xref: /openbmc/linux/drivers/clk/clk.c (revision bb3982b4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /***    private data structures    ***/
41 
42 struct clk_parent_map {
43 	const struct clk_hw	*hw;
44 	struct clk_core		*core;
45 	const char		*fw_name;
46 	const char		*name;
47 	int			index;
48 };
49 
50 struct clk_core {
51 	const char		*name;
52 	const struct clk_ops	*ops;
53 	struct clk_hw		*hw;
54 	struct module		*owner;
55 	struct device		*dev;
56 	struct device_node	*of_node;
57 	struct clk_core		*parent;
58 	struct clk_parent_map	*parents;
59 	u8			num_parents;
60 	u8			new_parent_index;
61 	unsigned long		rate;
62 	unsigned long		req_rate;
63 	unsigned long		new_rate;
64 	struct clk_core		*new_parent;
65 	struct clk_core		*new_child;
66 	unsigned long		flags;
67 	bool			orphan;
68 	bool			rpm_enabled;
69 	unsigned int		enable_count;
70 	unsigned int		prepare_count;
71 	unsigned int		protect_count;
72 	unsigned long		min_rate;
73 	unsigned long		max_rate;
74 	unsigned long		accuracy;
75 	int			phase;
76 	struct clk_duty		duty;
77 	struct hlist_head	children;
78 	struct hlist_node	child_node;
79 	struct hlist_head	clks;
80 	unsigned int		notifier_count;
81 #ifdef CONFIG_DEBUG_FS
82 	struct dentry		*dentry;
83 	struct hlist_node	debug_node;
84 #endif
85 	struct kref		ref;
86 };
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/clk.h>
90 
91 struct clk {
92 	struct clk_core	*core;
93 	struct device *dev;
94 	const char *dev_id;
95 	const char *con_id;
96 	unsigned long min_rate;
97 	unsigned long max_rate;
98 	unsigned int exclusive_count;
99 	struct hlist_node clks_node;
100 };
101 
102 /***           runtime pm          ***/
103 static int clk_pm_runtime_get(struct clk_core *core)
104 {
105 	int ret;
106 
107 	if (!core->rpm_enabled)
108 		return 0;
109 
110 	ret = pm_runtime_get_sync(core->dev);
111 	return ret < 0 ? ret : 0;
112 }
113 
114 static void clk_pm_runtime_put(struct clk_core *core)
115 {
116 	if (!core->rpm_enabled)
117 		return;
118 
119 	pm_runtime_put_sync(core->dev);
120 }
121 
122 /***           locking             ***/
123 static void clk_prepare_lock(void)
124 {
125 	if (!mutex_trylock(&prepare_lock)) {
126 		if (prepare_owner == current) {
127 			prepare_refcnt++;
128 			return;
129 		}
130 		mutex_lock(&prepare_lock);
131 	}
132 	WARN_ON_ONCE(prepare_owner != NULL);
133 	WARN_ON_ONCE(prepare_refcnt != 0);
134 	prepare_owner = current;
135 	prepare_refcnt = 1;
136 }
137 
138 static void clk_prepare_unlock(void)
139 {
140 	WARN_ON_ONCE(prepare_owner != current);
141 	WARN_ON_ONCE(prepare_refcnt == 0);
142 
143 	if (--prepare_refcnt)
144 		return;
145 	prepare_owner = NULL;
146 	mutex_unlock(&prepare_lock);
147 }
148 
149 static unsigned long clk_enable_lock(void)
150 	__acquires(enable_lock)
151 {
152 	unsigned long flags;
153 
154 	/*
155 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
156 	 * we already hold the lock. So, in that case, we rely only on
157 	 * reference counting.
158 	 */
159 	if (!IS_ENABLED(CONFIG_SMP) ||
160 	    !spin_trylock_irqsave(&enable_lock, flags)) {
161 		if (enable_owner == current) {
162 			enable_refcnt++;
163 			__acquire(enable_lock);
164 			if (!IS_ENABLED(CONFIG_SMP))
165 				local_save_flags(flags);
166 			return flags;
167 		}
168 		spin_lock_irqsave(&enable_lock, flags);
169 	}
170 	WARN_ON_ONCE(enable_owner != NULL);
171 	WARN_ON_ONCE(enable_refcnt != 0);
172 	enable_owner = current;
173 	enable_refcnt = 1;
174 	return flags;
175 }
176 
177 static void clk_enable_unlock(unsigned long flags)
178 	__releases(enable_lock)
179 {
180 	WARN_ON_ONCE(enable_owner != current);
181 	WARN_ON_ONCE(enable_refcnt == 0);
182 
183 	if (--enable_refcnt) {
184 		__release(enable_lock);
185 		return;
186 	}
187 	enable_owner = NULL;
188 	spin_unlock_irqrestore(&enable_lock, flags);
189 }
190 
191 static bool clk_core_rate_is_protected(struct clk_core *core)
192 {
193 	return core->protect_count;
194 }
195 
196 static bool clk_core_is_prepared(struct clk_core *core)
197 {
198 	bool ret = false;
199 
200 	/*
201 	 * .is_prepared is optional for clocks that can prepare
202 	 * fall back to software usage counter if it is missing
203 	 */
204 	if (!core->ops->is_prepared)
205 		return core->prepare_count;
206 
207 	if (!clk_pm_runtime_get(core)) {
208 		ret = core->ops->is_prepared(core->hw);
209 		clk_pm_runtime_put(core);
210 	}
211 
212 	return ret;
213 }
214 
215 static bool clk_core_is_enabled(struct clk_core *core)
216 {
217 	bool ret = false;
218 
219 	/*
220 	 * .is_enabled is only mandatory for clocks that gate
221 	 * fall back to software usage counter if .is_enabled is missing
222 	 */
223 	if (!core->ops->is_enabled)
224 		return core->enable_count;
225 
226 	/*
227 	 * Check if clock controller's device is runtime active before
228 	 * calling .is_enabled callback. If not, assume that clock is
229 	 * disabled, because we might be called from atomic context, from
230 	 * which pm_runtime_get() is not allowed.
231 	 * This function is called mainly from clk_disable_unused_subtree,
232 	 * which ensures proper runtime pm activation of controller before
233 	 * taking enable spinlock, but the below check is needed if one tries
234 	 * to call it from other places.
