xref: /openbmc/linux/drivers/clk/clk.c (revision d3741027)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	ret = core->ops->is_enabled(core->hw);
248 done:
249 	if (core->rpm_enabled)
250 		pm_runtime_put(core->dev);
251 
252 	return ret;
253 }
254 
255 /***    helper functions   ***/
256 
257 const char *__clk_get_name(const struct clk *clk)
258 {
259 	return !clk ? NULL : clk->core->name;
260 }
261 EXPORT_SYMBOL_GPL(__clk_get_name);
262 
263 const char *clk_hw_get_name(const struct clk_hw *hw)
264 {
265 	return hw->core->name;
266 }
267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
268 
269 struct clk_hw *__clk_get_hw(struct clk *clk)
270 {
271 	return !clk ? NULL : clk->core->hw;
272 }
273 EXPORT_SYMBOL_GPL(__clk_get_hw);
274 
275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276 {
277 	return hw->core->num_parents;
278 }
279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280 
281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282 {
283 	return hw->core->parent ? hw->core->parent->hw : NULL;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286 
287 static struct clk_core *__clk_lookup_subtree(const char *name,
288 					     struct clk_core *core)
289 {
290 	struct clk_core *child;
291 	struct clk_core *ret;
292 
293 	if (!strcmp(core->name, name))
294 		return core;
295 
296 	hlist_for_each_entry(child, &core->children, child_node) {
297 		ret = __clk_lookup_subtree(name, child);
298 		if (ret)
299 			return ret;
300 	}
301 
302 	return NULL;
303 }
304 
305 static struct clk_core *clk_core_lookup(const char *name)
306 {
307 	struct clk_core *root_clk;
308 	struct clk_core *ret;
309 
310 	if (!name)
311 		return NULL;
312 
313 	/* search the 'proper' clk tree first */
314 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 		ret = __clk_lookup_subtree(name, root_clk);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	/* if not found, then search the orphan tree */
321 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_OF
331 static int of_parse_clkspec(const struct device_node *np, int index,
332 			    const char *name, struct of_phandle_args *out_args);
333 static struct clk_hw *
334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335 #else
336 static inline int of_parse_clkspec(const struct device_node *np, int index,
337 				   const char *name,
338 				   struct of_phandle_args *out_args)
339 {
340 	return -ENOENT;
341 }
342 static inline struct clk_hw *
343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344 {
345 	return ERR_PTR(-ENOENT);
346 }
347 #endif
348 
349 /**
350  * clk_core_get - Find the clk_core parent of a clk
351  * @core: clk to find parent of
352  * @p_index: parent index to search for
353  *
354  * This is the preferred method for clk providers to find the parent of a
355  * clk when that parent is external to the clk controller. The parent_names
356  * array is indexed and treated as a local name matching a string in the device
357  * node's 'clock-names' property or as the 'con_id' matching the device's
358  * dev_name() in a clk_lookup. This allows clk providers to use their own
359  * namespace instead of looking for a globally unique parent string.
360  *
361  * For example the following DT snippet would allow a clock registered by the
362  * clock-controller@c001 that has a clk_init_data::parent_data array
363  * with 'xtal' in the 'name' member to find the clock provided by the
364  * clock-controller@f00abcd without needing to get the globally unique name of
365  * the xtal clk.
366  *
367  *      parent: clock-controller@f00abcd {
368  *              reg = <0xf00abcd 0xabcd>;
369  *              #clock-cells = <0>;
370  *      };
371  *
372  *      clock-controller@c001 {
373  *              reg = <0xc001 0xf00d>;
374  *              clocks = <&parent>;
375  *              clock-names = "xtal";
376  *              #clock-cells = <1>;
377  *      };
378  *
379  * Returns: -ENOENT when the provider can't be found or the clk doesn't
380  * exist in the provider or the name can't be found in the DT node or
381  * in a clkdev lookup. NULL when the provider knows about the clk but it
382  * isn't provided on this system.
383  * A valid clk_core pointer when the clk can be found in the provider.
384  */
385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386 {
387 	const char *name = core->parents[p_index].fw_name;
388 	int index = core->parents[p_index].index;
389 	struct clk_hw *hw = ERR_PTR(-ENOENT);
390 	struct device *dev = core->dev;
391 	const char *dev_id = dev ? dev_name(dev) : NULL;
392 	struct device_node *np = core->of_node;
393 	struct of_phandle_args clkspec;
394 
395 	if (np && (name || index >= 0) &&
396 	    !of_parse_clkspec(np, index, name, &clkspec)) {
397 		hw = of_clk_get_hw_from_clkspec(&clkspec);
398 		of_node_put(clkspec.np);
399 	} else if (name) {
400 		/*
401 		 * If the DT search above couldn't find the provider fallback to
402 		 * looking up via clkdev based clk_lookups.
403 		 */
404 		hw = clk_find_hw(dev_id, name);
405 	}
406 
407 	if (IS_ERR(hw))
408 		return ERR_CAST(hw);
409 
410 	return hw->core;
411 }
412 
413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414 {
415 	struct clk_parent_map *entry = &core->parents[index];
416 	struct clk_core *parent;
417 
418 	if (entry->hw) {
419 		parent = entry->hw->core;
420 	} else {
421 		parent = clk_core_get(core, index);
422 		if (PTR_ERR(parent) == -ENOENT && entry->name)
423 			parent = clk_core_lookup(entry->name);
424 	}
425 
426 	/*
427 	 * We have a direct reference but it isn't registered yet?
428 	 * Orphan it and let clk_reparent() update the orphan status
429 	 * when the parent is registered.
430 	 */
431 	if (!parent)
432 		parent = ERR_PTR(-EPROBE_DEFER);
433 
434 	/* Only cache it if it's not an error */
435 	if (!IS_ERR(parent))
436 		entry->core = parent;
437 }
438 
439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 							 u8 index)
441 {
442 	if (!core || index >= core->num_parents || !core->parents)
443 		return NULL;
444 
445 	if (!core->parents[index].core)
446 		clk_core_fill_parent_index(core, index);
447 
448 	return core->parents[index].core;
449 }
450 
451 struct clk_hw *
452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453 {
454 	struct clk_core *parent;
455 
456 	parent = clk_core_get_parent_by_index(hw->core, index);
457 
458 	return !parent ? NULL : parent->hw;
459 }
460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461 
462 unsigned int __clk_get_enable_count(struct clk *clk)
463 {
464 	return !clk ? 0 : clk->core->enable_count;
465 }
466 
467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468 {
469 	if (!core)
470 		return 0;
471 
472 	if (!core->num_parents || core->parent)
473 		return core->rate;
474 
475 	/*
476 	 * Clk must have a parent because num_parents > 0 but the parent isn't
477 	 * known yet. Best to return 0 as the rate of this clk until we can
478 	 * properly recalc the rate based on the parent's rate.
479 	 */
480 	return 0;
481 }
482 
483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484 {
485 	return clk_core_get_rate_nolock(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488 
489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490 {
491 	if (!core)
492 		return 0;
493 
494 	return core->accuracy;
495 }
496 
497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498 {
499 	return hw->core->flags;
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502 
503 bool clk_hw_is_prepared(const struct clk_hw *hw)
504 {
505 	return clk_core_is_prepared(hw->core);
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508 
509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510 {
511 	return clk_core_rate_is_protected(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514 
515 bool clk_hw_is_enabled(const struct clk_hw *hw)
516 {
517 	return clk_core_is_enabled(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520 
521 bool __clk_is_enabled(struct clk *clk)
522 {
523 	if (!clk)
524 		return false;
525 
526 	return clk_core_is_enabled(clk->core);
527 }
528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
529 
530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 			   unsigned long best, unsigned long flags)
532 {
533 	if (flags & CLK_MUX_ROUND_CLOSEST)
534 		return abs(now - rate) < abs(best - rate);
535 
536 	return now <= rate && now > best;
537 }
538 
539 int clk_mux_determine_rate_flags(struct clk_hw *hw,
540 				 struct clk_rate_request *req,
541 				 unsigned long flags)
542 {
543 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
544 	int i, num_parents, ret;
545 	unsigned long best = 0;
546 	struct clk_rate_request parent_req = *req;
547 
548 	/* if NO_REPARENT flag set, pass through to current parent */
549 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
550 		parent = core->parent;
551 		if (core->flags & CLK_SET_RATE_PARENT) {
552 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
553 						   &parent_req);
554 			if (ret)
555 				return ret;
556 
557 			best = parent_req.rate;
558 		} else if (parent) {
559 			best = clk_core_get_rate_nolock(parent);
560 		} else {
561 			best = clk_core_get_rate_nolock(core);
562 		}
563 
564 		goto out;
565 	}
566 
567 	/* find the parent that can provide the fastest rate <= rate */
568 	num_parents = core->num_parents;
569 	for (i = 0; i < num_parents; i++) {
570 		parent = clk_core_get_parent_by_index(core, i);
571 		if (!parent)
572 			continue;
573 
574 		if (core->flags & CLK_SET_RATE_PARENT) {
575 			parent_req = *req;
576 			ret = __clk_determine_rate(parent->hw, &parent_req);
577 			if (ret)
578 				continue;
579 		} else {
580 			parent_req.rate = clk_core_get_rate_nolock(parent);
581 		}
582 
583 		if (mux_is_better_rate(req->rate, parent_req.rate,
584 				       best, flags)) {
585 			best_parent = parent;
586 			best = parent_req.rate;
587 		}
588 	}
589 
590 	if (!best_parent)
591 		return -EINVAL;
592 
593 out:
594 	if (best_parent)
595 		req->best_parent_hw = best_parent->hw;
596 	req->best_parent_rate = best;
597 	req->rate = best;
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
602 
603 struct clk *__clk_lookup(const char *name)
604 {
605 	struct clk_core *core = clk_core_lookup(name);
606 
607 	return !core ? NULL : core->hw->clk;
608 }
609 
610 static void clk_core_get_boundaries(struct clk_core *core,
611 				    unsigned long *min_rate,
612 				    unsigned long *max_rate)
613 {
614 	struct clk *clk_user;
615 
616 	lockdep_assert_held(&prepare_lock);
617 
618 	*min_rate = core->min_rate;
619 	*max_rate = core->max_rate;
620 
621 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
622 		*min_rate = max(*min_rate, clk_user->min_rate);
623 
624 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
625 		*max_rate = min(*max_rate, clk_user->max_rate);
626 }
627 
628 static bool clk_core_check_boundaries(struct clk_core *core,
629 				      unsigned long min_rate,
630 				      unsigned long max_rate)
631 {
632 	struct clk *user;
633 
634 	lockdep_assert_held(&prepare_lock);
635 
636 	if (min_rate > core->max_rate || max_rate < core->min_rate)
637 		return false;
638 
639 	hlist_for_each_entry(user, &core->clks, clks_node)
640 		if (min_rate > user->max_rate || max_rate < user->min_rate)
641 			return false;
642 
643 	return true;
644 }
645 
646 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
647 			   unsigned long max_rate)
648 {
649 	hw->core->min_rate = min_rate;
650 	hw->core->max_rate = max_rate;
651 }
652 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
653 
654 /*
655  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
656  * @hw: mux type clk to determine rate on
657  * @req: rate request, also used to return preferred parent and frequencies
658  *
659  * Helper for finding best parent to provide a given frequency. This can be used
660  * directly as a determine_rate callback (e.g. for a mux), or from a more
661  * complex clock that may combine a mux with other operations.
662  *
663  * Returns: 0 on success, -EERROR value on error
664  */
665 int __clk_mux_determine_rate(struct clk_hw *hw,
666 			     struct clk_rate_request *req)
667 {
668 	return clk_mux_determine_rate_flags(hw, req, 0);
669 }
670 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
671 
672 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
673 				     struct clk_rate_request *req)
674 {
675 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
676 }
677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
678 
679 /***        clk api        ***/
680 
681 static void clk_core_rate_unprotect(struct clk_core *core)
682 {
683 	lockdep_assert_held(&prepare_lock);
684 
685 	if (!core)
686 		return;
687 
688 	if (WARN(core->protect_count == 0,
689 	    "%s already unprotected\n", core->name))
690 		return;
691 
692 	if (--core->protect_count > 0)
693 		return;
694 
695 	clk_core_rate_unprotect(core->parent);
696 }
697 
698 static int clk_core_rate_nuke_protect(struct clk_core *core)
699 {
700 	int ret;
701 
702 	lockdep_assert_held(&prepare_lock);
703 
704 	if (!core)
705 		return -EINVAL;
706 
707 	if (core->protect_count == 0)
708 		return 0;
709 
710 	ret = core->protect_count;
711 	core->protect_count = 1;
712 	clk_core_rate_unprotect(core);
713 
714 	return ret;
715 }
716 
717 /**
718  * clk_rate_exclusive_put - release exclusivity over clock rate control
719  * @clk: the clk over which the exclusivity is released
720  *
721  * clk_rate_exclusive_put() completes a critical section during which a clock
722  * consumer cannot tolerate any other consumer making any operation on the
723  * clock which could result in a rate change or rate glitch. Exclusive clocks
724  * cannot have their rate changed, either directly or indirectly due to changes
725  * further up the parent chain of clocks. As a result, clocks up parent chain
726  * also get under exclusive control of the calling consumer.
727  *
728  * If exlusivity is claimed more than once on clock, even by the same consumer,
729  * the rate effectively gets locked as exclusivity can't be preempted.
730  *
731  * Calls to clk_rate_exclusive_put() must be balanced with calls to
732  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
733  * error status.
734  */
735 void clk_rate_exclusive_put(struct clk *clk)
736 {
737 	if (!clk)
738 		return;
739 
740 	clk_prepare_lock();
741 
742 	/*
743 	 * if there is something wrong with this consumer protect count, stop
744 	 * here before messing with the provider
745 	 */
746 	if (WARN_ON(clk->exclusive_count <= 0))
747 		goto out;
748 
749 	clk_core_rate_unprotect(clk->core);
750 	clk->exclusive_count--;
751 out:
752 	clk_prepare_unlock();
753 }
754 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
755 
756 static void clk_core_rate_protect(struct clk_core *core)
757 {
758 	lockdep_assert_held(&prepare_lock);
759 
760 	if (!core)
761 		return;
762 
763 	if (core->protect_count == 0)
764 		clk_core_rate_protect(core->parent);
765 
766 	core->protect_count++;
767 }
768 
769 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
770 {
771 	lockdep_assert_held(&prepare_lock);
772 
773 	if (!core)
774 		return;
775 
776 	if (count == 0)
777 		return;
778 
779 	clk_core_rate_protect(core);
780 	core->protect_count = count;
781 }
782 
783 /**
784  * clk_rate_exclusive_get - get exclusivity over the clk rate control
785  * @clk: the clk over which the exclusity of rate control is requested
786  *
787  * clk_rate_exclusive_get() begins a critical section during which a clock
788  * consumer cannot tolerate any other consumer making any operation on the
789  * clock which could result in a rate change or rate glitch. Exclusive clocks
790  * cannot have their rate changed, either directly or indirectly due to changes
791  * further up the parent chain of clocks. As a result, clocks up parent chain
792  * also get under exclusive control of the calling consumer.
793  *
794  * If exlusivity is claimed more than once on clock, even by the same consumer,
795  * the rate effectively gets locked as exclusivity can't be preempted.
796  *
797  * Calls to clk_rate_exclusive_get() should be balanced with calls to
798  * clk_rate_exclusive_put(). Calls to this function may sleep.
799  * Returns 0 on success, -EERROR otherwise
800  */
801 int clk_rate_exclusive_get(struct clk *clk)
802 {
803 	if (!clk)
804 		return 0;
805 
806 	clk_prepare_lock();
807 	clk_core_rate_protect(clk->core);
808 	clk->exclusive_count++;
809 	clk_prepare_unlock();
810 
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
814 
815 static void clk_core_unprepare(struct clk_core *core)
816 {
817 	lockdep_assert_held(&prepare_lock);
818 
819 	if (!core)
820 		return;
821 
822 	if (WARN(core->prepare_count == 0,
823 	    "%s already unprepared\n", core->name))
824 		return;
825 
826 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
827 	    "Unpreparing critical %s\n", core->name))
828 		return;
829 
830 	if (core->flags & CLK_SET_RATE_GATE)
831 		clk_core_rate_unprotect(core);
832 
833 	if (--core->prepare_count > 0)
834 		return;
835 
836 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
837 
838 	trace_clk_unprepare(core);
839 
840 	if (core->ops->unprepare)
841 		core->ops->unprepare(core->hw);
842 
843 	clk_pm_runtime_put(core);
844 
845 	trace_clk_unprepare_complete(core);
846 	clk_core_unprepare(core->parent);
847 }
848 
849 static void clk_core_unprepare_lock(struct clk_core *core)
850 {
851 	clk_prepare_lock();
852 	clk_core_unprepare(core);
853 	clk_prepare_unlock();
854 }
855 
856 /**
857  * clk_unprepare - undo preparation of a clock source
858  * @clk: the clk being unprepared
859  *
860  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
861  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
862  * if the operation may sleep.  One example is a clk which is accessed over
863  * I2c.  In the complex case a clk gate operation may require a fast and a slow
864  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
865  * exclusive.  In fact clk_disable must be called before clk_unprepare.
866  */
867 void clk_unprepare(struct clk *clk)
868 {
869 	if (IS_ERR_OR_NULL(clk))
870 		return;
871 
872 	clk_core_unprepare_lock(clk->core);
873 }
874 EXPORT_SYMBOL_GPL(clk_unprepare);
875 
876 static int clk_core_prepare(struct clk_core *core)
877 {
878 	int ret = 0;
879 
880 	lockdep_assert_held(&prepare_lock);
881 
882 	if (!core)
883 		return 0;
884 
885 	if (core->prepare_count == 0) {
886 		ret = clk_pm_runtime_get(core);
887 		if (ret)
888 			return ret;
889 
890 		ret = clk_core_prepare(core->parent);
891 		if (ret)
892 			goto runtime_put;
893 
894 		trace_clk_prepare(core);
895 
896 		if (core->ops->prepare)
897 			ret = core->ops->prepare(core->hw);
898 
899 		trace_clk_prepare_complete(core);
900 
901 		if (ret)
902 			goto unprepare;
903 	}
904 
905 	core->prepare_count++;
906 
907 	/*
908 	 * CLK_SET_RATE_GATE is a special case of clock protection
909 	 * Instead of a consumer claiming exclusive rate control, it is
910 	 * actually the provider which prevents any consumer from making any
911 	 * operation which could result in a rate change or rate glitch while
912 	 * the clock is prepared.
