1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/sched.h> 26 #include <linux/clkdev.h> 27 #include <linux/stringify.h> 28 29 #include "clk.h" 30 31 static DEFINE_SPINLOCK(enable_lock); 32 static DEFINE_MUTEX(prepare_lock); 33 34 static struct task_struct *prepare_owner; 35 static struct task_struct *enable_owner; 36 37 static int prepare_refcnt; 38 static int enable_refcnt; 39 40 static HLIST_HEAD(clk_root_list); 41 static HLIST_HEAD(clk_orphan_list); 42 static LIST_HEAD(clk_notifier_list); 43 44 /*** private data structures ***/ 45 46 struct clk_core { 47 const char *name; 48 const struct clk_ops *ops; 49 struct clk_hw *hw; 50 struct module *owner; 51 struct device *dev; 52 struct clk_core *parent; 53 const char **parent_names; 54 struct clk_core **parents; 55 u8 num_parents; 56 u8 new_parent_index; 57 unsigned long rate; 58 unsigned long req_rate; 59 unsigned long new_rate; 60 struct clk_core *new_parent; 61 struct clk_core *new_child; 62 unsigned long flags; 63 bool orphan; 64 unsigned int enable_count; 65 unsigned int prepare_count; 66 unsigned int protect_count; 67 unsigned long min_rate; 68 unsigned long max_rate; 69 unsigned long accuracy; 70 int phase; 71 struct hlist_head children; 72 struct hlist_node child_node; 73 struct hlist_head clks; 74 unsigned int notifier_count; 75 #ifdef CONFIG_DEBUG_FS 76 struct dentry *dentry; 77 struct hlist_node debug_node; 78 #endif 79 struct kref ref; 80 }; 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/clk.h> 84 85 struct clk { 86 struct clk_core *core; 87 const char *dev_id; 88 const char *con_id; 89 unsigned long min_rate; 90 unsigned long max_rate; 91 unsigned int exclusive_count; 92 struct hlist_node clks_node; 93 }; 94 95 /*** runtime pm ***/ 96 static int clk_pm_runtime_get(struct clk_core *core) 97 { 98 int ret = 0; 99 100 if (!core->dev) 101 return 0; 102 103 ret = pm_runtime_get_sync(core->dev); 104 return ret < 0 ? ret : 0; 105 } 106 107 static void clk_pm_runtime_put(struct clk_core *core) 108 { 109 if (!core->dev) 110 return; 111 112 pm_runtime_put_sync(core->dev); 113 } 114 115 /*** locking ***/ 116 static void clk_prepare_lock(void) 117 { 118 if (!mutex_trylock(&prepare_lock)) { 119 if (prepare_owner == current) { 120 prepare_refcnt++; 121 return; 122 } 123 mutex_lock(&prepare_lock); 124 } 125 WARN_ON_ONCE(prepare_owner != NULL); 126 WARN_ON_ONCE(prepare_refcnt != 0); 127 prepare_owner = current; 128 prepare_refcnt = 1; 129 } 130 131 static void clk_prepare_unlock(void) 132 { 133 WARN_ON_ONCE(prepare_owner != current); 134 WARN_ON_ONCE(prepare_refcnt == 0); 135 136 if (--prepare_refcnt) 137 return; 138 prepare_owner = NULL; 139 mutex_unlock(&prepare_lock); 140 } 141 142 static unsigned long clk_enable_lock(void) 143 __acquires(enable_lock) 144 { 145 unsigned long flags; 146 147 /* 148 * On UP systems, spin_trylock_irqsave() always returns true, even if 149 * we already hold the lock. So, in that case, we rely only on 150 * reference counting. 151 */ 152 if (!IS_ENABLED(CONFIG_SMP) || 153 !spin_trylock_irqsave(&enable_lock, flags)) { 154 if (enable_owner == current) { 155 enable_refcnt++; 156 __acquire(enable_lock); 157 if (!IS_ENABLED(CONFIG_SMP)) 158 local_save_flags(flags); 159 return flags; 160 } 161 spin_lock_irqsave(&enable_lock, flags); 162 } 163 WARN_ON_ONCE(enable_owner != NULL); 164 WARN_ON_ONCE(enable_refcnt != 0); 165 enable_owner = current; 166 enable_refcnt = 1; 167 return flags; 168 } 169 170 static void clk_enable_unlock(unsigned long flags) 171 __releases(enable_lock) 172 { 173 WARN_ON_ONCE(enable_owner != current); 174 WARN_ON_ONCE(enable_refcnt == 0); 175 176 if (--enable_refcnt) { 177 __release(enable_lock); 178 return; 179 } 180 enable_owner = NULL; 181 spin_unlock_irqrestore(&enable_lock, flags); 182 } 183 184 static bool clk_core_rate_is_protected(struct clk_core *core) 185 { 186 return core->protect_count; 187 } 188 189 static bool clk_core_is_prepared(struct clk_core *core) 190 { 191 bool ret = false; 192 193 /* 194 * .is_prepared is optional for clocks that can prepare 195 * fall back to software usage counter if it is missing 196 */ 197 if (!core->ops->is_prepared) 198 return core->prepare_count; 199 200 if (!clk_pm_runtime_get(core)) { 201 ret = core->ops->is_prepared(core->hw); 202 clk_pm_runtime_put(core); 203 } 204 205 return ret; 206 } 207 208 static bool clk_core_is_enabled(struct clk_core *core) 209 { 210 bool ret = false; 211 212 /* 213 * .is_enabled is only mandatory for clocks that gate 214 * fall back to software usage counter if .is_enabled is missing 215 */ 216 if (!core->ops->is_enabled) 217 return core->enable_count; 218 219 /* 220 * Check if clock controller's device is runtime active before 221 * calling .is_enabled callback. If not, assume that clock is 222 * disabled, because we might be called from atomic context, from 223 * which pm_runtime_get() is not allowed. 224 * This function is called mainly from clk_disable_unused_subtree, 225 * which ensures proper runtime pm activation of controller before 226 * taking enable spinlock, but the below check is needed if one tries 227 * to call it from other places. 228 */ 229 if (core->dev) { 230 pm_runtime_get_noresume(core->dev); 231 if (!pm_runtime_active(core->dev)) { 232 ret = false; 233 goto done; 234 } 235 } 236 237 ret = core->ops->is_enabled(core->hw); 238 done: 239 if (core->dev) 240 pm_runtime_put(core->dev); 241 242 return ret; 243 } 244 245 /*** helper functions ***/ 246 247 const char *__clk_get_name(const struct clk *clk) 248 { 249 return !clk ? NULL : clk->core->name; 250 } 251 EXPORT_SYMBOL_GPL(__clk_get_name); 252 253 const char *clk_hw_get_name(const struct clk_hw *hw) 254 { 255 return hw->core->name; 256 } 257 EXPORT_SYMBOL_GPL(clk_hw_get_name); 258 259 struct clk_hw *__clk_get_hw(struct clk *clk) 260 { 261 return !clk ? NULL : clk->core->hw; 262 } 263 EXPORT_SYMBOL_GPL(__clk_get_hw); 264 265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 266 { 267 return hw->core->num_parents; 268 } 269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 270 271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 272 { 273 return hw->core->parent ? hw->core->parent->hw : NULL; 274 } 275 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 276 277 static struct clk_core *__clk_lookup_subtree(const char *name, 278 struct clk_core *core) 279 { 280 struct clk_core *child; 281 struct clk_core *ret; 282 283 if (!strcmp(core->name, name)) 284 return core; 285 286 hlist_for_each_entry(child, &core->children, child_node) { 287 ret = __clk_lookup_subtree(name, child); 288 if (ret) 289 return ret; 290 } 291 292 return NULL; 293 } 294 295 static struct clk_core *clk_core_lookup(const char *name) 296 { 297 struct clk_core *root_clk; 298 struct clk_core *ret; 299 300 if (!name) 301 return NULL; 302 303 /* search the 'proper' clk tree first */ 304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 305 ret = __clk_lookup_subtree(name, root_clk); 306 if (ret) 307 return ret; 308 } 309 310 /* if not found, then search the orphan tree */ 311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 return NULL; 318 } 319 320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 321 u8 index) 322 { 323 if (!core || index >= core->num_parents) 324 return NULL; 325 326 if (!core->parents[index]) 327 core->parents[index] = 328 clk_core_lookup(core->parent_names[index]); 329 330 return core->parents[index]; 331 } 332 333 struct clk_hw * 334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 335 { 336 struct clk_core *parent; 337 338 parent = clk_core_get_parent_by_index(hw->core, index); 339 340 return !parent ? NULL : parent->hw; 341 } 342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 343 344 unsigned int __clk_get_enable_count(struct clk *clk) 345 { 346 return !clk ? 0 : clk->core->enable_count; 347 } 348 349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 350 { 351 unsigned long ret; 352 353 if (!core) { 354 ret = 0; 355 goto out; 356 } 357 358 ret = core->rate; 359 360 if (!core->num_parents) 361 goto out; 362 363 if (!core->parent) 364 ret = 0; 365 366 out: 367 return ret; 368 } 369 370 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 371 { 372 return clk_core_get_rate_nolock(hw->core); 373 } 374 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 375 376 static unsigned long __clk_get_accuracy(struct clk_core *core) 377 { 378 if (!core) 379 return 0; 380 381 return core->accuracy; 382 } 383 384 unsigned long __clk_get_flags(struct clk *clk) 385 { 386 return !clk ? 0 : clk->core->flags; 387 } 388 EXPORT_SYMBOL_GPL(__clk_get_flags); 389 390 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 391 { 392 return hw->core->flags; 393 } 394 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 395 396 bool clk_hw_is_prepared(const struct clk_hw *hw) 397 { 398 return clk_core_is_prepared(hw->core); 399 } 400 401 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 402 { 403 return clk_core_rate_is_protected(hw->core); 404 } 405 406 bool clk_hw_is_enabled(const struct clk_hw *hw) 407 { 408 return clk_core_is_enabled(hw->core); 409 } 410 411 bool __clk_is_enabled(struct clk *clk) 412 { 413 if (!clk) 414 return false; 415 416 return clk_core_is_enabled(clk->core); 417 } 418 EXPORT_SYMBOL_GPL(__clk_is_enabled); 419 420 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 421 unsigned long best, unsigned long flags) 422 { 423 if (flags & CLK_MUX_ROUND_CLOSEST) 424 return abs(now - rate) < abs(best - rate); 425 426 return now <= rate && now > best; 427 } 428 429 int clk_mux_determine_rate_flags(struct clk_hw *hw, 430 struct clk_rate_request *req, 431 unsigned long flags) 432 { 433 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 434 int i, num_parents, ret; 435 unsigned long best = 0; 436 struct clk_rate_request parent_req = *req; 437 438 /* if NO_REPARENT flag set, pass through to current parent */ 439 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 440 parent = core->parent; 441 if (core->flags & CLK_SET_RATE_PARENT) { 442 ret = __clk_determine_rate(parent ? parent->hw : NULL, 443 &parent_req); 444 if (ret) 445 return ret; 446 447 best = parent_req.rate; 448 } else if (parent) { 449 best = clk_core_get_rate_nolock(parent); 450 } else { 451 best = clk_core_get_rate_nolock(core); 452 } 453 454 goto out; 455 } 456 457 /* find the parent that can provide the fastest rate <= rate */ 458 num_parents = core->num_parents; 459 for (i = 0; i < num_parents; i++) { 460 parent = clk_core_get_parent_by_index(core, i); 461 if (!parent) 462 continue; 463 464 if (core->flags & CLK_SET_RATE_PARENT) { 465 parent_req = *req; 466 ret = __clk_determine_rate(parent->hw, &parent_req); 467 if (ret) 468 continue; 469 } else { 470 parent_req.rate = clk_core_get_rate_nolock(parent); 471 } 472 473 if (mux_is_better_rate(req->rate, parent_req.rate, 474 best, flags)) { 475 best_parent = parent; 476 best = parent_req.rate; 477 } 478 } 479 480 if (!best_parent) 481 return -EINVAL; 482 483 out: 484 if (best_parent) 485 req->best_parent_hw = best_parent->hw; 486 req->best_parent_rate = best; 487 req->rate = best; 488 489 return 0; 490 } 491 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 492 493 struct clk *__clk_lookup(const char *name) 494 { 495 struct clk_core *core = clk_core_lookup(name); 496 497 return !core ? NULL : core->hw->clk; 498 } 499 500 static void clk_core_get_boundaries(struct clk_core *core, 501 unsigned long *min_rate, 502 unsigned long *max_rate) 503 { 504 struct clk *clk_user; 505 506 *min_rate = core->min_rate; 507 *max_rate = core->max_rate; 508 509 hlist_for_each_entry(clk_user, &core->clks, clks_node) 510 *min_rate = max(*min_rate, clk_user->min_rate); 511 512 hlist_for_each_entry(clk_user, &core->clks, clks_node) 513 *max_rate = min(*max_rate, clk_user->max_rate); 514 } 515 516 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 517 unsigned long max_rate) 518 { 519 hw->core->min_rate = min_rate; 520 hw->core->max_rate = max_rate; 521 } 522 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 523 524 /* 525 * Helper for finding best parent to provide a given frequency. This can be used 526 * directly as a determine_rate callback (e.g. for a mux), or from a more 527 * complex clock that may combine a mux with other operations. 528 */ 529 int __clk_mux_determine_rate(struct clk_hw *hw, 530 struct clk_rate_request *req) 531 { 532 return clk_mux_determine_rate_flags(hw, req, 0); 533 } 534 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 535 536 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 537 struct clk_rate_request *req) 538 { 539 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 540 } 541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 542 543 /*** clk api ***/ 544 545 static void clk_core_rate_unprotect(struct clk_core *core) 546 { 547 lockdep_assert_held(&prepare_lock); 548 549 if (!core) 550 return; 551 552 if (WARN(core->protect_count == 0, 553 "%s already unprotected\n", core->name)) 554 return; 555 556 if (--core->protect_count > 0) 557 return; 558 559 clk_core_rate_unprotect(core->parent); 560 } 561 562 static int clk_core_rate_nuke_protect(struct clk_core *core) 563 { 564 int ret; 565 566 lockdep_assert_held(&prepare_lock); 567 568 if (!core) 569 return -EINVAL; 570 571 if (core->protect_count == 0) 572 return 0; 573 574 ret = core->protect_count; 575 core->protect_count = 1; 576 clk_core_rate_unprotect(core); 577 578 return ret; 579 } 580 581 /** 582 * clk_rate_exclusive_put - release exclusivity over clock rate control 583 * @clk: the clk over which the exclusivity is released 584 * 585 * clk_rate_exclusive_put() completes a critical section during which a clock 586 * consumer cannot tolerate any other consumer making any operation on the 587 * clock which could result in a rate change or rate glitch. Exclusive clocks 588 * cannot have their rate changed, either directly or indirectly due to changes 589 * further up the parent chain of clocks. As a result, clocks up parent chain 590 * also get under exclusive control of the calling consumer. 