xref: /openbmc/linux/drivers/clk/clk.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 
24 static DEFINE_SPINLOCK(enable_lock);
25 static DEFINE_MUTEX(prepare_lock);
26 
27 static struct task_struct *prepare_owner;
28 static struct task_struct *enable_owner;
29 
30 static int prepare_refcnt;
31 static int enable_refcnt;
32 
33 static HLIST_HEAD(clk_root_list);
34 static HLIST_HEAD(clk_orphan_list);
35 static LIST_HEAD(clk_notifier_list);
36 
37 /***           locking             ***/
38 static void clk_prepare_lock(void)
39 {
40 	if (!mutex_trylock(&prepare_lock)) {
41 		if (prepare_owner == current) {
42 			prepare_refcnt++;
43 			return;
44 		}
45 		mutex_lock(&prepare_lock);
46 	}
47 	WARN_ON_ONCE(prepare_owner != NULL);
48 	WARN_ON_ONCE(prepare_refcnt != 0);
49 	prepare_owner = current;
50 	prepare_refcnt = 1;
51 }
52 
53 static void clk_prepare_unlock(void)
54 {
55 	WARN_ON_ONCE(prepare_owner != current);
56 	WARN_ON_ONCE(prepare_refcnt == 0);
57 
58 	if (--prepare_refcnt)
59 		return;
60 	prepare_owner = NULL;
61 	mutex_unlock(&prepare_lock);
62 }
63 
64 static unsigned long clk_enable_lock(void)
65 {
66 	unsigned long flags;
67 
68 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
69 		if (enable_owner == current) {
70 			enable_refcnt++;
71 			return flags;
72 		}
73 		spin_lock_irqsave(&enable_lock, flags);
74 	}
75 	WARN_ON_ONCE(enable_owner != NULL);
76 	WARN_ON_ONCE(enable_refcnt != 0);
77 	enable_owner = current;
78 	enable_refcnt = 1;
79 	return flags;
80 }
81 
82 static void clk_enable_unlock(unsigned long flags)
83 {
84 	WARN_ON_ONCE(enable_owner != current);
85 	WARN_ON_ONCE(enable_refcnt == 0);
86 
87 	if (--enable_refcnt)
88 		return;
89 	enable_owner = NULL;
90 	spin_unlock_irqrestore(&enable_lock, flags);
91 }
92 
93 /***        debugfs support        ***/
94 
95 #ifdef CONFIG_COMMON_CLK_DEBUG
96 #include <linux/debugfs.h>
97 
98 static struct dentry *rootdir;
99 static struct dentry *orphandir;
100 static int inited = 0;
101 
102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103 {
104 	if (!c)
105 		return;
106 
107 	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108 		   level * 3 + 1, "",
109 		   30 - level * 3, c->name,
110 		   c->enable_count, c->prepare_count, clk_get_rate(c));
111 	seq_printf(s, "\n");
112 }
113 
114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115 				     int level)
116 {
117 	struct clk *child;
118 
119 	if (!c)
120 		return;
121 
122 	clk_summary_show_one(s, c, level);
123 
124 	hlist_for_each_entry(child, &c->children, child_node)
125 		clk_summary_show_subtree(s, child, level + 1);
126 }
127 
128 static int clk_summary_show(struct seq_file *s, void *data)
129 {
130 	struct clk *c;
131 
132 	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate\n");
133 	seq_printf(s, "---------------------------------------------------------------------\n");
134 
135 	clk_prepare_lock();
136 
137 	hlist_for_each_entry(c, &clk_root_list, child_node)
138 		clk_summary_show_subtree(s, c, 0);
139 
140 	hlist_for_each_entry(c, &clk_orphan_list, child_node)
141 		clk_summary_show_subtree(s, c, 0);
142 
143 	clk_prepare_unlock();
144 
145 	return 0;
146 }
147 
148 
149 static int clk_summary_open(struct inode *inode, struct file *file)
150 {
151 	return single_open(file, clk_summary_show, inode->i_private);
152 }
153 
154 static const struct file_operations clk_summary_fops = {
155 	.open		= clk_summary_open,
156 	.read		= seq_read,
157 	.llseek		= seq_lseek,
158 	.release	= single_release,
159 };
160 
161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162 {
163 	if (!c)
164 		return;
165 
166 	seq_printf(s, "\"%s\": { ", c->name);
167 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169 	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170 }
171 
172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173 {
174 	struct clk *child;
175 
176 	if (!c)
177 		return;
178 
179 	clk_dump_one(s, c, level);
180 
181 	hlist_for_each_entry(child, &c->children, child_node) {
182 		seq_printf(s, ",");
183 		clk_dump_subtree(s, child, level + 1);
184 	}
185 
186 	seq_printf(s, "}");
187 }
188 
189 static int clk_dump(struct seq_file *s, void *data)
190 {
191 	struct clk *c;
192 	bool first_node = true;
193 
194 	seq_printf(s, "{");
195 
196 	clk_prepare_lock();
197 
198 	hlist_for_each_entry(c, &clk_root_list, child_node) {
199 		if (!first_node)
200 			seq_printf(s, ",");
201 		first_node = false;
202 		clk_dump_subtree(s, c, 0);
203 	}
204 
205 	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206 		seq_printf(s, ",");
207 		clk_dump_subtree(s, c, 0);
208 	}
209 
210 	clk_prepare_unlock();
211 
212 	seq_printf(s, "}");
213 	return 0;
214 }
215 
216 
217 static int clk_dump_open(struct inode *inode, struct file *file)
218 {
219 	return single_open(file, clk_dump, inode->i_private);
220 }
221 
222 static const struct file_operations clk_dump_fops = {
223 	.open		= clk_dump_open,
224 	.read		= seq_read,
225 	.llseek		= seq_lseek,
226 	.release	= single_release,
227 };
228 
229 /* caller must hold prepare_lock */
230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231 {
232 	struct dentry *d;
233 	int ret = -ENOMEM;
234 
235 	if (!clk || !pdentry) {
236 		ret = -EINVAL;
237 		goto out;
238 	}
239 
240 	d = debugfs_create_dir(clk->name, pdentry);
241 	if (!d)
242 		goto out;
243 
244 	clk->dentry = d;
245 
246 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247 			(u32 *)&clk->rate);
248 	if (!d)
249 		goto err_out;
250 
251 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252 			(u32 *)&clk->flags);
253 	if (!d)
254 		goto err_out;
255 
256 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257 			(u32 *)&clk->prepare_count);
258 	if (!d)
259 		goto err_out;
260 
261 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262 			(u32 *)&clk->enable_count);
263 	if (!d)
264 		goto err_out;
265 
266 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267 			(u32 *)&clk->notifier_count);
268 	if (!d)
269 		goto err_out;
270 
271 	ret = 0;
272 	goto out;
273 
274 err_out:
275 	debugfs_remove(clk->dentry);
276 out:
277 	return ret;
278 }
279 
280 /* caller must hold prepare_lock */
281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282 {
283 	struct clk *child;
284 	int ret = -EINVAL;;
285 
286 	if (!clk || !pdentry)
287 		goto out;
288 
289 	ret = clk_debug_create_one(clk, pdentry);
290 
291 	if (ret)
292 		goto out;
293 
294 	hlist_for_each_entry(child, &clk->children, child_node)
295 		clk_debug_create_subtree(child, clk->dentry);
296 
297 	ret = 0;
298 out:
299 	return ret;
300 }
301 
302 /**
303  * clk_debug_register - add a clk node to the debugfs clk tree
304  * @clk: the clk being added to the debugfs clk tree
305  *
306  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307  * initialized.  Otherwise it bails out early since the debugfs clk tree
308  * will be created lazily by clk_debug_init as part of a late_initcall.
309  *
310  * Caller must hold prepare_lock.  Only clk_init calls this function (so
311  * far) so this is taken care.
