xref: /openbmc/linux/drivers/clk/clk.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	ret = core->ops->is_enabled(core->hw);
255 done:
256 	if (core->rpm_enabled)
257 		pm_runtime_put(core->dev);
258 
259 	return ret;
260 }
261 
262 /***    helper functions   ***/
263 
264 const char *__clk_get_name(const struct clk *clk)
265 {
266 	return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269 
270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 	return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275 
276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 	return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281 
282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 	return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287 
288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 	return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 			    const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 				   const char *name,
345 				   struct of_phandle_args *out_args)
346 {
347 	return -ENOENT;
348 }
349 static inline struct clk_hw *
350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 	return ERR_PTR(-ENOENT);
353 }
354 #endif
355 
356 /**
357  * clk_core_get - Find the clk_core parent of a clk
358  * @core: clk to find parent of
359  * @p_index: parent index to search for
360  *
361  * This is the preferred method for clk providers to find the parent of a
362  * clk when that parent is external to the clk controller. The parent_names
363  * array is indexed and treated as a local name matching a string in the device
364  * node's 'clock-names' property or as the 'con_id' matching the device's
365  * dev_name() in a clk_lookup. This allows clk providers to use their own
366  * namespace instead of looking for a globally unique parent string.
367  *
368  * For example the following DT snippet would allow a clock registered by the
369  * clock-controller@c001 that has a clk_init_data::parent_data array
370  * with 'xtal' in the 'name' member to find the clock provided by the
371  * clock-controller@f00abcd without needing to get the globally unique name of
372  * the xtal clk.
373  *
374  *      parent: clock-controller@f00abcd {
375  *              reg = <0xf00abcd 0xabcd>;
376  *              #clock-cells = <0>;
377  *      };
378  *
379  *      clock-controller@c001 {
380  *              reg = <0xc001 0xf00d>;
381  *              clocks = <&parent>;
382  *              clock-names = "xtal";
383  *              #clock-cells = <1>;
384  *      };
385  *
386  * Returns: -ENOENT when the provider can't be found or the clk doesn't
387  * exist in the provider or the name can't be found in the DT node or
388  * in a clkdev lookup. NULL when the provider knows about the clk but it
389  * isn't provided on this system.
390  * A valid clk_core pointer when the clk can be found in the provider.
391  */
392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 	const char *name = core->parents[p_index].fw_name;
395 	int index = core->parents[p_index].index;
396 	struct clk_hw *hw = ERR_PTR(-ENOENT);
397 	struct device *dev = core->dev;
398 	const char *dev_id = dev ? dev_name(dev) : NULL;
399 	struct device_node *np = core->of_node;
400 	struct of_phandle_args clkspec;
401 
402 	if (np && (name || index >= 0) &&
403 	    !of_parse_clkspec(np, index, name, &clkspec)) {
404 		hw = of_clk_get_hw_from_clkspec(&clkspec);
405 		of_node_put(clkspec.np);
406 	} else if (name) {
407 		/*
408 		 * If the DT search above couldn't find the provider fallback to
409 		 * looking up via clkdev based clk_lookups.
410 		 */
411 		hw = clk_find_hw(dev_id, name);
412 	}
413 
414 	if (IS_ERR(hw))
415 		return ERR_CAST(hw);
416 
417 	return hw->core;
418 }
419 
420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 	struct clk_parent_map *entry = &core->parents[index];
423 	struct clk_core *parent = ERR_PTR(-ENOENT);
424 
425 	if (entry->hw) {
426 		parent = entry->hw->core;
427 		/*
428 		 * We have a direct reference but it isn't registered yet?
429 		 * Orphan it and let clk_reparent() update the orphan status
430 		 * when the parent is registered.
431 		 */
432 		if (!parent)
433 			parent = ERR_PTR(-EPROBE_DEFER);
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/* Only cache it if it's not an error */
441 	if (!IS_ERR(parent))
442 		entry->core = parent;
443 }
444 
445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 							 u8 index)
447 {
448 	if (!core || index >= core->num_parents || !core->parents)
449 		return NULL;
450 
451 	if (!core->parents[index].core)
452 		clk_core_fill_parent_index(core, index);
453 
454 	return core->parents[index].core;
455 }
456 
457 struct clk_hw *
458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459 {
460 	struct clk_core *parent;
461 
462 	parent = clk_core_get_parent_by_index(hw->core, index);
463 
464 	return !parent ? NULL : parent->hw;
465 }
466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467 
468 unsigned int __clk_get_enable_count(struct clk *clk)
469 {
470 	return !clk ? 0 : clk->core->enable_count;
471 }
472 
473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474 {
475 	if (!core)
476 		return 0;
477 
478 	if (!core->num_parents || core->parent)
479 		return core->rate;
480 
481 	/*
482 	 * Clk must have a parent because num_parents > 0 but the parent isn't
483 	 * known yet. Best to return 0 as the rate of this clk until we can
484 	 * properly recalc the rate based on the parent's rate.
485 	 */
486 	return 0;
487 }
488 
489 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490 {
491 	return clk_core_get_rate_nolock(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494 
495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
496 {
497 	if (!core)
498 		return 0;
499 
500 	return core->accuracy;
501 }
502 
503 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
504 {
505 	return hw->core->flags;
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
508 
509 bool clk_hw_is_prepared(const struct clk_hw *hw)
510 {
511 	return clk_core_is_prepared(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
514 
515 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
516 {
517 	return clk_core_rate_is_protected(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
520 
521 bool clk_hw_is_enabled(const struct clk_hw *hw)
522 {
523 	return clk_core_is_enabled(hw->core);
524 }
525 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
526 
527 bool __clk_is_enabled(struct clk *clk)
528 {
529 	if (!clk)
530 		return false;
531 
532 	return clk_core_is_enabled(clk->core);
533 }
534 EXPORT_SYMBOL_GPL(__clk_is_enabled);
535 
536 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
537 			   unsigned long best, unsigned long flags)
538 {
539 	if (flags & CLK_MUX_ROUND_CLOSEST)
540 		return abs(now - rate) < abs(best - rate);
541 
542 	return now <= rate && now > best;
543 }
544 
545 int clk_mux_determine_rate_flags(struct clk_hw *hw,
546 				 struct clk_rate_request *req,
547 				 unsigned long flags)
548 {
549 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
550 	int i, num_parents, ret;
551 	unsigned long best = 0;
552 	struct clk_rate_request parent_req = *req;
553 
554 	/* if NO_REPARENT flag set, pass through to current parent */
555 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
556 		parent = core->parent;
557 		if (core->flags & CLK_SET_RATE_PARENT) {
558 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
559 						   &parent_req);
560 			if (ret)
561 				return ret;
562 
563 			best = parent_req.rate;
564 		} else if (parent) {
565 			best = clk_core_get_rate_nolock(parent);
566 		} else {
567 			best = clk_core_get_rate_nolock(core);
568 		}
569 
570 		goto out;
571 	}
572 
573 	/* find the parent that can provide the fastest rate <= rate */
574 	num_parents = core->num_parents;
575 	for (i = 0; i < num_parents; i++) {
576 		parent = clk_core_get_parent_by_index(core, i);
577 		if (!parent)
578 			continue;
579 
580 		if (core->flags & CLK_SET_RATE_PARENT) {
581 			parent_req = *req;
582 			ret = __clk_determine_rate(parent->hw, &parent_req);
583 			if (ret)
584 				continue;
585 		} else {
586 			parent_req.rate = clk_core_get_rate_nolock(parent);
587 		}
588 
589 		if (mux_is_better_rate(req->rate, parent_req.rate,
590 				       best, flags)) {
591 			best_parent = parent;
592 			best = parent_req.rate;
593 		}
594 	}
595 
596 	if (!best_parent)
597 		return -EINVAL;
598 
599 out:
600 	if (best_parent)
601 		req->best_parent_hw = best_parent->hw;
602 	req->best_parent_rate = best;
603 	req->rate = best;
604 
605 	return 0;
606 }
607 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
608 
609 struct clk *__clk_lookup(const char *name)
610 {
611 	struct clk_core *core = clk_core_lookup(name);
612 
613 	return !core ? NULL : core->hw->clk;
614 }
615 
616 static void clk_core_get_boundaries(struct clk_core *core,
617 				    unsigned long *min_rate,
618 				    unsigned long *max_rate)
619 {
620 	struct clk *clk_user;
621 
622 	lockdep_assert_held(&prepare_lock);
623 
624 	*min_rate = core->min_rate;
625 	*max_rate = core->max_rate;
626 
627 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
628 		*min_rate = max(*min_rate, clk_user->min_rate);
629 
630 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
631 		*max_rate = min(*max_rate, clk_user->max_rate);
632 }
633 
634 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
635 			   unsigned long max_rate)
636 {
637 	hw->core->min_rate = min_rate;
638 	hw->core->max_rate = max_rate;
639 }
640 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
641 
642 /*
643  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
644  * @hw: mux type clk to determine rate on
645  * @req: rate request, also used to return preferred parent and frequencies
646  *
647  * Helper for finding best parent to provide a given frequency. This can be used
648  * directly as a determine_rate callback (e.g. for a mux), or from a more
649  * complex clock that may combine a mux with other operations.
650  *
651  * Returns: 0 on success, -EERROR value on error
652  */
653 int __clk_mux_determine_rate(struct clk_hw *hw,
654 			     struct clk_rate_request *req)
655 {
656 	return clk_mux_determine_rate_flags(hw, req, 0);
657 }
658 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
659 
660 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
661 				     struct clk_rate_request *req)
662 {
663 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
664 }
665 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
666 
667 /***        clk api        ***/
668 
669 static void clk_core_rate_unprotect(struct clk_core *core)
670 {
671 	lockdep_assert_held(&prepare_lock);
672 
673 	if (!core)
674 		return;
675 
676 	if (WARN(core->protect_count == 0,
677 	    "%s already unprotected\n", core->name))
678 		return;
679 
680 	if (--core->protect_count > 0)
681 		return;
682 
683 	clk_core_rate_unprotect(core->parent);
684 }
685 
686 static int clk_core_rate_nuke_protect(struct clk_core *core)
687 {
688 	int ret;
689 
690 	lockdep_assert_held(&prepare_lock);
691 
692 	if (!core)
693 		return -EINVAL;
694 
695 	if (core->protect_count == 0)
696 		return 0;
697 
698 	ret = core->protect_count;
699 	core->protect_count = 1;
700 	clk_core_rate_unprotect(core);
701 
702 	return ret;
703 }
704 
705 /**
706  * clk_rate_exclusive_put - release exclusivity over clock rate control
707  * @clk: the clk over which the exclusivity is released
708  *
709  * clk_rate_exclusive_put() completes a critical section during which a clock
710  * consumer cannot tolerate any other consumer making any operation on the
711  * clock which could result in a rate change or rate glitch. Exclusive clocks
712  * cannot have their rate changed, either directly or indirectly due to changes
713  * further up the parent chain of clocks. As a result, clocks up parent chain
714  * also get under exclusive control of the calling consumer.
715  *
716  * If exlusivity is claimed more than once on clock, even by the same consumer,
717  * the rate effectively gets locked as exclusivity can't be preempted.
718  *
719  * Calls to clk_rate_exclusive_put() must be balanced with calls to
720  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
721  * error status.
722  */
723 void clk_rate_exclusive_put(struct clk *clk)
724 {
725 	if (!clk)
726 		return;
727 
728 	clk_prepare_lock();
729 
730 	/*
731 	 * if there is something wrong with this consumer protect count, stop
732 	 * here before messing with the provider
733 	 */
734 	if (WARN_ON(clk->exclusive_count <= 0))
735 		goto out;
736 
737 	clk_core_rate_unprotect(clk->core);
738 	clk->exclusive_count--;
739 out:
740 	clk_prepare_unlock();
741 }
742 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
743 
744 static void clk_core_rate_protect(struct clk_core *core)
745 {
746 	lockdep_assert_held(&prepare_lock);
747 
748 	if (!core)
749 		return;
750 
751 	if (core->protect_count == 0)
752 		clk_core_rate_protect(core->parent);
753 
754 	core->protect_count++;
755 }
756 
757 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
758 {
759 	lockdep_assert_held(&prepare_lock);
760 
761 	if (!core)
762 		return;
763 
764 	if (count == 0)
765 		return;
766 
767 	clk_core_rate_protect(core);
768 	core->protect_count = count;
769 }
770 
771 /**
772  * clk_rate_exclusive_get - get exclusivity over the clk rate control
773  * @clk: the clk over which the exclusity of rate control is requested
774  *
775  * clk_rate_exclusive_get() begins a critical section during which a clock
776  * consumer cannot tolerate any other consumer making any operation on the
777  * clock which could result in a rate change or rate glitch. Exclusive clocks
778  * cannot have their rate changed, either directly or indirectly due to changes
779  * further up the parent chain of clocks. As a result, clocks up parent chain
780  * also get under exclusive control of the calling consumer.
781  *
782  * If exlusivity is claimed more than once on clock, even by the same consumer,
783  * the rate effectively gets locked as exclusivity can't be preempted.
784  *
785  * Calls to clk_rate_exclusive_get() should be balanced with calls to
786  * clk_rate_exclusive_put(). Calls to this function may sleep.
787  * Returns 0 on success, -EERROR otherwise
788  */
789 int clk_rate_exclusive_get(struct clk *clk)
790 {
791 	if (!clk)
792 		return 0;
793 
794 	clk_prepare_lock();
795 	clk_core_rate_protect(clk->core);
796 	clk->exclusive_count++;
797 	clk_prepare_unlock();
798 
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
802 
803 static void clk_core_unprepare(struct clk_core *core)
804 {
805 	lockdep_assert_held(&prepare_lock);
806 
807 	if (!core)
808 		return;
809 
810 	if (WARN(core->prepare_count == 0,
811 	    "%s already unprepared\n", core->name))
812 		return;
813 
814 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
815 	    "Unpreparing critical %s\n", core->name))
816 		return;
817 
818 	if (core->flags & CLK_SET_RATE_GATE)
819 		clk_core_rate_unprotect(core);
820 
821 	if (--core->prepare_count > 0)
822 		return;
823 
824 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
825 
826 	trace_clk_unprepare(core);
827 
828 	if (core->ops->unprepare)
829 		core->ops->unprepare(core->hw);
830 
831 	clk_pm_runtime_put(core);
832 
833 	trace_clk_unprepare_complete(core);
834 	clk_core_unprepare(core->parent);
835 }
836 
837 static void clk_core_unprepare_lock(struct clk_core *core)
838 {
839 	clk_prepare_lock();
840 	clk_core_unprepare(core);
841 	clk_prepare_unlock();
842 }
843 
844 /**
845  * clk_unprepare - undo preparation of a clock source
846  * @clk: the clk being unprepared
847  *
848  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
849  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
850  * if the operation may sleep.  One example is a clk which is accessed over
851  * I2c.  In the complex case a clk gate operation may require a fast and a slow
852  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
853  * exclusive.  In fact clk_disable must be called before clk_unprepare.
854  */
855 void clk_unprepare(struct clk *clk)
856 {
857 	if (IS_ERR_OR_NULL(clk))
858 		return;
859 
860 	clk_core_unprepare_lock(clk->core);
861 }
862 EXPORT_SYMBOL_GPL(clk_unprepare);
863 
864 static int clk_core_prepare(struct clk_core *core)
865 {
866 	int ret = 0;
867 
868 	lockdep_assert_held(&prepare_lock);
869 
870 	if (!core)
871 		return 0;
872 
873 	if (core->prepare_count == 0) {
874 		ret = clk_pm_runtime_get(core);
875 		if (ret)
876 			return ret;
877 
878 		ret = clk_core_prepare(core->parent);
879 		if (ret)
880 			goto runtime_put;
881 
882 		trace_clk_prepare(core);
883 
884 		if (core->ops->prepare)
885 			ret = core->ops->prepare(core->hw);
886 
887 		trace_clk_prepare_complete(core);
888 
889 		if (ret)
890 			goto unprepare;
891 	}
892 
893 	core->prepare_count++;
894 
895 	/*
896 	 * CLK_SET_RATE_GATE is a special case of clock protection
897 	 * Instead of a consumer claiming exclusive rate control, it is
898 	 * actually the provider which prevents any consumer from making any
899 	 * operation which could result in a rate change or rate glitch while
900 	 * the clock is prepared.
901 	 */
902 	if (core->flags & CLK_SET_RATE_GATE)
903 		clk_core_rate_protect(core);
904 
905 	return 0;
906 unprepare:
907 	clk_core_unprepare(core->parent);
908 runtime_put:
909 	clk_pm_runtime_put(core);
910 	return ret;
911 }
912 
913 static int clk_core_prepare_lock(struct clk_core *core)
914 {
915 	int ret;
916 
917 	clk_prepare_lock();
918 	ret = clk_core_prepare(core);
919 	clk_prepare_unlock();
920 
921 	return ret;
922 }
923 
924 /**
925  * clk_prepare - prepare a clock source
926  * @clk: the clk being prepared
927  *
928  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
929  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
930  * operation may sleep.  One example is a clk which is accessed over I2c.  In
931  * the complex case a clk ungate operation may require a fast and a slow part.
932  * It is this reason that clk_prepare and clk_enable are not mutually
933  * exclusive.  In fact clk_prepare must be called before clk_enable.
934  * Returns 0 on success, -EERROR otherwise.
