core,
1365 				      struct clk_rate_request *req)
1366 {
1367 	lockdep_assert_held(&prepare_lock);
1368 
1369 	if (!core) {
1370 		req->rate = 0;
1371 		return 0;
1372 	}
1373 
1374 	clk_core_init_rate_req(core, req);
1375 
1376 	if (clk_core_can_round(core))
1377 		return clk_core_determine_round_nolock(core, req);
1378 	else if (core->flags & CLK_SET_RATE_PARENT)
1379 		return clk_core_round_rate_nolock(core->parent, req);
1380 
1381 	req->rate = core->rate;
1382 	return 0;
1383 }
1384 
1385 /**
1386  * __clk_determine_rate - get the closest rate actually supported by a clock
1387  * @hw: determine the rate of this clock
1388  * @req: target rate request
1389  *
1390  * Useful for clk_ops such as .set_rate and .determine_rate.
1391  */
1392 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1393 {
1394 	if (!hw) {
1395 		req->rate = 0;
1396 		return 0;
1397 	}
1398 
1399 	return clk_core_round_rate_nolock(hw->core, req);
1400 }
1401 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1402 
1403 /**
1404  * clk_hw_round_rate() - round the given rate for a hw clk
1405  * @hw: the hw clk for which we are rounding a rate
1406  * @rate: the rate which is to be rounded
1407  *
1408  * Takes in a rate as input and rounds it to a rate that the clk can actually
1409  * use.
1410  *
1411  * Context: prepare_lock must be held.
1412  *          For clk providers to call from within clk_ops such as .round_rate,
1413  *          .determine_rate.
1414  *
1415  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1416  *         else returns the parent rate.
1417  */
1418 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1419 {
1420 	int ret;
1421 	struct clk_rate_request req;
1422 
1423 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1424 	req.rate = rate;
1425 
1426 	ret = clk_core_round_rate_nolock(hw->core, &req);
1427 	if (ret)
1428 		return 0;
1429 
1430 	return req.rate;
1431 }
1432 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1433 
1434 /**
1435  * clk_round_rate - round the given rate for a clk
1436  * @clk: the clk for which we are rounding a rate
1437  * @rate: the rate which is to be rounded
1438  *
1439  * Takes in a rate as input and rounds it to a rate that the clk can actually
1440  * use which is then returned.  If clk doesn't support round_rate operation
1441  * then the parent rate is returned.
1442  */
1443 long clk_round_rate(struct clk *clk, unsigned long rate)
1444 {
1445 	struct clk_rate_request req;
1446 	int ret;
1447 
1448 	if (!clk)
1449 		return 0;
1450 
1451 	clk_prepare_lock();
1452 
1453 	if (clk->exclusive_count)
1454 		clk_core_rate_unprotect(clk->core);
1455 
1456 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1457 	req.rate = rate;
1458 
1459 	ret = clk_core_round_rate_nolock(clk->core, &req);
1460 
1461 	if (clk->exclusive_count)
1462 		clk_core_rate_protect(clk->core);
1463 
1464 	clk_prepare_unlock();
1465 
1466 	if (ret)
1467 		return ret;
1468 
1469 	return req.rate;
1470 }
1471 EXPORT_SYMBOL_GPL(clk_round_rate);
1472 
1473 /**
1474  * __clk_notify - call clk notifier chain
1475  * @core: clk that is changing rate
1476  * @msg: clk notifier type (see include/linux/clk.h)
1477  * @old_rate: old clk rate
1478  * @new_rate: new clk rate
1479  *
1480  * Triggers a notifier call chain on the clk rate-change notification
1481  * for 'clk'.  Passes a pointer to the struct clk and the previous
1482  * and current rates to the notifier callback.  Intended to be called by
1483  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1484  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1485  * a driver returns that.
1486  */
1487 static int __clk_notify(struct clk_core *core, unsigned long msg,
1488 		unsigned long old_rate, unsigned long new_rate)
1489 {
1490 	struct clk_notifier *cn;
1491 	struct clk_notifier_data cnd;
1492 	int ret = NOTIFY_DONE;
1493 
1494 	cnd.old_rate = old_rate;
1495 	cnd.new_rate = new_rate;
1496 
1497 	list_for_each_entry(cn, &clk_notifier_list, node) {
1498 		if (cn->clk->core == core) {
1499 			cnd.clk = cn->clk;
1500 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1501 					&cnd);
1502 			if (ret & NOTIFY_STOP_MASK)
1503 				return ret;
1504 		}
1505 	}
1506 
1507 	return ret;
1508 }
1509 
1510 /**
1511  * __clk_recalc_accuracies
1512  * @core: first clk in the subtree
1513  *
1514  * Walks the subtree of clks starting with clk and recalculates accuracies as
1515  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1516  * callback then it is assumed that the clock will take on the accuracy of its
1517  * parent.
1518  */
1519 static void __clk_recalc_accuracies(struct clk_core *core)
1520 {
1521 	unsigned long parent_accuracy = 0;
1522 	struct clk_core *child;
1523 
1524 	lockdep_assert_held(&prepare_lock);
1525 
1526 	if (core->parent)
1527 		parent_accuracy = core->parent->accuracy;
1528 
1529 	if (core->ops->recalc_accuracy)
1530 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1531 							  parent_accuracy);
1532 	else
1533 		core->accuracy = parent_accuracy;
1534 
1535 	hlist_for_each_entry(child, &core->children, child_node)
1536 		__clk_recalc_accuracies(child);
1537 }
1538 
1539 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1540 {
1541 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1542 		__clk_recalc_accuracies(core);
1543 
1544 	return clk_core_get_accuracy_no_lock(core);
1545 }
1546 
1547 /**
1548  * clk_get_accuracy - return the accuracy of clk
1549  * @clk: the clk whose accuracy is being returned
1550  *
1551  * Simply returns the cached accuracy of the clk, unless
1552  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1553  * issued.
1554  * If clk is NULL then returns 0.
1555  */
1556 long clk_get_accuracy(struct clk *clk)
1557 {
1558 	long accuracy;
1559 
1560 	if (!clk)
1561 		return 0;
1562 
1563 	clk_prepare_lock();
1564 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1565 	clk_prepare_unlock();
1566 
1567 	return accuracy;
1568 }
1569 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1570 
1571 static unsigned long clk_recalc(struct clk_core *core,
1572 				unsigned long parent_rate)
1573 {
1574 	unsigned long rate = parent_rate;
1575 
1576 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1577 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1578 		clk_pm_runtime_put(core);
1579 	}
1580 	return rate;
1581 }
1582 
1583 /**
1584  * __clk_recalc_rates
1585  * @core: first clk in the subtree
1586  * @msg: notification type (see include/linux/clk.h)
1587  *
1588  * Walks the subtree of clks starting with clk and recalculates rates as it
1589  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1590  * it is assumed that the clock will take on the rate of its parent.
1591  *
1592  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1593  * if necessary.
1594  */
1595 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1596 {
1597 	unsigned long old_rate;
1598 	unsigned long parent_rate = 0;
1599 	struct clk_core *child;
1600 
1601 	lockdep_assert_held(&prepare_lock);
1602 
1603 	old_rate = core->rate;
1604 
1605 	if (core->parent)
1606 		parent_rate = core->parent->rate;
1607 
1608 	core->rate = clk_recalc(core, parent_rate);
1609 
1610 	/*
1611 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1612 	 * & ABORT_RATE_CHANGE notifiers
1613 	 */
1614 	if (core->notifier_count && msg)
1615 		__clk_notify(core, msg, old_rate, core->rate);
1616 
1617 	hlist_for_each_entry(child, &core->children, child_node)
1618 		__clk_recalc_rates(child, msg);
1619 }
1620 
1621 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1622 {
1623 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1624 		__clk_recalc_rates(core, 0);
1625 
1626 	return clk_core_get_rate_nolock(core);
1627 }
1628 
1629 /**
1630  * clk_get_rate - return the rate of clk
1631  * @clk: the clk whose rate is being returned
1632  *
1633  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1634  * is set, which means a recalc_rate will be issued.
1635  * If clk is NULL then returns 0.
1636  */
1637 unsigned long clk_get_rate(struct clk *clk)
1638 {
1639 	unsigned long rate;
1640 
1641 	if (!clk)
1642 		return 0;
1643 
1644 	clk_prepare_lock();
1645 	rate = clk_core_get_rate_recalc(clk->core);
1646 	clk_prepare_unlock();
1647 
1648 	return rate;
1649 }
1650 EXPORT_SYMBOL_GPL(clk_get_rate);
1651 
1652 static int clk_fetch_parent_index(struct clk_core *core,
1653 				  struct clk_core *parent)
1654 {
1655 	int i;
1656 
1657 	if (!parent)
1658 		return -EINVAL;
1659 
1660 	for (i = 0; i < core->num_parents; i++) {
1661 		/* Found it first try! */
1662 		if (core->parents[i].core == parent)
1663 			return i;
1664 
1665 		/* Something else is here, so keep looking */
1666 		if (core->parents[i].core)
1667 			continue;
1668 
1669 		/* Maybe core hasn't been cached but the hw is all we know? */
1670 		if (core->parents[i].hw) {
1671 			if (core->parents[i].hw == parent->hw)
1672 				break;
1673 
1674 			/* Didn't match, but we're expecting a clk_hw */
1675 			continue;
1676 		}
1677 
1678 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1679 		if (parent == clk_core_get(core, i))
1680 			break;
1681 
1682 		/* Fallback to comparing globally unique names */
1683 		if (core->parents[i].name &&
1684 		    !strcmp(parent->name, core->parents[i].name))
1685 			break;
1686 	}
1687 
1688 	if (i == core->num_parents)
1689 		return -EINVAL;
1690 
1691 	core->parents[i].core = parent;
1692 	return i;
1693 }
1694 
1695 /**
1696  * clk_hw_get_parent_index - return the index of the parent clock
1697  * @hw: clk_hw associated with the clk being consumed
1698  *
1699  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1700  * clock does not have a current parent.
1701  */
1702 int clk_hw_get_parent_index(struct clk_hw *hw)
1703 {
1704 	struct clk_hw *parent = clk_hw_get_parent(hw);
1705 
1706 	if (WARN_ON(parent == NULL))
1707 		return -EINVAL;
1708 
1709 	return clk_fetch_parent_index(hw->core, parent->core);
1710 }
1711 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1712 
1713 /*
1714  * Update the orphan status of @core and all its children.
1715  */
1716 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1717 {
1718 	struct clk_core *child;
1719 
1720 	core->orphan = is_orphan;
1721 
1722 	hlist_for_each_entry(child, &core->children, child_node)
1723 		clk_core_update_orphan_status(child, is_orphan);
1724 }
1725 
1726 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1727 {
1728 	bool was_orphan = core->orphan;
1729 
1730 	hlist_del(&core->child_node);
1731 
1732 	if (new_parent) {
1733 		bool becomes_orphan = new_parent->orphan;
1734 
1735 		/* avoid duplicate POST_RATE_CHANGE notifications */
1736 		if (new_parent->new_child == core)
1737 			new_parent->new_child = NULL;
1738 
1739 		hlist_add_head(&core->child_node, &new_parent->children);
1740 
1741 		if (was_orphan != becomes_orphan)
1742 			clk_core_update_orphan_status(core, becomes_orphan);
1743 	} else {
1744 		hlist_add_head(&core->child_node, &clk_orphan_list);
1745 		if (!was_orphan)
1746 			clk_core_update_orphan_status(core, true);
1747 	}
1748 
1749 	core->parent = new_parent;
1750 }
1751 
1752 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1753 					   struct clk_core *parent)
1754 {
1755 	unsigned long flags;
1756 	struct clk_core *old_parent = core->parent;
1757 
1758 	/*
1759 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1760 	 *
1761 	 * 2. Migrate prepare state between parents and prevent race with
1762 	 * clk_enable().
1763 	 *
1764 	 * If the clock is not prepared, then a race with
1765 	 * clk_enable/disable() is impossible since we already have the
1766 	 * prepare lock (future calls to clk_enable() need to be preceded by
1767 	 * a clk_prepare()).
1768 	 *
1769 	 * If the clock is prepared, migrate the prepared state to the new
1770 	 * parent and also protect against a race with clk_enable() by
1771 	 * forcing the clock and the new parent on.  This ensures that all
1772 	 * future calls to clk_enable() are practically NOPs with respect to
1773 	 * hardware and software states.
1774 	 *
1775 	 * See also: Comment for clk_set_parent() below.
1776 	 */
1777 
1778 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1779 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1780 		clk_core_prepare_enable(old_parent);
1781 		clk_core_prepare_enable(parent);
1782 	}
1783 
1784 	/* migrate prepare count if > 0 */
1785 	if (core->prepare_count) {
1786 		clk_core_prepare_enable(parent);
1787 		clk_core_enable_lock(core);
1788 	}
1789 
1790 	/* update the clk tree topology */
1791 	flags = clk_enable_lock();
1792 	clk_reparent(core, parent);
1793 	clk_enable_unlock(flags);
1794 
1795 	return old_parent;
1796 }
1797 
1798 static void __clk_set_parent_after(struct clk_core *core,
1799 				   struct clk_core *parent,
1800 				   struct clk_core *old_parent)
1801 {
1802 	/*
1803 	 * Finish the migration of prepare state and undo the changes done
1804 	 * for preventing a race with clk_enable().
