xref: /openbmc/linux/drivers/clk/clk.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 #include <linux/clkdev.h>
25 
26 #include "clk.h"
27 
28 static DEFINE_SPINLOCK(enable_lock);
29 static DEFINE_MUTEX(prepare_lock);
30 
31 static struct task_struct *prepare_owner;
32 static struct task_struct *enable_owner;
33 
34 static int prepare_refcnt;
35 static int enable_refcnt;
36 
37 static HLIST_HEAD(clk_root_list);
38 static HLIST_HEAD(clk_orphan_list);
39 static LIST_HEAD(clk_notifier_list);
40 
41 /***    private data structures    ***/
42 
43 struct clk_core {
44 	const char		*name;
45 	const struct clk_ops	*ops;
46 	struct clk_hw		*hw;
47 	struct module		*owner;
48 	struct clk_core		*parent;
49 	const char		**parent_names;
50 	struct clk_core		**parents;
51 	u8			num_parents;
52 	u8			new_parent_index;
53 	unsigned long		rate;
54 	unsigned long		req_rate;
55 	unsigned long		new_rate;
56 	struct clk_core		*new_parent;
57 	struct clk_core		*new_child;
58 	unsigned long		flags;
59 	unsigned int		enable_count;
60 	unsigned int		prepare_count;
61 	unsigned long		accuracy;
62 	int			phase;
63 	struct hlist_head	children;
64 	struct hlist_node	child_node;
65 	struct hlist_head	clks;
66 	unsigned int		notifier_count;
67 #ifdef CONFIG_DEBUG_FS
68 	struct dentry		*dentry;
69 	struct hlist_node	debug_node;
70 #endif
71 	struct kref		ref;
72 };
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/clk.h>
76 
77 struct clk {
78 	struct clk_core	*core;
79 	const char *dev_id;
80 	const char *con_id;
81 	unsigned long min_rate;
82 	unsigned long max_rate;
83 	struct hlist_node clks_node;
84 };
85 
86 /***           locking             ***/
87 static void clk_prepare_lock(void)
88 {
89 	if (!mutex_trylock(&prepare_lock)) {
90 		if (prepare_owner == current) {
91 			prepare_refcnt++;
92 			return;
93 		}
94 		mutex_lock(&prepare_lock);
95 	}
96 	WARN_ON_ONCE(prepare_owner != NULL);
97 	WARN_ON_ONCE(prepare_refcnt != 0);
98 	prepare_owner = current;
99 	prepare_refcnt = 1;
100 }
101 
102 static void clk_prepare_unlock(void)
103 {
104 	WARN_ON_ONCE(prepare_owner != current);
105 	WARN_ON_ONCE(prepare_refcnt == 0);
106 
107 	if (--prepare_refcnt)
108 		return;
109 	prepare_owner = NULL;
110 	mutex_unlock(&prepare_lock);
111 }
112 
113 static unsigned long clk_enable_lock(void)
114 {
115 	unsigned long flags;
116 
117 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
118 		if (enable_owner == current) {
119 			enable_refcnt++;
120 			return flags;
121 		}
122 		spin_lock_irqsave(&enable_lock, flags);
123 	}
124 	WARN_ON_ONCE(enable_owner != NULL);
125 	WARN_ON_ONCE(enable_refcnt != 0);
126 	enable_owner = current;
127 	enable_refcnt = 1;
128 	return flags;
129 }
130 
131 static void clk_enable_unlock(unsigned long flags)
132 {
133 	WARN_ON_ONCE(enable_owner != current);
134 	WARN_ON_ONCE(enable_refcnt == 0);
135 
136 	if (--enable_refcnt)
137 		return;
138 	enable_owner = NULL;
139 	spin_unlock_irqrestore(&enable_lock, flags);
140 }
141 
142 static bool clk_core_is_prepared(struct clk_core *core)
143 {
144 	/*
145 	 * .is_prepared is optional for clocks that can prepare
146 	 * fall back to software usage counter if it is missing
147 	 */
148 	if (!core->ops->is_prepared)
149 		return core->prepare_count;
150 
151 	return core->ops->is_prepared(core->hw);
152 }
153 
154 static bool clk_core_is_enabled(struct clk_core *core)
155 {
156 	/*
157 	 * .is_enabled is only mandatory for clocks that gate
158 	 * fall back to software usage counter if .is_enabled is missing
159 	 */
160 	if (!core->ops->is_enabled)
161 		return core->enable_count;
162 
163 	return core->ops->is_enabled(core->hw);
164 }
165 
166 static void clk_unprepare_unused_subtree(struct clk_core *core)
167 {
168 	struct clk_core *child;
169 
170 	lockdep_assert_held(&prepare_lock);
171 
172 	hlist_for_each_entry(child, &core->children, child_node)
173 		clk_unprepare_unused_subtree(child);
174 
175 	if (core->prepare_count)
176 		return;
177 
178 	if (core->flags & CLK_IGNORE_UNUSED)
179 		return;
180 
181 	if (clk_core_is_prepared(core)) {
182 		trace_clk_unprepare(core);
183 		if (core->ops->unprepare_unused)
184 			core->ops->unprepare_unused(core->hw);
185 		else if (core->ops->unprepare)
186 			core->ops->unprepare(core->hw);
187 		trace_clk_unprepare_complete(core);
188 	}
189 }
190 
191 static void clk_disable_unused_subtree(struct clk_core *core)
192 {
193 	struct clk_core *child;
194 	unsigned long flags;
195 
196 	lockdep_assert_held(&prepare_lock);
197 
198 	hlist_for_each_entry(child, &core->children, child_node)
199 		clk_disable_unused_subtree(child);
200 
201 	flags = clk_enable_lock();
202 
203 	if (core->enable_count)
204 		goto unlock_out;
205 
206 	if (core->flags & CLK_IGNORE_UNUSED)
207 		goto unlock_out;
208 
209 	/*
210 	 * some gate clocks have special needs during the disable-unused
211 	 * sequence.  call .disable_unused if available, otherwise fall
212 	 * back to .disable
213 	 */
214 	if (clk_core_is_enabled(core)) {
215 		trace_clk_disable(core);
216 		if (core->ops->disable_unused)
217 			core->ops->disable_unused(core->hw);
218 		else if (core->ops->disable)
219 			core->ops->disable(core->hw);
220 		trace_clk_disable_complete(core);
221 	}
222 
223 unlock_out:
224 	clk_enable_unlock(flags);
225 }
226 
227 static bool clk_ignore_unused;
228 static int __init clk_ignore_unused_setup(char *__unused)
229 {
230 	clk_ignore_unused = true;
231 	return 1;
232 }
233 __setup("clk_ignore_unused", clk_ignore_unused_setup);
234 
235 static int clk_disable_unused(void)
236 {
237 	struct clk_core *core;
238 
239 	if (clk_ignore_unused) {
240 		pr_warn("clk: Not disabling unused clocks\n");
241 		return 0;
242 	}
243 
244 	clk_prepare_lock();
245 
246 	hlist_for_each_entry(core, &clk_root_list, child_node)
247 		clk_disable_unused_subtree(core);
248 
249 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
250 		clk_disable_unused_subtree(core);
251 
252 	hlist_for_each_entry(core, &clk_root_list, child_node)
253 		clk_unprepare_unused_subtree(core);
254 
255 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
256 		clk_unprepare_unused_subtree(core);
257 
258 	clk_prepare_unlock();
259 
260 	return 0;
261 }
262 late_initcall_sync(clk_disable_unused);
263 
264 /***    helper functions   ***/
265 
266 const char *__clk_get_name(struct clk *clk)
267 {
268 	return !clk ? NULL : clk->core->name;
269 }
270 EXPORT_SYMBOL_GPL(__clk_get_name);
271 
272 struct clk_hw *__clk_get_hw(struct clk *clk)
273 {
274 	return !clk ? NULL : clk->core->hw;
275 }
276 EXPORT_SYMBOL_GPL(__clk_get_hw);
277 
278 u8 __clk_get_num_parents(struct clk *clk)
279 {
280 	return !clk ? 0 : clk->core->num_parents;
281 }
282 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
283 
284 struct clk *__clk_get_parent(struct clk *clk)
285 {
286 	if (!clk)
287 		return NULL;
288 
289 	/* TODO: Create a per-user clk and change callers to call clk_put */
290 	return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
291 }
292 EXPORT_SYMBOL_GPL(__clk_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
338 							 u8 index)
339 {
340 	if (!core || index >= core->num_parents)
341 		return NULL;
342 	else if (!core->parents)
343 		return clk_core_lookup(core->parent_names[index]);
344 	else if (!core->parents[index])
345 		return core->parents[index] =
346 			clk_core_lookup(core->parent_names[index]);
347 	else
348 		return core->parents[index];
349 }
350 
351 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
352 {
353 	struct clk_core *parent;
354 
355 	if (!clk)
356 		return NULL;
357 
358 	parent = clk_core_get_parent_by_index(clk->core, index);
359 
360 	return !parent ? NULL : parent->hw->clk;
361 }
362 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
363 
364 unsigned int __clk_get_enable_count(struct clk *clk)
365 {
366 	return !clk ? 0 : clk->core->enable_count;
367 }
368 
369 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
370 {
371 	unsigned long ret;
372 
373 	if (!core) {
374 		ret = 0;
375 		goto out;
376 	}
377 
378 	ret = core->rate;
379 
380 	if (core->flags & CLK_IS_ROOT)
381 		goto out;
382 
383 	if (!core->parent)
384 		ret = 0;
385 
386 out:
387 	return ret;
388 }
389 
390 unsigned long __clk_get_rate(struct clk *clk)
391 {
392 	if (!clk)
393 		return 0;
394 
395 	return clk_core_get_rate_nolock(clk->core);
396 }
397 EXPORT_SYMBOL_GPL(__clk_get_rate);
398 
399 static unsigned long __clk_get_accuracy(struct clk_core *core)
400 {
401 	if (!core)
402 		return 0;
403 
404 	return core->accuracy;
405 }
406 
407 unsigned long __clk_get_flags(struct clk *clk)
408 {
409 	return !clk ? 0 : clk->core->flags;
410 }
411 EXPORT_SYMBOL_GPL(__clk_get_flags);
412 
413 bool __clk_is_prepared(struct clk *clk)
414 {
415 	if (!clk)
416 		return false;
417 
418 	return clk_core_is_prepared(clk->core);
419 }
420 
421 bool __clk_is_enabled(struct clk *clk)
422 {
423 	if (!clk)
424 		return false;
425 
426 	return clk_core_is_enabled(clk->core);
427 }
428 EXPORT_SYMBOL_GPL(__clk_is_enabled);
429 
430 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
431 			   unsigned long best, unsigned long flags)
432 {
433 	if (flags & CLK_MUX_ROUND_CLOSEST)
434 		return abs(now - rate) < abs(best - rate);
435 
436 	return now <= rate && now > best;
437 }
438 
439 static long
440 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
441 			     unsigned long min_rate,
442 			     unsigned long max_rate,
443 			     unsigned long *best_parent_rate,
444 			     struct clk_hw **best_parent_p,
445 			     unsigned long flags)
446 {
447 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
448 	int i, num_parents;
449 	unsigned long parent_rate, best = 0;
450 
451 	/* if NO_REPARENT flag set, pass through to current parent */
452 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
453 		parent = core->parent;
454 		if (core->flags & CLK_SET_RATE_PARENT)
455 			best = __clk_determine_rate(parent ? parent->hw : NULL,
456 						    rate, min_rate, max_rate);
457 		else if (parent)
458 			best = clk_core_get_rate_nolock(parent);
459 		else
460 			best = clk_core_get_rate_nolock(core);
461 		goto out;
462 	}
463 
464 	/* find the parent that can provide the fastest rate <= rate */
465 	num_parents = core->num_parents;
466 	for (i = 0; i < num_parents; i++) {
467 		parent = clk_core_get_parent_by_index(core, i);
468 		if (!parent)
469 			continue;
470 		if (core->flags & CLK_SET_RATE_PARENT)
471 			parent_rate = __clk_determine_rate(parent->hw, rate,
472 							   min_rate,
473 							   max_rate);
474 		else
475 			parent_rate = clk_core_get_rate_nolock(parent);
476 		if (mux_is_better_rate(rate, parent_rate, best, flags)) {
477 			best_parent = parent;
478 			best = parent_rate;
479 		}
480 	}
481 
482 out:
483 	if (best_parent)
484 		*best_parent_p = best_parent->hw;
485 	*best_parent_rate = best;
486 
487 	return best;
488 }
489 
490 struct clk *__clk_lookup(const char *name)
491 {
492 	struct clk_core *core = clk_core_lookup(name);
493 
494 	return !core ? NULL : core->hw->clk;
495 }
496 
497 static void clk_core_get_boundaries(struct clk_core *core,
498 				    unsigned long *min_rate,
499 				    unsigned long *max_rate)
500 {
501 	struct clk *clk_user;
502 
503 	*min_rate = 0;
504 	*max_rate = ULONG_MAX;
505 
506 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
507 		*min_rate = max(*min_rate, clk_user->min_rate);
508 
509 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
510 		*max_rate = min(*max_rate, clk_user->max_rate);
511 }
512 
513 /*
514  * Helper for finding best parent to provide a given frequency. This can be used
515  * directly as a determine_rate callback (e.g. for a mux), or from a more
516  * complex clock that may combine a mux with other operations.