235 	 */
236 	if (core->rpm_enabled) {
237 		pm_runtime_get_noresume(core->dev);
238 		if (!pm_runtime_active(core->dev)) {
239 			ret = false;
240 			goto done;
241 		}
242 	}
243 
244 	ret = core->ops->is_enabled(core->hw);
245 done:
246 	if (core->rpm_enabled)
247 		pm_runtime_put(core->dev);
248 
249 	return ret;
250 }
251 
252 /***    helper functions   ***/
253 
254 const char *__clk_get_name(const struct clk *clk)
255 {
256 	return !clk ? NULL : clk->core->name;
257 }
258 EXPORT_SYMBOL_GPL(__clk_get_name);
259 
260 const char *clk_hw_get_name(const struct clk_hw *hw)
261 {
262 	return hw->core->name;
263 }
264 EXPORT_SYMBOL_GPL(clk_hw_get_name);
265 
266 struct clk_hw *__clk_get_hw(struct clk *clk)
267 {
268 	return !clk ? NULL : clk->core->hw;
269 }
270 EXPORT_SYMBOL_GPL(__clk_get_hw);
271 
272 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
273 {
274 	return hw->core->num_parents;
275 }
276 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
277 
278 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
279 {
280 	return hw->core->parent ? hw->core->parent->hw : NULL;
281 }
282 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
283 
284 static struct clk_core *__clk_lookup_subtree(const char *name,
285 					     struct clk_core *core)
286 {
287 	struct clk_core *child;
288 	struct clk_core *ret;
289 
290 	if (!strcmp(core->name, name))
291 		return core;
292 
293 	hlist_for_each_entry(child, &core->children, child_node) {
294 		ret = __clk_lookup_subtree(name, child);
295 		if (ret)
296 			return ret;
297 	}
298 
299 	return NULL;
300 }
301 
302 static struct clk_core *clk_core_lookup(const char *name)
303 {
304 	struct clk_core *root_clk;
305 	struct clk_core *ret;
306 
307 	if (!name)
308 		return NULL;
309 
310 	/* search the 'proper' clk tree first */
311 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
312 		ret = __clk_lookup_subtree(name, root_clk);
313 		if (ret)
314 			return ret;
315 	}
316 
317 	/* if not found, then search the orphan tree */
318 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
319 		ret = __clk_lookup_subtree(name, root_clk);
320 		if (ret)
321 			return ret;
322 	}
323 
324 	return NULL;
325 }
326 
327 /**
328  * clk_core_get - Find the clk_core parent of a clk
329  * @core: clk to find parent of
330  * @p_index: parent index to search for
331  *
332  * This is the preferred method for clk providers to find the parent of a
333  * clk when that parent is external to the clk controller. The parent_names
334  * array is indexed and treated as a local name matching a string in the device
335  * node's 'clock-names' property or as the 'con_id' matching the device's
336  * dev_name() in a clk_lookup. This allows clk providers to use their own
337  * namespace instead of looking for a globally unique parent string.
338  *
339  * For example the following DT snippet would allow a clock registered by the
340  * clock-controller@c001 that has a clk_init_data::parent_data array
341  * with 'xtal' in the 'name' member to find the clock provided by the
342  * clock-controller@f00abcd without needing to get the globally unique name of
343  * the xtal clk.
344  *
345  *      parent: clock-controller@f00abcd {
346  *              reg = <0xf00abcd 0xabcd>;
347  *              #clock-cells = <0>;
348  *      };
349  *
350  *      clock-controller@c001 {
351  *              reg = <0xc001 0xf00d>;
352  *              clocks = <&parent>;
353  *              clock-names = "xtal";
354  *              #clock-cells = <1>;
355  *      };
356  *
357  * Returns: -ENOENT when the provider can't be found or the clk doesn't
358  * exist in the provider. -EINVAL when the name can't be found. NULL when the
359  * provider knows about the clk but it isn't provided on this system.
360  * A valid clk_core pointer when the clk can be found in the provider.
361  */
362 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
363 {
364 	const char *name = core->parents[p_index].fw_name;
365 	int index = core->parents[p_index].index;
366 	struct clk_hw *hw = ERR_PTR(-ENOENT);
367 	struct device *dev = core->dev;
368 	const char *dev_id = dev ? dev_name(dev) : NULL;
369 	struct device_node *np = core->of_node;
370 
371 	if (np && index >= 0)
372 		hw = of_clk_get_hw(np, index, name);
373 
374 	/*
375 	 * If the DT search above couldn't find the provider or the provider
376 	 * didn't know about this clk, fallback to looking up via clkdev based
377 	 * clk_lookups
378 	 */
379 	if (PTR_ERR(hw) == -ENOENT && name)
380 		hw = clk_find_hw(dev_id, name);
381 
382 	if (IS_ERR(hw))
383 		return ERR_CAST(hw);
384 
385 	return hw->core;
386 }
387 
388 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
389 {
390 	struct clk_parent_map *entry = &core->parents[index];
391 	struct clk_core *parent = ERR_PTR(-ENOENT);
392 
393 	if (entry->hw) {
394 		parent = entry->hw->core;
395 		/*
396 		 * We have a direct reference but it isn't registered yet?
397 		 * Orphan it and let clk_reparent() update the orphan status
398 		 * when the parent is registered.
399 		 */
400 		if (!parent)
401 			parent = ERR_PTR(-EPROBE_DEFER);
402 	} else {
403 		parent = clk_core_get(core, index);
404 		if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT)
405 			parent = clk_core_lookup(entry->name);
406 	}
407 
408 	/* Only cache it if it's not an error */
409 	if (!IS_ERR(parent))
410 		entry->core = parent;
411 }
412 
413 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
414 							 u8 index)
415 {
416 	if (!core || index >= core->num_parents || !core->parents)
417 		return NULL;
418 
419 	if (!core->parents[index].core)
420 		clk_core_fill_parent_index(core, index);
421 
422 	return core->parents[index].core;
423 }
424 
425 struct clk_hw *
426 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
427 {
428 	struct clk_core *parent;
429 
430 	parent = clk_core_get_parent_by_index(hw->core, index);
431 
432 	return !parent ? NULL : parent->hw;
433 }
434 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
435 
436 unsigned int __clk_get_enable_count(struct clk *clk)
437 {
438 	return !clk ? 0 : clk->core->enable_count;
439 }
440 
441 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
442 {
443 	if (!core)
444 		return 0;
445 
446 	if (!core->num_parents || core->parent)
447 		return core->rate;
448 
449 	/*
450 	 * Clk must have a parent because num_parents > 0 but the parent isn't
451 	 * known yet. Best to return 0 as the rate of this clk until we can
452 	 * properly recalc the rate based on the parent's rate.