312  */
313 static int clk_debug_register(struct clk *clk)
314 {
315 	struct clk *parent;
316 	struct dentry *pdentry;
317 	int ret = 0;
318 
319 	if (!inited)
320 		goto out;
321 
322 	parent = clk->parent;
323 
324 	/*
325 	 * Check to see if a clk is a root clk.  Also check that it is
326 	 * safe to add this clk to debugfs
327 	 */
328 	if (!parent)
329 		if (clk->flags & CLK_IS_ROOT)
330 			pdentry = rootdir;
331 		else
332 			pdentry = orphandir;
333 	else
334 		if (parent->dentry)
335 			pdentry = parent->dentry;
336 		else
337 			goto out;
338 
339 	ret = clk_debug_create_subtree(clk, pdentry);
340 
341 out:
342 	return ret;
343 }
344 
345 /**
346  * clk_debug_reparent - reparent clk node in the debugfs clk tree
347  * @clk: the clk being reparented
348  * @new_parent: the new clk parent, may be NULL
349  *
350  * Rename clk entry in the debugfs clk tree if debugfs has been
351  * initialized.  Otherwise it bails out early since the debugfs clk tree
352  * will be created lazily by clk_debug_init as part of a late_initcall.
353  *
354  * Caller must hold prepare_lock.
355  */
356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357 {
358 	struct dentry *d;
359 	struct dentry *new_parent_d;
360 
361 	if (!inited)
362 		return;
363 
364 	if (new_parent)
365 		new_parent_d = new_parent->dentry;
366 	else
367 		new_parent_d = orphandir;
368 
369 	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370 			new_parent_d, clk->name);
371 	if (d)
372 		clk->dentry = d;
373 	else
374 		pr_debug("%s: failed to rename debugfs entry for %s\n",
375 				__func__, clk->name);
376 }
377 
378 /**
379  * clk_debug_init - lazily create the debugfs clk tree visualization
380  *
381  * clks are often initialized very early during boot before memory can
382  * be dynamically allocated and well before debugfs is setup.
383  * clk_debug_init walks the clk tree hierarchy while holding
384  * prepare_lock and creates the topology as part of a late_initcall,
385  * thus insuring that clks initialized very early will still be
386  * represented in the debugfs clk tree.  This function should only be
387  * called once at boot-time, and all other clks added dynamically will
388  * be done so with clk_debug_register.
389  */
390 static int __init clk_debug_init(void)
391 {
392 	struct clk *clk;
393 	struct dentry *d;
394 
395 	rootdir = debugfs_create_dir("clk", NULL);
396 
397 	if (!rootdir)
398 		return -ENOMEM;
399 
400 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401 				&clk_summary_fops);
402 	if (!d)
403 		return -ENOMEM;
404 
405 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406 				&clk_dump_fops);
407 	if (!d)
408 		return -ENOMEM;
409 
410 	orphandir = debugfs_create_dir("orphans", rootdir);
411 
412 	if (!orphandir)
413 		return -ENOMEM;
414 
415 	clk_prepare_lock();
416 
417 	hlist_for_each_entry(clk, &clk_root_list, child_node)
418 		clk_debug_create_subtree(clk, rootdir);
419 
420 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421 		clk_debug_create_subtree(clk, orphandir);
422 
423 	inited = 1;
424 
425 	clk_prepare_unlock();
426 
427 	return 0;
428 }
429 late_initcall(clk_debug_init);
430 #else
431 static inline int clk_debug_register(struct clk *clk) { return 0; }
432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433 {
434 }
435 #endif
436 
437 /* caller must hold prepare_lock */
438 static void clk_unprepare_unused_subtree(struct clk *clk)
439 {
440 	struct clk *child;
441 
442 	if (!clk)
443 		return;
444 
445 	hlist_for_each_entry(child, &clk->children, child_node)
446 		clk_unprepare_unused_subtree(child);
447 
448 	if (clk->prepare_count)
449 		return;
450 
451 	if (clk->flags & CLK_IGNORE_UNUSED)
452 		return;
453 
454 	if (__clk_is_prepared(clk)) {
455 		if (clk->ops->unprepare_unused)
456 			clk->ops->unprepare_unused(clk->hw);
457 		else if (clk->ops->unprepare)
458 			clk->ops->unprepare(clk->hw);
459 	}
460 }
461 
462 /* caller must hold prepare_lock */
463 static void clk_disable_unused_subtree(struct clk *clk)
464 {
465 	struct clk *child;
466 	unsigned long flags;
467 
468 	if (!clk)
469 		goto out;
470 
471 	hlist_for_each_entry(child, &clk->children, child_node)
472 		clk_disable_unused_subtree(child);
473 
474 	flags = clk_enable_lock();
475 
476 	if (clk->enable_count)
477 		goto unlock_out;
478 
479 	if (clk->flags & CLK_IGNORE_UNUSED)
480 		goto unlock_out;
481 
482 	/*
483 	 * some gate clocks have special needs during the disable-unused
484 	 * sequence.  call .disable_unused if available, otherwise fall
485 	 * back to .disable
486 	 */
487 	if (__clk_is_enabled(clk)) {
488 		if (clk->ops->disable_unused)
489 			clk->ops->disable_unused(clk->hw);
490 		else if (clk->ops->disable)
491 			clk->ops->disable(clk->hw);
492 	}
493 
494 unlock_out:
495 	clk_enable_unlock(flags);
496 
497 out:
498 	return;
499 }
500 
501 static bool clk_ignore_unused;
502 static int __init clk_ignore_unused_setup(char *__unused)
503 {
504 	clk_ignore_unused = true;
505 	return 1;
506 }
507 __setup("clk_ignore_unused", clk_ignore_unused_setup);
508 
509 static int clk_disable_unused(void)
510 {
511 	struct clk *clk;
512 
513 	if (clk_ignore_unused) {
514 		pr_warn("clk: Not disabling unused clocks\n");
515 		return 0;
516 	}
517 
518 	clk_prepare_lock();
519 
520 	hlist_for_each_entry(clk, &clk_root_list, child_node)
521 		clk_disable_unused_subtree(clk);
522 
523 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
524 		clk_disable_unused_subtree(clk);
525 
526 	hlist_for_each_entry(clk, &clk_root_list, child_node)
527 		clk_unprepare_unused_subtree(clk);
528 
529 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
530 		clk_unprepare_unused_subtree(clk);
531 
532 	clk_prepare_unlock();
533 
534 	return 0;
535 }
536 late_initcall_sync(clk_disable_unused);
537 
538 /***    helper functions   ***/
539 
540 const char *__clk_get_name(struct clk *clk)
541 {
542 	return !clk ? NULL : clk->name;
543 }
544 EXPORT_SYMBOL_GPL(__clk_get_name);
545 
546 struct clk_hw *__clk_get_hw(struct clk *clk)
547 {
548 	return !clk ? NULL : clk->hw;
549 }
550 
551 u8 __clk_get_num_parents(struct clk *clk)
552 {
553 	return !clk ? 0 : clk->num_parents;
554 }
555 
556 struct clk *__clk_get_parent(struct clk *clk)
557 {
558 	return !clk ? NULL : clk->parent;
559 }
560 
561 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
562 {
563 	if (!clk || index >= clk->num_parents)
564 		return NULL;
565 	else if (!clk->parents)
566 		return __clk_lookup(clk->parent_names[index]);
567 	else if (!clk->parents[index])
568 		return clk->parents[index] =
569 			__clk_lookup(clk->parent_names[index]);
570 	else
571 		return clk->parents[index];
572 }
573 
574 unsigned int __clk_get_enable_count(struct clk *clk)
575 {
576 	return !clk ? 0 : clk->enable_count;
577 }
578 
579 unsigned int __clk_get_prepare_count(struct clk *clk)
580 {
581 	return !clk ? 0 : clk->prepare_count;
582 }
583 
584 unsigned long __clk_get_rate(struct clk *clk)
585 {
586 	unsigned long ret;
587 
588 	if (!clk) {
589 		ret = 0;
590 		goto out;
591 	}
592 
593 	ret = clk->rate;
594 
595 	if (clk->flags & CLK_IS_ROOT)
596 		goto out;
597 
598 	if (!clk->parent)
599 		ret = 0;
600 
601 out:
602 	return ret;
603 }
604 
605 unsigned long __clk_get_flags(struct clk *clk)
606 {
607 	return !clk ? 0 : clk->flags;
608 }
609 EXPORT_SYMBOL_GPL(__clk_get_flags);
610 
611 bool __clk_is_prepared(struct clk *clk)
612 {
613 	int ret;
614 
615 	if (!clk)
616 		return false;
617 
618 	/*
619 	 * .is_prepared is optional for clocks that can prepare
620 	 * fall back to software usage counter if it is missing
621 	 */
622 	if (!clk->ops->is_prepared) {
623 		ret = clk->prepare_count ? 1 : 0;
624 		goto out;
625 	}
626 
627 	ret = clk->ops->is_prepared(clk->hw);
628 out:
629 	return !!ret;
630 }
631 
632 bool __clk_is_enabled(struct clk *clk)
633 {
634 	int ret;
635 
636 	if (!clk)
637 		return false;
638 
639 	/*
640 	 * .is_enabled is only mandatory for clocks that gate
641 	 * fall back to software usage counter if .is_enabled is missing
642 	 */
643 	if (!clk->ops->is_enabled) {
644 		ret = clk->enable_count ? 1 : 0;
645 		goto out;
646 	}
647 
648 	ret = clk->ops->is_enabled(clk->hw);
649 out:
650 	return !!ret;
651 }
652 
653 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
654 {
655 	struct clk *child;
656 	struct clk *ret;
657 
658 	if (!strcmp(clk->name, name))
659 		return clk;
660 
661 	hlist_for_each_entry(child, &clk->children, child_node) {
662 		ret = __clk_lookup_subtree(name, child);
663 		if (ret)
664 			return ret;
665 	}
666 
667 	return NULL;
668 }
669 
670 struct clk *__clk_lookup(const char *name)
671 {
672 	struct clk *root_clk;
673 	struct clk *ret;
674 
675 	if (!name)
676 		return NULL;
677 
678 	/* search the 'proper' clk tree first */
679 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
680 		ret = __clk_lookup_subtree(name, root_clk);
681 		if (ret)
682 			return ret;
683 	}
684 
685 	/* if not found, then search the orphan tree */
686 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
687 		ret = __clk_lookup_subtree(name, root_clk);
688 		if (ret)
689 			return ret;
690 	}
691 
692 	return NULL;
693 }
694 
695 /*
696  * Helper for finding best parent to provide a given frequency. This can be used
697  * directly as a determine_rate callback (e.g. for a mux), or from a more
698  * complex clock that may combine a mux with other operations.