517  */
518 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
519 			      unsigned long min_rate,
520 			      unsigned long max_rate,
521 			      unsigned long *best_parent_rate,
522 			      struct clk_hw **best_parent_p)
523 {
524 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
525 					    best_parent_rate,
526 					    best_parent_p, 0);
527 }
528 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
529 
530 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
531 			      unsigned long min_rate,
532 			      unsigned long max_rate,
533 			      unsigned long *best_parent_rate,
534 			      struct clk_hw **best_parent_p)
535 {
536 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
537 					    best_parent_rate,
538 					    best_parent_p,
539 					    CLK_MUX_ROUND_CLOSEST);
540 }
541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
542 
543 /***        clk api        ***/
544 
545 static void clk_core_unprepare(struct clk_core *core)
546 {
547 	lockdep_assert_held(&prepare_lock);
548 
549 	if (!core)
550 		return;
551 
552 	if (WARN_ON(core->prepare_count == 0))
553 		return;
554 
555 	if (--core->prepare_count > 0)
556 		return;
557 
558 	WARN_ON(core->enable_count > 0);
559 
560 	trace_clk_unprepare(core);
561 
562 	if (core->ops->unprepare)
563 		core->ops->unprepare(core->hw);
564 
565 	trace_clk_unprepare_complete(core);
566 	clk_core_unprepare(core->parent);
567 }
568 
569 /**
570  * clk_unprepare - undo preparation of a clock source
571  * @clk: the clk being unprepared
572  *
573  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
574  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
575  * if the operation may sleep.  One example is a clk which is accessed over
576  * I2c.  In the complex case a clk gate operation may require a fast and a slow
577  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
578  * exclusive.  In fact clk_disable must be called before clk_unprepare.
579  */
580 void clk_unprepare(struct clk *clk)
581 {
582 	if (IS_ERR_OR_NULL(clk))
583 		return;
584 
585 	clk_prepare_lock();
586 	clk_core_unprepare(clk->core);
587 	clk_prepare_unlock();
588 }
589 EXPORT_SYMBOL_GPL(clk_unprepare);
590 
591 static int clk_core_prepare(struct clk_core *core)
592 {
593 	int ret = 0;
594 
595 	lockdep_assert_held(&prepare_lock);
596 
597 	if (!core)
598 		return 0;
599 
600 	if (core->prepare_count == 0) {
601 		ret = clk_core_prepare(core->parent);
602 		if (ret)
603 			return ret;
604 
605 		trace_clk_prepare(core);
606 
607 		if (core->ops->prepare)
608 			ret = core->ops->prepare(core->hw);
609 
610 		trace_clk_prepare_complete(core);
611 
612 		if (ret) {
613 			clk_core_unprepare(core->parent);
614 			return ret;
615 		}
616 	}
617 
618 	core->prepare_count++;
619 
620 	return 0;
621 }
622 
623 /**
624  * clk_prepare - prepare a clock source
625  * @clk: the clk being prepared
626  *
627  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
628  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
629  * operation may sleep.  One example is a clk which is accessed over I2c.  In
630  * the complex case a clk ungate operation may require a fast and a slow part.
631  * It is this reason that clk_prepare and clk_enable are not mutually
632  * exclusive.  In fact clk_prepare must be called before clk_enable.
633  * Returns 0 on success, -EERROR otherwise.
634  */
635 int clk_prepare(struct clk *clk)
636 {
637 	int ret;
638 
639 	if (!clk)
640 		return 0;
641 
642 	clk_prepare_lock();
643 	ret = clk_core_prepare(clk->core);
644 	clk_prepare_unlock();
645 
646 	return ret;
647 }
648 EXPORT_SYMBOL_GPL(clk_prepare);
649 
650 static void clk_core_disable(struct clk_core *core)
651 {
652 	lockdep_assert_held(&enable_lock);
653 
654 	if (!core)
655 		return;
656 
657 	if (WARN_ON(core->enable_count == 0))
658 		return;
659 
660 	if (--core->enable_count > 0)
661 		return;
662 
663 	trace_clk_disable(core);
664 
665 	if (core->ops->disable)
666 		core->ops->disable(core->hw);
667 
668 	trace_clk_disable_complete(core);
669 
670 	clk_core_disable(core->parent);
671 }
672 
673 /**
674  * clk_disable - gate a clock
675  * @clk: the clk being gated
676  *
677  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
678  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
679  * clk if the operation is fast and will never sleep.  One example is a
680  * SoC-internal clk which is controlled via simple register writes.  In the
681  * complex case a clk gate operation may require a fast and a slow part.  It is
682  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
683  * In fact clk_disable must be called before clk_unprepare.
684  */
685 void clk_disable(struct clk *clk)
686 {
687 	unsigned long flags;
688 
689 	if (IS_ERR_OR_NULL(clk))
690 		return;
691 
692 	flags = clk_enable_lock();
693 	clk_core_disable(clk->core);
694 	clk_enable_unlock(flags);
695 }
696 EXPORT_SYMBOL_GPL(clk_disable);
697 
698 static int clk_core_enable(struct clk_core *core)
699 {
700 	int ret = 0;
701 
702 	lockdep_assert_held(&enable_lock);
703 
704 	if (!core)
705 		return 0;
706 
707 	if (WARN_ON(core->prepare_count == 0))
708 		return -ESHUTDOWN;
709 
710 	if (core->enable_count == 0) {
711 		ret = clk_core_enable(core->parent);
712 
713 		if (ret)
714 			return ret;
715 
716 		trace_clk_enable(core);
717 
718 		if (core->ops->enable)
719 			ret = core->ops->enable(core->hw);
720 
721 		trace_clk_enable_complete(core);
722 
723 		if (ret) {
724 			clk_core_disable(core->parent);
725 			return ret;
726 		}
727 	}
728 
729 	core->enable_count++;
730 	return 0;
731 }
732 
733 /**
734  * clk_enable - ungate a clock
735  * @clk: the clk being ungated
736  *
737  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
738  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
739  * if the operation will never sleep.  One example is a SoC-internal clk which
740  * is controlled via simple register writes.  In the complex case a clk ungate
741  * operation may require a fast and a slow part.  It is this reason that
742  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
743  * must be called before clk_enable.  Returns 0 on success, -EERROR
744  * otherwise.
745  */
746 int clk_enable(struct clk *clk)
747 {
748 	unsigned long flags;
749 	int ret;
750 
751 	if (!clk)
752 		return 0;
753 
754 	flags = clk_enable_lock();
755 	ret = clk_core_enable(clk->core);
756 	clk_enable_unlock(flags);
757 
758 	return ret;
759 }
760 EXPORT_SYMBOL_GPL(clk_enable);
761 
762 static unsigned long clk_core_round_rate_nolock(struct clk_core *core,
763 						unsigned long rate,
764 						unsigned long min_rate,
765 						unsigned long max_rate)
766 {
767 	unsigned long parent_rate = 0;
768 	struct clk_core *parent;
769 	struct clk_hw *parent_hw;
770 
771 	lockdep_assert_held(&prepare_lock);
772 
773 	if (!core)
774 		return 0;
775 
776 	parent = core->parent;
777 	if (parent)
778 		parent_rate = parent->rate;
779 
780 	if (core->ops->determine_rate) {
781 		parent_hw = parent ? parent->hw : NULL;
782 		return core->ops->determine_rate(core->hw, rate,
783 						min_rate, max_rate,
784 						&parent_rate, &parent_hw);
785 	} else if (core->ops->round_rate)
786 		return core->ops->round_rate(core->hw, rate, &parent_rate);
787 	else if (core->flags & CLK_SET_RATE_PARENT)
788 		return clk_core_round_rate_nolock(core->parent, rate, min_rate,
789 						  max_rate);
790 	else
791 		return core->rate;
792 }
793 
794 /**
795  * __clk_determine_rate - get the closest rate actually supported by a clock
796  * @hw: determine the rate of this clock
797  * @rate: target rate
798  * @min_rate: returned rate must be greater than this rate
799  * @max_rate: returned rate must be less than this rate
800  *
801  * Useful for clk_ops such as .set_rate and .determine_rate.
802  */
803 unsigned long __clk_determine_rate(struct clk_hw *hw,
804 				   unsigned long rate,
805 				   unsigned long min_rate,
806 				   unsigned long max_rate)
807 {
808 	if (!hw)
809 		return 0;
810 
811 	return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
812 }
813 EXPORT_SYMBOL_GPL(__clk_determine_rate);
814 
815 /**
816  * __clk_round_rate - round the given rate for a clk
817  * @clk: round the rate of this clock
818  * @rate: the rate which is to be rounded
819  *
820  * Useful for clk_ops such as .set_rate
821  */
822 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
823 {
824 	unsigned long min_rate;
825 	unsigned long max_rate;
826 
827 	if (!clk)
828 		return 0;
829 
830 	clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
831 
832 	return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
833 }
834 EXPORT_SYMBOL_GPL(__clk_round_rate);
835 
836 /**
837  * clk_round_rate - round the given rate for a clk
838  * @clk: the clk for which we are rounding a rate
839  * @rate: the rate which is to be rounded
840  *
841  * Takes in a rate as input and rounds it to a rate that the clk can actually
842  * use which is then returned.  If clk doesn't support round_rate operation
843  * then the parent rate is returned.
844  */
845 long clk_round_rate(struct clk *clk, unsigned long rate)
846 {
847 	unsigned long ret;
848 
849 	if (!clk)
850 		return 0;
851 
852 	clk_prepare_lock();
853 	ret = __clk_round_rate(clk, rate);
854 	clk_prepare_unlock();
855 
856 	return ret;
857 }
858 EXPORT_SYMBOL_GPL(clk_round_rate);
859 
860 /**
861  * __clk_notify - call clk notifier chain
862  * @core: clk that is changing rate
863  * @msg: clk notifier type (see include/linux/clk.h)
864  * @old_rate: old clk rate
865  * @new_rate: new clk rate
866  *
867  * Triggers a notifier call chain on the clk rate-change notification
868  * for 'clk'.  Passes a pointer to the struct clk and the previous
869  * and current rates to the notifier callback.  Intended to be called by
870  * internal clock code only.  Returns NOTIFY_DONE from the last driver
871  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
872  * a driver returns that.