913 	 */
914 	if (core->flags & CLK_SET_RATE_GATE)
915 		clk_core_rate_protect(core);
916 
917 	return 0;
918 unprepare:
919 	clk_core_unprepare(core->parent);
920 runtime_put:
921 	clk_pm_runtime_put(core);
922 	return ret;
923 }
924 
925 static int clk_core_prepare_lock(struct clk_core *core)
926 {
927 	int ret;
928 
929 	clk_prepare_lock();
930 	ret = clk_core_prepare(core);
931 	clk_prepare_unlock();
932 
933 	return ret;
934 }
935 
936 /**
937  * clk_prepare - prepare a clock source
938  * @clk: the clk being prepared
939  *
940  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
941  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
942  * operation may sleep.  One example is a clk which is accessed over I2c.  In
943  * the complex case a clk ungate operation may require a fast and a slow part.
944  * It is this reason that clk_prepare and clk_enable are not mutually
945  * exclusive.  In fact clk_prepare must be called before clk_enable.
946  * Returns 0 on success, -EERROR otherwise.
947  */
948 int clk_prepare(struct clk *clk)
949 {
950 	if (!clk)
951 		return 0;
952 
953 	return clk_core_prepare_lock(clk->core);
954 }
955 EXPORT_SYMBOL_GPL(clk_prepare);
956 
957 static void clk_core_disable(struct clk_core *core)
958 {
959 	lockdep_assert_held(&enable_lock);
960 
961 	if (!core)
962 		return;
963 
964 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
965 		return;
966 
967 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
968 	    "Disabling critical %s\n", core->name))
969 		return;
970 
971 	if (--core->enable_count > 0)
972 		return;
973 
974 	trace_clk_disable_rcuidle(core);
975 
976 	if (core->ops->disable)
977 		core->ops->disable(core->hw);
978 
979 	trace_clk_disable_complete_rcuidle(core);
980 
981 	clk_core_disable(core->parent);
982 }
983 
984 static void clk_core_disable_lock(struct clk_core *core)
985 {
986 	unsigned long flags;
987 
988 	flags = clk_enable_lock();
989 	clk_core_disable(core);
990 	clk_enable_unlock(flags);
991 }
992 
993 /**
994  * clk_disable - gate a clock
995  * @clk: the clk being gated
996  *
997  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
998  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
999  * clk if the operation is fast and will never sleep.  One example is a
1000  * SoC-internal clk which is controlled via simple register writes.  In the
1001  * complex case a clk gate operation may require a fast and a slow part.  It is
1002  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1003  * In fact clk_disable must be called before clk_unprepare.
1004  */
1005 void clk_disable(struct clk *clk)
1006 {
1007 	if (IS_ERR_OR_NULL(clk))
1008 		return;
1009 
1010 	clk_core_disable_lock(clk->core);
1011 }
1012 EXPORT_SYMBOL_GPL(clk_disable);
1013 
1014 static int clk_core_enable(struct clk_core *core)
1015 {
1016 	int ret = 0;
1017 
1018 	lockdep_assert_held(&enable_lock);
1019 
1020 	if (!core)
1021 		return 0;
1022 
1023 	if (WARN(core->prepare_count == 0,
1024 	    "Enabling unprepared %s\n", core->name))
1025 		return -ESHUTDOWN;
1026 
1027 	if (core->enable_count == 0) {
1028 		ret = clk_core_enable(core->parent);
1029 
1030 		if (ret)
1031 			return ret;
1032 
1033 		trace_clk_enable_rcuidle(core);
1034 
1035 		if (core->ops->enable)
1036 			ret = core->ops->enable(core->hw);
1037 
1038 		trace_clk_enable_complete_rcuidle(core);
1039 
1040 		if (ret) {
1041 			clk_core_disable(core->parent);
1042 			return ret;
1043 		}
1044 	}
1045 
1046 	core->enable_count++;
1047 	return 0;
1048 }
1049 
1050 static int clk_core_enable_lock(struct clk_core *core)
1051 {
1052 	unsigned long flags;
1053 	int ret;
1054 
1055 	flags = clk_enable_lock();
1056 	ret = clk_core_enable(core);
1057 	clk_enable_unlock(flags);
1058 
1059 	return ret;
1060 }
1061 
1062 /**
1063  * clk_gate_restore_context - restore context for poweroff
1064  * @hw: the clk_hw pointer of clock whose state is to be restored
1065  *
1066  * The clock gate restore context function enables or disables
1067  * the gate clocks based on the enable_count. This is done in cases
1068  * where the clock context is lost and based on the enable_count
1069  * the clock either needs to be enabled/disabled. This
1070  * helps restore the state of gate clocks.
1071  */
1072 void clk_gate_restore_context(struct clk_hw *hw)
1073 {
1074 	struct clk_core *core = hw->core;
1075 
1076 	if (core->enable_count)
1077 		core->ops->enable(hw);
1078 	else
1079 		core->ops->disable(hw);
1080 }
1081 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1082 
1083 static int clk_core_save_context(struct clk_core *core)
1084 {
1085 	struct clk_core *child;
1086 	int ret = 0;
1087 
1088 	hlist_for_each_entry(child, &core->children, child_node) {
1089 		ret = clk_core_save_context(child);
1090 		if (ret < 0)
1091 			return ret;
1092 	}
1093 
1094 	if (core->ops && core->ops->save_context)
1095 		ret = core->ops->save_context(core->hw);
1096 
1097 	return ret;
1098 }
1099 
1100 static void clk_core_restore_context(struct clk_core *core)
1101 {
1102 	struct clk_core *child;
1103 
1104 	if (core->ops && core->ops->restore_context)
1105 		core->ops->restore_context(core->hw);
1106 
1107 	hlist_for_each_entry(child, &core->children, child_node)
1108 		clk_core_restore_context(child);
1109 }
1110 
1111 /**
1112  * clk_save_context - save clock context for poweroff
1113  *
1114  * Saves the context of the clock register for powerstates in which the
1115  * contents of the registers will be lost. Occurs deep within the suspend
1116  * code.  Returns 0 on success.
1117  */
1118 int clk_save_context(void)
1119 {
1120 	struct clk_core *clk;
1121 	int ret;
1122 
1123 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1124 		ret = clk_core_save_context(clk);
1125 		if (ret < 0)
1126 			return ret;
1127 	}
1128 
1129 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1130 		ret = clk_core_save_context(clk);
1131 		if (ret < 0)
1132 			return ret;
1133 	}
1134 
1135 	return 0;
1136 }
1137 EXPORT_SYMBOL_GPL(clk_save_context);
1138 
1139 /**
1140  * clk_restore_context - restore clock context after poweroff
1141  *
1142  * Restore the saved clock context upon resume.
1143  *
1144  */
1145 void clk_restore_context(void)
1146 {
1147 	struct clk_core *core;
1148 
1149 	hlist_for_each_entry(core, &clk_root_list, child_node)
1150 		clk_core_restore_context(core);
1151 
1152 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1153 		clk_core_restore_context(core);
1154 }
1155 EXPORT_SYMBOL_GPL(clk_restore_context);
1156 
1157 /**
1158  * clk_enable - ungate a clock
1159  * @clk: the clk being ungated
1160  *
1161  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1162  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1163  * if the operation will never sleep.  One example is a SoC-internal clk which
1164  * is controlled via simple register writes.  In the complex case a clk ungate
1165  * operation may require a fast and a slow part.  It is this reason that
1166  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1167  * must be called before clk_enable.  Returns 0 on success, -EERROR
1168  * otherwise.
1169  */
1170 int clk_enable(struct clk *clk)
1171 {
1172 	if (!clk)
1173 		return 0;
1174 
1175 	return clk_core_enable_lock(clk->core);
1176 }
1177 EXPORT_SYMBOL_GPL(clk_enable);
1178 
1179 /**
1180  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1181  * @clk: clock source
1182  *
1183  * Returns true if clk_prepare() implicitly enables the clock, effectively
1184  * making clk_enable()/clk_disable() no-ops, false otherwise.
1185  *
1186  * This is of interest mainly to power management code where actually
1187  * disabling the clock also requires unpreparing it to have any material
1188  * effect.
1189  *
1190  * Regardless of the value returned here, the caller must always invoke
1191  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1192  * to be right.
1193  */
1194 bool clk_is_enabled_when_prepared(struct clk *clk)
1195 {
1196 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1197 }
1198 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1199 
1200 static int clk_core_prepare_enable(struct clk_core *core)
1201 {
1202 	int ret;
1203 
1204 	ret = clk_core_prepare_lock(core);
1205 	if (ret)
1206 		return ret;
1207 
1208 	ret = clk_core_enable_lock(core);
1209 	if (ret)
1210 		clk_core_unprepare_lock(core);
1211 
1212 	return ret;
1213 }
1214 
1215 static void clk_core_disable_unprepare(struct clk_core *core)
1216 {
1217 	clk_core_disable_lock(core);
1218 	clk_core_unprepare_lock(core);
1219 }
1220 
1221 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1222 {
1223 	struct clk_core *child;
1224 
1225 	lockdep_assert_held(&prepare_lock);
1226 
1227 	hlist_for_each_entry(child, &core->children, child_node)
1228 		clk_unprepare_unused_subtree(child);
1229 
1230 	if (core->prepare_count)
1231 		return;
1232 
1233 	if (core->flags & CLK_IGNORE_UNUSED)
1234 		return;
1235 
1236 	if (clk_pm_runtime_get(core))
1237 		return;
1238 
1239 	if (clk_core_is_prepared(core)) {
1240 		trace_clk_unprepare(core);
1241 		if (core->ops->unprepare_unused)
1242 			core->ops->unprepare_unused(core->hw);
1243 		else if (core->ops->unprepare)
1244 			core->ops->unprepare(core->hw);
1245 		trace_clk_unprepare_complete(core);
1246 	}
1247 
1248 	clk_pm_runtime_put(core);
1249 }
1250 
1251 static void __init clk_disable_unused_subtree(struct clk_core *core)
1252 {
1253 	struct clk_core *child;
1254 	unsigned long flags;
1255 
1256 	lockdep_assert_held(&prepare_lock);
1257 
1258 	hlist_for_each_entry(child, &core->children, child_node)
1259 		clk_disable_unused_subtree(child);
1260 
1261 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1262 		clk_core_prepare_enable(core->parent);
1263 
1264 	if (clk_pm_runtime_get(core))
1265 		goto unprepare_out;
1266 
1267 	flags = clk_enable_lock();
1268 
1269 	if (core->enable_count)
1270 		goto unlock_out;
1271 
1272 	if (core->flags & CLK_IGNORE_UNUSED)
1273 		goto unlock_out;
1274 
1275 	/*
1276 	 * some gate clocks have special needs during the disable-unused
1277 	 * sequence.  call .disable_unused if available, otherwise fall
1278 	 * back to .disable
1279 	 */
1280 	if (clk_core_is_enabled(core)) {
1281 		trace_clk_disable(core);
1282 		if (core->ops->disable_unused)
1283 			core->ops->disable_unused(core->hw);
1284 		else if (core->ops->disable)
1285 			core->ops->disable(core->hw);
1286 		trace_clk_disable_complete(core);
1287 	}
1288 
1289 unlock_out:
1290 	clk_enable_unlock(flags);
1291 	clk_pm_runtime_put(core);
1292 unprepare_out:
1293 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1294 		clk_core_disable_unprepare(core->parent);
1295 }
1296 
1297 static bool clk_ignore_unused __initdata;
1298 static int __init clk_ignore_unused_setup(char *__unused)
1299 {
1300 	clk_ignore_unused = true;
1301 	return 1;
1302 }
1303 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1304 
1305 static int __init clk_disable_unused(void)
1306 {
1307 	struct clk_core *core;
1308 
1309 	if (clk_ignore_unused) {
1310 		pr_warn("clk: Not disabling unused clocks\n");
1311 		return 0;
1312 	}
1313 
1314 	clk_prepare_lock();
1315 
1316 	hlist_for_each_entry(core, &clk_root_list, child_node)
1317 		clk_disable_unused_subtree(core);
1318 
1319 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1320 		clk_disable_unused_subtree(core);
1321 
1322 	hlist_for_each_entry(core, &clk_root_list, child_node)
1323 		clk_unprepare_unused_subtree(core);
1324 
1325 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1326 		clk_unprepare_unused_subtree(core);
1327 
1328 	clk_prepare_unlock();
1329 
1330 	return 0;
1331 }
1332 late_initcall_sync(clk_disable_unused);
1333 
1334 static int clk_core_determine_round_nolock(struct clk_core *core,
1335 					   struct clk_rate_request *req)
1336 {
1337 	long rate;
1338 
1339 	lockdep_assert_held(&prepare_lock);
1340 
1341 	if (!core)
1342 		return 0;
1343 
1344 	req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1345 
1346 	/*
1347 	 * At this point, core protection will be disabled
1348 	 * - if the provider is not protected at all
1349 	 * - if the calling consumer is the only one which has exclusivity
1350 	 *   over the provider
1351 	 */
1352 	if (clk_core_rate_is_protected(core)) {
1353 		req->rate = core->rate;
1354 	} else if (core->ops->determine_rate) {
1355 		return core->ops->determine_rate(core->hw, req);
1356 	} else if (core->ops->round_rate) {
1357 		rate = core->ops->round_rate(core->hw, req->rate,
1358 					     &req->best_parent_rate);
1359 		if (rate < 0)
1360 			return rate;
1361 
1362 		req->rate = rate;
1363 	} else {
1364 		return -EINVAL;
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 static void clk_core_init_rate_req(struct clk_core * const core,
1371 				   struct clk_rate_request *req)
1372 {
1373 	struct clk_core *parent;
1374 
1375 	if (WARN_ON(!core || !req))
1376 		return;
1377 
1378 	parent = core->parent;
1379 	if (parent) {
1380 		req->best_parent_hw = parent->hw;
1381 		req->best_parent_rate = parent->rate;
1382 	} else {
1383 		req->best_parent_hw = NULL;
1384 		req->best_parent_rate = 0;
1385 	}
1386 }
1387 
1388 static bool clk_core_can_round(struct clk_core * const core)
1389 {
1390 	return core->ops->determine_rate || core->ops->round_rate;
1391 }
1392 
1393 static int clk_core_round_rate_nolock(struct clk_core *core,
1394 				      struct clk_rate_request *req)
1395 {
1396 	lockdep_assert_held(&prepare_lock);
1397 
1398 	if (!core) {
1399 		req->rate = 0;
1400 		return 0;
1401 	}
1402 
1403 	clk_core_init_rate_req(core, req);
1404 
1405 	if (clk_core_can_round(core))
1406 		return clk_core_determine_round_nolock(core, req);
1407 	else if (core->flags & CLK_SET_RATE_PARENT)
1408 		return clk_core_round_rate_nolock(core->parent, req);
1409 
1410 	req->rate = core->rate;
1411 	return 0;
1412 }
1413 
1414 /**
1415  * __clk_determine_rate - get the closest rate actually supported by a clock
1416  * @hw: determine the rate of this clock
1417  * @req: target rate request
1418  *
1419  * Useful for clk_ops such as .set_rate and .determine_rate.
1420  */
1421 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1422 {
1423 	if (!hw) {
1424 		req->rate = 0;
1425 		return 0;
1426 	}
1427 
1428 	return clk_core_round_rate_nolock(hw->core, req);
1429 }
1430 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1431 
1432 /**
1433  * clk_hw_round_rate() - round the given rate for a hw clk
1434  * @hw: the hw clk for which we are rounding a rate
1435  * @rate: the rate which is to be rounded
1436  *
1437  * Takes in a rate as input and rounds it to a rate that the clk can actually
1438  * use.
1439  *
1440  * Context: prepare_lock must be held.
1441  *          For clk providers to call from within clk_ops such as .round_rate,
1442  *          .determine_rate.
1443  *
1444  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1445  *         else returns the parent rate.
1446  */
1447 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1448 {
1449 	int ret;
1450 	struct clk_rate_request req;
1451 
1452 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1453 	req.rate = rate;
1454 
1455 	ret = clk_core_round_rate_nolock(hw->core, &req);
1456 	if (ret)
1457 		return 0;
1458 
1459 	return req.rate;
1460 }
1461 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1462 
1463 /**
1464  * clk_round_rate - round the given rate for a clk
1465  * @clk: the clk for which we are rounding a rate
1466  * @rate: the rate which is to be rounded
1467  *
1468  * Takes in a rate as input and rounds it to a rate that the clk can actually
1469  * use which is then returned.  If clk doesn't support round_rate operation
1470  * then the parent rate is returned.
1471  */
1472 long clk_round_rate(struct clk *clk, unsigned long rate)
1473 {
1474 	struct clk_rate_request req;
1475 	int ret;
1476 
1477 	if (!clk)
1478 		return 0;
1479 
1480 	clk_prepare_lock();
1481 
1482 	if (clk->exclusive_count)
1483 		clk_core_rate_unprotect(clk->core);
1484 
1485 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1486 	req.rate = rate;
1487 
1488 	ret = clk_core_round_rate_nolock(clk->core, &req);
1489 
1490 	if (clk->exclusive_count)
1491 		clk_core_rate_protect(clk->core);
1492 
1493 	clk_prepare_unlock();
1494 
1495 	if (ret)
1496 		return ret;
1497 
1498 	return req.rate;
1499 }
1500 EXPORT_SYMBOL_GPL(clk_round_rate);
1501 
1502 /**
1503  * __clk_notify - call clk notifier chain
1504  * @core: clk that is changing rate
1505  * @msg: clk notifier type (see include/linux/clk.h)
1506  * @old_rate: old clk rate
1507  * @new_rate: new clk rate
1508  *
1509  * Triggers a notifier call chain on the clk rate-change notification
1510  * for 'clk'.  Passes a pointer to the struct clk and the previous
1511  * and current rates to the notifier callback.  Intended to be called by
1512  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1513  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1514  * a driver returns that.
1515  */
1516 static int __clk_notify(struct clk_core *core, unsigned long msg,
1517 		unsigned long old_rate, unsigned long new_rate)
1518 {
1519 	struct clk_notifier *cn;
1520 	struct clk_notifier_data cnd;
1521 	int ret = NOTIFY_DONE;
1522 
1523 	cnd.old_rate = old_rate;
1524 	cnd.new_rate = new_rate;
1525 
1526 	list_for_each_entry(cn, &clk_notifier_list, node) {
1527 		if (cn->clk->core == core) {
1528 			cnd.clk = cn->clk;
1529 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1530 					&cnd);
1531 			if (ret & NOTIFY_STOP_MASK)
1532 				return ret;
1533 		}
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 /**
1540  * __clk_recalc_accuracies
1541  * @core: first clk in the subtree
1542  *
1543  * Walks the subtree of clks starting with clk and recalculates accuracies as
1544  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1545  * callback then it is assumed that the clock will take on the accuracy of its
1546  * parent.