453 	 */
454 	return 0;
455 }
456 
457 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
458 {
459 	return clk_core_get_rate_nolock(hw->core);
460 }
461 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
462 
463 static unsigned long __clk_get_accuracy(struct clk_core *core)
464 {
465 	if (!core)
466 		return 0;
467 
468 	return core->accuracy;
469 }
470 
471 unsigned long __clk_get_flags(struct clk *clk)
472 {
473 	return !clk ? 0 : clk->core->flags;
474 }
475 EXPORT_SYMBOL_GPL(__clk_get_flags);
476 
477 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
478 {
479 	return hw->core->flags;
480 }
481 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
482 
483 bool clk_hw_is_prepared(const struct clk_hw *hw)
484 {
485 	return clk_core_is_prepared(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
488 
489 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
490 {
491 	return clk_core_rate_is_protected(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
494 
495 bool clk_hw_is_enabled(const struct clk_hw *hw)
496 {
497 	return clk_core_is_enabled(hw->core);
498 }
499 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
500 
501 bool __clk_is_enabled(struct clk *clk)
502 {
503 	if (!clk)
504 		return false;
505 
506 	return clk_core_is_enabled(clk->core);
507 }
508 EXPORT_SYMBOL_GPL(__clk_is_enabled);
509 
510 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
511 			   unsigned long best, unsigned long flags)
512 {
513 	if (flags & CLK_MUX_ROUND_CLOSEST)
514 		return abs(now - rate) < abs(best - rate);
515 
516 	return now <= rate && now > best;
517 }
518 
519 int clk_mux_determine_rate_flags(struct clk_hw *hw,
520 				 struct clk_rate_request *req,
521 				 unsigned long flags)
522 {
523 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
524 	int i, num_parents, ret;
525 	unsigned long best = 0;
526 	struct clk_rate_request parent_req = *req;
527 
528 	/* if NO_REPARENT flag set, pass through to current parent */
529 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
530 		parent = core->parent;
531 		if (core->flags & CLK_SET_RATE_PARENT) {
532 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
533 						   &parent_req);
534 			if (ret)
535 				return ret;
536 
537 			best = parent_req.rate;
538 		} else if (parent) {
539 			best = clk_core_get_rate_nolock(parent);
540 		} else {
541 			best = clk_core_get_rate_nolock(core);
542 		}
543 
544 		goto out;
545 	}
546 
547 	/* find the parent that can provide the fastest rate <= rate */
548 	num_parents = core->num_parents;
549 	for (i = 0; i < num_parents; i++) {
550 		parent = clk_core_get_parent_by_index(core, i);
551 		if (!parent)
552 			continue;
553 
554 		if (core->flags & CLK_SET_RATE_PARENT) {
555 			parent_req = *req;
556 			ret = __clk_determine_rate(parent->hw, &parent_req);
557 			if (ret)
558 				continue;
559 		} else {
560 			parent_req.rate = clk_core_get_rate_nolock(parent);
561 		}
562 
563 		if (mux_is_better_rate(req->rate, parent_req.rate,
564 				       best, flags)) {
565 			best_parent = parent;
566 			best = parent_req.rate;
567 		}
568 	}
569 
570 	if (!best_parent)
571 		return -EINVAL;
572 
573 out:
574 	if (best_parent)
575 		req->best_parent_hw = best_parent->hw;
576 	req->best_parent_rate = best;
577 	req->rate = best;
578 
579 	return 0;
580 }
581 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
582 
583 struct clk *__clk_lookup(const char *name)
584 {
585 	struct clk_core *core = clk_core_lookup(name);
586 
587 	return !core ? NULL : core->hw->clk;
588 }
589 
590 static void clk_core_get_boundaries(struct clk_core *core,
591 				    unsigned long *min_rate,
592 				    unsigned long *max_rate)
593 {
594 	struct clk *clk_user;
595 
596 	*min_rate = core->min_rate;
597 	*max_rate = core->max_rate;
598 
599 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
600 		*min_rate = max(*min_rate, clk_user->min_rate);
601 
602 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
603 		*max_rate = min(*max_rate, clk_user->max_rate);
604 }
605 
606 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
607 			   unsigned long max_rate)
608 {
609 	hw->core->min_rate = min_rate;
610 	hw->core->max_rate = max_rate;
611 }
612 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
613 
614 /*
615  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
616  * @hw: mux type clk to determine rate on
617  * @req: rate request, also used to return preferred parent and frequencies
618  *
619  * Helper for finding best parent to provide a given frequency. This can be used
620  * directly as a determine_rate callback (e.g. for a mux), or from a more
621  * complex clock that may combine a mux with other operations.
622  *
623  * Returns: 0 on success, -EERROR value on error
624  */
625 int __clk_mux_determine_rate(struct clk_hw *hw,
626 			     struct clk_rate_request *req)
627 {
628 	return clk_mux_determine_rate_flags(hw, req, 0);
629 }
630 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
631 
632 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
633 				     struct clk_rate_request *req)
634 {
635 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
636 }
637 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
638 
639 /***        clk api        ***/
640 
641 static void clk_core_rate_unprotect(struct clk_core *core)
642 {
643 	lockdep_assert_held(&prepare_lock);
644 
645 	if (!core)
646 		return;
647 
648 	if (WARN(core->protect_count == 0,
649 	    "%s already unprotected\n", core->name))
650 		return;
651 
652 	if (--core->protect_count > 0)
653 		return;
654 
655 	clk_core_rate_unprotect(core->parent);
656 }
657 
658 static int clk_core_rate_nuke_protect(struct clk_core *core)
659 {
660 	int ret;
661 
662 	lockdep_assert_held(&prepare_lock);
663 
664 	if (!core)
665 		return -EINVAL;
666 
667 	if (core->protect_count == 0)
668 		return 0;
669 
670 	ret = core->protect_count;
671 	core->protect_count = 1;
672 	clk_core_rate_unprotect(core);
673 
674 	return ret;
675 }
676 
677 /**
678  * clk_rate_exclusive_put - release exclusivity over clock rate control
679  * @clk: the clk over which the exclusivity is released
680  *
681  * clk_rate_exclusive_put() completes a critical section during which a clock
682  * consumer cannot tolerate any other consumer making any operation on the
683  * clock which could result in a rate change or rate glitch. Exclusive clocks
684  * cannot have their rate changed, either directly or indirectly due to changes
685  * further up the parent chain of clocks. As a result, clocks up parent chain
686  * also get under exclusive control of the calling consumer.
687  *
688  * If exlusivity is claimed more than once on clock, even by the same consumer,
689  * the rate effectively gets locked as exclusivity can't be preempted.
690  *
691  * Calls to clk_rate_exclusive_put() must be balanced with calls to
692  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
693  * error status.
694  */
695 void clk_rate_exclusive_put(struct clk *clk)
696 {
697 	if (!clk)
698 		return;
699 
700 	clk_prepare_lock();
701 
702 	/*
703 	 * if there is something wrong with this consumer protect count, stop
704 	 * here before messing with the provider
705 	 */
706 	if (WARN_ON(clk->exclusive_count <= 0))
707 		goto out;
708 
709 	clk_core_rate_unprotect(clk->core);
710 	clk->exclusive_count--;
711 out:
712 	clk_prepare_unlock();
713 }
714 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
715 
716 static void clk_core_rate_protect(struct clk_core *core)
717 {
718 	lockdep_assert_held(&prepare_lock);
719 
720 	if (!core)
721 		return;
722 
723 	if (core->protect_count == 0)
724 		clk_core_rate_protect(core->parent);
725 
726 	core->protect_count++;
727 }
728 
729 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
730 {
731 	lockdep_assert_held(&prepare_lock);
732 
733 	if (!core)
734 		return;
735 
736 	if (count == 0)
737 		return;
738 
739 	clk_core_rate_protect(core);
740 	core->protect_count = count;
741 }
742 
743 /**
744  * clk_rate_exclusive_get - get exclusivity over the clk rate control
745  * @clk: the clk over which the exclusity of rate control is requested
746  *
747  * clk_rate_exlusive_get() begins a critical section during which a clock
748  * consumer cannot tolerate any other consumer making any operation on the
749  * clock which could result in a rate change or rate glitch. Exclusive clocks
750  * cannot have their rate changed, either directly or indirectly due to changes
751  * further up the parent chain of clocks. As a result, clocks up parent chain
752  * also get under exclusive control of the calling consumer.
753  *
754  * If exlusivity is claimed more than once on clock, even by the same consumer,
755  * the rate effectively gets locked as exclusivity can't be preempted.
756  *
757  * Calls to clk_rate_exclusive_get() should be balanced with calls to
758  * clk_rate_exclusive_put(). Calls to this function may sleep.