1805 	 */
1806 	if (core->prepare_count) {
1807 		clk_core_disable_lock(core);
1808 		clk_core_disable_unprepare(old_parent);
1809 	}
1810 
1811 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1812 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1813 		clk_core_disable_unprepare(parent);
1814 		clk_core_disable_unprepare(old_parent);
1815 	}
1816 }
1817 
1818 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1819 			    u8 p_index)
1820 {
1821 	unsigned long flags;
1822 	int ret = 0;
1823 	struct clk_core *old_parent;
1824 
1825 	old_parent = __clk_set_parent_before(core, parent);
1826 
1827 	trace_clk_set_parent(core, parent);
1828 
1829 	/* change clock input source */
1830 	if (parent && core->ops->set_parent)
1831 		ret = core->ops->set_parent(core->hw, p_index);
1832 
1833 	trace_clk_set_parent_complete(core, parent);
1834 
1835 	if (ret) {
1836 		flags = clk_enable_lock();
1837 		clk_reparent(core, old_parent);
1838 		clk_enable_unlock(flags);
1839 		__clk_set_parent_after(core, old_parent, parent);
1840 
1841 		return ret;
1842 	}
1843 
1844 	__clk_set_parent_after(core, parent, old_parent);
1845 
1846 	return 0;
1847 }
1848 
1849 /**
1850  * __clk_speculate_rates
1851  * @core: first clk in the subtree
1852  * @parent_rate: the "future" rate of clk's parent
1853  *
1854  * Walks the subtree of clks starting with clk, speculating rates as it
1855  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1856  *
1857  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1858  * pre-rate change notifications and returns early if no clks in the
1859  * subtree have subscribed to the notifications.  Note that if a clk does not
1860  * implement the .recalc_rate callback then it is assumed that the clock will
1861  * take on the rate of its parent.
1862  */
1863 static int __clk_speculate_rates(struct clk_core *core,
1864 				 unsigned long parent_rate)
1865 {
1866 	struct clk_core *child;
1867 	unsigned long new_rate;
1868 	int ret = NOTIFY_DONE;
1869 
1870 	lockdep_assert_held(&prepare_lock);
1871 
1872 	new_rate = clk_recalc(core, parent_rate);
1873 
1874 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1875 	if (core->notifier_count)
1876 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1877 
1878 	if (ret & NOTIFY_STOP_MASK) {
1879 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1880 				__func__, core->name, ret);
1881 		goto out;
1882 	}
1883 
1884 	hlist_for_each_entry(child, &core->children, child_node) {
1885 		ret = __clk_speculate_rates(child, new_rate);
1886 		if (ret & NOTIFY_STOP_MASK)
1887 			break;
1888 	}
1889 
1890 out:
1891 	return ret;
1892 }
1893 
1894 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1895 			     struct clk_core *new_parent, u8 p_index)
1896 {
1897 	struct clk_core *child;
1898 
1899 	core->new_rate = new_rate;
1900 	core->new_parent = new_parent;
1901 	core->new_parent_index = p_index;
1902 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1903 	core->new_child = NULL;
1904 	if (new_parent && new_parent != core->parent)
1905 		new_parent->new_child = core;
1906 
1907 	hlist_for_each_entry(child, &core->children, child_node) {
1908 		child->new_rate = clk_recalc(child, new_rate);
1909 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1910 	}
1911 }
1912 
1913 /*
1914  * calculate the new rates returning the topmost clock that has to be
1915  * changed.
1916  */
1917 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1918 					   unsigned long rate)
1919 {
1920 	struct clk_core *top = core;
1921 	struct clk_core *old_parent, *parent;
1922 	unsigned long best_parent_rate = 0;
1923 	unsigned long new_rate;
1924 	unsigned long min_rate;
1925 	unsigned long max_rate;
1926 	int p_index = 0;
1927 	long ret;
1928 
1929 	/* sanity */
1930 	if (IS_ERR_OR_NULL(core))
1931 		return NULL;
1932 
1933 	/* save parent rate, if it exists */
1934 	parent = old_parent = core->parent;
1935 	if (parent)
1936 		best_parent_rate = parent->rate;
1937 
1938 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1939 
1940 	/* find the closest rate and parent clk/rate */
1941 	if (clk_core_can_round(core)) {
1942 		struct clk_rate_request req;
1943 
1944 		req.rate = rate;
1945 		req.min_rate = min_rate;
1946 		req.max_rate = max_rate;
1947 
1948 		clk_core_init_rate_req(core, &req);
1949 
1950 		ret = clk_core_determine_round_nolock(core, &req);
1951 		if (ret < 0)
1952 			return NULL;
1953 
1954 		best_parent_rate = req.best_parent_rate;
1955 		new_rate = req.rate;
1956 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1957 
1958 		if (new_rate < min_rate || new_rate > max_rate)
1959 			return NULL;
1960 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1961 		/* pass-through clock without adjustable parent */
1962 		core->new_rate = core->rate;
1963 		return NULL;
1964 	} else {
1965 		/* pass-through clock with adjustable parent */
1966 		top = clk_calc_new_rates(parent, rate);
1967 		new_rate = parent->new_rate;
1968 		goto out;
1969 	}
1970 
1971 	/* some clocks must be gated to change parent */
1972 	if (parent != old_parent &&
1973 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1974 		pr_debug("%s: %s not gated but wants to reparent\n",
1975 			 __func__, core->name);
1976 		return NULL;
1977 	}
1978 
1979 	/* try finding the new parent index */
1980 	if (parent && core->num_parents > 1) {
1981 		p_index = clk_fetch_parent_index(core, parent);
1982 		if (p_index < 0) {
1983 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1984 				 __func__, parent->name, core->name);
1985 			return NULL;
1986 		}
1987 	}
1988 
1989 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1990 	    best_parent_rate != parent->rate)
1991 		top = clk_calc_new_rates(parent, best_parent_rate);
1992 
1993 out:
1994 	clk_calc_subtree(core, new_rate, parent, p_index);
1995 
1996 	return top;
1997 }
1998 
1999 /*
2000  * Notify about rate changes in a subtree. Always walk down the whole tree
2001  * so that in case of an error we can walk down the whole tree again and
2002  * abort the change.
2003  */
2004 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2005 						  unsigned long event)
2006 {
2007 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2008 	int ret = NOTIFY_DONE;
2009 
2010 	if (core->rate == core->new_rate)
2011 		return NULL;
2012 
2013 	if (core->notifier_count) {
2014 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2015 		if (ret & NOTIFY_STOP_MASK)
2016 			fail_clk = core;
2017 	}
2018 
2019 	hlist_for_each_entry(child, &core->children, child_node) {
2020 		/* Skip children who will be reparented to another clock */
2021 		if (child->new_parent && child->new_parent != core)
2022 			continue;
2023 		tmp_clk = clk_propagate_rate_change(child, event);
2024 		if (tmp_clk)
2025 			fail_clk = tmp_clk;
2026 	}
2027 
2028 	/* handle the new child who might not be in core->children yet */
2029 	if (core->new_child) {
2030 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2031 		if (tmp_clk)
2032 			fail_clk = tmp_clk;
2033 	}
2034 
2035 	return fail_clk;
2036 }
2037 
2038 /*
2039  * walk down a subtree and set the new rates notifying the rate
2040  * change on the way
2041  */
2042 static void clk_change_rate(struct clk_core *core)
2043 {
2044 	struct clk_core *child;
2045 	struct hlist_node *tmp;
2046 	unsigned long old_rate;
2047 	unsigned long best_parent_rate = 0;
2048 	bool skip_set_rate = false;
2049 	struct clk_core *old_parent;
2050 	struct clk_core *parent = NULL;
2051 
2052 	old_rate = core->rate;
2053 
2054 	if (core->new_parent) {
2055 		parent = core->new_parent;
2056 		best_parent_rate = core->new_parent->rate;
2057 	} else if (core->parent) {
2058 		parent = core->parent;
2059 		best_parent_rate = core->parent->rate;
2060 	}
2061 
2062 	if (clk_pm_runtime_get(core))
2063 		return;
2064 
2065 	if (core->flags & CLK_SET_RATE_UNGATE) {
2066 		unsigned long flags;
2067 
2068 		clk_core_prepare(core);
2069 		flags = clk_enable_lock();
2070 		clk_core_enable(core);
2071 		clk_enable_unlock(flags);
2072 	}
2073 
2074 	if (core->new_parent && core->new_parent != core->parent) {
2075 		old_parent = __clk_set_parent_before(core, core->new_parent);
2076 		trace_clk_set_parent(core, core->new_parent);
2077 
2078 		if (core->ops->set_rate_and_parent) {
2079 			skip_set_rate = true;
2080 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2081 					best_parent_rate,
2082 					core->new_parent_index);
2083 		} else if (core->ops->set_parent) {
2084 			core->ops->set_parent(core->hw, core->new_parent_index);
2085 		}
2086 
2087 		trace_clk_set_parent_complete(core, core->new_parent);
2088 		__clk_set_parent_after(core, core->new_parent, old_parent);
2089 	}
2090 
2091 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2092 		clk_core_prepare_enable(parent);
2093 
2094 	trace_clk_set_rate(core, core->new_rate);
2095 
2096 	if (!skip_set_rate && core->ops->set_rate)
2097 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2098 
2099 	trace_clk_set_rate_complete(core, core->new_rate);
2100 
2101 	core->rate = clk_recalc(core, best_parent_rate);
2102 
2103 	if (core->flags & CLK_SET_RATE_UNGATE) {
2104 		unsigned long flags;
2105 
2106 		flags = clk_enable_lock();
2107 		clk_core_disable(core);
2108 		clk_enable_unlock(flags);
2109 		clk_core_unprepare(core);
2110 	}
2111 
2112 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2113 		clk_core_disable_unprepare(parent);
2114 
2115 	if (core->notifier_count && old_rate != core->rate)
2116 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2117 
2118 	if (core->flags & CLK_RECALC_NEW_RATES)
2119 		(void)clk_calc_new_rates(core, core->new_rate);
2120 
2121 	/*
2122 	 * Use safe iteration, as change_rate can actually swap parents
2123 	 * for certain clock types.
2124 	 */
2125 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2126 		/* Skip children who will be reparented to another clock */
2127 		if (child->new_parent && child->new_parent != core)
2128 			continue;
2129 		clk_change_rate(child);
2130 	}
2131 
2132 	/* handle the new child who might not be in core->children yet */
2133 	if (core->new_child)
2134 		clk_change_rate(core->new_child);
2135 
2136 	clk_pm_runtime_put(core);
2137 }
2138 
2139 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2140 						     unsigned long req_rate)
2141 {
2142 	int ret, cnt;
2143 	struct clk_rate_request req;
2144 
2145 	lockdep_assert_held(&prepare_lock);
2146 
2147 	if (!core)
2148 		return 0;
2149 
2150 	/* simulate what the rate would be if it could be freely set */
2151 	cnt = clk_core_rate_nuke_protect(core);
2152 	if (cnt < 0)
2153 		return cnt;
2154 
2155 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2156 	req.rate = req_rate;
2157 
2158 	ret = clk_core_round_rate_nolock(core, &req);
2159 
2160 	/* restore the protection */
2161 	clk_core_rate_restore_protect(core, cnt);
2162 
2163 	return ret ? 0 : req.rate;
2164 }
2165 
2166 static int clk_core_set_rate_nolock(struct clk_core *core,
2167 				    unsigned long req_rate)
2168 {
2169 	struct clk_core *top, *fail_clk;
2170 	unsigned long rate;
2171 	int ret = 0;
2172 
2173 	if (!core)
2174 		return 0;
2175 
2176 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2177 
2178 	/* bail early if nothing to do */
2179 	if (rate == clk_core_get_rate_nolock(core))
2180 		return 0;
2181 
2182 	/* fail on a direct rate set of a protected provider */
2183 	if (clk_core_rate_is_protected(core))
2184 		return -EBUSY;
2185 
2186 	/* calculate new rates and get the topmost changed clock */
2187 	top = clk_calc_new_rates(core, req_rate);
2188 	if (!top)
2189 		return -EINVAL;
2190 
2191 	ret = clk_pm_runtime_get(core);
2192 	if (ret)
2193 		return ret;
2194 
2195 	/* notify that we are about to change rates */
2196 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2197 	if (fail_clk) {
2198 		pr_debug("%s: failed to set %s rate\n", __func__,
2199 				fail_clk->name);
2200 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2201 		ret = -EBUSY;
2202 		goto err;
2203 	}
2204 
2205 	/* change the rates */
2206 	clk_change_rate(top);
2207 
2208 	core->req_rate = req_rate;
2209 err:
2210 	clk_pm_runtime_put(core);
2211 
2212 	return ret;
2213 }
2214 
2215 /**
2216  * clk_set_rate - specify a new rate for clk
2217  * @clk: the clk whose rate is being changed
2218  * @rate: the new rate for clk
2219  *
2220  * In the simplest case clk_set_rate will only adjust the rate of clk.
2221  *
2222  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2223  * propagate up to clk's parent; whether or not this happens depends on the
2224  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2225  * after calling .round_rate then upstream parent propagation is ignored.  If
2226  * *parent_rate comes back with a new rate for clk's parent then we propagate
2227  * up to clk's parent and set its rate.  Upward propagation will continue
2228  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2229  * .round_rate stops requesting changes to clk's parent_rate.
2230  *
2231  * Rate changes are accomplished via tree traversal that also recalculates the
2232  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2233  *
2234  * Returns 0 on success, -EERROR otherwise.