591 * 592 * If exlusivity is claimed more than once on clock, even by the same consumer, 593 * the rate effectively gets locked as exclusivity can't be preempted. 594 * 595 * Calls to clk_rate_exclusive_put() must be balanced with calls to 596 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 597 * error status. 598 */ 599 void clk_rate_exclusive_put(struct clk *clk) 600 { 601 if (!clk) 602 return; 603 604 clk_prepare_lock(); 605 606 /* 607 * if there is something wrong with this consumer protect count, stop 608 * here before messing with the provider 609 */ 610 if (WARN_ON(clk->exclusive_count <= 0)) 611 goto out; 612 613 clk_core_rate_unprotect(clk->core); 614 clk->exclusive_count--; 615 out: 616 clk_prepare_unlock(); 617 } 618 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 619 620 static void clk_core_rate_protect(struct clk_core *core) 621 { 622 lockdep_assert_held(&prepare_lock); 623 624 if (!core) 625 return; 626 627 if (core->protect_count == 0) 628 clk_core_rate_protect(core->parent); 629 630 core->protect_count++; 631 } 632 633 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 634 { 635 lockdep_assert_held(&prepare_lock); 636 637 if (!core) 638 return; 639 640 if (count == 0) 641 return; 642 643 clk_core_rate_protect(core); 644 core->protect_count = count; 645 } 646 647 /** 648 * clk_rate_exclusive_get - get exclusivity over the clk rate control 649 * @clk: the clk over which the exclusity of rate control is requested 650 * 651 * clk_rate_exlusive_get() begins a critical section during which a clock 652 * consumer cannot tolerate any other consumer making any operation on the 653 * clock which could result in a rate change or rate glitch. Exclusive clocks 654 * cannot have their rate changed, either directly or indirectly due to changes 655 * further up the parent chain of clocks. As a result, clocks up parent chain 656 * also get under exclusive control of the calling consumer. 657 * 658 * If exlusivity is claimed more than once on clock, even by the same consumer, 659 * the rate effectively gets locked as exclusivity can't be preempted. 660 * 661 * Calls to clk_rate_exclusive_get() should be balanced with calls to 662 * clk_rate_exclusive_put(). Calls to this function may sleep. 663 * Returns 0 on success, -EERROR otherwise 664 */ 665 int clk_rate_exclusive_get(struct clk *clk) 666 { 667 if (!clk) 668 return 0; 669 670 clk_prepare_lock(); 671 clk_core_rate_protect(clk->core); 672 clk->exclusive_count++; 673 clk_prepare_unlock(); 674 675 return 0; 676 } 677 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 678 679 static void clk_core_unprepare(struct clk_core *core) 680 { 681 lockdep_assert_held(&prepare_lock); 682 683 if (!core) 684 return; 685 686 if (WARN(core->prepare_count == 0, 687 "%s already unprepared\n", core->name)) 688 return; 689 690 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 691 "Unpreparing critical %s\n", core->name)) 692 return; 693 694 if (--core->prepare_count > 0) 695 return; 696 697 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 698 699 trace_clk_unprepare(core); 700 701 if (core->ops->unprepare) 702 core->ops->unprepare(core->hw); 703 704 clk_pm_runtime_put(core); 705 706 trace_clk_unprepare_complete(core); 707 clk_core_unprepare(core->parent); 708 } 709 710 static void clk_core_unprepare_lock(struct clk_core *core) 711 { 712 clk_prepare_lock(); 713 clk_core_unprepare(core); 714 clk_prepare_unlock(); 715 } 716 717 /** 718 * clk_unprepare - undo preparation of a clock source 719 * @clk: the clk being unprepared 720 * 721 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 722 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 723 * if the operation may sleep. One example is a clk which is accessed over 724 * I2c. In the complex case a clk gate operation may require a fast and a slow 725 * part. It is this reason that clk_unprepare and clk_disable are not mutually 726 * exclusive. In fact clk_disable must be called before clk_unprepare. 727 */ 728 void clk_unprepare(struct clk *clk) 729 { 730 if (IS_ERR_OR_NULL(clk)) 731 return; 732 733 clk_core_unprepare_lock(clk->core); 734 } 735 EXPORT_SYMBOL_GPL(clk_unprepare); 736 737 static int clk_core_prepare(struct clk_core *core) 738 { 739 int ret = 0; 740 741 lockdep_assert_held(&prepare_lock); 742 743 if (!core) 744 return 0; 745 746 if (core->prepare_count == 0) { 747 ret = clk_pm_runtime_get(core); 748 if (ret) 749 return ret; 750 751 ret = clk_core_prepare(core->parent); 752 if (ret) 753 goto runtime_put; 754 755 trace_clk_prepare(core); 756 757 if (core->ops->prepare) 758 ret = core->ops->prepare(core->hw); 759 760 trace_clk_prepare_complete(core); 761 762 if (ret) 763 goto unprepare; 764 } 765 766 core->prepare_count++; 767 768 return 0; 769 unprepare: 770 clk_core_unprepare(core->parent); 771 runtime_put: 772 clk_pm_runtime_put(core); 773 return ret; 774 } 775 776 static int clk_core_prepare_lock(struct clk_core *core) 777 { 778 int ret; 779 780 clk_prepare_lock(); 781 ret = clk_core_prepare(core); 782 clk_prepare_unlock(); 783 784 return ret; 785 } 786 787 /** 788 * clk_prepare - prepare a clock source 789 * @clk: the clk being prepared 790 * 791 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 792 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 793 * operation may sleep. One example is a clk which is accessed over I2c. In 794 * the complex case a clk ungate operation may require a fast and a slow part. 795 * It is this reason that clk_prepare and clk_enable are not mutually 796 * exclusive. In fact clk_prepare must be called before clk_enable. 797 * Returns 0 on success, -EERROR otherwise. 798 */ 799 int clk_prepare(struct clk *clk) 800 { 801 if (!clk) 802 return 0; 803 804 return clk_core_prepare_lock(clk->core); 805 } 806 EXPORT_SYMBOL_GPL(clk_prepare); 807 808 static void clk_core_disable(struct clk_core *core) 809 { 810 lockdep_assert_held(&enable_lock); 811 812 if (!core) 813 return; 814 815 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 816 return; 817 818 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 819 "Disabling critical %s\n", core->name)) 820 return; 821 822 if (--core->enable_count > 0) 823 return; 824 825 trace_clk_disable_rcuidle(core); 826 827 if (core->ops->disable) 828 core->ops->disable(core->hw); 829 830 trace_clk_disable_complete_rcuidle(core); 831 832 clk_core_disable(core->parent); 833 } 834 835 static void clk_core_disable_lock(struct clk_core *core) 836 { 837 unsigned long flags; 838 839 flags = clk_enable_lock(); 840 clk_core_disable(core); 841 clk_enable_unlock(flags); 842 } 843 844 /** 845 * clk_disable - gate a clock 846 * @clk: the clk being gated 847 * 848 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 849 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 850 * clk if the operation is fast and will never sleep. One example is a 851 * SoC-internal clk which is controlled via simple register writes. In the 852 * complex case a clk gate operation may require a fast and a slow part. It is 853 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 854 * In fact clk_disable must be called before clk_unprepare. 855 */ 856 void clk_disable(struct clk *clk) 857 { 858 if (IS_ERR_OR_NULL(clk)) 859 return; 860 861 clk_core_disable_lock(clk->core); 862 } 863 EXPORT_SYMBOL_GPL(clk_disable); 864 865 static int clk_core_enable(struct clk_core *core) 866 { 867 int ret = 0; 868 869 lockdep_assert_held(&enable_lock); 870 871 if (!core) 872 return 0; 873 874 if (WARN(core->prepare_count == 0, 875 "Enabling unprepared %s\n", core->name)) 876 return -ESHUTDOWN; 877 878 if (core->enable_count == 0) { 879 ret = clk_core_enable(core->parent); 880 881 if (ret) 882 return ret; 883 884 trace_clk_enable_rcuidle(core); 885 886 if (core->ops->enable) 887 ret = core->ops->enable(core->hw); 888 889 trace_clk_enable_complete_rcuidle(core); 890 891 if (ret) { 892 clk_core_disable(core->parent); 893 return ret; 894 } 895 } 896 897 core->enable_count++; 898 return 0; 899 } 900 901 static int clk_core_enable_lock(struct clk_core *core) 902 { 903 unsigned long flags; 904 int ret; 905 906 flags = clk_enable_lock(); 907 ret = clk_core_enable(core); 908 clk_enable_unlock(flags); 909 910 return ret; 911 } 912 913 /** 914 * clk_enable - ungate a clock 915 * @clk: the clk being ungated 916 * 917 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 918 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 919 * if the operation will never sleep. One example is a SoC-internal clk which 920 * is controlled via simple register writes. In the complex case a clk ungate 921 * operation may require a fast and a slow part. It is this reason that 922 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 923 * must be called before clk_enable. Returns 0 on success, -EERROR 924 * otherwise. 925 */ 926 int clk_enable(struct clk *clk) 927 { 928 if (!clk) 929 return 0; 930 931 return clk_core_enable_lock(clk->core); 932 } 933 EXPORT_SYMBOL_GPL(clk_enable); 934 935 static int clk_core_prepare_enable(struct clk_core *core) 936 { 937 int ret; 938 939 ret = clk_core_prepare_lock(core); 940 if (ret) 941 return ret; 942 943 ret = clk_core_enable_lock(core); 944 if (ret) 945 clk_core_unprepare_lock(core); 946 947 return ret; 948 } 949 950 static void clk_core_disable_unprepare(struct clk_core *core) 951 { 952 clk_core_disable_lock(core); 953 clk_core_unprepare_lock(core); 954 } 955 956 static void clk_unprepare_unused_subtree(struct clk_core *core) 957 { 958 struct clk_core *child; 959 960 lockdep_assert_held(&prepare_lock); 961 962 hlist_for_each_entry(child, &core->children, child_node) 963 clk_unprepare_unused_subtree(child); 964 965 if (core->prepare_count) 966 return; 967 968 if (core->flags & CLK_IGNORE_UNUSED) 969 return; 970 971 if (clk_pm_runtime_get(core)) 972 return; 973 974 if (clk_core_is_prepared(core)) { 975 trace_clk_unprepare(core); 976 if (core->ops->unprepare_unused) 977 core->ops->unprepare_unused(core->hw); 978 else if (core->ops->unprepare) 979 core->ops->unprepare(core->hw); 980 trace_clk_unprepare_complete(core); 981 } 982 983 clk_pm_runtime_put(core); 984 } 985 986 static void clk_disable_unused_subtree(struct clk_core *core) 987 { 988 struct clk_core *child; 989 unsigned long flags; 990 991 lockdep_assert_held(&prepare_lock); 992 993 hlist_for_each_entry(child, &core->children, child_node) 994 clk_disable_unused_subtree(child); 995 996 if (core->flags & CLK_OPS_PARENT_ENABLE) 997 clk_core_prepare_enable(core->parent); 998 999 if (clk_pm_runtime_get(core)) 1000 goto unprepare_out; 1001 1002 flags = clk_enable_lock(); 1003 1004 if (core->enable_count) 1005 goto unlock_out; 1006 1007 if (core->flags & CLK_IGNORE_UNUSED) 1008 goto unlock_out; 1009 1010 /* 1011 * some gate clocks have special needs during the disable-unused 1012 * sequence. call .disable_unused if available, otherwise fall 1013 * back to .disable 1014 */ 1015 if (clk_core_is_enabled(core)) { 1016 trace_clk_disable(core); 1017 if (core->ops->disable_unused) 1018 core->ops->disable_unused(core->hw); 1019 else if (core->ops->disable) 1020 core->ops->disable(core->hw); 1021 trace_clk_disable_complete(core); 1022 } 1023 1024 unlock_out: 1025 clk_enable_unlock(flags); 1026 clk_pm_runtime_put(core); 1027 unprepare_out: 1028 if (core->flags & CLK_OPS_PARENT_ENABLE) 1029 clk_core_disable_unprepare(core->parent); 1030 } 1031 1032 static bool clk_ignore_unused; 1033 static int __init clk_ignore_unused_setup(char *__unused) 1034 { 1035 clk_ignore_unused = true; 1036 return 1; 1037 } 1038 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1039 1040 static int clk_disable_unused(void) 1041 { 1042 struct clk_core *core; 1043 1044 if (clk_ignore_unused) { 1045 pr_warn("clk: Not disabling unused clocks\n"); 1046 return 0; 1047 } 1048 1049 clk_prepare_lock(); 1050 1051 hlist_for_each_entry(core, &clk_root_list, child_node) 1052 clk_disable_unused_subtree(core); 1053 1054 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1055 clk_disable_unused_subtree(core); 1056 1057 hlist_for_each_entry(core, &clk_root_list, child_node) 1058 clk_unprepare_unused_subtree(core); 1059 1060 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1061 clk_unprepare_unused_subtree(core); 1062 1063 clk_prepare_unlock(); 1064 1065 return 0; 1066 } 1067 late_initcall_sync(clk_disable_unused); 1068 1069 static int clk_core_determine_round_nolock(struct clk_core *core, 1070 struct clk_rate_request *req) 1071 { 1072 long rate; 1073 1074 lockdep_assert_held(&prepare_lock); 1075 1076 if (!core) 1077 return 0; 1078 1079 /* 1080 * At this point, core protection will be disabled if 1081 * - if the provider is not protected at all 1082 * - if the calling consumer is the only one which has exclusivity 1083 * over the provider 1084 */ 1085 if (clk_core_rate_is_protected(core)) { 1086 req->rate = core->rate; 1087 } else if (core->ops->determine_rate) { 1088 return core->ops->determine_rate(core->hw, req); 1089 } else if (core->ops->round_rate) { 1090 rate = core->ops->round_rate(core->hw, req->rate, 1091 &req->best_parent_rate); 1092 if (rate < 0) 1093 return rate; 1094 1095 req->rate = rate; 1096 } else { 1097 return -EINVAL; 1098 } 1099 1100 return 0; 1101 } 1102 1103 static void clk_core_init_rate_req(struct clk_core * const core, 1104 struct clk_rate_request *req) 1105 { 1106 struct clk_core *parent; 1107 1108 if (WARN_ON(!core || !req)) 1109 return; 1110 1111 parent = core->parent; 1112 if (parent) { 1113 req->best_parent_hw = parent->hw; 1114 req->best_parent_rate = parent->rate; 1115 } else { 1116 req->best_parent_hw = NULL; 1117 req->best_parent_rate = 0; 1118 } 1119 } 1120 1121 static bool clk_core_can_round(struct clk_core * const core) 1122 { 1123 if (core->ops->determine_rate || core->ops->round_rate) 1124 return true; 1125 1126 return false; 1127 } 1128 1129 static int clk_core_round_rate_nolock(struct clk_core *core, 1130 struct clk_rate_request *req) 1131 { 1132 lockdep_assert_held(&prepare_lock); 1133 1134 if (!core) { 1135 req->rate = 0; 1136 return 0; 1137 } 1138 1139 clk_core_init_rate_req(core, req); 1140 1141 if (clk_core_can_round(core)) 1142 return clk_core_determine_round_nolock(core, req); 1143 else if (core->flags & CLK_SET_RATE_PARENT) 1144 return clk_core_round_rate_nolock(core->parent, req); 1145 1146 req->rate = core->rate; 1147 return 0; 1148 } 1149 1150 /** 1151 * __clk_determine_rate - get the closest rate actually supported by a clock 1152 * @hw: determine the rate of this clock 1153 * @req: target rate request 1154 * 1155 * Useful for clk_ops such as .set_rate and .determine_rate. 1156 */ 1157 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1158 { 1159 if (!hw) { 1160 req->rate = 0; 1161 return 0; 1162 } 1163 1164 return clk_core_round_rate_nolock(hw->core, req); 1165 } 1166 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1167 1168 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1169 { 1170 int ret; 1171 struct clk_rate_request req; 1172 1173 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1174 req.rate = rate; 1175 1176 ret = clk_core_round_rate_nolock(hw->core, &req); 1177 if (ret) 1178 return 0; 1179 1180 return req.rate; 1181 } 1182 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1183 1184 /** 1185 * clk_round_rate - round the given rate for a clk 1186 * @clk: the clk for which we are rounding a rate 1187 * @rate: the rate which is to be rounded 1188 * 1189 * Takes in a rate as input and rounds it to a rate that the clk can actually 1190 * use which is then returned. If clk doesn't support round_rate operation 1191 * then the parent rate is returned. 1192 */ 1193 long clk_round_rate(struct clk *clk, unsigned long rate) 1194 { 1195 struct clk_rate_request req; 1196 int ret; 1197 1198 if (!clk) 1199 return 0; 1200 1201 clk_prepare_lock(); 1202 1203 if (clk->exclusive_count) 1204 clk_core_rate_unprotect(clk->core); 1205 1206 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1207 req.rate = rate; 1208 1209 ret = clk_core_round_rate_nolock(clk->core, &req); 1210 1211 if (clk->exclusive_count) 1212 clk_core_rate_protect(clk->core); 1213 1214 clk_prepare_unlock(); 1215 1216 if (ret) 1217 return ret; 1218 1219 return req.rate; 1220 } 1221 EXPORT_SYMBOL_GPL(clk_round_rate); 1222 1223 /** 1224 * __clk_notify - call clk notifier chain 1225 * @core: clk that is changing rate 1226 * @msg: clk notifier type (see include/linux/clk.h) 1227 * @old_rate: old clk rate 1228 * @new_rate: new clk rate 1229 * 1230 * Triggers a notifier call chain on the clk rate-change notification 1231 * for 'clk'. Passes a pointer to the struct clk and the previous 1232 * and current rates to the notifier callback. Intended to be called by 1233 * internal clock code only. Returns NOTIFY_DONE from the last driver 1234 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1235 * a driver returns that. 1236 */ 1237 static int __clk_notify(struct clk_core *core, unsigned long msg, 1238 unsigned long old_rate, unsigned long new_rate) 1239 { 1240 struct clk_notifier *cn; 1241 struct clk_notifier_data cnd; 1242 int ret = NOTIFY_DONE; 1243 1244 cnd.old_rate = old_rate; 1245 cnd.new_rate = new_rate; 1246 1247 list_for_each_entry(cn, &clk_notifier_list, node) { 1248 if (cn->clk->core == core) { 1249 cnd.clk = cn->clk; 1250 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1251 &cnd); 1252 if (ret & NOTIFY_STOP_MASK) 1253 return ret; 1254 } 1255 } 1256 1257 return ret; 1258 } 1259 1260 /** 1261 * __clk_recalc_accuracies 1262 * @core: first clk in the subtree 1263 * 1264 * Walks the subtree of clks starting with clk and recalculates accuracies as 1265 * it goes. Note that if a clk does not implement the .recalc_accuracy 1266 * callback then it is assumed that the clock will take on the accuracy of its 1267 * parent. 1268 */ 1269 static void __clk_recalc_accuracies(struct clk_core *core) 1270 { 1271 unsigned long parent_accuracy = 0; 1272 struct clk_core *child; 1273 1274 lockdep_assert_held(&prepare_lock); 1275 1276 if (core->parent) 1277 parent_accuracy = core->parent->accuracy; 1278 1279 if (core->ops->recalc_accuracy) 1280 core->accuracy = core->ops->recalc_accuracy(core->hw, 1281 parent_accuracy); 1282 else 1283 core->accuracy = parent_accuracy; 1284 1285 hlist_for_each_entry(child, &core->children, child_node) 1286 __clk_recalc_accuracies(child); 1287 } 1288 1289 static long clk_core_get_accuracy(struct clk_core *core) 1290 { 1291 unsigned long accuracy; 1292 1293 clk_prepare_lock(); 1294 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1295 __clk_recalc_accuracies(core); 1296 1297 accuracy = __clk_get_accuracy(core); 1298 clk_prepare_unlock(); 1299 1300 return accuracy; 1301 } 1302 1303 /** 1304 * clk_get_accuracy - return the accuracy of clk 1305 * @clk: the clk whose accuracy is being returned 1306 * 1307 * Simply returns the cached accuracy of the clk, unless 1308 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1309 * issued. 1310 * If clk is NULL then returns 0. 1311 */ 1312 long clk_get_accuracy(struct clk *clk) 1313 { 1314 if (!clk) 1315 return 0; 1316 1317 return clk_core_get_accuracy(clk->core); 1318 } 1319 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1320 1321 static unsigned long clk_recalc(struct clk_core *core, 1322 unsigned long parent_rate) 1323 { 1324 unsigned long rate = parent_rate; 1325 1326 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1327 rate = core->ops->recalc_rate(core->hw, parent_rate); 1328 clk_pm_runtime_put(core); 1329 } 1330 return rate; 1331 } 1332 1333 /** 1334 * __clk_recalc_rates 1335 * @core: first clk in the subtree 1336 * @msg: notification type (see include/linux/clk.h) 1337 * 1338 * Walks the subtree of clks starting with clk and recalculates rates as it 1339 * goes. Note that if a clk does not implement the .recalc_rate callback then 1340 * it is assumed that the clock will take on the rate of its parent. 1341 * 1342 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1343 * if necessary. 1344 */ 1345 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1346 { 1347 unsigned long old_rate; 1348 unsigned long parent_rate = 0; 1349 struct clk_core *child; 1350 1351 lockdep_assert_held(&prepare_lock); 1352 1353 old_rate = core->rate; 1354 1355 if (core->parent) 1356 parent_rate = core->parent->rate; 1357 1358 core->rate = clk_recalc(core, parent_rate); 1359 1360 /* 1361 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1362 * & ABORT_RATE_CHANGE notifiers 1363 */ 1364 if (core->notifier_count && msg) 1365 __clk_notify(core, msg, old_rate, core->rate); 1366 1367 hlist_for_each_entry(child, &core->children, child_node) 1368 __clk_recalc_rates(child, msg); 1369 } 1370 1371 static unsigned long clk_core_get_rate(struct clk_core *core) 1372 { 1373 unsigned long rate; 1374 1375 clk_prepare_lock(); 1376 1377 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1378 __clk_recalc_rates(core, 0); 1379 1380 rate = clk_core_get_rate_nolock(core); 1381 clk_prepare_unlock(); 1382 1383 return rate; 1384 } 1385 1386 /** 1387 * clk_get_rate - return the rate of clk 1388 * @clk: the clk whose rate is being returned 1389 * 1390 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1391 * is set, which means a recalc_rate will be issued. 1392 * If clk is NULL then returns 0. 1393 */ 1394 unsigned long clk_get_rate(struct clk *clk) 1395 { 1396 if (!clk) 1397 return 0; 1398 1399 return clk_core_get_rate(clk->core); 1400 } 1401 EXPORT_SYMBOL_GPL(clk_get_rate); 1402 1403 static int clk_fetch_parent_index(struct clk_core *core, 1404 struct clk_core *parent) 1405 { 1406 int i; 1407 1408 if (!parent) 1409 return -EINVAL; 1410 1411 for (i = 0; i < core->num_parents; i++) 1412 if (clk_core_get_parent_by_index(core, i) == parent) 1413 return i; 1414 1415 return -EINVAL; 1416 } 1417 1418 /* 1419 * Update the orphan status of @core and all its children. 1420 */ 1421 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1422 { 1423 struct clk_core *child; 1424 1425 core->orphan = is_orphan; 1426 1427 hlist_for_each_entry(child, &core->children, child_node) 1428 clk_core_update_orphan_status(child, is_orphan); 1429 } 1430 1431 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1432 { 1433 bool was_orphan = core->orphan; 1434 1435 hlist_del(&core->child_node); 1436 1437 if (new_parent) { 1438 bool becomes_orphan = new_parent->orphan; 1439 1440 /* avoid duplicate POST_RATE_CHANGE notifications */ 1441 if (new_parent->new_child == core) 1442 new_parent->new_child = NULL; 1443 1444 hlist_add_head(&core->child_node, &new_parent->children); 1445 1446 if (was_orphan != becomes_orphan) 1447 clk_core_update_orphan_status(core, becomes_orphan); 1448 } else { 1449 hlist_add_head(&core->child_node, &clk_orphan_list); 1450 if (!was_orphan) 1451 clk_core_update_orphan_status(core, true); 1452 } 1453 1454 core->parent = new_parent; 1455 } 1456 1457 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1458 struct clk_core *parent) 1459 { 1460 unsigned long flags; 1461 struct clk_core *old_parent = core->parent; 1462 1463 /* 1464 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1465 * 1466 * 2. Migrate prepare state between parents and prevent race with 1467 * clk_enable(). 1468 * 1469 * If the clock is not prepared, then a race with 1470 * clk_enable/disable() is impossible since we already have the 1471 * prepare lock (future calls to clk_enable() need to be preceded by 1472 * a clk_prepare()). 1473 * 1474 * If the clock is prepared, migrate the prepared state to the new 1475 * parent and also protect against a race with clk_enable() by 1476 * forcing the clock and the new parent on. This ensures that all 1477 * future calls to clk_enable() are practically NOPs with respect to 1478 * hardware and software states. 1479 * 1480 * See also: Comment for clk_set_parent() below. 1481 */ 1482 1483 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1484 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1485 clk_core_prepare_enable(old_parent); 1486 clk_core_prepare_enable(parent); 1487 } 1488 1489 /* migrate prepare count if > 0 */ 1490 if (core->prepare_count) { 1491 clk_core_prepare_enable(parent); 1492 clk_core_enable_lock(core); 1493 } 1494 1495 /* update the clk tree topology */ 1496 flags = clk_enable_lock(); 1497 clk_reparent(core, parent); 1498 clk_enable_unlock(flags); 1499 1500 return old_parent; 1501 } 1502 1503 static void __clk_set_parent_after(struct clk_core *core, 1504 struct clk_core *parent, 1505 struct clk_core *old_parent) 1506 { 1507 /* 1508 * Finish the migration of prepare state and undo the changes done 1509 * for preventing a race with clk_enable(). 1510 */ 1511 if (core->prepare_count) { 1512 clk_core_disable_lock(core); 1513 clk_core_disable_unprepare(old_parent); 1514 } 1515 1516 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1517 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1518 clk_core_disable_unprepare(parent); 1519 clk_core_disable_unprepare(old_parent); 1520 } 1521 } 1522 1523 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1524 u8 p_index) 1525 { 1526 unsigned long flags; 1527 int ret = 0; 1528 struct clk_core *old_parent; 1529 1530 old_parent = __clk_set_parent_before(core, parent); 1531 1532 trace_clk_set_parent(core, parent); 1533 1534 /* change clock input source */ 1535 if (parent && core->ops->set_parent) 1536 ret = core->ops->set_parent(core->hw, p_index); 1537 1538 trace_clk_set_parent_complete(core, parent); 1539 1540 if (ret) { 1541 flags = clk_enable_lock(); 1542 clk_reparent(core, old_parent); 1543 clk_enable_unlock(flags); 1544 __clk_set_parent_after(core, old_parent, parent); 1545 1546 return ret; 1547 } 1548 1549 __clk_set_parent_after(core, parent, old_parent); 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * __clk_speculate_rates 1556 * @core: first clk in the subtree 1557 * @parent_rate: the "future" rate of clk's parent 1558 * 1559 * Walks the subtree of clks starting with clk, speculating rates as it 1560 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1561 * 1562 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1563 * pre-rate change notifications and returns early if no clks in the 1564 * subtree have subscribed to the notifications. Note that if a clk does not 1565 * implement the .recalc_rate callback then it is assumed that the clock will 1566 * take on the rate of its parent. 