759  * Returns 0 on success, -EERROR otherwise
760  */
761 int clk_rate_exclusive_get(struct clk *clk)
762 {
763 	if (!clk)
764 		return 0;
765 
766 	clk_prepare_lock();
767 	clk_core_rate_protect(clk->core);
768 	clk->exclusive_count++;
769 	clk_prepare_unlock();
770 
771 	return 0;
772 }
773 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
774 
775 static void clk_core_unprepare(struct clk_core *core)
776 {
777 	lockdep_assert_held(&prepare_lock);
778 
779 	if (!core)
780 		return;
781 
782 	if (WARN(core->prepare_count == 0,
783 	    "%s already unprepared\n", core->name))
784 		return;
785 
786 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
787 	    "Unpreparing critical %s\n", core->name))
788 		return;
789 
790 	if (core->flags & CLK_SET_RATE_GATE)
791 		clk_core_rate_unprotect(core);
792 
793 	if (--core->prepare_count > 0)
794 		return;
795 
796 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
797 
798 	trace_clk_unprepare(core);
799 
800 	if (core->ops->unprepare)
801 		core->ops->unprepare(core->hw);
802 
803 	clk_pm_runtime_put(core);
804 
805 	trace_clk_unprepare_complete(core);
806 	clk_core_unprepare(core->parent);
807 }
808 
809 static void clk_core_unprepare_lock(struct clk_core *core)
810 {
811 	clk_prepare_lock();
812 	clk_core_unprepare(core);
813 	clk_prepare_unlock();
814 }
815 
816 /**
817  * clk_unprepare - undo preparation of a clock source
818  * @clk: the clk being unprepared
819  *
820  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
821  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
822  * if the operation may sleep.  One example is a clk which is accessed over
823  * I2c.  In the complex case a clk gate operation may require a fast and a slow
824  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
825  * exclusive.  In fact clk_disable must be called before clk_unprepare.
826  */
827 void clk_unprepare(struct clk *clk)
828 {
829 	if (IS_ERR_OR_NULL(clk))
830 		return;
831 
832 	clk_core_unprepare_lock(clk->core);
833 }
834 EXPORT_SYMBOL_GPL(clk_unprepare);
835 
836 static int clk_core_prepare(struct clk_core *core)
837 {
838 	int ret = 0;
839 
840 	lockdep_assert_held(&prepare_lock);
841 
842 	if (!core)
843 		return 0;
844 
845 	if (core->prepare_count == 0) {
846 		ret = clk_pm_runtime_get(core);
847 		if (ret)
848 			return ret;
849 
850 		ret = clk_core_prepare(core->parent);
851 		if (ret)
852 			goto runtime_put;
853 
854 		trace_clk_prepare(core);
855 
856 		if (core->ops->prepare)
857 			ret = core->ops->prepare(core->hw);
858 
859 		trace_clk_prepare_complete(core);
860 
861 		if (ret)
862 			goto unprepare;
863 	}
864 
865 	core->prepare_count++;
866 
867 	/*
868 	 * CLK_SET_RATE_GATE is a special case of clock protection
869 	 * Instead of a consumer claiming exclusive rate control, it is
870 	 * actually the provider which prevents any consumer from making any
871 	 * operation which could result in a rate change or rate glitch while
872 	 * the clock is prepared.
873 	 */
874 	if (core->flags & CLK_SET_RATE_GATE)
875 		clk_core_rate_protect(core);
876 
877 	return 0;
878 unprepare:
879 	clk_core_unprepare(core->parent);
880 runtime_put:
881 	clk_pm_runtime_put(core);
882 	return ret;
883 }
884 
885 static int clk_core_prepare_lock(struct clk_core *core)
886 {
887 	int ret;
888 
889 	clk_prepare_lock();
890 	ret = clk_core_prepare(core);
891 	clk_prepare_unlock();
892 
893 	return ret;
894 }
895 
896 /**
897  * clk_prepare - prepare a clock source
898  * @clk: the clk being prepared
899  *
900  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
901  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
902  * operation may sleep.  One example is a clk which is accessed over I2c.  In
903  * the complex case a clk ungate operation may require a fast and a slow part.
904  * It is this reason that clk_prepare and clk_enable are not mutually
905  * exclusive.  In fact clk_prepare must be called before clk_enable.
906  * Returns 0 on success, -EERROR otherwise.
907  */
908 int clk_prepare(struct clk *clk)
909 {
910 	if (!clk)
911 		return 0;
912 
913 	return clk_core_prepare_lock(clk->core);
914 }
915 EXPORT_SYMBOL_GPL(clk_prepare);
916 
917 static void clk_core_disable(struct clk_core *core)
918 {
919 	lockdep_assert_held(&enable_lock);
920 
921 	if (!core)
922 		return;
923 
924 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
925 		return;
926 
927 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
928 	    "Disabling critical %s\n", core->name))
929 		return;
930 
931 	if (--core->enable_count > 0)
932 		return;
933 
934 	trace_clk_disable_rcuidle(core);
935 
936 	if (core->ops->disable)
937 		core->ops->disable(core->hw);
938 
939 	trace_clk_disable_complete_rcuidle(core);
940 
941 	clk_core_disable(core->parent);
942 }
943 
944 static void clk_core_disable_lock(struct clk_core *core)
945 {
946 	unsigned long flags;
947 
948 	flags = clk_enable_lock();
949 	clk_core_disable(core);
950 	clk_enable_unlock(flags);
951 }
952 
953 /**
954  * clk_disable - gate a clock
955  * @clk: the clk being gated
956  *
957  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
958  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
959  * clk if the operation is fast and will never sleep.  One example is a
960  * SoC-internal clk which is controlled via simple register writes.  In the
961  * complex case a clk gate operation may require a fast and a slow part.  It is
962  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
963  * In fact clk_disable must be called before clk_unprepare.
964  */
965 void clk_disable(struct clk *clk)
966 {
967 	if (IS_ERR_OR_NULL(clk))
968 		return;
969 
970 	clk_core_disable_lock(clk->core);
971 }
972 EXPORT_SYMBOL_GPL(clk_disable);
973 
974 static int clk_core_enable(struct clk_core *core)
975 {
976 	int ret = 0;
977 
978 	lockdep_assert_held(&enable_lock);
979 
980 	if (!core)
981 		return 0;
982 
983 	if (WARN(core->prepare_count == 0,
984 	    "Enabling unprepared %s\n", core->name))
985 		return -ESHUTDOWN;
986 
987 	if (core->enable_count == 0) {
988 		ret = clk_core_enable(core->parent);
989 
990 		if (ret)
991 			return ret;
992 
993 		trace_clk_enable_rcuidle(core);
994 
995 		if (core->ops->enable)
996 			ret = core->ops->enable(core->hw);
997 
998 		trace_clk_enable_complete_rcuidle(core);
999 
1000 		if (ret) {
1001 			clk_core_disable(core->parent);
1002 			return ret;
1003 		}
1004 	}
1005 
1006 	core->enable_count++;
1007 	return 0;
1008 }
1009 
1010 static int clk_core_enable_lock(struct clk_core *core)
1011 {
1012 	unsigned long flags;
1013 	int ret;
1014 
1015 	flags = clk_enable_lock();
1016 	ret = clk_core_enable(core);
1017 	clk_enable_unlock(flags);
1018 
1019 	return ret;
1020 }
1021 
1022 /**
1023  * clk_gate_restore_context - restore context for poweroff
1024  * @hw: the clk_hw pointer of clock whose state is to be restored
1025  *
1026  * The clock gate restore context function enables or disables
1027  * the gate clocks based on the enable_count. This is done in cases
1028  * where the clock context is lost and based on the enable_count
1029  * the clock either needs to be enabled/disabled. This
1030  * helps restore the state of gate clocks.