2235  */
2236 int clk_set_rate(struct clk *clk, unsigned long rate)
2237 {
2238 	int ret;
2239 
2240 	if (!clk)
2241 		return 0;
2242 
2243 	/* prevent racing with updates to the clock topology */
2244 	clk_prepare_lock();
2245 
2246 	if (clk->exclusive_count)
2247 		clk_core_rate_unprotect(clk->core);
2248 
2249 	ret = clk_core_set_rate_nolock(clk->core, rate);
2250 
2251 	if (clk->exclusive_count)
2252 		clk_core_rate_protect(clk->core);
2253 
2254 	clk_prepare_unlock();
2255 
2256 	return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(clk_set_rate);
2259 
2260 /**
2261  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2262  * @clk: the clk whose rate is being changed
2263  * @rate: the new rate for clk
2264  *
2265  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2266  * within a critical section
2267  *
2268  * This can be used initially to ensure that at least 1 consumer is
2269  * satisfied when several consumers are competing for exclusivity over the
2270  * same clock provider.
2271  *
2272  * The exclusivity is not applied if setting the rate failed.
2273  *
2274  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2275  * clk_rate_exclusive_put().
2276  *
2277  * Returns 0 on success, -EERROR otherwise.
2278  */
2279 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2280 {
2281 	int ret;
2282 
2283 	if (!clk)
2284 		return 0;
2285 
2286 	/* prevent racing with updates to the clock topology */
2287 	clk_prepare_lock();
2288 
2289 	/*
2290 	 * The temporary protection removal is not here, on purpose
2291 	 * This function is meant to be used instead of clk_rate_protect,
2292 	 * so before the consumer code path protect the clock provider
2293 	 */
2294 
2295 	ret = clk_core_set_rate_nolock(clk->core, rate);
2296 	if (!ret) {
2297 		clk_core_rate_protect(clk->core);
2298 		clk->exclusive_count++;
2299 	}
2300 
2301 	clk_prepare_unlock();
2302 
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2306 
2307 /**
2308  * clk_set_rate_range - set a rate range for a clock source
2309  * @clk: clock source
2310  * @min: desired minimum clock rate in Hz, inclusive
2311  * @max: desired maximum clock rate in Hz, inclusive
2312  *
2313  * Returns success (0) or negative errno.
2314  */
2315 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2316 {
2317 	int ret = 0;
2318 	unsigned long old_min, old_max, rate;
2319 
2320 	if (!clk)
2321 		return 0;
2322 
2323 	if (min > max) {
2324 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2325 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2326 		       min, max);
2327 		return -EINVAL;
2328 	}
2329 
2330 	clk_prepare_lock();
2331 
2332 	if (clk->exclusive_count)
2333 		clk_core_rate_unprotect(clk->core);
2334 
2335 	/* Save the current values in case we need to rollback the change */
2336 	old_min = clk->min_rate;
2337 	old_max = clk->max_rate;
2338 	clk->min_rate = min;
2339 	clk->max_rate = max;
2340 
2341 	rate = clk_core_get_rate_nolock(clk->core);
2342 	if (rate < min || rate > max) {
2343 		/*
2344 		 * FIXME:
2345 		 * We are in bit of trouble here, current rate is outside the
2346 		 * the requested range. We are going try to request appropriate
2347 		 * range boundary but there is a catch. It may fail for the
2348 		 * usual reason (clock broken, clock protected, etc) but also
2349 		 * because:
2350 		 * - round_rate() was not favorable and fell on the wrong
2351 		 *   side of the boundary
2352 		 * - the determine_rate() callback does not really check for
2353 		 *   this corner case when determining the rate
2354 		 */
2355 
2356 		if (rate < min)
2357 			rate = min;
2358 		else
2359 			rate = max;
2360 
2361 		ret = clk_core_set_rate_nolock(clk->core, rate);
2362 		if (ret) {
2363 			/* rollback the changes */
2364 			clk->min_rate = old_min;
2365 			clk->max_rate = old_max;
2366 		}
2367 	}
2368 
2369 	if (clk->exclusive_count)
2370 		clk_core_rate_protect(clk->core);
2371 
2372 	clk_prepare_unlock();
2373 
2374 	return ret;
2375 }
2376 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2377 
2378 /**
2379  * clk_set_min_rate - set a minimum clock rate for a clock source
2380  * @clk: clock source
2381  * @rate: desired minimum clock rate in Hz, inclusive
2382  *
2383  * Returns success (0) or negative errno.
2384  */
2385 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2386 {
2387 	if (!clk)
2388 		return 0;
2389 
2390 	return clk_set_rate_range(clk, rate, clk->max_rate);
2391 }
2392 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2393 
2394 /**
2395  * clk_set_max_rate - set a maximum clock rate for a clock source
2396  * @clk: clock source
2397  * @rate: desired maximum clock rate in Hz, inclusive
2398  *
2399  * Returns success (0) or negative errno.
2400  */
2401 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2402 {
2403 	if (!clk)
2404 		return 0;
2405 
2406 	return clk_set_rate_range(clk, clk->min_rate, rate);
2407 }
2408 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2409 
2410 /**
2411  * clk_get_parent - return the parent of a clk
2412  * @clk: the clk whose parent gets returned
2413  *
2414  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2415  */
2416 struct clk *clk_get_parent(struct clk *clk)
2417 {
2418 	struct clk *parent;
2419 
2420 	if (!clk)
2421 		return NULL;
2422 
2423 	clk_prepare_lock();
2424 	/* TODO: Create a per-user clk and change callers to call clk_put */
2425 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2426 	clk_prepare_unlock();
2427 
2428 	return parent;
2429 }
2430 EXPORT_SYMBOL_GPL(clk_get_parent);
2431 
2432 static struct clk_core *__clk_init_parent(struct clk_core *core)
2433 {
2434 	u8 index = 0;
2435 
2436 	if (core->num_parents > 1 && core->ops->get_parent)
2437 		index = core->ops->get_parent(core->hw);
2438 
2439 	return clk_core_get_parent_by_index(core, index);
2440 }
2441 
2442 static void clk_core_reparent(struct clk_core *core,
2443 				  struct clk_core *new_parent)
2444 {
2445 	clk_reparent(core, new_parent);
2446 	__clk_recalc_accuracies(core);
2447 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2448 }
2449 
2450 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2451 {
2452 	if (!hw)
2453 		return;
2454 
2455 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2456 }
2457 
2458 /**
2459  * clk_has_parent - check if a clock is a possible parent for another
2460  * @clk: clock source
2461  * @parent: parent clock source
2462  *
2463  * This function can be used in drivers that need to check that a clock can be
2464  * the parent of another without actually changing the parent.
2465  *
2466  * Returns true if @parent is a possible parent for @clk, false otherwise.
2467  */
2468 bool clk_has_parent(struct clk *clk, struct clk *parent)
2469 {
2470 	struct clk_core *core, *parent_core;
2471 	int i;
2472 
2473 	/* NULL clocks should be nops, so return success if either is NULL. */
2474 	if (!clk || !parent)
2475 		return true;
2476 
2477 	core = clk->core;
2478 	parent_core = parent->core;
2479 
2480 	/* Optimize for the case where the parent is already the parent. */
2481 	if (core->parent == parent_core)
2482 		return true;
2483 
2484 	for (i = 0; i < core->num_parents; i++)
2485 		if (!strcmp(core->parents[i].name, parent_core->name))
2486 			return true;
2487 
2488 	return false;
2489 }
2490 EXPORT_SYMBOL_GPL(clk_has_parent);
2491 
2492 static int clk_core_set_parent_nolock(struct clk_core *core,
2493 				      struct clk_core *parent)
2494 {
2495 	int ret = 0;
2496 	int p_index = 0;
2497 	unsigned long p_rate = 0;
2498 
2499 	lockdep_assert_held(&prepare_lock);
2500 
2501 	if (!core)
2502 		return 0;
2503 
2504 	if (core->parent == parent)
2505 		return 0;
2506 
2507 	/* verify ops for multi-parent clks */
2508 	if (core->num_parents > 1 && !core->ops->set_parent)
2509 		return -EPERM;
2510 
2511 	/* check that we are allowed to re-parent if the clock is in use */
2512 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2513 		return -EBUSY;
2514 
2515 	if (clk_core_rate_is_protected(core))
2516 		return -EBUSY;
2517 
2518 	/* try finding the new parent index */
2519 	if (parent) {
2520 		p_index = clk_fetch_parent_index(core, parent);
2521 		if (p_index < 0) {
2522 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2523 					__func__, parent->name, core->name);
2524 			return p_index;
2525 		}
2526 		p_rate = parent->rate;
2527 	}
2528 
2529 	ret = clk_pm_runtime_get(core);
2530 	if (ret)
2531 		return ret;
2532 
2533 	/* propagate PRE_RATE_CHANGE notifications */
2534 	ret = __clk_speculate_rates(core, p_rate);
2535 
2536 	/* abort if a driver objects */
2537 	if (ret & NOTIFY_STOP_MASK)
2538 		goto runtime_put;
2539 
2540 	/* do the re-parent */
2541 	ret = __clk_set_parent(core, parent, p_index);
2542 
2543 	/* propagate rate an accuracy recalculation accordingly */
2544 	if (ret) {
2545 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2546 	} else {
2547 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2548 		__clk_recalc_accuracies(core);
2549 	}
2550 
2551 runtime_put:
2552 	clk_pm_runtime_put(core);
2553 
2554 	return ret;
2555 }
2556 
2557 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2558 {
2559 	return clk_core_set_parent_nolock(hw->core, parent->core);
2560 }
2561 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2562 
2563 /**
2564  * clk_set_parent - switch the parent of a mux clk
2565  * @clk: the mux clk whose input we are switching
2566  * @parent: the new input to clk
2567  *
2568  * Re-parent clk to use parent as its new input source.  If clk is in
2569  * prepared state, the clk will get enabled for the duration of this call. If
2570  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2571  * that, the reparenting is glitchy in hardware, etc), use the
2572  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2573  *
2574  * After successfully changing clk's parent clk_set_parent will update the
2575  * clk topology, sysfs topology and propagate rate recalculation via
2576  * __clk_recalc_rates.
2577  *
2578  * Returns 0 on success, -EERROR otherwise.
2579  */
2580 int clk_set_parent(struct clk *clk, struct clk *parent)
2581 {
2582 	int ret;
2583 
2584 	if (!clk)
2585 		return 0;
2586 
2587 	clk_prepare_lock();
2588 
2589 	if (clk->exclusive_count)
2590 		clk_core_rate_unprotect(clk->core);
2591 
2592 	ret = clk_core_set_parent_nolock(clk->core,
2593 					 parent ? parent->core : NULL);
2594 
2595 	if (clk->exclusive_count)
2596 		clk_core_rate_protect(clk->core);
2597 
2598 	clk_prepare_unlock();
2599 
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(clk_set_parent);
2603 
2604 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2605 {
2606 	int ret = -EINVAL;
2607 
2608 	lockdep_assert_held(&prepare_lock);
2609 
2610 	if (!core)
2611 		return 0;
2612 
2613 	if (clk_core_rate_is_protected(core))
2614 		return -EBUSY;
2615 
2616 	trace_clk_set_phase(core, degrees);
2617 
2618 	if (core->ops->set_phase) {
2619 		ret = core->ops->set_phase(core->hw, degrees);
2620 		if (!ret)
2621 			core->phase = degrees;
2622 	}
2623 
2624 	trace_clk_set_phase_complete(core, degrees);
2625 
2626 	return ret;
2627 }
2628 
2629 /**
2630  * clk_set_phase - adjust the phase shift of a clock signal
2631  * @clk: clock signal source
2632  * @degrees: number of degrees the signal is shifted
2633  *
2634  * Shifts the phase of a clock signal by the specified
2635  * degrees. Returns 0 on success, -EERROR otherwise.
2636  *
2637  * This function makes no distinction about the input or reference
2638  * signal that we adjust the clock signal phase against. For example
2639  * phase locked-loop clock signal generators we may shift phase with
2640  * respect to feedback clock signal input, but for other cases the
2641  * clock phase may be shifted with respect to some other, unspecified
2642  * signal.
2643  *
2644  * Additionally the concept of phase shift does not propagate through
2645  * the clock tree hierarchy, which sets it apart from clock rates and
2646  * clock accuracy. A parent clock phase attribute does not have an
2647  * impact on the phase attribute of a child clock.
2648  */
2649 int clk_set_phase(struct clk *clk, int degrees)
2650 {
2651 	int ret;
2652 
2653 	if (!clk)
2654 		return 0;
2655 
2656 	/* sanity check degrees */
2657 	degrees %= 360;
2658 	if (degrees < 0)
2659 		degrees += 360;
2660 
2661 	clk_prepare_lock();
2662 
2663 	if (clk->exclusive_count)
2664 		clk_core_rate_unprotect(clk->core);
2665 
2666 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2667 
2668 	if (clk->exclusive_count)
2669 		clk_core_rate_protect(clk->core);
2670 
2671 	clk_prepare_unlock();
2672 
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL_GPL(clk_set_phase);
2676 
2677 static int clk_core_get_phase(struct clk_core *core)
2678 {
2679 	int ret;
2680 
2681 	lockdep_assert_held(&prepare_lock);
2682 	if (!core->ops->get_phase)
2683 		return 0;
2684 
2685 	/* Always try to update cached phase if possible */
2686 	ret = core->ops->get_phase(core->hw);
2687 	if (ret >= 0)
2688 		core->phase = ret;
2689 
2690 	return ret;
2691 }
2692 
2693 /**
2694  * clk_get_phase - return the phase shift of a clock signal
2695  * @clk: clock signal source
2696  *
2697  * Returns the phase shift of a clock node in degrees, otherwise returns
2698  * -EERROR.