935  */
936 int clk_prepare(struct clk *clk)
937 {
938 	if (!clk)
939 		return 0;
940 
941 	return clk_core_prepare_lock(clk->core);
942 }
943 EXPORT_SYMBOL_GPL(clk_prepare);
944 
945 static void clk_core_disable(struct clk_core *core)
946 {
947 	lockdep_assert_held(&enable_lock);
948 
949 	if (!core)
950 		return;
951 
952 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
953 		return;
954 
955 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
956 	    "Disabling critical %s\n", core->name))
957 		return;
958 
959 	if (--core->enable_count > 0)
960 		return;
961 
962 	trace_clk_disable_rcuidle(core);
963 
964 	if (core->ops->disable)
965 		core->ops->disable(core->hw);
966 
967 	trace_clk_disable_complete_rcuidle(core);
968 
969 	clk_core_disable(core->parent);
970 }
971 
972 static void clk_core_disable_lock(struct clk_core *core)
973 {
974 	unsigned long flags;
975 
976 	flags = clk_enable_lock();
977 	clk_core_disable(core);
978 	clk_enable_unlock(flags);
979 }
980 
981 /**
982  * clk_disable - gate a clock
983  * @clk: the clk being gated
984  *
985  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
986  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
987  * clk if the operation is fast and will never sleep.  One example is a
988  * SoC-internal clk which is controlled via simple register writes.  In the
989  * complex case a clk gate operation may require a fast and a slow part.  It is
990  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
991  * In fact clk_disable must be called before clk_unprepare.
992  */
993 void clk_disable(struct clk *clk)
994 {
995 	if (IS_ERR_OR_NULL(clk))
996 		return;
997 
998 	clk_core_disable_lock(clk->core);
999 }
1000 EXPORT_SYMBOL_GPL(clk_disable);
1001 
1002 static int clk_core_enable(struct clk_core *core)
1003 {
1004 	int ret = 0;
1005 
1006 	lockdep_assert_held(&enable_lock);
1007 
1008 	if (!core)
1009 		return 0;
1010 
1011 	if (WARN(core->prepare_count == 0,
1012 	    "Enabling unprepared %s\n", core->name))
1013 		return -ESHUTDOWN;
1014 
1015 	if (core->enable_count == 0) {
1016 		ret = clk_core_enable(core->parent);
1017 
1018 		if (ret)
1019 			return ret;
1020 
1021 		trace_clk_enable_rcuidle(core);
1022 
1023 		if (core->ops->enable)
1024 			ret = core->ops->enable(core->hw);
1025 
1026 		trace_clk_enable_complete_rcuidle(core);
1027 
1028 		if (ret) {
1029 			clk_core_disable(core->parent);
1030 			return ret;
1031 		}
1032 	}
1033 
1034 	core->enable_count++;
1035 	return 0;
1036 }
1037 
1038 static int clk_core_enable_lock(struct clk_core *core)
1039 {
1040 	unsigned long flags;
1041 	int ret;
1042 
1043 	flags = clk_enable_lock();
1044 	ret = clk_core_enable(core);
1045 	clk_enable_unlock(flags);
1046 
1047 	return ret;
1048 }
1049 
1050 /**
1051  * clk_gate_restore_context - restore context for poweroff
1052  * @hw: the clk_hw pointer of clock whose state is to be restored
1053  *
1054  * The clock gate restore context function enables or disables
1055  * the gate clocks based on the enable_count. This is done in cases
1056  * where the clock context is lost and based on the enable_count
1057  * the clock either needs to be enabled/disabled. This
1058  * helps restore the state of gate clocks.
1059  */
1060 void clk_gate_restore_context(struct clk_hw *hw)
1061 {
1062 	struct clk_core *core = hw->core;
1063 
1064 	if (core->enable_count)
1065 		core->ops->enable(hw);
1066 	else
1067 		core->ops->disable(hw);
1068 }
1069 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1070 
1071 static int clk_core_save_context(struct clk_core *core)
1072 {
1073 	struct clk_core *child;
1074 	int ret = 0;
1075 
1076 	hlist_for_each_entry(child, &core->children, child_node) {
1077 		ret = clk_core_save_context(child);
1078 		if (ret < 0)
1079 			return ret;
1080 	}
1081 
1082 	if (core->ops && core->ops->save_context)
1083 		ret = core->ops->save_context(core->hw);
1084 
1085 	return ret;
1086 }
1087 
1088 static void clk_core_restore_context(struct clk_core *core)
1089 {
1090 	struct clk_core *child;
1091 
1092 	if (core->ops && core->ops->restore_context)
1093 		core->ops->restore_context(core->hw);
1094 
1095 	hlist_for_each_entry(child, &core->children, child_node)
1096 		clk_core_restore_context(child);
1097 }
1098 
1099 /**
1100  * clk_save_context - save clock context for poweroff
1101  *
1102  * Saves the context of the clock register for powerstates in which the
1103  * contents of the registers will be lost. Occurs deep within the suspend
1104  * code.  Returns 0 on success.
1105  */
1106 int clk_save_context(void)
1107 {
1108 	struct clk_core *clk;
1109 	int ret;
1110 
1111 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1112 		ret = clk_core_save_context(clk);
1113 		if (ret < 0)
1114 			return ret;
1115 	}
1116 
1117 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1118 		ret = clk_core_save_context(clk);
1119 		if (ret < 0)
1120 			return ret;
1121 	}
1122 
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(clk_save_context);
1126 
1127 /**
1128  * clk_restore_context - restore clock context after poweroff
1129  *
1130  * Restore the saved clock context upon resume.
1131  *
1132  */
1133 void clk_restore_context(void)
1134 {
1135 	struct clk_core *core;
1136 
1137 	hlist_for_each_entry(core, &clk_root_list, child_node)
1138 		clk_core_restore_context(core);
1139 
1140 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1141 		clk_core_restore_context(core);
1142 }
1143 EXPORT_SYMBOL_GPL(clk_restore_context);
1144 
1145 /**
1146  * clk_enable - ungate a clock
1147  * @clk: the clk being ungated
1148  *
1149  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1150  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1151  * if the operation will never sleep.  One example is a SoC-internal clk which
1152  * is controlled via simple register writes.  In the complex case a clk ungate
1153  * operation may require a fast and a slow part.  It is this reason that
1154  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1155  * must be called before clk_enable.  Returns 0 on success, -EERROR
1156  * otherwise.
1157  */
1158 int clk_enable(struct clk *clk)
1159 {
1160 	if (!clk)
1161 		return 0;
1162 
1163 	return clk_core_enable_lock(clk->core);
1164 }
1165 EXPORT_SYMBOL_GPL(clk_enable);
1166 
1167 static int clk_core_prepare_enable(struct clk_core *core)
1168 {
1169 	int ret;
1170 
1171 	ret = clk_core_prepare_lock(core);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = clk_core_enable_lock(core);
1176 	if (ret)
1177 		clk_core_unprepare_lock(core);
1178 
1179 	return ret;
1180 }
1181 
1182 static void clk_core_disable_unprepare(struct clk_core *core)
1183 {
1184 	clk_core_disable_lock(core);
1185 	clk_core_unprepare_lock(core);
1186 }
1187 
1188 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1189 {
1190 	struct clk_core *child;
1191 
1192 	lockdep_assert_held(&prepare_lock);
1193 
1194 	hlist_for_each_entry(child, &core->children, child_node)
1195 		clk_unprepare_unused_subtree(child);
1196 
1197 	if (core->prepare_count)
1198 		return;
1199 
1200 	if (core->flags & CLK_IGNORE_UNUSED)
1201 		return;
1202 
1203 	if (clk_pm_runtime_get(core))
1204 		return;
1205 
1206 	if (clk_core_is_prepared(core)) {
1207 		trace_clk_unprepare(core);
1208 		if (core->ops->unprepare_unused)
1209 			core->ops->unprepare_unused(core->hw);
1210 		else if (core->ops->unprepare)
1211 			core->ops->unprepare(core->hw);
1212 		trace_clk_unprepare_complete(core);
1213 	}
1214 
1215 	clk_pm_runtime_put(core);
1216 }
1217 
1218 static void __init clk_disable_unused_subtree(struct clk_core *core)
1219 {
1220 	struct clk_core *child;
1221 	unsigned long flags;
1222 
1223 	lockdep_assert_held(&prepare_lock);
1224 
1225 	hlist_for_each_entry(child, &core->children, child_node)
1226 		clk_disable_unused_subtree(child);
1227 
1228 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1229 		clk_core_prepare_enable(core->parent);
1230 
1231 	if (clk_pm_runtime_get(core))
1232 		goto unprepare_out;
1233 
1234 	flags = clk_enable_lock();
1235 
1236 	if (core->enable_count)
1237 		goto unlock_out;
1238 
1239 	if (core->flags & CLK_IGNORE_UNUSED)
1240 		goto unlock_out;
1241 
1242 	/*
1243 	 * some gate clocks have special needs during the disable-unused
1244 	 * sequence.  call .disable_unused if available, otherwise fall
1245 	 * back to .disable
1246 	 */
1247 	if (clk_core_is_enabled(core)) {
1248 		trace_clk_disable(core);
1249 		if (core->ops->disable_unused)
1250 			core->ops->disable_unused(core->hw);
1251 		else if (core->ops->disable)
1252 			core->ops->disable(core->hw);
1253 		trace_clk_disable_complete(core);
1254 	}
1255 
1256 unlock_out:
1257 	clk_enable_unlock(flags);
1258 	clk_pm_runtime_put(core);
1259 unprepare_out:
1260 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1261 		clk_core_disable_unprepare(core->parent);
1262 }
1263 
1264 static bool clk_ignore_unused __initdata;
1265 static int __init clk_ignore_unused_setup(char *__unused)
1266 {
1267 	clk_ignore_unused = true;
1268 	return 1;
1269 }
1270 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1271 
1272 static int __init clk_disable_unused(void)
1273 {
1274 	struct clk_core *core;
1275 
1276 	if (clk_ignore_unused) {
1277 		pr_warn("clk: Not disabling unused clocks\n");
1278 		return 0;
1279 	}
1280 
1281 	clk_prepare_lock();
1282 
1283 	hlist_for_each_entry(core, &clk_root_list, child_node)
1284 		clk_disable_unused_subtree(core);
1285 
1286 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1287 		clk_disable_unused_subtree(core);
1288 
1289 	hlist_for_each_entry(core, &clk_root_list, child_node)
1290 		clk_unprepare_unused_subtree(core);
1291 
1292 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293 		clk_unprepare_unused_subtree(core);
1294 
1295 	clk_prepare_unlock();
1296 
1297 	return 0;
1298 }
1299 late_initcall_sync(clk_disable_unused);
1300 
1301 static int clk_core_determine_round_nolock(struct clk_core *core,
1302 					   struct clk_rate_request *req)
1303 {
1304 	long rate;
1305 
1306 	lockdep_assert_held(&prepare_lock);
1307 
1308 	if (!core)
1309 		return 0;
1310 
1311 	/*
1312 	 * At this point, core protection will be disabled if
1313 	 * - if the provider is not protected at all
1314 	 * - if the calling consumer is the only one which has exclusivity
1315 	 *   over the provider
1316 	 */
1317 	if (clk_core_rate_is_protected(core)) {
1318 		req->rate = core->rate;
1319 	} else if (core->ops->determine_rate) {
1320 		return core->ops->determine_rate(core->hw, req);
1321 	} else if (core->ops->round_rate) {
1322 		rate = core->ops->round_rate(core->hw, req->rate,
1323 					     &req->best_parent_rate);
1324 		if (rate < 0)
1325 			return rate;
1326 
1327 		req->rate = rate;
1328 	} else {
1329 		return -EINVAL;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 static void clk_core_init_rate_req(struct clk_core * const core,
1336 				   struct clk_rate_request *req)
1337 {
1338 	struct clk_core *parent;
1339 
1340 	if (WARN_ON(!core || !req))
1341 		return;
1342 
1343 	parent = core->parent;
1344 	if (parent) {
1345 		req->best_parent_hw = parent->hw;
1346 		req->best_parent_rate = parent->rate;
1347 	} else {
1348 		req->best_parent_hw = NULL;
1349 		req->best_parent_rate = 0;
1350 	}
1351 }
1352 
1353 static bool clk_core_can_round(struct clk_core * const core)
1354 {
1355 	return core->ops->determine_rate || core->ops->round_rate;
1356 }
1357 
1358 static int clk_core_round_rate_nolock(struct clk_core *core,
1359 				      struct clk_rate_request *req)
1360 {
1361 	lockdep_assert_held(&prepare_lock);
1362 
1363 	if (!core) {
1364 		req->rate = 0;
1365 		return 0;
1366 	}
1367 
1368 	clk_core_init_rate_req(core, req);
1369 
1370 	if (clk_core_can_round(core))
1371 		return clk_core_determine_round_nolock(core, req);
1372 	else if (core->flags & CLK_SET_RATE_PARENT)
1373 		return clk_core_round_rate_nolock(core->parent, req);
1374 
1375 	req->rate = core->rate;
1376 	return 0;
1377 }
1378 
1379 /**
1380  * __clk_determine_rate - get the closest rate actually supported by a clock
1381  * @hw: determine the rate of this clock
1382  * @req: target rate request
1383  *
1384  * Useful for clk_ops such as .set_rate and .determine_rate.
1385  */
1386 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1387 {
1388 	if (!hw) {
1389 		req->rate = 0;
1390 		return 0;
1391 	}
1392 
1393 	return clk_core_round_rate_nolock(hw->core, req);
1394 }
1395 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1396 
1397 /**
1398  * clk_hw_round_rate() - round the given rate for a hw clk
1399  * @hw: the hw clk for which we are rounding a rate
1400  * @rate: the rate which is to be rounded
1401  *
1402  * Takes in a rate as input and rounds it to a rate that the clk can actually
1403  * use.
1404  *
1405  * Context: prepare_lock must be held.
1406  *          For clk providers to call from within clk_ops such as .round_rate,
1407  *          .determine_rate.
1408  *
1409  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1410  *         else returns the parent rate.
1411  */
1412 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1413 {
1414 	int ret;
1415 	struct clk_rate_request req;
1416 
1417 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1418 	req.rate = rate;
1419 
1420 	ret = clk_core_round_rate_nolock(hw->core, &req);
1421 	if (ret)
1422 		return 0;
1423 
1424 	return req.rate;
1425 }
1426 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1427 
1428 /**
1429  * clk_round_rate - round the given rate for a clk
1430  * @clk: the clk for which we are rounding a rate
1431  * @rate: the rate which is to be rounded
1432  *
1433  * Takes in a rate as input and rounds it to a rate that the clk can actually
1434  * use which is then returned.  If clk doesn't support round_rate operation
1435  * then the parent rate is returned.
1436  */
1437 long clk_round_rate(struct clk *clk, unsigned long rate)
1438 {
1439 	struct clk_rate_request req;
1440 	int ret;
1441 
1442 	if (!clk)
1443 		return 0;
1444 
1445 	clk_prepare_lock();
1446 
1447 	if (clk->exclusive_count)
1448 		clk_core_rate_unprotect(clk->core);
1449 
1450 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1451 	req.rate = rate;
1452 
1453 	ret = clk_core_round_rate_nolock(clk->core, &req);
1454 
1455 	if (clk->exclusive_count)
1456 		clk_core_rate_protect(clk->core);
1457 
1458 	clk_prepare_unlock();
1459 
1460 	if (ret)
1461 		return ret;
1462 
1463 	return req.rate;
1464 }
1465 EXPORT_SYMBOL_GPL(clk_round_rate);
1466 
1467 /**
1468  * __clk_notify - call clk notifier chain
1469  * @core: clk that is changing rate
1470  * @msg: clk notifier type (see include/linux/clk.h)
1471  * @old_rate: old clk rate
1472  * @new_rate: new clk rate
1473  *
1474  * Triggers a notifier call chain on the clk rate-change notification
1475  * for 'clk'.  Passes a pointer to the struct clk and the previous
1476  * and current rates to the notifier callback.  Intended to be called by
1477  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1478  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1479  * a driver returns that.
1480  */
1481 static int __clk_notify(struct clk_core *core, unsigned long msg,
1482 		unsigned long old_rate, unsigned long new_rate)
1483 {
1484 	struct clk_notifier *cn;
1485 	struct clk_notifier_data cnd;
1486 	int ret = NOTIFY_DONE;
1487 
1488 	cnd.old_rate = old_rate;
1489 	cnd.new_rate = new_rate;
1490 
1491 	list_for_each_entry(cn, &clk_notifier_list, node) {
1492 		if (cn->clk->core == core) {
1493 			cnd.clk = cn->clk;
1494 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1495 					&cnd);
1496 			if (ret & NOTIFY_STOP_MASK)
1497 				return ret;
1498 		}
1499 	}
1500 
1501 	return ret;
1502 }
1503 
1504 /**
1505  * __clk_recalc_accuracies
1506  * @core: first clk in the subtree
1507  *
1508  * Walks the subtree of clks starting with clk and recalculates accuracies as
1509  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1510  * callback then it is assumed that the clock will take on the accuracy of its
1511  * parent.