1031  */
1032 void clk_gate_restore_context(struct clk_hw *hw)
1033 {
1034 	struct clk_core *core = hw->core;
1035 
1036 	if (core->enable_count)
1037 		core->ops->enable(hw);
1038 	else
1039 		core->ops->disable(hw);
1040 }
1041 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1042 
1043 static int clk_core_save_context(struct clk_core *core)
1044 {
1045 	struct clk_core *child;
1046 	int ret = 0;
1047 
1048 	hlist_for_each_entry(child, &core->children, child_node) {
1049 		ret = clk_core_save_context(child);
1050 		if (ret < 0)
1051 			return ret;
1052 	}
1053 
1054 	if (core->ops && core->ops->save_context)
1055 		ret = core->ops->save_context(core->hw);
1056 
1057 	return ret;
1058 }
1059 
1060 static void clk_core_restore_context(struct clk_core *core)
1061 {
1062 	struct clk_core *child;
1063 
1064 	if (core->ops && core->ops->restore_context)
1065 		core->ops->restore_context(core->hw);
1066 
1067 	hlist_for_each_entry(child, &core->children, child_node)
1068 		clk_core_restore_context(child);
1069 }
1070 
1071 /**
1072  * clk_save_context - save clock context for poweroff
1073  *
1074  * Saves the context of the clock register for powerstates in which the
1075  * contents of the registers will be lost. Occurs deep within the suspend
1076  * code.  Returns 0 on success.
1077  */
1078 int clk_save_context(void)
1079 {
1080 	struct clk_core *clk;
1081 	int ret;
1082 
1083 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1084 		ret = clk_core_save_context(clk);
1085 		if (ret < 0)
1086 			return ret;
1087 	}
1088 
1089 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1090 		ret = clk_core_save_context(clk);
1091 		if (ret < 0)
1092 			return ret;
1093 	}
1094 
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(clk_save_context);
1098 
1099 /**
1100  * clk_restore_context - restore clock context after poweroff
1101  *
1102  * Restore the saved clock context upon resume.
1103  *
1104  */
1105 void clk_restore_context(void)
1106 {
1107 	struct clk_core *core;
1108 
1109 	hlist_for_each_entry(core, &clk_root_list, child_node)
1110 		clk_core_restore_context(core);
1111 
1112 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1113 		clk_core_restore_context(core);
1114 }
1115 EXPORT_SYMBOL_GPL(clk_restore_context);
1116 
1117 /**
1118  * clk_enable - ungate a clock
1119  * @clk: the clk being ungated
1120  *
1121  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1122  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1123  * if the operation will never sleep.  One example is a SoC-internal clk which
1124  * is controlled via simple register writes.  In the complex case a clk ungate
1125  * operation may require a fast and a slow part.  It is this reason that
1126  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1127  * must be called before clk_enable.  Returns 0 on success, -EERROR
1128  * otherwise.
1129  */
1130 int clk_enable(struct clk *clk)
1131 {
1132 	if (!clk)
1133 		return 0;
1134 
1135 	return clk_core_enable_lock(clk->core);
1136 }
1137 EXPORT_SYMBOL_GPL(clk_enable);
1138 
1139 static int clk_core_prepare_enable(struct clk_core *core)
1140 {
1141 	int ret;
1142 
1143 	ret = clk_core_prepare_lock(core);
1144 	if (ret)
1145 		return ret;
1146 
1147 	ret = clk_core_enable_lock(core);
1148 	if (ret)
1149 		clk_core_unprepare_lock(core);
1150 
1151 	return ret;
1152 }
1153 
1154 static void clk_core_disable_unprepare(struct clk_core *core)
1155 {
1156 	clk_core_disable_lock(core);
1157 	clk_core_unprepare_lock(core);
1158 }
1159 
1160 static void clk_unprepare_unused_subtree(struct clk_core *core)
1161 {
1162 	struct clk_core *child;
1163 
1164 	lockdep_assert_held(&prepare_lock);
1165 
1166 	hlist_for_each_entry(child, &core->children, child_node)
1167 		clk_unprepare_unused_subtree(child);
1168 
1169 	if (core->prepare_count)
1170 		return;
1171 
1172 	if (core->flags & CLK_IGNORE_UNUSED)
1173 		return;
1174 
1175 	if (clk_pm_runtime_get(core))
1176 		return;
1177 
1178 	if (clk_core_is_prepared(core)) {
1179 		trace_clk_unprepare(core);
1180 		if (core->ops->unprepare_unused)
1181 			core->ops->unprepare_unused(core->hw);
1182 		else if (core->ops->unprepare)
1183 			core->ops->unprepare(core->hw);
1184 		trace_clk_unprepare_complete(core);
1185 	}
1186 
1187 	clk_pm_runtime_put(core);
1188 }
1189 
1190 static void clk_disable_unused_subtree(struct clk_core *core)
1191 {
1192 	struct clk_core *child;
1193 	unsigned long flags;
1194 
1195 	lockdep_assert_held(&prepare_lock);
1196 
1197 	hlist_for_each_entry(child, &core->children, child_node)
1198 		clk_disable_unused_subtree(child);
1199 
1200 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1201 		clk_core_prepare_enable(core->parent);
1202 
1203 	if (clk_pm_runtime_get(core))
1204 		goto unprepare_out;
1205 
1206 	flags = clk_enable_lock();
1207 
1208 	if (core->enable_count)
1209 		goto unlock_out;
1210 
1211 	if (core->flags & CLK_IGNORE_UNUSED)
1212 		goto unlock_out;
1213 
1214 	/*
1215 	 * some gate clocks have special needs during the disable-unused
1216 	 * sequence.  call .disable_unused if available, otherwise fall
1217 	 * back to .disable
1218 	 */
1219 	if (clk_core_is_enabled(core)) {
1220 		trace_clk_disable(core);
1221 		if (core->ops->disable_unused)
1222 			core->ops->disable_unused(core->hw);
1223 		else if (core->ops->disable)
1224 			core->ops->disable(core->hw);
1225 		trace_clk_disable_complete(core);
1226 	}
1227 
1228 unlock_out:
1229 	clk_enable_unlock(flags);
1230 	clk_pm_runtime_put(core);
1231 unprepare_out:
1232 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1233 		clk_core_disable_unprepare(core->parent);
1234 }
1235 
1236 static bool clk_ignore_unused;
1237 static int __init clk_ignore_unused_setup(char *__unused)
1238 {
1239 	clk_ignore_unused = true;
1240 	return 1;
1241 }
1242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1243 
1244 static int clk_disable_unused(void)
1245 {
1246 	struct clk_core *core;
1247 
1248 	if (clk_ignore_unused) {
1249 		pr_warn("clk: Not disabling unused clocks\n");
1250 		return 0;
1251 	}
1252 
1253 	clk_prepare_lock();
1254 
1255 	hlist_for_each_entry(core, &clk_root_list, child_node)
1256 		clk_disable_unused_subtree(core);
1257 
1258 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1259 		clk_disable_unused_subtree(core);
1260 
1261 	hlist_for_each_entry(core, &clk_root_list, child_node)
1262 		clk_unprepare_unused_subtree(core);
1263 
1264 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1265 		clk_unprepare_unused_subtree(core);
1266 
1267 	clk_prepare_unlock();
1268 
1269 	return 0;
1270 }
1271 late_initcall_sync(clk_disable_unused);
1272 
1273 static int clk_core_determine_round_nolock(struct clk_core *core,
1274 					   struct clk_rate_request *req)