1547  */
1548 static void __clk_recalc_accuracies(struct clk_core *core)
1549 {
1550 	unsigned long parent_accuracy = 0;
1551 	struct clk_core *child;
1552 
1553 	lockdep_assert_held(&prepare_lock);
1554 
1555 	if (core->parent)
1556 		parent_accuracy = core->parent->accuracy;
1557 
1558 	if (core->ops->recalc_accuracy)
1559 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1560 							  parent_accuracy);
1561 	else
1562 		core->accuracy = parent_accuracy;
1563 
1564 	hlist_for_each_entry(child, &core->children, child_node)
1565 		__clk_recalc_accuracies(child);
1566 }
1567 
1568 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1569 {
1570 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1571 		__clk_recalc_accuracies(core);
1572 
1573 	return clk_core_get_accuracy_no_lock(core);
1574 }
1575 
1576 /**
1577  * clk_get_accuracy - return the accuracy of clk
1578  * @clk: the clk whose accuracy is being returned
1579  *
1580  * Simply returns the cached accuracy of the clk, unless
1581  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1582  * issued.
1583  * If clk is NULL then returns 0.
1584  */
1585 long clk_get_accuracy(struct clk *clk)
1586 {
1587 	long accuracy;
1588 
1589 	if (!clk)
1590 		return 0;
1591 
1592 	clk_prepare_lock();
1593 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1594 	clk_prepare_unlock();
1595 
1596 	return accuracy;
1597 }
1598 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1599 
1600 static unsigned long clk_recalc(struct clk_core *core,
1601 				unsigned long parent_rate)
1602 {
1603 	unsigned long rate = parent_rate;
1604 
1605 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1606 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1607 		clk_pm_runtime_put(core);
1608 	}
1609 	return rate;
1610 }
1611 
1612 /**
1613  * __clk_recalc_rates
1614  * @core: first clk in the subtree
1615  * @msg: notification type (see include/linux/clk.h)
1616  *
1617  * Walks the subtree of clks starting with clk and recalculates rates as it
1618  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1619  * it is assumed that the clock will take on the rate of its parent.
1620  *
1621  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1622  * if necessary.
1623  */
1624 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1625 {
1626 	unsigned long old_rate;
1627 	unsigned long parent_rate = 0;
1628 	struct clk_core *child;
1629 
1630 	lockdep_assert_held(&prepare_lock);
1631 
1632 	old_rate = core->rate;
1633 
1634 	if (core->parent)
1635 		parent_rate = core->parent->rate;
1636 
1637 	core->rate = clk_recalc(core, parent_rate);
1638 
1639 	/*
1640 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1641 	 * & ABORT_RATE_CHANGE notifiers
1642 	 */
1643 	if (core->notifier_count && msg)
1644 		__clk_notify(core, msg, old_rate, core->rate);
1645 
1646 	hlist_for_each_entry(child, &core->children, child_node)
1647 		__clk_recalc_rates(child, msg);
1648 }
1649 
1650 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1651 {
1652 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1653 		__clk_recalc_rates(core, 0);
1654 
1655 	return clk_core_get_rate_nolock(core);
1656 }
1657 
1658 /**
1659  * clk_get_rate - return the rate of clk
1660  * @clk: the clk whose rate is being returned
1661  *
1662  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1663  * is set, which means a recalc_rate will be issued.
1664  * If clk is NULL then returns 0.
1665  */
1666 unsigned long clk_get_rate(struct clk *clk)
1667 {
1668 	unsigned long rate;
1669 
1670 	if (!clk)
1671 		return 0;
1672 
1673 	clk_prepare_lock();
1674 	rate = clk_core_get_rate_recalc(clk->core);
1675 	clk_prepare_unlock();
1676 
1677 	return rate;
1678 }
1679 EXPORT_SYMBOL_GPL(clk_get_rate);
1680 
1681 static int clk_fetch_parent_index(struct clk_core *core,
1682 				  struct clk_core *parent)
1683 {
1684 	int i;
1685 
1686 	if (!parent)
1687 		return -EINVAL;
1688 
1689 	for (i = 0; i < core->num_parents; i++) {
1690 		/* Found it first try! */
1691 		if (core->parents[i].core == parent)
1692 			return i;
1693 
1694 		/* Something else is here, so keep looking */
1695 		if (core->parents[i].core)
1696 			continue;
1697 
1698 		/* Maybe core hasn't been cached but the hw is all we know? */
1699 		if (core->parents[i].hw) {
1700 			if (core->parents[i].hw == parent->hw)
1701 				break;
1702 
1703 			/* Didn't match, but we're expecting a clk_hw */
1704 			continue;
1705 		}
1706 
1707 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1708 		if (parent == clk_core_get(core, i))
1709 			break;
1710 
1711 		/* Fallback to comparing globally unique names */
1712 		if (core->parents[i].name &&
1713 		    !strcmp(parent->name, core->parents[i].name))
1714 			break;
1715 	}
1716 
1717 	if (i == core->num_parents)
1718 		return -EINVAL;
1719 
1720 	core->parents[i].core = parent;
1721 	return i;
1722 }
1723 
1724 /**
1725  * clk_hw_get_parent_index - return the index of the parent clock
1726  * @hw: clk_hw associated with the clk being consumed
1727  *
1728  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1729  * clock does not have a current parent.
1730  */
1731 int clk_hw_get_parent_index(struct clk_hw *hw)
1732 {
1733 	struct clk_hw *parent = clk_hw_get_parent(hw);
1734 
1735 	if (WARN_ON(parent == NULL))
1736 		return -EINVAL;
1737 
1738 	return clk_fetch_parent_index(hw->core, parent->core);
1739 }
1740 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1741 
1742 /*
1743  * Update the orphan status of @core and all its children.
1744  */
1745 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1746 {
1747 	struct clk_core *child;
1748 
1749 	core->orphan = is_orphan;
1750 
1751 	hlist_for_each_entry(child, &core->children, child_node)
1752 		clk_core_update_orphan_status(child, is_orphan);
1753 }
1754 
1755 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1756 {
1757 	bool was_orphan = core->orphan;
1758 
1759 	hlist_del(&core->child_node);
1760 
1761 	if (new_parent) {
1762 		bool becomes_orphan = new_parent->orphan;
1763 
1764 		/* avoid duplicate POST_RATE_CHANGE notifications */
1765 		if (new_parent->new_child == core)
1766 			new_parent->new_child = NULL;
1767 
1768 		hlist_add_head(&core->child_node, &new_parent->children);
1769 
1770 		if (was_orphan != becomes_orphan)
1771 			clk_core_update_orphan_status(core, becomes_orphan);
1772 	} else {
1773 		hlist_add_head(&core->child_node, &clk_orphan_list);
1774 		if (!was_orphan)
1775 			clk_core_update_orphan_status(core, true);
1776 	}
1777 
1778 	core->parent = new_parent;
1779 }
1780 
1781 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1782 					   struct clk_core *parent)
1783 {
1784 	unsigned long flags;
1785 	struct clk_core *old_parent = core->parent;
1786 
1787 	/*
1788 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1789 	 *
1790 	 * 2. Migrate prepare state between parents and prevent race with
1791 	 * clk_enable().
1792 	 *
1793 	 * If the clock is not prepared, then a race with
1794 	 * clk_enable/disable() is impossible since we already have the
1795 	 * prepare lock (future calls to clk_enable() need to be preceded by
1796 	 * a clk_prepare()).
1797 	 *
1798 	 * If the clock is prepared, migrate the prepared state to the new
1799 	 * parent and also protect against a race with clk_enable() by
1800 	 * forcing the clock and the new parent on.  This ensures that all
1801 	 * future calls to clk_enable() are practically NOPs with respect to
1802 	 * hardware and software states.
1803 	 *
1804 	 * See also: Comment for clk_set_parent() below.
1805 	 */
1806 
1807 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1808 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1809 		clk_core_prepare_enable(old_parent);
1810 		clk_core_prepare_enable(parent);
1811 	}
1812 
1813 	/* migrate prepare count if > 0 */
1814 	if (core->prepare_count) {
1815 		clk_core_prepare_enable(parent);
1816 		clk_core_enable_lock(core);
1817 	}
1818 
1819 	/* update the clk tree topology */
1820 	flags = clk_enable_lock();
1821 	clk_reparent(core, parent);
1822 	clk_enable_unlock(flags);
1823 
1824 	return old_parent;
1825 }
1826 
1827 static void __clk_set_parent_after(struct clk_core *core,
1828 				   struct clk_core *parent,
1829 				   struct clk_core *old_parent)
1830 {
1831 	/*
1832 	 * Finish the migration of prepare state and undo the changes done
1833 	 * for preventing a race with clk_enable().
1834 	 */
1835 	if (core->prepare_count) {
1836 		clk_core_disable_lock(core);
1837 		clk_core_disable_unprepare(old_parent);
1838 	}
1839 
1840 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1841 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1842 		clk_core_disable_unprepare(parent);
1843 		clk_core_disable_unprepare(old_parent);
1844 	}
1845 }
1846 
1847 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1848 			    u8 p_index)
1849 {
1850 	unsigned long flags;
1851 	int ret = 0;
1852 	struct clk_core *old_parent;
1853 
1854 	old_parent = __clk_set_parent_before(core, parent);
1855 
1856 	trace_clk_set_parent(core, parent);
1857 
1858 	/* change clock input source */
1859 	if (parent && core->ops->set_parent)
1860 		ret = core->ops->set_parent(core->hw, p_index);
1861 
1862 	trace_clk_set_parent_complete(core, parent);
1863 
1864 	if (ret) {
1865 		flags = clk_enable_lock();
1866 		clk_reparent(core, old_parent);
1867 		clk_enable_unlock(flags);
1868 		__clk_set_parent_after(core, old_parent, parent);
1869 
1870 		return ret;
1871 	}
1872 
1873 	__clk_set_parent_after(core, parent, old_parent);
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  * __clk_speculate_rates
1880  * @core: first clk in the subtree
1881  * @parent_rate: the "future" rate of clk's parent
1882  *
1883  * Walks the subtree of clks starting with clk, speculating rates as it
1884  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1885  *
1886  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1887  * pre-rate change notifications and returns early if no clks in the
1888  * subtree have subscribed to the notifications.  Note that if a clk does not
1889  * implement the .recalc_rate callback then it is assumed that the clock will
1890  * take on the rate of its parent.
1891  */
1892 static int __clk_speculate_rates(struct clk_core *core,
1893 				 unsigned long parent_rate)
1894 {
1895 	struct clk_core *child;
1896 	unsigned long new_rate;
1897 	int ret = NOTIFY_DONE;
1898 
1899 	lockdep_assert_held(&prepare_lock);
1900 
1901 	new_rate = clk_recalc(core, parent_rate);
1902 
1903 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1904 	if (core->notifier_count)
1905 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1906 
1907 	if (ret & NOTIFY_STOP_MASK) {
1908 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1909 				__func__, core->name, ret);
1910 		goto out;
1911 	}
1912 
1913 	hlist_for_each_entry(child, &core->children, child_node) {
1914 		ret = __clk_speculate_rates(child, new_rate);
1915 		if (ret & NOTIFY_STOP_MASK)
1916 			break;
1917 	}
1918 
1919 out:
1920 	return ret;
1921 }
1922 
1923 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1924 			     struct clk_core *new_parent, u8 p_index)
1925 {
1926 	struct clk_core *child;
1927 
1928 	core->new_rate = new_rate;
1929 	core->new_parent = new_parent;
1930 	core->new_parent_index = p_index;
1931 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1932 	core->new_child = NULL;
1933 	if (new_parent && new_parent != core->parent)
1934 		new_parent->new_child = core;
1935 
1936 	hlist_for_each_entry(child, &core->children, child_node) {
1937 		child->new_rate = clk_recalc(child, new_rate);
1938 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1939 	}
1940 }
1941 
1942 /*
1943  * calculate the new rates returning the topmost clock that has to be
1944  * changed.
1945  */
1946 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1947 					   unsigned long rate)
1948 {
1949 	struct clk_core *top = core;
1950 	struct clk_core *old_parent, *parent;
1951 	unsigned long best_parent_rate = 0;
1952 	unsigned long new_rate;
1953 	unsigned long min_rate;
1954 	unsigned long max_rate;
1955 	int p_index = 0;
1956 	long ret;
1957 
1958 	/* sanity */
1959 	if (IS_ERR_OR_NULL(core))
1960 		return NULL;
1961 
1962 	/* save parent rate, if it exists */
1963 	parent = old_parent = core->parent;
1964 	if (parent)
1965 		best_parent_rate = parent->rate;
1966 
1967 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1968 
1969 	/* find the closest rate and parent clk/rate */
1970 	if (clk_core_can_round(core)) {
1971 		struct clk_rate_request req;
1972 
1973 		req.rate = rate;
1974 		req.min_rate = min_rate;
1975 		req.max_rate = max_rate;
1976 
1977 		clk_core_init_rate_req(core, &req);
1978 
1979 		ret = clk_core_determine_round_nolock(core, &req);
1980 		if (ret < 0)
1981 			return NULL;
1982 
1983 		best_parent_rate = req.best_parent_rate;
1984 		new_rate = req.rate;
1985 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1986 
1987 		if (new_rate < min_rate || new_rate > max_rate)
1988 			return NULL;
1989 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1990 		/* pass-through clock without adjustable parent */
1991 		core->new_rate = core->rate;
1992 		return NULL;
1993 	} else {
1994 		/* pass-through clock with adjustable parent */
1995 		top = clk_calc_new_rates(parent, rate);
1996 		new_rate = parent->new_rate;
1997 		goto out;
1998 	}
1999 
2000 	/* some clocks must be gated to change parent */
2001 	if (parent != old_parent &&
2002 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2003 		pr_debug("%s: %s not gated but wants to reparent\n",
2004 			 __func__, core->name);
2005 		return NULL;
2006 	}
2007 
2008 	/* try finding the new parent index */
2009 	if (parent && core->num_parents > 1) {
2010 		p_index = clk_fetch_parent_index(core, parent);
2011 		if (p_index < 0) {
2012 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2013 				 __func__, parent->name, core->name);
2014 			return NULL;
2015 		}
2016 	}
2017 
2018 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2019 	    best_parent_rate != parent->rate)
2020 		top = clk_calc_new_rates(parent, best_parent_rate);
2021 
2022 out:
2023 	clk_calc_subtree(core, new_rate, parent, p_index);
2024 
2025 	return top;
2026 }
2027 
2028 /*
2029  * Notify about rate changes in a subtree. Always walk down the whole tree
2030  * so that in case of an error we can walk down the whole tree again and
2031  * abort the change.
2032  */
2033 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2034 						  unsigned long event)
2035 {
2036 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2037 	int ret = NOTIFY_DONE;
2038 
2039 	if (core->rate == core->new_rate)
2040 		return NULL;
2041 
2042 	if (core->notifier_count) {
2043 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2044 		if (ret & NOTIFY_STOP_MASK)
2045 			fail_clk = core;
2046 	}
2047 
2048 	hlist_for_each_entry(child, &core->children, child_node) {
2049 		/* Skip children who will be reparented to another clock */
2050 		if (child->new_parent && child->new_parent != core)
2051 			continue;
2052 		tmp_clk = clk_propagate_rate_change(child, event);
2053 		if (tmp_clk)
2054 			fail_clk = tmp_clk;
2055 	}
2056 
2057 	/* handle the new child who might not be in core->children yet */
2058 	if (core->new_child) {
2059 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2060 		if (tmp_clk)
2061 			fail_clk = tmp_clk;
2062 	}
2063 
2064 	return fail_clk;
2065 }
2066 
2067 /*
2068  * walk down a subtree and set the new rates notifying the rate
2069  * change on the way
2070  */
2071 static void clk_change_rate(struct clk_core *core)
2072 {
2073 	struct clk_core *child;
2074 	struct hlist_node *tmp;
2075 	unsigned long old_rate;
2076 	unsigned long best_parent_rate = 0;
2077 	bool skip_set_rate = false;
2078 	struct clk_core *old_parent;
2079 	struct clk_core *parent = NULL;
2080 
2081 	old_rate = core->rate;
2082 
2083 	if (core->new_parent) {
2084 		parent = core->new_parent;
2085 		best_parent_rate = core->new_parent->rate;
2086 	} else if (core->parent) {
2087 		parent = core->parent;
2088 		best_parent_rate = core->parent->rate;
2089 	}
2090 
2091 	if (clk_pm_runtime_get(core))
2092 		return;
2093 
2094 	if (core->flags & CLK_SET_RATE_UNGATE) {
2095 		clk_core_prepare(core);
2096 		clk_core_enable_lock(core);
2097 	}
2098 
2099 	if (core->new_parent && core->new_parent != core->parent) {
2100 		old_parent = __clk_set_parent_before(core, core->new_parent);
2101 		trace_clk_set_parent(core, core->new_parent);
2102 
2103 		if (core->ops->set_rate_and_parent) {
2104 			skip_set_rate = true;
2105 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2106 					best_parent_rate,
2107 					core->new_parent_index);
2108 		} else if (core->ops->set_parent) {
2109 			core->ops->set_parent(core->hw, core->new_parent_index);
2110 		}
2111 
2112 		trace_clk_set_parent_complete(core, core->new_parent);
2113 		__clk_set_parent_after(core, core->new_parent, old_parent);
2114 	}
2115 
2116 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2117 		clk_core_prepare_enable(parent);
2118 
2119 	trace_clk_set_rate(core, core->new_rate);
2120 
2121 	if (!skip_set_rate && core->ops->set_rate)
2122 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2123 
2124 	trace_clk_set_rate_complete(core, core->new_rate);
2125 
2126 	core->rate = clk_recalc(core, best_parent_rate);
2127 
2128 	if (core->flags & CLK_SET_RATE_UNGATE) {
2129 		clk_core_disable_lock(core);
2130 		clk_core_unprepare(core);
2131 	}
2132 
2133 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2134 		clk_core_disable_unprepare(parent);
2135 
2136 	if (core->notifier_count && old_rate != core->rate)
2137 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2138 
2139 	if (core->flags & CLK_RECALC_NEW_RATES)
2140 		(void)clk_calc_new_rates(core, core->new_rate);
2141 
2142 	/*
2143 	 * Use safe iteration, as change_rate can actually swap parents
2144 	 * for certain clock types.