1512  */
1513 static void __clk_recalc_accuracies(struct clk_core *core)
1514 {
1515 	unsigned long parent_accuracy = 0;
1516 	struct clk_core *child;
1517 
1518 	lockdep_assert_held(&prepare_lock);
1519 
1520 	if (core->parent)
1521 		parent_accuracy = core->parent->accuracy;
1522 
1523 	if (core->ops->recalc_accuracy)
1524 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1525 							  parent_accuracy);
1526 	else
1527 		core->accuracy = parent_accuracy;
1528 
1529 	hlist_for_each_entry(child, &core->children, child_node)
1530 		__clk_recalc_accuracies(child);
1531 }
1532 
1533 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1534 {
1535 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1536 		__clk_recalc_accuracies(core);
1537 
1538 	return clk_core_get_accuracy_no_lock(core);
1539 }
1540 
1541 /**
1542  * clk_get_accuracy - return the accuracy of clk
1543  * @clk: the clk whose accuracy is being returned
1544  *
1545  * Simply returns the cached accuracy of the clk, unless
1546  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1547  * issued.
1548  * If clk is NULL then returns 0.
1549  */
1550 long clk_get_accuracy(struct clk *clk)
1551 {
1552 	long accuracy;
1553 
1554 	if (!clk)
1555 		return 0;
1556 
1557 	clk_prepare_lock();
1558 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1559 	clk_prepare_unlock();
1560 
1561 	return accuracy;
1562 }
1563 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1564 
1565 static unsigned long clk_recalc(struct clk_core *core,
1566 				unsigned long parent_rate)
1567 {
1568 	unsigned long rate = parent_rate;
1569 
1570 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1571 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1572 		clk_pm_runtime_put(core);
1573 	}
1574 	return rate;
1575 }
1576 
1577 /**
1578  * __clk_recalc_rates
1579  * @core: first clk in the subtree
1580  * @msg: notification type (see include/linux/clk.h)
1581  *
1582  * Walks the subtree of clks starting with clk and recalculates rates as it
1583  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1584  * it is assumed that the clock will take on the rate of its parent.
1585  *
1586  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1587  * if necessary.
1588  */
1589 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1590 {
1591 	unsigned long old_rate;
1592 	unsigned long parent_rate = 0;
1593 	struct clk_core *child;
1594 
1595 	lockdep_assert_held(&prepare_lock);
1596 
1597 	old_rate = core->rate;
1598 
1599 	if (core->parent)
1600 		parent_rate = core->parent->rate;
1601 
1602 	core->rate = clk_recalc(core, parent_rate);
1603 
1604 	/*
1605 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1606 	 * & ABORT_RATE_CHANGE notifiers
1607 	 */
1608 	if (core->notifier_count && msg)
1609 		__clk_notify(core, msg, old_rate, core->rate);
1610 
1611 	hlist_for_each_entry(child, &core->children, child_node)
1612 		__clk_recalc_rates(child, msg);
1613 }
1614 
1615 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1616 {
1617 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1618 		__clk_recalc_rates(core, 0);
1619 
1620 	return clk_core_get_rate_nolock(core);
1621 }
1622 
1623 /**
1624  * clk_get_rate - return the rate of clk
1625  * @clk: the clk whose rate is being returned
1626  *
1627  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1628  * is set, which means a recalc_rate will be issued.
1629  * If clk is NULL then returns 0.
1630  */
1631 unsigned long clk_get_rate(struct clk *clk)
1632 {
1633 	unsigned long rate;
1634 
1635 	if (!clk)
1636 		return 0;
1637 
1638 	clk_prepare_lock();
1639 	rate = clk_core_get_rate_recalc(clk->core);
1640 	clk_prepare_unlock();
1641 
1642 	return rate;
1643 }
1644 EXPORT_SYMBOL_GPL(clk_get_rate);
1645 
1646 static int clk_fetch_parent_index(struct clk_core *core,
1647 				  struct clk_core *parent)
1648 {
1649 	int i;
1650 
1651 	if (!parent)
1652 		return -EINVAL;
1653 
1654 	for (i = 0; i < core->num_parents; i++) {
1655 		/* Found it first try! */
1656 		if (core->parents[i].core == parent)
1657 			return i;
1658 
1659 		/* Something else is here, so keep looking */
1660 		if (core->parents[i].core)
1661 			continue;
1662 
1663 		/* Maybe core hasn't been cached but the hw is all we know? */
1664 		if (core->parents[i].hw) {
1665 			if (core->parents[i].hw == parent->hw)
1666 				break;
1667 
1668 			/* Didn't match, but we're expecting a clk_hw */
1669 			continue;
1670 		}
1671 
1672 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1673 		if (parent == clk_core_get(core, i))
1674 			break;
1675 
1676 		/* Fallback to comparing globally unique names */
1677 		if (core->parents[i].name &&
1678 		    !strcmp(parent->name, core->parents[i].name))
1679 			break;
1680 	}
1681 
1682 	if (i == core->num_parents)
1683 		return -EINVAL;
1684 
1685 	core->parents[i].core = parent;
1686 	return i;
1687 }
1688 
1689 /**
1690  * clk_hw_get_parent_index - return the index of the parent clock
1691  * @hw: clk_hw associated with the clk being consumed
1692  *
1693  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1694  * clock does not have a current parent.
1695  */
1696 int clk_hw_get_parent_index(struct clk_hw *hw)
1697 {
1698 	struct clk_hw *parent = clk_hw_get_parent(hw);
1699 
1700 	if (WARN_ON(parent == NULL))
1701 		return -EINVAL;
1702 
1703 	return clk_fetch_parent_index(hw->core, parent->core);
1704 }
1705 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1706 
1707 /*
1708  * Update the orphan status of @core and all its children.
1709  */
1710 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1711 {
1712 	struct clk_core *child;
1713 
1714 	core->orphan = is_orphan;
1715 
1716 	hlist_for_each_entry(child, &core->children, child_node)
1717 		clk_core_update_orphan_status(child, is_orphan);
1718 }
1719 
1720 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1721 {
1722 	bool was_orphan = core->orphan;
1723 
1724 	hlist_del(&core->child_node);
1725 
1726 	if (new_parent) {
1727 		bool becomes_orphan = new_parent->orphan;
1728 
1729 		/* avoid duplicate POST_RATE_CHANGE notifications */
1730 		if (new_parent->new_child == core)
1731 			new_parent->new_child = NULL;
1732 
1733 		hlist_add_head(&core->child_node, &new_parent->children);
1734 
1735 		if (was_orphan != becomes_orphan)
1736 			clk_core_update_orphan_status(core, becomes_orphan);
1737 	} else {
1738 		hlist_add_head(&core->child_node, &clk_orphan_list);
1739 		if (!was_orphan)
1740 			clk_core_update_orphan_status(core, true);
1741 	}
1742 
1743 	core->parent = new_parent;
1744 }
1745 
1746 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1747 					   struct clk_core *parent)
1748 {
1749 	unsigned long flags;
1750 	struct clk_core *old_parent = core->parent;
1751 
1752 	/*
1753 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1754 	 *
1755 	 * 2. Migrate prepare state between parents and prevent race with
1756 	 * clk_enable().
1757 	 *
1758 	 * If the clock is not prepared, then a race with
1759 	 * clk_enable/disable() is impossible since we already have the
1760 	 * prepare lock (future calls to clk_enable() need to be preceded by
1761 	 * a clk_prepare()).
1762 	 *
1763 	 * If the clock is prepared, migrate the prepared state to the new
1764 	 * parent and also protect against a race with clk_enable() by
1765 	 * forcing the clock and the new parent on.  This ensures that all
1766 	 * future calls to clk_enable() are practically NOPs with respect to
1767 	 * hardware and software states.
1768 	 *
1769 	 * See also: Comment for clk_set_parent() below.
1770 	 */
1771 
1772 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1773 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1774 		clk_core_prepare_enable(old_parent);
1775 		clk_core_prepare_enable(parent);
1776 	}
1777 
1778 	/* migrate prepare count if > 0 */
1779 	if (core->prepare_count) {
1780 		clk_core_prepare_enable(parent);
1781 		clk_core_enable_lock(core);
1782 	}
1783 
1784 	/* update the clk tree topology */
1785 	flags = clk_enable_lock();
1786 	clk_reparent(core, parent);
1787 	clk_enable_unlock(flags);
1788 
1789 	return old_parent;
1790 }
1791 
1792 static void __clk_set_parent_after(struct clk_core *core,
1793 				   struct clk_core *parent,
1794 				   struct clk_core *old_parent)
1795 {
1796 	/*
1797 	 * Finish the migration of prepare state and undo the changes done
1798 	 * for preventing a race with clk_enable().
1799 	 */
1800 	if (core->prepare_count) {
1801 		clk_core_disable_lock(core);
1802 		clk_core_disable_unprepare(old_parent);
1803 	}
1804 
1805 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1806 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1807 		clk_core_disable_unprepare(parent);
1808 		clk_core_disable_unprepare(old_parent);
1809 	}
1810 }
1811 
1812 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1813 			    u8 p_index)
1814 {
1815 	unsigned long flags;
1816 	int ret = 0;
1817 	struct clk_core *old_parent;
1818 
1819 	old_parent = __clk_set_parent_before(core, parent);
1820 
1821 	trace_clk_set_parent(core, parent);
1822 
1823 	/* change clock input source */
1824 	if (parent && core->ops->set_parent)
1825 		ret = core->ops->set_parent(core->hw, p_index);
1826 
1827 	trace_clk_set_parent_complete(core, parent);
1828 
1829 	if (ret) {
1830 		flags = clk_enable_lock();
1831 		clk_reparent(core, old_parent);
1832 		clk_enable_unlock(flags);
1833 		__clk_set_parent_after(core, old_parent, parent);
1834 
1835 		return ret;
1836 	}
1837 
1838 	__clk_set_parent_after(core, parent, old_parent);
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * __clk_speculate_rates
1845  * @core: first clk in the subtree
1846  * @parent_rate: the "future" rate of clk's parent
1847  *
1848  * Walks the subtree of clks starting with clk, speculating rates as it
1849  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1850  *
1851  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1852  * pre-rate change notifications and returns early if no clks in the
1853  * subtree have subscribed to the notifications.  Note that if a clk does not
1854  * implement the .recalc_rate callback then it is assumed that the clock will
1855  * take on the rate of its parent.
1856  */
1857 static int __clk_speculate_rates(struct clk_core *core,
1858 				 unsigned long parent_rate)
1859 {
1860 	struct clk_core *child;
1861 	unsigned long new_rate;
1862 	int ret = NOTIFY_DONE;
1863 
1864 	lockdep_assert_held(&prepare_lock);
1865 
1866 	new_rate = clk_recalc(core, parent_rate);
1867 
1868 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1869 	if (core->notifier_count)
1870 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1871 
1872 	if (ret & NOTIFY_STOP_MASK) {
1873 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1874 				__func__, core->name, ret);
1875 		goto out;
1876 	}
1877 
1878 	hlist_for_each_entry(child, &core->children, child_node) {
1879 		ret = __clk_speculate_rates(child, new_rate);
1880 		if (ret & NOTIFY_STOP_MASK)
1881 			break;
1882 	}
1883 
1884 out:
1885 	return ret;
1886 }
1887 
1888 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1889 			     struct clk_core *new_parent, u8 p_index)
1890 {
1891 	struct clk_core *child;
1892 
1893 	core->new_rate = new_rate;
1894 	core->new_parent = new_parent;
1895 	core->new_parent_index = p_index;
1896 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1897 	core->new_child = NULL;
1898 	if (new_parent && new_parent != core->parent)
1899 		new_parent->new_child = core;
1900 
1901 	hlist_for_each_entry(child, &core->children, child_node) {
1902 		child->new_rate = clk_recalc(child, new_rate);
1903 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1904 	}
1905 }
1906 
1907 /*
1908  * calculate the new rates returning the topmost clock that has to be
1909  * changed.
1910  */
1911 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1912 					   unsigned long rate)
1913 {
1914 	struct clk_core *top = core;
1915 	struct clk_core *old_parent, *parent;
1916 	unsigned long best_parent_rate = 0;
1917 	unsigned long new_rate;
1918 	unsigned long min_rate;
1919 	unsigned long max_rate;
1920 	int p_index = 0;
1921 	long ret;
1922 
1923 	/* sanity */
1924 	if (IS_ERR_OR_NULL(core))
1925 		return NULL;
1926 
1927 	/* save parent rate, if it exists */
1928 	parent = old_parent = core->parent;
1929 	if (parent)
1930 		best_parent_rate = parent->rate;
1931 
1932 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1933 
1934 	/* find the closest rate and parent clk/rate */
1935 	if (clk_core_can_round(core)) {
1936 		struct clk_rate_request req;
1937 
1938 		req.rate = rate;
1939 		req.min_rate = min_rate;
1940 		req.max_rate = max_rate;
1941 
1942 		clk_core_init_rate_req(core, &req);
1943 
1944 		ret = clk_core_determine_round_nolock(core, &req);
1945 		if (ret < 0)
1946 			return NULL;
1947 
1948 		best_parent_rate = req.best_parent_rate;
1949 		new_rate = req.rate;
1950 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1951 
1952 		if (new_rate < min_rate || new_rate > max_rate)
1953 			return NULL;
1954 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1955 		/* pass-through clock without adjustable parent */
1956 		core->new_rate = core->rate;
1957 		return NULL;
1958 	} else {
1959 		/* pass-through clock with adjustable parent */
1960 		top = clk_calc_new_rates(parent, rate);
1961 		new_rate = parent->new_rate;
1962 		goto out;
1963 	}
1964 
1965 	/* some clocks must be gated to change parent */
1966 	if (parent != old_parent &&
1967 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1968 		pr_debug("%s: %s not gated but wants to reparent\n",
1969 			 __func__, core->name);
1970 		return NULL;
1971 	}
1972 
1973 	/* try finding the new parent index */
1974 	if (parent && core->num_parents > 1) {
1975 		p_index = clk_fetch_parent_index(core, parent);
1976 		if (p_index < 0) {
1977 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1978 				 __func__, parent->name, core->name);
1979 			return NULL;
1980 		}
1981 	}
1982 
1983 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1984 	    best_parent_rate != parent->rate)
1985 		top = clk_calc_new_rates(parent, best_parent_rate);
1986 
1987 out:
1988 	clk_calc_subtree(core, new_rate, parent, p_index);
1989 
1990 	return top;
1991 }
1992 
1993 /*
1994  * Notify about rate changes in a subtree. Always walk down the whole tree
1995  * so that in case of an error we can walk down the whole tree again and
1996  * abort the change.
1997  */
1998 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1999 						  unsigned long event)
2000 {
2001 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2002 	int ret = NOTIFY_DONE;
2003 
2004 	if (core->rate == core->new_rate)
2005 		return NULL;
2006 
2007 	if (core->notifier_count) {
2008 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2009 		if (ret & NOTIFY_STOP_MASK)
2010 			fail_clk = core;
2011 	}
2012 
2013 	hlist_for_each_entry(child, &core->children, child_node) {
2014 		/* Skip children who will be reparented to another clock */
2015 		if (child->new_parent && child->new_parent != core)
2016 			continue;
2017 		tmp_clk = clk_propagate_rate_change(child, event);
2018 		if (tmp_clk)
2019 			fail_clk = tmp_clk;
2020 	}
2021 
2022 	/* handle the new child who might not be in core->children yet */
2023 	if (core->new_child) {
2024 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2025 		if (tmp_clk)
2026 			fail_clk = tmp_clk;
2027 	}
2028 
2029 	return fail_clk;
2030 }
2031 
2032 /*
2033  * walk down a subtree and set the new rates notifying the rate
2034  * change on the way
2035  */
2036 static void clk_change_rate(struct clk_core *core)
2037 {
2038 	struct clk_core *child;
2039 	struct hlist_node *tmp;
2040 	unsigned long old_rate;
2041 	unsigned long best_parent_rate = 0;
2042 	bool skip_set_rate = false;
2043 	struct clk_core *old_parent;
2044 	struct clk_core *parent = NULL;
2045 
2046 	old_rate = core->rate;
2047 
2048 	if (core->new_parent) {
2049 		parent = core->new_parent;
2050 		best_parent_rate = core->new_parent->rate;
2051 	} else if (core->parent) {
2052 		parent = core->parent;
2053 		best_parent_rate = core->parent->rate;
2054 	}
2055 
2056 	if (clk_pm_runtime_get(core))
2057 		return;
2058 
2059 	if (core->flags & CLK_SET_RATE_UNGATE) {
2060 		unsigned long flags;
2061 
2062 		clk_core_prepare(core);
2063 		flags = clk_enable_lock();
2064 		clk_core_enable(core);
2065 		clk_enable_unlock(flags);
2066 	}
2067 
2068 	if (core->new_parent && core->new_parent != core->parent) {
2069 		old_parent = __clk_set_parent_before(core, core->new_parent);
2070 		trace_clk_set_parent(core, core->new_parent);
2071 
2072 		if (core->ops->set_rate_and_parent) {
2073 			skip_set_rate = true;
2074 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2075 					best_parent_rate,
2076 					core->new_parent_index);
2077 		} else if (core->ops->set_parent) {
2078 			core->ops->set_parent(core->hw, core->new_parent_index);
2079 		}
2080 
2081 		trace_clk_set_parent_complete(core, core->new_parent);
2082 		__clk_set_parent_after(core, core->new_parent, old_parent);
2083 	}
2084 
2085 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2086 		clk_core_prepare_enable(parent);
2087 
2088 	trace_clk_set_rate(core, core->new_rate);
2089 
2090 	if (!skip_set_rate && core->ops->set_rate)
2091 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2092 
2093 	trace_clk_set_rate_complete(core, core->new_rate);
2094 
2095 	core->rate = clk_recalc(core, best_parent_rate);
2096 
2097 	if (core->flags & CLK_SET_RATE_UNGATE) {
2098 		unsigned long flags;
2099 
2100 		flags = clk_enable_lock();
2101 		clk_core_disable(core);
2102 		clk_enable_unlock(flags);
2103 		clk_core_unprepare(core);
2104 	}
2105 
2106 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2107 		clk_core_disable_unprepare(parent);
2108 
2109 	if (core->notifier_count && old_rate != core->rate)
2110 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2111 
2112 	if (core->flags & CLK_RECALC_NEW_RATES)
2113 		(void)clk_calc_new_rates(core, core->new_rate);
2114 
2115 	/*
2116 	 * Use safe iteration, as change_rate can actually swap parents
2117 	 * for certain clock types.