873  */
874 static int __clk_notify(struct clk_core *core, unsigned long msg,
875 		unsigned long old_rate, unsigned long new_rate)
876 {
877 	struct clk_notifier *cn;
878 	struct clk_notifier_data cnd;
879 	int ret = NOTIFY_DONE;
880 
881 	cnd.old_rate = old_rate;
882 	cnd.new_rate = new_rate;
883 
884 	list_for_each_entry(cn, &clk_notifier_list, node) {
885 		if (cn->clk->core == core) {
886 			cnd.clk = cn->clk;
887 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
888 					&cnd);
889 		}
890 	}
891 
892 	return ret;
893 }
894 
895 /**
896  * __clk_recalc_accuracies
897  * @core: first clk in the subtree
898  *
899  * Walks the subtree of clks starting with clk and recalculates accuracies as
900  * it goes.  Note that if a clk does not implement the .recalc_accuracy
901  * callback then it is assumed that the clock will take on the accuracy of its
902  * parent.
903  */
904 static void __clk_recalc_accuracies(struct clk_core *core)
905 {
906 	unsigned long parent_accuracy = 0;
907 	struct clk_core *child;
908 
909 	lockdep_assert_held(&prepare_lock);
910 
911 	if (core->parent)
912 		parent_accuracy = core->parent->accuracy;
913 
914 	if (core->ops->recalc_accuracy)
915 		core->accuracy = core->ops->recalc_accuracy(core->hw,
916 							  parent_accuracy);
917 	else
918 		core->accuracy = parent_accuracy;
919 
920 	hlist_for_each_entry(child, &core->children, child_node)
921 		__clk_recalc_accuracies(child);
922 }
923 
924 static long clk_core_get_accuracy(struct clk_core *core)
925 {
926 	unsigned long accuracy;
927 
928 	clk_prepare_lock();
929 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
930 		__clk_recalc_accuracies(core);
931 
932 	accuracy = __clk_get_accuracy(core);
933 	clk_prepare_unlock();
934 
935 	return accuracy;
936 }
937 
938 /**
939  * clk_get_accuracy - return the accuracy of clk
940  * @clk: the clk whose accuracy is being returned
941  *
942  * Simply returns the cached accuracy of the clk, unless
943  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
944  * issued.
945  * If clk is NULL then returns 0.
946  */
947 long clk_get_accuracy(struct clk *clk)
948 {
949 	if (!clk)
950 		return 0;
951 
952 	return clk_core_get_accuracy(clk->core);
953 }
954 EXPORT_SYMBOL_GPL(clk_get_accuracy);
955 
956 static unsigned long clk_recalc(struct clk_core *core,
957 				unsigned long parent_rate)
958 {
959 	if (core->ops->recalc_rate)
960 		return core->ops->recalc_rate(core->hw, parent_rate);
961 	return parent_rate;
962 }
963 
964 /**
965  * __clk_recalc_rates
966  * @core: first clk in the subtree
967  * @msg: notification type (see include/linux/clk.h)
968  *
969  * Walks the subtree of clks starting with clk and recalculates rates as it
970  * goes.  Note that if a clk does not implement the .recalc_rate callback then
971  * it is assumed that the clock will take on the rate of its parent.
972  *
973  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
974  * if necessary.
975  */
976 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
977 {
978 	unsigned long old_rate;
979 	unsigned long parent_rate = 0;
980 	struct clk_core *child;
981 
982 	lockdep_assert_held(&prepare_lock);
983 
984 	old_rate = core->rate;
985 
986 	if (core->parent)
987 		parent_rate = core->parent->rate;
988 
989 	core->rate = clk_recalc(core, parent_rate);
990 
991 	/*
992 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
993 	 * & ABORT_RATE_CHANGE notifiers
994 	 */
995 	if (core->notifier_count && msg)
996 		__clk_notify(core, msg, old_rate, core->rate);
997 
998 	hlist_for_each_entry(child, &core->children, child_node)
999 		__clk_recalc_rates(child, msg);
1000 }
1001 
1002 static unsigned long clk_core_get_rate(struct clk_core *core)
1003 {
1004 	unsigned long rate;
1005 
1006 	clk_prepare_lock();
1007 
1008 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1009 		__clk_recalc_rates(core, 0);
1010 
1011 	rate = clk_core_get_rate_nolock(core);
1012 	clk_prepare_unlock();
1013 
1014 	return rate;
1015 }
1016 
1017 /**
1018  * clk_get_rate - return the rate of clk
1019  * @clk: the clk whose rate is being returned
1020  *
1021  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1022  * is set, which means a recalc_rate will be issued.
1023  * If clk is NULL then returns 0.
1024  */
1025 unsigned long clk_get_rate(struct clk *clk)
1026 {
1027 	if (!clk)
1028 		return 0;
1029 
1030 	return clk_core_get_rate(clk->core);
1031 }
1032 EXPORT_SYMBOL_GPL(clk_get_rate);
1033 
1034 static int clk_fetch_parent_index(struct clk_core *core,
1035 				  struct clk_core *parent)
1036 {
1037 	int i;
1038 
1039 	if (!core->parents) {
1040 		core->parents = kcalloc(core->num_parents,
1041 					sizeof(struct clk *), GFP_KERNEL);
1042 		if (!core->parents)
1043 			return -ENOMEM;
1044 	}
1045 
1046 	/*
1047 	 * find index of new parent clock using cached parent ptrs,
1048 	 * or if not yet cached, use string name comparison and cache
1049 	 * them now to avoid future calls to clk_core_lookup.
1050 	 */
1051 	for (i = 0; i < core->num_parents; i++) {
1052 		if (core->parents[i] == parent)
1053 			return i;
1054 
1055 		if (core->parents[i])
1056 			continue;
1057 
1058 		if (!strcmp(core->parent_names[i], parent->name)) {
1059 			core->parents[i] = clk_core_lookup(parent->name);
1060 			return i;
1061 		}
1062 	}
1063 
1064 	return -EINVAL;
1065 }
1066 
1067 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1068 {
1069 	hlist_del(&core->child_node);
1070 
1071 	if (new_parent) {
1072 		/* avoid duplicate POST_RATE_CHANGE notifications */
1073 		if (new_parent->new_child == core)
1074 			new_parent->new_child = NULL;
1075 
1076 		hlist_add_head(&core->child_node, &new_parent->children);
1077 	} else {
1078 		hlist_add_head(&core->child_node, &clk_orphan_list);
1079 	}
1080 
1081 	core->parent = new_parent;
1082 }
1083 
1084 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1085 					   struct clk_core *parent)
1086 {
1087 	unsigned long flags;
1088 	struct clk_core *old_parent = core->parent;
1089 
1090 	/*
1091 	 * Migrate prepare state between parents and prevent race with
1092 	 * clk_enable().
1093 	 *
1094 	 * If the clock is not prepared, then a race with
1095 	 * clk_enable/disable() is impossible since we already have the
1096 	 * prepare lock (future calls to clk_enable() need to be preceded by
1097 	 * a clk_prepare()).
1098 	 *
1099 	 * If the clock is prepared, migrate the prepared state to the new
1100 	 * parent and also protect against a race with clk_enable() by
1101 	 * forcing the clock and the new parent on.  This ensures that all
1102 	 * future calls to clk_enable() are practically NOPs with respect to
1103 	 * hardware and software states.
1104 	 *
1105 	 * See also: Comment for clk_set_parent() below.
1106 	 */
1107 	if (core->prepare_count) {
1108 		clk_core_prepare(parent);
1109 		flags = clk_enable_lock();
1110 		clk_core_enable(parent);
1111 		clk_core_enable(core);
1112 		clk_enable_unlock(flags);
1113 	}
1114 
1115 	/* update the clk tree topology */
1116 	flags = clk_enable_lock();
1117 	clk_reparent(core, parent);
1118 	clk_enable_unlock(flags);
1119 
1120 	return old_parent;
1121 }
1122 
1123 static void __clk_set_parent_after(struct clk_core *core,
1124 				   struct clk_core *parent,
1125 				   struct clk_core *old_parent)
1126 {
1127 	unsigned long flags;
1128 
1129 	/*
1130 	 * Finish the migration of prepare state and undo the changes done
1131 	 * for preventing a race with clk_enable().
1132 	 */
1133 	if (core->prepare_count) {
1134 		flags = clk_enable_lock();
1135 		clk_core_disable(core);
1136 		clk_core_disable(old_parent);
1137 		clk_enable_unlock(flags);
1138 		clk_core_unprepare(old_parent);
1139 	}
1140 }
1141 
1142 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1143 			    u8 p_index)
1144 {
1145 	unsigned long flags;
1146 	int ret = 0;
1147 	struct clk_core *old_parent;
1148 
1149 	old_parent = __clk_set_parent_before(core, parent);
1150 
1151 	trace_clk_set_parent(core, parent);
1152 
1153 	/* change clock input source */
1154 	if (parent && core->ops->set_parent)
1155 		ret = core->ops->set_parent(core->hw, p_index);
1156 
1157 	trace_clk_set_parent_complete(core, parent);
1158 
1159 	if (ret) {
1160 		flags = clk_enable_lock();
1161 		clk_reparent(core, old_parent);
1162 		clk_enable_unlock(flags);
1163 
1164 		if (core->prepare_count) {
1165 			flags = clk_enable_lock();
1166 			clk_core_disable(core);
1167 			clk_core_disable(parent);
1168 			clk_enable_unlock(flags);
1169 			clk_core_unprepare(parent);
1170 		}
1171 		return ret;
1172 	}
1173 
1174 	__clk_set_parent_after(core, parent, old_parent);
1175 
1176 	return 0;
1177 }
1178 
1179 /**
1180  * __clk_speculate_rates
1181  * @core: first clk in the subtree
1182  * @parent_rate: the "future" rate of clk's parent
1183  *
1184  * Walks the subtree of clks starting with clk, speculating rates as it
1185  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1186  *
1187  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1188  * pre-rate change notifications and returns early if no clks in the
1189  * subtree have subscribed to the notifications.  Note that if a clk does not
1190  * implement the .recalc_rate callback then it is assumed that the clock will
1191  * take on the rate of its parent.
1192  */
1193 static int __clk_speculate_rates(struct clk_core *core,
1194 				 unsigned long parent_rate)
1195 {
1196 	struct clk_core *child;
1197 	unsigned long new_rate;
1198 	int ret = NOTIFY_DONE;
1199 
1200 	lockdep_assert_held(&prepare_lock);
1201 
1202 	new_rate = clk_recalc(core, parent_rate);
1203 
1204 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1205 	if (core->notifier_count)
1206 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1207 
1208 	if (ret & NOTIFY_STOP_MASK) {
1209 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1210 				__func__, core->name, ret);
1211 		goto out;
1212 	}
1213 
1214 	hlist_for_each_entry(child, &core->children, child_node) {
1215 		ret = __clk_speculate_rates(child, new_rate);
1216 		if (ret & NOTIFY_STOP_MASK)
1217 			break;
1218 	}
1219 
1220 out:
1221 	return ret;
1222 }
1223 
1224 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1225 			     struct clk_core *new_parent, u8 p_index)
1226 {
1227 	struct clk_core *child;
1228 
1229 	core->new_rate = new_rate;
1230 	core->new_parent = new_parent;
1231 	core->new_parent_index = p_index;
1232 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1233 	core->new_child = NULL;
1234 	if (new_parent && new_parent != core->parent)
1235 		new_parent->new_child = core;
1236 
1237 	hlist_for_each_entry(child, &core->children, child_node) {
1238 		child->new_rate = clk_recalc(child, new_rate);
1239 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1240 	}
1241 }
1242 
1243 /*
1244  * calculate the new rates returning the topmost clock that has to be
1245  * changed.