2699  */
2700 int clk_get_phase(struct clk *clk)
2701 {
2702 	int ret;
2703 
2704 	if (!clk)
2705 		return 0;
2706 
2707 	clk_prepare_lock();
2708 	ret = clk_core_get_phase(clk->core);
2709 	clk_prepare_unlock();
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(clk_get_phase);
2714 
2715 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2716 {
2717 	/* Assume a default value of 50% */
2718 	core->duty.num = 1;
2719 	core->duty.den = 2;
2720 }
2721 
2722 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2723 
2724 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2725 {
2726 	struct clk_duty *duty = &core->duty;
2727 	int ret = 0;
2728 
2729 	if (!core->ops->get_duty_cycle)
2730 		return clk_core_update_duty_cycle_parent_nolock(core);
2731 
2732 	ret = core->ops->get_duty_cycle(core->hw, duty);
2733 	if (ret)
2734 		goto reset;
2735 
2736 	/* Don't trust the clock provider too much */
2737 	if (duty->den == 0 || duty->num > duty->den) {
2738 		ret = -EINVAL;
2739 		goto reset;
2740 	}
2741 
2742 	return 0;
2743 
2744 reset:
2745 	clk_core_reset_duty_cycle_nolock(core);
2746 	return ret;
2747 }
2748 
2749 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2750 {
2751 	int ret = 0;
2752 
2753 	if (core->parent &&
2754 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2755 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2756 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2757 	} else {
2758 		clk_core_reset_duty_cycle_nolock(core);
2759 	}
2760 
2761 	return ret;
2762 }
2763 
2764 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2765 						 struct clk_duty *duty);
2766 
2767 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2768 					  struct clk_duty *duty)
2769 {
2770 	int ret;
2771 
2772 	lockdep_assert_held(&prepare_lock);
2773 
2774 	if (clk_core_rate_is_protected(core))
2775 		return -EBUSY;
2776 
2777 	trace_clk_set_duty_cycle(core, duty);
2778 
2779 	if (!core->ops->set_duty_cycle)
2780 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2781 
2782 	ret = core->ops->set_duty_cycle(core->hw, duty);
2783 	if (!ret)
2784 		memcpy(&core->duty, duty, sizeof(*duty));
2785 
2786 	trace_clk_set_duty_cycle_complete(core, duty);
2787 
2788 	return ret;
2789 }
2790 
2791 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2792 						 struct clk_duty *duty)
2793 {
2794 	int ret = 0;
2795 
2796 	if (core->parent &&
2797 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2798 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2799 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 /**
2806  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2807  * @clk: clock signal source
2808  * @num: numerator of the duty cycle ratio to be applied
2809  * @den: denominator of the duty cycle ratio to be applied
2810  *
2811  * Apply the duty cycle ratio if the ratio is valid and the clock can
2812  * perform this operation
2813  *
2814  * Returns (0) on success, a negative errno otherwise.
2815  */
2816 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2817 {
2818 	int ret;
2819 	struct clk_duty duty;
2820 
2821 	if (!clk)
2822 		return 0;
2823 
2824 	/* sanity check the ratio */
2825 	if (den == 0 || num > den)
2826 		return -EINVAL;
2827 
2828 	duty.num = num;
2829 	duty.den = den;
2830 
2831 	clk_prepare_lock();
2832 
2833 	if (clk->exclusive_count)
2834 		clk_core_rate_unprotect(clk->core);
2835 
2836 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2837 
2838 	if (clk->exclusive_count)
2839 		clk_core_rate_protect(clk->core);
2840 
2841 	clk_prepare_unlock();
2842 
2843 	return ret;
2844 }
2845 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2846 
2847 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2848 					  unsigned int scale)
2849 {
2850 	struct clk_duty *duty = &core->duty;
2851 	int ret;
2852 
2853 	clk_prepare_lock();
2854 
2855 	ret = clk_core_update_duty_cycle_nolock(core);
2856 	if (!ret)
2857 		ret = mult_frac(scale, duty->num, duty->den);
2858 
2859 	clk_prepare_unlock();
2860 
2861 	return ret;
2862 }
2863 
2864 /**
2865  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2866  * @clk: clock signal source
2867  * @scale: scaling factor to be applied to represent the ratio as an integer
2868  *
2869  * Returns the duty cycle ratio of a clock node multiplied by the provided
2870  * scaling factor, or negative errno on error.
2871  */
2872 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2873 {
2874 	if (!clk)
2875 		return 0;
2876 
2877 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2878 }
2879 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2880 
2881 /**
2882  * clk_is_match - check if two clk's point to the same hardware clock
2883  * @p: clk compared against q
2884  * @q: clk compared against p
2885  *
2886  * Returns true if the two struct clk pointers both point to the same hardware
2887  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2888  * share the same struct clk_core object.
2889  *
2890  * Returns false otherwise. Note that two NULL clks are treated as matching.
2891  */
2892 bool clk_is_match(const struct clk *p, const struct clk *q)
2893 {
2894 	/* trivial case: identical struct clk's or both NULL */
2895 	if (p == q)
2896 		return true;
2897 
2898 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2899 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2900 		if (p->core == q->core)
2901 			return true;
2902 
2903 	return false;
2904 }
2905 EXPORT_SYMBOL_GPL(clk_is_match);
2906 
2907 /***        debugfs support        ***/
2908 
2909 #ifdef CONFIG_DEBUG_FS
2910 #include <linux/debugfs.h>
2911 
2912 static struct dentry *rootdir;
2913 static int inited = 0;
2914 static DEFINE_MUTEX(clk_debug_lock);
2915 static HLIST_HEAD(clk_debug_list);
2916 
2917 static struct hlist_head *orphan_list[] = {
2918 	&clk_orphan_list,
2919 	NULL,
2920 };
2921 
2922 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2923 				 int level)
2924 {
2925 	int phase;
2926 
2927 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2928 		   level * 3 + 1, "",
2929 		   30 - level * 3, c->name,
2930 		   c->enable_count, c->prepare_count, c->protect_count,
2931 		   clk_core_get_rate_recalc(c),
2932 		   clk_core_get_accuracy_recalc(c));
2933 
2934 	phase = clk_core_get_phase(c);
2935 	if (phase >= 0)
2936 		seq_printf(s, "%5d", phase);
2937 	else
2938 		seq_puts(s, "-----");
2939 
2940 	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
2941 }
2942 
2943 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2944 				     int level)
2945 {
2946 	struct clk_core *child;
2947 
2948 	clk_summary_show_one(s, c, level);
2949 
2950 	hlist_for_each_entry(child, &c->children, child_node)
2951 		clk_summary_show_subtree(s, child, level + 1);
2952 }
2953 
2954 static int clk_summary_show(struct seq_file *s, void *data)
2955 {
2956 	struct clk_core *c;
2957 	struct hlist_head **lists = (struct hlist_head **)s->private;
2958 
2959 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2960 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2961 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2962 
2963 	clk_prepare_lock();
2964 
2965 	for (; *lists; lists++)
2966 		hlist_for_each_entry(c, *lists, child_node)
2967 			clk_summary_show_subtree(s, c, 0);
2968 
2969 	clk_prepare_unlock();
2970 
2971 	return 0;
2972 }
2973 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2974 
2975 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2976 {
2977 	int phase;
2978 	unsigned long min_rate, max_rate;
2979 
2980 	clk_core_get_boundaries(c, &min_rate, &max_rate);
2981 
2982 	/* This should be JSON format, i.e. elements separated with a comma */
2983 	seq_printf(s, "\"%s\": { ", c->name);
2984 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2985 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2986 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2987 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
2988 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2989 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2990 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
2991 	phase = clk_core_get_phase(c);
2992 	if (phase >= 0)
2993 		seq_printf(s, "\"phase\": %d,", phase);
2994 	seq_printf(s, "\"duty_cycle\": %u",
2995 		   clk_core_get_scaled_duty_cycle(c, 100000));
2996 }
2997 
2998 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2999 {
3000 	struct clk_core *child;
3001 
3002 	clk_dump_one(s, c, level);
3003 
3004 	hlist_for_each_entry(child, &c->children, child_node) {
3005 		seq_putc(s, ',');
3006 		clk_dump_subtree(s, child, level + 1);
3007 	}
3008 
3009 	seq_putc(s, '}');
3010 }
3011 
3012 static int clk_dump_show(struct seq_file *s, void *data)
3013 {
3014 	struct clk_core *c;
3015 	bool first_node = true;
3016 	struct hlist_head **lists = (struct hlist_head **)s->private;
3017 
3018 	seq_putc(s, '{');
3019 	clk_prepare_lock();
3020 
3021 	for (; *lists; lists++) {
3022 		hlist_for_each_entry(c, *lists, child_node) {
3023 			if (!first_node)
3024 				seq_putc(s, ',');
3025 			first_node = false;
3026 			clk_dump_subtree(s, c, 0);
3027 		}
3028 	}
3029 
3030 	clk_prepare_unlock();
3031 
3032 	seq_puts(s, "}\n");
3033 	return 0;
3034 }
3035 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3036 
3037 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3038 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3039 /*
3040  * This can be dangerous, therefore don't provide any real compile time
3041  * configuration option for this feature.
3042  * People who want to use this will need to modify the source code directly.
3043  */
3044 static int clk_rate_set(void *data, u64 val)
3045 {
3046 	struct clk_core *core = data;
3047 	int ret;
3048 
3049 	clk_prepare_lock();
3050 	ret = clk_core_set_rate_nolock(core, val);
3051 	clk_prepare_unlock();
3052 
3053 	return ret;
3054 }
3055 
3056 #define clk_rate_mode	0644
3057 #else
3058 #define clk_rate_set	NULL
3059 #define clk_rate_mode	0444
3060 #endif
3061 
3062 static int clk_rate_get(void *data, u64 *val)
3063 {
3064 	struct clk_core *core = data;
3065 
3066 	*val = core->rate;
3067 	return 0;
3068 }
3069 
3070 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3071 
3072 static const struct {
3073 	unsigned long flag;
3074 	const char *name;
3075 } clk_flags[] = {
3076 #define ENTRY(f) { f, #f }
3077 	ENTRY(CLK_SET_RATE_GATE),
3078 	ENTRY(CLK_SET_PARENT_GATE),
3079 	ENTRY(CLK_SET_RATE_PARENT),
3080 	ENTRY(CLK_IGNORE_UNUSED),
3081 	ENTRY(CLK_GET_RATE_NOCACHE),
3082 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3083 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3084 	ENTRY(CLK_RECALC_NEW_RATES),
3085 	ENTRY(CLK_SET_RATE_UNGATE),
3086 	ENTRY(CLK_IS_CRITICAL),
3087 	ENTRY(CLK_OPS_PARENT_ENABLE),
3088 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3089 #undef ENTRY
3090 };
3091 
3092 static int clk_flags_show(struct seq_file *s, void *data)
3093 {
3094 	struct clk_core *core = s->private;
3095 	unsigned long flags = core->flags;
3096 	unsigned int i;
3097 
3098 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3099 		if (flags & clk_flags[i].flag) {
3100 			seq_printf(s, "%s\n", clk_flags[i].name);
3101 			flags &= ~clk_flags[i].flag;
3102 		}
3103 	}
3104 	if (flags) {
3105 		/* Unknown flags */
3106 		seq_printf(s, "0x%lx\n", flags);
3107 	}
3108 
3109 	return 0;
3110 }
3111 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3112 
3113 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3114 				 unsigned int i, char terminator)
3115 {
3116 	struct clk_core *parent;
3117 
3118 	/*
3119 	 * Go through the following options to fetch a parent's name.
3120 	 *
3121 	 * 1. Fetch the registered parent clock and use its name
3122 	 * 2. Use the global (fallback) name if specified
3123 	 * 3. Use the local fw_name if provided
3124 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3125 	 *
3126 	 * This may still fail in some cases, such as when the parent is
3127 	 * specified directly via a struct clk_hw pointer, but it isn't
3128 	 * registered (yet).
3129 	 */
3130 	parent = clk_core_get_parent_by_index(core, i);
3131 	if (parent)
3132 		seq_puts(s, parent->name);
3133 	else if (core->parents[i].name)
3134 		seq_puts(s, core->parents[i].name);
3135 	else if (core->parents[i].fw_name)
3136 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3137 	else if (core->parents[i].index >= 0)
3138 		seq_puts(s,
3139 			 of_clk_get_parent_name(core->of_node,
3140 						core->parents[i].index));
3141 	else
3142 		seq_puts(s, "(missing)");
3143 
3144 	seq_putc(s, terminator);
3145 }
3146 
3147 static int possible_parents_show(struct seq_file *s, void *data)
3148 {
3149 	struct clk_core *core = s->private;
3150 	int i;
3151 
3152 	for (i = 0; i < core->num_parents - 1; i++)
3153 		possible_parent_show(s, core, i, ' ');
3154 
3155 	possible_parent_show(s, core, i, '\n');
3156 
3157 	return 0;
3158 }
3159 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3160 
3161 static int current_parent_show(struct seq_file *s, void *data)
3162 {
3163 	struct clk_core *core = s->private;
3164 
3165 	if (core->parent)
3166 		seq_printf(s, "%s\n", core->parent->name);
3167 
3168 	return 0;
3169 }
3170 DEFINE_SHOW_ATTRIBUTE(current_parent);
3171 
3172 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3173 {
3174 	struct clk_core *core = s->private;
3175 	struct clk_duty *duty = &core->duty;
3176 
3177 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3178 
3179 	return 0;
3180 }
3181 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3182 
3183 static int clk_min_rate_show(struct seq_file *s, void *data)
3184 {
3185 	struct clk_core *core = s->private;
3186 	unsigned long min_rate, max_rate;
3187 
3188 	clk_prepare_lock();
3189 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3190 	clk_prepare_unlock();
3191 	seq_printf(s, "%lu\n", min_rate);
3192 
3193 	return 0;
3194 }
3195 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3196 
3197 static int clk_max_rate_show(struct seq_file *s, void *data)
3198 {
3199 	struct clk_core *core = s->private;
3200 	unsigned long min_rate, max_rate;
3201 
3202 	clk_prepare_lock();
3203 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3204 	clk_prepare_unlock();
3205 	seq_printf(s, "%lu\n", max_rate);
3206 
3207 	return 0;
3208 }
3209 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3210 
3211 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3212 {
3213 	struct dentry *root;
3214 
3215 	if (!core || !pdentry)
3216 		return;
3217 
3218 	root = debugfs_create_dir(core->name, pdentry);
3219 	core->dentry = root;
3220 
3221 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3222 			    &clk_rate_fops);
3223 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3224 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3225 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3226 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3227 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3228 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3229 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3230 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3231 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3232 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3233 			    &clk_duty_cycle_fops);
3234 
3235 	if (core->num_parents > 0)
3236 		debugfs_create_file("clk_parent", 0444, root, core,
3237 				    &current_parent_fops);
3238 
3239 	if (core->num_parents > 1)
3240 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3241 				    &possible_parents_fops);
3242 
3243 	if (core->ops->debug_init)
3244 		core->ops->debug_init(core->hw, core->dentry);
3245 }
3246 
3247 /**
3248  * clk_debug_register - add a clk node to the debugfs clk directory
3249  * @core: the clk being added to the debugfs clk directory
3250  *
3251  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3252  * initialized.  Otherwise it bails out early since the debugfs clk directory
3253  * will be created lazily by clk_debug_init as part of a late_initcall.