699  */
700 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
701 			      unsigned long *best_parent_rate,
702 			      struct clk **best_parent_p)
703 {
704 	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
705 	int i, num_parents;
706 	unsigned long parent_rate, best = 0;
707 
708 	/* if NO_REPARENT flag set, pass through to current parent */
709 	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
710 		parent = clk->parent;
711 		if (clk->flags & CLK_SET_RATE_PARENT)
712 			best = __clk_round_rate(parent, rate);
713 		else if (parent)
714 			best = __clk_get_rate(parent);
715 		else
716 			best = __clk_get_rate(clk);
717 		goto out;
718 	}
719 
720 	/* find the parent that can provide the fastest rate <= rate */
721 	num_parents = clk->num_parents;
722 	for (i = 0; i < num_parents; i++) {
723 		parent = clk_get_parent_by_index(clk, i);
724 		if (!parent)
725 			continue;
726 		if (clk->flags & CLK_SET_RATE_PARENT)
727 			parent_rate = __clk_round_rate(parent, rate);
728 		else
729 			parent_rate = __clk_get_rate(parent);
730 		if (parent_rate <= rate && parent_rate > best) {
731 			best_parent = parent;
732 			best = parent_rate;
733 		}
734 	}
735 
736 out:
737 	if (best_parent)
738 		*best_parent_p = best_parent;
739 	*best_parent_rate = best;
740 
741 	return best;
742 }
743 
744 /***        clk api        ***/
745 
746 void __clk_unprepare(struct clk *clk)
747 {
748 	if (!clk)
749 		return;
750 
751 	if (WARN_ON(clk->prepare_count == 0))
752 		return;
753 
754 	if (--clk->prepare_count > 0)
755 		return;
756 
757 	WARN_ON(clk->enable_count > 0);
758 
759 	if (clk->ops->unprepare)
760 		clk->ops->unprepare(clk->hw);
761 
762 	__clk_unprepare(clk->parent);
763 }
764 
765 /**
766  * clk_unprepare - undo preparation of a clock source
767  * @clk: the clk being unprepared
768  *
769  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
770  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
771  * if the operation may sleep.  One example is a clk which is accessed over
772  * I2c.  In the complex case a clk gate operation may require a fast and a slow
773  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
774  * exclusive.  In fact clk_disable must be called before clk_unprepare.
775  */
776 void clk_unprepare(struct clk *clk)
777 {
778 	clk_prepare_lock();
779 	__clk_unprepare(clk);
780 	clk_prepare_unlock();
781 }
782 EXPORT_SYMBOL_GPL(clk_unprepare);
783 
784 int __clk_prepare(struct clk *clk)
785 {
786 	int ret = 0;
787 
788 	if (!clk)
789 		return 0;
790 
791 	if (clk->prepare_count == 0) {
792 		ret = __clk_prepare(clk->parent);
793 		if (ret)
794 			return ret;
795 
796 		if (clk->ops->prepare) {
797 			ret = clk->ops->prepare(clk->hw);
798 			if (ret) {
799 				__clk_unprepare(clk->parent);
800 				return ret;
801 			}
802 		}
803 	}
804 
805 	clk->prepare_count++;
806 
807 	return 0;
808 }
809 
810 /**
811  * clk_prepare - prepare a clock source
812  * @clk: the clk being prepared
813  *
814  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
815  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
816  * operation may sleep.  One example is a clk which is accessed over I2c.  In
817  * the complex case a clk ungate operation may require a fast and a slow part.
818  * It is this reason that clk_prepare and clk_enable are not mutually
819  * exclusive.  In fact clk_prepare must be called before clk_enable.
820  * Returns 0 on success, -EERROR otherwise.
821  */
822 int clk_prepare(struct clk *clk)
823 {
824 	int ret;
825 
826 	clk_prepare_lock();
827 	ret = __clk_prepare(clk);
828 	clk_prepare_unlock();
829 
830 	return ret;
831 }
832 EXPORT_SYMBOL_GPL(clk_prepare);
833 
834 static void __clk_disable(struct clk *clk)
835 {
836 	if (!clk)
837 		return;
838 
839 	if (WARN_ON(IS_ERR(clk)))
840 		return;
841 
842 	if (WARN_ON(clk->enable_count == 0))
843 		return;
844 
845 	if (--clk->enable_count > 0)
846 		return;
847 
848 	if (clk->ops->disable)
849 		clk->ops->disable(clk->hw);
850 
851 	__clk_disable(clk->parent);
852 }
853 
854 /**
855  * clk_disable - gate a clock
856  * @clk: the clk being gated
857  *
858  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
859  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
860  * clk if the operation is fast and will never sleep.  One example is a
861  * SoC-internal clk which is controlled via simple register writes.  In the
862  * complex case a clk gate operation may require a fast and a slow part.  It is
863  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
864  * In fact clk_disable must be called before clk_unprepare.
865  */
866 void clk_disable(struct clk *clk)
867 {
868 	unsigned long flags;
869 
870 	flags = clk_enable_lock();
871 	__clk_disable(clk);
872 	clk_enable_unlock(flags);
873 }
874 EXPORT_SYMBOL_GPL(clk_disable);
875 
876 static int __clk_enable(struct clk *clk)
877 {
878 	int ret = 0;
879 
880 	if (!clk)
881 		return 0;
882 
883 	if (WARN_ON(clk->prepare_count == 0))
884 		return -ESHUTDOWN;
885 
886 	if (clk->enable_count == 0) {
887 		ret = __clk_enable(clk->parent);
888 
889 		if (ret)
890 			return ret;
891 
892 		if (clk->ops->enable) {
893 			ret = clk->ops->enable(clk->hw);
894 			if (ret) {
895 				__clk_disable(clk->parent);
896 				return ret;
897 			}
898 		}
899 	}
900 
901 	clk->enable_count++;
902 	return 0;
903 }
904 
905 /**
906  * clk_enable - ungate a clock
907  * @clk: the clk being ungated
908  *
909  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
910  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
911  * if the operation will never sleep.  One example is a SoC-internal clk which
912  * is controlled via simple register writes.  In the complex case a clk ungate
913  * operation may require a fast and a slow part.  It is this reason that
914  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
915  * must be called before clk_enable.  Returns 0 on success, -EERROR
916  * otherwise.