1246  */
1247 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1248 					   unsigned long rate)
1249 {
1250 	struct clk_core *top = core;
1251 	struct clk_core *old_parent, *parent;
1252 	struct clk_hw *parent_hw;
1253 	unsigned long best_parent_rate = 0;
1254 	unsigned long new_rate;
1255 	unsigned long min_rate;
1256 	unsigned long max_rate;
1257 	int p_index = 0;
1258 	long ret;
1259 
1260 	/* sanity */
1261 	if (IS_ERR_OR_NULL(core))
1262 		return NULL;
1263 
1264 	/* save parent rate, if it exists */
1265 	parent = old_parent = core->parent;
1266 	if (parent)
1267 		best_parent_rate = parent->rate;
1268 
1269 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1270 
1271 	/* find the closest rate and parent clk/rate */
1272 	if (core->ops->determine_rate) {
1273 		parent_hw = parent ? parent->hw : NULL;
1274 		ret = core->ops->determine_rate(core->hw, rate,
1275 					       min_rate,
1276 					       max_rate,
1277 					       &best_parent_rate,
1278 					       &parent_hw);
1279 		if (ret < 0)
1280 			return NULL;
1281 
1282 		new_rate = ret;
1283 		parent = parent_hw ? parent_hw->core : NULL;
1284 	} else if (core->ops->round_rate) {
1285 		ret = core->ops->round_rate(core->hw, rate,
1286 					   &best_parent_rate);
1287 		if (ret < 0)
1288 			return NULL;
1289 
1290 		new_rate = ret;
1291 		if (new_rate < min_rate || new_rate > max_rate)
1292 			return NULL;
1293 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1294 		/* pass-through clock without adjustable parent */
1295 		core->new_rate = core->rate;
1296 		return NULL;
1297 	} else {
1298 		/* pass-through clock with adjustable parent */
1299 		top = clk_calc_new_rates(parent, rate);
1300 		new_rate = parent->new_rate;
1301 		goto out;
1302 	}
1303 
1304 	/* some clocks must be gated to change parent */
1305 	if (parent != old_parent &&
1306 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1307 		pr_debug("%s: %s not gated but wants to reparent\n",
1308 			 __func__, core->name);
1309 		return NULL;
1310 	}
1311 
1312 	/* try finding the new parent index */
1313 	if (parent && core->num_parents > 1) {
1314 		p_index = clk_fetch_parent_index(core, parent);
1315 		if (p_index < 0) {
1316 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1317 				 __func__, parent->name, core->name);
1318 			return NULL;
1319 		}
1320 	}
1321 
1322 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1323 	    best_parent_rate != parent->rate)
1324 		top = clk_calc_new_rates(parent, best_parent_rate);
1325 
1326 out:
1327 	clk_calc_subtree(core, new_rate, parent, p_index);
1328 
1329 	return top;
1330 }
1331 
1332 /*
1333  * Notify about rate changes in a subtree. Always walk down the whole tree
1334  * so that in case of an error we can walk down the whole tree again and
1335  * abort the change.
1336  */
1337 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1338 						  unsigned long event)
1339 {
1340 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1341 	int ret = NOTIFY_DONE;
1342 
1343 	if (core->rate == core->new_rate)
1344 		return NULL;
1345 
1346 	if (core->notifier_count) {
1347 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1348 		if (ret & NOTIFY_STOP_MASK)
1349 			fail_clk = core;
1350 	}
1351 
1352 	hlist_for_each_entry(child, &core->children, child_node) {
1353 		/* Skip children who will be reparented to another clock */
1354 		if (child->new_parent && child->new_parent != core)
1355 			continue;
1356 		tmp_clk = clk_propagate_rate_change(child, event);
1357 		if (tmp_clk)
1358 			fail_clk = tmp_clk;
1359 	}
1360 
1361 	/* handle the new child who might not be in core->children yet */
1362 	if (core->new_child) {
1363 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1364 		if (tmp_clk)
1365 			fail_clk = tmp_clk;
1366 	}
1367 
1368 	return fail_clk;
1369 }
1370 
1371 /*
1372  * walk down a subtree and set the new rates notifying the rate
1373  * change on the way
1374  */
1375 static void clk_change_rate(struct clk_core *core)
1376 {
1377 	struct clk_core *child;
1378 	struct hlist_node *tmp;
1379 	unsigned long old_rate;
1380 	unsigned long best_parent_rate = 0;
1381 	bool skip_set_rate = false;
1382 	struct clk_core *old_parent;
1383 
1384 	old_rate = core->rate;
1385 
1386 	if (core->new_parent)
1387 		best_parent_rate = core->new_parent->rate;
1388 	else if (core->parent)
1389 		best_parent_rate = core->parent->rate;
1390 
1391 	if (core->new_parent && core->new_parent != core->parent) {
1392 		old_parent = __clk_set_parent_before(core, core->new_parent);
1393 		trace_clk_set_parent(core, core->new_parent);
1394 
1395 		if (core->ops->set_rate_and_parent) {
1396 			skip_set_rate = true;
1397 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1398 					best_parent_rate,
1399 					core->new_parent_index);
1400 		} else if (core->ops->set_parent) {
1401 			core->ops->set_parent(core->hw, core->new_parent_index);
1402 		}
1403 
1404 		trace_clk_set_parent_complete(core, core->new_parent);
1405 		__clk_set_parent_after(core, core->new_parent, old_parent);
1406 	}
1407 
1408 	trace_clk_set_rate(core, core->new_rate);
1409 
1410 	if (!skip_set_rate && core->ops->set_rate)
1411 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1412 
1413 	trace_clk_set_rate_complete(core, core->new_rate);
1414 
1415 	core->rate = clk_recalc(core, best_parent_rate);
1416 
1417 	if (core->notifier_count && old_rate != core->rate)
1418 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1419 
1420 	if (core->flags & CLK_RECALC_NEW_RATES)
1421 		(void)clk_calc_new_rates(core, core->new_rate);
1422 
1423 	/*
1424 	 * Use safe iteration, as change_rate can actually swap parents
1425 	 * for certain clock types.
1426 	 */
1427 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1428 		/* Skip children who will be reparented to another clock */
1429 		if (child->new_parent && child->new_parent != core)
1430 			continue;
1431 		clk_change_rate(child);
1432 	}
1433 
1434 	/* handle the new child who might not be in core->children yet */
1435 	if (core->new_child)
1436 		clk_change_rate(core->new_child);
1437 }
1438 
1439 static int clk_core_set_rate_nolock(struct clk_core *core,
1440 				    unsigned long req_rate)
1441 {
1442 	struct clk_core *top, *fail_clk;
1443 	unsigned long rate = req_rate;
1444 	int ret = 0;
1445 
1446 	if (!core)
1447 		return 0;
1448 
1449 	/* bail early if nothing to do */
1450 	if (rate == clk_core_get_rate_nolock(core))
1451 		return 0;
1452 
1453 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1454 		return -EBUSY;
1455 
1456 	/* calculate new rates and get the topmost changed clock */
1457 	top = clk_calc_new_rates(core, rate);
1458 	if (!top)
1459 		return -EINVAL;
1460 
1461 	/* notify that we are about to change rates */
1462 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1463 	if (fail_clk) {
1464 		pr_debug("%s: failed to set %s rate\n", __func__,
1465 				fail_clk->name);
1466 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1467 		return -EBUSY;
1468 	}
1469 
1470 	/* change the rates */
1471 	clk_change_rate(top);
1472 
1473 	core->req_rate = req_rate;
1474 
1475 	return ret;
1476 }
1477 
1478 /**
1479  * clk_set_rate - specify a new rate for clk
1480  * @clk: the clk whose rate is being changed
1481  * @rate: the new rate for clk
1482  *
1483  * In the simplest case clk_set_rate will only adjust the rate of clk.
1484  *
1485  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1486  * propagate up to clk's parent; whether or not this happens depends on the
1487  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1488  * after calling .round_rate then upstream parent propagation is ignored.  If
1489  * *parent_rate comes back with a new rate for clk's parent then we propagate
1490  * up to clk's parent and set its rate.  Upward propagation will continue
1491  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1492  * .round_rate stops requesting changes to clk's parent_rate.
1493  *
1494  * Rate changes are accomplished via tree traversal that also recalculates the
1495  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1496  *
1497  * Returns 0 on success, -EERROR otherwise.
1498  */
1499 int clk_set_rate(struct clk *clk, unsigned long rate)
1500 {
1501 	int ret;
1502 
1503 	if (!clk)
1504 		return 0;
1505 
1506 	/* prevent racing with updates to the clock topology */
1507 	clk_prepare_lock();
1508 
1509 	ret = clk_core_set_rate_nolock(clk->core, rate);
1510 
1511 	clk_prepare_unlock();
1512 
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(clk_set_rate);
1516 
1517 /**
1518  * clk_set_rate_range - set a rate range for a clock source
1519  * @clk: clock source
1520  * @min: desired minimum clock rate in Hz, inclusive
1521  * @max: desired maximum clock rate in Hz, inclusive
1522  *
1523  * Returns success (0) or negative errno.
1524  */
1525 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1526 {
1527 	int ret = 0;
1528 
1529 	if (!clk)
1530 		return 0;
1531 
1532 	if (min > max) {
1533 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1534 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1535 		       min, max);
1536 		return -EINVAL;
1537 	}
1538 
1539 	clk_prepare_lock();
1540 
1541 	if (min != clk->min_rate || max != clk->max_rate) {
1542 		clk->min_rate = min;
1543 		clk->max_rate = max;
1544 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1545 	}
1546 
1547 	clk_prepare_unlock();
1548 
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1552 
1553 /**
1554  * clk_set_min_rate - set a minimum clock rate for a clock source
1555  * @clk: clock source
1556  * @rate: desired minimum clock rate in Hz, inclusive
1557  *
1558  * Returns success (0) or negative errno.
1559  */
1560 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1561 {
1562 	if (!clk)
1563 		return 0;
1564 
1565 	return clk_set_rate_range(clk, rate, clk->max_rate);
1566 }
1567 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1568 
1569 /**
1570  * clk_set_max_rate - set a maximum clock rate for a clock source
1571  * @clk: clock source
1572  * @rate: desired maximum clock rate in Hz, inclusive
1573  *
1574  * Returns success (0) or negative errno.
1575  */
1576 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1577 {
1578 	if (!clk)
1579 		return 0;
1580 
1581 	return clk_set_rate_range(clk, clk->min_rate, rate);
1582 }
1583 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1584 
1585 /**
1586  * clk_get_parent - return the parent of a clk
1587  * @clk: the clk whose parent gets returned
1588  *
1589  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1590  */
1591 struct clk *clk_get_parent(struct clk *clk)
1592 {
1593 	struct clk *parent;
1594 
1595 	clk_prepare_lock();
1596 	parent = __clk_get_parent(clk);
1597 	clk_prepare_unlock();
1598 
1599 	return parent;
1600 }
1601 EXPORT_SYMBOL_GPL(clk_get_parent);
1602 
1603 /*
1604  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1605  * optional for single-parent clocks.  Always call .get_parent if it is
1606  * available and WARN if it is missing for multi-parent clocks.