2145 	 */
2146 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2147 		/* Skip children who will be reparented to another clock */
2148 		if (child->new_parent && child->new_parent != core)
2149 			continue;
2150 		clk_change_rate(child);
2151 	}
2152 
2153 	/* handle the new child who might not be in core->children yet */
2154 	if (core->new_child)
2155 		clk_change_rate(core->new_child);
2156 
2157 	clk_pm_runtime_put(core);
2158 }
2159 
2160 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2161 						     unsigned long req_rate)
2162 {
2163 	int ret, cnt;
2164 	struct clk_rate_request req;
2165 
2166 	lockdep_assert_held(&prepare_lock);
2167 
2168 	if (!core)
2169 		return 0;
2170 
2171 	/* simulate what the rate would be if it could be freely set */
2172 	cnt = clk_core_rate_nuke_protect(core);
2173 	if (cnt < 0)
2174 		return cnt;
2175 
2176 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2177 	req.rate = req_rate;
2178 
2179 	ret = clk_core_round_rate_nolock(core, &req);
2180 
2181 	/* restore the protection */
2182 	clk_core_rate_restore_protect(core, cnt);
2183 
2184 	return ret ? 0 : req.rate;
2185 }
2186 
2187 static int clk_core_set_rate_nolock(struct clk_core *core,
2188 				    unsigned long req_rate)
2189 {
2190 	struct clk_core *top, *fail_clk;
2191 	unsigned long rate;
2192 	int ret = 0;
2193 
2194 	if (!core)
2195 		return 0;
2196 
2197 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2198 
2199 	/* bail early if nothing to do */
2200 	if (rate == clk_core_get_rate_nolock(core))
2201 		return 0;
2202 
2203 	/* fail on a direct rate set of a protected provider */
2204 	if (clk_core_rate_is_protected(core))
2205 		return -EBUSY;
2206 
2207 	/* calculate new rates and get the topmost changed clock */
2208 	top = clk_calc_new_rates(core, req_rate);
2209 	if (!top)
2210 		return -EINVAL;
2211 
2212 	ret = clk_pm_runtime_get(core);
2213 	if (ret)
2214 		return ret;
2215 
2216 	/* notify that we are about to change rates */
2217 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2218 	if (fail_clk) {
2219 		pr_debug("%s: failed to set %s rate\n", __func__,
2220 				fail_clk->name);
2221 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2222 		ret = -EBUSY;
2223 		goto err;
2224 	}
2225 
2226 	/* change the rates */
2227 	clk_change_rate(top);
2228 
2229 	core->req_rate = req_rate;
2230 err:
2231 	clk_pm_runtime_put(core);
2232 
2233 	return ret;
2234 }
2235 
2236 /**
2237  * clk_set_rate - specify a new rate for clk
2238  * @clk: the clk whose rate is being changed
2239  * @rate: the new rate for clk
2240  *
2241  * In the simplest case clk_set_rate will only adjust the rate of clk.
2242  *
2243  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2244  * propagate up to clk's parent; whether or not this happens depends on the
2245  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2246  * after calling .round_rate then upstream parent propagation is ignored.  If
2247  * *parent_rate comes back with a new rate for clk's parent then we propagate
2248  * up to clk's parent and set its rate.  Upward propagation will continue
2249  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2250  * .round_rate stops requesting changes to clk's parent_rate.
2251  *
2252  * Rate changes are accomplished via tree traversal that also recalculates the
2253  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2254  *
2255  * Returns 0 on success, -EERROR otherwise.
2256  */
2257 int clk_set_rate(struct clk *clk, unsigned long rate)
2258 {
2259 	int ret;
2260 
2261 	if (!clk)
2262 		return 0;
2263 
2264 	/* prevent racing with updates to the clock topology */
2265 	clk_prepare_lock();
2266 
2267 	if (clk->exclusive_count)
2268 		clk_core_rate_unprotect(clk->core);
2269 
2270 	ret = clk_core_set_rate_nolock(clk->core, rate);
2271 
2272 	if (clk->exclusive_count)
2273 		clk_core_rate_protect(clk->core);
2274 
2275 	clk_prepare_unlock();
2276 
2277 	return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(clk_set_rate);
2280 
2281 /**
2282  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2283  * @clk: the clk whose rate is being changed
2284  * @rate: the new rate for clk
2285  *
2286  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2287  * within a critical section
2288  *
2289  * This can be used initially to ensure that at least 1 consumer is
2290  * satisfied when several consumers are competing for exclusivity over the
2291  * same clock provider.
2292  *
2293  * The exclusivity is not applied if setting the rate failed.
2294  *
2295  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2296  * clk_rate_exclusive_put().
2297  *
2298  * Returns 0 on success, -EERROR otherwise.
2299  */
2300 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2301 {
2302 	int ret;
2303 
2304 	if (!clk)
2305 		return 0;
2306 
2307 	/* prevent racing with updates to the clock topology */
2308 	clk_prepare_lock();
2309 
2310 	/*
2311 	 * The temporary protection removal is not here, on purpose
2312 	 * This function is meant to be used instead of clk_rate_protect,
2313 	 * so before the consumer code path protect the clock provider
2314 	 */
2315 
2316 	ret = clk_core_set_rate_nolock(clk->core, rate);
2317 	if (!ret) {
2318 		clk_core_rate_protect(clk->core);
2319 		clk->exclusive_count++;
2320 	}
2321 
2322 	clk_prepare_unlock();
2323 
2324 	return ret;
2325 }
2326 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2327 
2328 /**
2329  * clk_set_rate_range - set a rate range for a clock source
2330  * @clk: clock source
2331  * @min: desired minimum clock rate in Hz, inclusive
2332  * @max: desired maximum clock rate in Hz, inclusive
2333  *
2334  * Returns success (0) or negative errno.
2335  */
2336 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2337 {
2338 	int ret = 0;
2339 	unsigned long old_min, old_max, rate;
2340 
2341 	if (!clk)
2342 		return 0;
2343 
2344 	trace_clk_set_rate_range(clk->core, min, max);
2345 
2346 	if (min > max) {
2347 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2348 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2349 		       min, max);
2350 		return -EINVAL;
2351 	}
2352 
2353 	clk_prepare_lock();
2354 
2355 	if (clk->exclusive_count)
2356 		clk_core_rate_unprotect(clk->core);
2357 
2358 	/* Save the current values in case we need to rollback the change */
2359 	old_min = clk->min_rate;
2360 	old_max = clk->max_rate;
2361 	clk->min_rate = min;
2362 	clk->max_rate = max;
2363 
2364 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2365 		ret = -EINVAL;
2366 		goto out;
2367 	}
2368 
2369 	/*
2370 	 * Since the boundaries have been changed, let's give the
2371 	 * opportunity to the provider to adjust the clock rate based on
2372 	 * the new boundaries.
2373 	 *
2374 	 * We also need to handle the case where the clock is currently
2375 	 * outside of the boundaries. Clamping the last requested rate
2376 	 * to the current minimum and maximum will also handle this.
2377 	 *
2378 	 * FIXME:
2379 	 * There is a catch. It may fail for the usual reason (clock
2380 	 * broken, clock protected, etc) but also because:
2381 	 * - round_rate() was not favorable and fell on the wrong
2382 	 *   side of the boundary
2383 	 * - the determine_rate() callback does not really check for
2384 	 *   this corner case when determining the rate
2385 	 */
2386 	rate = clamp(clk->core->req_rate, min, max);
2387 	ret = clk_core_set_rate_nolock(clk->core, rate);
2388 	if (ret) {
2389 		/* rollback the changes */
2390 		clk->min_rate = old_min;
2391 		clk->max_rate = old_max;
2392 	}
2393 
2394 out:
2395 	if (clk->exclusive_count)
2396 		clk_core_rate_protect(clk->core);
2397 
2398 	clk_prepare_unlock();
2399 
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2403 
2404 /**
2405  * clk_set_min_rate - set a minimum clock rate for a clock source
2406  * @clk: clock source
2407  * @rate: desired minimum clock rate in Hz, inclusive
2408  *
2409  * Returns success (0) or negative errno.
2410  */
2411 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2412 {
2413 	if (!clk)
2414 		return 0;
2415 
2416 	trace_clk_set_min_rate(clk->core, rate);
2417 
2418 	return clk_set_rate_range(clk, rate, clk->max_rate);
2419 }
2420 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2421 
2422 /**
2423  * clk_set_max_rate - set a maximum clock rate for a clock source
2424  * @clk: clock source
2425  * @rate: desired maximum clock rate in Hz, inclusive
2426  *
2427  * Returns success (0) or negative errno.
2428  */
2429 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2430 {
2431 	if (!clk)
2432 		return 0;
2433 
2434 	trace_clk_set_max_rate(clk->core, rate);
2435 
2436 	return clk_set_rate_range(clk, clk->min_rate, rate);
2437 }
2438 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2439 
2440 /**
2441  * clk_get_parent - return the parent of a clk
2442  * @clk: the clk whose parent gets returned
2443  *
2444  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2445  */
2446 struct clk *clk_get_parent(struct clk *clk)
2447 {
2448 	struct clk *parent;
2449 
2450 	if (!clk)
2451 		return NULL;
2452 
2453 	clk_prepare_lock();
2454 	/* TODO: Create a per-user clk and change callers to call clk_put */
2455 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2456 	clk_prepare_unlock();
2457 
2458 	return parent;
2459 }
2460 EXPORT_SYMBOL_GPL(clk_get_parent);
2461 
2462 static struct clk_core *__clk_init_parent(struct clk_core *core)
2463 {
2464 	u8 index = 0;
2465 
2466 	if (core->num_parents > 1 && core->ops->get_parent)
2467 		index = core->ops->get_parent(core->hw);
2468 
2469 	return clk_core_get_parent_by_index(core, index);
2470 }
2471 
2472 static void clk_core_reparent(struct clk_core *core,
2473 				  struct clk_core *new_parent)
2474 {
2475 	clk_reparent(core, new_parent);
2476 	__clk_recalc_accuracies(core);
2477 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2478 }
2479 
2480 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2481 {
2482 	if (!hw)
2483 		return;
2484 
2485 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2486 }
2487 
2488 /**
2489  * clk_has_parent - check if a clock is a possible parent for another
2490  * @clk: clock source
2491  * @parent: parent clock source
2492  *
2493  * This function can be used in drivers that need to check that a clock can be
2494  * the parent of another without actually changing the parent.
2495  *
2496  * Returns true if @parent is a possible parent for @clk, false otherwise.
2497  */
2498 bool clk_has_parent(struct clk *clk, struct clk *parent)
2499 {
2500 	struct clk_core *core, *parent_core;
2501 	int i;
2502 
2503 	/* NULL clocks should be nops, so return success if either is NULL. */
2504 	if (!clk || !parent)
2505 		return true;
2506 
2507 	core = clk->core;
2508 	parent_core = parent->core;
2509 
2510 	/* Optimize for the case where the parent is already the parent. */
2511 	if (core->parent == parent_core)
2512 		return true;
2513 
2514 	for (i = 0; i < core->num_parents; i++)
2515 		if (!strcmp(core->parents[i].name, parent_core->name))
2516 			return true;
2517 
2518 	return false;
2519 }
2520 EXPORT_SYMBOL_GPL(clk_has_parent);
2521 
2522 static int clk_core_set_parent_nolock(struct clk_core *core,
2523 				      struct clk_core *parent)
2524 {
2525 	int ret = 0;
2526 	int p_index = 0;
2527 	unsigned long p_rate = 0;
2528 
2529 	lockdep_assert_held(&prepare_lock);
2530 
2531 	if (!core)
2532 		return 0;
2533 
2534 	if (core->parent == parent)
2535 		return 0;
2536 
2537 	/* verify ops for multi-parent clks */
2538 	if (core->num_parents > 1 && !core->ops->set_parent)
2539 		return -EPERM;
2540 
2541 	/* check that we are allowed to re-parent if the clock is in use */
2542 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2543 		return -EBUSY;
2544 
2545 	if (clk_core_rate_is_protected(core))
2546 		return -EBUSY;
2547 
2548 	/* try finding the new parent index */
2549 	if (parent) {
2550 		p_index = clk_fetch_parent_index(core, parent);
2551 		if (p_index < 0) {
2552 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2553 					__func__, parent->name, core->name);
2554 			return p_index;
2555 		}
2556 		p_rate = parent->rate;
2557 	}
2558 
2559 	ret = clk_pm_runtime_get(core);
2560 	if (ret)
2561 		return ret;
2562 
2563 	/* propagate PRE_RATE_CHANGE notifications */
2564 	ret = __clk_speculate_rates(core, p_rate);
2565 
2566 	/* abort if a driver objects */
2567 	if (ret & NOTIFY_STOP_MASK)
2568 		goto runtime_put;
2569 
2570 	/* do the re-parent */
2571 	ret = __clk_set_parent(core, parent, p_index);
2572 
2573 	/* propagate rate an accuracy recalculation accordingly */
2574 	if (ret) {
2575 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2576 	} else {
2577 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2578 		__clk_recalc_accuracies(core);
2579 	}
2580 
2581 runtime_put:
2582 	clk_pm_runtime_put(core);
2583 
2584 	return ret;
2585 }
2586 
2587 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2588 {
2589 	return clk_core_set_parent_nolock(hw->core, parent->core);
2590 }
2591 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2592 
2593 /**
2594  * clk_set_parent - switch the parent of a mux clk
2595  * @clk: the mux clk whose input we are switching
2596  * @parent: the new input to clk
2597  *
2598  * Re-parent clk to use parent as its new input source.  If clk is in
2599  * prepared state, the clk will get enabled for the duration of this call. If
2600  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2601  * that, the reparenting is glitchy in hardware, etc), use the
2602  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2603  *
2604  * After successfully changing clk's parent clk_set_parent will update the
2605  * clk topology, sysfs topology and propagate rate recalculation via
2606  * __clk_recalc_rates.
2607  *
2608  * Returns 0 on success, -EERROR otherwise.
2609  */
2610 int clk_set_parent(struct clk *clk, struct clk *parent)
2611 {
2612 	int ret;
2613 
2614 	if (!clk)
2615 		return 0;
2616 
2617 	clk_prepare_lock();
2618 
2619 	if (clk->exclusive_count)
2620 		clk_core_rate_unprotect(clk->core);
2621 
2622 	ret = clk_core_set_parent_nolock(clk->core,
2623 					 parent ? parent->core : NULL);
2624 
2625 	if (clk->exclusive_count)
2626 		clk_core_rate_protect(clk->core);
2627 
2628 	clk_prepare_unlock();
2629 
2630 	return ret;
2631 }
2632 EXPORT_SYMBOL_GPL(clk_set_parent);
2633 
2634 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2635 {
2636 	int ret = -EINVAL;
2637 
2638 	lockdep_assert_held(&prepare_lock);
2639 
2640 	if (!core)
2641 		return 0;
2642 
2643 	if (clk_core_rate_is_protected(core))
2644 		return -EBUSY;
2645 
2646 	trace_clk_set_phase(core, degrees);
2647 
2648 	if (core->ops->set_phase) {
2649 		ret = core->ops->set_phase(core->hw, degrees);
2650 		if (!ret)
2651 			core->phase = degrees;
2652 	}
2653 
2654 	trace_clk_set_phase_complete(core, degrees);
2655 
2656 	return ret;
2657 }
2658 
2659 /**
2660  * clk_set_phase - adjust the phase shift of a clock signal
2661  * @clk: clock signal source
2662  * @degrees: number of degrees the signal is shifted
2663  *
2664  * Shifts the phase of a clock signal by the specified
2665  * degrees. Returns 0 on success, -EERROR otherwise.
2666  *
2667  * This function makes no distinction about the input or reference
2668  * signal that we adjust the clock signal phase against. For example
2669  * phase locked-loop clock signal generators we may shift phase with
2670  * respect to feedback clock signal input, but for other cases the
2671  * clock phase may be shifted with respect to some other, unspecified
2672  * signal.
2673  *
2674  * Additionally the concept of phase shift does not propagate through
2675  * the clock tree hierarchy, which sets it apart from clock rates and
2676  * clock accuracy. A parent clock phase attribute does not have an
2677  * impact on the phase attribute of a child clock.
2678  */
2679 int clk_set_phase(struct clk *clk, int degrees)
2680 {
2681 	int ret;
2682 
2683 	if (!clk)
2684 		return 0;
2685 
2686 	/* sanity check degrees */
2687 	degrees %= 360;
2688 	if (degrees < 0)
2689 		degrees += 360;
2690 
2691 	clk_prepare_lock();
2692 
2693 	if (clk->exclusive_count)
2694 		clk_core_rate_unprotect(clk->core);
2695 
2696 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2697 
2698 	if (clk->exclusive_count)
2699 		clk_core_rate_protect(clk->core);
2700 
2701 	clk_prepare_unlock();
2702 
2703 	return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(clk_set_phase);
2706 
2707 static int clk_core_get_phase(struct clk_core *core)
2708 {
2709 	int ret;
2710 
2711 	lockdep_assert_held(&prepare_lock);
2712 	if (!core->ops->get_phase)
2713 		return 0;
2714 
2715 	/* Always try to update cached phase if possible */
2716 	ret = core->ops->get_phase(core->hw);
2717 	if (ret >= 0)
2718 		core->phase = ret;
2719 
2720 	return ret;
2721 }
2722 
2723 /**
2724  * clk_get_phase - return the phase shift of a clock signal
2725  * @clk: clock signal source
2726  *
2727  * Returns the phase shift of a clock node in degrees, otherwise returns
2728  * -EERROR.