917  */
918 int clk_enable(struct clk *clk)
919 {
920 	unsigned long flags;
921 	int ret;
922 
923 	flags = clk_enable_lock();
924 	ret = __clk_enable(clk);
925 	clk_enable_unlock(flags);
926 
927 	return ret;
928 }
929 EXPORT_SYMBOL_GPL(clk_enable);
930 
931 /**
932  * __clk_round_rate - round the given rate for a clk
933  * @clk: round the rate of this clock
934  * @rate: the rate which is to be rounded
935  *
936  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
937  */
938 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
939 {
940 	unsigned long parent_rate = 0;
941 	struct clk *parent;
942 
943 	if (!clk)
944 		return 0;
945 
946 	parent = clk->parent;
947 	if (parent)
948 		parent_rate = parent->rate;
949 
950 	if (clk->ops->determine_rate)
951 		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
952 						&parent);
953 	else if (clk->ops->round_rate)
954 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
955 	else if (clk->flags & CLK_SET_RATE_PARENT)
956 		return __clk_round_rate(clk->parent, rate);
957 	else
958 		return clk->rate;
959 }
960 
961 /**
962  * clk_round_rate - round the given rate for a clk
963  * @clk: the clk for which we are rounding a rate
964  * @rate: the rate which is to be rounded
965  *
966  * Takes in a rate as input and rounds it to a rate that the clk can actually
967  * use which is then returned.  If clk doesn't support round_rate operation
968  * then the parent rate is returned.
969  */
970 long clk_round_rate(struct clk *clk, unsigned long rate)
971 {
972 	unsigned long ret;
973 
974 	clk_prepare_lock();
975 	ret = __clk_round_rate(clk, rate);
976 	clk_prepare_unlock();
977 
978 	return ret;
979 }
980 EXPORT_SYMBOL_GPL(clk_round_rate);
981 
982 /**
983  * __clk_notify - call clk notifier chain
984  * @clk: struct clk * that is changing rate
985  * @msg: clk notifier type (see include/linux/clk.h)
986  * @old_rate: old clk rate
987  * @new_rate: new clk rate
988  *
989  * Triggers a notifier call chain on the clk rate-change notification
990  * for 'clk'.  Passes a pointer to the struct clk and the previous
991  * and current rates to the notifier callback.  Intended to be called by
992  * internal clock code only.  Returns NOTIFY_DONE from the last driver
993  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
994  * a driver returns that.
995  */
996 static int __clk_notify(struct clk *clk, unsigned long msg,
997 		unsigned long old_rate, unsigned long new_rate)
998 {
999 	struct clk_notifier *cn;
1000 	struct clk_notifier_data cnd;
1001 	int ret = NOTIFY_DONE;
1002 
1003 	cnd.clk = clk;
1004 	cnd.old_rate = old_rate;
1005 	cnd.new_rate = new_rate;
1006 
1007 	list_for_each_entry(cn, &clk_notifier_list, node) {
1008 		if (cn->clk == clk) {
1009 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1010 					&cnd);
1011 			break;
1012 		}
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 /**
1019  * __clk_recalc_rates
1020  * @clk: first clk in the subtree
1021  * @msg: notification type (see include/linux/clk.h)
1022  *
1023  * Walks the subtree of clks starting with clk and recalculates rates as it
1024  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1025  * it is assumed that the clock will take on the rate of its parent.
1026  *
1027  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1028  * if necessary.
1029  *
1030  * Caller must hold prepare_lock.
1031  */
1032 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1033 {
1034 	unsigned long old_rate;
1035 	unsigned long parent_rate = 0;
1036 	struct clk *child;
1037 
1038 	old_rate = clk->rate;
1039 
1040 	if (clk->parent)
1041 		parent_rate = clk->parent->rate;
1042 
1043 	if (clk->ops->recalc_rate)
1044 		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1045 	else
1046 		clk->rate = parent_rate;
1047 
1048 	/*
1049 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1050 	 * & ABORT_RATE_CHANGE notifiers
1051 	 */
1052 	if (clk->notifier_count && msg)
1053 		__clk_notify(clk, msg, old_rate, clk->rate);
1054 
1055 	hlist_for_each_entry(child, &clk->children, child_node)
1056 		__clk_recalc_rates(child, msg);
1057 }
1058 
1059 /**
1060  * clk_get_rate - return the rate of clk
1061  * @clk: the clk whose rate is being returned
1062  *
1063  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1064  * is set, which means a recalc_rate will be issued.
1065  * If clk is NULL then returns 0.
1066  */
1067 unsigned long clk_get_rate(struct clk *clk)
1068 {
1069 	unsigned long rate;
1070 
1071 	clk_prepare_lock();
1072 
1073 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1074 		__clk_recalc_rates(clk, 0);
1075 
1076 	rate = __clk_get_rate(clk);
1077 	clk_prepare_unlock();
1078 
1079 	return rate;
1080 }
1081 EXPORT_SYMBOL_GPL(clk_get_rate);
1082 
1083 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1084 {
1085 	int i;
1086 
1087 	if (!clk->parents) {
1088 		clk->parents = kcalloc(clk->num_parents,
1089 					sizeof(struct clk *), GFP_KERNEL);
1090 		if (!clk->parents)
1091 			return -ENOMEM;
1092 	}
1093 
1094 	/*
1095 	 * find index of new parent clock using cached parent ptrs,
1096 	 * or if not yet cached, use string name comparison and cache
1097 	 * them now to avoid future calls to __clk_lookup.
1098 	 */
1099 	for (i = 0; i < clk->num_parents; i++) {
1100 		if (clk->parents[i] == parent)
1101 			return i;
1102 
1103 		if (clk->parents[i])
1104 			continue;
1105 
1106 		if (!strcmp(clk->parent_names[i], parent->name)) {
1107 			clk->parents[i] = __clk_lookup(parent->name);
1108 			return i;
1109 		}
1110 	}
1111 
1112 	return -EINVAL;
1113 }
1114 
1115 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1116 {
1117 	hlist_del(&clk->child_node);
1118 
1119 	if (new_parent) {
1120 		/* avoid duplicate POST_RATE_CHANGE notifications */
1121 		if (new_parent->new_child == clk)
1122 			new_parent->new_child = NULL;
1123 
1124 		hlist_add_head(&clk->child_node, &new_parent->children);
1125 	} else {
1126 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1127 	}
1128 
1129 	clk->parent = new_parent;
1130 }
1131 
1132 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1133 {
1134 	unsigned long flags;
1135 	int ret = 0;
1136 	struct clk *old_parent = clk->parent;
1137 
1138 	/*
1139 	 * Migrate prepare state between parents and prevent race with
1140 	 * clk_enable().
1141 	 *
1142 	 * If the clock is not prepared, then a race with
1143 	 * clk_enable/disable() is impossible since we already have the
1144 	 * prepare lock (future calls to clk_enable() need to be preceded by
1145 	 * a clk_prepare()).
1146 	 *
1147 	 * If the clock is prepared, migrate the prepared state to the new
1148 	 * parent and also protect against a race with clk_enable() by
1149 	 * forcing the clock and the new parent on.  This ensures that all
1150 	 * future calls to clk_enable() are practically NOPs with respect to
1151 	 * hardware and software states.
1152 	 *
1153 	 * See also: Comment for clk_set_parent() below.
1154 	 */
1155 	if (clk->prepare_count) {
1156 		__clk_prepare(parent);
1157 		clk_enable(parent);
1158 		clk_enable(clk);
1159 	}
1160 
1161 	/* update the clk tree topology */
1162 	flags = clk_enable_lock();
1163 	clk_reparent(clk, parent);
1164 	clk_enable_unlock(flags);
1165 
1166 	/* change clock input source */
1167 	if (parent && clk->ops->set_parent)
1168 		ret = clk->ops->set_parent(clk->hw, p_index);
1169 
1170 	if (ret) {
1171 		flags = clk_enable_lock();
1172 		clk_reparent(clk, old_parent);
1173 		clk_enable_unlock(flags);
1174 
1175 		if (clk->prepare_count) {
1176 			clk_disable(clk);
1177 			clk_disable(parent);
1178 			__clk_unprepare(parent);
1179 		}
1180 		return ret;
1181 	}
1182 
1183 	/*
1184 	 * Finish the migration of prepare state and undo the changes done
1185 	 * for preventing a race with clk_enable().
1186 	 */
1187 	if (clk->prepare_count) {
1188 		clk_disable(clk);
1189 		clk_disable(old_parent);
1190 		__clk_unprepare(old_parent);
1191 	}
1192 
1193 	/* update debugfs with new clk tree topology */
1194 	clk_debug_reparent(clk, parent);
1195 	return 0;
1196 }
1197 
1198 /**
1199  * __clk_speculate_rates
1200  * @clk: first clk in the subtree
1201  * @parent_rate: the "future" rate of clk's parent
1202  *
1203  * Walks the subtree of clks starting with clk, speculating rates as it
1204  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1205  *
1206  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1207  * pre-rate change notifications and returns early if no clks in the
1208  * subtree have subscribed to the notifications.  Note that if a clk does not
1209  * implement the .recalc_rate callback then it is assumed that the clock will
1210  * take on the rate of its parent.