1607  *
1608  * For single-parent clocks without .get_parent, first check to see if the
1609  * .parents array exists, and if so use it to avoid an expensive tree
1610  * traversal.  If .parents does not exist then walk the tree.
1611  */
1612 static struct clk_core *__clk_init_parent(struct clk_core *core)
1613 {
1614 	struct clk_core *ret = NULL;
1615 	u8 index;
1616 
1617 	/* handle the trivial cases */
1618 
1619 	if (!core->num_parents)
1620 		goto out;
1621 
1622 	if (core->num_parents == 1) {
1623 		if (IS_ERR_OR_NULL(core->parent))
1624 			core->parent = clk_core_lookup(core->parent_names[0]);
1625 		ret = core->parent;
1626 		goto out;
1627 	}
1628 
1629 	if (!core->ops->get_parent) {
1630 		WARN(!core->ops->get_parent,
1631 			"%s: multi-parent clocks must implement .get_parent\n",
1632 			__func__);
1633 		goto out;
1634 	};
1635 
1636 	/*
1637 	 * Do our best to cache parent clocks in core->parents.  This prevents
1638 	 * unnecessary and expensive lookups.  We don't set core->parent here;
1639 	 * that is done by the calling function.
1640 	 */
1641 
1642 	index = core->ops->get_parent(core->hw);
1643 
1644 	if (!core->parents)
1645 		core->parents =
1646 			kcalloc(core->num_parents, sizeof(struct clk *),
1647 					GFP_KERNEL);
1648 
1649 	ret = clk_core_get_parent_by_index(core, index);
1650 
1651 out:
1652 	return ret;
1653 }
1654 
1655 static void clk_core_reparent(struct clk_core *core,
1656 				  struct clk_core *new_parent)
1657 {
1658 	clk_reparent(core, new_parent);
1659 	__clk_recalc_accuracies(core);
1660 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1661 }
1662 
1663 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1664 {
1665 	if (!hw)
1666 		return;
1667 
1668 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1669 }
1670 
1671 /**
1672  * clk_has_parent - check if a clock is a possible parent for another
1673  * @clk: clock source
1674  * @parent: parent clock source
1675  *
1676  * This function can be used in drivers that need to check that a clock can be
1677  * the parent of another without actually changing the parent.
1678  *
1679  * Returns true if @parent is a possible parent for @clk, false otherwise.
1680  */
1681 bool clk_has_parent(struct clk *clk, struct clk *parent)
1682 {
1683 	struct clk_core *core, *parent_core;
1684 	unsigned int i;
1685 
1686 	/* NULL clocks should be nops, so return success if either is NULL. */
1687 	if (!clk || !parent)
1688 		return true;
1689 
1690 	core = clk->core;
1691 	parent_core = parent->core;
1692 
1693 	/* Optimize for the case where the parent is already the parent. */
1694 	if (core->parent == parent_core)
1695 		return true;
1696 
1697 	for (i = 0; i < core->num_parents; i++)
1698 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1699 			return true;
1700 
1701 	return false;
1702 }
1703 EXPORT_SYMBOL_GPL(clk_has_parent);
1704 
1705 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1706 {
1707 	int ret = 0;
1708 	int p_index = 0;
1709 	unsigned long p_rate = 0;
1710 
1711 	if (!core)
1712 		return 0;
1713 
1714 	/* prevent racing with updates to the clock topology */
1715 	clk_prepare_lock();
1716 
1717 	if (core->parent == parent)
1718 		goto out;
1719 
1720 	/* verify ops for for multi-parent clks */
1721 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1722 		ret = -ENOSYS;
1723 		goto out;
1724 	}
1725 
1726 	/* check that we are allowed to re-parent if the clock is in use */
1727 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1728 		ret = -EBUSY;
1729 		goto out;
1730 	}
1731 
1732 	/* try finding the new parent index */
1733 	if (parent) {
1734 		p_index = clk_fetch_parent_index(core, parent);
1735 		p_rate = parent->rate;
1736 		if (p_index < 0) {
1737 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1738 					__func__, parent->name, core->name);
1739 			ret = p_index;
1740 			goto out;
1741 		}
1742 	}
1743 
1744 	/* propagate PRE_RATE_CHANGE notifications */
1745 	ret = __clk_speculate_rates(core, p_rate);
1746 
1747 	/* abort if a driver objects */
1748 	if (ret & NOTIFY_STOP_MASK)
1749 		goto out;
1750 
1751 	/* do the re-parent */
1752 	ret = __clk_set_parent(core, parent, p_index);
1753 
1754 	/* propagate rate an accuracy recalculation accordingly */
1755 	if (ret) {
1756 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1757 	} else {
1758 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1759 		__clk_recalc_accuracies(core);
1760 	}
1761 
1762 out:
1763 	clk_prepare_unlock();
1764 
1765 	return ret;
1766 }
1767 
1768 /**
1769  * clk_set_parent - switch the parent of a mux clk
1770  * @clk: the mux clk whose input we are switching
1771  * @parent: the new input to clk
1772  *
1773  * Re-parent clk to use parent as its new input source.  If clk is in
1774  * prepared state, the clk will get enabled for the duration of this call. If
1775  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1776  * that, the reparenting is glitchy in hardware, etc), use the
1777  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1778  *
1779  * After successfully changing clk's parent clk_set_parent will update the
1780  * clk topology, sysfs topology and propagate rate recalculation via
1781  * __clk_recalc_rates.
1782  *
1783  * Returns 0 on success, -EERROR otherwise.
1784  */
1785 int clk_set_parent(struct clk *clk, struct clk *parent)
1786 {
1787 	if (!clk)
1788 		return 0;
1789 
1790 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1791 }
1792 EXPORT_SYMBOL_GPL(clk_set_parent);
1793 
1794 /**
1795  * clk_set_phase - adjust the phase shift of a clock signal
1796  * @clk: clock signal source
1797  * @degrees: number of degrees the signal is shifted
1798  *
1799  * Shifts the phase of a clock signal by the specified
1800  * degrees. Returns 0 on success, -EERROR otherwise.
1801  *
1802  * This function makes no distinction about the input or reference
1803  * signal that we adjust the clock signal phase against. For example
1804  * phase locked-loop clock signal generators we may shift phase with
1805  * respect to feedback clock signal input, but for other cases the
1806  * clock phase may be shifted with respect to some other, unspecified
1807  * signal.
1808  *
1809  * Additionally the concept of phase shift does not propagate through
1810  * the clock tree hierarchy, which sets it apart from clock rates and
1811  * clock accuracy. A parent clock phase attribute does not have an
1812  * impact on the phase attribute of a child clock.
1813  */
1814 int clk_set_phase(struct clk *clk, int degrees)
1815 {
1816 	int ret = -EINVAL;
1817 
1818 	if (!clk)
1819 		return 0;
1820 
1821 	/* sanity check degrees */
1822 	degrees %= 360;
1823 	if (degrees < 0)
1824 		degrees += 360;
1825 
1826 	clk_prepare_lock();
1827 
1828 	trace_clk_set_phase(clk->core, degrees);
1829 
1830 	if (clk->core->ops->set_phase)
1831 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1832 
1833 	trace_clk_set_phase_complete(clk->core, degrees);
1834 
1835 	if (!ret)
1836 		clk->core->phase = degrees;
1837 
1838 	clk_prepare_unlock();
1839 
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(clk_set_phase);
1843 
1844 static int clk_core_get_phase(struct clk_core *core)
1845 {
1846 	int ret;
1847 
1848 	clk_prepare_lock();
1849 	ret = core->phase;
1850 	clk_prepare_unlock();
1851 
1852 	return ret;
1853 }
1854 
1855 /**
1856  * clk_get_phase - return the phase shift of a clock signal
1857  * @clk: clock signal source
1858  *
1859  * Returns the phase shift of a clock node in degrees, otherwise returns
1860  * -EERROR.
1861  */
1862 int clk_get_phase(struct clk *clk)
1863 {
1864 	if (!clk)
1865 		return 0;
1866 
1867 	return clk_core_get_phase(clk->core);
1868 }
1869 EXPORT_SYMBOL_GPL(clk_get_phase);
1870 
1871 /**
1872  * clk_is_match - check if two clk's point to the same hardware clock
1873  * @p: clk compared against q
1874  * @q: clk compared against p
1875  *
1876  * Returns true if the two struct clk pointers both point to the same hardware
1877  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1878  * share the same struct clk_core object.
1879  *
1880  * Returns false otherwise. Note that two NULL clks are treated as matching.