2118 	 */
2119 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2120 		/* Skip children who will be reparented to another clock */
2121 		if (child->new_parent && child->new_parent != core)
2122 			continue;
2123 		clk_change_rate(child);
2124 	}
2125 
2126 	/* handle the new child who might not be in core->children yet */
2127 	if (core->new_child)
2128 		clk_change_rate(core->new_child);
2129 
2130 	clk_pm_runtime_put(core);
2131 }
2132 
2133 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2134 						     unsigned long req_rate)
2135 {
2136 	int ret, cnt;
2137 	struct clk_rate_request req;
2138 
2139 	lockdep_assert_held(&prepare_lock);
2140 
2141 	if (!core)
2142 		return 0;
2143 
2144 	/* simulate what the rate would be if it could be freely set */
2145 	cnt = clk_core_rate_nuke_protect(core);
2146 	if (cnt < 0)
2147 		return cnt;
2148 
2149 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2150 	req.rate = req_rate;
2151 
2152 	ret = clk_core_round_rate_nolock(core, &req);
2153 
2154 	/* restore the protection */
2155 	clk_core_rate_restore_protect(core, cnt);
2156 
2157 	return ret ? 0 : req.rate;
2158 }
2159 
2160 static int clk_core_set_rate_nolock(struct clk_core *core,
2161 				    unsigned long req_rate)
2162 {
2163 	struct clk_core *top, *fail_clk;
2164 	unsigned long rate;
2165 	int ret = 0;
2166 
2167 	if (!core)
2168 		return 0;
2169 
2170 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2171 
2172 	/* bail early if nothing to do */
2173 	if (rate == clk_core_get_rate_nolock(core))
2174 		return 0;
2175 
2176 	/* fail on a direct rate set of a protected provider */
2177 	if (clk_core_rate_is_protected(core))
2178 		return -EBUSY;
2179 
2180 	/* calculate new rates and get the topmost changed clock */
2181 	top = clk_calc_new_rates(core, req_rate);
2182 	if (!top)
2183 		return -EINVAL;
2184 
2185 	ret = clk_pm_runtime_get(core);
2186 	if (ret)
2187 		return ret;
2188 
2189 	/* notify that we are about to change rates */
2190 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2191 	if (fail_clk) {
2192 		pr_debug("%s: failed to set %s rate\n", __func__,
2193 				fail_clk->name);
2194 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2195 		ret = -EBUSY;
2196 		goto err;
2197 	}
2198 
2199 	/* change the rates */
2200 	clk_change_rate(top);
2201 
2202 	core->req_rate = req_rate;
2203 err:
2204 	clk_pm_runtime_put(core);
2205 
2206 	return ret;
2207 }
2208 
2209 /**
2210  * clk_set_rate - specify a new rate for clk
2211  * @clk: the clk whose rate is being changed
2212  * @rate: the new rate for clk
2213  *
2214  * In the simplest case clk_set_rate will only adjust the rate of clk.
2215  *
2216  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2217  * propagate up to clk's parent; whether or not this happens depends on the
2218  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2219  * after calling .round_rate then upstream parent propagation is ignored.  If
2220  * *parent_rate comes back with a new rate for clk's parent then we propagate
2221  * up to clk's parent and set its rate.  Upward propagation will continue
2222  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2223  * .round_rate stops requesting changes to clk's parent_rate.
2224  *
2225  * Rate changes are accomplished via tree traversal that also recalculates the
2226  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2227  *
2228  * Returns 0 on success, -EERROR otherwise.
2229  */
2230 int clk_set_rate(struct clk *clk, unsigned long rate)
2231 {
2232 	int ret;
2233 
2234 	if (!clk)
2235 		return 0;
2236 
2237 	/* prevent racing with updates to the clock topology */
2238 	clk_prepare_lock();
2239 
2240 	if (clk->exclusive_count)
2241 		clk_core_rate_unprotect(clk->core);
2242 
2243 	ret = clk_core_set_rate_nolock(clk->core, rate);
2244 
2245 	if (clk->exclusive_count)
2246 		clk_core_rate_protect(clk->core);
2247 
2248 	clk_prepare_unlock();
2249 
2250 	return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(clk_set_rate);
2253 
2254 /**
2255  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2256  * @clk: the clk whose rate is being changed
2257  * @rate: the new rate for clk
2258  *
2259  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2260  * within a critical section
2261  *
2262  * This can be used initially to ensure that at least 1 consumer is
2263  * satisfied when several consumers are competing for exclusivity over the
2264  * same clock provider.
2265  *
2266  * The exclusivity is not applied if setting the rate failed.
2267  *
2268  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2269  * clk_rate_exclusive_put().
2270  *
2271  * Returns 0 on success, -EERROR otherwise.
2272  */
2273 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2274 {
2275 	int ret;
2276 
2277 	if (!clk)
2278 		return 0;
2279 
2280 	/* prevent racing with updates to the clock topology */
2281 	clk_prepare_lock();
2282 
2283 	/*
2284 	 * The temporary protection removal is not here, on purpose
2285 	 * This function is meant to be used instead of clk_rate_protect,
2286 	 * so before the consumer code path protect the clock provider
2287 	 */
2288 
2289 	ret = clk_core_set_rate_nolock(clk->core, rate);
2290 	if (!ret) {
2291 		clk_core_rate_protect(clk->core);
2292 		clk->exclusive_count++;
2293 	}
2294 
2295 	clk_prepare_unlock();
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2300 
2301 /**
2302  * clk_set_rate_range - set a rate range for a clock source
2303  * @clk: clock source
2304  * @min: desired minimum clock rate in Hz, inclusive
2305  * @max: desired maximum clock rate in Hz, inclusive
2306  *
2307  * Returns success (0) or negative errno.
2308  */
2309 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2310 {
2311 	int ret = 0;
2312 	unsigned long old_min, old_max, rate;
2313 
2314 	if (!clk)
2315 		return 0;
2316 
2317 	if (min > max) {
2318 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2319 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2320 		       min, max);
2321 		return -EINVAL;
2322 	}
2323 
2324 	clk_prepare_lock();
2325 
2326 	if (clk->exclusive_count)
2327 		clk_core_rate_unprotect(clk->core);
2328 
2329 	/* Save the current values in case we need to rollback the change */
2330 	old_min = clk->min_rate;
2331 	old_max = clk->max_rate;
2332 	clk->min_rate = min;
2333 	clk->max_rate = max;
2334 
2335 	rate = clk_core_get_rate_nolock(clk->core);
2336 	if (rate < min || rate > max) {
2337 		/*
2338 		 * FIXME:
2339 		 * We are in bit of trouble here, current rate is outside the
2340 		 * the requested range. We are going try to request appropriate
2341 		 * range boundary but there is a catch. It may fail for the
2342 		 * usual reason (clock broken, clock protected, etc) but also
2343 		 * because:
2344 		 * - round_rate() was not favorable and fell on the wrong
2345 		 *   side of the boundary
2346 		 * - the determine_rate() callback does not really check for
2347 		 *   this corner case when determining the rate
2348 		 */
2349 
2350 		if (rate < min)
2351 			rate = min;
2352 		else
2353 			rate = max;
2354 
2355 		ret = clk_core_set_rate_nolock(clk->core, rate);
2356 		if (ret) {
2357 			/* rollback the changes */
2358 			clk->min_rate = old_min;
2359 			clk->max_rate = old_max;
2360 		}
2361 	}
2362 
2363 	if (clk->exclusive_count)
2364 		clk_core_rate_protect(clk->core);
2365 
2366 	clk_prepare_unlock();
2367 
2368 	return ret;
2369 }
2370 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2371 
2372 /**
2373  * clk_set_min_rate - set a minimum clock rate for a clock source
2374  * @clk: clock source
2375  * @rate: desired minimum clock rate in Hz, inclusive
2376  *
2377  * Returns success (0) or negative errno.
2378  */
2379 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2380 {
2381 	if (!clk)
2382 		return 0;
2383 
2384 	return clk_set_rate_range(clk, rate, clk->max_rate);
2385 }
2386 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2387 
2388 /**
2389  * clk_set_max_rate - set a maximum clock rate for a clock source
2390  * @clk: clock source
2391  * @rate: desired maximum clock rate in Hz, inclusive
2392  *
2393  * Returns success (0) or negative errno.
2394  */
2395 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2396 {
2397 	if (!clk)
2398 		return 0;
2399 
2400 	return clk_set_rate_range(clk, clk->min_rate, rate);
2401 }
2402 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2403 
2404 /**
2405  * clk_get_parent - return the parent of a clk
2406  * @clk: the clk whose parent gets returned
2407  *
2408  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2409  */
2410 struct clk *clk_get_parent(struct clk *clk)
2411 {
2412 	struct clk *parent;
2413 
2414 	if (!clk)
2415 		return NULL;
2416 
2417 	clk_prepare_lock();
2418 	/* TODO: Create a per-user clk and change callers to call clk_put */
2419 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2420 	clk_prepare_unlock();
2421 
2422 	return parent;
2423 }
2424 EXPORT_SYMBOL_GPL(clk_get_parent);
2425 
2426 static struct clk_core *__clk_init_parent(struct clk_core *core)
2427 {
2428 	u8 index = 0;
2429 
2430 	if (core->num_parents > 1 && core->ops->get_parent)
2431 		index = core->ops->get_parent(core->hw);
2432 
2433 	return clk_core_get_parent_by_index(core, index);
2434 }
2435 
2436 static void clk_core_reparent(struct clk_core *core,
2437 				  struct clk_core *new_parent)
2438 {
2439 	clk_reparent(core, new_parent);
2440 	__clk_recalc_accuracies(core);
2441 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2442 }
2443 
2444 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2445 {
2446 	if (!hw)
2447 		return;
2448 
2449 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2450 }
2451 
2452 /**
2453  * clk_has_parent - check if a clock is a possible parent for another
2454  * @clk: clock source
2455  * @parent: parent clock source
2456  *
2457  * This function can be used in drivers that need to check that a clock can be
2458  * the parent of another without actually changing the parent.
2459  *
2460  * Returns true if @parent is a possible parent for @clk, false otherwise.
2461  */
2462 bool clk_has_parent(struct clk *clk, struct clk *parent)
2463 {
2464 	struct clk_core *core, *parent_core;
2465 	int i;
2466 
2467 	/* NULL clocks should be nops, so return success if either is NULL. */
2468 	if (!clk || !parent)
2469 		return true;
2470 
2471 	core = clk->core;
2472 	parent_core = parent->core;
2473 
2474 	/* Optimize for the case where the parent is already the parent. */
2475 	if (core->parent == parent_core)
2476 		return true;
2477 
2478 	for (i = 0; i < core->num_parents; i++)
2479 		if (!strcmp(core->parents[i].name, parent_core->name))
2480 			return true;
2481 
2482 	return false;
2483 }
2484 EXPORT_SYMBOL_GPL(clk_has_parent);
2485 
2486 static int clk_core_set_parent_nolock(struct clk_core *core,
2487 				      struct clk_core *parent)
2488 {
2489 	int ret = 0;
2490 	int p_index = 0;
2491 	unsigned long p_rate = 0;
2492 
2493 	lockdep_assert_held(&prepare_lock);
2494 
2495 	if (!core)
2496 		return 0;
2497 
2498 	if (core->parent == parent)
2499 		return 0;
2500 
2501 	/* verify ops for multi-parent clks */
2502 	if (core->num_parents > 1 && !core->ops->set_parent)
2503 		return -EPERM;
2504 
2505 	/* check that we are allowed to re-parent if the clock is in use */
2506 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2507 		return -EBUSY;
2508 
2509 	if (clk_core_rate_is_protected(core))
2510 		return -EBUSY;
2511 
2512 	/* try finding the new parent index */
2513 	if (parent) {
2514 		p_index = clk_fetch_parent_index(core, parent);
2515 		if (p_index < 0) {
2516 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2517 					__func__, parent->name, core->name);
2518 			return p_index;
2519 		}
2520 		p_rate = parent->rate;
2521 	}
2522 
2523 	ret = clk_pm_runtime_get(core);
2524 	if (ret)
2525 		return ret;
2526 
2527 	/* propagate PRE_RATE_CHANGE notifications */
2528 	ret = __clk_speculate_rates(core, p_rate);
2529 
2530 	/* abort if a driver objects */
2531 	if (ret & NOTIFY_STOP_MASK)
2532 		goto runtime_put;
2533 
2534 	/* do the re-parent */
2535 	ret = __clk_set_parent(core, parent, p_index);
2536 
2537 	/* propagate rate an accuracy recalculation accordingly */
2538 	if (ret) {
2539 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2540 	} else {
2541 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2542 		__clk_recalc_accuracies(core);
2543 	}
2544 
2545 runtime_put:
2546 	clk_pm_runtime_put(core);
2547 
2548 	return ret;
2549 }
2550 
2551 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2552 {
2553 	return clk_core_set_parent_nolock(hw->core, parent->core);
2554 }
2555 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2556 
2557 /**
2558  * clk_set_parent - switch the parent of a mux clk
2559  * @clk: the mux clk whose input we are switching
2560  * @parent: the new input to clk
2561  *
2562  * Re-parent clk to use parent as its new input source.  If clk is in
2563  * prepared state, the clk will get enabled for the duration of this call. If
2564  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2565  * that, the reparenting is glitchy in hardware, etc), use the
2566  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2567  *
2568  * After successfully changing clk's parent clk_set_parent will update the
2569  * clk topology, sysfs topology and propagate rate recalculation via
2570  * __clk_recalc_rates.
2571  *
2572  * Returns 0 on success, -EERROR otherwise.
2573  */
2574 int clk_set_parent(struct clk *clk, struct clk *parent)
2575 {
2576 	int ret;
2577 
2578 	if (!clk)
2579 		return 0;
2580 
2581 	clk_prepare_lock();
2582 
2583 	if (clk->exclusive_count)
2584 		clk_core_rate_unprotect(clk->core);
2585 
2586 	ret = clk_core_set_parent_nolock(clk->core,
2587 					 parent ? parent->core : NULL);
2588 
2589 	if (clk->exclusive_count)
2590 		clk_core_rate_protect(clk->core);
2591 
2592 	clk_prepare_unlock();
2593 
2594 	return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(clk_set_parent);
2597 
2598 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2599 {
2600 	int ret = -EINVAL;
2601 
2602 	lockdep_assert_held(&prepare_lock);
2603 
2604 	if (!core)
2605 		return 0;
2606 
2607 	if (clk_core_rate_is_protected(core))
2608 		return -EBUSY;
2609 
2610 	trace_clk_set_phase(core, degrees);
2611 
2612 	if (core->ops->set_phase) {
2613 		ret = core->ops->set_phase(core->hw, degrees);
2614 		if (!ret)
2615 			core->phase = degrees;
2616 	}
2617 
2618 	trace_clk_set_phase_complete(core, degrees);
2619 
2620 	return ret;
2621 }
2622 
2623 /**
2624  * clk_set_phase - adjust the phase shift of a clock signal
2625  * @clk: clock signal source
2626  * @degrees: number of degrees the signal is shifted
2627  *
2628  * Shifts the phase of a clock signal by the specified
2629  * degrees. Returns 0 on success, -EERROR otherwise.
2630  *
2631  * This function makes no distinction about the input or reference
2632  * signal that we adjust the clock signal phase against. For example
2633  * phase locked-loop clock signal generators we may shift phase with
2634  * respect to feedback clock signal input, but for other cases the
2635  * clock phase may be shifted with respect to some other, unspecified
2636  * signal.
2637  *
2638  * Additionally the concept of phase shift does not propagate through
2639  * the clock tree hierarchy, which sets it apart from clock rates and
2640  * clock accuracy. A parent clock phase attribute does not have an
2641  * impact on the phase attribute of a child clock.
2642  */
2643 int clk_set_phase(struct clk *clk, int degrees)
2644 {
2645 	int ret;
2646 
2647 	if (!clk)
2648 		return 0;
2649 
2650 	/* sanity check degrees */
2651 	degrees %= 360;
2652 	if (degrees < 0)
2653 		degrees += 360;
2654 
2655 	clk_prepare_lock();
2656 
2657 	if (clk->exclusive_count)
2658 		clk_core_rate_unprotect(clk->core);
2659 
2660 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2661 
2662 	if (clk->exclusive_count)
2663 		clk_core_rate_protect(clk->core);
2664 
2665 	clk_prepare_unlock();
2666 
2667 	return ret;
2668 }
2669 EXPORT_SYMBOL_GPL(clk_set_phase);
2670 
2671 static int clk_core_get_phase(struct clk_core *core)
2672 {
2673 	int ret;
2674 
2675 	lockdep_assert_held(&prepare_lock);
2676 	if (!core->ops->get_phase)
2677 		return 0;
2678 
2679 	/* Always try to update cached phase if possible */
2680 	ret = core->ops->get_phase(core->hw);
2681 	if (ret >= 0)
2682 		core->phase = ret;
2683 
2684 	return ret;
2685 }
2686 
2687 /**
2688  * clk_get_phase - return the phase shift of a clock signal
2689  * @clk: clock signal source
2690  *
2691  * Returns the phase shift of a clock node in degrees, otherwise returns
2692  * -EERROR.