3254  */
3255 static void clk_debug_register(struct clk_core *core)
3256 {
3257 	mutex_lock(&clk_debug_lock);
3258 	hlist_add_head(&core->debug_node, &clk_debug_list);
3259 	if (inited)
3260 		clk_debug_create_one(core, rootdir);
3261 	mutex_unlock(&clk_debug_lock);
3262 }
3263 
3264  /**
3265  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3266  * @core: the clk being removed from the debugfs clk directory
3267  *
3268  * Dynamically removes a clk and all its child nodes from the
3269  * debugfs clk directory if clk->dentry points to debugfs created by
3270  * clk_debug_register in __clk_core_init.
3271  */
3272 static void clk_debug_unregister(struct clk_core *core)
3273 {
3274 	mutex_lock(&clk_debug_lock);
3275 	hlist_del_init(&core->debug_node);
3276 	debugfs_remove_recursive(core->dentry);
3277 	core->dentry = NULL;
3278 	mutex_unlock(&clk_debug_lock);
3279 }
3280 
3281 /**
3282  * clk_debug_init - lazily populate the debugfs clk directory
3283  *
3284  * clks are often initialized very early during boot before memory can be
3285  * dynamically allocated and well before debugfs is setup. This function
3286  * populates the debugfs clk directory once at boot-time when we know that
3287  * debugfs is setup. It should only be called once at boot-time, all other clks
3288  * added dynamically will be done so with clk_debug_register.
3289  */
3290 static int __init clk_debug_init(void)
3291 {
3292 	struct clk_core *core;
3293 
3294 	rootdir = debugfs_create_dir("clk", NULL);
3295 
3296 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3297 			    &clk_summary_fops);
3298 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3299 			    &clk_dump_fops);
3300 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3301 			    &clk_summary_fops);
3302 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3303 			    &clk_dump_fops);
3304 
3305 	mutex_lock(&clk_debug_lock);
3306 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3307 		clk_debug_create_one(core, rootdir);
3308 
3309 	inited = 1;
3310 	mutex_unlock(&clk_debug_lock);
3311 
3312 	return 0;
3313 }
3314 late_initcall(clk_debug_init);
3315 #else
3316 static inline void clk_debug_register(struct clk_core *core) { }
3317 static inline void clk_debug_unregister(struct clk_core *core)
3318 {
3319 }
3320 #endif
3321 
3322 static void clk_core_reparent_orphans_nolock(void)
3323 {
3324 	struct clk_core *orphan;
3325 	struct hlist_node *tmp2;
3326 
3327 	/*
3328 	 * walk the list of orphan clocks and reparent any that newly finds a
3329 	 * parent.
3330 	 */
3331 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3332 		struct clk_core *parent = __clk_init_parent(orphan);
3333 
3334 		/*
3335 		 * We need to use __clk_set_parent_before() and _after() to
3336 		 * to properly migrate any prepare/enable count of the orphan
3337 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3338 		 * are enabled during init but might not have a parent yet.
3339 		 */
3340 		if (parent) {
3341 			/* update the clk tree topology */
3342 			__clk_set_parent_before(orphan, parent);
3343 			__clk_set_parent_after(orphan, parent, NULL);
3344 			__clk_recalc_accuracies(orphan);
3345 			__clk_recalc_rates(orphan, 0);
3346 		}
3347 	}
3348 }
3349 
3350 /**
3351  * __clk_core_init - initialize the data structures in a struct clk_core
3352  * @core:	clk_core being initialized
3353  *
3354  * Initializes the lists in struct clk_core, queries the hardware for the
3355  * parent and rate and sets them both.
3356  */
3357 static int __clk_core_init(struct clk_core *core)
3358 {
3359 	int ret;
3360 	struct clk_core *parent;
3361 	unsigned long rate;
3362 	int phase;
3363 
3364 	if (!core)
3365 		return -EINVAL;
3366 
3367 	clk_prepare_lock();
3368 
3369 	ret = clk_pm_runtime_get(core);
3370 	if (ret)
3371 		goto unlock;
3372 
3373 	/* check to see if a clock with this name is already registered */
3374 	if (clk_core_lookup(core->name)) {
3375 		pr_debug("%s: clk %s already initialized\n",
3376 				__func__, core->name);
3377 		ret = -EEXIST;
3378 		goto out;
3379 	}
3380 
3381 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3382 	if (core->ops->set_rate &&
3383 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3384 	      core->ops->recalc_rate)) {
3385 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3386 		       __func__, core->name);
3387 		ret = -EINVAL;
3388 		goto out;
3389 	}
3390 
3391 	if (core->ops->set_parent && !core->ops->get_parent) {
3392 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3393 		       __func__, core->name);
3394 		ret = -EINVAL;
3395 		goto out;
3396 	}
3397 
3398 	if (core->num_parents > 1 && !core->ops->get_parent) {
3399 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3400 		       __func__, core->name);
3401 		ret = -EINVAL;
3402 		goto out;
3403 	}
3404 
3405 	if (core->ops->set_rate_and_parent &&
3406 			!(core->ops->set_parent && core->ops->set_rate)) {
3407 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3408 				__func__, core->name);
3409 		ret = -EINVAL;
3410 		goto out;
3411 	}
3412 
3413 	/*
3414 	 * optional platform-specific magic
3415 	 *
3416 	 * The .init callback is not used by any of the basic clock types, but
3417 	 * exists for weird hardware that must perform initialization magic for
3418 	 * CCF to get an accurate view of clock for any other callbacks. It may
3419 	 * also be used needs to perform dynamic allocations. Such allocation
3420 	 * must be freed in the terminate() callback.
3421 	 * This callback shall not be used to initialize the parameters state,
3422 	 * such as rate, parent, etc ...
3423 	 *
3424 	 * If it exist, this callback should called before any other callback of
3425 	 * the clock
3426 	 */
3427 	if (core->ops->init) {
3428 		ret = core->ops->init(core->hw);
3429 		if (ret)
3430 			goto out;
3431 	}
3432 
3433 	parent = core->parent = __clk_init_parent(core);
3434 
3435 	/*
3436 	 * Populate core->parent if parent has already been clk_core_init'd. If
3437 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3438 	 * list.  If clk doesn't have any parents then place it in the root
3439 	 * clk list.
3440 	 *
3441 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3442 	 * clocks and re-parent any that are children of the clock currently
3443 	 * being clk_init'd.
3444 	 */
3445 	if (parent) {
3446 		hlist_add_head(&core->child_node, &parent->children);
3447 		core->orphan = parent->orphan;
3448 	} else if (!core->num_parents) {
3449 		hlist_add_head(&core->child_node, &clk_root_list);
3450 		core->orphan = false;
3451 	} else {
3452 		hlist_add_head(&core->child_node, &clk_orphan_list);
3453 		core->orphan = true;
3454 	}
3455 
3456 	/*
3457 	 * Set clk's accuracy.  The preferred method is to use
3458 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3459 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3460 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3461 	 * clock).
3462 	 */
3463 	if (core->ops->recalc_accuracy)
3464 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3465 					clk_core_get_accuracy_no_lock(parent));
3466 	else if (parent)
3467 		core->accuracy = parent->accuracy;
3468 	else
3469 		core->accuracy = 0;
3470 
3471 	/*
3472 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3473 	 * Since a phase is by definition relative to its parent, just
3474 	 * query the current clock phase, or just assume it's in phase.
3475 	 */
3476 	phase = clk_core_get_phase(core);
3477 	if (phase < 0) {
3478 		ret = phase;
3479 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3480 			core->name);
3481 		goto out;
3482 	}
3483 
3484 	/*
3485 	 * Set clk's duty cycle.
3486 	 */
3487 	clk_core_update_duty_cycle_nolock(core);
3488 
3489 	/*
3490 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3491 	 * simple clocks and lazy developers the default fallback is to use the
3492 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3493 	 * then rate is set to zero.
3494 	 */
3495 	if (core->ops->recalc_rate)
3496 		rate = core->ops->recalc_rate(core->hw,
3497 				clk_core_get_rate_nolock(parent));
3498 	else if (parent)
3499 		rate = parent->rate;
3500 	else
3501 		rate = 0;
3502 	core->rate = core->req_rate = rate;
3503 
3504 	/*
3505 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3506 	 * don't get accidentally disabled when walking the orphan tree and
3507 	 * reparenting clocks
3508 	 */
3509 	if (core->flags & CLK_IS_CRITICAL) {
3510 		unsigned long flags;
3511 
3512 		ret = clk_core_prepare(core);
3513 		if (ret) {
3514 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3515 			       __func__, core->name);
3516 			goto out;
3517 		}
3518 
3519 		flags = clk_enable_lock();
3520 		ret = clk_core_enable(core);
3521 		clk_enable_unlock(flags);
3522 		if (ret) {
3523 			pr_warn("%s: critical clk '%s' failed to enable\n",
3524 			       __func__, core->name);
3525 			clk_core_unprepare(core);
3526 			goto out;
3527 		}
3528 	}
3529 
3530 	clk_core_reparent_orphans_nolock();
3531 
3532 
3533 	kref_init(&core->ref);
3534 out:
3535 	clk_pm_runtime_put(core);
3536 unlock:
3537 	if (ret)
3538 		hlist_del_init(&core->child_node);
3539 
3540 	clk_prepare_unlock();
3541 
3542 	if (!ret)
3543 		clk_debug_register(core);
3544 
3545 	return ret;
3546 }
3547 
3548 /**
3549  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3550  * @core: clk to add consumer to
3551  * @clk: consumer to link to a clk
3552  */
3553 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3554 {
3555 	clk_prepare_lock();
3556 	hlist_add_head(&clk->clks_node, &core->clks);
3557 	clk_prepare_unlock();
3558 }
3559 
3560 /**
3561  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3562  * @clk: consumer to unlink
3563  */
3564 static void clk_core_unlink_consumer(struct clk *clk)
3565 {
3566 	lockdep_assert_held(&prepare_lock);
3567 	hlist_del(&clk->clks_node);
3568 }
3569 
3570 /**
3571  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3572  * @core: clk to allocate a consumer for
3573  * @dev_id: string describing device name
3574  * @con_id: connection ID string on device
3575  *
3576  * Returns: clk consumer left unlinked from the consumer list
3577  */
3578 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3579 			     const char *con_id)
3580 {
3581 	struct clk *clk;
3582 
3583 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3584 	if (!clk)
3585 		return ERR_PTR(-ENOMEM);
3586 
3587 	clk->core = core;
3588 	clk->dev_id = dev_id;
3589 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3590 	clk->max_rate = ULONG_MAX;
3591 
3592 	return clk;
3593 }
3594 
3595 /**
3596  * free_clk - Free a clk consumer
3597  * @clk: clk consumer to free
3598  *
3599  * Note, this assumes the clk has been unlinked from the clk_core consumer
3600  * list.
3601  */
3602 static void free_clk(struct clk *clk)
3603 {
3604 	kfree_const(clk->con_id);
3605 	kfree(clk);
3606 }
3607 
3608 /**
3609  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3610  * a clk_hw
3611  * @dev: clk consumer device
3612  * @hw: clk_hw associated with the clk being consumed
3613  * @dev_id: string describing device name
3614  * @con_id: connection ID string on device
3615  *
3616  * This is the main function used to create a clk pointer for use by clk
3617  * consumers. It connects a consumer to the clk_core and clk_hw structures
3618  * used by the framework and clk provider respectively.