2729  */
2730 int clk_get_phase(struct clk *clk)
2731 {
2732 	int ret;
2733 
2734 	if (!clk)
2735 		return 0;
2736 
2737 	clk_prepare_lock();
2738 	ret = clk_core_get_phase(clk->core);
2739 	clk_prepare_unlock();
2740 
2741 	return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(clk_get_phase);
2744 
2745 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2746 {
2747 	/* Assume a default value of 50% */
2748 	core->duty.num = 1;
2749 	core->duty.den = 2;
2750 }
2751 
2752 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2753 
2754 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2755 {
2756 	struct clk_duty *duty = &core->duty;
2757 	int ret = 0;
2758 
2759 	if (!core->ops->get_duty_cycle)
2760 		return clk_core_update_duty_cycle_parent_nolock(core);
2761 
2762 	ret = core->ops->get_duty_cycle(core->hw, duty);
2763 	if (ret)
2764 		goto reset;
2765 
2766 	/* Don't trust the clock provider too much */
2767 	if (duty->den == 0 || duty->num > duty->den) {
2768 		ret = -EINVAL;
2769 		goto reset;
2770 	}
2771 
2772 	return 0;
2773 
2774 reset:
2775 	clk_core_reset_duty_cycle_nolock(core);
2776 	return ret;
2777 }
2778 
2779 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2780 {
2781 	int ret = 0;
2782 
2783 	if (core->parent &&
2784 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2785 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2786 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2787 	} else {
2788 		clk_core_reset_duty_cycle_nolock(core);
2789 	}
2790 
2791 	return ret;
2792 }
2793 
2794 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2795 						 struct clk_duty *duty);
2796 
2797 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2798 					  struct clk_duty *duty)
2799 {
2800 	int ret;
2801 
2802 	lockdep_assert_held(&prepare_lock);
2803 
2804 	if (clk_core_rate_is_protected(core))
2805 		return -EBUSY;
2806 
2807 	trace_clk_set_duty_cycle(core, duty);
2808 
2809 	if (!core->ops->set_duty_cycle)
2810 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2811 
2812 	ret = core->ops->set_duty_cycle(core->hw, duty);
2813 	if (!ret)
2814 		memcpy(&core->duty, duty, sizeof(*duty));
2815 
2816 	trace_clk_set_duty_cycle_complete(core, duty);
2817 
2818 	return ret;
2819 }
2820 
2821 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2822 						 struct clk_duty *duty)
2823 {
2824 	int ret = 0;
2825 
2826 	if (core->parent &&
2827 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2828 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2829 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2830 	}
2831 
2832 	return ret;
2833 }
2834 
2835 /**
2836  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2837  * @clk: clock signal source
2838  * @num: numerator of the duty cycle ratio to be applied
2839  * @den: denominator of the duty cycle ratio to be applied
2840  *
2841  * Apply the duty cycle ratio if the ratio is valid and the clock can
2842  * perform this operation
2843  *
2844  * Returns (0) on success, a negative errno otherwise.
2845  */
2846 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2847 {
2848 	int ret;
2849 	struct clk_duty duty;
2850 
2851 	if (!clk)
2852 		return 0;
2853 
2854 	/* sanity check the ratio */
2855 	if (den == 0 || num > den)
2856 		return -EINVAL;
2857 
2858 	duty.num = num;
2859 	duty.den = den;
2860 
2861 	clk_prepare_lock();
2862 
2863 	if (clk->exclusive_count)
2864 		clk_core_rate_unprotect(clk->core);
2865 
2866 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2867 
2868 	if (clk->exclusive_count)
2869 		clk_core_rate_protect(clk->core);
2870 
2871 	clk_prepare_unlock();
2872 
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2876 
2877 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2878 					  unsigned int scale)
2879 {
2880 	struct clk_duty *duty = &core->duty;
2881 	int ret;
2882 
2883 	clk_prepare_lock();
2884 
2885 	ret = clk_core_update_duty_cycle_nolock(core);
2886 	if (!ret)
2887 		ret = mult_frac(scale, duty->num, duty->den);
2888 
2889 	clk_prepare_unlock();
2890 
2891 	return ret;
2892 }
2893 
2894 /**
2895  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2896  * @clk: clock signal source
2897  * @scale: scaling factor to be applied to represent the ratio as an integer
2898  *
2899  * Returns the duty cycle ratio of a clock node multiplied by the provided
2900  * scaling factor, or negative errno on error.
2901  */
2902 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2903 {
2904 	if (!clk)
2905 		return 0;
2906 
2907 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2908 }
2909 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2910 
2911 /**
2912  * clk_is_match - check if two clk's point to the same hardware clock
2913  * @p: clk compared against q
2914  * @q: clk compared against p
2915  *
2916  * Returns true if the two struct clk pointers both point to the same hardware
2917  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2918  * share the same struct clk_core object.
2919  *
2920  * Returns false otherwise. Note that two NULL clks are treated as matching.
2921  */
2922 bool clk_is_match(const struct clk *p, const struct clk *q)
2923 {
2924 	/* trivial case: identical struct clk's or both NULL */
2925 	if (p == q)
2926 		return true;
2927 
2928 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2929 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2930 		if (p->core == q->core)
2931 			return true;
2932 
2933 	return false;
2934 }
2935 EXPORT_SYMBOL_GPL(clk_is_match);
2936 
2937 /***        debugfs support        ***/
2938 
2939 #ifdef CONFIG_DEBUG_FS
2940 #include <linux/debugfs.h>
2941 
2942 static struct dentry *rootdir;
2943 static int inited = 0;
2944 static DEFINE_MUTEX(clk_debug_lock);
2945 static HLIST_HEAD(clk_debug_list);
2946 
2947 static struct hlist_head *orphan_list[] = {
2948 	&clk_orphan_list,
2949 	NULL,
2950 };
2951 
2952 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2953 				 int level)
2954 {
2955 	int phase;
2956 
2957 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2958 		   level * 3 + 1, "",
2959 		   30 - level * 3, c->name,
2960 		   c->enable_count, c->prepare_count, c->protect_count,
2961 		   clk_core_get_rate_recalc(c),
2962 		   clk_core_get_accuracy_recalc(c));
2963 
2964 	phase = clk_core_get_phase(c);
2965 	if (phase >= 0)
2966 		seq_printf(s, "%5d", phase);
2967 	else
2968 		seq_puts(s, "-----");
2969 
2970 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2971 
2972 	if (c->ops->is_enabled)
2973 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2974 	else if (!c->ops->enable)
2975 		seq_printf(s, " %9c\n", 'Y');
2976 	else
2977 		seq_printf(s, " %9c\n", '?');
2978 }
2979 
2980 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2981 				     int level)
2982 {
2983 	struct clk_core *child;
2984 
2985 	clk_pm_runtime_get(c);
2986 	clk_summary_show_one(s, c, level);
2987 	clk_pm_runtime_put(c);
2988 
2989 	hlist_for_each_entry(child, &c->children, child_node)
2990 		clk_summary_show_subtree(s, child, level + 1);
2991 }
2992 
2993 static int clk_summary_show(struct seq_file *s, void *data)
2994 {
2995 	struct clk_core *c;
2996 	struct hlist_head **lists = (struct hlist_head **)s->private;
2997 
2998 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
2999 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3000 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3001 
3002 	clk_prepare_lock();
3003 
3004 	for (; *lists; lists++)
3005 		hlist_for_each_entry(c, *lists, child_node)
3006 			clk_summary_show_subtree(s, c, 0);
3007 
3008 	clk_prepare_unlock();
3009 
3010 	return 0;
3011 }
3012 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3013 
3014 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3015 {
3016 	int phase;
3017 	unsigned long min_rate, max_rate;
3018 
3019 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3020 
3021 	/* This should be JSON format, i.e. elements separated with a comma */
3022 	seq_printf(s, "\"%s\": { ", c->name);
3023 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3024 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3025 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3026 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3027 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3028 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3029 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3030 	phase = clk_core_get_phase(c);
3031 	if (phase >= 0)
3032 		seq_printf(s, "\"phase\": %d,", phase);
3033 	seq_printf(s, "\"duty_cycle\": %u",
3034 		   clk_core_get_scaled_duty_cycle(c, 100000));
3035 }
3036 
3037 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3038 {
3039 	struct clk_core *child;
3040 
3041 	clk_dump_one(s, c, level);
3042 
3043 	hlist_for_each_entry(child, &c->children, child_node) {
3044 		seq_putc(s, ',');
3045 		clk_dump_subtree(s, child, level + 1);
3046 	}
3047 
3048 	seq_putc(s, '}');
3049 }
3050 
3051 static int clk_dump_show(struct seq_file *s, void *data)
3052 {
3053 	struct clk_core *c;
3054 	bool first_node = true;
3055 	struct hlist_head **lists = (struct hlist_head **)s->private;
3056 
3057 	seq_putc(s, '{');
3058 	clk_prepare_lock();
3059 
3060 	for (; *lists; lists++) {
3061 		hlist_for_each_entry(c, *lists, child_node) {
3062 			if (!first_node)
3063 				seq_putc(s, ',');
3064 			first_node = false;
3065 			clk_dump_subtree(s, c, 0);
3066 		}
3067 	}
3068 
3069 	clk_prepare_unlock();
3070 
3071 	seq_puts(s, "}\n");
3072 	return 0;
3073 }
3074 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3075 
3076 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3077 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3078 /*
3079  * This can be dangerous, therefore don't provide any real compile time
3080  * configuration option for this feature.
3081  * People who want to use this will need to modify the source code directly.
3082  */
3083 static int clk_rate_set(void *data, u64 val)
3084 {
3085 	struct clk_core *core = data;
3086 	int ret;
3087 
3088 	clk_prepare_lock();
3089 	ret = clk_core_set_rate_nolock(core, val);
3090 	clk_prepare_unlock();
3091 
3092 	return ret;
3093 }
3094 
3095 #define clk_rate_mode	0644
3096 
3097 static int clk_prepare_enable_set(void *data, u64 val)
3098 {
3099 	struct clk_core *core = data;
3100 	int ret = 0;
3101 
3102 	if (val)
3103 		ret = clk_prepare_enable(core->hw->clk);
3104 	else
3105 		clk_disable_unprepare(core->hw->clk);
3106 
3107 	return ret;
3108 }
3109 
3110 static int clk_prepare_enable_get(void *data, u64 *val)
3111 {
3112 	struct clk_core *core = data;
3113 
3114 	*val = core->enable_count && core->prepare_count;
3115 	return 0;
3116 }
3117 
3118 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3119 			 clk_prepare_enable_set, "%llu\n");
3120 
3121 #else
3122 #define clk_rate_set	NULL
3123 #define clk_rate_mode	0444
3124 #endif
3125 
3126 static int clk_rate_get(void *data, u64 *val)
3127 {
3128 	struct clk_core *core = data;
3129 
3130 	clk_prepare_lock();
3131 	*val = clk_core_get_rate_recalc(core);
3132 	clk_prepare_unlock();
3133 
3134 	return 0;
3135 }
3136 
3137 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3138 
3139 static const struct {
3140 	unsigned long flag;
3141 	const char *name;
3142 } clk_flags[] = {
3143 #define ENTRY(f) { f, #f }
3144 	ENTRY(CLK_SET_RATE_GATE),
3145 	ENTRY(CLK_SET_PARENT_GATE),
3146 	ENTRY(CLK_SET_RATE_PARENT),
3147 	ENTRY(CLK_IGNORE_UNUSED),
3148 	ENTRY(CLK_GET_RATE_NOCACHE),
3149 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3150 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3151 	ENTRY(CLK_RECALC_NEW_RATES),
3152 	ENTRY(CLK_SET_RATE_UNGATE),
3153 	ENTRY(CLK_IS_CRITICAL),
3154 	ENTRY(CLK_OPS_PARENT_ENABLE),
3155 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3156 #undef ENTRY
3157 };
3158 
3159 static int clk_flags_show(struct seq_file *s, void *data)
3160 {
3161 	struct clk_core *core = s->private;
3162 	unsigned long flags = core->flags;
3163 	unsigned int i;
3164 
3165 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3166 		if (flags & clk_flags[i].flag) {
3167 			seq_printf(s, "%s\n", clk_flags[i].name);
3168 			flags &= ~clk_flags[i].flag;
3169 		}
3170 	}
3171 	if (flags) {
3172 		/* Unknown flags */
3173 		seq_printf(s, "0x%lx\n", flags);
3174 	}
3175 
3176 	return 0;
3177 }
3178 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3179 
3180 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3181 				 unsigned int i, char terminator)
3182 {
3183 	struct clk_core *parent;
3184 
3185 	/*
3186 	 * Go through the following options to fetch a parent's name.
3187 	 *
3188 	 * 1. Fetch the registered parent clock and use its name
3189 	 * 2. Use the global (fallback) name if specified
3190 	 * 3. Use the local fw_name if provided
3191 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3192 	 *
3193 	 * This may still fail in some cases, such as when the parent is
3194 	 * specified directly via a struct clk_hw pointer, but it isn't
3195 	 * registered (yet).
3196 	 */
3197 	parent = clk_core_get_parent_by_index(core, i);
3198 	if (parent)
3199 		seq_puts(s, parent->name);
3200 	else if (core->parents[i].name)
3201 		seq_puts(s, core->parents[i].name);
3202 	else if (core->parents[i].fw_name)
3203 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3204 	else if (core->parents[i].index >= 0)
3205 		seq_puts(s,
3206 			 of_clk_get_parent_name(core->of_node,
3207 						core->parents[i].index));
3208 	else
3209 		seq_puts(s, "(missing)");
3210 
3211 	seq_putc(s, terminator);
3212 }
3213 
3214 static int possible_parents_show(struct seq_file *s, void *data)
3215 {
3216 	struct clk_core *core = s->private;
3217 	int i;
3218 
3219 	for (i = 0; i < core->num_parents - 1; i++)
3220 		possible_parent_show(s, core, i, ' ');
3221 
3222 	possible_parent_show(s, core, i, '\n');
3223 
3224 	return 0;
3225 }
3226 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3227 
3228 static int current_parent_show(struct seq_file *s, void *data)
3229 {
3230 	struct clk_core *core = s->private;
3231 
3232 	if (core->parent)
3233 		seq_printf(s, "%s\n", core->parent->name);
3234 
3235 	return 0;
3236 }
3237 DEFINE_SHOW_ATTRIBUTE(current_parent);
3238 
3239 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3240 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3241 				    size_t count, loff_t *ppos)
3242 {
3243 	struct seq_file *s = file->private_data;
3244 	struct clk_core *core = s->private;
3245 	struct clk_core *parent;
3246 	u8 idx;
3247 	int err;
3248 
3249 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3250 	if (err < 0)
3251 		return err;
3252 
3253 	parent = clk_core_get_parent_by_index(core, idx);
3254 	if (!parent)
3255 		return -ENOENT;
3256 
3257 	clk_prepare_lock();
3258 	err = clk_core_set_parent_nolock(core, parent);
3259 	clk_prepare_unlock();
3260 	if (err)
3261 		return err;
3262 
3263 	return count;
3264 }
3265 
3266 static const struct file_operations current_parent_rw_fops = {
3267 	.open		= current_parent_open,
3268 	.write		= current_parent_write,
3269 	.read		= seq_read,
3270 	.llseek		= seq_lseek,
3271 	.release	= single_release,
3272 };
3273 #endif
3274 
3275 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3276 {
3277 	struct clk_core *core = s->private;
3278 	struct clk_duty *duty = &core->duty;
3279 
3280 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3281 
3282 	return 0;
3283 }
3284 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3285 
3286 static int clk_min_rate_show(struct seq_file *s, void *data)
3287 {
3288 	struct clk_core *core = s->private;
3289 	unsigned long min_rate, max_rate;
3290 
3291 	clk_prepare_lock();
3292 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3293 	clk_prepare_unlock();
3294 	seq_printf(s, "%lu\n", min_rate);
3295 
3296 	return 0;
3297 }
3298 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3299 
3300 static int clk_max_rate_show(struct seq_file *s, void *data)
3301 {
3302 	struct clk_core *core = s->private;
3303 	unsigned long min_rate, max_rate;
3304 
3305 	clk_prepare_lock();
3306 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3307 	clk_prepare_unlock();
3308 	seq_printf(s, "%lu\n", max_rate);
3309 
3310 	return 0;
3311 }
3312 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3313 
3314 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3315 {
3316 	struct dentry *root;
3317 
3318 	if (!core || !pdentry)
3319 		return;
3320 
3321 	root = debugfs_create_dir(core->name, pdentry);
3322 	core->dentry = root;
3323 
3324 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3325 			    &clk_rate_fops);
3326 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3327 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3328 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3329 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3330 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3331 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3332 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3333 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3334 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3335 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3336 			    &clk_duty_cycle_fops);
3337 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3338 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3339 			    &clk_prepare_enable_fops);
3340 
3341 	if (core->num_parents > 1)
3342 		debugfs_create_file("clk_parent", 0644, root, core,
3343 				    &current_parent_rw_fops);
3344 	else
3345 #endif
3346 	if (core->num_parents > 0)
3347 		debugfs_create_file("clk_parent", 0444, root, core,
3348 				    &current_parent_fops);
3349 
3350 	if (core->num_parents > 1)
3351 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3352 				    &possible_parents_fops);
3353 
3354 	if (core->ops->debug_init)
3355 		core->ops->debug_init(core->hw, core->dentry);
3356 }
3357 
3358 /**
3359  * clk_debug_register - add a clk node to the debugfs clk directory
3360  * @core: the clk being added to the debugfs clk directory
3361  *
3362  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3363  * initialized.  Otherwise it bails out early since the debugfs clk directory
3364  * will be created lazily by clk_debug_init as part of a late_initcall.
3365  */
3366 static void clk_debug_register(struct clk_core *core)
3367 {
3368 	mutex_lock(&clk_debug_lock);
3369 	hlist_add_head(&core->debug_node, &clk_debug_list);
3370 	if (inited)
3371 		clk_debug_create_one(core, rootdir);
3372 	mutex_unlock(&clk_debug_lock);
3373 }
3374 
3375  /**
3376  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3377  * @core: the clk being removed from the debugfs clk directory
3378  *
3379  * Dynamically removes a clk and all its child nodes from the
3380  * debugfs clk directory if clk->dentry points to debugfs created by
3381  * clk_debug_register in __clk_core_init.
3382  */
3383 static void clk_debug_unregister(struct clk_core *core)
3384 {
3385 	mutex_lock(&clk_debug_lock);
3386 	hlist_del_init(&core->debug_node);
3387 	debugfs_remove_recursive(core->dentry);
3388 	core->dentry = NULL;
3389 	mutex_unlock(&clk_debug_lock);
3390 }
3391 
3392 /**
3393  * clk_debug_init - lazily populate the debugfs clk directory
3394  *
3395  * clks are often initialized very early during boot before memory can be
3396  * dynamically allocated and well before debugfs is setup. This function
3397  * populates the debugfs clk directory once at boot-time when we know that
3398  * debugfs is setup. It should only be called once at boot-time, all other clks
3399  * added dynamically will be done so with clk_debug_register.