2693  */
2694 int clk_get_phase(struct clk *clk)
2695 {
2696 	int ret;
2697 
2698 	if (!clk)
2699 		return 0;
2700 
2701 	clk_prepare_lock();
2702 	ret = clk_core_get_phase(clk->core);
2703 	clk_prepare_unlock();
2704 
2705 	return ret;
2706 }
2707 EXPORT_SYMBOL_GPL(clk_get_phase);
2708 
2709 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2710 {
2711 	/* Assume a default value of 50% */
2712 	core->duty.num = 1;
2713 	core->duty.den = 2;
2714 }
2715 
2716 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2717 
2718 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2719 {
2720 	struct clk_duty *duty = &core->duty;
2721 	int ret = 0;
2722 
2723 	if (!core->ops->get_duty_cycle)
2724 		return clk_core_update_duty_cycle_parent_nolock(core);
2725 
2726 	ret = core->ops->get_duty_cycle(core->hw, duty);
2727 	if (ret)
2728 		goto reset;
2729 
2730 	/* Don't trust the clock provider too much */
2731 	if (duty->den == 0 || duty->num > duty->den) {
2732 		ret = -EINVAL;
2733 		goto reset;
2734 	}
2735 
2736 	return 0;
2737 
2738 reset:
2739 	clk_core_reset_duty_cycle_nolock(core);
2740 	return ret;
2741 }
2742 
2743 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2744 {
2745 	int ret = 0;
2746 
2747 	if (core->parent &&
2748 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2749 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2750 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2751 	} else {
2752 		clk_core_reset_duty_cycle_nolock(core);
2753 	}
2754 
2755 	return ret;
2756 }
2757 
2758 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2759 						 struct clk_duty *duty);
2760 
2761 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2762 					  struct clk_duty *duty)
2763 {
2764 	int ret;
2765 
2766 	lockdep_assert_held(&prepare_lock);
2767 
2768 	if (clk_core_rate_is_protected(core))
2769 		return -EBUSY;
2770 
2771 	trace_clk_set_duty_cycle(core, duty);
2772 
2773 	if (!core->ops->set_duty_cycle)
2774 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2775 
2776 	ret = core->ops->set_duty_cycle(core->hw, duty);
2777 	if (!ret)
2778 		memcpy(&core->duty, duty, sizeof(*duty));
2779 
2780 	trace_clk_set_duty_cycle_complete(core, duty);
2781 
2782 	return ret;
2783 }
2784 
2785 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2786 						 struct clk_duty *duty)
2787 {
2788 	int ret = 0;
2789 
2790 	if (core->parent &&
2791 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2792 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2793 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2794 	}
2795 
2796 	return ret;
2797 }
2798 
2799 /**
2800  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2801  * @clk: clock signal source
2802  * @num: numerator of the duty cycle ratio to be applied
2803  * @den: denominator of the duty cycle ratio to be applied
2804  *
2805  * Apply the duty cycle ratio if the ratio is valid and the clock can
2806  * perform this operation
2807  *
2808  * Returns (0) on success, a negative errno otherwise.
2809  */
2810 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2811 {
2812 	int ret;
2813 	struct clk_duty duty;
2814 
2815 	if (!clk)
2816 		return 0;
2817 
2818 	/* sanity check the ratio */
2819 	if (den == 0 || num > den)
2820 		return -EINVAL;
2821 
2822 	duty.num = num;
2823 	duty.den = den;
2824 
2825 	clk_prepare_lock();
2826 
2827 	if (clk->exclusive_count)
2828 		clk_core_rate_unprotect(clk->core);
2829 
2830 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2831 
2832 	if (clk->exclusive_count)
2833 		clk_core_rate_protect(clk->core);
2834 
2835 	clk_prepare_unlock();
2836 
2837 	return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2840 
2841 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2842 					  unsigned int scale)
2843 {
2844 	struct clk_duty *duty = &core->duty;
2845 	int ret;
2846 
2847 	clk_prepare_lock();
2848 
2849 	ret = clk_core_update_duty_cycle_nolock(core);
2850 	if (!ret)
2851 		ret = mult_frac(scale, duty->num, duty->den);
2852 
2853 	clk_prepare_unlock();
2854 
2855 	return ret;
2856 }
2857 
2858 /**
2859  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2860  * @clk: clock signal source
2861  * @scale: scaling factor to be applied to represent the ratio as an integer
2862  *
2863  * Returns the duty cycle ratio of a clock node multiplied by the provided
2864  * scaling factor, or negative errno on error.
2865  */
2866 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2867 {
2868 	if (!clk)
2869 		return 0;
2870 
2871 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2872 }
2873 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2874 
2875 /**
2876  * clk_is_match - check if two clk's point to the same hardware clock
2877  * @p: clk compared against q
2878  * @q: clk compared against p
2879  *
2880  * Returns true if the two struct clk pointers both point to the same hardware
2881  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2882  * share the same struct clk_core object.
2883  *
2884  * Returns false otherwise. Note that two NULL clks are treated as matching.
2885  */
2886 bool clk_is_match(const struct clk *p, const struct clk *q)
2887 {
2888 	/* trivial case: identical struct clk's or both NULL */
2889 	if (p == q)
2890 		return true;
2891 
2892 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2893 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2894 		if (p->core == q->core)
2895 			return true;
2896 
2897 	return false;
2898 }
2899 EXPORT_SYMBOL_GPL(clk_is_match);
2900 
2901 /***        debugfs support        ***/
2902 
2903 #ifdef CONFIG_DEBUG_FS
2904 #include <linux/debugfs.h>
2905 
2906 static struct dentry *rootdir;
2907 static int inited = 0;
2908 static DEFINE_MUTEX(clk_debug_lock);
2909 static HLIST_HEAD(clk_debug_list);
2910 
2911 static struct hlist_head *orphan_list[] = {
2912 	&clk_orphan_list,
2913 	NULL,
2914 };
2915 
2916 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2917 				 int level)
2918 {
2919 	int phase;
2920 
2921 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2922 		   level * 3 + 1, "",
2923 		   30 - level * 3, c->name,
2924 		   c->enable_count, c->prepare_count, c->protect_count,
2925 		   clk_core_get_rate_recalc(c),
2926 		   clk_core_get_accuracy_recalc(c));
2927 
2928 	phase = clk_core_get_phase(c);
2929 	if (phase >= 0)
2930 		seq_printf(s, "%5d", phase);
2931 	else
2932 		seq_puts(s, "-----");
2933 
2934 	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
2935 }
2936 
2937 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2938 				     int level)
2939 {
2940 	struct clk_core *child;
2941 
2942 	clk_summary_show_one(s, c, level);
2943 
2944 	hlist_for_each_entry(child, &c->children, child_node)
2945 		clk_summary_show_subtree(s, child, level + 1);
2946 }
2947 
2948 static int clk_summary_show(struct seq_file *s, void *data)
2949 {
2950 	struct clk_core *c;
2951 	struct hlist_head **lists = (struct hlist_head **)s->private;
2952 
2953 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2954 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2955 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2956 
2957 	clk_prepare_lock();
2958 
2959 	for (; *lists; lists++)
2960 		hlist_for_each_entry(c, *lists, child_node)
2961 			clk_summary_show_subtree(s, c, 0);
2962 
2963 	clk_prepare_unlock();
2964 
2965 	return 0;
2966 }
2967 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2968 
2969 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2970 {
2971 	int phase;
2972 	unsigned long min_rate, max_rate;
2973 
2974 	clk_core_get_boundaries(c, &min_rate, &max_rate);
2975 
2976 	/* This should be JSON format, i.e. elements separated with a comma */
2977 	seq_printf(s, "\"%s\": { ", c->name);
2978 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2979 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2980 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2981 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
2982 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2983 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2984 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
2985 	phase = clk_core_get_phase(c);
2986 	if (phase >= 0)
2987 		seq_printf(s, "\"phase\": %d,", phase);
2988 	seq_printf(s, "\"duty_cycle\": %u",
2989 		   clk_core_get_scaled_duty_cycle(c, 100000));
2990 }
2991 
2992 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2993 {
2994 	struct clk_core *child;
2995 
2996 	clk_dump_one(s, c, level);
2997 
2998 	hlist_for_each_entry(child, &c->children, child_node) {
2999 		seq_putc(s, ',');
3000 		clk_dump_subtree(s, child, level + 1);
3001 	}
3002 
3003 	seq_putc(s, '}');
3004 }
3005 
3006 static int clk_dump_show(struct seq_file *s, void *data)
3007 {
3008 	struct clk_core *c;
3009 	bool first_node = true;
3010 	struct hlist_head **lists = (struct hlist_head **)s->private;
3011 
3012 	seq_putc(s, '{');
3013 	clk_prepare_lock();
3014 
3015 	for (; *lists; lists++) {
3016 		hlist_for_each_entry(c, *lists, child_node) {
3017 			if (!first_node)
3018 				seq_putc(s, ',');
3019 			first_node = false;
3020 			clk_dump_subtree(s, c, 0);
3021 		}
3022 	}
3023 
3024 	clk_prepare_unlock();
3025 
3026 	seq_puts(s, "}\n");
3027 	return 0;
3028 }
3029 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3030 
3031 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3032 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3033 /*
3034  * This can be dangerous, therefore don't provide any real compile time
3035  * configuration option for this feature.
3036  * People who want to use this will need to modify the source code directly.
3037  */
3038 static int clk_rate_set(void *data, u64 val)
3039 {
3040 	struct clk_core *core = data;
3041 	int ret;
3042 
3043 	clk_prepare_lock();
3044 	ret = clk_core_set_rate_nolock(core, val);
3045 	clk_prepare_unlock();
3046 
3047 	return ret;
3048 }
3049 
3050 #define clk_rate_mode	0644
3051 
3052 static int clk_prepare_enable_set(void *data, u64 val)
3053 {
3054 	struct clk_core *core = data;
3055 	int ret = 0;
3056 
3057 	if (val)
3058 		ret = clk_prepare_enable(core->hw->clk);
3059 	else
3060 		clk_disable_unprepare(core->hw->clk);
3061 
3062 	return ret;
3063 }
3064 
3065 static int clk_prepare_enable_get(void *data, u64 *val)
3066 {
3067 	struct clk_core *core = data;
3068 
3069 	*val = core->enable_count && core->prepare_count;
3070 	return 0;
3071 }
3072 
3073 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3074 			 clk_prepare_enable_set, "%llu\n");
3075 
3076 #else
3077 #define clk_rate_set	NULL
3078 #define clk_rate_mode	0444
3079 #endif
3080 
3081 static int clk_rate_get(void *data, u64 *val)
3082 {
3083 	struct clk_core *core = data;
3084 
3085 	*val = core->rate;
3086 	return 0;
3087 }
3088 
3089 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3090 
3091 static const struct {
3092 	unsigned long flag;
3093 	const char *name;
3094 } clk_flags[] = {
3095 #define ENTRY(f) { f, #f }
3096 	ENTRY(CLK_SET_RATE_GATE),
3097 	ENTRY(CLK_SET_PARENT_GATE),
3098 	ENTRY(CLK_SET_RATE_PARENT),
3099 	ENTRY(CLK_IGNORE_UNUSED),
3100 	ENTRY(CLK_GET_RATE_NOCACHE),
3101 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3102 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3103 	ENTRY(CLK_RECALC_NEW_RATES),
3104 	ENTRY(CLK_SET_RATE_UNGATE),
3105 	ENTRY(CLK_IS_CRITICAL),
3106 	ENTRY(CLK_OPS_PARENT_ENABLE),
3107 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3108 #undef ENTRY
3109 };
3110 
3111 static int clk_flags_show(struct seq_file *s, void *data)
3112 {
3113 	struct clk_core *core = s->private;
3114 	unsigned long flags = core->flags;
3115 	unsigned int i;
3116 
3117 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3118 		if (flags & clk_flags[i].flag) {
3119 			seq_printf(s, "%s\n", clk_flags[i].name);
3120 			flags &= ~clk_flags[i].flag;
3121 		}
3122 	}
3123 	if (flags) {
3124 		/* Unknown flags */
3125 		seq_printf(s, "0x%lx\n", flags);
3126 	}
3127 
3128 	return 0;
3129 }
3130 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3131 
3132 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3133 				 unsigned int i, char terminator)
3134 {
3135 	struct clk_core *parent;
3136 
3137 	/*
3138 	 * Go through the following options to fetch a parent's name.
3139 	 *
3140 	 * 1. Fetch the registered parent clock and use its name
3141 	 * 2. Use the global (fallback) name if specified
3142 	 * 3. Use the local fw_name if provided
3143 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3144 	 *
3145 	 * This may still fail in some cases, such as when the parent is
3146 	 * specified directly via a struct clk_hw pointer, but it isn't
3147 	 * registered (yet).
3148 	 */
3149 	parent = clk_core_get_parent_by_index(core, i);
3150 	if (parent)
3151 		seq_puts(s, parent->name);
3152 	else if (core->parents[i].name)
3153 		seq_puts(s, core->parents[i].name);
3154 	else if (core->parents[i].fw_name)
3155 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3156 	else if (core->parents[i].index >= 0)
3157 		seq_puts(s,
3158 			 of_clk_get_parent_name(core->of_node,
3159 						core->parents[i].index));
3160 	else
3161 		seq_puts(s, "(missing)");
3162 
3163 	seq_putc(s, terminator);
3164 }
3165 
3166 static int possible_parents_show(struct seq_file *s, void *data)
3167 {
3168 	struct clk_core *core = s->private;
3169 	int i;
3170 
3171 	for (i = 0; i < core->num_parents - 1; i++)
3172 		possible_parent_show(s, core, i, ' ');
3173 
3174 	possible_parent_show(s, core, i, '\n');
3175 
3176 	return 0;
3177 }
3178 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3179 
3180 static int current_parent_show(struct seq_file *s, void *data)
3181 {
3182 	struct clk_core *core = s->private;
3183 
3184 	if (core->parent)
3185 		seq_printf(s, "%s\n", core->parent->name);
3186 
3187 	return 0;
3188 }
3189 DEFINE_SHOW_ATTRIBUTE(current_parent);
3190 
3191 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3192 {
3193 	struct clk_core *core = s->private;
3194 	struct clk_duty *duty = &core->duty;
3195 
3196 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3197 
3198 	return 0;
3199 }
3200 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3201 
3202 static int clk_min_rate_show(struct seq_file *s, void *data)
3203 {
3204 	struct clk_core *core = s->private;
3205 	unsigned long min_rate, max_rate;
3206 
3207 	clk_prepare_lock();
3208 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3209 	clk_prepare_unlock();
3210 	seq_printf(s, "%lu\n", min_rate);
3211 
3212 	return 0;
3213 }
3214 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3215 
3216 static int clk_max_rate_show(struct seq_file *s, void *data)
3217 {
3218 	struct clk_core *core = s->private;
3219 	unsigned long min_rate, max_rate;
3220 
3221 	clk_prepare_lock();
3222 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3223 	clk_prepare_unlock();
3224 	seq_printf(s, "%lu\n", max_rate);
3225 
3226 	return 0;
3227 }
3228 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3229 
3230 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3231 {
3232 	struct dentry *root;
3233 
3234 	if (!core || !pdentry)
3235 		return;
3236 
3237 	root = debugfs_create_dir(core->name, pdentry);
3238 	core->dentry = root;
3239 
3240 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3241 			    &clk_rate_fops);
3242 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3243 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3244 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3245 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3246 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3247 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3248 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3249 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3250 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3251 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3252 			    &clk_duty_cycle_fops);
3253 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3254 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3255 			    &clk_prepare_enable_fops);
3256 #endif
3257 
3258 	if (core->num_parents > 0)
3259 		debugfs_create_file("clk_parent", 0444, root, core,
3260 				    &current_parent_fops);
3261 
3262 	if (core->num_parents > 1)
3263 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3264 				    &possible_parents_fops);
3265 
3266 	if (core->ops->debug_init)
3267 		core->ops->debug_init(core->hw, core->dentry);
3268 }
3269 
3270 /**
3271  * clk_debug_register - add a clk node to the debugfs clk directory
3272  * @core: the clk being added to the debugfs clk directory
3273  *
3274  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3275  * initialized.  Otherwise it bails out early since the debugfs clk directory
3276  * will be created lazily by clk_debug_init as part of a late_initcall.
3277  */
3278 static void clk_debug_register(struct clk_core *core)
3279 {
3280 	mutex_lock(&clk_debug_lock);
3281 	hlist_add_head(&core->debug_node, &clk_debug_list);
3282 	if (inited)
3283 		clk_debug_create_one(core, rootdir);
3284 	mutex_unlock(&clk_debug_lock);
3285 }
3286 
3287  /**
3288  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3289  * @core: the clk being removed from the debugfs clk directory
3290  *
3291  * Dynamically removes a clk and all its child nodes from the
3292  * debugfs clk directory if clk->dentry points to debugfs created by
3293  * clk_debug_register in __clk_core_init.