1567 */ 1568 static int __clk_speculate_rates(struct clk_core *core, 1569 unsigned long parent_rate) 1570 { 1571 struct clk_core *child; 1572 unsigned long new_rate; 1573 int ret = NOTIFY_DONE; 1574 1575 lockdep_assert_held(&prepare_lock); 1576 1577 new_rate = clk_recalc(core, parent_rate); 1578 1579 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1580 if (core->notifier_count) 1581 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1582 1583 if (ret & NOTIFY_STOP_MASK) { 1584 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1585 __func__, core->name, ret); 1586 goto out; 1587 } 1588 1589 hlist_for_each_entry(child, &core->children, child_node) { 1590 ret = __clk_speculate_rates(child, new_rate); 1591 if (ret & NOTIFY_STOP_MASK) 1592 break; 1593 } 1594 1595 out: 1596 return ret; 1597 } 1598 1599 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1600 struct clk_core *new_parent, u8 p_index) 1601 { 1602 struct clk_core *child; 1603 1604 core->new_rate = new_rate; 1605 core->new_parent = new_parent; 1606 core->new_parent_index = p_index; 1607 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1608 core->new_child = NULL; 1609 if (new_parent && new_parent != core->parent) 1610 new_parent->new_child = core; 1611 1612 hlist_for_each_entry(child, &core->children, child_node) { 1613 child->new_rate = clk_recalc(child, new_rate); 1614 clk_calc_subtree(child, child->new_rate, NULL, 0); 1615 } 1616 } 1617 1618 /* 1619 * calculate the new rates returning the topmost clock that has to be 1620 * changed. 1621 */ 1622 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1623 unsigned long rate) 1624 { 1625 struct clk_core *top = core; 1626 struct clk_core *old_parent, *parent; 1627 unsigned long best_parent_rate = 0; 1628 unsigned long new_rate; 1629 unsigned long min_rate; 1630 unsigned long max_rate; 1631 int p_index = 0; 1632 long ret; 1633 1634 /* sanity */ 1635 if (IS_ERR_OR_NULL(core)) 1636 return NULL; 1637 1638 /* save parent rate, if it exists */ 1639 parent = old_parent = core->parent; 1640 if (parent) 1641 best_parent_rate = parent->rate; 1642 1643 clk_core_get_boundaries(core, &min_rate, &max_rate); 1644 1645 /* find the closest rate and parent clk/rate */ 1646 if (clk_core_can_round(core)) { 1647 struct clk_rate_request req; 1648 1649 req.rate = rate; 1650 req.min_rate = min_rate; 1651 req.max_rate = max_rate; 1652 1653 clk_core_init_rate_req(core, &req); 1654 1655 ret = clk_core_determine_round_nolock(core, &req); 1656 if (ret < 0) 1657 return NULL; 1658 1659 best_parent_rate = req.best_parent_rate; 1660 new_rate = req.rate; 1661 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1662 1663 if (new_rate < min_rate || new_rate > max_rate) 1664 return NULL; 1665 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1666 /* pass-through clock without adjustable parent */ 1667 core->new_rate = core->rate; 1668 return NULL; 1669 } else { 1670 /* pass-through clock with adjustable parent */ 1671 top = clk_calc_new_rates(parent, rate); 1672 new_rate = parent->new_rate; 1673 goto out; 1674 } 1675 1676 /* some clocks must be gated to change parent */ 1677 if (parent != old_parent && 1678 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1679 pr_debug("%s: %s not gated but wants to reparent\n", 1680 __func__, core->name); 1681 return NULL; 1682 } 1683 1684 /* try finding the new parent index */ 1685 if (parent && core->num_parents > 1) { 1686 p_index = clk_fetch_parent_index(core, parent); 1687 if (p_index < 0) { 1688 pr_debug("%s: clk %s can not be parent of clk %s\n", 1689 __func__, parent->name, core->name); 1690 return NULL; 1691 } 1692 } 1693 1694 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1695 best_parent_rate != parent->rate) 1696 top = clk_calc_new_rates(parent, best_parent_rate); 1697 1698 out: 1699 clk_calc_subtree(core, new_rate, parent, p_index); 1700 1701 return top; 1702 } 1703 1704 /* 1705 * Notify about rate changes in a subtree. Always walk down the whole tree 1706 * so that in case of an error we can walk down the whole tree again and 1707 * abort the change. 1708 */ 1709 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1710 unsigned long event) 1711 { 1712 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1713 int ret = NOTIFY_DONE; 1714 1715 if (core->rate == core->new_rate) 1716 return NULL; 1717 1718 if (core->notifier_count) { 1719 ret = __clk_notify(core, event, core->rate, core->new_rate); 1720 if (ret & NOTIFY_STOP_MASK) 1721 fail_clk = core; 1722 } 1723 1724 hlist_for_each_entry(child, &core->children, child_node) { 1725 /* Skip children who will be reparented to another clock */ 1726 if (child->new_parent && child->new_parent != core) 1727 continue; 1728 tmp_clk = clk_propagate_rate_change(child, event); 1729 if (tmp_clk) 1730 fail_clk = tmp_clk; 1731 } 1732 1733 /* handle the new child who might not be in core->children yet */ 1734 if (core->new_child) { 1735 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1736 if (tmp_clk) 1737 fail_clk = tmp_clk; 1738 } 1739 1740 return fail_clk; 1741 } 1742 1743 /* 1744 * walk down a subtree and set the new rates notifying the rate 1745 * change on the way 1746 */ 1747 static void clk_change_rate(struct clk_core *core) 1748 { 1749 struct clk_core *child; 1750 struct hlist_node *tmp; 1751 unsigned long old_rate; 1752 unsigned long best_parent_rate = 0; 1753 bool skip_set_rate = false; 1754 struct clk_core *old_parent; 1755 struct clk_core *parent = NULL; 1756 1757 old_rate = core->rate; 1758 1759 if (core->new_parent) { 1760 parent = core->new_parent; 1761 best_parent_rate = core->new_parent->rate; 1762 } else if (core->parent) { 1763 parent = core->parent; 1764 best_parent_rate = core->parent->rate; 1765 } 1766 1767 if (clk_pm_runtime_get(core)) 1768 return; 1769 1770 if (core->flags & CLK_SET_RATE_UNGATE) { 1771 unsigned long flags; 1772 1773 clk_core_prepare(core); 1774 flags = clk_enable_lock(); 1775 clk_core_enable(core); 1776 clk_enable_unlock(flags); 1777 } 1778 1779 if (core->new_parent && core->new_parent != core->parent) { 1780 old_parent = __clk_set_parent_before(core, core->new_parent); 1781 trace_clk_set_parent(core, core->new_parent); 1782 1783 if (core->ops->set_rate_and_parent) { 1784 skip_set_rate = true; 1785 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1786 best_parent_rate, 1787 core->new_parent_index); 1788 } else if (core->ops->set_parent) { 1789 core->ops->set_parent(core->hw, core->new_parent_index); 1790 } 1791 1792 trace_clk_set_parent_complete(core, core->new_parent); 1793 __clk_set_parent_after(core, core->new_parent, old_parent); 1794 } 1795 1796 if (core->flags & CLK_OPS_PARENT_ENABLE) 1797 clk_core_prepare_enable(parent); 1798 1799 trace_clk_set_rate(core, core->new_rate); 1800 1801 if (!skip_set_rate && core->ops->set_rate) 1802 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1803 1804 trace_clk_set_rate_complete(core, core->new_rate); 1805 1806 core->rate = clk_recalc(core, best_parent_rate); 1807 1808 if (core->flags & CLK_SET_RATE_UNGATE) { 1809 unsigned long flags; 1810 1811 flags = clk_enable_lock(); 1812 clk_core_disable(core); 1813 clk_enable_unlock(flags); 1814 clk_core_unprepare(core); 1815 } 1816 1817 if (core->flags & CLK_OPS_PARENT_ENABLE) 1818 clk_core_disable_unprepare(parent); 1819 1820 if (core->notifier_count && old_rate != core->rate) 1821 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1822 1823 if (core->flags & CLK_RECALC_NEW_RATES) 1824 (void)clk_calc_new_rates(core, core->new_rate); 1825 1826 /* 1827 * Use safe iteration, as change_rate can actually swap parents 1828 * for certain clock types. 1829 */ 1830 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1831 /* Skip children who will be reparented to another clock */ 1832 if (child->new_parent && child->new_parent != core) 1833 continue; 1834 clk_change_rate(child); 1835 } 1836 1837 /* handle the new child who might not be in core->children yet */ 1838 if (core->new_child) 1839 clk_change_rate(core->new_child); 1840 1841 clk_pm_runtime_put(core); 1842 } 1843 1844 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 1845 unsigned long req_rate) 1846 { 1847 int ret, cnt; 1848 struct clk_rate_request req; 1849 1850 lockdep_assert_held(&prepare_lock); 1851 1852 if (!core) 1853 return 0; 1854 1855 /* simulate what the rate would be if it could be freely set */ 1856 cnt = clk_core_rate_nuke_protect(core); 1857 if (cnt < 0) 1858 return cnt; 1859 1860 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 1861 req.rate = req_rate; 1862 1863 ret = clk_core_round_rate_nolock(core, &req); 1864 1865 /* restore the protection */ 1866 clk_core_rate_restore_protect(core, cnt); 1867 1868 return ret ? 0 : req.rate; 1869 } 1870 1871 static int clk_core_set_rate_nolock(struct clk_core *core, 1872 unsigned long req_rate) 1873 { 1874 struct clk_core *top, *fail_clk; 1875 unsigned long rate; 1876 int ret = 0; 1877 1878 if (!core) 1879 return 0; 1880 1881 rate = clk_core_req_round_rate_nolock(core, req_rate); 1882 1883 /* bail early if nothing to do */ 1884 if (rate == clk_core_get_rate_nolock(core)) 1885 return 0; 1886 1887 /* fail on a direct rate set of a protected provider */ 1888 if (clk_core_rate_is_protected(core)) 1889 return -EBUSY; 1890 1891 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1892 return -EBUSY; 1893 1894 /* calculate new rates and get the topmost changed clock */ 1895 top = clk_calc_new_rates(core, req_rate); 1896 if (!top) 1897 return -EINVAL; 1898 1899 ret = clk_pm_runtime_get(core); 1900 if (ret) 1901 return ret; 1902 1903 /* notify that we are about to change rates */ 1904 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1905 if (fail_clk) { 1906 pr_debug("%s: failed to set %s rate\n", __func__, 1907 fail_clk->name); 1908 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1909 ret = -EBUSY; 1910 goto err; 1911 } 1912 1913 /* change the rates */ 1914 clk_change_rate(top); 1915 1916 core->req_rate = req_rate; 1917 err: 1918 clk_pm_runtime_put(core); 1919 1920 return ret; 1921 } 1922 1923 /** 1924 * clk_set_rate - specify a new rate for clk 1925 * @clk: the clk whose rate is being changed 1926 * @rate: the new rate for clk 1927 * 1928 * In the simplest case clk_set_rate will only adjust the rate of clk. 1929 * 1930 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1931 * propagate up to clk's parent; whether or not this happens depends on the 1932 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1933 * after calling .round_rate then upstream parent propagation is ignored. If 1934 * *parent_rate comes back with a new rate for clk's parent then we propagate 1935 * up to clk's parent and set its rate. Upward propagation will continue 1936 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1937 * .round_rate stops requesting changes to clk's parent_rate. 1938 * 1939 * Rate changes are accomplished via tree traversal that also recalculates the 1940 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1941 * 1942 * Returns 0 on success, -EERROR otherwise. 1943 */ 1944 int clk_set_rate(struct clk *clk, unsigned long rate) 1945 { 1946 int ret; 1947 1948 if (!clk) 1949 return 0; 1950 1951 /* prevent racing with updates to the clock topology */ 1952 clk_prepare_lock(); 1953 1954 if (clk->exclusive_count) 1955 clk_core_rate_unprotect(clk->core); 1956 1957 ret = clk_core_set_rate_nolock(clk->core, rate); 1958 1959 if (clk->exclusive_count) 1960 clk_core_rate_protect(clk->core); 1961 1962 clk_prepare_unlock(); 1963 1964 return ret; 1965 } 1966 EXPORT_SYMBOL_GPL(clk_set_rate); 1967 1968 /** 1969 * clk_set_rate_exclusive - specify a new rate get exclusive control 1970 * @clk: the clk whose rate is being changed 1971 * @rate: the new rate for clk 1972 * 1973 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 1974 * within a critical section 1975 * 1976 * This can be used initially to ensure that at least 1 consumer is 1977 * statisfied when several consumers are competing for exclusivity over the 1978 * same clock provider. 1979 * 1980 * The exclusivity is not applied if setting the rate failed. 1981 * 1982 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1983 * clk_rate_exclusive_put(). 1984 * 1985 * Returns 0 on success, -EERROR otherwise. 1986 */ 1987 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 1988 { 1989 int ret; 1990 1991 if (!clk) 1992 return 0; 1993 1994 /* prevent racing with updates to the clock topology */ 1995 clk_prepare_lock(); 1996 1997 /* 1998 * The temporary protection removal is not here, on purpose 1999 * This function is meant to be used instead of clk_rate_protect, 2000 * so before the consumer code path protect the clock provider 2001 */ 2002 2003 ret = clk_core_set_rate_nolock(clk->core, rate); 2004 if (!ret) { 2005 clk_core_rate_protect(clk->core); 2006 clk->exclusive_count++; 2007 } 2008 2009 clk_prepare_unlock(); 2010 2011 return ret; 2012 } 2013 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2014 2015 /** 2016 * clk_set_rate_range - set a rate range for a clock source 2017 * @clk: clock source 2018 * @min: desired minimum clock rate in Hz, inclusive 2019 * @max: desired maximum clock rate in Hz, inclusive 2020 * 2021 * Returns success (0) or negative errno. 2022 */ 2023 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2024 { 2025 int ret = 0; 2026 unsigned long old_min, old_max, rate; 2027 2028 if (!clk) 2029 return 0; 2030 2031 if (min > max) { 2032 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2033 __func__, clk->core->name, clk->dev_id, clk->con_id, 2034 min, max); 2035 return -EINVAL; 2036 } 2037 2038 clk_prepare_lock(); 2039 2040 if (clk->exclusive_count) 2041 clk_core_rate_unprotect(clk->core); 2042 2043 /* Save the current values in case we need to rollback the change */ 2044 old_min = clk->min_rate; 2045 old_max = clk->max_rate; 2046 clk->min_rate = min; 2047 clk->max_rate = max; 2048 2049 rate = clk_core_get_rate_nolock(clk->core); 2050 if (rate < min || rate > max) { 2051 /* 2052 * FIXME: 2053 * We are in bit of trouble here, current rate is outside the 2054 * the requested range. We are going try to request appropriate 2055 * range boundary but there is a catch. It may fail for the 2056 * usual reason (clock broken, clock protected, etc) but also 2057 * because: 2058 * - round_rate() was not favorable and fell on the wrong 2059 * side of the boundary 2060 * - the determine_rate() callback does not really check for 2061 * this corner case when determining the rate 2062 */ 2063 2064 if (rate < min) 2065 rate = min; 2066 else 2067 rate = max; 2068 2069 ret = clk_core_set_rate_nolock(clk->core, rate); 2070 if (ret) { 2071 /* rollback the changes */ 2072 clk->min_rate = old_min; 2073 clk->max_rate = old_max; 2074 } 2075 } 2076 2077 if (clk->exclusive_count) 2078 clk_core_rate_protect(clk->core); 2079 2080 clk_prepare_unlock(); 2081 2082 return ret; 2083 } 2084 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2085 2086 /** 2087 * clk_set_min_rate - set a minimum clock rate for a clock source 2088 * @clk: clock source 2089 * @rate: desired minimum clock rate in Hz, inclusive 2090 * 2091 * Returns success (0) or negative errno. 