1881  */
1882 bool clk_is_match(const struct clk *p, const struct clk *q)
1883 {
1884 	/* trivial case: identical struct clk's or both NULL */
1885 	if (p == q)
1886 		return true;
1887 
1888 	/* true if clk->core pointers match. Avoid derefing garbage */
1889 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1890 		if (p->core == q->core)
1891 			return true;
1892 
1893 	return false;
1894 }
1895 EXPORT_SYMBOL_GPL(clk_is_match);
1896 
1897 /***        debugfs support        ***/
1898 
1899 #ifdef CONFIG_DEBUG_FS
1900 #include <linux/debugfs.h>
1901 
1902 static struct dentry *rootdir;
1903 static int inited = 0;
1904 static DEFINE_MUTEX(clk_debug_lock);
1905 static HLIST_HEAD(clk_debug_list);
1906 
1907 static struct hlist_head *all_lists[] = {
1908 	&clk_root_list,
1909 	&clk_orphan_list,
1910 	NULL,
1911 };
1912 
1913 static struct hlist_head *orphan_list[] = {
1914 	&clk_orphan_list,
1915 	NULL,
1916 };
1917 
1918 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1919 				 int level)
1920 {
1921 	if (!c)
1922 		return;
1923 
1924 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1925 		   level * 3 + 1, "",
1926 		   30 - level * 3, c->name,
1927 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1928 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
1929 }
1930 
1931 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1932 				     int level)
1933 {
1934 	struct clk_core *child;
1935 
1936 	if (!c)
1937 		return;
1938 
1939 	clk_summary_show_one(s, c, level);
1940 
1941 	hlist_for_each_entry(child, &c->children, child_node)
1942 		clk_summary_show_subtree(s, child, level + 1);
1943 }
1944 
1945 static int clk_summary_show(struct seq_file *s, void *data)
1946 {
1947 	struct clk_core *c;
1948 	struct hlist_head **lists = (struct hlist_head **)s->private;
1949 
1950 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1951 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
1952 
1953 	clk_prepare_lock();
1954 
1955 	for (; *lists; lists++)
1956 		hlist_for_each_entry(c, *lists, child_node)
1957 			clk_summary_show_subtree(s, c, 0);
1958 
1959 	clk_prepare_unlock();
1960 
1961 	return 0;
1962 }
1963 
1964 
1965 static int clk_summary_open(struct inode *inode, struct file *file)
1966 {
1967 	return single_open(file, clk_summary_show, inode->i_private);
1968 }
1969 
1970 static const struct file_operations clk_summary_fops = {
1971 	.open		= clk_summary_open,
1972 	.read		= seq_read,
1973 	.llseek		= seq_lseek,
1974 	.release	= single_release,
1975 };
1976 
1977 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1978 {
1979 	if (!c)
1980 		return;
1981 
1982 	/* This should be JSON format, i.e. elements separated with a comma */
1983 	seq_printf(s, "\"%s\": { ", c->name);
1984 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
1985 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
1986 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
1987 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
1988 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
1989 }
1990 
1991 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
1992 {
1993 	struct clk_core *child;
1994 
1995 	if (!c)
1996 		return;
1997 
1998 	clk_dump_one(s, c, level);
1999 
2000 	hlist_for_each_entry(child, &c->children, child_node) {
2001 		seq_printf(s, ",");
2002 		clk_dump_subtree(s, child, level + 1);
2003 	}
2004 
2005 	seq_printf(s, "}");
2006 }
2007 
2008 static int clk_dump(struct seq_file *s, void *data)
2009 {
2010 	struct clk_core *c;
2011 	bool first_node = true;
2012 	struct hlist_head **lists = (struct hlist_head **)s->private;
2013 
2014 	seq_printf(s, "{");
2015 
2016 	clk_prepare_lock();
2017 
2018 	for (; *lists; lists++) {
2019 		hlist_for_each_entry(c, *lists, child_node) {
2020 			if (!first_node)
2021 				seq_puts(s, ",");
2022 			first_node = false;
2023 			clk_dump_subtree(s, c, 0);
2024 		}
2025 	}
2026 
2027 	clk_prepare_unlock();
2028 
2029 	seq_puts(s, "}\n");
2030 	return 0;
2031 }
2032 
2033 
2034 static int clk_dump_open(struct inode *inode, struct file *file)
2035 {
2036 	return single_open(file, clk_dump, inode->i_private);
2037 }
2038 
2039 static const struct file_operations clk_dump_fops = {
2040 	.open		= clk_dump_open,
2041 	.read		= seq_read,
2042 	.llseek		= seq_lseek,
2043 	.release	= single_release,
2044 };
2045 
2046 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2047 {
2048 	struct dentry *d;
2049 	int ret = -ENOMEM;
2050 
2051 	if (!core || !pdentry) {
2052 		ret = -EINVAL;
2053 		goto out;
2054 	}
2055 
2056 	d = debugfs_create_dir(core->name, pdentry);
2057 	if (!d)
2058 		goto out;
2059 
2060 	core->dentry = d;
2061 
2062 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2063 			(u32 *)&core->rate);
2064 	if (!d)
2065 		goto err_out;
2066 
2067 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2068 			(u32 *)&core->accuracy);
2069 	if (!d)
2070 		goto err_out;
2071 
2072 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2073 			(u32 *)&core->phase);
2074 	if (!d)
2075 		goto err_out;
2076 
2077 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2078 			(u32 *)&core->flags);
2079 	if (!d)
2080 		goto err_out;
2081 
2082 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2083 			(u32 *)&core->prepare_count);
2084 	if (!d)
2085 		goto err_out;
2086 
2087 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2088 			(u32 *)&core->enable_count);
2089 	if (!d)
2090 		goto err_out;
2091 
2092 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2093 			(u32 *)&core->notifier_count);
2094 	if (!d)
2095 		goto err_out;
2096 
2097 	if (core->ops->debug_init) {
2098 		ret = core->ops->debug_init(core->hw, core->dentry);
2099 		if (ret)
2100 			goto err_out;
2101 	}
2102 
2103 	ret = 0;
2104 	goto out;
2105 
2106 err_out:
2107 	debugfs_remove_recursive(core->dentry);
2108 	core->dentry = NULL;
2109 out:
2110 	return ret;
2111 }
2112 
2113 /**
2114  * clk_debug_register - add a clk node to the debugfs clk directory
2115  * @core: the clk being added to the debugfs clk directory
2116  *
2117  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2118  * initialized.  Otherwise it bails out early since the debugfs clk directory
2119  * will be created lazily by clk_debug_init as part of a late_initcall.
2120  */
2121 static int clk_debug_register(struct clk_core *core)
2122 {
2123 	int ret = 0;
2124 
2125 	mutex_lock(&clk_debug_lock);
2126 	hlist_add_head(&core->debug_node, &clk_debug_list);
2127 
2128 	if (!inited)
2129 		goto unlock;
2130 
2131 	ret = clk_debug_create_one(core, rootdir);
2132 unlock:
2133 	mutex_unlock(&clk_debug_lock);
2134 
2135 	return ret;
2136 }
2137 
2138  /**
2139  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2140  * @core: the clk being removed from the debugfs clk directory
2141  *
2142  * Dynamically removes a clk and all its child nodes from the
2143  * debugfs clk directory if clk->dentry points to debugfs created by
2144  * clk_debug_register in __clk_init.
2145  */
2146 static void clk_debug_unregister(struct clk_core *core)
2147 {
2148 	mutex_lock(&clk_debug_lock);
2149 	hlist_del_init(&core->debug_node);
2150 	debugfs_remove_recursive(core->dentry);
2151 	core->dentry = NULL;
2152 	mutex_unlock(&clk_debug_lock);
2153 }
2154 
2155 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2156 				void *data, const struct file_operations *fops)
2157 {
2158 	struct dentry *d = NULL;
2159 
2160 	if (hw->core->dentry)
2161 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2162 					fops);
2163 
2164 	return d;
2165 }
2166 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2167 
2168 /**
2169  * clk_debug_init - lazily populate the debugfs clk directory
2170  *
2171  * clks are often initialized very early during boot before memory can be
2172  * dynamically allocated and well before debugfs is setup. This function
2173  * populates the debugfs clk directory once at boot-time when we know that
2174  * debugfs is setup. It should only be called once at boot-time, all other clks
2175  * added dynamically will be done so with clk_debug_register.
2176  */
2177 static int __init clk_debug_init(void)
2178 {
2179 	struct clk_core *core;
2180 	struct dentry *d;
2181 
2182 	rootdir = debugfs_create_dir("clk", NULL);
2183 
2184 	if (!rootdir)
2185 		return -ENOMEM;
2186 
2187 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2188 				&clk_summary_fops);
2189 	if (!d)
2190 		return -ENOMEM;
2191 
2192 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2193 				&clk_dump_fops);
2194 	if (!d)
2195 		return -ENOMEM;
2196 
2197 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2198 				&orphan_list, &clk_summary_fops);
2199 	if (!d)
2200 		return -ENOMEM;
2201 
2202 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2203 				&orphan_list, &clk_dump_fops);
2204 	if (!d)
2205 		return -ENOMEM;
2206 
2207 	mutex_lock(&clk_debug_lock);
2208 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2209 		clk_debug_create_one(core, rootdir);
2210 
2211 	inited = 1;
2212 	mutex_unlock(&clk_debug_lock);
2213 
2214 	return 0;
2215 }
2216 late_initcall(clk_debug_init);
2217 #else
2218 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2219 static inline void clk_debug_reparent(struct clk_core *core,
2220 				      struct clk_core *new_parent)
2221 {
2222 }
2223 static inline void clk_debug_unregister(struct clk_core *core)
2224 {
2225 }
2226 #endif
2227 
2228 /**
2229  * __clk_init - initialize the data structures in a struct clk
2230  * @dev:	device initializing this clk, placeholder for now
2231  * @clk:	clk being initialized
2232  *
2233  * Initializes the lists in struct clk_core, queries the hardware for the
2234  * parent and rate and sets them both.
2235  */
2236 static int __clk_init(struct device *dev, struct clk *clk_user)
2237 {
2238 	int i, ret = 0;
2239 	struct clk_core *orphan;
2240 	struct hlist_node *tmp2;
2241 	struct clk_core *core;
2242 	unsigned long rate;
2243 
2244 	if (!clk_user)
2245 		return -EINVAL;
2246 
2247 	core = clk_user->core;
2248 
2249 	clk_prepare_lock();
2250 
2251 	/* check to see if a clock with this name is already registered */
2252 	if (clk_core_lookup(core->name)) {
2253 		pr_debug("%s: clk %s already initialized\n",
2254 				__func__, core->name);
2255 		ret = -EEXIST;
2256 		goto out;
2257 	}
2258 
2259 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2260 	if (core->ops->set_rate &&
2261 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2262 	      core->ops->recalc_rate)) {
2263 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2264 				__func__, core->name);
2265 		ret = -EINVAL;
2266 		goto out;
2267 	}
2268 
2269 	if (core->ops->set_parent && !core->ops->get_parent) {
2270 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2271 				__func__, core->name);
2272 		ret = -EINVAL;
2273 		goto out;
2274 	}
2275 
2276 	if (core->ops->set_rate_and_parent &&
2277 			!(core->ops->set_parent && core->ops->set_rate)) {
2278 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2279 				__func__, core->name);
2280 		ret = -EINVAL;
2281 		goto out;
2282 	}
2283 
2284 	/* throw a WARN if any entries in parent_names are NULL */
2285 	for (i = 0; i < core->num_parents; i++)
2286 		WARN(!core->parent_names[i],
2287 				"%s: invalid NULL in %s's .parent_names\n",
2288 				__func__, core->name);
2289 
2290 	/*
2291 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2292 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2293 	 * in to clk_init during early boot; thus any access to core->parents[]
2294 	 * must always check for a NULL pointer and try to populate it if
2295 	 * necessary.
2296 	 *
2297 	 * If core->parents is not NULL we skip this entire block.  This allows
2298 	 * for clock drivers to statically initialize core->parents.
2299 	 */
2300 	if (core->num_parents > 1 && !core->parents) {
2301 		core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2302 					GFP_KERNEL);
2303 		/*
2304 		 * clk_core_lookup returns NULL for parents that have not been
2305 		 * clk_init'd; thus any access to clk->parents[] must check
2306 		 * for a NULL pointer.  We can always perform lazy lookups for
2307 		 * missing parents later on.
2308 		 */
2309 		if (core->parents)
2310 			for (i = 0; i < core->num_parents; i++)
2311 				core->parents[i] =
2312 					clk_core_lookup(core->parent_names[i]);
2313 	}
2314 
2315 	core->parent = __clk_init_parent(core);
2316 
2317 	/*
2318 	 * Populate core->parent if parent has already been __clk_init'd.  If
2319 	 * parent has not yet been __clk_init'd then place clk in the orphan
2320 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2321 	 * clk list.
2322 	 *
2323 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2324 	 * clocks and re-parent any that are children of the clock currently
2325 	 * being clk_init'd.
2326 	 */
2327 	if (core->parent)
2328 		hlist_add_head(&core->child_node,
2329 				&core->parent->children);
2330 	else if (core->flags & CLK_IS_ROOT)
2331 		hlist_add_head(&core->child_node, &clk_root_list);
2332 	else
2333 		hlist_add_head(&core->child_node, &clk_orphan_list);
2334 
2335 	/*
2336 	 * Set clk's accuracy.  The preferred method is to use
2337 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2338 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2339 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2340 	 * clock).
2341 	 */
2342 	if (core->ops->recalc_accuracy)
2343 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2344 					__clk_get_accuracy(core->parent));
2345 	else if (core->parent)
2346 		core->accuracy = core->parent->accuracy;
2347 	else
2348 		core->accuracy = 0;
2349 
2350 	/*
2351 	 * Set clk's phase.
2352 	 * Since a phase is by definition relative to its parent, just
2353 	 * query the current clock phase, or just assume it's in phase.
2354 	 */
2355 	if (core->ops->get_phase)
2356 		core->phase = core->ops->get_phase(core->hw);
2357 	else
2358 		core->phase = 0;
2359 
2360 	/*
2361 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2362 	 * simple clocks and lazy developers the default fallback is to use the
2363 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2364 	 * then rate is set to zero.