1211  *
1212  * Caller must hold prepare_lock.
1213  */
1214 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1215 {
1216 	struct clk *child;
1217 	unsigned long new_rate;
1218 	int ret = NOTIFY_DONE;
1219 
1220 	if (clk->ops->recalc_rate)
1221 		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1222 	else
1223 		new_rate = parent_rate;
1224 
1225 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1226 	if (clk->notifier_count)
1227 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1228 
1229 	if (ret & NOTIFY_STOP_MASK)
1230 		goto out;
1231 
1232 	hlist_for_each_entry(child, &clk->children, child_node) {
1233 		ret = __clk_speculate_rates(child, new_rate);
1234 		if (ret & NOTIFY_STOP_MASK)
1235 			break;
1236 	}
1237 
1238 out:
1239 	return ret;
1240 }
1241 
1242 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1243 			     struct clk *new_parent, u8 p_index)
1244 {
1245 	struct clk *child;
1246 
1247 	clk->new_rate = new_rate;
1248 	clk->new_parent = new_parent;
1249 	clk->new_parent_index = p_index;
1250 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1251 	clk->new_child = NULL;
1252 	if (new_parent && new_parent != clk->parent)
1253 		new_parent->new_child = clk;
1254 
1255 	hlist_for_each_entry(child, &clk->children, child_node) {
1256 		if (child->ops->recalc_rate)
1257 			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1258 		else
1259 			child->new_rate = new_rate;
1260 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1261 	}
1262 }
1263 
1264 /*
1265  * calculate the new rates returning the topmost clock that has to be
1266  * changed.
1267  */
1268 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1269 {
1270 	struct clk *top = clk;
1271 	struct clk *old_parent, *parent;
1272 	unsigned long best_parent_rate = 0;
1273 	unsigned long new_rate;
1274 	int p_index = 0;
1275 
1276 	/* sanity */
1277 	if (IS_ERR_OR_NULL(clk))
1278 		return NULL;
1279 
1280 	/* save parent rate, if it exists */
1281 	parent = old_parent = clk->parent;
1282 	if (parent)
1283 		best_parent_rate = parent->rate;
1284 
1285 	/* find the closest rate and parent clk/rate */
1286 	if (clk->ops->determine_rate) {
1287 		new_rate = clk->ops->determine_rate(clk->hw, rate,
1288 						    &best_parent_rate,
1289 						    &parent);
1290 	} else if (clk->ops->round_rate) {
1291 		new_rate = clk->ops->round_rate(clk->hw, rate,
1292 						&best_parent_rate);
1293 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1294 		/* pass-through clock without adjustable parent */
1295 		clk->new_rate = clk->rate;
1296 		return NULL;
1297 	} else {
1298 		/* pass-through clock with adjustable parent */
1299 		top = clk_calc_new_rates(parent, rate);
1300 		new_rate = parent->new_rate;
1301 		goto out;
1302 	}
1303 
1304 	/* some clocks must be gated to change parent */
1305 	if (parent != old_parent &&
1306 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1307 		pr_debug("%s: %s not gated but wants to reparent\n",
1308 			 __func__, clk->name);
1309 		return NULL;
1310 	}
1311 
1312 	/* try finding the new parent index */
1313 	if (parent) {
1314 		p_index = clk_fetch_parent_index(clk, parent);
1315 		if (p_index < 0) {
1316 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1317 				 __func__, parent->name, clk->name);
1318 			return NULL;
1319 		}
1320 	}
1321 
1322 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1323 	    best_parent_rate != parent->rate)
1324 		top = clk_calc_new_rates(parent, best_parent_rate);
1325 
1326 out:
1327 	clk_calc_subtree(clk, new_rate, parent, p_index);
1328 
1329 	return top;
1330 }
1331 
1332 /*
1333  * Notify about rate changes in a subtree. Always walk down the whole tree
1334  * so that in case of an error we can walk down the whole tree again and
1335  * abort the change.
1336  */
1337 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1338 {
1339 	struct clk *child, *tmp_clk, *fail_clk = NULL;
1340 	int ret = NOTIFY_DONE;
1341 
1342 	if (clk->rate == clk->new_rate)
1343 		return NULL;
1344 
1345 	if (clk->notifier_count) {
1346 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1347 		if (ret & NOTIFY_STOP_MASK)
1348 			fail_clk = clk;
1349 	}
1350 
1351 	hlist_for_each_entry(child, &clk->children, child_node) {
1352 		/* Skip children who will be reparented to another clock */
1353 		if (child->new_parent && child->new_parent != clk)
1354 			continue;
1355 		tmp_clk = clk_propagate_rate_change(child, event);
1356 		if (tmp_clk)
1357 			fail_clk = tmp_clk;
1358 	}
1359 
1360 	/* handle the new child who might not be in clk->children yet */
1361 	if (clk->new_child) {
1362 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1363 		if (tmp_clk)
1364 			fail_clk = tmp_clk;
1365 	}
1366 
1367 	return fail_clk;
1368 }
1369 
1370 /*
1371  * walk down a subtree and set the new rates notifying the rate
1372  * change on the way
1373  */
1374 static void clk_change_rate(struct clk *clk)
1375 {
1376 	struct clk *child;
1377 	unsigned long old_rate;
1378 	unsigned long best_parent_rate = 0;
1379 
1380 	old_rate = clk->rate;
1381 
1382 	/* set parent */
1383 	if (clk->new_parent && clk->new_parent != clk->parent)
1384 		__clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1385 
1386 	if (clk->parent)
1387 		best_parent_rate = clk->parent->rate;
1388 
1389 	if (clk->ops->set_rate)
1390 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1391 
1392 	if (clk->ops->recalc_rate)
1393 		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1394 	else
1395 		clk->rate = best_parent_rate;
1396 
1397 	if (clk->notifier_count && old_rate != clk->rate)
1398 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1399 
1400 	hlist_for_each_entry(child, &clk->children, child_node) {
1401 		/* Skip children who will be reparented to another clock */
1402 		if (child->new_parent && child->new_parent != clk)
1403 			continue;
1404 		clk_change_rate(child);
1405 	}
1406 
1407 	/* handle the new child who might not be in clk->children yet */
1408 	if (clk->new_child)
1409 		clk_change_rate(clk->new_child);
1410 }
1411 
1412 /**
1413  * clk_set_rate - specify a new rate for clk
1414  * @clk: the clk whose rate is being changed
1415  * @rate: the new rate for clk
1416  *
1417  * In the simplest case clk_set_rate will only adjust the rate of clk.
1418  *
1419  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1420  * propagate up to clk's parent; whether or not this happens depends on the
1421  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1422  * after calling .round_rate then upstream parent propagation is ignored.  If
1423  * *parent_rate comes back with a new rate for clk's parent then we propagate
1424  * up to clk's parent and set its rate.  Upward propagation will continue
1425  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1426  * .round_rate stops requesting changes to clk's parent_rate.
1427  *
1428  * Rate changes are accomplished via tree traversal that also recalculates the
1429  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1430  *
1431  * Returns 0 on success, -EERROR otherwise.
1432  */
1433 int clk_set_rate(struct clk *clk, unsigned long rate)
1434 {
1435 	struct clk *top, *fail_clk;
1436 	int ret = 0;
1437 
1438 	if (!clk)
1439 		return 0;
1440 
1441 	/* prevent racing with updates to the clock topology */
1442 	clk_prepare_lock();
1443 
1444 	/* bail early if nothing to do */
1445 	if (rate == clk_get_rate(clk))
1446 		goto out;
1447 
1448 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1449 		ret = -EBUSY;
1450 		goto out;
1451 	}
1452 
1453 	/* calculate new rates and get the topmost changed clock */
1454 	top = clk_calc_new_rates(clk, rate);
1455 	if (!top) {
1456 		ret = -EINVAL;
1457 		goto out;
1458 	}
1459 
1460 	/* notify that we are about to change rates */
1461 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1462 	if (fail_clk) {
1463 		pr_warn("%s: failed to set %s rate\n", __func__,
1464 				fail_clk->name);
1465 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1466 		ret = -EBUSY;
1467 		goto out;
1468 	}
1469 
1470 	/* change the rates */
1471 	clk_change_rate(top);
1472 
1473 out:
1474 	clk_prepare_unlock();
1475 
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(clk_set_rate);
1479 
1480 /**
1481  * clk_get_parent - return the parent of a clk
1482  * @clk: the clk whose parent gets returned
1483  *
1484  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1485  */
1486 struct clk *clk_get_parent(struct clk *clk)
1487 {
1488 	struct clk *parent;
1489 
1490 	clk_prepare_lock();
1491 	parent = __clk_get_parent(clk);
1492 	clk_prepare_unlock();
1493 
1494 	return parent;
1495 }
1496 EXPORT_SYMBOL_GPL(clk_get_parent);
1497 
1498 /*
1499  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1500  * optional for single-parent clocks.  Always call .get_parent if it is
1501  * available and WARN if it is missing for multi-parent clocks.