1275 {
1276 	long rate;
1277 
1278 	lockdep_assert_held(&prepare_lock);
1279 
1280 	if (!core)
1281 		return 0;
1282 
1283 	/*
1284 	 * At this point, core protection will be disabled if
1285 	 * - if the provider is not protected at all
1286 	 * - if the calling consumer is the only one which has exclusivity
1287 	 *   over the provider
1288 	 */
1289 	if (clk_core_rate_is_protected(core)) {
1290 		req->rate = core->rate;
1291 	} else if (core->ops->determine_rate) {
1292 		return core->ops->determine_rate(core->hw, req);
1293 	} else if (core->ops->round_rate) {
1294 		rate = core->ops->round_rate(core->hw, req->rate,
1295 					     &req->best_parent_rate);
1296 		if (rate < 0)
1297 			return rate;
1298 
1299 		req->rate = rate;
1300 	} else {
1301 		return -EINVAL;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static void clk_core_init_rate_req(struct clk_core * const core,
1308 				   struct clk_rate_request *req)
1309 {
1310 	struct clk_core *parent;
1311 
1312 	if (WARN_ON(!core || !req))
1313 		return;
1314 
1315 	parent = core->parent;
1316 	if (parent) {
1317 		req->best_parent_hw = parent->hw;
1318 		req->best_parent_rate = parent->rate;
1319 	} else {
1320 		req->best_parent_hw = NULL;
1321 		req->best_parent_rate = 0;
1322 	}
1323 }
1324 
1325 static bool clk_core_can_round(struct clk_core * const core)
1326 {
1327 	if (core->ops->determine_rate || core->ops->round_rate)
1328 		return true;
1329 
1330 	return false;
1331 }
1332 
1333 static int clk_core_round_rate_nolock(struct clk_core *core,
1334 				      struct clk_rate_request *req)
1335 {
1336 	lockdep_assert_held(&prepare_lock);
1337 
1338 	if (!core) {
1339 		req->rate = 0;
1340 		return 0;
1341 	}
1342 
1343 	clk_core_init_rate_req(core, req);
1344 
1345 	if (clk_core_can_round(core))
1346 		return clk_core_determine_round_nolock(core, req);
1347 	else if (core->flags & CLK_SET_RATE_PARENT)
1348 		return clk_core_round_rate_nolock(core->parent, req);
1349 
1350 	req->rate = core->rate;
1351 	return 0;
1352 }
1353 
1354 /**
1355  * __clk_determine_rate - get the closest rate actually supported by a clock
1356  * @hw: determine the rate of this clock
1357  * @req: target rate request
1358  *
1359  * Useful for clk_ops such as .set_rate and .determine_rate.
1360  */
1361 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1362 {
1363 	if (!hw) {
1364 		req->rate = 0;
1365 		return 0;
1366 	}
1367 
1368 	return clk_core_round_rate_nolock(hw->core, req);
1369 }
1370 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1371 
1372 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1373 {
1374 	int ret;
1375 	struct clk_rate_request req;
1376 
1377 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1378 	req.rate = rate;
1379 
1380 	ret = clk_core_round_rate_nolock(hw->core, &req);
1381 	if (ret)
1382 		return 0;
1383 
1384 	return req.rate;
1385 }
1386 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1387 
1388 /**
1389  * clk_round_rate - round the given rate for a clk
1390  * @clk: the clk for which we are rounding a rate
1391  * @rate: the rate which is to be rounded
1392  *
1393  * Takes in a rate as input and rounds it to a rate that the clk can actually
1394  * use which is then returned.  If clk doesn't support round_rate operation
1395  * then the parent rate is returned.
1396  */
1397 long clk_round_rate(struct clk *clk, unsigned long rate)
1398 {
1399 	struct clk_rate_request req;
1400 	int ret;
1401 
1402 	if (!clk)
1403 		return 0;
1404 
1405 	clk_prepare_lock();
1406 
1407 	if (clk->exclusive_count)
1408 		clk_core_rate_unprotect(clk->core);
1409 
1410 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1411 	req.rate = rate;
1412 
1413 	ret = clk_core_round_rate_nolock(clk->core, &req);
1414 
1415 	if (clk->exclusive_count)
1416 		clk_core_rate_protect(clk->core);
1417 
1418 	clk_prepare_unlock();
1419 
1420 	if (ret)
1421 		return ret;
1422 
1423 	return req.rate;
1424 }
1425 EXPORT_SYMBOL_GPL(clk_round_rate);
1426 
1427 /**
1428  * __clk_notify - call clk notifier chain
1429  * @core: clk that is changing rate
1430  * @msg: clk notifier type (see include/linux/clk.h)
1431  * @old_rate: old clk rate
1432  * @new_rate: new clk rate
1433  *
1434  * Triggers a notifier call chain on the clk rate-change notification
1435  * for 'clk'.  Passes a pointer to the struct clk and the previous
1436  * and current rates to the notifier callback.  Intended to be called by
1437  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1438  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1439  * a driver returns that.
1440  */
1441 static int __clk_notify(struct clk_core *core, unsigned long msg,
1442 		unsigned long old_rate, unsigned long new_rate)
1443 {
1444 	struct clk_notifier *cn;
1445 	struct clk_notifier_data cnd;
1446 	int ret = NOTIFY_DONE;
1447 
1448 	cnd.old_rate = old_rate;
1449 	cnd.new_rate = new_rate;
1450 
1451 	list_for_each_entry(cn, &clk_notifier_list, node) {
1452 		if (cn->clk->core == core) {
1453 			cnd.clk = cn->clk;
1454 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1455 					&cnd);
1456 			if (ret & NOTIFY_STOP_MASK)
1457 				return ret;
1458 		}
1459 	}
1460 
1461 	return ret;
1462 }
1463 
1464 /**
1465  * __clk_recalc_accuracies
1466  * @core: first clk in the subtree
1467  *
1468  * Walks the subtree of clks starting with clk and recalculates accuracies as
1469  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1470  * callback then it is assumed that the clock will take on the accuracy of its
1471  * parent.
1472  */
1473 static void __clk_recalc_accuracies(struct clk_core *core)
1474 {
1475 	unsigned long parent_accuracy = 0;
1476 	struct clk_core *child;
1477 
1478 	lockdep_assert_held(&prepare_lock);
1479 
1480 	if (core->parent)
1481 		parent_accuracy = core->parent->accuracy;
1482 
1483 	if (core->ops->recalc_accuracy)
1484 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1485 							  parent_accuracy);
1486 	else
1487 		core->accuracy = parent_accuracy;
1488 
1489 	hlist_for_each_entry(child, &core->children, child_node)
1490 		__clk_recalc_accuracies(child);
1491 }
1492 
1493 static long clk_core_get_accuracy(struct clk_core *core)
1494 {
1495 	unsigned long accuracy;
1496 
1497 	clk_prepare_lock();
1498 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1499 		__clk_recalc_accuracies(core);
1500 
1501 	accuracy = __clk_get_accuracy(core);
1502 	clk_prepare_unlock();
1503 
1504 	return accuracy;
1505 }
1506 
1507 /**
1508  * clk_get_accuracy - return the accuracy of clk
1509  * @clk: the clk whose accuracy is being returned
1510  *
1511  * Simply returns the cached accuracy of the clk, unless
1512  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1513  * issued.