2365 	 */
2366 	if (core->ops->recalc_rate)
2367 		rate = core->ops->recalc_rate(core->hw,
2368 				clk_core_get_rate_nolock(core->parent));
2369 	else if (core->parent)
2370 		rate = core->parent->rate;
2371 	else
2372 		rate = 0;
2373 	core->rate = core->req_rate = rate;
2374 
2375 	/*
2376 	 * walk the list of orphan clocks and reparent any that are children of
2377 	 * this clock
2378 	 */
2379 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2380 		if (orphan->num_parents && orphan->ops->get_parent) {
2381 			i = orphan->ops->get_parent(orphan->hw);
2382 			if (!strcmp(core->name, orphan->parent_names[i]))
2383 				clk_core_reparent(orphan, core);
2384 			continue;
2385 		}
2386 
2387 		for (i = 0; i < orphan->num_parents; i++)
2388 			if (!strcmp(core->name, orphan->parent_names[i])) {
2389 				clk_core_reparent(orphan, core);
2390 				break;
2391 			}
2392 	 }
2393 
2394 	/*
2395 	 * optional platform-specific magic
2396 	 *
2397 	 * The .init callback is not used by any of the basic clock types, but
2398 	 * exists for weird hardware that must perform initialization magic.
2399 	 * Please consider other ways of solving initialization problems before
2400 	 * using this callback, as its use is discouraged.
2401 	 */
2402 	if (core->ops->init)
2403 		core->ops->init(core->hw);
2404 
2405 	kref_init(&core->ref);
2406 out:
2407 	clk_prepare_unlock();
2408 
2409 	if (!ret)
2410 		clk_debug_register(core);
2411 
2412 	return ret;
2413 }
2414 
2415 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2416 			     const char *con_id)
2417 {
2418 	struct clk *clk;
2419 
2420 	/* This is to allow this function to be chained to others */
2421 	if (!hw || IS_ERR(hw))
2422 		return (struct clk *) hw;
2423 
2424 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2425 	if (!clk)
2426 		return ERR_PTR(-ENOMEM);
2427 
2428 	clk->core = hw->core;
2429 	clk->dev_id = dev_id;
2430 	clk->con_id = con_id;
2431 	clk->max_rate = ULONG_MAX;
2432 
2433 	clk_prepare_lock();
2434 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2435 	clk_prepare_unlock();
2436 
2437 	return clk;
2438 }
2439 
2440 void __clk_free_clk(struct clk *clk)
2441 {
2442 	clk_prepare_lock();
2443 	hlist_del(&clk->clks_node);
2444 	clk_prepare_unlock();
2445 
2446 	kfree(clk);
2447 }
2448 
2449 /**
2450  * clk_register - allocate a new clock, register it and return an opaque cookie
2451  * @dev: device that is registering this clock
2452  * @hw: link to hardware-specific clock data
2453  *
2454  * clk_register is the primary interface for populating the clock tree with new
2455  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2456  * cannot be dereferenced by driver code but may be used in conjunction with the
2457  * rest of the clock API.  In the event of an error clk_register will return an
2458  * error code; drivers must test for an error code after calling clk_register.
2459  */
2460 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2461 {
2462 	int i, ret;
2463 	struct clk_core *core;
2464 
2465 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2466 	if (!core) {
2467 		ret = -ENOMEM;
2468 		goto fail_out;
2469 	}
2470 
2471 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2472 	if (!core->name) {
2473 		ret = -ENOMEM;
2474 		goto fail_name;
2475 	}
2476 	core->ops = hw->init->ops;
2477 	if (dev && dev->driver)
2478 		core->owner = dev->driver->owner;
2479 	core->hw = hw;
2480 	core->flags = hw->init->flags;
2481 	core->num_parents = hw->init->num_parents;
2482 	hw->core = core;
2483 
2484 	/* allocate local copy in case parent_names is __initdata */
2485 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2486 					GFP_KERNEL);
2487 
2488 	if (!core->parent_names) {
2489 		ret = -ENOMEM;
2490 		goto fail_parent_names;
2491 	}
2492 
2493 
2494 	/* copy each string name in case parent_names is __initdata */
2495 	for (i = 0; i < core->num_parents; i++) {
2496 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2497 						GFP_KERNEL);
2498 		if (!core->parent_names[i]) {
2499 			ret = -ENOMEM;
2500 			goto fail_parent_names_copy;
2501 		}
2502 	}
2503 
2504 	INIT_HLIST_HEAD(&core->clks);
2505 
2506 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2507 	if (IS_ERR(hw->clk)) {
2508 		ret = PTR_ERR(hw->clk);
2509 		goto fail_parent_names_copy;
2510 	}
2511 
2512 	ret = __clk_init(dev, hw->clk);
2513 	if (!ret)
2514 		return hw->clk;
2515 
2516 	__clk_free_clk(hw->clk);
2517 	hw->clk = NULL;
2518 
2519 fail_parent_names_copy:
2520 	while (--i >= 0)
2521 		kfree_const(core->parent_names[i]);
2522 	kfree(core->parent_names);
2523 fail_parent_names:
2524 	kfree_const(core->name);
2525 fail_name:
2526 	kfree(core);
2527 fail_out:
2528 	return ERR_PTR(ret);
2529 }
2530 EXPORT_SYMBOL_GPL(clk_register);
2531 
2532 /* Free memory allocated for a clock. */
2533 static void __clk_release(struct kref *ref)
2534 {
2535 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2536 	int i = core->num_parents;
2537 
2538 	lockdep_assert_held(&prepare_lock);
2539 
2540 	kfree(core->parents);
2541 	while (--i >= 0)
2542 		kfree_const(core->parent_names[i]);
2543 
2544 	kfree(core->parent_names);
2545 	kfree_const(core->name);
2546 	kfree(core);
2547 }
2548 
2549 /*
2550  * Empty clk_ops for unregistered clocks. These are used temporarily
2551  * after clk_unregister() was called on a clock and until last clock
2552  * consumer calls clk_put() and the struct clk object is freed.
2553  */
2554 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2555 {
2556 	return -ENXIO;
2557 }
2558 
2559 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2560 {
2561 	WARN_ON_ONCE(1);
2562 }
2563 
2564 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2565 					unsigned long parent_rate)
2566 {
2567 	return -ENXIO;
2568 }
2569 
2570 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2571 {
2572 	return -ENXIO;
2573 }
2574 
2575 static const struct clk_ops clk_nodrv_ops = {
2576 	.enable		= clk_nodrv_prepare_enable,
2577 	.disable	= clk_nodrv_disable_unprepare,
2578 	.prepare	= clk_nodrv_prepare_enable,
2579 	.unprepare	= clk_nodrv_disable_unprepare,
2580 	.set_rate	= clk_nodrv_set_rate,
2581 	.set_parent	= clk_nodrv_set_parent,
2582 };
2583 
2584 /**
2585  * clk_unregister - unregister a currently registered clock
2586  * @clk: clock to unregister
2587  */
2588 void clk_unregister(struct clk *clk)
2589 {
2590 	unsigned long flags;
2591 
2592 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2593 		return;
2594 
2595 	clk_debug_unregister(clk->core);
2596 
2597 	clk_prepare_lock();
2598 
2599 	if (clk->core->ops == &clk_nodrv_ops) {
2600 		pr_err("%s: unregistered clock: %s\n", __func__,
2601 		       clk->core->name);
2602 		return;
2603 	}
2604 	/*
2605 	 * Assign empty clock ops for consumers that might still hold
2606 	 * a reference to this clock.
2607 	 */
2608 	flags = clk_enable_lock();
2609 	clk->core->ops = &clk_nodrv_ops;
2610 	clk_enable_unlock(flags);
2611 
2612 	if (!hlist_empty(&clk->core->children)) {
2613 		struct clk_core *child;
2614 		struct hlist_node *t;
2615 
2616 		/* Reparent all children to the orphan list. */
2617 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2618 					  child_node)
2619 			clk_core_set_parent(child, NULL);
2620 	}
2621 
2622 	hlist_del_init(&clk->core->child_node);
2623 
2624 	if (clk->core->prepare_count)
2625 		pr_warn("%s: unregistering prepared clock: %s\n",
2626 					__func__, clk->core->name);
2627 	kref_put(&clk->core->ref, __clk_release);
2628 
2629 	clk_prepare_unlock();
2630 }
2631 EXPORT_SYMBOL_GPL(clk_unregister);
2632 
2633 static void devm_clk_release(struct device *dev, void *res)
2634 {
2635 	clk_unregister(*(struct clk **)res);
2636 }
2637 
2638 /**
2639  * devm_clk_register - resource managed clk_register()
2640  * @dev: device that is registering this clock
2641  * @hw: link to hardware-specific clock data
2642  *
2643  * Managed clk_register(). Clocks returned from this function are
2644  * automatically clk_unregister()ed on driver detach. See clk_register() for
2645  * more information.
2646  */
2647 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2648 {
2649 	struct clk *clk;
2650 	struct clk **clkp;
2651 
2652 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2653 	if (!clkp)
2654 		return ERR_PTR(-ENOMEM);
2655 
2656 	clk = clk_register(dev, hw);
2657 	if (!IS_ERR(clk)) {
2658 		*clkp = clk;
2659 		devres_add(dev, clkp);
2660 	} else {
2661 		devres_free(clkp);
2662 	}
2663 
2664 	return clk;
2665 }
2666 EXPORT_SYMBOL_GPL(devm_clk_register);
2667 
2668 static int devm_clk_match(struct device *dev, void *res, void *data)
2669 {
2670 	struct clk *c = res;
2671 	if (WARN_ON(!c))
2672 		return 0;
2673 	return c == data;
2674 }
2675 
2676 /**
2677  * devm_clk_unregister - resource managed clk_unregister()
2678  * @clk: clock to unregister
2679  *
2680  * Deallocate a clock allocated with devm_clk_register(). Normally
2681  * this function will not need to be called and the resource management
2682  * code will ensure that the resource is freed.
2683  */
2684 void devm_clk_unregister(struct device *dev, struct clk *clk)
2685 {
2686 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2687 }
2688 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2689 
2690 /*
2691  * clkdev helpers
2692  */
2693 int __clk_get(struct clk *clk)
2694 {
2695 	struct clk_core *core = !clk ? NULL : clk->core;
2696 
2697 	if (core) {
2698 		if (!try_module_get(core->owner))
2699 			return 0;
2700 
2701 		kref_get(&core->ref);
2702 	}
2703 	return 1;
2704 }
2705 
2706 void __clk_put(struct clk *clk)
2707 {
2708 	struct module *owner;
2709 
2710 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2711 		return;
2712 
2713 	clk_prepare_lock();
2714 
2715 	hlist_del(&clk->clks_node);
2716 	if (clk->min_rate > clk->core->req_rate ||
2717 	    clk->max_rate < clk->core->req_rate)
2718 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2719 
2720 	owner = clk->core->owner;
2721 	kref_put(&clk->core->ref, __clk_release);
2722 
2723 	clk_prepare_unlock();
2724 
2725 	module_put(owner);
2726 
2727 	kfree(clk);
2728 }
2729 
2730 /***        clk rate change notifiers        ***/
2731 
2732 /**
2733  * clk_notifier_register - add a clk rate change notifier
2734  * @clk: struct clk * to watch
2735  * @nb: struct notifier_block * with callback info
2736  *
2737  * Request notification when clk's rate changes.  This uses an SRCU
2738  * notifier because we want it to block and notifier unregistrations are
2739  * uncommon.  The callbacks associated with the notifier must not
2740  * re-enter into the clk framework by calling any top-level clk APIs;
2741  * this will cause a nested prepare_lock mutex.
2742  *
2743  * In all notification cases cases (pre, post and abort rate change) the
2744  * original clock rate is passed to the callback via struct
2745  * clk_notifier_data.old_rate and the new frequency is passed via struct
2746  * clk_notifier_data.new_rate.
2747  *
2748  * clk_notifier_register() must be called from non-atomic context.
2749  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2750  * allocation failure; otherwise, passes along the return value of
2751  * srcu_notifier_chain_register().