1502  *
1503  * For single-parent clocks without .get_parent, first check to see if the
1504  * .parents array exists, and if so use it to avoid an expensive tree
1505  * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1506  */
1507 static struct clk *__clk_init_parent(struct clk *clk)
1508 {
1509 	struct clk *ret = NULL;
1510 	u8 index;
1511 
1512 	/* handle the trivial cases */
1513 
1514 	if (!clk->num_parents)
1515 		goto out;
1516 
1517 	if (clk->num_parents == 1) {
1518 		if (IS_ERR_OR_NULL(clk->parent))
1519 			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1520 		ret = clk->parent;
1521 		goto out;
1522 	}
1523 
1524 	if (!clk->ops->get_parent) {
1525 		WARN(!clk->ops->get_parent,
1526 			"%s: multi-parent clocks must implement .get_parent\n",
1527 			__func__);
1528 		goto out;
1529 	};
1530 
1531 	/*
1532 	 * Do our best to cache parent clocks in clk->parents.  This prevents
1533 	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1534 	 * clk->parent here; that is done by the calling function
1535 	 */
1536 
1537 	index = clk->ops->get_parent(clk->hw);
1538 
1539 	if (!clk->parents)
1540 		clk->parents =
1541 			kcalloc(clk->num_parents, sizeof(struct clk *),
1542 					GFP_KERNEL);
1543 
1544 	ret = clk_get_parent_by_index(clk, index);
1545 
1546 out:
1547 	return ret;
1548 }
1549 
1550 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1551 {
1552 	clk_reparent(clk, new_parent);
1553 	clk_debug_reparent(clk, new_parent);
1554 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1555 }
1556 
1557 /**
1558  * clk_set_parent - switch the parent of a mux clk
1559  * @clk: the mux clk whose input we are switching
1560  * @parent: the new input to clk
1561  *
1562  * Re-parent clk to use parent as its new input source.  If clk is in
1563  * prepared state, the clk will get enabled for the duration of this call. If
1564  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1565  * that, the reparenting is glitchy in hardware, etc), use the
1566  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1567  *
1568  * After successfully changing clk's parent clk_set_parent will update the
1569  * clk topology, sysfs topology and propagate rate recalculation via
1570  * __clk_recalc_rates.
1571  *
1572  * Returns 0 on success, -EERROR otherwise.
1573  */
1574 int clk_set_parent(struct clk *clk, struct clk *parent)
1575 {
1576 	int ret = 0;
1577 	int p_index = 0;
1578 	unsigned long p_rate = 0;
1579 
1580 	if (!clk)
1581 		return 0;
1582 
1583 	if (!clk->ops)
1584 		return -EINVAL;
1585 
1586 	/* verify ops for for multi-parent clks */
1587 	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1588 		return -ENOSYS;
1589 
1590 	/* prevent racing with updates to the clock topology */
1591 	clk_prepare_lock();
1592 
1593 	if (clk->parent == parent)
1594 		goto out;
1595 
1596 	/* check that we are allowed to re-parent if the clock is in use */
1597 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1598 		ret = -EBUSY;
1599 		goto out;
1600 	}
1601 
1602 	/* try finding the new parent index */
1603 	if (parent) {
1604 		p_index = clk_fetch_parent_index(clk, parent);
1605 		p_rate = parent->rate;
1606 		if (p_index < 0) {
1607 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1608 					__func__, parent->name, clk->name);
1609 			ret = p_index;
1610 			goto out;
1611 		}
1612 	}
1613 
1614 	/* propagate PRE_RATE_CHANGE notifications */
1615 	ret = __clk_speculate_rates(clk, p_rate);
1616 
1617 	/* abort if a driver objects */
1618 	if (ret & NOTIFY_STOP_MASK)
1619 		goto out;
1620 
1621 	/* do the re-parent */
1622 	ret = __clk_set_parent(clk, parent, p_index);
1623 
1624 	/* propagate rate recalculation accordingly */
1625 	if (ret)
1626 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1627 	else
1628 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1629 
1630 out:
1631 	clk_prepare_unlock();
1632 
1633 	return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(clk_set_parent);
1636 
1637 /**
1638  * __clk_init - initialize the data structures in a struct clk
1639  * @dev:	device initializing this clk, placeholder for now
1640  * @clk:	clk being initialized
1641  *
1642  * Initializes the lists in struct clk, queries the hardware for the
1643  * parent and rate and sets them both.
1644  */
1645 int __clk_init(struct device *dev, struct clk *clk)
1646 {
1647 	int i, ret = 0;
1648 	struct clk *orphan;
1649 	struct hlist_node *tmp2;
1650 
1651 	if (!clk)
1652 		return -EINVAL;
1653 
1654 	clk_prepare_lock();
1655 
1656 	/* check to see if a clock with this name is already registered */
1657 	if (__clk_lookup(clk->name)) {
1658 		pr_debug("%s: clk %s already initialized\n",
1659 				__func__, clk->name);
1660 		ret = -EEXIST;
1661 		goto out;
1662 	}
1663 
1664 	/* check that clk_ops are sane.  See Documentation/clk.txt */
1665 	if (clk->ops->set_rate &&
1666 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1667 	      clk->ops->recalc_rate)) {
1668 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1669 				__func__, clk->name);
1670 		ret = -EINVAL;
1671 		goto out;
1672 	}
1673 
1674 	if (clk->ops->set_parent && !clk->ops->get_parent) {
1675 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1676 				__func__, clk->name);
1677 		ret = -EINVAL;
1678 		goto out;
1679 	}
1680 
1681 	/* throw a WARN if any entries in parent_names are NULL */
1682 	for (i = 0; i < clk->num_parents; i++)
1683 		WARN(!clk->parent_names[i],
1684 				"%s: invalid NULL in %s's .parent_names\n",
1685 				__func__, clk->name);
1686 
1687 	/*
1688 	 * Allocate an array of struct clk *'s to avoid unnecessary string
1689 	 * look-ups of clk's possible parents.  This can fail for clocks passed
1690 	 * in to clk_init during early boot; thus any access to clk->parents[]
1691 	 * must always check for a NULL pointer and try to populate it if
1692 	 * necessary.
1693 	 *
1694 	 * If clk->parents is not NULL we skip this entire block.  This allows
1695 	 * for clock drivers to statically initialize clk->parents.
1696 	 */
1697 	if (clk->num_parents > 1 && !clk->parents) {
1698 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1699 					GFP_KERNEL);
1700 		/*
1701 		 * __clk_lookup returns NULL for parents that have not been
1702 		 * clk_init'd; thus any access to clk->parents[] must check
1703 		 * for a NULL pointer.  We can always perform lazy lookups for
1704 		 * missing parents later on.
1705 		 */
1706 		if (clk->parents)
1707 			for (i = 0; i < clk->num_parents; i++)
1708 				clk->parents[i] =
1709 					__clk_lookup(clk->parent_names[i]);
1710 	}
1711 
1712 	clk->parent = __clk_init_parent(clk);
1713 
1714 	/*
1715 	 * Populate clk->parent if parent has already been __clk_init'd.  If
1716 	 * parent has not yet been __clk_init'd then place clk in the orphan
1717 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1718 	 * clk list.
1719 	 *
1720 	 * Every time a new clk is clk_init'd then we walk the list of orphan
1721 	 * clocks and re-parent any that are children of the clock currently
1722 	 * being clk_init'd.