3619  */
3620 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3621 			      const char *dev_id, const char *con_id)
3622 {
3623 	struct clk *clk;
3624 	struct clk_core *core;
3625 
3626 	/* This is to allow this function to be chained to others */
3627 	if (IS_ERR_OR_NULL(hw))
3628 		return ERR_CAST(hw);
3629 
3630 	core = hw->core;
3631 	clk = alloc_clk(core, dev_id, con_id);
3632 	if (IS_ERR(clk))
3633 		return clk;
3634 	clk->dev = dev;
3635 
3636 	if (!try_module_get(core->owner)) {
3637 		free_clk(clk);
3638 		return ERR_PTR(-ENOENT);
3639 	}
3640 
3641 	kref_get(&core->ref);
3642 	clk_core_link_consumer(core, clk);
3643 
3644 	return clk;
3645 }
3646 
3647 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3648 {
3649 	const char *dst;
3650 
3651 	if (!src) {
3652 		if (must_exist)
3653 			return -EINVAL;
3654 		return 0;
3655 	}
3656 
3657 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3658 	if (!dst)
3659 		return -ENOMEM;
3660 
3661 	return 0;
3662 }
3663 
3664 static int clk_core_populate_parent_map(struct clk_core *core,
3665 					const struct clk_init_data *init)
3666 {
3667 	u8 num_parents = init->num_parents;
3668 	const char * const *parent_names = init->parent_names;
3669 	const struct clk_hw **parent_hws = init->parent_hws;
3670 	const struct clk_parent_data *parent_data = init->parent_data;
3671 	int i, ret = 0;
3672 	struct clk_parent_map *parents, *parent;
3673 
3674 	if (!num_parents)
3675 		return 0;
3676 
3677 	/*
3678 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3679 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3680 	 */
3681 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3682 	core->parents = parents;
3683 	if (!parents)
3684 		return -ENOMEM;
3685 
3686 	/* Copy everything over because it might be __initdata */
3687 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3688 		parent->index = -1;
3689 		if (parent_names) {
3690 			/* throw a WARN if any entries are NULL */
3691 			WARN(!parent_names[i],
3692 				"%s: invalid NULL in %s's .parent_names\n",
3693 				__func__, core->name);
3694 			ret = clk_cpy_name(&parent->name, parent_names[i],
3695 					   true);
3696 		} else if (parent_data) {
3697 			parent->hw = parent_data[i].hw;
3698 			parent->index = parent_data[i].index;
3699 			ret = clk_cpy_name(&parent->fw_name,
3700 					   parent_data[i].fw_name, false);
3701 			if (!ret)
3702 				ret = clk_cpy_name(&parent->name,
3703 						   parent_data[i].name,
3704 						   false);
3705 		} else if (parent_hws) {
3706 			parent->hw = parent_hws[i];
3707 		} else {
3708 			ret = -EINVAL;
3709 			WARN(1, "Must specify parents if num_parents > 0\n");
3710 		}
3711 
3712 		if (ret) {
3713 			do {
3714 				kfree_const(parents[i].name);
3715 				kfree_const(parents[i].fw_name);
3716 			} while (--i >= 0);
3717 			kfree(parents);
3718 
3719 			return ret;
3720 		}
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 static void clk_core_free_parent_map(struct clk_core *core)
3727 {
3728 	int i = core->num_parents;
3729 
3730 	if (!core->num_parents)
3731 		return;
3732 
3733 	while (--i >= 0) {
3734 		kfree_const(core->parents[i].name);
3735 		kfree_const(core->parents[i].fw_name);
3736 	}
3737 
3738 	kfree(core->parents);
3739 }
3740 
3741 static struct clk *
3742 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3743 {
3744 	int ret;
3745 	struct clk_core *core;
3746 	const struct clk_init_data *init = hw->init;
3747 
3748 	/*
3749 	 * The init data is not supposed to be used outside of registration path.
3750 	 * Set it to NULL so that provider drivers can't use it either and so that
3751 	 * we catch use of hw->init early on in the core.
3752 	 */
3753 	hw->init = NULL;
3754 
3755 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3756 	if (!core) {
3757 		ret = -ENOMEM;
3758 		goto fail_out;
3759 	}
3760 
3761 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3762 	if (!core->name) {
3763 		ret = -ENOMEM;
3764 		goto fail_name;
3765 	}
3766 
3767 	if (WARN_ON(!init->ops)) {
3768 		ret = -EINVAL;
3769 		goto fail_ops;
3770 	}
3771 	core->ops = init->ops;
3772 
3773 	if (dev && pm_runtime_enabled(dev))
3774 		core->rpm_enabled = true;
3775 	core->dev = dev;
3776 	core->of_node = np;
3777 	if (dev && dev->driver)
3778 		core->owner = dev->driver->owner;
3779 	core->hw = hw;
3780 	core->flags = init->flags;
3781 	core->num_parents = init->num_parents;
3782 	core->min_rate = 0;
3783 	core->max_rate = ULONG_MAX;
3784 	hw->core = core;
3785 
3786 	ret = clk_core_populate_parent_map(core, init);
3787 	if (ret)
3788 		goto fail_parents;
3789 
3790 	INIT_HLIST_HEAD(&core->clks);
3791 
3792 	/*
3793 	 * Don't call clk_hw_create_clk() here because that would pin the
3794 	 * provider module to itself and prevent it from ever being removed.
3795 	 */
3796 	hw->clk = alloc_clk(core, NULL, NULL);
3797 	if (IS_ERR(hw->clk)) {
3798 		ret = PTR_ERR(hw->clk);
3799 		goto fail_create_clk;
3800 	}
3801 
3802 	clk_core_link_consumer(hw->core, hw->clk);
3803 
3804 	ret = __clk_core_init(core);
3805 	if (!ret)
3806 		return hw->clk;
3807 
3808 	clk_prepare_lock();
3809 	clk_core_unlink_consumer(hw->clk);
3810 	clk_prepare_unlock();
3811 
3812 	free_clk(hw->clk);
3813 	hw->clk = NULL;
3814 
3815 fail_create_clk:
3816 	clk_core_free_parent_map(core);
3817 fail_parents:
3818 fail_ops:
3819 	kfree_const(core->name);
3820 fail_name:
3821 	kfree(core);
3822 fail_out:
3823 	return ERR_PTR(ret);
3824 }
3825 
3826 /**
3827  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3828  * @dev: Device to get device node of
3829  *
3830  * Return: device node pointer of @dev, or the device node pointer of
3831  * @dev->parent if dev doesn't have a device node, or NULL if neither
3832  * @dev or @dev->parent have a device node.
3833  */
3834 static struct device_node *dev_or_parent_of_node(struct device *dev)
3835 {
3836 	struct device_node *np;
3837 
3838 	if (!dev)
3839 		return NULL;
3840 
3841 	np = dev_of_node(dev);
3842 	if (!np)
3843 		np = dev_of_node(dev->parent);
3844 
3845 	return np;
3846 }
3847 
3848 /**
3849  * clk_register - allocate a new clock, register it and return an opaque cookie
3850  * @dev: device that is registering this clock
3851  * @hw: link to hardware-specific clock data
3852  *
3853  * clk_register is the *deprecated* interface for populating the clock tree with
3854  * new clock nodes. Use clk_hw_register() instead.
3855  *
3856  * Returns: a pointer to the newly allocated struct clk which
3857  * cannot be dereferenced by driver code but may be used in conjunction with the
3858  * rest of the clock API.  In the event of an error clk_register will return an
3859  * error code; drivers must test for an error code after calling clk_register.
3860  */
3861 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3862 {
3863 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3864 }
3865 EXPORT_SYMBOL_GPL(clk_register);
3866 
3867 /**
3868  * clk_hw_register - register a clk_hw and return an error code
3869  * @dev: device that is registering this clock
3870  * @hw: link to hardware-specific clock data
3871  *
3872  * clk_hw_register is the primary interface for populating the clock tree with
3873  * new clock nodes. It returns an integer equal to zero indicating success or
3874  * less than zero indicating failure. Drivers must test for an error code after
3875  * calling clk_hw_register().
3876  */
3877 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3878 {
3879 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3880 			       hw));
3881 }
3882 EXPORT_SYMBOL_GPL(clk_hw_register);
3883 
3884 /*
3885  * of_clk_hw_register - register a clk_hw and return an error code
3886  * @node: device_node of device that is registering this clock
3887  * @hw: link to hardware-specific clock data
3888  *
3889  * of_clk_hw_register() is the primary interface for populating the clock tree
3890  * with new clock nodes when a struct device is not available, but a struct
3891  * device_node is. It returns an integer equal to zero indicating success or
3892  * less than zero indicating failure. Drivers must test for an error code after
3893  * calling of_clk_hw_register().
3894  */
3895 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3896 {
3897 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3898 }
3899 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3900 
3901 /* Free memory allocated for a clock. */
3902 static void __clk_release(struct kref *ref)
3903 {
3904 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3905 
3906 	lockdep_assert_held(&prepare_lock);
3907 
3908 	clk_core_free_parent_map(core);
3909 	kfree_const(core->name);
3910 	kfree(core);
3911 }
3912 
3913 /*
3914  * Empty clk_ops for unregistered clocks. These are used temporarily
3915  * after clk_unregister() was called on a clock and until last clock
3916  * consumer calls clk_put() and the struct clk object is freed.
3917  */
3918 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3919 {
3920 	return -ENXIO;
3921 }
3922 
3923 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3924 {
3925 	WARN_ON_ONCE(1);
3926 }
3927 
3928 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3929 					unsigned long parent_rate)
3930 {
3931 	return -ENXIO;
3932 }
3933 
3934 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3935 {
3936 	return -ENXIO;
3937 }
3938 
3939 static const struct clk_ops clk_nodrv_ops = {
3940 	.enable		= clk_nodrv_prepare_enable,
3941 	.disable	= clk_nodrv_disable_unprepare,
3942 	.prepare	= clk_nodrv_prepare_enable,
3943 	.unprepare	= clk_nodrv_disable_unprepare,
3944 	.set_rate	= clk_nodrv_set_rate,
3945 	.set_parent	= clk_nodrv_set_parent,
3946 };
3947 
3948 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3949 						struct clk_core *target)
3950 {
3951 	int i;
3952 	struct clk_core *child;
3953 
3954 	for (i = 0; i < root->num_parents; i++)
3955 		if (root->parents[i].core == target)
3956 			root->parents[i].core = NULL;
3957 
3958 	hlist_for_each_entry(child, &root->children, child_node)
3959 		clk_core_evict_parent_cache_subtree(child, target);
3960 }
3961 
3962 /* Remove this clk from all parent caches */
3963 static void clk_core_evict_parent_cache(struct clk_core *core)
3964 {
3965 	struct hlist_head **lists;
3966 	struct clk_core *root;
3967 
3968 	lockdep_assert_held(&prepare_lock);
3969 
3970 	for (lists = all_lists; *lists; lists++)
3971 		hlist_for_each_entry(root, *lists, child_node)
3972 			clk_core_evict_parent_cache_subtree(root, core);
3973 
3974 }
3975 
3976 /**
3977  * clk_unregister - unregister a currently registered clock
3978  * @clk: clock to unregister
3979  */
3980 void clk_unregister(struct clk *clk)
3981 {
3982 	unsigned long flags;
3983 	const struct clk_ops *ops;
3984 
3985 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3986 		return;
3987 
3988 	clk_debug_unregister(clk->core);
3989 
3990 	clk_prepare_lock();
3991 
3992 	ops = clk->core->ops;
3993 	if (ops == &clk_nodrv_ops) {
3994 		pr_err("%s: unregistered clock: %s\n", __func__,
3995 		       clk->core->name);
3996 		goto unlock;
3997 	}
3998 	/*
3999 	 * Assign empty clock ops for consumers that might still hold
4000 	 * a reference to this clock.
4001 	 */
4002 	flags = clk_enable_lock();
4003 	clk->core->ops = &clk_nodrv_ops;
4004 	clk_enable_unlock(flags);
4005 
4006 	if (ops->terminate)
4007 		ops->terminate(clk->core->hw);
4008 
4009 	if (!hlist_empty(&clk->core->children)) {
4010 		struct clk_core *child;
4011 		struct hlist_node *t;
4012 
4013 		/* Reparent all children to the orphan list. */
4014 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4015 					  child_node)
4016 			clk_core_set_parent_nolock(child, NULL);
4017 	}
4018 
4019 	clk_core_evict_parent_cache(clk->core);
4020 
4021 	hlist_del_init(&clk->core->child_node);
4022 
4023 	if (clk->core->prepare_count)
4024 		pr_warn("%s: unregistering prepared clock: %s\n",
4025 					__func__, clk->core->name);
4026 
4027 	if (clk->core->protect_count)
4028 		pr_warn("%s: unregistering protected clock: %s\n",
4029 					__func__, clk->core->name);
4030 
4031 	kref_put(&clk->core->ref, __clk_release);
4032 	free_clk(clk);
4033 unlock:
4034 	clk_prepare_unlock();
4035 }
4036 EXPORT_SYMBOL_GPL(clk_unregister);
4037 
4038 /**
4039  * clk_hw_unregister - unregister a currently registered clk_hw
4040  * @hw: hardware-specific clock data to unregister
4041  */
4042 void clk_hw_unregister(struct clk_hw *hw)
4043 {
4044 	clk_unregister(hw->clk);
4045 }
4046 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4047 
4048 static void devm_clk_release(struct device *dev, void *res)
4049 {
4050 	clk_unregister(*(struct clk **)res);
4051 }
4052 
4053 static void devm_clk_hw_release(struct device *dev, void *res)
4054 {
4055 	clk_hw_unregister(*(struct clk_hw **)res);
4056 }
4057 
4058 /**
4059  * devm_clk_register - resource managed clk_register()
4060  * @dev: device that is registering this clock
4061  * @hw: link to hardware-specific clock data
4062  *
4063  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4064  *
4065  * Clocks returned from this function are automatically clk_unregister()ed on
4066  * driver detach. See clk_register() for more information.