2092 */ 2093 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2094 { 2095 if (!clk) 2096 return 0; 2097 2098 return clk_set_rate_range(clk, rate, clk->max_rate); 2099 } 2100 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2101 2102 /** 2103 * clk_set_max_rate - set a maximum clock rate for a clock source 2104 * @clk: clock source 2105 * @rate: desired maximum clock rate in Hz, inclusive 2106 * 2107 * Returns success (0) or negative errno. 2108 */ 2109 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2110 { 2111 if (!clk) 2112 return 0; 2113 2114 return clk_set_rate_range(clk, clk->min_rate, rate); 2115 } 2116 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2117 2118 /** 2119 * clk_get_parent - return the parent of a clk 2120 * @clk: the clk whose parent gets returned 2121 * 2122 * Simply returns clk->parent. Returns NULL if clk is NULL. 2123 */ 2124 struct clk *clk_get_parent(struct clk *clk) 2125 { 2126 struct clk *parent; 2127 2128 if (!clk) 2129 return NULL; 2130 2131 clk_prepare_lock(); 2132 /* TODO: Create a per-user clk and change callers to call clk_put */ 2133 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2134 clk_prepare_unlock(); 2135 2136 return parent; 2137 } 2138 EXPORT_SYMBOL_GPL(clk_get_parent); 2139 2140 static struct clk_core *__clk_init_parent(struct clk_core *core) 2141 { 2142 u8 index = 0; 2143 2144 if (core->num_parents > 1 && core->ops->get_parent) 2145 index = core->ops->get_parent(core->hw); 2146 2147 return clk_core_get_parent_by_index(core, index); 2148 } 2149 2150 static void clk_core_reparent(struct clk_core *core, 2151 struct clk_core *new_parent) 2152 { 2153 clk_reparent(core, new_parent); 2154 __clk_recalc_accuracies(core); 2155 __clk_recalc_rates(core, POST_RATE_CHANGE); 2156 } 2157 2158 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2159 { 2160 if (!hw) 2161 return; 2162 2163 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2164 } 2165 2166 /** 2167 * clk_has_parent - check if a clock is a possible parent for another 2168 * @clk: clock source 2169 * @parent: parent clock source 2170 * 2171 * This function can be used in drivers that need to check that a clock can be 2172 * the parent of another without actually changing the parent. 2173 * 2174 * Returns true if @parent is a possible parent for @clk, false otherwise. 2175 */ 2176 bool clk_has_parent(struct clk *clk, struct clk *parent) 2177 { 2178 struct clk_core *core, *parent_core; 2179 2180 /* NULL clocks should be nops, so return success if either is NULL. */ 2181 if (!clk || !parent) 2182 return true; 2183 2184 core = clk->core; 2185 parent_core = parent->core; 2186 2187 /* Optimize for the case where the parent is already the parent. */ 2188 if (core->parent == parent_core) 2189 return true; 2190 2191 return match_string(core->parent_names, core->num_parents, 2192 parent_core->name) >= 0; 2193 } 2194 EXPORT_SYMBOL_GPL(clk_has_parent); 2195 2196 static int clk_core_set_parent_nolock(struct clk_core *core, 2197 struct clk_core *parent) 2198 { 2199 int ret = 0; 2200 int p_index = 0; 2201 unsigned long p_rate = 0; 2202 2203 lockdep_assert_held(&prepare_lock); 2204 2205 if (!core) 2206 return 0; 2207 2208 if (core->parent == parent) 2209 return 0; 2210 2211 /* verify ops for for multi-parent clks */ 2212 if (core->num_parents > 1 && !core->ops->set_parent) 2213 return -EPERM; 2214 2215 /* check that we are allowed to re-parent if the clock is in use */ 2216 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2217 return -EBUSY; 2218 2219 if (clk_core_rate_is_protected(core)) 2220 return -EBUSY; 2221 2222 /* try finding the new parent index */ 2223 if (parent) { 2224 p_index = clk_fetch_parent_index(core, parent); 2225 if (p_index < 0) { 2226 pr_debug("%s: clk %s can not be parent of clk %s\n", 2227 __func__, parent->name, core->name); 2228 return p_index; 2229 } 2230 p_rate = parent->rate; 2231 } 2232 2233 ret = clk_pm_runtime_get(core); 2234 if (ret) 2235 return ret; 2236 2237 /* propagate PRE_RATE_CHANGE notifications */ 2238 ret = __clk_speculate_rates(core, p_rate); 2239 2240 /* abort if a driver objects */ 2241 if (ret & NOTIFY_STOP_MASK) 2242 goto runtime_put; 2243 2244 /* do the re-parent */ 2245 ret = __clk_set_parent(core, parent, p_index); 2246 2247 /* propagate rate an accuracy recalculation accordingly */ 2248 if (ret) { 2249 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2250 } else { 2251 __clk_recalc_rates(core, POST_RATE_CHANGE); 2252 __clk_recalc_accuracies(core); 2253 } 2254 2255 runtime_put: 2256 clk_pm_runtime_put(core); 2257 2258 return ret; 2259 } 2260 2261 /** 2262 * clk_set_parent - switch the parent of a mux clk 2263 * @clk: the mux clk whose input we are switching 2264 * @parent: the new input to clk 2265 * 2266 * Re-parent clk to use parent as its new input source. If clk is in 2267 * prepared state, the clk will get enabled for the duration of this call. If 2268 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2269 * that, the reparenting is glitchy in hardware, etc), use the 2270 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2271 * 2272 * After successfully changing clk's parent clk_set_parent will update the 2273 * clk topology, sysfs topology and propagate rate recalculation via 2274 * __clk_recalc_rates. 2275 * 2276 * Returns 0 on success, -EERROR otherwise. 2277 */ 2278 int clk_set_parent(struct clk *clk, struct clk *parent) 2279 { 2280 int ret; 2281 2282 if (!clk) 2283 return 0; 2284 2285 clk_prepare_lock(); 2286 2287 if (clk->exclusive_count) 2288 clk_core_rate_unprotect(clk->core); 2289 2290 ret = clk_core_set_parent_nolock(clk->core, 2291 parent ? parent->core : NULL); 2292 2293 if (clk->exclusive_count) 2294 clk_core_rate_protect(clk->core); 2295 2296 clk_prepare_unlock(); 2297 2298 return ret; 2299 } 2300 EXPORT_SYMBOL_GPL(clk_set_parent); 2301 2302 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2303 { 2304 int ret = -EINVAL; 2305 2306 lockdep_assert_held(&prepare_lock); 2307 2308 if (!core) 2309 return 0; 2310 2311 if (clk_core_rate_is_protected(core)) 2312 return -EBUSY; 2313 2314 trace_clk_set_phase(core, degrees); 2315 2316 if (core->ops->set_phase) { 2317 ret = core->ops->set_phase(core->hw, degrees); 2318 if (!ret) 2319 core->phase = degrees; 2320 } 2321 2322 trace_clk_set_phase_complete(core, degrees); 2323 2324 return ret; 2325 } 2326 2327 /** 2328 * clk_set_phase - adjust the phase shift of a clock signal 2329 * @clk: clock signal source 2330 * @degrees: number of degrees the signal is shifted 2331 * 2332 * Shifts the phase of a clock signal by the specified 2333 * degrees. Returns 0 on success, -EERROR otherwise. 2334 * 2335 * This function makes no distinction about the input or reference 2336 * signal that we adjust the clock signal phase against. For example 2337 * phase locked-loop clock signal generators we may shift phase with 2338 * respect to feedback clock signal input, but for other cases the 2339 * clock phase may be shifted with respect to some other, unspecified 2340 * signal. 2341 * 2342 * Additionally the concept of phase shift does not propagate through 2343 * the clock tree hierarchy, which sets it apart from clock rates and 2344 * clock accuracy. A parent clock phase attribute does not have an 2345 * impact on the phase attribute of a child clock. 2346 */ 2347 int clk_set_phase(struct clk *clk, int degrees) 2348 { 2349 int ret; 2350 2351 if (!clk) 2352 return 0; 2353 2354 /* sanity check degrees */ 2355 degrees %= 360; 2356 if (degrees < 0) 2357 degrees += 360; 2358 2359 clk_prepare_lock(); 2360 2361 if (clk->exclusive_count) 2362 clk_core_rate_unprotect(clk->core); 2363 2364 ret = clk_core_set_phase_nolock(clk->core, degrees); 2365 2366 if (clk->exclusive_count) 2367 clk_core_rate_protect(clk->core); 2368 2369 clk_prepare_unlock(); 2370 2371 return ret; 2372 } 2373 EXPORT_SYMBOL_GPL(clk_set_phase); 2374 2375 static int clk_core_get_phase(struct clk_core *core) 2376 { 2377 int ret; 2378 2379 clk_prepare_lock(); 2380 /* Always try to update cached phase if possible */ 2381 if (core->ops->get_phase) 2382 core->phase = core->ops->get_phase(core->hw); 2383 ret = core->phase; 2384 clk_prepare_unlock(); 2385 2386 return ret; 2387 } 2388 2389 /** 2390 * clk_get_phase - return the phase shift of a clock signal 2391 * @clk: clock signal source 2392 * 2393 * Returns the phase shift of a clock node in degrees, otherwise returns 2394 * -EERROR. 2395 */ 2396 int clk_get_phase(struct clk *clk) 2397 { 2398 if (!clk) 2399 return 0; 2400 2401 return clk_core_get_phase(clk->core); 2402 } 2403 EXPORT_SYMBOL_GPL(clk_get_phase); 2404 2405 /** 2406 * clk_is_match - check if two clk's point to the same hardware clock 2407 * @p: clk compared against q 2408 * @q: clk compared against p 2409 * 2410 * Returns true if the two struct clk pointers both point to the same hardware 2411 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2412 * share the same struct clk_core object. 2413 * 2414 * Returns false otherwise. Note that two NULL clks are treated as matching. 2415 */ 2416 bool clk_is_match(const struct clk *p, const struct clk *q) 2417 { 2418 /* trivial case: identical struct clk's or both NULL */ 2419 if (p == q) 2420 return true; 2421 2422 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2423 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2424 if (p->core == q->core) 2425 return true; 2426 2427 return false; 2428 } 2429 EXPORT_SYMBOL_GPL(clk_is_match); 2430 2431 /*** debugfs support ***/ 2432 2433 #ifdef CONFIG_DEBUG_FS 2434 #include <linux/debugfs.h> 2435 2436 static struct dentry *rootdir; 2437 static int inited = 0; 2438 static DEFINE_MUTEX(clk_debug_lock); 2439 static HLIST_HEAD(clk_debug_list); 2440 2441 static struct hlist_head *all_lists[] = { 2442 &clk_root_list, 2443 &clk_orphan_list, 2444 NULL, 2445 }; 2446 2447 static struct hlist_head *orphan_list[] = { 2448 &clk_orphan_list, 2449 NULL, 2450 }; 2451 2452 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2453 int level) 2454 { 2455 if (!c) 2456 return; 2457 2458 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n", 2459 level * 3 + 1, "", 2460 30 - level * 3, c->name, 2461 c->enable_count, c->prepare_count, c->protect_count, 2462 clk_core_get_rate(c), clk_core_get_accuracy(c), 2463 clk_core_get_phase(c)); 2464 } 2465 2466 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2467 int level) 2468 { 2469 struct clk_core *child; 2470 2471 if (!c) 2472 return; 2473 2474 clk_summary_show_one(s, c, level); 2475 2476 hlist_for_each_entry(child, &c->children, child_node) 2477 clk_summary_show_subtree(s, child, level + 1); 2478 } 2479 2480 static int clk_summary_show(struct seq_file *s, void *data) 2481 { 2482 struct clk_core *c; 2483 struct hlist_head **lists = (struct hlist_head **)s->private; 2484 2485 seq_puts(s, " enable prepare protect \n"); 2486 seq_puts(s, " clock count count count rate accuracy phase\n"); 2487 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2488 2489 clk_prepare_lock(); 2490 2491 for (; *lists; lists++) 2492 hlist_for_each_entry(c, *lists, child_node) 2493 clk_summary_show_subtree(s, c, 0); 2494 2495 clk_prepare_unlock(); 2496 2497 return 0; 2498 } 2499 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2500 2501 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2502 { 2503 if (!c) 2504 return; 2505 2506 /* This should be JSON format, i.e. elements separated with a comma */ 2507 seq_printf(s, "\"%s\": { ", c->name); 2508 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2509 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2510 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2511 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2512 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2513 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2514 } 2515 2516 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2517 { 2518 struct clk_core *child; 2519 2520 if (!c) 2521 return; 2522 2523 clk_dump_one(s, c, level); 2524 2525 hlist_for_each_entry(child, &c->children, child_node) { 2526 seq_putc(s, ','); 2527 clk_dump_subtree(s, child, level + 1); 2528 } 2529 2530 seq_putc(s, '}'); 2531 } 2532 2533 static int clk_dump_show(struct seq_file *s, void *data) 2534 { 2535 struct clk_core *c; 2536 bool first_node = true; 2537 struct hlist_head **lists = (struct hlist_head **)s->private; 2538 2539 seq_putc(s, '{'); 2540 clk_prepare_lock(); 2541 2542 for (; *lists; lists++) { 2543 hlist_for_each_entry(c, *lists, child_node) { 2544 if (!first_node) 2545 seq_putc(s, ','); 2546 first_node = false; 2547 clk_dump_subtree(s, c, 0); 2548 } 2549 } 2550 2551 clk_prepare_unlock(); 2552 2553 seq_puts(s, "}\n"); 2554 return 0; 2555 } 2556 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2557 2558 static const struct { 2559 unsigned long flag; 2560 const char *name; 2561 } clk_flags[] = { 2562 #define