1514  * If clk is NULL then returns 0.
1515  */
1516 long clk_get_accuracy(struct clk *clk)
1517 {
1518 	if (!clk)
1519 		return 0;
1520 
1521 	return clk_core_get_accuracy(clk->core);
1522 }
1523 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1524 
1525 static unsigned long clk_recalc(struct clk_core *core,
1526 				unsigned long parent_rate)
1527 {
1528 	unsigned long rate = parent_rate;
1529 
1530 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1531 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1532 		clk_pm_runtime_put(core);
1533 	}
1534 	return rate;
1535 }
1536 
1537 /**
1538  * __clk_recalc_rates
1539  * @core: first clk in the subtree
1540  * @msg: notification type (see include/linux/clk.h)
1541  *
1542  * Walks the subtree of clks starting with clk and recalculates rates as it
1543  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1544  * it is assumed that the clock will take on the rate of its parent.
1545  *
1546  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1547  * if necessary.
1548  */
1549 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1550 {
1551 	unsigned long old_rate;
1552 	unsigned long parent_rate = 0;
1553 	struct clk_core *child;
1554 
1555 	lockdep_assert_held(&prepare_lock);
1556 
1557 	old_rate = core->rate;
1558 
1559 	if (core->parent)
1560 		parent_rate = core->parent->rate;
1561 
1562 	core->rate = clk_recalc(core, parent_rate);
1563 
1564 	/*
1565 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1566 	 * & ABORT_RATE_CHANGE notifiers
1567 	 */
1568 	if (core->notifier_count && msg)
1569 		__clk_notify(core, msg, old_rate, core->rate);
1570 
1571 	hlist_for_each_entry(child, &core->children, child_node)
1572 		__clk_recalc_rates(child, msg);
1573 }
1574 
1575 static unsigned long clk_core_get_rate(struct clk_core *core)
1576 {
1577 	unsigned long rate;
1578 
1579 	clk_prepare_lock();
1580 
1581 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1582 		__clk_recalc_rates(core, 0);
1583 
1584 	rate = clk_core_get_rate_nolock(core);
1585 	clk_prepare_unlock();
1586 
1587 	return rate;
1588 }
1589 
1590 /**
1591  * clk_get_rate - return the rate of clk
1592  * @clk: the clk whose rate is being returned
1593  *
1594  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1595  * is set, which means a recalc_rate will be issued.
1596  * If clk is NULL then returns 0.
1597  */
1598 unsigned long clk_get_rate(struct clk *clk)
1599 {
1600 	if (!clk)
1601 		return 0;
1602 
1603 	return clk_core_get_rate(clk->core);
1604 }
1605 EXPORT_SYMBOL_GPL(clk_get_rate);
1606 
1607 static int clk_fetch_parent_index(struct clk_core *core,
1608 				  struct clk_core *parent)
1609 {
1610 	int i;
1611 
1612 	if (!parent)
1613 		return -EINVAL;
1614 
1615 	for (i = 0; i < core->num_parents; i++) {
1616 		/* Found it first try! */
1617 		if (core->parents[i].core == parent)
1618 			return i;
1619 
1620 		/* Something else is here, so keep looking */
1621 		if (core->parents[i].core)
1622 			continue;
1623 
1624 		/* Maybe core hasn't been cached but the hw is all we know? */
1625 		if (core->parents[i].hw) {
1626 			if (core->parents[i].hw == parent->hw)
1627 				break;
1628 
1629 			/* Didn't match, but we're expecting a clk_hw */
1630 			continue;
1631 		}
1632 
1633 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1634 		if (parent == clk_core_get(core, i))
1635 			break;
1636 
1637 		/* Fallback to comparing globally unique names */
1638 		if (!strcmp(parent->name, core->parents[i].name))
1639 			break;
1640 	}
1641 
1642 	if (i == core->num_parents)
1643 		return -EINVAL;
1644 
1645 	core->parents[i].core = parent;
1646 	return i;
1647 }
1648 
1649 /*
1650  * Update the orphan status of @core and all its children.
1651  */
1652 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1653 {
1654 	struct clk_core *child;
1655 
1656 	core->orphan = is_orphan;
1657 
1658 	hlist_for_each_entry(child, &core->children, child_node)
1659 		clk_core_update_orphan_status(child, is_orphan);
1660 }
1661 
1662 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1663 {
1664 	bool was_orphan = core->orphan;
1665 
1666 	hlist_del(&core->child_node);
1667 
1668 	if (new_parent) {
1669 		bool becomes_orphan = new_parent->orphan;
1670 
1671 		/* avoid duplicate POST_RATE_CHANGE notifications */
1672 		if (new_parent->new_child == core)
1673 			new_parent->new_child = NULL;
1674 
1675 		hlist_add_head(&core->child_node, &new_parent->children);
1676 
1677 		if (was_orphan != becomes_orphan)
1678 			clk_core_update_orphan_status(core, becomes_orphan);
1679 	} else {
1680 		hlist_add_head(&core->child_node, &clk_orphan_list);
1681 		if (!was_orphan)
1682 			clk_core_update_orphan_status(core, true);
1683 	}
1684 
1685 	core->parent = new_parent;
1686 }
1687 
1688 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1689 					   struct clk_core *parent)
1690 {
1691 	unsigned long flags;
1692 	struct clk_core *old_parent = core->parent;
1693 
1694 	/*
1695 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1696 	 *
1697 	 * 2. Migrate prepare state between parents and prevent race with
1698 	 * clk_enable().
1699 	 *
1700 	 * If the clock is not prepared, then a race with
1701 	 * clk_enable/disable() is impossible since we already have the
1702 	 * prepare lock (future calls to clk_enable() need to be preceded by
1703 	 * a clk_prepare()).
1704 	 *
1705 	 * If the clock is prepared, migrate the prepared state to the new
1706 	 * parent and also protect against a race with clk_enable() by
1707 	 * forcing the clock and the new parent on.  This ensures that all
1708 	 * future calls to clk_enable() are practically NOPs with respect to
1709 	 * hardware and software states.
1710 	 *
1711 	 * See also: Comment for clk_set_parent() below.
1712 	 */
1713 
1714 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1715 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1716 		clk_core_prepare_enable(old_parent);
1717 		clk_core_prepare_enable(parent);
1718 	}
1719 
1720 	/* migrate prepare count if > 0 */
1721 	if (core->prepare_count) {
1722 		clk_core_prepare_enable(parent);
1723 		clk_core_enable_lock(core);
1724 	}
1725 
1726 	/* update the clk tree topology */
1727 	flags = clk_enable_lock();
1728 	clk_reparent(core, parent);
1729 	clk_enable_unlock(flags);
1730 
1731 	return old_parent;
1732 }
1733 
1734 static void __clk_set_parent_after(struct clk_core *core,
1735 				   struct clk_core *parent,
1736 				   struct clk_core *old_parent)
1737 {
1738 	/*
1739 	 * Finish the migration of prepare state and undo the changes done
1740 	 * for preventing a race with clk_enable().