4067  */
4068 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4069 {
4070 	struct clk *clk;
4071 	struct clk **clkp;
4072 
4073 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4074 	if (!clkp)
4075 		return ERR_PTR(-ENOMEM);
4076 
4077 	clk = clk_register(dev, hw);
4078 	if (!IS_ERR(clk)) {
4079 		*clkp = clk;
4080 		devres_add(dev, clkp);
4081 	} else {
4082 		devres_free(clkp);
4083 	}
4084 
4085 	return clk;
4086 }
4087 EXPORT_SYMBOL_GPL(devm_clk_register);
4088 
4089 /**
4090  * devm_clk_hw_register - resource managed clk_hw_register()
4091  * @dev: device that is registering this clock
4092  * @hw: link to hardware-specific clock data
4093  *
4094  * Managed clk_hw_register(). Clocks registered by this function are
4095  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4096  * for more information.
4097  */
4098 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4099 {
4100 	struct clk_hw **hwp;
4101 	int ret;
4102 
4103 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4104 	if (!hwp)
4105 		return -ENOMEM;
4106 
4107 	ret = clk_hw_register(dev, hw);
4108 	if (!ret) {
4109 		*hwp = hw;
4110 		devres_add(dev, hwp);
4111 	} else {
4112 		devres_free(hwp);
4113 	}
4114 
4115 	return ret;
4116 }
4117 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4118 
4119 static int devm_clk_match(struct device *dev, void *res, void *data)
4120 {
4121 	struct clk *c = res;
4122 	if (WARN_ON(!c))
4123 		return 0;
4124 	return c == data;
4125 }
4126 
4127 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4128 {
4129 	struct clk_hw *hw = res;
4130 
4131 	if (WARN_ON(!hw))
4132 		return 0;
4133 	return hw == data;
4134 }
4135 
4136 /**
4137  * devm_clk_unregister - resource managed clk_unregister()
4138  * @clk: clock to unregister
4139  *
4140  * Deallocate a clock allocated with devm_clk_register(). Normally
4141  * this function will not need to be called and the resource management
4142  * code will ensure that the resource is freed.
4143  */
4144 void devm_clk_unregister(struct device *dev, struct clk *clk)
4145 {
4146 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4147 }
4148 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4149 
4150 /**
4151  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4152  * @dev: device that is unregistering the hardware-specific clock data
4153  * @hw: link to hardware-specific clock data
4154  *
4155  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4156  * this function will not need to be called and the resource management
4157  * code will ensure that the resource is freed.
4158  */
4159 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4160 {
4161 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4162 				hw));
4163 }
4164 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4165 
4166 /*
4167  * clkdev helpers
4168  */
4169 
4170 void __clk_put(struct clk *clk)
4171 {
4172 	struct module *owner;
4173 
4174 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4175 		return;
4176 
4177 	clk_prepare_lock();
4178 
4179 	/*
4180 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4181 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4182 	 * and by that same consumer
4183 	 */
4184 	if (WARN_ON(clk->exclusive_count)) {
4185 		/* We voiced our concern, let's sanitize the situation */
4186 		clk->core->protect_count -= (clk->exclusive_count - 1);
4187 		clk_core_rate_unprotect(clk->core);
4188 		clk->exclusive_count = 0;
4189 	}
4190 
4191 	hlist_del(&clk->clks_node);
4192 	if (clk->min_rate > clk->core->req_rate ||
4193 	    clk->max_rate < clk->core->req_rate)
4194 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4195 
4196 	owner = clk->core->owner;
4197 	kref_put(&clk->core->ref, __clk_release);
4198 
4199 	clk_prepare_unlock();
4200 
4201 	module_put(owner);
4202 
4203 	free_clk(clk);
4204 }
4205 
4206 /***        clk rate change notifiers        ***/
4207 
4208 /**
4209  * clk_notifier_register - add a clk rate change notifier
4210  * @clk: struct clk * to watch
4211  * @nb: struct notifier_block * with callback info
4212  *
4213  * Request notification when clk's rate changes.  This uses an SRCU
4214  * notifier because we want it to block and notifier unregistrations are
4215  * uncommon.  The callbacks associated with the notifier must not
4216  * re-enter into the clk framework by calling any top-level clk APIs;
4217  * this will cause a nested prepare_lock mutex.
4218  *
4219  * In all notification cases (pre, post and abort rate change) the original
4220  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4221  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4222  *
4223  * clk_notifier_register() must be called from non-atomic context.
4224  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4225  * allocation failure; otherwise, passes along the return value of
4226  * srcu_notifier_chain_register().
4227  */
4228 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4229 {
4230 	struct clk_notifier *cn;
4231 	int ret = -ENOMEM;
4232 
4233 	if (!clk || !nb)
4234 		return -EINVAL;
4235 
4236 	clk_prepare_lock();
4237 
4238 	/* search the list of notifiers for this clk */
4239 	list_for_each_entry(cn, &clk_notifier_list, node)
4240 		if (cn->clk == clk)
4241 			break;
4242 
4243 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4244 	if (cn->clk != clk) {
4245 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4246 		if (!cn)
4247 			goto out;
4248 
4249 		cn->clk = clk;
4250 		srcu_init_notifier_head(&cn->notifier_head);
4251 
4252 		list_add(&cn->node, &clk_notifier_list);
4253 	}
4254 
4255 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4256 
4257 	clk->core->notifier_count++;
4258 
4259 out:
4260 	clk_prepare_unlock();
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(clk_notifier_register);
4265 
4266 /**
4267  * clk_notifier_unregister - remove a clk rate change notifier
4268  * @clk: struct clk *
4269  * @nb: struct notifier_block * with callback info
4270  *
4271  * Request no further notification for changes to 'clk' and frees memory
4272  * allocated in clk_notifier_register.
4273  *
4274  * Returns -EINVAL if called with null arguments; otherwise, passes
4275  * along the return value of srcu_notifier_chain_unregister().
4276  */
4277 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4278 {
4279 	struct clk_notifier *cn = NULL;
4280 	int ret = -EINVAL;
4281 
4282 	if (!clk || !nb)
4283 		return -EINVAL;
4284 
4285 	clk_prepare_lock();
4286 
4287 	list_for_each_entry(cn, &clk_notifier_list, node)
4288 		if (cn->clk == clk)
4289 			break;
4290 
4291 	if (cn->clk == clk) {
4292 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4293 
4294 		clk->core->notifier_count--;
4295 
4296 		/* XXX the notifier code should handle this better */
4297 		if (!cn->notifier_head.head) {
4298 			srcu_cleanup_notifier_head(&cn->notifier_head);
4299 			list_del(&cn->node);
4300 			kfree(cn);
4301 		}
4302 
4303 	} else {
4304 		ret = -ENOENT;
4305 	}
4306 
4307 	clk_prepare_unlock();
4308 
4309 	return ret;
4310 }
4311 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4312 
4313 #ifdef CONFIG_OF
4314 static void clk_core_reparent_orphans(void)
4315 {
4316 	clk_prepare_lock();
4317 	clk_core_reparent_orphans_nolock();
4318 	clk_prepare_unlock();
4319 }
4320 
4321 /**
4322  * struct of_clk_provider - Clock provider registration structure
4323  * @link: Entry in global list of clock providers
4324  * @node: Pointer to device tree node of clock provider
4325  * @get: Get clock callback.  Returns NULL or a struct clk for the
4326  *       given clock specifier
4327  * @data: context pointer to be passed into @get callback
4328  */
4329 struct of_clk_provider {
4330 	struct list_head link;
4331 
4332 	struct device_node *node;
4333 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4334 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4335 	void *data;
4336 };
4337 
4338 extern struct of_device_id __clk_of_table;
4339 static const struct of_device_id __clk_of_table_sentinel
4340 	__used __section(__clk_of_table_end);
4341 
4342 static LIST_HEAD(of_clk_providers);
4343 static DEFINE_MUTEX(of_clk_mutex);
4344 
4345 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4346 				     void *data)
4347 {
4348 	return data;
4349 }
4350 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4351 
4352 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4353 {
4354 	return data;
4355 }
4356 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4357 
4358 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4359 {
4360 	struct clk_onecell_data *clk_data = data;
4361 	unsigned int idx = clkspec->args[0];
4362 
4363 	if (idx >= clk_data->clk_num) {
4364 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4365 		return ERR_PTR(-EINVAL);
4366 	}
4367 
4368 	return clk_data->clks[idx];
4369 }
4370 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4371 
4372 struct clk_hw *
4373 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4374 {
4375 	struct clk_hw_onecell_data *hw_data = data;
4376 	unsigned int idx = clkspec->args[0];
4377 
4378 	if (idx >= hw_data->num) {
4379 		pr_err("%s: invalid index %u\n", __func__, idx);
4380 		return ERR_PTR(-EINVAL);
4381 	}
4382 
4383 	return hw_data->hws[idx];
4384 }
4385 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4386 
4387 /**
4388  * of_clk_add_provider() - Register a clock provider for a node
4389  * @np: Device node pointer associated with clock provider
4390  * @clk_src_get: callback for decoding clock
4391  * @data: context pointer for @clk_src_get callback.
4392  *
4393  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4394  */
4395 int of_clk_add_provider(struct device_node *np,
4396 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4397 						   void *data),
4398 			void *data)
4399 {
4400 	struct of_clk_provider *cp;
4401 	int ret;
4402 
4403 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4404 	if (!cp)
4405 		return -ENOMEM;
4406 
4407 	cp->node = of_node_get(np);
4408 	cp->data = data;
4409 	cp->get = clk_src_get;
4410 
4411 	mutex_lock(&of_clk_mutex);
4412 	list_add(&cp->link, &of_clk_providers);
4413 	mutex_unlock(&of_clk_mutex);
4414 	pr_debug("Added clock from %pOF\n", np);
4415 
4416 	clk_core_reparent_orphans();
4417 
4418 	ret = of_clk_set_defaults(np, true);
4419 	if (ret < 0)
4420 		of_clk_del_provider(np);
4421 
4422 	return ret;
4423 }
4424 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4425 
4426 /**
4427  * of_clk_add_hw_provider() - Register a clock provider for a node
4428  * @np: Device node pointer associated with clock provider
4429  * @get: callback for decoding clk_hw
4430  * @data: context pointer for @get callback.
4431  */
4432 int of_clk_add_hw_provider(struct device_node *np,
4433 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4434 						 void *data),
4435 			   void *data)
4436 {
4437 	struct of_clk_provider *cp;
4438 	int ret;
4439 
4440 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4441 	if (!cp)
4442 		return -ENOMEM;
4443 
4444 	cp->node = of_node_get(np);
4445 	cp->data = data;
4446 	cp->get_hw = get;
4447 
4448 	mutex_lock(&of_clk_mutex);
4449 	list_add(&cp->link, &of_clk_providers);
4450 	mutex_unlock(&of_clk_mutex);
4451 	pr_debug("Added clk_hw provider from %pOF\n", np);
4452 
4453 	clk_core_reparent_orphans();
4454 
4455 	ret = of_clk_set_defaults(np, true);
4456 	if (ret < 0)
4457 		of_clk_del_provider(np);
4458 
4459 	return ret;
4460 }
4461 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4462 
4463 static void devm_of_clk_release_provider(struct device *dev, void *res)
4464 {
4465 	of_clk_del_provider(*(struct device_node **)res);
4466 }
4467 
4468 /*
4469  * We allow a child device to use its parent device as the clock provider node
4470  * for cases like MFD sub-devices where the child device driver wants to use
4471  * devm_*() APIs but not list the device in DT as a sub-node.
4472  */
4473 static struct device_node *get_clk_provider_node(struct device *dev)
4474 {
4475 	struct device_node *np, *parent_np;
4476 
4477 	np = dev->of_node;
4478 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4479 
4480 	if (!of_find_property(np, "#clock-cells", NULL))
4481 		if (of_find_property(parent_np, "#clock-cells", NULL))
4482 			np = parent_np;
4483 
4484 	return np;
4485 }
4486 
4487 /**
4488  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4489  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4490  * @get: callback for decoding clk_hw
4491  * @data: context pointer for @get callback
4492  *
4493  * Registers clock provider for given device's node. If the device has no DT
4494  * node or if the device node lacks of clock provider information (#clock-cells)
4495  * then the parent device's node is scanned for this information. If parent node
4496  * has the #clock-cells then it is used in registration. Provider is
4497  * automatically released at device exit.
4498  *
4499  * Return: 0 on success or an errno on failure.