1723 	 */
1724 	if (clk->parent)
1725 		hlist_add_head(&clk->child_node,
1726 				&clk->parent->children);
1727 	else if (clk->flags & CLK_IS_ROOT)
1728 		hlist_add_head(&clk->child_node, &clk_root_list);
1729 	else
1730 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1731 
1732 	/*
1733 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1734 	 * simple clocks and lazy developers the default fallback is to use the
1735 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1736 	 * then rate is set to zero.
1737 	 */
1738 	if (clk->ops->recalc_rate)
1739 		clk->rate = clk->ops->recalc_rate(clk->hw,
1740 				__clk_get_rate(clk->parent));
1741 	else if (clk->parent)
1742 		clk->rate = clk->parent->rate;
1743 	else
1744 		clk->rate = 0;
1745 
1746 	/*
1747 	 * walk the list of orphan clocks and reparent any that are children of
1748 	 * this clock
1749 	 */
1750 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1751 		if (orphan->num_parents && orphan->ops->get_parent) {
1752 			i = orphan->ops->get_parent(orphan->hw);
1753 			if (!strcmp(clk->name, orphan->parent_names[i]))
1754 				__clk_reparent(orphan, clk);
1755 			continue;
1756 		}
1757 
1758 		for (i = 0; i < orphan->num_parents; i++)
1759 			if (!strcmp(clk->name, orphan->parent_names[i])) {
1760 				__clk_reparent(orphan, clk);
1761 				break;
1762 			}
1763 	 }
1764 
1765 	/*
1766 	 * optional platform-specific magic
1767 	 *
1768 	 * The .init callback is not used by any of the basic clock types, but
1769 	 * exists for weird hardware that must perform initialization magic.
1770 	 * Please consider other ways of solving initialization problems before
1771 	 * using this callback, as its use is discouraged.
1772 	 */
1773 	if (clk->ops->init)
1774 		clk->ops->init(clk->hw);
1775 
1776 	clk_debug_register(clk);
1777 
1778 out:
1779 	clk_prepare_unlock();
1780 
1781 	return ret;
1782 }
1783 
1784 /**
1785  * __clk_register - register a clock and return a cookie.
1786  *
1787  * Same as clk_register, except that the .clk field inside hw shall point to a
1788  * preallocated (generally statically allocated) struct clk. None of the fields
1789  * of the struct clk need to be initialized.
1790  *
1791  * The data pointed to by .init and .clk field shall NOT be marked as init
1792  * data.
1793  *
1794  * __clk_register is only exposed via clk-private.h and is intended for use with
1795  * very large numbers of clocks that need to be statically initialized.  It is
1796  * a layering violation to include clk-private.h from any code which implements
1797  * a clock's .ops; as such any statically initialized clock data MUST be in a
1798  * separate C file from the logic that implements its operations.  Returns 0
1799  * on success, otherwise an error code.
1800  */
1801 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1802 {
1803 	int ret;
1804 	struct clk *clk;
1805 
1806 	clk = hw->clk;
1807 	clk->name = hw->init->name;
1808 	clk->ops = hw->init->ops;
1809 	clk->hw = hw;
1810 	clk->flags = hw->init->flags;
1811 	clk->parent_names = hw->init->parent_names;
1812 	clk->num_parents = hw->init->num_parents;
1813 
1814 	ret = __clk_init(dev, clk);
1815 	if (ret)
1816 		return ERR_PTR(ret);
1817 
1818 	return clk;
1819 }
1820 EXPORT_SYMBOL_GPL(__clk_register);
1821 
1822 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1823 {
1824 	int i, ret;
1825 
1826 	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1827 	if (!clk->name) {
1828 		pr_err("%s: could not allocate clk->name\n", __func__);
1829 		ret = -ENOMEM;
1830 		goto fail_name;
1831 	}
1832 	clk->ops = hw->init->ops;
1833 	clk->hw = hw;
1834 	clk->flags = hw->init->flags;
1835 	clk->num_parents = hw->init->num_parents;
1836 	hw->clk = clk;
1837 
1838 	/* allocate local copy in case parent_names is __initdata */
1839 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1840 					GFP_KERNEL);
1841 
1842 	if (!clk->parent_names) {
1843 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1844 		ret = -ENOMEM;
1845 		goto fail_parent_names;
1846 	}
1847 
1848 
1849 	/* copy each string name in case parent_names is __initdata */
1850 	for (i = 0; i < clk->num_parents; i++) {
1851 		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1852 						GFP_KERNEL);
1853 		if (!clk->parent_names[i]) {
1854 			pr_err("%s: could not copy parent_names\n", __func__);
1855 			ret = -ENOMEM;
1856 			goto fail_parent_names_copy;
1857 		}
1858 	}
1859 
1860 	ret = __clk_init(dev, clk);
1861 	if (!ret)
1862 		return 0;
1863 
1864 fail_parent_names_copy:
1865 	while (--i >= 0)
1866 		kfree(clk->parent_names[i]);
1867 	kfree(clk->parent_names);
1868 fail_parent_names:
1869 	kfree(clk->name);
1870 fail_name:
1871 	return ret;
1872 }
1873 
1874 /**
1875  * clk_register - allocate a new clock, register it and return an opaque cookie
1876  * @dev: device that is registering this clock
1877  * @hw: link to hardware-specific clock data
1878  *
1879  * clk_register is the primary interface for populating the clock tree with new
1880  * clock nodes.  It returns a pointer to the newly allocated struct clk which
1881  * cannot be dereferenced by driver code but may be used in conjuction with the
1882  * rest of the clock API.  In the event of an error clk_register will return an
1883  * error code; drivers must test for an error code after calling clk_register.
1884  */
1885 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1886 {
1887 	int ret;
1888 	struct clk *clk;
1889 
1890 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1891 	if (!clk) {
1892 		pr_err("%s: could not allocate clk\n", __func__);
1893 		ret = -ENOMEM;
1894 		goto fail_out;
1895 	}
1896 
1897 	ret = _clk_register(dev, hw, clk);
1898 	if (!ret)
1899 		return clk;
1900 
1901 	kfree(clk);
1902 fail_out:
1903 	return ERR_PTR(ret);
1904 }
1905 EXPORT_SYMBOL_GPL(clk_register);
1906 
1907 /**
1908  * clk_unregister - unregister a currently registered clock
1909  * @clk: clock to unregister
1910  *
1911  * Currently unimplemented.
1912  */
1913 void clk_unregister(struct clk *clk) {}
1914 EXPORT_SYMBOL_GPL(clk_unregister);
1915 
1916 static void devm_clk_release(struct device *dev, void *res)
1917 {
1918 	clk_unregister(res);
1919 }
1920 
1921 /**
1922  * devm_clk_register - resource managed clk_register()
1923  * @dev: device that is registering this clock
1924  * @hw: link to hardware-specific clock data
1925  *
1926  * Managed clk_register(). Clocks returned from this function are
1927  * automatically clk_unregister()ed on driver detach. See clk_register() for
1928  * more information.
1929  */
1930 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1931 {
1932 	struct clk *clk;
1933 	int ret;
1934 
1935 	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1936 	if (!clk)
1937 		return ERR_PTR(-ENOMEM);
1938 
1939 	ret = _clk_register(dev, hw, clk);
1940 	if (!ret) {
1941 		devres_add(dev, clk);
1942 	} else {
1943 		devres_free(clk);
1944 		clk = ERR_PTR(ret);
1945 	}
1946 
1947 	return clk;
1948 }
1949 EXPORT_SYMBOL_GPL(devm_clk_register);
1950 
1951 static int devm_clk_match(struct device *dev, void *res, void *data)
1952 {
1953 	struct clk *c = res;
1954 	if (WARN_ON(!c))
1955 		return 0;
1956 	return c == data;
1957 }
1958 
1959 /**
1960  * devm_clk_unregister - resource managed clk_unregister()
1961  * @clk: clock to unregister
1962  *
1963  * Deallocate a clock allocated with devm_clk_register(). Normally
1964  * this function will not need to be called and the resource management
1965  * code will ensure that the resource is freed.
1966  */
1967 void devm_clk_unregister(struct device *dev, struct clk *clk)
1968 {
1969 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1970 }
1971 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1972 
1973 /***        clk rate change notifiers        ***/
1974 
1975 /**
1976  * clk_notifier_register - add a clk rate change notifier
1977  * @clk: struct clk * to watch
1978  * @nb: struct notifier_block * with callback info
1979  *
1980  * Request notification when clk's rate changes.  This uses an SRCU
1981  * notifier because we want it to block and notifier unregistrations are
1982  * uncommon.  The callbacks associated with the notifier must not
1983  * re-enter into the clk framework by calling any top-level clk APIs;
1984  * this will cause a nested prepare_lock mutex.