3400  */
3401 static int __init clk_debug_init(void)
3402 {
3403 	struct clk_core *core;
3404 
3405 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3406 	pr_warn("\n");
3407 	pr_warn("********************************************************************\n");
3408 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3409 	pr_warn("**                                                                **\n");
3410 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3411 	pr_warn("**                                                                **\n");
3412 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3413 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3414 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3415 	pr_warn("**                                                                **\n");
3416 	pr_warn("** If you see this message and you are not debugging the          **\n");
3417 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3418 	pr_warn("**                                                                **\n");
3419 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3420 	pr_warn("********************************************************************\n");
3421 #endif
3422 
3423 	rootdir = debugfs_create_dir("clk", NULL);
3424 
3425 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3426 			    &clk_summary_fops);
3427 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3428 			    &clk_dump_fops);
3429 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3430 			    &clk_summary_fops);
3431 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3432 			    &clk_dump_fops);
3433 
3434 	mutex_lock(&clk_debug_lock);
3435 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3436 		clk_debug_create_one(core, rootdir);
3437 
3438 	inited = 1;
3439 	mutex_unlock(&clk_debug_lock);
3440 
3441 	return 0;
3442 }
3443 late_initcall(clk_debug_init);
3444 #else
3445 static inline void clk_debug_register(struct clk_core *core) { }
3446 static inline void clk_debug_unregister(struct clk_core *core)
3447 {
3448 }
3449 #endif
3450 
3451 static void clk_core_reparent_orphans_nolock(void)
3452 {
3453 	struct clk_core *orphan;
3454 	struct hlist_node *tmp2;
3455 
3456 	/*
3457 	 * walk the list of orphan clocks and reparent any that newly finds a
3458 	 * parent.
3459 	 */
3460 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3461 		struct clk_core *parent = __clk_init_parent(orphan);
3462 
3463 		/*
3464 		 * We need to use __clk_set_parent_before() and _after() to
3465 		 * to properly migrate any prepare/enable count of the orphan
3466 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3467 		 * are enabled during init but might not have a parent yet.
3468 		 */
3469 		if (parent) {
3470 			/* update the clk tree topology */
3471 			__clk_set_parent_before(orphan, parent);
3472 			__clk_set_parent_after(orphan, parent, NULL);
3473 			__clk_recalc_accuracies(orphan);
3474 			__clk_recalc_rates(orphan, 0);
3475 
3476 			/*
3477 			 * __clk_init_parent() will set the initial req_rate to
3478 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3479 			 * is an orphan when it's registered.
3480 			 *
3481 			 * 'req_rate' is used by clk_set_rate_range() and
3482 			 * clk_put() to trigger a clk_set_rate() call whenever
3483 			 * the boundaries are modified. Let's make sure
3484 			 * 'req_rate' is set to something non-zero so that
3485 			 * clk_set_rate_range() doesn't drop the frequency.
3486 			 */
3487 			orphan->req_rate = orphan->rate;
3488 		}
3489 	}
3490 }
3491 
3492 /**
3493  * __clk_core_init - initialize the data structures in a struct clk_core
3494  * @core:	clk_core being initialized
3495  *
3496  * Initializes the lists in struct clk_core, queries the hardware for the
3497  * parent and rate and sets them both.
3498  */
3499 static int __clk_core_init(struct clk_core *core)
3500 {
3501 	int ret;
3502 	struct clk_core *parent;
3503 	unsigned long rate;
3504 	int phase;
3505 
3506 	clk_prepare_lock();
3507 
3508 	/*
3509 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3510 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3511 	 * being NULL as the clk not being registered yet. This is crucial so
3512 	 * that clks aren't parented until their parent is fully registered.
3513 	 */
3514 	core->hw->core = core;
3515 
3516 	ret = clk_pm_runtime_get(core);
3517 	if (ret)
3518 		goto unlock;
3519 
3520 	/* check to see if a clock with this name is already registered */
3521 	if (clk_core_lookup(core->name)) {
3522 		pr_debug("%s: clk %s already initialized\n",
3523 				__func__, core->name);
3524 		ret = -EEXIST;
3525 		goto out;
3526 	}
3527 
3528 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3529 	if (core->ops->set_rate &&
3530 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3531 	      core->ops->recalc_rate)) {
3532 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3533 		       __func__, core->name);
3534 		ret = -EINVAL;
3535 		goto out;
3536 	}
3537 
3538 	if (core->ops->set_parent && !core->ops->get_parent) {
3539 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3540 		       __func__, core->name);
3541 		ret = -EINVAL;
3542 		goto out;
3543 	}
3544 
3545 	if (core->num_parents > 1 && !core->ops->get_parent) {
3546 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3547 		       __func__, core->name);
3548 		ret = -EINVAL;
3549 		goto out;
3550 	}
3551 
3552 	if (core->ops->set_rate_and_parent &&
3553 			!(core->ops->set_parent && core->ops->set_rate)) {
3554 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3555 				__func__, core->name);
3556 		ret = -EINVAL;
3557 		goto out;
3558 	}
3559 
3560 	/*
3561 	 * optional platform-specific magic
3562 	 *
3563 	 * The .init callback is not used by any of the basic clock types, but
3564 	 * exists for weird hardware that must perform initialization magic for
3565 	 * CCF to get an accurate view of clock for any other callbacks. It may
3566 	 * also be used needs to perform dynamic allocations. Such allocation
3567 	 * must be freed in the terminate() callback.
3568 	 * This callback shall not be used to initialize the parameters state,
3569 	 * such as rate, parent, etc ...
3570 	 *
3571 	 * If it exist, this callback should called before any other callback of
3572 	 * the clock
3573 	 */
3574 	if (core->ops->init) {
3575 		ret = core->ops->init(core->hw);
3576 		if (ret)
3577 			goto out;
3578 	}
3579 
3580 	parent = core->parent = __clk_init_parent(core);
3581 
3582 	/*
3583 	 * Populate core->parent if parent has already been clk_core_init'd. If
3584 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3585 	 * list.  If clk doesn't have any parents then place it in the root
3586 	 * clk list.
3587 	 *
3588 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3589 	 * clocks and re-parent any that are children of the clock currently
3590 	 * being clk_init'd.
3591 	 */
3592 	if (parent) {
3593 		hlist_add_head(&core->child_node, &parent->children);
3594 		core->orphan = parent->orphan;
3595 	} else if (!core->num_parents) {
3596 		hlist_add_head(&core->child_node, &clk_root_list);
3597 		core->orphan = false;
3598 	} else {
3599 		hlist_add_head(&core->child_node, &clk_orphan_list);
3600 		core->orphan = true;
3601 	}
3602 
3603 	/*
3604 	 * Set clk's accuracy.  The preferred method is to use
3605 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3606 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3607 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3608 	 * clock).
3609 	 */
3610 	if (core->ops->recalc_accuracy)
3611 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3612 					clk_core_get_accuracy_no_lock(parent));
3613 	else if (parent)
3614 		core->accuracy = parent->accuracy;
3615 	else
3616 		core->accuracy = 0;
3617 
3618 	/*
3619 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3620 	 * Since a phase is by definition relative to its parent, just
3621 	 * query the current clock phase, or just assume it's in phase.
3622 	 */
3623 	phase = clk_core_get_phase(core);
3624 	if (phase < 0) {
3625 		ret = phase;
3626 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3627 			core->name);
3628 		goto out;
3629 	}
3630 
3631 	/*
3632 	 * Set clk's duty cycle.
3633 	 */
3634 	clk_core_update_duty_cycle_nolock(core);
3635 
3636 	/*
3637 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3638 	 * simple clocks and lazy developers the default fallback is to use the
3639 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3640 	 * then rate is set to zero.
3641 	 */
3642 	if (core->ops->recalc_rate)
3643 		rate = core->ops->recalc_rate(core->hw,
3644 				clk_core_get_rate_nolock(parent));
3645 	else if (parent)
3646 		rate = parent->rate;
3647 	else
3648 		rate = 0;
3649 	core->rate = core->req_rate = rate;
3650 
3651 	/*
3652 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3653 	 * don't get accidentally disabled when walking the orphan tree and
3654 	 * reparenting clocks
3655 	 */
3656 	if (core->flags & CLK_IS_CRITICAL) {
3657 		ret = clk_core_prepare(core);
3658 		if (ret) {
3659 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3660 			       __func__, core->name);
3661 			goto out;
3662 		}
3663 
3664 		ret = clk_core_enable_lock(core);
3665 		if (ret) {
3666 			pr_warn("%s: critical clk '%s' failed to enable\n",
3667 			       __func__, core->name);
3668 			clk_core_unprepare(core);
3669 			goto out;
3670 		}
3671 	}
3672 
3673 	clk_core_reparent_orphans_nolock();
3674 
3675 
3676 	kref_init(&core->ref);
3677 out:
3678 	clk_pm_runtime_put(core);
3679 unlock:
3680 	if (ret) {
3681 		hlist_del_init(&core->child_node);
3682 		core->hw->core = NULL;
3683 	}
3684 
3685 	clk_prepare_unlock();
3686 
3687 	if (!ret)
3688 		clk_debug_register(core);
3689 
3690 	return ret;
3691 }
3692 
3693 /**
3694  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3695  * @core: clk to add consumer to
3696  * @clk: consumer to link to a clk
3697  */
3698 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3699 {
3700 	clk_prepare_lock();
3701 	hlist_add_head(&clk->clks_node, &core->clks);
3702 	clk_prepare_unlock();
3703 }
3704 
3705 /**
3706  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3707  * @clk: consumer to unlink
3708  */
3709 static void clk_core_unlink_consumer(struct clk *clk)
3710 {
3711 	lockdep_assert_held(&prepare_lock);
3712 	hlist_del(&clk->clks_node);
3713 }
3714 
3715 /**
3716  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3717  * @core: clk to allocate a consumer for
3718  * @dev_id: string describing device name
3719  * @con_id: connection ID string on device
3720  *
3721  * Returns: clk consumer left unlinked from the consumer list
3722  */
3723 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3724 			     const char *con_id)
3725 {
3726 	struct clk *clk;
3727 
3728 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3729 	if (!clk)
3730 		return ERR_PTR(-ENOMEM);
3731 
3732 	clk->core = core;
3733 	clk->dev_id = dev_id;
3734 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3735 	clk->max_rate = ULONG_MAX;
3736 
3737 	return clk;
3738 }
3739 
3740 /**
3741  * free_clk - Free a clk consumer
3742  * @clk: clk consumer to free
3743  *
3744  * Note, this assumes the clk has been unlinked from the clk_core consumer
3745  * list.
3746  */
3747 static void free_clk(struct clk *clk)
3748 {
3749 	kfree_const(clk->con_id);
3750 	kfree(clk);
3751 }
3752 
3753 /**
3754  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3755  * a clk_hw
3756  * @dev: clk consumer device
3757  * @hw: clk_hw associated with the clk being consumed
3758  * @dev_id: string describing device name
3759  * @con_id: connection ID string on device
3760  *
3761  * This is the main function used to create a clk pointer for use by clk
3762  * consumers. It connects a consumer to the clk_core and clk_hw structures
3763  * used by the framework and clk provider respectively.
3764  */
3765 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3766 			      const char *dev_id, const char *con_id)
3767 {
3768 	struct clk *clk;
3769 	struct clk_core *core;
3770 
3771 	/* This is to allow this function to be chained to others */
3772 	if (IS_ERR_OR_NULL(hw))
3773 		return ERR_CAST(hw);
3774 
3775 	core = hw->core;
3776 	clk = alloc_clk(core, dev_id, con_id);
3777 	if (IS_ERR(clk))
3778 		return clk;
3779 	clk->dev = dev;
3780 
3781 	if (!try_module_get(core->owner)) {
3782 		free_clk(clk);
3783 		return ERR_PTR(-ENOENT);
3784 	}
3785 
3786 	kref_get(&core->ref);
3787 	clk_core_link_consumer(core, clk);
3788 
3789 	return clk;
3790 }
3791 
3792 /**
3793  * clk_hw_get_clk - get clk consumer given an clk_hw
3794  * @hw: clk_hw associated with the clk being consumed
3795  * @con_id: connection ID string on device
3796  *
3797  * Returns: new clk consumer
3798  * This is the function to be used by providers which need
3799  * to get a consumer clk and act on the clock element
3800  * Calls to this function must be balanced with calls clk_put()
3801  */
3802 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3803 {
3804 	struct device *dev = hw->core->dev;
3805 	const char *name = dev ? dev_name(dev) : NULL;
3806 
3807 	return clk_hw_create_clk(dev, hw, name, con_id);
3808 }
3809 EXPORT_SYMBOL(clk_hw_get_clk);
3810 
3811 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3812 {
3813 	const char *dst;
3814 
3815 	if (!src) {
3816 		if (must_exist)
3817 			return -EINVAL;
3818 		return 0;
3819 	}
3820 
3821 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3822 	if (!dst)
3823 		return -ENOMEM;
3824 
3825 	return 0;
3826 }
3827 
3828 static int clk_core_populate_parent_map(struct clk_core *core,
3829 					const struct clk_init_data *init)
3830 {
3831 	u8 num_parents = init->num_parents;
3832 	const char * const *parent_names = init->parent_names;
3833 	const struct clk_hw **parent_hws = init->parent_hws;
3834 	const struct clk_parent_data *parent_data = init->parent_data;
3835 	int i, ret = 0;
3836 	struct clk_parent_map *parents, *parent;
3837 
3838 	if (!num_parents)
3839 		return 0;
3840 
3841 	/*
3842 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3843 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3844 	 */
3845 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3846 	core->parents = parents;
3847 	if (!parents)
3848 		return -ENOMEM;
3849 
3850 	/* Copy everything over because it might be __initdata */
3851 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3852 		parent->index = -1;
3853 		if (parent_names) {
3854 			/* throw a WARN if any entries are NULL */
3855 			WARN(!parent_names[i],
3856 				"%s: invalid NULL in %s's .parent_names\n",
3857 				__func__, core->name);
3858 			ret = clk_cpy_name(&parent->name, parent_names[i],
3859 					   true);
3860 		} else if (parent_data) {
3861 			parent->hw = parent_data[i].hw;
3862 			parent->index = parent_data[i].index;
3863 			ret = clk_cpy_name(&parent->fw_name,
3864 					   parent_data[i].fw_name, false);
3865 			if (!ret)
3866 				ret = clk_cpy_name(&parent->name,
3867 						   parent_data[i].name,
3868 						   false);
3869 		} else if (parent_hws) {
3870 			parent->hw = parent_hws[i];
3871 		} else {
3872 			ret = -EINVAL;
3873 			WARN(1, "Must specify parents if num_parents > 0\n");
3874 		}
3875 
3876 		if (ret) {
3877 			do {
3878 				kfree_const(parents[i].name);
3879 				kfree_const(parents[i].fw_name);
3880 			} while (--i >= 0);
3881 			kfree(parents);
3882 
3883 			return ret;
3884 		}
3885 	}
3886 
3887 	return 0;
3888 }
3889 
3890 static void clk_core_free_parent_map(struct clk_core *core)
3891 {
3892 	int i = core->num_parents;
3893 
3894 	if (!core->num_parents)
3895 		return;
3896 
3897 	while (--i >= 0) {
3898 		kfree_const(core->parents[i].name);
3899 		kfree_const(core->parents[i].fw_name);
3900 	}
3901 
3902 	kfree(core->parents);
3903 }
3904 
3905 static struct clk *
3906 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3907 {
3908 	int ret;
3909 	struct clk_core *core;
3910 	const struct clk_init_data *init = hw->init;
3911 
3912 	/*
3913 	 * The init data is not supposed to be used outside of registration path.
3914 	 * Set it to NULL so that provider drivers can't use it either and so that
3915 	 * we catch use of hw->init early on in the core.
3916 	 */
3917 	hw->init = NULL;
3918 
3919 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3920 	if (!core) {
3921 		ret = -ENOMEM;
3922 		goto fail_out;
3923 	}
3924 
3925 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3926 	if (!core->name) {
3927 		ret = -ENOMEM;
3928 		goto fail_name;
3929 	}
3930 
3931 	if (WARN_ON(!init->ops)) {
3932 		ret = -EINVAL;
3933 		goto fail_ops;
3934 	}
3935 	core->ops = init->ops;
3936 
3937 	if (dev && pm_runtime_enabled(dev))
3938 		core->rpm_enabled = true;
3939 	core->dev = dev;
3940 	core->of_node = np;
3941 	if (dev && dev->driver)
3942 		core->owner = dev->driver->owner;
3943 	core->hw = hw;
3944 	core->flags = init->flags;
3945 	core->num_parents = init->num_parents;
3946 	core->min_rate = 0;
3947 	core->max_rate = ULONG_MAX;
3948 
3949 	ret = clk_core_populate_parent_map(core, init);
3950 	if (ret)
3951 		goto fail_parents;
3952 
3953 	INIT_HLIST_HEAD(&core->clks);
3954 
3955 	/*
3956 	 * Don't call clk_hw_create_clk() here because that would pin the
3957 	 * provider module to itself and prevent it from ever being removed.
3958 	 */
3959 	hw->clk = alloc_clk(core, NULL, NULL);
3960 	if (IS_ERR(hw->clk)) {
3961 		ret = PTR_ERR(hw->clk);
3962 		goto fail_create_clk;
3963 	}
3964 
3965 	clk_core_link_consumer(core, hw->clk);
3966 
3967 	ret = __clk_core_init(core);
3968 	if (!ret)
3969 		return hw->clk;
3970 
3971 	clk_prepare_lock();
3972 	clk_core_unlink_consumer(hw->clk);
3973 	clk_prepare_unlock();
3974 
3975 	free_clk(hw->clk);
3976 	hw->clk = NULL;
3977 
3978 fail_create_clk:
3979 	clk_core_free_parent_map(core);
3980 fail_parents:
3981 fail_ops:
3982 	kfree_const(core->name);
3983 fail_name:
3984 	kfree(core);
3985 fail_out:
3986 	return ERR_PTR(ret);
3987 }
3988 
3989 /**
3990  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3991  * @dev: Device to get device node of
3992  *
3993  * Return: device node pointer of @dev, or the device node pointer of
3994  * @dev->parent if dev doesn't have a device node, or NULL if neither
3995  * @dev or @dev->parent have a device node.