2752  */
2753 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2754 {
2755 	struct clk_notifier *cn;
2756 	int ret = -ENOMEM;
2757 
2758 	if (!clk || !nb)
2759 		return -EINVAL;
2760 
2761 	clk_prepare_lock();
2762 
2763 	/* search the list of notifiers for this clk */
2764 	list_for_each_entry(cn, &clk_notifier_list, node)
2765 		if (cn->clk == clk)
2766 			break;
2767 
2768 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2769 	if (cn->clk != clk) {
2770 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2771 		if (!cn)
2772 			goto out;
2773 
2774 		cn->clk = clk;
2775 		srcu_init_notifier_head(&cn->notifier_head);
2776 
2777 		list_add(&cn->node, &clk_notifier_list);
2778 	}
2779 
2780 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2781 
2782 	clk->core->notifier_count++;
2783 
2784 out:
2785 	clk_prepare_unlock();
2786 
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(clk_notifier_register);
2790 
2791 /**
2792  * clk_notifier_unregister - remove a clk rate change notifier
2793  * @clk: struct clk *
2794  * @nb: struct notifier_block * with callback info
2795  *
2796  * Request no further notification for changes to 'clk' and frees memory
2797  * allocated in clk_notifier_register.
2798  *
2799  * Returns -EINVAL if called with null arguments; otherwise, passes
2800  * along the return value of srcu_notifier_chain_unregister().
2801  */
2802 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2803 {
2804 	struct clk_notifier *cn = NULL;
2805 	int ret = -EINVAL;
2806 
2807 	if (!clk || !nb)
2808 		return -EINVAL;
2809 
2810 	clk_prepare_lock();
2811 
2812 	list_for_each_entry(cn, &clk_notifier_list, node)
2813 		if (cn->clk == clk)
2814 			break;
2815 
2816 	if (cn->clk == clk) {
2817 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2818 
2819 		clk->core->notifier_count--;
2820 
2821 		/* XXX the notifier code should handle this better */
2822 		if (!cn->notifier_head.head) {
2823 			srcu_cleanup_notifier_head(&cn->notifier_head);
2824 			list_del(&cn->node);
2825 			kfree(cn);
2826 		}
2827 
2828 	} else {
2829 		ret = -ENOENT;
2830 	}
2831 
2832 	clk_prepare_unlock();
2833 
2834 	return ret;
2835 }
2836 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2837 
2838 #ifdef CONFIG_OF
2839 /**
2840  * struct of_clk_provider - Clock provider registration structure
2841  * @link: Entry in global list of clock providers
2842  * @node: Pointer to device tree node of clock provider
2843  * @get: Get clock callback.  Returns NULL or a struct clk for the
2844  *       given clock specifier
2845  * @data: context pointer to be passed into @get callback
2846  */
2847 struct of_clk_provider {
2848 	struct list_head link;
2849 
2850 	struct device_node *node;
2851 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2852 	void *data;
2853 };
2854 
2855 static const struct of_device_id __clk_of_table_sentinel
2856 	__used __section(__clk_of_table_end);
2857 
2858 static LIST_HEAD(of_clk_providers);
2859 static DEFINE_MUTEX(of_clk_mutex);
2860 
2861 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2862 				     void *data)
2863 {
2864 	return data;
2865 }
2866 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2867 
2868 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2869 {
2870 	struct clk_onecell_data *clk_data = data;
2871 	unsigned int idx = clkspec->args[0];
2872 
2873 	if (idx >= clk_data->clk_num) {
2874 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2875 		return ERR_PTR(-EINVAL);
2876 	}
2877 
2878 	return clk_data->clks[idx];
2879 }
2880 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2881 
2882 /**
2883  * of_clk_add_provider() - Register a clock provider for a node
2884  * @np: Device node pointer associated with clock provider
2885  * @clk_src_get: callback for decoding clock
2886  * @data: context pointer for @clk_src_get callback.
2887  */
2888 int of_clk_add_provider(struct device_node *np,
2889 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2890 						   void *data),
2891 			void *data)
2892 {
2893 	struct of_clk_provider *cp;
2894 	int ret;
2895 
2896 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2897 	if (!cp)
2898 		return -ENOMEM;
2899 
2900 	cp->node = of_node_get(np);
2901 	cp->data = data;
2902 	cp->get = clk_src_get;
2903 
2904 	mutex_lock(&of_clk_mutex);
2905 	list_add(&cp->link, &of_clk_providers);
2906 	mutex_unlock(&of_clk_mutex);
2907 	pr_debug("Added clock from %s\n", np->full_name);
2908 
2909 	ret = of_clk_set_defaults(np, true);
2910 	if (ret < 0)
2911 		of_clk_del_provider(np);
2912 
2913 	return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2916 
2917 /**
2918  * of_clk_del_provider() - Remove a previously registered clock provider
2919  * @np: Device node pointer associated with clock provider
2920  */
2921 void of_clk_del_provider(struct device_node *np)
2922 {
2923 	struct of_clk_provider *cp;
2924 
2925 	mutex_lock(&of_clk_mutex);
2926 	list_for_each_entry(cp, &of_clk_providers, link) {
2927 		if (cp->node == np) {
2928 			list_del(&cp->link);
2929 			of_node_put(cp->node);
2930 			kfree(cp);
2931 			break;
2932 		}
2933 	}
2934 	mutex_unlock(&of_clk_mutex);
2935 }
2936 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2937 
2938 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2939 				       const char *dev_id, const char *con_id)
2940 {
2941 	struct of_clk_provider *provider;
2942 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2943 
2944 	if (!clkspec)
2945 		return ERR_PTR(-EINVAL);
2946 
2947 	/* Check if we have such a provider in our array */
2948 	mutex_lock(&of_clk_mutex);
2949 	list_for_each_entry(provider, &of_clk_providers, link) {
2950 		if (provider->node == clkspec->np)
2951 			clk = provider->get(clkspec, provider->data);
2952 		if (!IS_ERR(clk)) {
2953 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2954 					       con_id);
2955 
2956 			if (!IS_ERR(clk) && !__clk_get(clk)) {
2957 				__clk_free_clk(clk);
2958 				clk = ERR_PTR(-ENOENT);
2959 			}
2960 
2961 			break;
2962 		}
2963 	}
2964 	mutex_unlock(&of_clk_mutex);
2965 
2966 	return clk;
2967 }
2968 
2969 /**
2970  * of_clk_get_from_provider() - Lookup a clock from a clock provider
2971  * @clkspec: pointer to a clock specifier data structure
2972  *
2973  * This function looks up a struct clk from the registered list of clock
2974  * providers, an input is a clock specifier data structure as returned
2975  * from the of_parse_phandle_with_args() function call.
2976  */
2977 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2978 {
2979 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
2980 }
2981 
2982 int of_clk_get_parent_count(struct device_node *np)
2983 {
2984 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2985 }
2986 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2987 
2988 const char *of_clk_get_parent_name(struct device_node *np, int index)
2989 {
2990 	struct of_phandle_args clkspec;
2991 	struct property *prop;
2992 	const char *clk_name;
2993 	const __be32 *vp;
2994 	u32 pv;
2995 	int rc;
2996 	int count;
2997 
2998 	if (index < 0)
2999 		return NULL;
3000 
3001 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3002 					&clkspec);
3003 	if (rc)
3004 		return NULL;
3005 
3006 	index = clkspec.args_count ? clkspec.args[0] : 0;
3007 	count = 0;
3008 
3009 	/* if there is an indices property, use it to transfer the index
3010 	 * specified into an array offset for the clock-output-names property.
3011 	 */
3012 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3013 		if (index == pv) {
3014 			index = count;
3015 			break;
3016 		}
3017 		count++;
3018 	}
3019 
3020 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3021 					  index,
3022 					  &clk_name) < 0)
3023 		clk_name = clkspec.np->name;
3024 
3025 	of_node_put(clkspec.np);
3026 	return clk_name;
3027 }
3028 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3029 
3030 /**
3031  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3032  * number of parents
3033  * @np: Device node pointer associated with clock provider
3034  * @parents: pointer to char array that hold the parents' names
3035  * @size: size of the @parents array
3036  *
3037  * Return: number of parents for the clock node.
3038  */
3039 int of_clk_parent_fill(struct device_node *np, const char **parents,
3040 		       unsigned int size)
3041 {
3042 	unsigned int i = 0;
3043 
3044 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3045 		i++;
3046 
3047 	return i;
3048 }
3049 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3050 
3051 struct clock_provider {
3052 	of_clk_init_cb_t clk_init_cb;
3053 	struct device_node *np;
3054 	struct list_head node;
3055 };
3056 
3057 static LIST_HEAD(clk_provider_list);
3058 
3059 /*
3060  * This function looks for a parent clock. If there is one, then it
3061  * checks that the provider for this parent clock was initialized, in
3062  * this case the parent clock will be ready.
3063  */
3064 static int parent_ready(struct device_node *np)
3065 {
3066 	int i = 0;
3067 
3068 	while (true) {
3069 		struct clk *clk = of_clk_get(np, i);
3070 
3071 		/* this parent is ready we can check the next one */
3072 		if (!IS_ERR(clk)) {
3073 			clk_put(clk);
3074 			i++;
3075 			continue;
3076 		}
3077 
3078 		/* at least one parent is not ready, we exit now */
3079 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3080 			return 0;
3081 
3082 		/*
3083 		 * Here we make assumption that the device tree is
3084 		 * written correctly. So an error means that there is
3085 		 * no more parent. As we didn't exit yet, then the
3086 		 * previous parent are ready. If there is no clock
3087 		 * parent, no need to wait for them, then we can
3088 		 * consider their absence as being ready
3089 		 */
3090 		return 1;
3091 	}
3092 }
3093 
3094 /**
3095  * of_clk_init() - Scan and init clock providers from the DT
3096  * @matches: array of compatible values and init functions for providers.
3097  *
3098  * This function scans the device tree for matching clock providers
3099  * and calls their initialization functions. It also does it by trying
3100  * to follow the dependencies.
3101  */
3102 void __init of_clk_init(const struct of_device_id *matches)
3103 {
3104 	const struct of_device_id *match;
3105 	struct device_node *np;
3106 	struct clock_provider *clk_provider, *next;
3107 	bool is_init_done;
3108 	bool force = false;
3109 
3110 	if (!matches)
3111 		matches = &__clk_of_table;
3112 
3113 	/* First prepare the list of the clocks providers */
3114 	for_each_matching_node_and_match(np, matches, &match) {
3115 		struct clock_provider *parent =
3116 			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
3117 
3118 		parent->clk_init_cb = match->data;
3119 		parent->np = np;
3120 		list_add_tail(&parent->node, &clk_provider_list);
3121 	}
3122 
3123 	while (!list_empty(&clk_provider_list)) {
3124 		is_init_done = false;
3125 		list_for_each_entry_safe(clk_provider, next,
3126 					&clk_provider_list, node) {
3127 			if (force || parent_ready(clk_provider->np)) {
3128 
3129 				clk_provider->clk_init_cb(clk_provider->np);
3130 				of_clk_set_defaults(clk_provider->np, true);
3131 
3132 				list_del(&clk_provider->node);
3133 				kfree(clk_provider);
3134 				is_init_done = true;
3135 			}
3136 		}
3137 
3138 		/*
3139 		 * We didn't manage to initialize any of the
3140 		 * remaining providers during the last loop, so now we
3141 		 * initialize all the remaining ones unconditionally
3142 		 * in case the clock parent was not mandatory
3143 		 */
3144 		if (!is_init_done)
3145 			force = true;
3146 	}
3147 }
3148 #endif
3149