1985  *
1986  * Pre-change notifier callbacks will be passed the current, pre-change
1987  * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1988  * post-change rate of the clk is passed via struct
1989  * clk_notifier_data.new_rate.
1990  *
1991  * Post-change notifiers will pass the now-current, post-change rate of
1992  * the clk in both struct clk_notifier_data.old_rate and struct
1993  * clk_notifier_data.new_rate.
1994  *
1995  * Abort-change notifiers are effectively the opposite of pre-change
1996  * notifiers: the original pre-change clk rate is passed in via struct
1997  * clk_notifier_data.new_rate and the failed post-change rate is passed
1998  * in via struct clk_notifier_data.old_rate.
1999  *
2000  * clk_notifier_register() must be called from non-atomic context.
2001  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2002  * allocation failure; otherwise, passes along the return value of
2003  * srcu_notifier_chain_register().
2004  */
2005 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2006 {
2007 	struct clk_notifier *cn;
2008 	int ret = -ENOMEM;
2009 
2010 	if (!clk || !nb)
2011 		return -EINVAL;
2012 
2013 	clk_prepare_lock();
2014 
2015 	/* search the list of notifiers for this clk */
2016 	list_for_each_entry(cn, &clk_notifier_list, node)
2017 		if (cn->clk == clk)
2018 			break;
2019 
2020 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2021 	if (cn->clk != clk) {
2022 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2023 		if (!cn)
2024 			goto out;
2025 
2026 		cn->clk = clk;
2027 		srcu_init_notifier_head(&cn->notifier_head);
2028 
2029 		list_add(&cn->node, &clk_notifier_list);
2030 	}
2031 
2032 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2033 
2034 	clk->notifier_count++;
2035 
2036 out:
2037 	clk_prepare_unlock();
2038 
2039 	return ret;
2040 }
2041 EXPORT_SYMBOL_GPL(clk_notifier_register);
2042 
2043 /**
2044  * clk_notifier_unregister - remove a clk rate change notifier
2045  * @clk: struct clk *
2046  * @nb: struct notifier_block * with callback info
2047  *
2048  * Request no further notification for changes to 'clk' and frees memory
2049  * allocated in clk_notifier_register.
2050  *
2051  * Returns -EINVAL if called with null arguments; otherwise, passes
2052  * along the return value of srcu_notifier_chain_unregister().
2053  */
2054 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2055 {
2056 	struct clk_notifier *cn = NULL;
2057 	int ret = -EINVAL;
2058 
2059 	if (!clk || !nb)
2060 		return -EINVAL;
2061 
2062 	clk_prepare_lock();
2063 
2064 	list_for_each_entry(cn, &clk_notifier_list, node)
2065 		if (cn->clk == clk)
2066 			break;
2067 
2068 	if (cn->clk == clk) {
2069 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2070 
2071 		clk->notifier_count--;
2072 
2073 		/* XXX the notifier code should handle this better */
2074 		if (!cn->notifier_head.head) {
2075 			srcu_cleanup_notifier_head(&cn->notifier_head);
2076 			list_del(&cn->node);
2077 			kfree(cn);
2078 		}
2079 
2080 	} else {
2081 		ret = -ENOENT;
2082 	}
2083 
2084 	clk_prepare_unlock();
2085 
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2089 
2090 #ifdef CONFIG_OF
2091 /**
2092  * struct of_clk_provider - Clock provider registration structure
2093  * @link: Entry in global list of clock providers
2094  * @node: Pointer to device tree node of clock provider
2095  * @get: Get clock callback.  Returns NULL or a struct clk for the
2096  *       given clock specifier
2097  * @data: context pointer to be passed into @get callback
2098  */
2099 struct of_clk_provider {
2100 	struct list_head link;
2101 
2102 	struct device_node *node;
2103 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2104 	void *data;
2105 };
2106 
2107 extern struct of_device_id __clk_of_table[];
2108 
2109 static const struct of_device_id __clk_of_table_sentinel
2110 	__used __section(__clk_of_table_end);
2111 
2112 static LIST_HEAD(of_clk_providers);
2113 static DEFINE_MUTEX(of_clk_lock);
2114 
2115 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2116 				     void *data)
2117 {
2118 	return data;
2119 }
2120 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2121 
2122 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2123 {
2124 	struct clk_onecell_data *clk_data = data;
2125 	unsigned int idx = clkspec->args[0];
2126 
2127 	if (idx >= clk_data->clk_num) {
2128 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2129 		return ERR_PTR(-EINVAL);
2130 	}
2131 
2132 	return clk_data->clks[idx];
2133 }
2134 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2135 
2136 /**
2137  * of_clk_add_provider() - Register a clock provider for a node
2138  * @np: Device node pointer associated with clock provider
2139  * @clk_src_get: callback for decoding clock
2140  * @data: context pointer for @clk_src_get callback.
2141  */
2142 int of_clk_add_provider(struct device_node *np,
2143 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2144 						   void *data),
2145 			void *data)
2146 {
2147 	struct of_clk_provider *cp;
2148 
2149 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2150 	if (!cp)
2151 		return -ENOMEM;
2152 
2153 	cp->node = of_node_get(np);
2154 	cp->data = data;
2155 	cp->get = clk_src_get;
2156 
2157 	mutex_lock(&of_clk_lock);
2158 	list_add(&cp->link, &of_clk_providers);
2159 	mutex_unlock(&of_clk_lock);
2160 	pr_debug("Added clock from %s\n", np->full_name);
2161 
2162 	return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2165 
2166 /**
2167  * of_clk_del_provider() - Remove a previously registered clock provider
2168  * @np: Device node pointer associated with clock provider
2169  */
2170 void of_clk_del_provider(struct device_node *np)
2171 {
2172 	struct of_clk_provider *cp;
2173 
2174 	mutex_lock(&of_clk_lock);
2175 	list_for_each_entry(cp, &of_clk_providers, link) {
2176 		if (cp->node == np) {
2177 			list_del(&cp->link);
2178 			of_node_put(cp->node);
2179 			kfree(cp);
2180 			break;
2181 		}
2182 	}
2183 	mutex_unlock(&of_clk_lock);
2184 }
2185 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2186 
2187 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2188 {
2189 	struct of_clk_provider *provider;
2190 	struct clk *clk = ERR_PTR(-ENOENT);
2191 
2192 	/* Check if we have such a provider in our array */
2193 	mutex_lock(&of_clk_lock);
2194 	list_for_each_entry(provider, &of_clk_providers, link) {
2195 		if (provider->node == clkspec->np)
2196 			clk = provider->get(clkspec, provider->data);
2197 		if (!IS_ERR(clk))
2198 			break;
2199 	}
2200 	mutex_unlock(&of_clk_lock);
2201 
2202 	return clk;
2203 }
2204 
2205 int of_clk_get_parent_count(struct device_node *np)
2206 {
2207 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2208 }
2209 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2210 
2211 const char *of_clk_get_parent_name(struct device_node *np, int index)
2212 {
2213 	struct of_phandle_args clkspec;
2214 	const char *clk_name;
2215 	int rc;
2216 
2217 	if (index < 0)
2218 		return NULL;
2219 
2220 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2221 					&clkspec);
2222 	if (rc)
2223 		return NULL;
2224 
2225 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2226 					  clkspec.args_count ? clkspec.args[0] : 0,
2227 					  &clk_name) < 0)
2228 		clk_name = clkspec.np->name;
2229 
2230 	of_node_put(clkspec.np);
2231 	return clk_name;
2232 }
2233 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2234 
2235 /**
2236  * of_clk_init() - Scan and init clock providers from the DT
2237  * @matches: array of compatible values and init functions for providers.
2238  *
2239  * This function scans the device tree for matching clock providers and
2240  * calls their initialization functions
2241  */
2242 void __init of_clk_init(const struct of_device_id *matches)
2243 {
2244 	const struct of_device_id *match;
2245 	struct device_node *np;
2246 
2247 	if (!matches)
2248 		matches = __clk_of_table;
2249 
2250 	for_each_matching_node_and_match(np, matches, &match) {
2251 		of_clk_init_cb_t clk_init_cb = match->data;
2252 		clk_init_cb(np);
2253 	}
2254 }
2255 #endif
2256