3996  */
3997 static struct device_node *dev_or_parent_of_node(struct device *dev)
3998 {
3999 	struct device_node *np;
4000 
4001 	if (!dev)
4002 		return NULL;
4003 
4004 	np = dev_of_node(dev);
4005 	if (!np)
4006 		np = dev_of_node(dev->parent);
4007 
4008 	return np;
4009 }
4010 
4011 /**
4012  * clk_register - allocate a new clock, register it and return an opaque cookie
4013  * @dev: device that is registering this clock
4014  * @hw: link to hardware-specific clock data
4015  *
4016  * clk_register is the *deprecated* interface for populating the clock tree with
4017  * new clock nodes. Use clk_hw_register() instead.
4018  *
4019  * Returns: a pointer to the newly allocated struct clk which
4020  * cannot be dereferenced by driver code but may be used in conjunction with the
4021  * rest of the clock API.  In the event of an error clk_register will return an
4022  * error code; drivers must test for an error code after calling clk_register.
4023  */
4024 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4025 {
4026 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4027 }
4028 EXPORT_SYMBOL_GPL(clk_register);
4029 
4030 /**
4031  * clk_hw_register - register a clk_hw and return an error code
4032  * @dev: device that is registering this clock
4033  * @hw: link to hardware-specific clock data
4034  *
4035  * clk_hw_register is the primary interface for populating the clock tree with
4036  * new clock nodes. It returns an integer equal to zero indicating success or
4037  * less than zero indicating failure. Drivers must test for an error code after
4038  * calling clk_hw_register().
4039  */
4040 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4041 {
4042 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4043 			       hw));
4044 }
4045 EXPORT_SYMBOL_GPL(clk_hw_register);
4046 
4047 /*
4048  * of_clk_hw_register - register a clk_hw and return an error code
4049  * @node: device_node of device that is registering this clock
4050  * @hw: link to hardware-specific clock data
4051  *
4052  * of_clk_hw_register() is the primary interface for populating the clock tree
4053  * with new clock nodes when a struct device is not available, but a struct
4054  * device_node is. It returns an integer equal to zero indicating success or
4055  * less than zero indicating failure. Drivers must test for an error code after
4056  * calling of_clk_hw_register().
4057  */
4058 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4059 {
4060 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4061 }
4062 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4063 
4064 /* Free memory allocated for a clock. */
4065 static void __clk_release(struct kref *ref)
4066 {
4067 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4068 
4069 	lockdep_assert_held(&prepare_lock);
4070 
4071 	clk_core_free_parent_map(core);
4072 	kfree_const(core->name);
4073 	kfree(core);
4074 }
4075 
4076 /*
4077  * Empty clk_ops for unregistered clocks. These are used temporarily
4078  * after clk_unregister() was called on a clock and until last clock
4079  * consumer calls clk_put() and the struct clk object is freed.
4080  */
4081 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4082 {
4083 	return -ENXIO;
4084 }
4085 
4086 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4087 {
4088 	WARN_ON_ONCE(1);
4089 }
4090 
4091 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4092 					unsigned long parent_rate)
4093 {
4094 	return -ENXIO;
4095 }
4096 
4097 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4098 {
4099 	return -ENXIO;
4100 }
4101 
4102 static const struct clk_ops clk_nodrv_ops = {
4103 	.enable		= clk_nodrv_prepare_enable,
4104 	.disable	= clk_nodrv_disable_unprepare,
4105 	.prepare	= clk_nodrv_prepare_enable,
4106 	.unprepare	= clk_nodrv_disable_unprepare,
4107 	.set_rate	= clk_nodrv_set_rate,
4108 	.set_parent	= clk_nodrv_set_parent,
4109 };
4110 
4111 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4112 						const struct clk_core *target)
4113 {
4114 	int i;
4115 	struct clk_core *child;
4116 
4117 	for (i = 0; i < root->num_parents; i++)
4118 		if (root->parents[i].core == target)
4119 			root->parents[i].core = NULL;
4120 
4121 	hlist_for_each_entry(child, &root->children, child_node)
4122 		clk_core_evict_parent_cache_subtree(child, target);
4123 }
4124 
4125 /* Remove this clk from all parent caches */
4126 static void clk_core_evict_parent_cache(struct clk_core *core)
4127 {
4128 	const struct hlist_head **lists;
4129 	struct clk_core *root;
4130 
4131 	lockdep_assert_held(&prepare_lock);
4132 
4133 	for (lists = all_lists; *lists; lists++)
4134 		hlist_for_each_entry(root, *lists, child_node)
4135 			clk_core_evict_parent_cache_subtree(root, core);
4136 
4137 }
4138 
4139 /**
4140  * clk_unregister - unregister a currently registered clock
4141  * @clk: clock to unregister
4142  */
4143 void clk_unregister(struct clk *clk)
4144 {
4145 	unsigned long flags;
4146 	const struct clk_ops *ops;
4147 
4148 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4149 		return;
4150 
4151 	clk_debug_unregister(clk->core);
4152 
4153 	clk_prepare_lock();
4154 
4155 	ops = clk->core->ops;
4156 	if (ops == &clk_nodrv_ops) {
4157 		pr_err("%s: unregistered clock: %s\n", __func__,
4158 		       clk->core->name);
4159 		goto unlock;
4160 	}
4161 	/*
4162 	 * Assign empty clock ops for consumers that might still hold
4163 	 * a reference to this clock.
4164 	 */
4165 	flags = clk_enable_lock();
4166 	clk->core->ops = &clk_nodrv_ops;
4167 	clk_enable_unlock(flags);
4168 
4169 	if (ops->terminate)
4170 		ops->terminate(clk->core->hw);
4171 
4172 	if (!hlist_empty(&clk->core->children)) {
4173 		struct clk_core *child;
4174 		struct hlist_node *t;
4175 
4176 		/* Reparent all children to the orphan list. */
4177 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4178 					  child_node)
4179 			clk_core_set_parent_nolock(child, NULL);
4180 	}
4181 
4182 	clk_core_evict_parent_cache(clk->core);
4183 
4184 	hlist_del_init(&clk->core->child_node);
4185 
4186 	if (clk->core->prepare_count)
4187 		pr_warn("%s: unregistering prepared clock: %s\n",
4188 					__func__, clk->core->name);
4189 
4190 	if (clk->core->protect_count)
4191 		pr_warn("%s: unregistering protected clock: %s\n",
4192 					__func__, clk->core->name);
4193 
4194 	kref_put(&clk->core->ref, __clk_release);
4195 	free_clk(clk);
4196 unlock:
4197 	clk_prepare_unlock();
4198 }
4199 EXPORT_SYMBOL_GPL(clk_unregister);
4200 
4201 /**
4202  * clk_hw_unregister - unregister a currently registered clk_hw
4203  * @hw: hardware-specific clock data to unregister
4204  */
4205 void clk_hw_unregister(struct clk_hw *hw)
4206 {
4207 	clk_unregister(hw->clk);
4208 }
4209 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4210 
4211 static void devm_clk_unregister_cb(struct device *dev, void *res)
4212 {
4213 	clk_unregister(*(struct clk **)res);
4214 }
4215 
4216 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4217 {
4218 	clk_hw_unregister(*(struct clk_hw **)res);
4219 }
4220 
4221 /**
4222  * devm_clk_register - resource managed clk_register()
4223  * @dev: device that is registering this clock
4224  * @hw: link to hardware-specific clock data
4225  *
4226  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4227  *
4228  * Clocks returned from this function are automatically clk_unregister()ed on
4229  * driver detach. See clk_register() for more information.
4230  */
4231 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4232 {
4233 	struct clk *clk;
4234 	struct clk **clkp;
4235 
4236 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4237 	if (!clkp)
4238 		return ERR_PTR(-ENOMEM);
4239 
4240 	clk = clk_register(dev, hw);
4241 	if (!IS_ERR(clk)) {
4242 		*clkp = clk;
4243 		devres_add(dev, clkp);
4244 	} else {
4245 		devres_free(clkp);
4246 	}
4247 
4248 	return clk;
4249 }
4250 EXPORT_SYMBOL_GPL(devm_clk_register);
4251 
4252 /**
4253  * devm_clk_hw_register - resource managed clk_hw_register()
4254  * @dev: device that is registering this clock
4255  * @hw: link to hardware-specific clock data
4256  *
4257  * Managed clk_hw_register(). Clocks registered by this function are
4258  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4259  * for more information.
4260  */
4261 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4262 {
4263 	struct clk_hw **hwp;
4264 	int ret;
4265 
4266 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4267 	if (!hwp)
4268 		return -ENOMEM;
4269 
4270 	ret = clk_hw_register(dev, hw);
4271 	if (!ret) {
4272 		*hwp = hw;
4273 		devres_add(dev, hwp);
4274 	} else {
4275 		devres_free(hwp);
4276 	}
4277 
4278 	return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4281 
4282 static int devm_clk_match(struct device *dev, void *res, void *data)
4283 {
4284 	struct clk *c = res;
4285 	if (WARN_ON(!c))
4286 		return 0;
4287 	return c == data;
4288 }
4289 
4290 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4291 {
4292 	struct clk_hw *hw = res;
4293 
4294 	if (WARN_ON(!hw))
4295 		return 0;
4296 	return hw == data;
4297 }
4298 
4299 /**
4300  * devm_clk_unregister - resource managed clk_unregister()
4301  * @dev: device that is unregistering the clock data
4302  * @clk: clock to unregister
4303  *
4304  * Deallocate a clock allocated with devm_clk_register(). Normally
4305  * this function will not need to be called and the resource management
4306  * code will ensure that the resource is freed.
4307  */
4308 void devm_clk_unregister(struct device *dev, struct clk *clk)
4309 {
4310 	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4311 }
4312 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4313 
4314 /**
4315  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4316  * @dev: device that is unregistering the hardware-specific clock data
4317  * @hw: link to hardware-specific clock data
4318  *
4319  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4320  * this function will not need to be called and the resource management
4321  * code will ensure that the resource is freed.
4322  */
4323 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4324 {
4325 	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4326 				hw));
4327 }
4328 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4329 
4330 static void devm_clk_release(struct device *dev, void *res)
4331 {
4332 	clk_put(*(struct clk **)res);
4333 }
4334 
4335 /**
4336  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4337  * @dev: device that is registering this clock
4338  * @hw: clk_hw associated with the clk being consumed
4339  * @con_id: connection ID string on device
4340  *
4341  * Managed clk_hw_get_clk(). Clocks got with this function are
4342  * automatically clk_put() on driver detach. See clk_put()
4343  * for more information.
4344  */
4345 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4346 				const char *con_id)
4347 {
4348 	struct clk *clk;
4349 	struct clk **clkp;
4350 
4351 	/* This should not happen because it would mean we have drivers
4352 	 * passing around clk_hw pointers instead of having the caller use
4353 	 * proper clk_get() style APIs
4354 	 */
4355 	WARN_ON_ONCE(dev != hw->core->dev);
4356 
4357 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4358 	if (!clkp)
4359 		return ERR_PTR(-ENOMEM);
4360 
4361 	clk = clk_hw_get_clk(hw, con_id);
4362 	if (!IS_ERR(clk)) {
4363 		*clkp = clk;
4364 		devres_add(dev, clkp);
4365 	} else {
4366 		devres_free(clkp);
4367 	}
4368 
4369 	return clk;
4370 }
4371 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4372 
4373 /*
4374  * clkdev helpers
4375  */
4376 
4377 void __clk_put(struct clk *clk)
4378 {
4379 	struct module *owner;
4380 
4381 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4382 		return;
4383 
4384 	clk_prepare_lock();
4385 
4386 	/*
4387 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4388 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4389 	 * and by that same consumer
4390 	 */
4391 	if (WARN_ON(clk->exclusive_count)) {
4392 		/* We voiced our concern, let's sanitize the situation */
4393 		clk->core->protect_count -= (clk->exclusive_count - 1);
4394 		clk_core_rate_unprotect(clk->core);
4395 		clk->exclusive_count = 0;
4396 	}
4397 
4398 	hlist_del(&clk->clks_node);
4399 	if (clk->min_rate > clk->core->req_rate ||
4400 	    clk->max_rate < clk->core->req_rate)
4401 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4402 
4403 	owner = clk->core->owner;
4404 	kref_put(&clk->core->ref, __clk_release);
4405 
4406 	clk_prepare_unlock();
4407 
4408 	module_put(owner);
4409 
4410 	free_clk(clk);
4411 }
4412 
4413 /***        clk rate change notifiers        ***/
4414 
4415 /**
4416  * clk_notifier_register - add a clk rate change notifier
4417  * @clk: struct clk * to watch
4418  * @nb: struct notifier_block * with callback info
4419  *
4420  * Request notification when clk's rate changes.  This uses an SRCU
4421  * notifier because we want it to block and notifier unregistrations are
4422  * uncommon.  The callbacks associated with the notifier must not
4423  * re-enter into the clk framework by calling any top-level clk APIs;
4424  * this will cause a nested prepare_lock mutex.
4425  *
4426  * In all notification cases (pre, post and abort rate change) the original
4427  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4428  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4429  *
4430  * clk_notifier_register() must be called from non-atomic context.
4431  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4432  * allocation failure; otherwise, passes along the return value of
4433  * srcu_notifier_chain_register().
4434  */
4435 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4436 {
4437 	struct clk_notifier *cn;
4438 	int ret = -ENOMEM;
4439 
4440 	if (!clk || !nb)
4441 		return -EINVAL;
4442 
4443 	clk_prepare_lock();
4444 
4445 	/* search the list of notifiers for this clk */
4446 	list_for_each_entry(cn, &clk_notifier_list, node)
4447 		if (cn->clk == clk)
4448 			goto found;
4449 
4450 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4451 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4452 	if (!cn)
4453 		goto out;
4454 
4455 	cn->clk = clk;
4456 	srcu_init_notifier_head(&cn->notifier_head);
4457 
4458 	list_add(&cn->node, &clk_notifier_list);
4459 
4460 found:
4461 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4462 
4463 	clk->core->notifier_count++;
4464 
4465 out:
4466 	clk_prepare_unlock();
4467 
4468 	return ret;
4469 }
4470 EXPORT_SYMBOL_GPL(clk_notifier_register);
4471 
4472 /**
4473  * clk_notifier_unregister - remove a clk rate change notifier
4474  * @clk: struct clk *
4475  * @nb: struct notifier_block * with callback info
4476  *
4477  * Request no further notification for changes to 'clk' and frees memory
4478  * allocated in clk_notifier_register.
4479  *
4480  * Returns -EINVAL if called with null arguments; otherwise, passes
4481  * along the return value of srcu_notifier_chain_unregister().
4482  */
4483 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4484 {
4485 	struct clk_notifier *cn;
4486 	int ret = -ENOENT;
4487 
4488 	if (!clk || !nb)
4489 		return -EINVAL;
4490 
4491 	clk_prepare_lock();
4492 
4493 	list_for_each_entry(cn, &clk_notifier_list, node) {
4494 		if (cn->clk == clk) {
4495 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4496 
4497 			clk->core->notifier_count--;
4498 
4499 			/* XXX the notifier code should handle this better */
4500 			if (!cn->notifier_head.head) {
4501 				srcu_cleanup_notifier_head(&cn->notifier_head);
4502 				list_del(&cn->node);
4503 				kfree(cn);
4504 			}
4505 			break;
4506 		}
4507 	}
4508 
4509 	clk_prepare_unlock();
4510 
4511 	return ret;
4512 }
4513 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4514 
4515 struct clk_notifier_devres {
4516 	struct clk *clk;
4517 	struct notifier_block *nb;
4518 };
4519 
4520 static void devm_clk_notifier_release(struct device *dev, void *res)
4521 {
4522 	struct clk_notifier_devres *devres = res;
4523 
4524 	clk_notifier_unregister(devres->clk, devres->nb);
4525 }
4526 
4527 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4528 			       struct notifier_block *nb)
4529 {
4530 	struct clk_notifier_devres *devres;
4531 	int ret;
4532 
4533 	devres = devres_alloc(devm_clk_notifier_release,
4534 			      sizeof(*devres), GFP_KERNEL);
4535 
4536 	if (!devres)
4537 		return -ENOMEM;
4538 
4539 	ret = clk_notifier_register(clk, nb);
4540 	if (!ret) {
4541 		devres->clk = clk;
4542 		devres->nb = nb;
4543 	} else {
4544 		devres_free(devres);
4545 	}
4546 
4547 	return ret;
4548 }
4549 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4550 
4551 #ifdef CONFIG_OF
4552 static void clk_core_reparent_orphans(void)
4553 {
4554 	clk_prepare_lock();
4555 	clk_core_reparent_orphans_nolock();
4556 	clk_prepare_unlock();
4557 }
4558 
4559 /**
4560  * struct of_clk_provider - Clock provider registration structure
4561  * @link: Entry in global list of clock providers
4562  * @node: Pointer to device tree node of clock provider
4563  * @get: Get clock callback.  Returns NULL or a struct clk for the
4564  *       given clock specifier
4565  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4566  *       struct clk_hw for the given clock specifier
4567  * @data: context pointer to be passed into @get callback
4568  */
4569 struct of_clk_provider {
4570 	struct list_head link;
4571 
4572 	struct device_node *node;
4573 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4574 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4575 	void *data;
4576 };
4577 
4578 extern struct of_device_id __clk_of_table;
4579 static const struct of_device_id __clk_of_table_sentinel
4580 	__used __section("__clk_of_table_end");
4581 
4582 static LIST_HEAD(of_clk_providers);
4583 static DEFINE_MUTEX(of_clk_mutex);
4584 
4585 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4586 				     void *data)
4587 {
4588 	return data;
4589 }
4590 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4591 
4592 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4593 {
4594 	return data;
4595 }
4596 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4597 
4598 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4599 {
4600 	struct clk_onecell_data *clk_data = data;
4601 	unsigned int idx = clkspec->args[0];
4602 
4603 	if (idx >= clk_data->clk_num) {
4604 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4605 		return ERR_PTR(-EINVAL);
4606 	}
4607 
4608 	return clk_data->clks[idx];
4609 }
4610 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4611 
4612 struct clk_hw *
4613 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4614 {
4615 	struct clk_hw_onecell_data *hw_data = data;
4616 	unsigned int idx = clkspec->args[0];
4617 
4618 	if (idx >= hw_data->num) {
4619 		pr_err("%s: invalid index %u\n", __func__, idx);
4620 		return ERR_PTR(-EINVAL);
4621 	}
4622 
4623 	return hw_data->hws[idx];
4624 }
4625 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4626 
4627 /**
4628  * of_clk_add_provider() - Register a clock provider for a node
4629  * @np: Device node pointer associated with clock provider
4630  * @clk_src_get: callback for decoding clock
4631  * @data: context pointer for @clk_src_get callback.