4500  */
4501 int devm_of_clk_add_hw_provider(struct device *dev,
4502 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4503 					      void *data),
4504 			void *data)
4505 {
4506 	struct device_node **ptr, *np;
4507 	int ret;
4508 
4509 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4510 			   GFP_KERNEL);
4511 	if (!ptr)
4512 		return -ENOMEM;
4513 
4514 	np = get_clk_provider_node(dev);
4515 	ret = of_clk_add_hw_provider(np, get, data);
4516 	if (!ret) {
4517 		*ptr = np;
4518 		devres_add(dev, ptr);
4519 	} else {
4520 		devres_free(ptr);
4521 	}
4522 
4523 	return ret;
4524 }
4525 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4526 
4527 /**
4528  * of_clk_del_provider() - Remove a previously registered clock provider
4529  * @np: Device node pointer associated with clock provider
4530  */
4531 void of_clk_del_provider(struct device_node *np)
4532 {
4533 	struct of_clk_provider *cp;
4534 
4535 	mutex_lock(&of_clk_mutex);
4536 	list_for_each_entry(cp, &of_clk_providers, link) {
4537 		if (cp->node == np) {
4538 			list_del(&cp->link);
4539 			of_node_put(cp->node);
4540 			kfree(cp);
4541 			break;
4542 		}
4543 	}
4544 	mutex_unlock(&of_clk_mutex);
4545 }
4546 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4547 
4548 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4549 {
4550 	struct device_node **np = res;
4551 
4552 	if (WARN_ON(!np || !*np))
4553 		return 0;
4554 
4555 	return *np == data;
4556 }
4557 
4558 /**
4559  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4560  * @dev: Device to whose lifetime the clock provider was bound
4561  */
4562 void devm_of_clk_del_provider(struct device *dev)
4563 {
4564 	int ret;
4565 	struct device_node *np = get_clk_provider_node(dev);
4566 
4567 	ret = devres_release(dev, devm_of_clk_release_provider,
4568 			     devm_clk_provider_match, np);
4569 
4570 	WARN_ON(ret);
4571 }
4572 EXPORT_SYMBOL(devm_of_clk_del_provider);
4573 
4574 /**
4575  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4576  * @np: device node to parse clock specifier from
4577  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4578  * @name: clock name to find and parse. If name is NULL, the index is used
4579  * @out_args: Result of parsing the clock specifier
4580  *
4581  * Parses a device node's "clocks" and "clock-names" properties to find the
4582  * phandle and cells for the index or name that is desired. The resulting clock
4583  * specifier is placed into @out_args, or an errno is returned when there's a
4584  * parsing error. The @index argument is ignored if @name is non-NULL.
4585  *
4586  * Example:
4587  *
4588  * phandle1: clock-controller@1 {
4589  *	#clock-cells = <2>;
4590  * }
4591  *
4592  * phandle2: clock-controller@2 {
4593  *	#clock-cells = <1>;
4594  * }
4595  *
4596  * clock-consumer@3 {
4597  *	clocks = <&phandle1 1 2 &phandle2 3>;
4598  *	clock-names = "name1", "name2";
4599  * }
4600  *
4601  * To get a device_node for `clock-controller@2' node you may call this
4602  * function a few different ways:
4603  *
4604  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4605  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4606  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4607  *
4608  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4609  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4610  * the "clock-names" property of @np.
4611  */
4612 static int of_parse_clkspec(const struct device_node *np, int index,
4613 			    const char *name, struct of_phandle_args *out_args)
4614 {
4615 	int ret = -ENOENT;
4616 
4617 	/* Walk up the tree of devices looking for a clock property that matches */
4618 	while (np) {
4619 		/*
4620 		 * For named clocks, first look up the name in the
4621 		 * "clock-names" property.  If it cannot be found, then index
4622 		 * will be an error code and of_parse_phandle_with_args() will
4623 		 * return -EINVAL.
4624 		 */
4625 		if (name)
4626 			index = of_property_match_string(np, "clock-names", name);
4627 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4628 						 index, out_args);
4629 		if (!ret)
4630 			break;
4631 		if (name && index >= 0)
4632 			break;
4633 
4634 		/*
4635 		 * No matching clock found on this node.  If the parent node
4636 		 * has a "clock-ranges" property, then we can try one of its
4637 		 * clocks.
4638 		 */
4639 		np = np->parent;
4640 		if (np && !of_get_property(np, "clock-ranges", NULL))
4641 			break;
4642 		index = 0;
4643 	}
4644 
4645 	return ret;
4646 }
4647 
4648 static struct clk_hw *
4649 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4650 			      struct of_phandle_args *clkspec)
4651 {
4652 	struct clk *clk;
4653 
4654 	if (provider->get_hw)
4655 		return provider->get_hw(clkspec, provider->data);
4656 
4657 	clk = provider->get(clkspec, provider->data);
4658 	if (IS_ERR(clk))
4659 		return ERR_CAST(clk);
4660 	return __clk_get_hw(clk);
4661 }
4662 
4663 static struct clk_hw *
4664 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4665 {
4666 	struct of_clk_provider *provider;
4667 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4668 
4669 	if (!clkspec)
4670 		return ERR_PTR(-EINVAL);
4671 
4672 	mutex_lock(&of_clk_mutex);
4673 	list_for_each_entry(provider, &of_clk_providers, link) {
4674 		if (provider->node == clkspec->np) {
4675 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4676 			if (!IS_ERR(hw))
4677 				break;
4678 		}
4679 	}
4680 	mutex_unlock(&of_clk_mutex);
4681 
4682 	return hw;
4683 }
4684 
4685 /**
4686  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4687  * @clkspec: pointer to a clock specifier data structure
4688  *
4689  * This function looks up a struct clk from the registered list of clock
4690  * providers, an input is a clock specifier data structure as returned
4691  * from the of_parse_phandle_with_args() function call.
4692  */
4693 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4694 {
4695 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4696 
4697 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4698 }
4699 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4700 
4701 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4702 			     const char *con_id)
4703 {
4704 	int ret;
4705 	struct clk_hw *hw;
4706 	struct of_phandle_args clkspec;
4707 
4708 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4709 	if (ret)
4710 		return ERR_PTR(ret);
4711 
4712 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4713 	of_node_put(clkspec.np);
4714 
4715 	return hw;
4716 }
4717 
4718 static struct clk *__of_clk_get(struct device_node *np,
4719 				int index, const char *dev_id,
4720 				const char *con_id)
4721 {
4722 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4723 
4724 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4725 }
4726 
4727 struct clk *of_clk_get(struct device_node *np, int index)
4728 {
4729 	return __of_clk_get(np, index, np->full_name, NULL);
4730 }
4731 EXPORT_SYMBOL(of_clk_get);
4732 
4733 /**
4734  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4735  * @np: pointer to clock consumer node
4736  * @name: name of consumer's clock input, or NULL for the first clock reference
4737  *
4738  * This function parses the clocks and clock-names properties,
4739  * and uses them to look up the struct clk from the registered list of clock
4740  * providers.
4741  */
4742 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4743 {
4744 	if (!np)
4745 		return ERR_PTR(-ENOENT);
4746 
4747 	return __of_clk_get(np, 0, np->full_name, name);
4748 }
4749 EXPORT_SYMBOL(of_clk_get_by_name);
4750 
4751 /**
4752  * of_clk_get_parent_count() - Count the number of clocks a device node has
4753  * @np: device node to count
4754  *
4755  * Returns: The number of clocks that are possible parents of this node
4756  */
4757 unsigned int of_clk_get_parent_count(const struct device_node *np)
4758 {
4759 	int count;
4760 
4761 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4762 	if (count < 0)
4763 		return 0;
4764 
4765 	return count;
4766 }
4767 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4768 
4769 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4770 {
4771 	struct of_phandle_args clkspec;
4772 	struct property *prop;
4773 	const char *clk_name;
4774 	const __be32 *vp;
4775 	u32 pv;
4776 	int rc;
4777 	int count;
4778 	struct clk *clk;
4779 
4780 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4781 					&clkspec);
4782 	if (rc)
4783 		return NULL;
4784 
4785 	index = clkspec.args_count ? clkspec.args[0] : 0;
4786 	count = 0;
4787 
4788 	/* if there is an indices property, use it to transfer the index
4789 	 * specified into an array offset for the clock-output-names property.
4790 	 */
4791 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4792 		if (index == pv) {
4793 			index = count;
4794 			break;
4795 		}
4796 		count++;
4797 	}
4798 	/* We went off the end of 'clock-indices' without finding it */
4799 	if (prop && !vp)
4800 		return NULL;
4801 
4802 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4803 					  index,
4804 					  &clk_name) < 0) {
4805 		/*
4806 		 * Best effort to get the name if the clock has been
4807 		 * registered with the framework. If the clock isn't
4808 		 * registered, we return the node name as the name of
4809 		 * the clock as long as #clock-cells = 0.
4810 		 */
4811 		clk = of_clk_get_from_provider(&clkspec);
4812 		if (IS_ERR(clk)) {
4813 			if (clkspec.args_count == 0)
4814 				clk_name = clkspec.np->name;
4815 			else
4816 				clk_name = NULL;
4817 		} else {
4818 			clk_name = __clk_get_name(clk);
4819 			clk_put(clk);
4820 		}
4821 	}
4822 
4823 
4824 	of_node_put(clkspec.np);
4825 	return clk_name;
4826 }
4827 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4828 
4829 /**
4830  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4831  * number of parents
4832  * @np: Device node pointer associated with clock provider
4833  * @parents: pointer to char array that hold the parents' names
4834  * @size: size of the @parents array
4835  *
4836  * Return: number of parents for the clock node.
4837  */
4838 int of_clk_parent_fill(struct device_node *np, const char **parents,
4839 		       unsigned int size)
4840 {
4841 	unsigned int i = 0;
4842 
4843 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4844 		i++;
4845 
4846 	return i;
4847 }
4848 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4849 
4850 struct clock_provider {
4851 	void (*clk_init_cb)(struct device_node *);
4852 	struct device_node *np;
4853 	struct list_head node;
4854 };
4855 
4856 /*
4857  * This function looks for a parent clock. If there is one, then it
4858  * checks that the provider for this parent clock was initialized, in
4859  * this case the parent clock will be ready.
4860  */
4861 static int parent_ready(struct device_node *np)
4862 {
4863 	int i = 0;
4864 
4865 	while (true) {
4866 		struct clk *clk = of_clk_get(np, i);
4867 
4868 		/* this parent is ready we can check the next one */
4869 		if (!IS_ERR(clk)) {
4870 			clk_put(clk);
4871 			i++;
4872 			continue;
4873 		}
4874 
4875 		/* at least one parent is not ready, we exit now */
4876 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4877 			return 0;
4878 
4879 		/*
4880 		 * Here we make assumption that the device tree is
4881 		 * written correctly. So an error means that there is
4882 		 * no more parent. As we didn't exit yet, then the
4883 		 * previous parent are ready. If there is no clock
4884 		 * parent, no need to wait for them, then we can
4885 		 * consider their absence as being ready
4886 		 */
4887 		return 1;
4888 	}
4889 }
4890 
4891 /**
4892  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4893  * @np: Device node pointer associated with clock provider
4894  * @index: clock index
4895  * @flags: pointer to top-level framework flags
4896  *
4897  * Detects if the clock-critical property exists and, if so, sets the
4898  * corresponding CLK_IS_CRITICAL flag.
4899  *
4900  * Do not use this function. It exists only for legacy Device Tree
4901  * bindings, such as the one-clock-per-node style that are outdated.
4902  * Those bindings typically put all clock data into .dts and the Linux
4903  * driver has no clock data, thus making it impossible to set this flag
4904  * correctly from the driver. Only those drivers may call
4905  * of_clk_detect_critical from their setup functions.
4906  *
4907  * Return: error code or zero on success
4908  */
4909 int of_clk_detect_critical(struct device_node *np, int index,
4910 			   unsigned long *flags)
4911 {
4912 	struct property *prop;
4913 	const __be32 *cur;
4914 	uint32_t idx;
4915 
4916 	if (!np || !flags)
4917 		return -EINVAL;
4918 
4919 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4920 		if (index == idx)
4921 			*flags |= CLK_IS_CRITICAL;
4922 
4923 	return 0;
4924 }
4925 
4926 /**
4927  * of_clk_init() - Scan and init clock providers from the DT
4928  * @matches: array of compatible values and init functions for providers.
4929  *
4930  * This function scans the device tree for matching clock providers
4931  * and calls their initialization functions. It also does it by trying
4932  * to follow the dependencies.
4933  */
4934 void __init of_clk_init(const struct of_device_id *matches)
4935 {
4936 	const struct of_device_id *match;
4937 	struct device_node *np;
4938 	struct clock_provider *clk_provider, *next;
4939 	bool is_init_done;
4940 	bool force = false;
4941 	LIST_HEAD(clk_provider_list);
4942 
4943 	if (!matches)
4944 		matches = &__clk_of_table;
4945 
4946 	/* First prepare the list of the clocks providers */
4947 	for_each_matching_node_and_match(np, matches, &match) {
4948 		struct clock_provider *parent;
4949 
4950 		if (!of_device_is_available(np))
4951 			continue;
4952 
4953 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4954 		if (!parent) {
4955 			list_for_each_entry_safe(clk_provider, next,
4956 						 &clk_provider_list, node) {
4957 				list_del(&clk_provider->node);
4958 				of_node_put(clk_provider->np);
4959 				kfree(clk_provider);
4960 			}
4961 			of_node_put(np);
4962 			return;
4963 		}
4964 
4965 		parent->clk_init_cb = match->data;
4966 		parent->np = of_node_get(np);
4967 		list_add_tail(&parent->node, &clk_provider_list);
4968 	}
4969 
4970 	while (!list_empty(&clk_provider_list)) {
4971 		is_init_done = false;
4972 		list_for_each_entry_safe(clk_provider, next,
4973 					&clk_provider_list, node) {
4974 			if (force || parent_ready(clk_provider->np)) {
4975 
4976 				/* Don't populate platform devices */
4977 				of_node_set_flag(clk_provider->np,
4978 						 OF_POPULATED);
4979 
4980 				clk_provider->clk_init_cb(clk_provider->np);
4981 				of_clk_set_defaults(clk_provider->np, true);
4982 
4983 				list_del(&clk_provider->node);
4984 				of_node_put(clk_provider->np);
4985 				kfree(clk_provider);
4986 				is_init_done = true;
4987 			}
4988 		}
4989 
4990 		/*
4991 		 * We didn't manage to initialize any of the
4992 		 * remaining providers during the last loop, so now we
4993 		 * initialize all the remaining ones unconditionally
4994 		 * in case the clock parent was not mandatory
4995 		 */
4996 		if (!is_init_done)
4997 			force = true;
4998 	}
4999 }
5000 #endif
5001