3294  */
3295 static void clk_debug_unregister(struct clk_core *core)
3296 {
3297 	mutex_lock(&clk_debug_lock);
3298 	hlist_del_init(&core->debug_node);
3299 	debugfs_remove_recursive(core->dentry);
3300 	core->dentry = NULL;
3301 	mutex_unlock(&clk_debug_lock);
3302 }
3303 
3304 /**
3305  * clk_debug_init - lazily populate the debugfs clk directory
3306  *
3307  * clks are often initialized very early during boot before memory can be
3308  * dynamically allocated and well before debugfs is setup. This function
3309  * populates the debugfs clk directory once at boot-time when we know that
3310  * debugfs is setup. It should only be called once at boot-time, all other clks
3311  * added dynamically will be done so with clk_debug_register.
3312  */
3313 static int __init clk_debug_init(void)
3314 {
3315 	struct clk_core *core;
3316 
3317 	rootdir = debugfs_create_dir("clk", NULL);
3318 
3319 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3320 			    &clk_summary_fops);
3321 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3322 			    &clk_dump_fops);
3323 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3324 			    &clk_summary_fops);
3325 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3326 			    &clk_dump_fops);
3327 
3328 	mutex_lock(&clk_debug_lock);
3329 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3330 		clk_debug_create_one(core, rootdir);
3331 
3332 	inited = 1;
3333 	mutex_unlock(&clk_debug_lock);
3334 
3335 	return 0;
3336 }
3337 late_initcall(clk_debug_init);
3338 #else
3339 static inline void clk_debug_register(struct clk_core *core) { }
3340 static inline void clk_debug_unregister(struct clk_core *core)
3341 {
3342 }
3343 #endif
3344 
3345 static void clk_core_reparent_orphans_nolock(void)
3346 {
3347 	struct clk_core *orphan;
3348 	struct hlist_node *tmp2;
3349 
3350 	/*
3351 	 * walk the list of orphan clocks and reparent any that newly finds a
3352 	 * parent.
3353 	 */
3354 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3355 		struct clk_core *parent = __clk_init_parent(orphan);
3356 
3357 		/*
3358 		 * We need to use __clk_set_parent_before() and _after() to
3359 		 * to properly migrate any prepare/enable count of the orphan
3360 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3361 		 * are enabled during init but might not have a parent yet.
3362 		 */
3363 		if (parent) {
3364 			/* update the clk tree topology */
3365 			__clk_set_parent_before(orphan, parent);
3366 			__clk_set_parent_after(orphan, parent, NULL);
3367 			__clk_recalc_accuracies(orphan);
3368 			__clk_recalc_rates(orphan, 0);
3369 		}
3370 	}
3371 }
3372 
3373 /**
3374  * __clk_core_init - initialize the data structures in a struct clk_core
3375  * @core:	clk_core being initialized
3376  *
3377  * Initializes the lists in struct clk_core, queries the hardware for the
3378  * parent and rate and sets them both.
3379  */
3380 static int __clk_core_init(struct clk_core *core)
3381 {
3382 	int ret;
3383 	struct clk_core *parent;
3384 	unsigned long rate;
3385 	int phase;
3386 
3387 	if (!core)
3388 		return -EINVAL;
3389 
3390 	clk_prepare_lock();
3391 
3392 	ret = clk_pm_runtime_get(core);
3393 	if (ret)
3394 		goto unlock;
3395 
3396 	/* check to see if a clock with this name is already registered */
3397 	if (clk_core_lookup(core->name)) {
3398 		pr_debug("%s: clk %s already initialized\n",
3399 				__func__, core->name);
3400 		ret = -EEXIST;
3401 		goto out;
3402 	}
3403 
3404 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3405 	if (core->ops->set_rate &&
3406 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3407 	      core->ops->recalc_rate)) {
3408 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3409 		       __func__, core->name);
3410 		ret = -EINVAL;
3411 		goto out;
3412 	}
3413 
3414 	if (core->ops->set_parent && !core->ops->get_parent) {
3415 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3416 		       __func__, core->name);
3417 		ret = -EINVAL;
3418 		goto out;
3419 	}
3420 
3421 	if (core->num_parents > 1 && !core->ops->get_parent) {
3422 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3423 		       __func__, core->name);
3424 		ret = -EINVAL;
3425 		goto out;
3426 	}
3427 
3428 	if (core->ops->set_rate_and_parent &&
3429 			!(core->ops->set_parent && core->ops->set_rate)) {
3430 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3431 				__func__, core->name);
3432 		ret = -EINVAL;
3433 		goto out;
3434 	}
3435 
3436 	/*
3437 	 * optional platform-specific magic
3438 	 *
3439 	 * The .init callback is not used by any of the basic clock types, but
3440 	 * exists for weird hardware that must perform initialization magic for
3441 	 * CCF to get an accurate view of clock for any other callbacks. It may
3442 	 * also be used needs to perform dynamic allocations. Such allocation
3443 	 * must be freed in the terminate() callback.
3444 	 * This callback shall not be used to initialize the parameters state,
3445 	 * such as rate, parent, etc ...
3446 	 *
3447 	 * If it exist, this callback should called before any other callback of
3448 	 * the clock
3449 	 */
3450 	if (core->ops->init) {
3451 		ret = core->ops->init(core->hw);
3452 		if (ret)
3453 			goto out;
3454 	}
3455 
3456 	parent = core->parent = __clk_init_parent(core);
3457 
3458 	/*
3459 	 * Populate core->parent if parent has already been clk_core_init'd. If
3460 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3461 	 * list.  If clk doesn't have any parents then place it in the root
3462 	 * clk list.
3463 	 *
3464 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3465 	 * clocks and re-parent any that are children of the clock currently
3466 	 * being clk_init'd.
3467 	 */
3468 	if (parent) {
3469 		hlist_add_head(&core->child_node, &parent->children);
3470 		core->orphan = parent->orphan;
3471 	} else if (!core->num_parents) {
3472 		hlist_add_head(&core->child_node, &clk_root_list);
3473 		core->orphan = false;
3474 	} else {
3475 		hlist_add_head(&core->child_node, &clk_orphan_list);
3476 		core->orphan = true;
3477 	}
3478 
3479 	/*
3480 	 * Set clk's accuracy.  The preferred method is to use
3481 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3482 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3483 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3484 	 * clock).
3485 	 */
3486 	if (core->ops->recalc_accuracy)
3487 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3488 					clk_core_get_accuracy_no_lock(parent));
3489 	else if (parent)
3490 		core->accuracy = parent->accuracy;
3491 	else
3492 		core->accuracy = 0;
3493 
3494 	/*
3495 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3496 	 * Since a phase is by definition relative to its parent, just
3497 	 * query the current clock phase, or just assume it's in phase.
3498 	 */
3499 	phase = clk_core_get_phase(core);
3500 	if (phase < 0) {
3501 		ret = phase;
3502 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3503 			core->name);
3504 		goto out;
3505 	}
3506 
3507 	/*
3508 	 * Set clk's duty cycle.
3509 	 */
3510 	clk_core_update_duty_cycle_nolock(core);
3511 
3512 	/*
3513 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3514 	 * simple clocks and lazy developers the default fallback is to use the
3515 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3516 	 * then rate is set to zero.
3517 	 */
3518 	if (core->ops->recalc_rate)
3519 		rate = core->ops->recalc_rate(core->hw,
3520 				clk_core_get_rate_nolock(parent));
3521 	else if (parent)
3522 		rate = parent->rate;
3523 	else
3524 		rate = 0;
3525 	core->rate = core->req_rate = rate;
3526 
3527 	/*
3528 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3529 	 * don't get accidentally disabled when walking the orphan tree and
3530 	 * reparenting clocks
3531 	 */
3532 	if (core->flags & CLK_IS_CRITICAL) {
3533 		unsigned long flags;
3534 
3535 		ret = clk_core_prepare(core);
3536 		if (ret) {
3537 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3538 			       __func__, core->name);
3539 			goto out;
3540 		}
3541 
3542 		flags = clk_enable_lock();
3543 		ret = clk_core_enable(core);
3544 		clk_enable_unlock(flags);
3545 		if (ret) {
3546 			pr_warn("%s: critical clk '%s' failed to enable\n",
3547 			       __func__, core->name);
3548 			clk_core_unprepare(core);
3549 			goto out;
3550 		}
3551 	}
3552 
3553 	clk_core_reparent_orphans_nolock();
3554 
3555 
3556 	kref_init(&core->ref);
3557 out:
3558 	clk_pm_runtime_put(core);
3559 unlock:
3560 	if (ret)
3561 		hlist_del_init(&core->child_node);
3562 
3563 	clk_prepare_unlock();
3564 
3565 	if (!ret)
3566 		clk_debug_register(core);
3567 
3568 	return ret;
3569 }
3570 
3571 /**
3572  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3573  * @core: clk to add consumer to
3574  * @clk: consumer to link to a clk
3575  */
3576 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3577 {
3578 	clk_prepare_lock();
3579 	hlist_add_head(&clk->clks_node, &core->clks);
3580 	clk_prepare_unlock();
3581 }
3582 
3583 /**
3584  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3585  * @clk: consumer to unlink
3586  */
3587 static void clk_core_unlink_consumer(struct clk *clk)
3588 {
3589 	lockdep_assert_held(&prepare_lock);
3590 	hlist_del(&clk->clks_node);
3591 }
3592 
3593 /**
3594  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3595  * @core: clk to allocate a consumer for
3596  * @dev_id: string describing device name
3597  * @con_id: connection ID string on device
3598  *
3599  * Returns: clk consumer left unlinked from the consumer list
3600  */
3601 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3602 			     const char *con_id)
3603 {
3604 	struct clk *clk;
3605 
3606 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3607 	if (!clk)
3608 		return ERR_PTR(-ENOMEM);
3609 
3610 	clk->core = core;
3611 	clk->dev_id = dev_id;
3612 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3613 	clk->max_rate = ULONG_MAX;
3614 
3615 	return clk;
3616 }
3617 
3618 /**
3619  * free_clk - Free a clk consumer
3620  * @clk: clk consumer to free
3621  *
3622  * Note, this assumes the clk has been unlinked from the clk_core consumer
3623  * list.
3624  */
3625 static void free_clk(struct clk *clk)
3626 {
3627 	kfree_const(clk->con_id);
3628 	kfree(clk);
3629 }
3630 
3631 /**
3632  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3633  * a clk_hw
3634  * @dev: clk consumer device
3635  * @hw: clk_hw associated with the clk being consumed
3636  * @dev_id: string describing device name
3637  * @con_id: connection ID string on device
3638  *
3639  * This is the main function used to create a clk pointer for use by clk
3640  * consumers. It connects a consumer to the clk_core and clk_hw structures
3641  * used by the framework and clk provider respectively.
3642  */
3643 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3644 			      const char *dev_id, const char *con_id)
3645 {
3646 	struct clk *clk;
3647 	struct clk_core *core;
3648 
3649 	/* This is to allow this function to be chained to others */
3650 	if (IS_ERR_OR_NULL(hw))
3651 		return ERR_CAST(hw);
3652 
3653 	core = hw->core;
3654 	clk = alloc_clk(core, dev_id, con_id);
3655 	if (IS_ERR(clk))
3656 		return clk;
3657 	clk->dev = dev;
3658 
3659 	if (!try_module_get(core->owner)) {
3660 		free_clk(clk);
3661 		return ERR_PTR(-ENOENT);
3662 	}
3663 
3664 	kref_get(&core->ref);
3665 	clk_core_link_consumer(core, clk);
3666 
3667 	return clk;
3668 }
3669 
3670 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3671 {
3672 	const char *dst;
3673 
3674 	if (!src) {
3675 		if (must_exist)
3676 			return -EINVAL;
3677 		return 0;
3678 	}
3679 
3680 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3681 	if (!dst)
3682 		return -ENOMEM;
3683 
3684 	return 0;
3685 }
3686 
3687 static int clk_core_populate_parent_map(struct clk_core *core,
3688 					const struct clk_init_data *init)
3689 {
3690 	u8 num_parents = init->num_parents;
3691 	const char * const *parent_names = init->parent_names;
3692 	const struct clk_hw **parent_hws = init->parent_hws;
3693 	const struct clk_parent_data *parent_data = init->parent_data;
3694 	int i, ret = 0;
3695 	struct clk_parent_map *parents, *parent;
3696 
3697 	if (!num_parents)
3698 		return 0;
3699 
3700 	/*
3701 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3702 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3703 	 */
3704 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3705 	core->parents = parents;
3706 	if (!parents)
3707 		return -ENOMEM;
3708 
3709 	/* Copy everything over because it might be __initdata */
3710 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3711 		parent->index = -1;
3712 		if (parent_names) {
3713 			/* throw a WARN if any entries are NULL */
3714 			WARN(!parent_names[i],
3715 				"%s: invalid NULL in %s's .parent_names\n",
3716 				__func__, core->name);
3717 			ret = clk_cpy_name(&parent->name, parent_names[i],
3718 					   true);
3719 		} else if (parent_data) {
3720 			parent->hw = parent_data[i].hw;
3721 			parent->index = parent_data[i].index;
3722 			ret = clk_cpy_name(&parent->fw_name,
3723 					   parent_data[i].fw_name, false);
3724 			if (!ret)
3725 				ret = clk_cpy_name(&parent->name,
3726 						   parent_data[i].name,
3727 						   false);
3728 		} else if (parent_hws) {
3729 			parent->hw = parent_hws[i];
3730 		} else {
3731 			ret = -EINVAL;
3732 			WARN(1, "Must specify parents if num_parents > 0\n");
3733 		}
3734 
3735 		if (ret) {
3736 			do {
3737 				kfree_const(parents[i].name);
3738 				kfree_const(parents[i].fw_name);
3739 			} while (--i >= 0);
3740 			kfree(parents);
3741 
3742 			return ret;
3743 		}
3744 	}
3745 
3746 	return 0;
3747 }
3748 
3749 static void clk_core_free_parent_map(struct clk_core *core)
3750 {
3751 	int i = core->num_parents;
3752 
3753 	if (!core->num_parents)
3754 		return;
3755 
3756 	while (--i >= 0) {
3757 		kfree_const(core->parents[i].name);
3758 		kfree_const(core->parents[i].fw_name);
3759 	}
3760 
3761 	kfree(core->parents);
3762 }
3763 
3764 static struct clk *
3765 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3766 {
3767 	int ret;
3768 	struct clk_core *core;
3769 	const struct clk_init_data *init = hw->init;
3770 
3771 	/*
3772 	 * The init data is not supposed to be used outside of registration path.
3773 	 * Set it to NULL so that provider drivers can't use it either and so that
3774 	 * we catch use of hw->init early on in the core.
3775 	 */
3776 	hw->init = NULL;
3777 
3778 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3779 	if (!core) {
3780 		ret = -ENOMEM;
3781 		goto fail_out;
3782 	}
3783 
3784 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3785 	if (!core->name) {
3786 		ret = -ENOMEM;
3787 		goto fail_name;
3788 	}
3789 
3790 	if (WARN_ON(!init->ops)) {
3791 		ret = -EINVAL;
3792 		goto fail_ops;
3793 	}
3794 	core->ops = init->ops;
3795 
3796 	if (dev && pm_runtime_enabled(dev))
3797 		core->rpm_enabled = true;
3798 	core->dev = dev;
3799 	core->of_node = np;
3800 	if (dev && dev->driver)
3801 		core->owner = dev->driver->owner;
3802 	core->hw = hw;
3803 	core->flags = init->flags;
3804 	core->num_parents = init->num_parents;
3805 	core->min_rate = 0;
3806 	core->max_rate = ULONG_MAX;
3807 	hw->core = core;
3808 
3809 	ret = clk_core_populate_parent_map(core, init);
3810 	if (ret)
3811 		goto fail_parents;
3812 
3813 	INIT_HLIST_HEAD(&core->clks);
3814 
3815 	/*
3816 	 * Don't call clk_hw_create_clk() here because that would pin the
3817 	 * provider module to itself and prevent it from ever being removed.
3818 	 */
3819 	hw->clk = alloc_clk(core, NULL, NULL);
3820 	if (IS_ERR(hw->clk)) {
3821 		ret = PTR_ERR(hw->clk);
3822 		goto fail_create_clk;
3823 	}
3824 
3825 	clk_core_link_consumer(hw->core, hw->clk);
3826 
3827 	ret = __clk_core_init(core);
3828 	if (!ret)
3829 		return hw->clk;
3830 
3831 	clk_prepare_lock();
3832 	clk_core_unlink_consumer(hw->clk);
3833 	clk_prepare_unlock();
3834 
3835 	free_clk(hw->clk);
3836 	hw->clk = NULL;
3837 
3838 fail_create_clk:
3839 	clk_core_free_parent_map(core);
3840 fail_parents:
3841 fail_ops:
3842 	kfree_const(core->name);
3843 fail_name:
3844 	kfree(core);
3845 fail_out:
3846 	return ERR_PTR(ret);
3847 }
3848 
3849 /**
3850  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3851  * @dev: Device to get device node of
3852  *
3853  * Return: device node pointer of @dev, or the device node pointer of
3854  * @dev->parent if dev doesn't have a device node, or NULL if neither
3855  * @dev or @dev->parent have a device node.