ENTRY(f) { f, __stringify(f) } 2563 ENTRY(CLK_SET_RATE_GATE), 2564 ENTRY(CLK_SET_PARENT_GATE), 2565 ENTRY(CLK_SET_RATE_PARENT), 2566 ENTRY(CLK_IGNORE_UNUSED), 2567 ENTRY(CLK_IS_BASIC), 2568 ENTRY(CLK_GET_RATE_NOCACHE), 2569 ENTRY(CLK_SET_RATE_NO_REPARENT), 2570 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2571 ENTRY(CLK_RECALC_NEW_RATES), 2572 ENTRY(CLK_SET_RATE_UNGATE), 2573 ENTRY(CLK_IS_CRITICAL), 2574 ENTRY(CLK_OPS_PARENT_ENABLE), 2575 #undef ENTRY 2576 }; 2577 2578 static int clk_flags_show(struct seq_file *s, void *data) 2579 { 2580 struct clk_core *core = s->private; 2581 unsigned long flags = core->flags; 2582 unsigned int i; 2583 2584 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2585 if (flags & clk_flags[i].flag) { 2586 seq_printf(s, "%s\n", clk_flags[i].name); 2587 flags &= ~clk_flags[i].flag; 2588 } 2589 } 2590 if (flags) { 2591 /* Unknown flags */ 2592 seq_printf(s, "0x%lx\n", flags); 2593 } 2594 2595 return 0; 2596 } 2597 DEFINE_SHOW_ATTRIBUTE(clk_flags); 2598 2599 static int possible_parents_show(struct seq_file *s, void *data) 2600 { 2601 struct clk_core *core = s->private; 2602 int i; 2603 2604 for (i = 0; i < core->num_parents - 1; i++) 2605 seq_printf(s, "%s ", core->parent_names[i]); 2606 2607 seq_printf(s, "%s\n", core->parent_names[i]); 2608 2609 return 0; 2610 } 2611 DEFINE_SHOW_ATTRIBUTE(possible_parents); 2612 2613 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2614 { 2615 struct dentry *root; 2616 2617 if (!core || !pdentry) 2618 return; 2619 2620 root = debugfs_create_dir(core->name, pdentry); 2621 core->dentry = root; 2622 2623 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 2624 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 2625 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 2626 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 2627 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 2628 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 2629 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 2630 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 2631 2632 if (core->num_parents > 1) 2633 debugfs_create_file("clk_possible_parents", 0444, root, core, 2634 &possible_parents_fops); 2635 2636 if (core->ops->debug_init) 2637 core->ops->debug_init(core->hw, core->dentry); 2638 } 2639 2640 /** 2641 * clk_debug_register - add a clk node to the debugfs clk directory 2642 * @core: the clk being added to the debugfs clk directory 2643 * 2644 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2645 * initialized. Otherwise it bails out early since the debugfs clk directory 2646 * will be created lazily by clk_debug_init as part of a late_initcall. 2647 */ 2648 static void clk_debug_register(struct clk_core *core) 2649 { 2650 mutex_lock(&clk_debug_lock); 2651 hlist_add_head(&core->debug_node, &clk_debug_list); 2652 if (inited) 2653 clk_debug_create_one(core, rootdir); 2654 mutex_unlock(&clk_debug_lock); 2655 } 2656 2657 /** 2658 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2659 * @core: the clk being removed from the debugfs clk directory 2660 * 2661 * Dynamically removes a clk and all its child nodes from the 2662 * debugfs clk directory if clk->dentry points to debugfs created by 2663 * clk_debug_register in __clk_core_init. 2664 */ 2665 static void clk_debug_unregister(struct clk_core *core) 2666 { 2667 mutex_lock(&clk_debug_lock); 2668 hlist_del_init(&core->debug_node); 2669 debugfs_remove_recursive(core->dentry); 2670 core->dentry = NULL; 2671 mutex_unlock(&clk_debug_lock); 2672 } 2673 2674 /** 2675 * clk_debug_init - lazily populate the debugfs clk directory 2676 * 2677 * clks are often initialized very early during boot before memory can be 2678 * dynamically allocated and well before debugfs is setup. This function 2679 * populates the debugfs clk directory once at boot-time when we know that 2680 * debugfs is setup. It should only be called once at boot-time, all other clks 2681 * added dynamically will be done so with clk_debug_register. 2682 */ 2683 static int __init clk_debug_init(void) 2684 { 2685 struct clk_core *core; 2686 2687 rootdir = debugfs_create_dir("clk", NULL); 2688 2689 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 2690 &clk_summary_fops); 2691 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 2692 &clk_dump_fops); 2693 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 2694 &clk_summary_fops); 2695 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 2696 &clk_dump_fops); 2697 2698 mutex_lock(&clk_debug_lock); 2699 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2700 clk_debug_create_one(core, rootdir); 2701 2702 inited = 1; 2703 mutex_unlock(&clk_debug_lock); 2704 2705 return 0; 2706 } 2707 late_initcall(clk_debug_init); 2708 #else 2709 static inline void clk_debug_register(struct clk_core *core) { } 2710 static inline void clk_debug_reparent(struct clk_core *core, 2711 struct clk_core *new_parent) 2712 { 2713 } 2714 static inline void clk_debug_unregister(struct clk_core *core) 2715 { 2716 } 2717 #endif 2718 2719 /** 2720 * __clk_core_init - initialize the data structures in a struct clk_core 2721 * @core: clk_core being initialized 2722 * 2723 * Initializes the lists in struct clk_core, queries the hardware for the 2724 * parent and rate and sets them both. 2725 */ 2726 static int __clk_core_init(struct clk_core *core) 2727 { 2728 int i, ret; 2729 struct clk_core *orphan; 2730 struct hlist_node *tmp2; 2731 unsigned long rate; 2732 2733 if (!core) 2734 return -EINVAL; 2735 2736 clk_prepare_lock(); 2737 2738 ret = clk_pm_runtime_get(core); 2739 if (ret) 2740 goto unlock; 2741 2742 /* check to see if a clock with this name is already registered */ 2743 if (clk_core_lookup(core->name)) { 2744 pr_debug("%s: clk %s already initialized\n", 2745 __func__, core->name); 2746 ret = -EEXIST; 2747 goto out; 2748 } 2749 2750 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 2751 if (core->ops->set_rate && 2752 !((core->ops->round_rate || core->ops->determine_rate) && 2753 core->ops->recalc_rate)) { 2754 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2755 __func__, core->name); 2756 ret = -EINVAL; 2757 goto out; 2758 } 2759 2760 if (core->ops->set_parent && !core->ops->get_parent) { 2761 pr_err("%s: %s must implement .get_parent & .set_parent\n", 2762 __func__, core->name); 2763 ret = -EINVAL; 2764 goto out; 2765 } 2766 2767 if (core->num_parents > 1 && !core->ops->get_parent) { 2768 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 2769 __func__, core->name); 2770 ret = -EINVAL; 2771 goto out; 2772 } 2773 2774 if (core->ops->set_rate_and_parent && 2775 !(core->ops->set_parent && core->ops->set_rate)) { 2776 pr_err("%s: %s must implement .set_parent & .set_rate\n", 2777 __func__, core->name); 2778 ret = -EINVAL; 2779 goto out; 2780 } 2781 2782 /* throw a WARN if any entries in parent_names are NULL */ 2783 for (i = 0; i < core->num_parents; i++) 2784 WARN(!core->parent_names[i], 2785 "%s: invalid NULL in %s's .parent_names\n", 2786 __func__, core->name); 2787 2788 core->parent = __clk_init_parent(core); 2789 2790 /* 2791 * Populate core->parent if parent has already been clk_core_init'd. If 2792 * parent has not yet been clk_core_init'd then place clk in the orphan 2793 * list. If clk doesn't have any parents then place it in the root 2794 * clk list. 2795 * 2796 * Every time a new clk is clk_init'd then we walk the list of orphan 2797 * clocks and re-parent any that are children of the clock currently 2798 * being clk_init'd. 2799 */ 2800 if (core->parent) { 2801 hlist_add_head(&core->child_node, 2802 &core->parent->children); 2803 core->orphan = core->parent->orphan; 2804 } else if (!core->num_parents) { 2805 hlist_add_head(&core->child_node, &clk_root_list); 2806 core->orphan = false; 2807 } else { 2808 hlist_add_head(&core->child_node, &clk_orphan_list); 2809 core->orphan = true; 2810 } 2811 2812 /* 2813 * optional platform-specific magic 2814 * 2815 * The .init callback is not used by any of the basic clock types, but 2816 * exists for weird hardware that must perform initialization magic. 2817 * Please consider other ways of solving initialization problems before 2818 * using this callback, as its use is discouraged. 2819 */ 2820 if (core->ops->init) 2821 core->ops->init(core->hw); 2822 2823 /* 2824 * Set clk's accuracy. The preferred method is to use 2825 * .recalc_accuracy. For simple clocks and lazy developers the default 2826 * fallback is to use the parent's accuracy. If a clock doesn't have a 2827 * parent (or is orphaned) then accuracy is set to zero (perfect 2828 * clock). 2829 */ 2830 if (core->ops->recalc_accuracy) 2831 core->accuracy = core->ops->recalc_accuracy(core->hw, 2832 __clk_get_accuracy(core->parent)); 2833 else if (core->parent) 2834 core->accuracy = core->parent->accuracy; 2835 else 2836 core->accuracy = 0; 2837 2838 /* 2839 * Set clk's phase. 2840 * Since a phase is by definition relative to its parent, just 2841 * query the current clock phase, or just assume it's in phase. 2842 */ 2843 if (core->ops->get_phase) 2844 core->phase = core->ops->get_phase(core->hw); 2845 else 2846 core->phase = 0; 2847 2848 /* 2849 * Set clk's rate. The preferred method is to use .recalc_rate. For 2850 * simple clocks and lazy developers the default fallback is to use the 2851 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2852 * then rate is set to zero. 2853 */ 2854 if (core->ops->recalc_rate) 2855 rate = core->ops->recalc_rate(core->hw, 2856 clk_core_get_rate_nolock(core->parent)); 2857 else if (core->parent) 2858 rate = core->parent->rate; 2859 else 2860 rate = 0; 2861 core->rate = core->req_rate = rate; 2862 2863 /* 2864 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 2865 * don't get accidentally disabled when walking the orphan tree and 2866 * reparenting clocks 2867 */ 2868 if (core->flags & CLK_IS_CRITICAL) { 2869 unsigned long flags; 2870 2871 clk_core_prepare(core); 2872 2873 flags = clk_enable_lock(); 2874 clk_core_enable(core); 2875 clk_enable_unlock(flags); 2876 } 2877 2878 /* 2879 * walk the list of orphan clocks and reparent any that newly finds a 2880 * parent. 2881 */ 2882 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2883 struct clk_core *parent = __clk_init_parent(orphan); 2884 2885 /* 2886 * We need to use __clk_set_parent_before() and _after() to 2887 * to properly migrate any prepare/enable count of the orphan 2888 * clock. This is important for CLK_IS_CRITICAL clocks, which 2889 * are enabled during init but might not have a parent yet. 2890 */ 2891 if (parent) { 2892 /* update the clk tree topology */ 2893 __clk_set_parent_before(orphan, parent); 2894 __clk_set_parent_after(orphan, parent, NULL); 2895 __clk_recalc_accuracies(orphan); 2896 __clk_recalc_rates(orphan, 0); 2897 } 2898 } 2899 2900 kref_init(&core->ref); 2901 out: 2902 clk_pm_runtime_put(core); 2903 unlock: 2904 clk_prepare_unlock(); 2905 2906 if (!ret) 2907 clk_debug_register(core); 2908 2909 return ret; 2910 } 2911 2912 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2913 const char *con_id) 2914 { 2915 struct clk *clk; 2916 2917 /* This is to allow this function to be chained to others */ 2918 if (IS_ERR_OR_NULL(hw)) 2919 return ERR_CAST(hw); 2920 2921 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2922 if (!clk) 2923 return ERR_PTR(-ENOMEM); 2924 2925 clk->core = hw->core; 2926 clk->dev_id = dev_id; 2927 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 2928 clk->max_rate = ULONG_MAX; 2929 2930 clk_prepare_lock(); 2931 hlist_add_head(&clk->clks_node, &hw->core->clks); 2932 clk_prepare_unlock(); 2933 2934 return clk; 2935 } 2936 2937 void __clk_free_clk(struct clk *clk) 2938 { 2939 clk_prepare_lock(); 2940 hlist_del(&clk->clks_node); 2941 clk_prepare_unlock(); 2942 2943 kfree_const(clk->con_id); 2944 kfree(clk); 2945 } 2946 2947 /** 2948 * clk_register - allocate a new clock, register it and return an opaque cookie 2949 * @dev: device that is registering this clock 2950 * @hw: link to hardware-specific clock data 2951 * 2952 * clk_register is the primary interface for populating the clock tree with new 2953 * clock nodes. It returns a pointer to the newly allocated struct clk which 2954 * cannot be dereferenced by driver code but may be used in conjunction with the 2955 * rest of the clock API. In the event of an error clk_register will return an 2956 * error code; drivers must test for an error code after calling clk_register. 