4632  *
4633  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4634  */
4635 int of_clk_add_provider(struct device_node *np,
4636 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4637 						   void *data),
4638 			void *data)
4639 {
4640 	struct of_clk_provider *cp;
4641 	int ret;
4642 
4643 	if (!np)
4644 		return 0;
4645 
4646 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4647 	if (!cp)
4648 		return -ENOMEM;
4649 
4650 	cp->node = of_node_get(np);
4651 	cp->data = data;
4652 	cp->get = clk_src_get;
4653 
4654 	mutex_lock(&of_clk_mutex);
4655 	list_add(&cp->link, &of_clk_providers);
4656 	mutex_unlock(&of_clk_mutex);
4657 	pr_debug("Added clock from %pOF\n", np);
4658 
4659 	clk_core_reparent_orphans();
4660 
4661 	ret = of_clk_set_defaults(np, true);
4662 	if (ret < 0)
4663 		of_clk_del_provider(np);
4664 
4665 	fwnode_dev_initialized(&np->fwnode, true);
4666 
4667 	return ret;
4668 }
4669 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4670 
4671 /**
4672  * of_clk_add_hw_provider() - Register a clock provider for a node
4673  * @np: Device node pointer associated with clock provider
4674  * @get: callback for decoding clk_hw
4675  * @data: context pointer for @get callback.
4676  */
4677 int of_clk_add_hw_provider(struct device_node *np,
4678 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4679 						 void *data),
4680 			   void *data)
4681 {
4682 	struct of_clk_provider *cp;
4683 	int ret;
4684 
4685 	if (!np)
4686 		return 0;
4687 
4688 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4689 	if (!cp)
4690 		return -ENOMEM;
4691 
4692 	cp->node = of_node_get(np);
4693 	cp->data = data;
4694 	cp->get_hw = get;
4695 
4696 	mutex_lock(&of_clk_mutex);
4697 	list_add(&cp->link, &of_clk_providers);
4698 	mutex_unlock(&of_clk_mutex);
4699 	pr_debug("Added clk_hw provider from %pOF\n", np);
4700 
4701 	clk_core_reparent_orphans();
4702 
4703 	ret = of_clk_set_defaults(np, true);
4704 	if (ret < 0)
4705 		of_clk_del_provider(np);
4706 
4707 	fwnode_dev_initialized(&np->fwnode, true);
4708 
4709 	return ret;
4710 }
4711 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4712 
4713 static void devm_of_clk_release_provider(struct device *dev, void *res)
4714 {
4715 	of_clk_del_provider(*(struct device_node **)res);
4716 }
4717 
4718 /*
4719  * We allow a child device to use its parent device as the clock provider node
4720  * for cases like MFD sub-devices where the child device driver wants to use
4721  * devm_*() APIs but not list the device in DT as a sub-node.
4722  */
4723 static struct device_node *get_clk_provider_node(struct device *dev)
4724 {
4725 	struct device_node *np, *parent_np;
4726 
4727 	np = dev->of_node;
4728 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4729 
4730 	if (!of_find_property(np, "#clock-cells", NULL))
4731 		if (of_find_property(parent_np, "#clock-cells", NULL))
4732 			np = parent_np;
4733 
4734 	return np;
4735 }
4736 
4737 /**
4738  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4739  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4740  * @get: callback for decoding clk_hw
4741  * @data: context pointer for @get callback
4742  *
4743  * Registers clock provider for given device's node. If the device has no DT
4744  * node or if the device node lacks of clock provider information (#clock-cells)
4745  * then the parent device's node is scanned for this information. If parent node
4746  * has the #clock-cells then it is used in registration. Provider is
4747  * automatically released at device exit.
4748  *
4749  * Return: 0 on success or an errno on failure.
4750  */
4751 int devm_of_clk_add_hw_provider(struct device *dev,
4752 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4753 					      void *data),
4754 			void *data)
4755 {
4756 	struct device_node **ptr, *np;
4757 	int ret;
4758 
4759 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4760 			   GFP_KERNEL);
4761 	if (!ptr)
4762 		return -ENOMEM;
4763 
4764 	np = get_clk_provider_node(dev);
4765 	ret = of_clk_add_hw_provider(np, get, data);
4766 	if (!ret) {
4767 		*ptr = np;
4768 		devres_add(dev, ptr);
4769 	} else {
4770 		devres_free(ptr);
4771 	}
4772 
4773 	return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4776 
4777 /**
4778  * of_clk_del_provider() - Remove a previously registered clock provider
4779  * @np: Device node pointer associated with clock provider
4780  */
4781 void of_clk_del_provider(struct device_node *np)
4782 {
4783 	struct of_clk_provider *cp;
4784 
4785 	if (!np)
4786 		return;
4787 
4788 	mutex_lock(&of_clk_mutex);
4789 	list_for_each_entry(cp, &of_clk_providers, link) {
4790 		if (cp->node == np) {
4791 			list_del(&cp->link);
4792 			fwnode_dev_initialized(&np->fwnode, false);
4793 			of_node_put(cp->node);
4794 			kfree(cp);
4795 			break;
4796 		}
4797 	}
4798 	mutex_unlock(&of_clk_mutex);
4799 }
4800 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4801 
4802 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4803 {
4804 	struct device_node **np = res;
4805 
4806 	if (WARN_ON(!np || !*np))
4807 		return 0;
4808 
4809 	return *np == data;
4810 }
4811 
4812 /**
4813  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4814  * @dev: Device to whose lifetime the clock provider was bound
4815  */
4816 void devm_of_clk_del_provider(struct device *dev)
4817 {
4818 	int ret;
4819 	struct device_node *np = get_clk_provider_node(dev);
4820 
4821 	ret = devres_release(dev, devm_of_clk_release_provider,
4822 			     devm_clk_provider_match, np);
4823 
4824 	WARN_ON(ret);
4825 }
4826 EXPORT_SYMBOL(devm_of_clk_del_provider);
4827 
4828 /**
4829  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4830  * @np: device node to parse clock specifier from
4831  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4832  * @name: clock name to find and parse. If name is NULL, the index is used
4833  * @out_args: Result of parsing the clock specifier
4834  *
4835  * Parses a device node's "clocks" and "clock-names" properties to find the
4836  * phandle and cells for the index or name that is desired. The resulting clock
4837  * specifier is placed into @out_args, or an errno is returned when there's a
4838  * parsing error. The @index argument is ignored if @name is non-NULL.
4839  *
4840  * Example:
4841  *
4842  * phandle1: clock-controller@1 {
4843  *	#clock-cells = <2>;
4844  * }
4845  *
4846  * phandle2: clock-controller@2 {
4847  *	#clock-cells = <1>;
4848  * }
4849  *
4850  * clock-consumer@3 {
4851  *	clocks = <&phandle1 1 2 &phandle2 3>;
4852  *	clock-names = "name1", "name2";
4853  * }
4854  *
4855  * To get a device_node for `clock-controller@2' node you may call this
4856  * function a few different ways:
4857  *
4858  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4859  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4860  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4861  *
4862  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4863  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4864  * the "clock-names" property of @np.
4865  */
4866 static int of_parse_clkspec(const struct device_node *np, int index,
4867 			    const char *name, struct of_phandle_args *out_args)
4868 {
4869 	int ret = -ENOENT;
4870 
4871 	/* Walk up the tree of devices looking for a clock property that matches */
4872 	while (np) {
4873 		/*
4874 		 * For named clocks, first look up the name in the
4875 		 * "clock-names" property.  If it cannot be found, then index
4876 		 * will be an error code and of_parse_phandle_with_args() will
4877 		 * return -EINVAL.
4878 		 */
4879 		if (name)
4880 			index = of_property_match_string(np, "clock-names", name);
4881 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4882 						 index, out_args);
4883 		if (!ret)
4884 			break;
4885 		if (name && index >= 0)
4886 			break;
4887 
4888 		/*
4889 		 * No matching clock found on this node.  If the parent node
4890 		 * has a "clock-ranges" property, then we can try one of its
4891 		 * clocks.
4892 		 */
4893 		np = np->parent;
4894 		if (np && !of_get_property(np, "clock-ranges", NULL))
4895 			break;
4896 		index = 0;
4897 	}
4898 
4899 	return ret;
4900 }
4901 
4902 static struct clk_hw *
4903 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4904 			      struct of_phandle_args *clkspec)
4905 {
4906 	struct clk *clk;
4907 
4908 	if (provider->get_hw)
4909 		return provider->get_hw(clkspec, provider->data);
4910 
4911 	clk = provider->get(clkspec, provider->data);
4912 	if (IS_ERR(clk))
4913 		return ERR_CAST(clk);
4914 	return __clk_get_hw(clk);
4915 }
4916 
4917 static struct clk_hw *
4918 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4919 {
4920 	struct of_clk_provider *provider;
4921 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4922 
4923 	if (!clkspec)
4924 		return ERR_PTR(-EINVAL);
4925 
4926 	mutex_lock(&of_clk_mutex);
4927 	list_for_each_entry(provider, &of_clk_providers, link) {
4928 		if (provider->node == clkspec->np) {
4929 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4930 			if (!IS_ERR(hw))
4931 				break;
4932 		}
4933 	}
4934 	mutex_unlock(&of_clk_mutex);
4935 
4936 	return hw;
4937 }
4938 
4939 /**
4940  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4941  * @clkspec: pointer to a clock specifier data structure
4942  *
4943  * This function looks up a struct clk from the registered list of clock
4944  * providers, an input is a clock specifier data structure as returned
4945  * from the of_parse_phandle_with_args() function call.
4946  */
4947 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4948 {
4949 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4950 
4951 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4952 }
4953 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4954 
4955 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4956 			     const char *con_id)
4957 {
4958 	int ret;
4959 	struct clk_hw *hw;
4960 	struct of_phandle_args clkspec;
4961 
4962 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4963 	if (ret)
4964 		return ERR_PTR(ret);
4965 
4966 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4967 	of_node_put(clkspec.np);
4968 
4969 	return hw;
4970 }
4971 
4972 static struct clk *__of_clk_get(struct device_node *np,
4973 				int index, const char *dev_id,
4974 				const char *con_id)
4975 {
4976 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4977 
4978 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4979 }
4980 
4981 struct clk *of_clk_get(struct device_node *np, int index)
4982 {
4983 	return __of_clk_get(np, index, np->full_name, NULL);
4984 }
4985 EXPORT_SYMBOL(of_clk_get);
4986 
4987 /**
4988  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4989  * @np: pointer to clock consumer node
4990  * @name: name of consumer's clock input, or NULL for the first clock reference
4991  *
4992  * This function parses the clocks and clock-names properties,
4993  * and uses them to look up the struct clk from the registered list of clock
4994  * providers.
4995  */
4996 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4997 {
4998 	if (!np)
4999 		return ERR_PTR(-ENOENT);
5000 
5001 	return __of_clk_get(np, 0, np->full_name, name);
5002 }
5003 EXPORT_SYMBOL(of_clk_get_by_name);
5004 
5005 /**
5006  * of_clk_get_parent_count() - Count the number of clocks a device node has
5007  * @np: device node to count
5008  *
5009  * Returns: The number of clocks that are possible parents of this node
5010  */
5011 unsigned int of_clk_get_parent_count(const struct device_node *np)
5012 {
5013 	int count;
5014 
5015 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5016 	if (count < 0)
5017 		return 0;
5018 
5019 	return count;
5020 }
5021 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5022 
5023 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5024 {
5025 	struct of_phandle_args clkspec;
5026 	struct property *prop;
5027 	const char *clk_name;
5028 	const __be32 *vp;
5029 	u32 pv;
5030 	int rc;
5031 	int count;
5032 	struct clk *clk;
5033 
5034 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5035 					&clkspec);
5036 	if (rc)
5037 		return NULL;
5038 
5039 	index = clkspec.args_count ? clkspec.args[0] : 0;
5040 	count = 0;
5041 
5042 	/* if there is an indices property, use it to transfer the index
5043 	 * specified into an array offset for the clock-output-names property.
5044 	 */
5045 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5046 		if (index == pv) {
5047 			index = count;
5048 			break;
5049 		}
5050 		count++;
5051 	}
5052 	/* We went off the end of 'clock-indices' without finding it */
5053 	if (prop && !vp)
5054 		return NULL;
5055 
5056 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5057 					  index,
5058 					  &clk_name) < 0) {
5059 		/*
5060 		 * Best effort to get the name if the clock has been
5061 		 * registered with the framework. If the clock isn't
5062 		 * registered, we return the node name as the name of
5063 		 * the clock as long as #clock-cells = 0.
5064 		 */
5065 		clk = of_clk_get_from_provider(&clkspec);
5066 		if (IS_ERR(clk)) {
5067 			if (clkspec.args_count == 0)
5068 				clk_name = clkspec.np->name;
5069 			else
5070 				clk_name = NULL;
5071 		} else {
5072 			clk_name = __clk_get_name(clk);
5073 			clk_put(clk);
5074 		}
5075 	}
5076 
5077 
5078 	of_node_put(clkspec.np);
5079 	return clk_name;
5080 }
5081 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5082 
5083 /**
5084  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5085  * number of parents
5086  * @np: Device node pointer associated with clock provider
5087  * @parents: pointer to char array that hold the parents' names
5088  * @size: size of the @parents array
5089  *
5090  * Return: number of parents for the clock node.
5091  */
5092 int of_clk_parent_fill(struct device_node *np, const char **parents,
5093 		       unsigned int size)
5094 {
5095 	unsigned int i = 0;
5096 
5097 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5098 		i++;
5099 
5100 	return i;
5101 }
5102 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5103 
5104 struct clock_provider {
5105 	void (*clk_init_cb)(struct device_node *);
5106 	struct device_node *np;
5107 	struct list_head node;
5108 };
5109 
5110 /*
5111  * This function looks for a parent clock. If there is one, then it
5112  * checks that the provider for this parent clock was initialized, in
5113  * this case the parent clock will be ready.
5114  */
5115 static int parent_ready(struct device_node *np)
5116 {
5117 	int i = 0;
5118 
5119 	while (true) {
5120 		struct clk *clk = of_clk_get(np, i);
5121 
5122 		/* this parent is ready we can check the next one */
5123 		if (!IS_ERR(clk)) {
5124 			clk_put(clk);
5125 			i++;
5126 			continue;
5127 		}
5128 
5129 		/* at least one parent is not ready, we exit now */
5130 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5131 			return 0;
5132 
5133 		/*
5134 		 * Here we make assumption that the device tree is
5135 		 * written correctly. So an error means that there is
5136 		 * no more parent. As we didn't exit yet, then the
5137 		 * previous parent are ready. If there is no clock
5138 		 * parent, no need to wait for them, then we can
5139 		 * consider their absence as being ready
5140 		 */
5141 		return 1;
5142 	}
5143 }
5144 
5145 /**
5146  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5147  * @np: Device node pointer associated with clock provider
5148  * @index: clock index
5149  * @flags: pointer to top-level framework flags
5150  *
5151  * Detects if the clock-critical property exists and, if so, sets the
5152  * corresponding CLK_IS_CRITICAL flag.
5153  *
5154  * Do not use this function. It exists only for legacy Device Tree
5155  * bindings, such as the one-clock-per-node style that are outdated.
5156  * Those bindings typically put all clock data into .dts and the Linux
5157  * driver has no clock data, thus making it impossible to set this flag
5158  * correctly from the driver. Only those drivers may call
5159  * of_clk_detect_critical from their setup functions.
5160  *
5161  * Return: error code or zero on success
5162  */
5163 int of_clk_detect_critical(struct device_node *np, int index,
5164 			   unsigned long *flags)
5165 {
5166 	struct property *prop;
5167 	const __be32 *cur;
5168 	uint32_t idx;
5169 
5170 	if (!np || !flags)
5171 		return -EINVAL;
5172 
5173 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5174 		if (index == idx)
5175 			*flags |= CLK_IS_CRITICAL;
5176 
5177 	return 0;
5178 }
5179 
5180 /**
5181  * of_clk_init() - Scan and init clock providers from the DT
5182  * @matches: array of compatible values and init functions for providers.
5183  *
5184  * This function scans the device tree for matching clock providers
5185  * and calls their initialization functions. It also does it by trying
5186  * to follow the dependencies.
5187  */
5188 void __init of_clk_init(const struct of_device_id *matches)
5189 {
5190 	const struct of_device_id *match;
5191 	struct device_node *np;
5192 	struct clock_provider *clk_provider, *next;
5193 	bool is_init_done;
5194 	bool force = false;
5195 	LIST_HEAD(clk_provider_list);
5196 
5197 	if (!matches)
5198 		matches = &__clk_of_table;
5199 
5200 	/* First prepare the list of the clocks providers */
5201 	for_each_matching_node_and_match(np, matches, &match) {
5202 		struct clock_provider *parent;
5203 
5204 		if (!of_device_is_available(np))
5205 			continue;
5206 
5207 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5208 		if (!parent) {
5209 			list_for_each_entry_safe(clk_provider, next,
5210 						 &clk_provider_list, node) {
5211 				list_del(&clk_provider->node);
5212 				of_node_put(clk_provider->np);
5213 				kfree(clk_provider);
5214 			}
5215 			of_node_put(np);
5216 			return;
5217 		}
5218 
5219 		parent->clk_init_cb = match->data;
5220 		parent->np = of_node_get(np);
5221 		list_add_tail(&parent->node, &clk_provider_list);
5222 	}
5223 
5224 	while (!list_empty(&clk_provider_list)) {
5225 		is_init_done = false;
5226 		list_for_each_entry_safe(clk_provider, next,
5227 					&clk_provider_list, node) {
5228 			if (force || parent_ready(clk_provider->np)) {
5229 
5230 				/* Don't populate platform devices */
5231 				of_node_set_flag(clk_provider->np,
5232 						 OF_POPULATED);
5233 
5234 				clk_provider->clk_init_cb(clk_provider->np);
5235 				of_clk_set_defaults(clk_provider->np, true);
5236 
5237 				list_del(&clk_provider->node);
5238 				of_node_put(clk_provider->np);
5239 				kfree(clk_provider);
5240 				is_init_done = true;
5241 			}
5242 		}
5243 
5244 		/*
5245 		 * We didn't manage to initialize any of the
5246 		 * remaining providers during the last loop, so now we
5247 		 * initialize all the remaining ones unconditionally
5248 		 * in case the clock parent was not mandatory
5249 		 */
5250 		if (!is_init_done)
5251 			force = true;
5252 	}
5253 }
5254 #endif
5255