3856  */
3857 static struct device_node *dev_or_parent_of_node(struct device *dev)
3858 {
3859 	struct device_node *np;
3860 
3861 	if (!dev)
3862 		return NULL;
3863 
3864 	np = dev_of_node(dev);
3865 	if (!np)
3866 		np = dev_of_node(dev->parent);
3867 
3868 	return np;
3869 }
3870 
3871 /**
3872  * clk_register - allocate a new clock, register it and return an opaque cookie
3873  * @dev: device that is registering this clock
3874  * @hw: link to hardware-specific clock data
3875  *
3876  * clk_register is the *deprecated* interface for populating the clock tree with
3877  * new clock nodes. Use clk_hw_register() instead.
3878  *
3879  * Returns: a pointer to the newly allocated struct clk which
3880  * cannot be dereferenced by driver code but may be used in conjunction with the
3881  * rest of the clock API.  In the event of an error clk_register will return an
3882  * error code; drivers must test for an error code after calling clk_register.
3883  */
3884 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3885 {
3886 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3887 }
3888 EXPORT_SYMBOL_GPL(clk_register);
3889 
3890 /**
3891  * clk_hw_register - register a clk_hw and return an error code
3892  * @dev: device that is registering this clock
3893  * @hw: link to hardware-specific clock data
3894  *
3895  * clk_hw_register is the primary interface for populating the clock tree with
3896  * new clock nodes. It returns an integer equal to zero indicating success or
3897  * less than zero indicating failure. Drivers must test for an error code after
3898  * calling clk_hw_register().
3899  */
3900 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3901 {
3902 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3903 			       hw));
3904 }
3905 EXPORT_SYMBOL_GPL(clk_hw_register);
3906 
3907 /*
3908  * of_clk_hw_register - register a clk_hw and return an error code
3909  * @node: device_node of device that is registering this clock
3910  * @hw: link to hardware-specific clock data
3911  *
3912  * of_clk_hw_register() is the primary interface for populating the clock tree
3913  * with new clock nodes when a struct device is not available, but a struct
3914  * device_node is. It returns an integer equal to zero indicating success or
3915  * less than zero indicating failure. Drivers must test for an error code after
3916  * calling of_clk_hw_register().
3917  */
3918 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3919 {
3920 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3921 }
3922 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3923 
3924 /* Free memory allocated for a clock. */
3925 static void __clk_release(struct kref *ref)
3926 {
3927 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3928 
3929 	lockdep_assert_held(&prepare_lock);
3930 
3931 	clk_core_free_parent_map(core);
3932 	kfree_const(core->name);
3933 	kfree(core);
3934 }
3935 
3936 /*
3937  * Empty clk_ops for unregistered clocks. These are used temporarily
3938  * after clk_unregister() was called on a clock and until last clock
3939  * consumer calls clk_put() and the struct clk object is freed.
3940  */
3941 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3942 {
3943 	return -ENXIO;
3944 }
3945 
3946 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3947 {
3948 	WARN_ON_ONCE(1);
3949 }
3950 
3951 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3952 					unsigned long parent_rate)
3953 {
3954 	return -ENXIO;
3955 }
3956 
3957 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3958 {
3959 	return -ENXIO;
3960 }
3961 
3962 static const struct clk_ops clk_nodrv_ops = {
3963 	.enable		= clk_nodrv_prepare_enable,
3964 	.disable	= clk_nodrv_disable_unprepare,
3965 	.prepare	= clk_nodrv_prepare_enable,
3966 	.unprepare	= clk_nodrv_disable_unprepare,
3967 	.set_rate	= clk_nodrv_set_rate,
3968 	.set_parent	= clk_nodrv_set_parent,
3969 };
3970 
3971 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3972 						struct clk_core *target)
3973 {
3974 	int i;
3975 	struct clk_core *child;
3976 
3977 	for (i = 0; i < root->num_parents; i++)
3978 		if (root->parents[i].core == target)
3979 			root->parents[i].core = NULL;
3980 
3981 	hlist_for_each_entry(child, &root->children, child_node)
3982 		clk_core_evict_parent_cache_subtree(child, target);
3983 }
3984 
3985 /* Remove this clk from all parent caches */
3986 static void clk_core_evict_parent_cache(struct clk_core *core)
3987 {
3988 	struct hlist_head **lists;
3989 	struct clk_core *root;
3990 
3991 	lockdep_assert_held(&prepare_lock);
3992 
3993 	for (lists = all_lists; *lists; lists++)
3994 		hlist_for_each_entry(root, *lists, child_node)
3995 			clk_core_evict_parent_cache_subtree(root, core);
3996 
3997 }
3998 
3999 /**
4000  * clk_unregister - unregister a currently registered clock
4001  * @clk: clock to unregister
4002  */
4003 void clk_unregister(struct clk *clk)
4004 {
4005 	unsigned long flags;
4006 	const struct clk_ops *ops;
4007 
4008 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4009 		return;
4010 
4011 	clk_debug_unregister(clk->core);
4012 
4013 	clk_prepare_lock();
4014 
4015 	ops = clk->core->ops;
4016 	if (ops == &clk_nodrv_ops) {
4017 		pr_err("%s: unregistered clock: %s\n", __func__,
4018 		       clk->core->name);
4019 		goto unlock;
4020 	}
4021 	/*
4022 	 * Assign empty clock ops for consumers that might still hold
4023 	 * a reference to this clock.
4024 	 */
4025 	flags = clk_enable_lock();
4026 	clk->core->ops = &clk_nodrv_ops;
4027 	clk_enable_unlock(flags);
4028 
4029 	if (ops->terminate)
4030 		ops->terminate(clk->core->hw);
4031 
4032 	if (!hlist_empty(&clk->core->children)) {
4033 		struct clk_core *child;
4034 		struct hlist_node *t;
4035 
4036 		/* Reparent all children to the orphan list. */
4037 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4038 					  child_node)
4039 			clk_core_set_parent_nolock(child, NULL);
4040 	}
4041 
4042 	clk_core_evict_parent_cache(clk->core);
4043 
4044 	hlist_del_init(&clk->core->child_node);
4045 
4046 	if (clk->core->prepare_count)
4047 		pr_warn("%s: unregistering prepared clock: %s\n",
4048 					__func__, clk->core->name);
4049 
4050 	if (clk->core->protect_count)
4051 		pr_warn("%s: unregistering protected clock: %s\n",
4052 					__func__, clk->core->name);
4053 
4054 	kref_put(&clk->core->ref, __clk_release);
4055 	free_clk(clk);
4056 unlock:
4057 	clk_prepare_unlock();
4058 }
4059 EXPORT_SYMBOL_GPL(clk_unregister);
4060 
4061 /**
4062  * clk_hw_unregister - unregister a currently registered clk_hw
4063  * @hw: hardware-specific clock data to unregister
4064  */
4065 void clk_hw_unregister(struct clk_hw *hw)
4066 {
4067 	clk_unregister(hw->clk);
4068 }
4069 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4070 
4071 static void devm_clk_release(struct device *dev, void *res)
4072 {
4073 	clk_unregister(*(struct clk **)res);
4074 }
4075 
4076 static void devm_clk_hw_release(struct device *dev, void *res)
4077 {
4078 	clk_hw_unregister(*(struct clk_hw **)res);
4079 }
4080 
4081 /**
4082  * devm_clk_register - resource managed clk_register()
4083  * @dev: device that is registering this clock
4084  * @hw: link to hardware-specific clock data
4085  *
4086  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4087  *
4088  * Clocks returned from this function are automatically clk_unregister()ed on
4089  * driver detach. See clk_register() for more information.
4090  */
4091 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4092 {
4093 	struct clk *clk;
4094 	struct clk **clkp;
4095 
4096 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4097 	if (!clkp)
4098 		return ERR_PTR(-ENOMEM);
4099 
4100 	clk = clk_register(dev, hw);
4101 	if (!IS_ERR(clk)) {
4102 		*clkp = clk;
4103 		devres_add(dev, clkp);
4104 	} else {
4105 		devres_free(clkp);
4106 	}
4107 
4108 	return clk;
4109 }
4110 EXPORT_SYMBOL_GPL(devm_clk_register);
4111 
4112 /**
4113  * devm_clk_hw_register - resource managed clk_hw_register()
4114  * @dev: device that is registering this clock
4115  * @hw: link to hardware-specific clock data
4116  *
4117  * Managed clk_hw_register(). Clocks registered by this function are
4118  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4119  * for more information.
4120  */
4121 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4122 {
4123 	struct clk_hw **hwp;
4124 	int ret;
4125 
4126 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4127 	if (!hwp)
4128 		return -ENOMEM;
4129 
4130 	ret = clk_hw_register(dev, hw);
4131 	if (!ret) {
4132 		*hwp = hw;
4133 		devres_add(dev, hwp);
4134 	} else {
4135 		devres_free(hwp);
4136 	}
4137 
4138 	return ret;
4139 }
4140 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4141 
4142 static int devm_clk_match(struct device *dev, void *res, void *data)
4143 {
4144 	struct clk *c = res;
4145 	if (WARN_ON(!c))
4146 		return 0;
4147 	return c == data;
4148 }
4149 
4150 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4151 {
4152 	struct clk_hw *hw = res;
4153 
4154 	if (WARN_ON(!hw))
4155 		return 0;
4156 	return hw == data;
4157 }
4158 
4159 /**
4160  * devm_clk_unregister - resource managed clk_unregister()
4161  * @dev: device that is unregistering the clock data
4162  * @clk: clock to unregister
4163  *
4164  * Deallocate a clock allocated with devm_clk_register(). Normally
4165  * this function will not need to be called and the resource management
4166  * code will ensure that the resource is freed.
4167  */
4168 void devm_clk_unregister(struct device *dev, struct clk *clk)
4169 {
4170 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4171 }
4172 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4173 
4174 /**
4175  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4176  * @dev: device that is unregistering the hardware-specific clock data
4177  * @hw: link to hardware-specific clock data
4178  *
4179  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4180  * this function will not need to be called and the resource management
4181  * code will ensure that the resource is freed.
4182  */
4183 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4184 {
4185 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4186 				hw));
4187 }
4188 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4189 
4190 /*
4191  * clkdev helpers
4192  */
4193 
4194 void __clk_put(struct clk *clk)
4195 {
4196 	struct module *owner;
4197 
4198 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4199 		return;
4200 
4201 	clk_prepare_lock();
4202 
4203 	/*
4204 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4205 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4206 	 * and by that same consumer
4207 	 */
4208 	if (WARN_ON(clk->exclusive_count)) {
4209 		/* We voiced our concern, let's sanitize the situation */
4210 		clk->core->protect_count -= (clk->exclusive_count - 1);
4211 		clk_core_rate_unprotect(clk->core);
4212 		clk->exclusive_count = 0;
4213 	}
4214 
4215 	hlist_del(&clk->clks_node);
4216 	if (clk->min_rate > clk->core->req_rate ||
4217 	    clk->max_rate < clk->core->req_rate)
4218 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4219 
4220 	owner = clk->core->owner;
4221 	kref_put(&clk->core->ref, __clk_release);
4222 
4223 	clk_prepare_unlock();
4224 
4225 	module_put(owner);
4226 
4227 	free_clk(clk);
4228 }
4229 
4230 /***        clk rate change notifiers        ***/
4231 
4232 /**
4233  * clk_notifier_register - add a clk rate change notifier
4234  * @clk: struct clk * to watch
4235  * @nb: struct notifier_block * with callback info
4236  *
4237  * Request notification when clk's rate changes.  This uses an SRCU
4238  * notifier because we want it to block and notifier unregistrations are
4239  * uncommon.  The callbacks associated with the notifier must not
4240  * re-enter into the clk framework by calling any top-level clk APIs;
4241  * this will cause a nested prepare_lock mutex.
4242  *
4243  * In all notification cases (pre, post and abort rate change) the original
4244  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4245  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4246  *
4247  * clk_notifier_register() must be called from non-atomic context.
4248  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4249  * allocation failure; otherwise, passes along the return value of
4250  * srcu_notifier_chain_register().
4251  */
4252 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4253 {
4254 	struct clk_notifier *cn;
4255 	int ret = -ENOMEM;
4256 
4257 	if (!clk || !nb)
4258 		return -EINVAL;
4259 
4260 	clk_prepare_lock();
4261 
4262 	/* search the list of notifiers for this clk */
4263 	list_for_each_entry(cn, &clk_notifier_list, node)
4264 		if (cn->clk == clk)
4265 			break;
4266 
4267 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4268 	if (cn->clk != clk) {
4269 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4270 		if (!cn)
4271 			goto out;
4272 
4273 		cn->clk = clk;
4274 		srcu_init_notifier_head(&cn->notifier_head);
4275 
4276 		list_add(&cn->node, &clk_notifier_list);
4277 	}
4278 
4279 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4280 
4281 	clk->core->notifier_count++;
4282 
4283 out:
4284 	clk_prepare_unlock();
4285 
4286 	return ret;
4287 }
4288 EXPORT_SYMBOL_GPL(clk_notifier_register);
4289 
4290 /**
4291  * clk_notifier_unregister - remove a clk rate change notifier
4292  * @clk: struct clk *
4293  * @nb: struct notifier_block * with callback info
4294  *
4295  * Request no further notification for changes to 'clk' and frees memory
4296  * allocated in clk_notifier_register.
4297  *
4298  * Returns -EINVAL if called with null arguments; otherwise, passes
4299  * along the return value of srcu_notifier_chain_unregister().
4300  */
4301 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4302 {
4303 	struct clk_notifier *cn = NULL;
4304 	int ret = -EINVAL;
4305 
4306 	if (!clk || !nb)
4307 		return -EINVAL;
4308 
4309 	clk_prepare_lock();
4310 
4311 	list_for_each_entry(cn, &clk_notifier_list, node)
4312 		if (cn->clk == clk)
4313 			break;
4314 
4315 	if (cn->clk == clk) {
4316 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4317 
4318 		clk->core->notifier_count--;
4319 
4320 		/* XXX the notifier code should handle this better */
4321 		if (!cn->notifier_head.head) {
4322 			srcu_cleanup_notifier_head(&cn->notifier_head);
4323 			list_del(&cn->node);
4324 			kfree(cn);
4325 		}
4326 
4327 	} else {
4328 		ret = -ENOENT;
4329 	}
4330 
4331 	clk_prepare_unlock();
4332 
4333 	return ret;
4334 }
4335 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4336 
4337 #ifdef CONFIG_OF
4338 static void clk_core_reparent_orphans(void)
4339 {
4340 	clk_prepare_lock();
4341 	clk_core_reparent_orphans_nolock();
4342 	clk_prepare_unlock();
4343 }
4344 
4345 /**
4346  * struct of_clk_provider - Clock provider registration structure
4347  * @link: Entry in global list of clock providers
4348  * @node: Pointer to device tree node of clock provider
4349  * @get: Get clock callback.  Returns NULL or a struct clk for the
4350  *       given clock specifier
4351  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4352  *       struct clk_hw for the given clock specifier
4353  * @data: context pointer to be passed into @get callback
4354  */
4355 struct of_clk_provider {
4356 	struct list_head link;
4357 
4358 	struct device_node *node;
4359 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4360 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4361 	void *data;
4362 };
4363 
4364 extern struct of_device_id __clk_of_table;
4365 static const struct of_device_id __clk_of_table_sentinel
4366 	__used __section("__clk_of_table_end");
4367 
4368 static LIST_HEAD(of_clk_providers);
4369 static DEFINE_MUTEX(of_clk_mutex);
4370 
4371 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4372 				     void *data)
4373 {
4374 	return data;
4375 }
4376 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4377 
4378 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4379 {
4380 	return data;
4381 }
4382 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4383 
4384 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4385 {
4386 	struct clk_onecell_data *clk_data = data;
4387 	unsigned int idx = clkspec->args[0];
4388 
4389 	if (idx >= clk_data->clk_num) {
4390 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4391 		return ERR_PTR(-EINVAL);
4392 	}
4393 
4394 	return clk_data->clks[idx];
4395 }
4396 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4397 
4398 struct clk_hw *
4399 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4400 {
4401 	struct clk_hw_onecell_data *hw_data = data;
4402 	unsigned int idx = clkspec->args[0];
4403 
4404 	if (idx >= hw_data->num) {
4405 		pr_err("%s: invalid index %u\n", __func__, idx);
4406 		return ERR_PTR(-EINVAL);
4407 	}
4408 
4409 	return hw_data->hws[idx];
4410 }
4411 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4412 
4413 /**
4414  * of_clk_add_provider() - Register a clock provider for a node
4415  * @np: Device node pointer associated with clock provider
4416  * @clk_src_get: callback for decoding clock
4417  * @data: context pointer for @clk_src_get callback.
4418  *
4419  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4420  */
4421 int of_clk_add_provider(struct device_node *np,
4422 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4423 						   void *data),
4424 			void *data)
4425 {
4426 	struct of_clk_provider *cp;
4427 	int ret;
4428 
4429 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4430 	if (!cp)
4431 		return -ENOMEM;
4432 
4433 	cp->node = of_node_get(np);
4434 	cp->data = data;
4435 	cp->get = clk_src_get;
4436 
4437 	mutex_lock(&of_clk_mutex);
4438 	list_add(&cp->link, &of_clk_providers);
4439 	mutex_unlock(&of_clk_mutex);
4440 	pr_debug("Added clock from %pOF\n", np);
4441 
4442 	clk_core_reparent_orphans();
4443 
4444 	ret = of_clk_set_defaults(np, true);
4445 	if (ret < 0)
4446 		of_clk_del_provider(np);
4447 
4448 	return ret;
4449 }
4450 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4451 
4452 /**
4453  * of_clk_add_hw_provider() - Register a clock provider for a node
4454  * @np: Device node pointer associated with clock provider
4455  * @get: callback for decoding clk_hw
4456  * @data: context pointer for @get callback.