2957 */ 2958 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2959 { 2960 int i, ret; 2961 struct clk_core *core; 2962 2963 core = kzalloc(sizeof(*core), GFP_KERNEL); 2964 if (!core) { 2965 ret = -ENOMEM; 2966 goto fail_out; 2967 } 2968 2969 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2970 if (!core->name) { 2971 ret = -ENOMEM; 2972 goto fail_name; 2973 } 2974 2975 if (WARN_ON(!hw->init->ops)) { 2976 ret = -EINVAL; 2977 goto fail_ops; 2978 } 2979 core->ops = hw->init->ops; 2980 2981 if (dev && pm_runtime_enabled(dev)) 2982 core->dev = dev; 2983 if (dev && dev->driver) 2984 core->owner = dev->driver->owner; 2985 core->hw = hw; 2986 core->flags = hw->init->flags; 2987 core->num_parents = hw->init->num_parents; 2988 core->min_rate = 0; 2989 core->max_rate = ULONG_MAX; 2990 hw->core = core; 2991 2992 /* allocate local copy in case parent_names is __initdata */ 2993 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 2994 GFP_KERNEL); 2995 2996 if (!core->parent_names) { 2997 ret = -ENOMEM; 2998 goto fail_parent_names; 2999 } 3000 3001 3002 /* copy each string name in case parent_names is __initdata */ 3003 for (i = 0; i < core->num_parents; i++) { 3004 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 3005 GFP_KERNEL); 3006 if (!core->parent_names[i]) { 3007 ret = -ENOMEM; 3008 goto fail_parent_names_copy; 3009 } 3010 } 3011 3012 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 3013 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 3014 GFP_KERNEL); 3015 if (!core->parents) { 3016 ret = -ENOMEM; 3017 goto fail_parents; 3018 }; 3019 3020 INIT_HLIST_HEAD(&core->clks); 3021 3022 hw->clk = __clk_create_clk(hw, NULL, NULL); 3023 if (IS_ERR(hw->clk)) { 3024 ret = PTR_ERR(hw->clk); 3025 goto fail_parents; 3026 } 3027 3028 ret = __clk_core_init(core); 3029 if (!ret) 3030 return hw->clk; 3031 3032 __clk_free_clk(hw->clk); 3033 hw->clk = NULL; 3034 3035 fail_parents: 3036 kfree(core->parents); 3037 fail_parent_names_copy: 3038 while (--i >= 0) 3039 kfree_const(core->parent_names[i]); 3040 kfree(core->parent_names); 3041 fail_parent_names: 3042 fail_ops: 3043 kfree_const(core->name); 3044 fail_name: 3045 kfree(core); 3046 fail_out: 3047 return ERR_PTR(ret); 3048 } 3049 EXPORT_SYMBOL_GPL(clk_register); 3050 3051 /** 3052 * clk_hw_register - register a clk_hw and return an error code 3053 * @dev: device that is registering this clock 3054 * @hw: link to hardware-specific clock data 3055 * 3056 * clk_hw_register is the primary interface for populating the clock tree with 3057 * new clock nodes. It returns an integer equal to zero indicating success or 3058 * less than zero indicating failure. Drivers must test for an error code after 3059 * calling clk_hw_register(). 3060 */ 3061 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3062 { 3063 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 3064 } 3065 EXPORT_SYMBOL_GPL(clk_hw_register); 3066 3067 /* Free memory allocated for a clock. */ 3068 static void __clk_release(struct kref *ref) 3069 { 3070 struct clk_core *core = container_of(ref, struct clk_core, ref); 3071 int i = core->num_parents; 3072 3073 lockdep_assert_held(&prepare_lock); 3074 3075 kfree(core->parents); 3076 while (--i >= 0) 3077 kfree_const(core->parent_names[i]); 3078 3079 kfree(core->parent_names); 3080 kfree_const(core->name); 3081 kfree(core); 3082 } 3083 3084 /* 3085 * Empty clk_ops for unregistered clocks. These are used temporarily 3086 * after clk_unregister() was called on a clock and until last clock 3087 * consumer calls clk_put() and the struct clk object is freed. 3088 */ 3089 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3090 { 3091 return -ENXIO; 3092 } 3093 3094 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3095 { 3096 WARN_ON_ONCE(1); 3097 } 3098 3099 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3100 unsigned long parent_rate) 3101 { 3102 return -ENXIO; 3103 } 3104 3105 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3106 { 3107 return -ENXIO; 3108 } 3109 3110 static const struct clk_ops clk_nodrv_ops = { 3111 .enable = clk_nodrv_prepare_enable, 3112 .disable = clk_nodrv_disable_unprepare, 3113 .prepare = clk_nodrv_prepare_enable, 3114 .unprepare = clk_nodrv_disable_unprepare, 3115 .set_rate = clk_nodrv_set_rate, 3116 .set_parent = clk_nodrv_set_parent, 3117 }; 3118 3119 /** 3120 * clk_unregister - unregister a currently registered clock 3121 * @clk: clock to unregister 3122 */ 3123 void clk_unregister(struct clk *clk) 3124 { 3125 unsigned long flags; 3126 3127 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3128 return; 3129 3130 clk_debug_unregister(clk->core); 3131 3132 clk_prepare_lock(); 3133 3134 if (clk->core->ops == &clk_nodrv_ops) { 3135 pr_err("%s: unregistered clock: %s\n", __func__, 3136 clk->core->name); 3137 goto unlock; 3138 } 3139 /* 3140 * Assign empty clock ops for consumers that might still hold 3141 * a reference to this clock. 3142 */ 3143 flags = clk_enable_lock(); 3144 clk->core->ops = &clk_nodrv_ops; 3145 clk_enable_unlock(flags); 3146 3147 if (!hlist_empty(&clk->core->children)) { 3148 struct clk_core *child; 3149 struct hlist_node *t; 3150 3151 /* Reparent all children to the orphan list. */ 3152 hlist_for_each_entry_safe(child, t, &clk->core->children, 3153 child_node) 3154 clk_core_set_parent_nolock(child, NULL); 3155 } 3156 3157 hlist_del_init(&clk->core->child_node); 3158 3159 if (clk->core->prepare_count) 3160 pr_warn("%s: unregistering prepared clock: %s\n", 3161 __func__, clk->core->name); 3162 3163 if (clk->core->protect_count) 3164 pr_warn("%s: unregistering protected clock: %s\n", 3165 __func__, clk->core->name); 3166 3167 kref_put(&clk->core->ref, __clk_release); 3168 unlock: 3169 clk_prepare_unlock(); 3170 } 3171 EXPORT_SYMBOL_GPL(clk_unregister); 3172 3173 /** 3174 * clk_hw_unregister - unregister a currently registered clk_hw 3175 * @hw: hardware-specific clock data to unregister 3176 */ 3177 void clk_hw_unregister(struct clk_hw *hw) 3178 { 3179 clk_unregister(hw->clk); 3180 } 3181 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3182 3183 static void devm_clk_release(struct device *dev, void *res) 3184 { 3185 clk_unregister(*(struct clk **)res); 3186 } 3187 3188 static void devm_clk_hw_release(struct device *dev, void *res) 3189 { 3190 clk_hw_unregister(*(struct clk_hw **)res); 3191 } 3192 3193 /** 3194 * devm_clk_register - resource managed clk_register() 3195 * @dev: device that is registering this clock 3196 * @hw: link to hardware-specific clock data 3197 * 3198 * Managed clk_register(). Clocks returned from this function are 3199 * automatically clk_unregister()ed on driver detach. See clk_register() for 3200 * more information. 3201 */ 3202 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3203 { 3204 struct clk *clk; 3205 struct clk **clkp; 3206 3207 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3208 if (!clkp) 3209 return ERR_PTR(-ENOMEM); 3210 3211 clk = clk_register(dev, hw); 3212 if (!IS_ERR(clk)) { 3213 *clkp = clk; 3214 devres_add(dev, clkp); 3215 } else { 3216 devres_free(clkp); 3217 } 3218 3219 return clk; 3220 } 3221 EXPORT_SYMBOL_GPL(devm_clk_register); 3222 3223 /** 3224 * devm_clk_hw_register - resource managed clk_hw_register() 3225 * @dev: device that is registering this clock 3226 * @hw: link to hardware-specific clock data 3227 * 3228 * Managed clk_hw_register(). Clocks registered by this function are 3229 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3230 * for more information. 3231 */ 3232 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3233 { 3234 struct clk_hw **hwp; 3235 int ret; 3236 3237 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3238 if (!hwp) 3239 return -ENOMEM; 3240 3241 ret = clk_hw_register(dev, hw); 3242 if (!ret) { 3243 *hwp = hw; 3244 devres_add(dev, hwp); 3245 } else { 3246 devres_free(hwp); 3247 } 3248 3249 return ret; 3250 } 3251 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3252 3253 static int devm_clk_match(struct device *dev, void *res, void *data) 3254 { 3255 struct clk *c = res; 3256 if (WARN_ON(!c)) 3257 return 0; 3258 return c == data; 3259 } 3260 3261 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3262 { 3263 struct clk_hw *hw = res; 3264 3265 if (WARN_ON(!hw)) 3266 return 0; 3267 return hw == data; 3268 } 3269 3270 /** 3271 * devm_clk_unregister - resource managed clk_unregister() 3272 * @clk: clock to unregister 3273 * 3274 * Deallocate a clock allocated with devm_clk_register(). Normally 3275 * this function will not need to be called and the resource management 3276 * code will ensure that the resource is freed. 3277 */ 3278 void devm_clk_unregister(struct device *dev, struct clk *clk) 3279 { 3280 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3281 } 3282 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3283 3284 /** 3285 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3286 * @dev: device that is unregistering the hardware-specific clock data 3287 * @hw: link to hardware-specific clock data 3288 * 3289 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3290 * this function will not need to be called and the resource management 3291 * code will ensure that the resource is freed. 3292 */ 3293 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3294 { 3295 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3296 hw)); 3297 } 3298 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3299 3300 /* 3301 * clkdev helpers 3302 */ 3303 int __clk_get(struct clk *clk) 3304 { 3305 struct clk_core *core = !clk ? NULL : clk->core; 3306 3307 if (core) { 3308 if (!try_module_get(core->owner)) 3309 return 0; 3310 3311 kref_get(&core->ref); 3312 } 3313 return 1; 3314 } 3315 3316 void __clk_put(struct clk *clk) 3317 { 3318 struct module *owner; 3319 3320 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3321 return; 3322 3323 clk_prepare_lock(); 3324 3325 /* 3326 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3327 * given user should be balanced with calls to clk_rate_exclusive_put() 3328 * and by that same consumer 3329 */ 3330 if (WARN_ON(clk->exclusive_count)) { 3331 /* We voiced our concern, let's sanitize the situation */ 3332 clk->core->protect_count -= (clk->exclusive_count - 1); 3333 clk_core_rate_unprotect(clk->core); 3334 clk->exclusive_count = 0; 3335 } 3336 3337 hlist_del(&clk->clks_node); 3338 if (clk->min_rate > clk->core->req_rate || 3339 clk->max_rate < clk->core->req_rate) 3340 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3341 3342 owner = clk->core->owner; 3343 kref_put(&clk->core->ref, __clk_release); 3344 3345 clk_prepare_unlock(); 3346 3347 module_put(owner); 3348 3349 kfree(clk); 3350 } 3351 3352 /*** clk rate change notifiers ***/ 3353 3354 /** 3355 * clk_notifier_register - add a clk rate change notifier 3356 * @clk: struct clk * to watch 3357 * @nb: struct notifier_block * with callback info 3358 * 3359 * Request notification when clk's rate changes. This uses an SRCU 3360 * notifier because we want it to block and notifier unregistrations are 3361 * uncommon. The callbacks associated with the notifier must not 3362 * re-enter into the clk framework by calling any top-level clk APIs; 3363 * this will cause a nested prepare_lock mutex. 3364 * 3365 * In all notification cases (pre, post and abort rate change) the original 3366 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3367 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3368 * 3369 * clk_notifier_register() must be called from non-atomic context. 3370 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3371 * allocation failure; otherwise, passes along the return value of 3372 * srcu_notifier_chain_register(). 3373 */ 3374 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3375 { 3376 struct clk_notifier *cn; 3377 int ret = -ENOMEM; 3378 3379 if (!clk || !nb) 3380 return -EINVAL; 3381 3382 clk_prepare_lock(); 3383 3384 /* search the list of notifiers for this clk */ 3385 list_for_each_entry(cn, &clk_notifier_list, node) 3386 if (cn->clk == clk) 3387 break; 3388 3389 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3390 if (cn->clk != clk) { 3391 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3392 if (!cn) 3393 goto out; 3394 3395 cn->clk = clk; 3396 srcu_init_notifier_head(&cn->notifier_head); 3397 3398 list_add(&cn->node, &clk_notifier_list); 3399 } 3400 3401 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3402 3403 clk->core->notifier_count++; 3404 3405 out: 3406 clk_prepare_unlock(); 3407 3408 return ret; 3409 } 3410 EXPORT_SYMBOL_GPL(clk_notifier_register); 3411 3412 /** 3413 * clk_notifier_unregister - remove a clk rate change notifier 3414 * @clk: struct clk * 3415 * @nb: struct notifier_block * with callback info 3416 * 3417 * Request no further notification for changes to 'clk' and frees memory 3418 * allocated in clk_notifier_register. 3419 * 3420 * Returns -EINVAL if called with null arguments; otherwise, passes 3421 * along the return value of srcu_notifier_chain_unregister(). 3422 */ 3423 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3424 { 3425 struct clk_notifier *cn = NULL; 3426 int ret = -EINVAL; 3427 3428 if (!clk || !nb) 3429 return -EINVAL; 3430 3431 clk_prepare_lock(); 3432 3433 list_for_each_entry(cn, &clk_notifier_list, node) 3434 if (cn->clk == clk) 3435 break; 3436 3437 if (cn->clk == clk) { 3438 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3439 3440 clk->core->notifier_count--; 3441 3442 /* XXX the notifier code should handle this better */ 3443 if (!cn->notifier_head.head) { 3444 srcu_cleanup_notifier_head(&cn->notifier_head); 3445 list_del(&cn->node); 3446 kfree(cn); 3447 } 3448 3449 } else { 3450 ret = -ENOENT; 3451 } 3452 3453 clk_prepare_unlock(); 3454 3455 return ret; 3456 } 3457 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3458 3459 #ifdef CONFIG_OF 3460 /** 3461 * struct of_clk_provider - Clock provider registration structure 3462 * @link: Entry in global list of clock providers 3463 * @node: Pointer to device tree node of clock provider 3464 * @get: Get clock callback. Returns NULL or a struct clk for the 3465 * given clock specifier 3466 * @data: context pointer to be passed into @get callback 3467 */ 3468 struct of_clk_provider { 3469 struct list_head link; 3470 3471 struct device_node *node; 3472 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3473 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3474 void *data; 3475 }; 3476 3477 static const struct of_device_id __clk_of_table_sentinel 3478 __used __section(__clk_of_table_end); 3479 3480 static LIST_HEAD(of_clk_providers); 3481 static DEFINE_MUTEX(of_clk_mutex); 3482 3483 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3484 void *data) 3485 { 3486 return data; 3487 } 3488 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3489 3490 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3491 { 3492 return data; 3493 } 3494 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3495 3496 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3497 { 3498 struct clk_onecell_data *clk_data = data; 3499 unsigned int idx = clkspec->args[0]; 3500 3501 if (idx >= clk_data->clk_num) { 3502 pr_err("%s: invalid clock index %u\n", __func__, idx); 3503 return ERR_PTR(-EINVAL); 3504 } 3505 3506 return clk_data->clks[idx]; 3507 } 3508 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3509 3510 struct clk_hw * 3511 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3512 { 3513 struct clk_hw_onecell_data *hw_data = data; 3514 unsigned int idx = clkspec->args[0]; 3515 3516 if (idx >= hw_data->num) { 3517 pr_err("%s: invalid index %u\n", __func__, idx); 3518 return ERR_PTR(-EINVAL); 3519 } 3520 3521 return hw_data->hws[idx]; 3522 } 3523 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3524 3525 /** 3526 * of_clk_add_provider() - Register a clock provider for a node 3527 * @np: Device node pointer associated with clock provider 3528 * @clk_src_get: callback for decoding clock 3529 * @data: context pointer for @clk_src_get callback. 