4457  */
4458 int of_clk_add_hw_provider(struct device_node *np,
4459 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4460 						 void *data),
4461 			   void *data)
4462 {
4463 	struct of_clk_provider *cp;
4464 	int ret;
4465 
4466 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4467 	if (!cp)
4468 		return -ENOMEM;
4469 
4470 	cp->node = of_node_get(np);
4471 	cp->data = data;
4472 	cp->get_hw = get;
4473 
4474 	mutex_lock(&of_clk_mutex);
4475 	list_add(&cp->link, &of_clk_providers);
4476 	mutex_unlock(&of_clk_mutex);
4477 	pr_debug("Added clk_hw provider from %pOF\n", np);
4478 
4479 	clk_core_reparent_orphans();
4480 
4481 	ret = of_clk_set_defaults(np, true);
4482 	if (ret < 0)
4483 		of_clk_del_provider(np);
4484 
4485 	return ret;
4486 }
4487 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4488 
4489 static void devm_of_clk_release_provider(struct device *dev, void *res)
4490 {
4491 	of_clk_del_provider(*(struct device_node **)res);
4492 }
4493 
4494 /*
4495  * We allow a child device to use its parent device as the clock provider node
4496  * for cases like MFD sub-devices where the child device driver wants to use
4497  * devm_*() APIs but not list the device in DT as a sub-node.
4498  */
4499 static struct device_node *get_clk_provider_node(struct device *dev)
4500 {
4501 	struct device_node *np, *parent_np;
4502 
4503 	np = dev->of_node;
4504 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4505 
4506 	if (!of_find_property(np, "#clock-cells", NULL))
4507 		if (of_find_property(parent_np, "#clock-cells", NULL))
4508 			np = parent_np;
4509 
4510 	return np;
4511 }
4512 
4513 /**
4514  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4515  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4516  * @get: callback for decoding clk_hw
4517  * @data: context pointer for @get callback
4518  *
4519  * Registers clock provider for given device's node. If the device has no DT
4520  * node or if the device node lacks of clock provider information (#clock-cells)
4521  * then the parent device's node is scanned for this information. If parent node
4522  * has the #clock-cells then it is used in registration. Provider is
4523  * automatically released at device exit.
4524  *
4525  * Return: 0 on success or an errno on failure.
4526  */
4527 int devm_of_clk_add_hw_provider(struct device *dev,
4528 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4529 					      void *data),
4530 			void *data)
4531 {
4532 	struct device_node **ptr, *np;
4533 	int ret;
4534 
4535 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4536 			   GFP_KERNEL);
4537 	if (!ptr)
4538 		return -ENOMEM;
4539 
4540 	np = get_clk_provider_node(dev);
4541 	ret = of_clk_add_hw_provider(np, get, data);
4542 	if (!ret) {
4543 		*ptr = np;
4544 		devres_add(dev, ptr);
4545 	} else {
4546 		devres_free(ptr);
4547 	}
4548 
4549 	return ret;
4550 }
4551 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4552 
4553 /**
4554  * of_clk_del_provider() - Remove a previously registered clock provider
4555  * @np: Device node pointer associated with clock provider
4556  */
4557 void of_clk_del_provider(struct device_node *np)
4558 {
4559 	struct of_clk_provider *cp;
4560 
4561 	mutex_lock(&of_clk_mutex);
4562 	list_for_each_entry(cp, &of_clk_providers, link) {
4563 		if (cp->node == np) {
4564 			list_del(&cp->link);
4565 			of_node_put(cp->node);
4566 			kfree(cp);
4567 			break;
4568 		}
4569 	}
4570 	mutex_unlock(&of_clk_mutex);
4571 }
4572 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4573 
4574 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4575 {
4576 	struct device_node **np = res;
4577 
4578 	if (WARN_ON(!np || !*np))
4579 		return 0;
4580 
4581 	return *np == data;
4582 }
4583 
4584 /**
4585  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4586  * @dev: Device to whose lifetime the clock provider was bound
4587  */
4588 void devm_of_clk_del_provider(struct device *dev)
4589 {
4590 	int ret;
4591 	struct device_node *np = get_clk_provider_node(dev);
4592 
4593 	ret = devres_release(dev, devm_of_clk_release_provider,
4594 			     devm_clk_provider_match, np);
4595 
4596 	WARN_ON(ret);
4597 }
4598 EXPORT_SYMBOL(devm_of_clk_del_provider);
4599 
4600 /**
4601  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4602  * @np: device node to parse clock specifier from
4603  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4604  * @name: clock name to find and parse. If name is NULL, the index is used
4605  * @out_args: Result of parsing the clock specifier
4606  *
4607  * Parses a device node's "clocks" and "clock-names" properties to find the
4608  * phandle and cells for the index or name that is desired. The resulting clock
4609  * specifier is placed into @out_args, or an errno is returned when there's a
4610  * parsing error. The @index argument is ignored if @name is non-NULL.
4611  *
4612  * Example:
4613  *
4614  * phandle1: clock-controller@1 {
4615  *	#clock-cells = <2>;
4616  * }
4617  *
4618  * phandle2: clock-controller@2 {
4619  *	#clock-cells = <1>;
4620  * }
4621  *
4622  * clock-consumer@3 {
4623  *	clocks = <&phandle1 1 2 &phandle2 3>;
4624  *	clock-names = "name1", "name2";
4625  * }
4626  *
4627  * To get a device_node for `clock-controller@2' node you may call this
4628  * function a few different ways:
4629  *
4630  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4631  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4632  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4633  *
4634  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4635  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4636  * the "clock-names" property of @np.
4637  */
4638 static int of_parse_clkspec(const struct device_node *np, int index,
4639 			    const char *name, struct of_phandle_args *out_args)
4640 {
4641 	int ret = -ENOENT;
4642 
4643 	/* Walk up the tree of devices looking for a clock property that matches */
4644 	while (np) {
4645 		/*
4646 		 * For named clocks, first look up the name in the
4647 		 * "clock-names" property.  If it cannot be found, then index
4648 		 * will be an error code and of_parse_phandle_with_args() will
4649 		 * return -EINVAL.
4650 		 */
4651 		if (name)
4652 			index = of_property_match_string(np, "clock-names", name);
4653 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4654 						 index, out_args);
4655 		if (!ret)
4656 			break;
4657 		if (name && index >= 0)
4658 			break;
4659 
4660 		/*
4661 		 * No matching clock found on this node.  If the parent node
4662 		 * has a "clock-ranges" property, then we can try one of its
4663 		 * clocks.
4664 		 */
4665 		np = np->parent;
4666 		if (np && !of_get_property(np, "clock-ranges", NULL))
4667 			break;
4668 		index = 0;
4669 	}
4670 
4671 	return ret;
4672 }
4673 
4674 static struct clk_hw *
4675 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4676 			      struct of_phandle_args *clkspec)
4677 {
4678 	struct clk *clk;
4679 
4680 	if (provider->get_hw)
4681 		return provider->get_hw(clkspec, provider->data);
4682 
4683 	clk = provider->get(clkspec, provider->data);
4684 	if (IS_ERR(clk))
4685 		return ERR_CAST(clk);
4686 	return __clk_get_hw(clk);
4687 }
4688 
4689 static struct clk_hw *
4690 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4691 {
4692 	struct of_clk_provider *provider;
4693 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4694 
4695 	if (!clkspec)
4696 		return ERR_PTR(-EINVAL);
4697 
4698 	mutex_lock(&of_clk_mutex);
4699 	list_for_each_entry(provider, &of_clk_providers, link) {
4700 		if (provider->node == clkspec->np) {
4701 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4702 			if (!IS_ERR(hw))
4703 				break;
4704 		}
4705 	}
4706 	mutex_unlock(&of_clk_mutex);
4707 
4708 	return hw;
4709 }
4710 
4711 /**
4712  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4713  * @clkspec: pointer to a clock specifier data structure
4714  *
4715  * This function looks up a struct clk from the registered list of clock
4716  * providers, an input is a clock specifier data structure as returned
4717  * from the of_parse_phandle_with_args() function call.
4718  */
4719 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4720 {
4721 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4722 
4723 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4724 }
4725 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4726 
4727 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4728 			     const char *con_id)
4729 {
4730 	int ret;
4731 	struct clk_hw *hw;
4732 	struct of_phandle_args clkspec;
4733 
4734 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4735 	if (ret)
4736 		return ERR_PTR(ret);
4737 
4738 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4739 	of_node_put(clkspec.np);
4740 
4741 	return hw;
4742 }
4743 
4744 static struct clk *__of_clk_get(struct device_node *np,
4745 				int index, const char *dev_id,
4746 				const char *con_id)
4747 {
4748 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4749 
4750 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4751 }
4752 
4753 struct clk *of_clk_get(struct device_node *np, int index)
4754 {
4755 	return __of_clk_get(np, index, np->full_name, NULL);
4756 }
4757 EXPORT_SYMBOL(of_clk_get);
4758 
4759 /**
4760  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4761  * @np: pointer to clock consumer node
4762  * @name: name of consumer's clock input, or NULL for the first clock reference
4763  *
4764  * This function parses the clocks and clock-names properties,
4765  * and uses them to look up the struct clk from the registered list of clock
4766  * providers.
4767  */
4768 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4769 {
4770 	if (!np)
4771 		return ERR_PTR(-ENOENT);
4772 
4773 	return __of_clk_get(np, 0, np->full_name, name);
4774 }
4775 EXPORT_SYMBOL(of_clk_get_by_name);
4776 
4777 /**
4778  * of_clk_get_parent_count() - Count the number of clocks a device node has
4779  * @np: device node to count
4780  *
4781  * Returns: The number of clocks that are possible parents of this node
4782  */
4783 unsigned int of_clk_get_parent_count(const struct device_node *np)
4784 {
4785 	int count;
4786 
4787 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4788 	if (count < 0)
4789 		return 0;
4790 
4791 	return count;
4792 }
4793 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4794 
4795 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4796 {
4797 	struct of_phandle_args clkspec;
4798 	struct property *prop;
4799 	const char *clk_name;
4800 	const __be32 *vp;
4801 	u32 pv;
4802 	int rc;
4803 	int count;
4804 	struct clk *clk;
4805 
4806 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4807 					&clkspec);
4808 	if (rc)
4809 		return NULL;
4810 
4811 	index = clkspec.args_count ? clkspec.args[0] : 0;
4812 	count = 0;
4813 
4814 	/* if there is an indices property, use it to transfer the index
4815 	 * specified into an array offset for the clock-output-names property.
4816 	 */
4817 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4818 		if (index == pv) {
4819 			index = count;
4820 			break;
4821 		}
4822 		count++;
4823 	}
4824 	/* We went off the end of 'clock-indices' without finding it */
4825 	if (prop && !vp)
4826 		return NULL;
4827 
4828 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4829 					  index,
4830 					  &clk_name) < 0) {
4831 		/*
4832 		 * Best effort to get the name if the clock has been
4833 		 * registered with the framework. If the clock isn't
4834 		 * registered, we return the node name as the name of
4835 		 * the clock as long as #clock-cells = 0.
4836 		 */
4837 		clk = of_clk_get_from_provider(&clkspec);
4838 		if (IS_ERR(clk)) {
4839 			if (clkspec.args_count == 0)
4840 				clk_name = clkspec.np->name;
4841 			else
4842 				clk_name = NULL;
4843 		} else {
4844 			clk_name = __clk_get_name(clk);
4845 			clk_put(clk);
4846 		}
4847 	}
4848 
4849 
4850 	of_node_put(clkspec.np);
4851 	return clk_name;
4852 }
4853 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4854 
4855 /**
4856  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4857  * number of parents
4858  * @np: Device node pointer associated with clock provider
4859  * @parents: pointer to char array that hold the parents' names
4860  * @size: size of the @parents array
4861  *
4862  * Return: number of parents for the clock node.
4863  */
4864 int of_clk_parent_fill(struct device_node *np, const char **parents,
4865 		       unsigned int size)
4866 {
4867 	unsigned int i = 0;
4868 
4869 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4870 		i++;
4871 
4872 	return i;
4873 }
4874 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4875 
4876 struct clock_provider {
4877 	void (*clk_init_cb)(struct device_node *);
4878 	struct device_node *np;
4879 	struct list_head node;
4880 };
4881 
4882 /*
4883  * This function looks for a parent clock. If there is one, then it
4884  * checks that the provider for this parent clock was initialized, in
4885  * this case the parent clock will be ready.
4886  */
4887 static int parent_ready(struct device_node *np)
4888 {
4889 	int i = 0;
4890 
4891 	while (true) {
4892 		struct clk *clk = of_clk_get(np, i);
4893 
4894 		/* this parent is ready we can check the next one */
4895 		if (!IS_ERR(clk)) {
4896 			clk_put(clk);
4897 			i++;
4898 			continue;
4899 		}
4900 
4901 		/* at least one parent is not ready, we exit now */
4902 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4903 			return 0;
4904 
4905 		/*
4906 		 * Here we make assumption that the device tree is
4907 		 * written correctly. So an error means that there is
4908 		 * no more parent. As we didn't exit yet, then the
4909 		 * previous parent are ready. If there is no clock
4910 		 * parent, no need to wait for them, then we can
4911 		 * consider their absence as being ready
4912 		 */
4913 		return 1;
4914 	}
4915 }
4916 
4917 /**
4918  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4919  * @np: Device node pointer associated with clock provider
4920  * @index: clock index
4921  * @flags: pointer to top-level framework flags
4922  *
4923  * Detects if the clock-critical property exists and, if so, sets the
4924  * corresponding CLK_IS_CRITICAL flag.
4925  *
4926  * Do not use this function. It exists only for legacy Device Tree
4927  * bindings, such as the one-clock-per-node style that are outdated.
4928  * Those bindings typically put all clock data into .dts and the Linux
4929  * driver has no clock data, thus making it impossible to set this flag
4930  * correctly from the driver. Only those drivers may call
4931  * of_clk_detect_critical from their setup functions.
4932  *
4933  * Return: error code or zero on success
4934  */
4935 int of_clk_detect_critical(struct device_node *np, int index,
4936 			   unsigned long *flags)
4937 {
4938 	struct property *prop;
4939 	const __be32 *cur;
4940 	uint32_t idx;
4941 
4942 	if (!np || !flags)
4943 		return -EINVAL;
4944 
4945 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4946 		if (index == idx)
4947 			*flags |= CLK_IS_CRITICAL;
4948 
4949 	return 0;
4950 }
4951 
4952 /**
4953  * of_clk_init() - Scan and init clock providers from the DT
4954  * @matches: array of compatible values and init functions for providers.
4955  *
4956  * This function scans the device tree for matching clock providers
4957  * and calls their initialization functions. It also does it by trying
4958  * to follow the dependencies.
4959  */
4960 void __init of_clk_init(const struct of_device_id *matches)
4961 {
4962 	const struct of_device_id *match;
4963 	struct device_node *np;
4964 	struct clock_provider *clk_provider, *next;
4965 	bool is_init_done;
4966 	bool force = false;
4967 	LIST_HEAD(clk_provider_list);
4968 
4969 	if (!matches)
4970 		matches = &__clk_of_table;
4971 
4972 	/* First prepare the list of the clocks providers */
4973 	for_each_matching_node_and_match(np, matches, &match) {
4974 		struct clock_provider *parent;
4975 
4976 		if (!of_device_is_available(np))
4977 			continue;
4978 
4979 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4980 		if (!parent) {
4981 			list_for_each_entry_safe(clk_provider, next,
4982 						 &clk_provider_list, node) {
4983 				list_del(&clk_provider->node);
4984 				of_node_put(clk_provider->np);
4985 				kfree(clk_provider);
4986 			}
4987 			of_node_put(np);
4988 			return;
4989 		}
4990 
4991 		parent->clk_init_cb = match->data;
4992 		parent->np = of_node_get(np);
4993 		list_add_tail(&parent->node, &clk_provider_list);
4994 	}
4995 
4996 	while (!list_empty(&clk_provider_list)) {
4997 		is_init_done = false;
4998 		list_for_each_entry_safe(clk_provider, next,
4999 					&clk_provider_list, node) {
5000 			if (force || parent_ready(clk_provider->np)) {
5001 
5002 				/* Don't populate platform devices */
5003 				of_node_set_flag(clk_provider->np,
5004 						 OF_POPULATED);
5005 
5006 				clk_provider->clk_init_cb(clk_provider->np);
5007 				of_clk_set_defaults(clk_provider->np, true);
5008 
5009 				list_del(&clk_provider->node);
5010 				of_node_put(clk_provider->np);
5011 				kfree(clk_provider);
5012 				is_init_done = true;
5013 			}
5014 		}
5015 
5016 		/*
5017 		 * We didn't manage to initialize any of the
5018 		 * remaining providers during the last loop, so now we
5019 		 * initialize all the remaining ones unconditionally
5020 		 * in case the clock parent was not mandatory
5021 		 */
5022 		if (!is_init_done)
5023 			force = true;
5024 	}
5025 }
5026 #endif
5027