3530 */ 3531 int of_clk_add_provider(struct device_node *np, 3532 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3533 void *data), 3534 void *data) 3535 { 3536 struct of_clk_provider *cp; 3537 int ret; 3538 3539 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3540 if (!cp) 3541 return -ENOMEM; 3542 3543 cp->node = of_node_get(np); 3544 cp->data = data; 3545 cp->get = clk_src_get; 3546 3547 mutex_lock(&of_clk_mutex); 3548 list_add(&cp->link, &of_clk_providers); 3549 mutex_unlock(&of_clk_mutex); 3550 pr_debug("Added clock from %pOF\n", np); 3551 3552 ret = of_clk_set_defaults(np, true); 3553 if (ret < 0) 3554 of_clk_del_provider(np); 3555 3556 return ret; 3557 } 3558 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3559 3560 /** 3561 * of_clk_add_hw_provider() - Register a clock provider for a node 3562 * @np: Device node pointer associated with clock provider 3563 * @get: callback for decoding clk_hw 3564 * @data: context pointer for @get callback. 3565 */ 3566 int of_clk_add_hw_provider(struct device_node *np, 3567 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3568 void *data), 3569 void *data) 3570 { 3571 struct of_clk_provider *cp; 3572 int ret; 3573 3574 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3575 if (!cp) 3576 return -ENOMEM; 3577 3578 cp->node = of_node_get(np); 3579 cp->data = data; 3580 cp->get_hw = get; 3581 3582 mutex_lock(&of_clk_mutex); 3583 list_add(&cp->link, &of_clk_providers); 3584 mutex_unlock(&of_clk_mutex); 3585 pr_debug("Added clk_hw provider from %pOF\n", np); 3586 3587 ret = of_clk_set_defaults(np, true); 3588 if (ret < 0) 3589 of_clk_del_provider(np); 3590 3591 return ret; 3592 } 3593 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3594 3595 static void devm_of_clk_release_provider(struct device *dev, void *res) 3596 { 3597 of_clk_del_provider(*(struct device_node **)res); 3598 } 3599 3600 int devm_of_clk_add_hw_provider(struct device *dev, 3601 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3602 void *data), 3603 void *data) 3604 { 3605 struct device_node **ptr, *np; 3606 int ret; 3607 3608 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 3609 GFP_KERNEL); 3610 if (!ptr) 3611 return -ENOMEM; 3612 3613 np = dev->of_node; 3614 ret = of_clk_add_hw_provider(np, get, data); 3615 if (!ret) { 3616 *ptr = np; 3617 devres_add(dev, ptr); 3618 } else { 3619 devres_free(ptr); 3620 } 3621 3622 return ret; 3623 } 3624 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 3625 3626 /** 3627 * of_clk_del_provider() - Remove a previously registered clock provider 3628 * @np: Device node pointer associated with clock provider 3629 */ 3630 void of_clk_del_provider(struct device_node *np) 3631 { 3632 struct of_clk_provider *cp; 3633 3634 mutex_lock(&of_clk_mutex); 3635 list_for_each_entry(cp, &of_clk_providers, link) { 3636 if (cp->node == np) { 3637 list_del(&cp->link); 3638 of_node_put(cp->node); 3639 kfree(cp); 3640 break; 3641 } 3642 } 3643 mutex_unlock(&of_clk_mutex); 3644 } 3645 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3646 3647 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 3648 { 3649 struct device_node **np = res; 3650 3651 if (WARN_ON(!np || !*np)) 3652 return 0; 3653 3654 return *np == data; 3655 } 3656 3657 void devm_of_clk_del_provider(struct device *dev) 3658 { 3659 int ret; 3660 3661 ret = devres_release(dev, devm_of_clk_release_provider, 3662 devm_clk_provider_match, dev->of_node); 3663 3664 WARN_ON(ret); 3665 } 3666 EXPORT_SYMBOL(devm_of_clk_del_provider); 3667 3668 static struct clk_hw * 3669 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 3670 struct of_phandle_args *clkspec) 3671 { 3672 struct clk *clk; 3673 3674 if (provider->get_hw) 3675 return provider->get_hw(clkspec, provider->data); 3676 3677 clk = provider->get(clkspec, provider->data); 3678 if (IS_ERR(clk)) 3679 return ERR_CAST(clk); 3680 return __clk_get_hw(clk); 3681 } 3682 3683 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3684 const char *dev_id, const char *con_id) 3685 { 3686 struct of_clk_provider *provider; 3687 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3688 struct clk_hw *hw; 3689 3690 if (!clkspec) 3691 return ERR_PTR(-EINVAL); 3692 3693 /* Check if we have such a provider in our array */ 3694 mutex_lock(&of_clk_mutex); 3695 list_for_each_entry(provider, &of_clk_providers, link) { 3696 if (provider->node == clkspec->np) { 3697 hw = __of_clk_get_hw_from_provider(provider, clkspec); 3698 clk = __clk_create_clk(hw, dev_id, con_id); 3699 } 3700 3701 if (!IS_ERR(clk)) { 3702 if (!__clk_get(clk)) { 3703 __clk_free_clk(clk); 3704 clk = ERR_PTR(-ENOENT); 3705 } 3706 3707 break; 3708 } 3709 } 3710 mutex_unlock(&of_clk_mutex); 3711 3712 return clk; 3713 } 3714 3715 /** 3716 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3717 * @clkspec: pointer to a clock specifier data structure 3718 * 3719 * This function looks up a struct clk from the registered list of clock 3720 * providers, an input is a clock specifier data structure as returned 3721 * from the of_parse_phandle_with_args() function call. 3722 */ 3723 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3724 { 3725 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3726 } 3727 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 3728 3729 /** 3730 * of_clk_get_parent_count() - Count the number of clocks a device node has 3731 * @np: device node to count 3732 * 3733 * Returns: The number of clocks that are possible parents of this node 3734 */ 3735 unsigned int of_clk_get_parent_count(struct device_node *np) 3736 { 3737 int count; 3738 3739 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3740 if (count < 0) 3741 return 0; 3742 3743 return count; 3744 } 3745 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3746 3747 const char *of_clk_get_parent_name(struct device_node *np, int index) 3748 { 3749 struct of_phandle_args clkspec; 3750 struct property *prop; 3751 const char *clk_name; 3752 const __be32 *vp; 3753 u32 pv; 3754 int rc; 3755 int count; 3756 struct clk *clk; 3757 3758 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3759 &clkspec); 3760 if (rc) 3761 return NULL; 3762 3763 index = clkspec.args_count ? clkspec.args[0] : 0; 3764 count = 0; 3765 3766 /* if there is an indices property, use it to transfer the index 3767 * specified into an array offset for the clock-output-names property. 3768 */ 3769 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3770 if (index == pv) { 3771 index = count; 3772 break; 3773 } 3774 count++; 3775 } 3776 /* We went off the end of 'clock-indices' without finding it */ 3777 if (prop && !vp) 3778 return NULL; 3779 3780 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3781 index, 3782 &clk_name) < 0) { 3783 /* 3784 * Best effort to get the name if the clock has been 3785 * registered with the framework. If the clock isn't 3786 * registered, we return the node name as the name of 3787 * the clock as long as #clock-cells = 0. 3788 */ 3789 clk = of_clk_get_from_provider(&clkspec); 3790 if (IS_ERR(clk)) { 3791 if (clkspec.args_count == 0) 3792 clk_name = clkspec.np->name; 3793 else 3794 clk_name = NULL; 3795 } else { 3796 clk_name = __clk_get_name(clk); 3797 clk_put(clk); 3798 } 3799 } 3800 3801 3802 of_node_put(clkspec.np); 3803 return clk_name; 3804 } 3805 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3806 3807 /** 3808 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3809 * number of parents 3810 * @np: Device node pointer associated with clock provider 3811 * @parents: pointer to char array that hold the parents' names 3812 * @size: size of the @parents array 3813 * 3814 * Return: number of parents for the clock node. 3815 */ 3816 int of_clk_parent_fill(struct device_node *np, const char **parents, 3817 unsigned int size) 3818 { 3819 unsigned int i = 0; 3820 3821 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3822 i++; 3823 3824 return i; 3825 } 3826 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3827 3828 struct clock_provider { 3829 void (*clk_init_cb)(struct device_node *); 3830 struct device_node *np; 3831 struct list_head node; 3832 }; 3833 3834 /* 3835 * This function looks for a parent clock. If there is one, then it 3836 * checks that the provider for this parent clock was initialized, in 3837 * this case the parent clock will be ready. 3838 */ 3839 static int parent_ready(struct device_node *np) 3840 { 3841 int i = 0; 3842 3843 while (true) { 3844 struct clk *clk = of_clk_get(np, i); 3845 3846 /* this parent is ready we can check the next one */ 3847 if (!IS_ERR(clk)) { 3848 clk_put(clk); 3849 i++; 3850 continue; 3851 } 3852 3853 /* at least one parent is not ready, we exit now */ 3854 if (PTR_ERR(clk) == -EPROBE_DEFER) 3855 return 0; 3856 3857 /* 3858 * Here we make assumption that the device tree is 3859 * written correctly. So an error means that there is 3860 * no more parent. As we didn't exit yet, then the 3861 * previous parent are ready. If there is no clock 3862 * parent, no need to wait for them, then we can 3863 * consider their absence as being ready 3864 */ 3865 return 1; 3866 } 3867 } 3868 3869 /** 3870 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 3871 * @np: Device node pointer associated with clock provider 3872 * @index: clock index 3873 * @flags: pointer to top-level framework flags 3874 * 3875 * Detects if the clock-critical property exists and, if so, sets the 3876 * corresponding CLK_IS_CRITICAL flag. 3877 * 3878 * Do not use this function. It exists only for legacy Device Tree 3879 * bindings, such as the one-clock-per-node style that are outdated. 3880 * Those bindings typically put all clock data into .dts and the Linux 3881 * driver has no clock data, thus making it impossible to set this flag 3882 * correctly from the driver. Only those drivers may call 3883 * of_clk_detect_critical from their setup functions. 3884 * 3885 * Return: error code or zero on success 3886 */ 3887 int of_clk_detect_critical(struct device_node *np, 3888 int index, unsigned long *flags) 3889 { 3890 struct property *prop; 3891 const __be32 *cur; 3892 uint32_t idx; 3893 3894 if (!np || !flags) 3895 return -EINVAL; 3896 3897 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 3898 if (index == idx) 3899 *flags |= CLK_IS_CRITICAL; 3900 3901 return 0; 3902 } 3903 3904 /** 3905 * of_clk_init() - Scan and init clock providers from the DT 3906 * @matches: array of compatible values and init functions for providers. 3907 * 3908 * This function scans the device tree for matching clock providers 3909 * and calls their initialization functions. It also does it by trying 3910 * to follow the dependencies. 3911 */ 3912 void __init of_clk_init(const struct of_device_id *matches) 3913 { 3914 const struct of_device_id *match; 3915 struct device_node *np; 3916 struct clock_provider *clk_provider, *next; 3917 bool is_init_done; 3918 bool force = false; 3919 LIST_HEAD(clk_provider_list); 3920 3921 if (!matches) 3922 matches = &__clk_of_table; 3923 3924 /* First prepare the list of the clocks providers */ 3925 for_each_matching_node_and_match(np, matches, &match) { 3926 struct clock_provider *parent; 3927 3928 if (!of_device_is_available(np)) 3929 continue; 3930 3931 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 3932 if (!parent) { 3933 list_for_each_entry_safe(clk_provider, next, 3934 &clk_provider_list, node) { 3935 list_del(&clk_provider->node); 3936 of_node_put(clk_provider->np); 3937 kfree(clk_provider); 3938 } 3939 of_node_put(np); 3940 return; 3941 } 3942 3943 parent->clk_init_cb = match->data; 3944 parent->np = of_node_get(np); 3945 list_add_tail(&parent->node, &clk_provider_list); 3946 } 3947 3948 while (!list_empty(&clk_provider_list)) { 3949 is_init_done = false; 3950 list_for_each_entry_safe(clk_provider, next, 3951 &clk_provider_list, node) { 3952 if (force || parent_ready(clk_provider->np)) { 3953 3954 /* Don't populate platform devices */ 3955 of_node_set_flag(clk_provider->np, 3956 OF_POPULATED); 3957 3958 clk_provider->clk_init_cb(clk_provider->np); 3959 of_clk_set_defaults(clk_provider->np, true); 3960 3961 list_del(&clk_provider->node); 3962 of_node_put(clk_provider->np); 3963 kfree(clk_provider); 3964 is_init_done = true; 3965 } 3966 } 3967 3968 /* 3969 * We didn't manage to initialize any of the 3970 * remaining providers during the last loop, so now we 3971 * initialize all the remaining ones unconditionally 3972 * in case the clock parent was not mandatory 3973 */ 3974 if (!is_init_done) 3975 force = true; 3976 } 3977 } 3978 #endif 3979