1741 	 */
1742 	if (core->prepare_count) {
1743 		clk_core_disable_lock(core);
1744 		clk_core_disable_unprepare(old_parent);
1745 	}
1746 
1747 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1748 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1749 		clk_core_disable_unprepare(parent);
1750 		clk_core_disable_unprepare(old_parent);
1751 	}
1752 }
1753 
1754 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1755 			    u8 p_index)
1756 {
1757 	unsigned long flags;
1758 	int ret = 0;
1759 	struct clk_core *old_parent;
1760 
1761 	old_parent = __clk_set_parent_before(core, parent);
1762 
1763 	trace_clk_set_parent(core, parent);
1764 
1765 	/* change clock input source */
1766 	if (parent && core->ops->set_parent)
1767 		ret = core->ops->set_parent(core->hw, p_index);
1768 
1769 	trace_clk_set_parent_complete(core, parent);
1770 
1771 	if (ret) {
1772 		flags = clk_enable_lock();
1773 		clk_reparent(core, old_parent);
1774 		clk_enable_unlock(flags);
1775 		__clk_set_parent_after(core, old_parent, parent);
1776 
1777 		return ret;
1778 	}
1779 
1780 	__clk_set_parent_after(core, parent, old_parent);
1781 
1782 	return 0;
1783 }
1784 
1785 /**
1786  * __clk_speculate_rates
1787  * @core: first clk in the subtree
1788  * @parent_rate: the "future" rate of clk's parent
1789  *
1790  * Walks the subtree of clks starting with clk, speculating rates as it
1791  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1792  *
1793  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1794  * pre-rate change notifications and returns early if no clks in the
1795  * subtree have subscribed to the notifications.  Note that if a clk does not
1796  * implement the .recalc_rate callback then it is assumed that the clock will
1797  * take on the rate of its parent.
1798  */
1799 static int __clk_speculate_rates(struct clk_core *core,
1800 				 unsigned long parent_rate)
1801 {
1802 	struct clk_core *child;
1803 	unsigned long new_rate;
1804 	int ret = NOTIFY_DONE;
1805 
1806 	lockdep_assert_held(&prepare_lock);
1807 
1808 	new_rate = clk_recalc(core, parent_rate);
1809 
1810 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1811 	if (core->notifier_count)
1812 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1813 
1814 	if (ret & NOTIFY_STOP_MASK) {
1815 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1816 				__func__, core->name, ret);
1817 		goto out;
1818 	}
1819 
1820 	hlist_for_each_entry(child, &core->children, child_node) {
1821 		ret = __clk_speculate_rates(child, new_rate);
1822 		if (ret & NOTIFY_STOP_MASK)
1823 			break;
1824 	}
1825 
1826 out:
1827 	return ret;
1828 }
1829 
1830 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1831 			     struct clk_core *new_parent, u8 p_index)
1832 {
1833 	struct clk_core *child;
1834 
1835 	core->new_rate = new_rate;
1836 	core->new_parent = new_parent;
1837 	core->new_parent_index = p_index;
1838 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1839 	core->new_child = NULL;
1840 	if (new_parent && new_parent != core->parent)
1841 		new_parent->new_child = core;
1842 
1843 	hlist_for_each_entry(child, &core->children, child_node) {
1844 		child->new_rate = clk_recalc(child, new_rate);
1845 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1846 	}
1847 }
1848 
1849 /*
1850  * calculate the new rates returning the topmost clock that has to be
1851  * changed.
1852  */
1853 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1854 					   unsigned long rate)
1855 {
1856 	struct clk_core *top = core;
1857 	struct clk_core *old_parent, *parent;
1858 	unsigned long best_parent_rate = 0;
1859 	unsigned long new_rate;
1860 	unsigned long min_rate;
1861 	unsigned long max_rate;
1862 	int p_index = 0;
1863 	long ret;
1864 
1865 	/* sanity */
1866 	if (IS_ERR_OR_NULL(core))
1867 		return NULL;
1868 
1869 	/* save parent rate, if it exists */
1870 	parent = old_parent = core->parent;
1871 	if (parent)
1872 		best_parent_rate = parent->rate;
1873 
1874 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1875 
1876 	/* find the closest rate and parent clk/rate */
1877 	if (clk_core_can_round(core)) {
1878 		struct clk_rate_request req;
1879 
1880 		req.rate = rate;
1881 		req.min_rate = min_rate;
1882 		req.max_rate = max_rate;
1883 
1884 		clk_core_init_rate_req(core, &req);
1885 
1886 		ret = clk_core_determine_round_nolock(core, &req);
1887 		if (ret < 0)
1888 			return NULL;
1889 
1890 		best_parent_rate = req.best_parent_rate;
1891 		new_rate = req.rate;
1892 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1893 
1894 		if (new_rate < min_rate || new_rate > max_rate)
1895 			return NULL;
1896 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1897 		/* pass-through clock without adjustable parent */
1898 		core->new_rate = core->rate;
1899 		return NULL;
1900 	} else {
1901 		/* pass-through clock with adjustable parent */
1902 		top = clk_calc_new_rates(parent, rate);
1903 		new_rate = parent->new_rate;
1904 		goto out;
1905 	}
1906 
1907 	/* some clocks must be gated to change parent */
1908 	if (parent != old_parent &&
1909 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1910 		pr_debug("%s: %s not gated but wants to reparent\n",
1911 			 __func__, core->name);
1912 		return NULL;
1913 	}
1914 
1915 	/* try finding the new parent index */
1916 	if (parent && core->num_parents > 1) {
1917 		p_index = clk_fetch_parent_index(core, parent);
1918 		if (p_index < 0) {
1919 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1920 				 __func__, parent->name, core->name);
1921 			return NULL;
1922 		}
1923 	}
1924 
1925 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1926 	    best_parent_rate != parent->rate)
1927 		top = clk_calc_new_rates(parent, best_parent_rate);
1928 
1929 out:
1930 	clk_calc_subtree(core, new_rate, parent, p_index);
1931 
1932 	return top;
1933 }
1934 
1935 /*
1936  * Notify about rate changes in a subtree. Always walk down the whole tree
1937  * so that in case of an error we can walk down the whole tree again and
1938  * abort the change.
1939  */
1940 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1941 						  unsigned long event)
1942 {
1943 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1944 	int ret = NOTIFY_DONE;
1945 
1946 	if (core->rate == core->new_rate)
1947 		return NULL;
1948 
1949 	if (core->notifier_count) {
1950 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1951 		if (ret & NOTIFY_STOP_MASK)
1952 			fail_clk = core;
1953 	}
1954 
1955 	hlist_for_each_entry(child, &core->children, child_node) {
1956 		/* Skip children who will be reparented to another clock */
1957 		if (child->new_parent && child->new_parent != core)
1958 			continue;
1959 		tmp_clk = clk_propagate_rate_change(child, event);
1960 		if (tmp_clk)
1961 			fail_clk = tmp_clk;
1962 	}
1963 
1964 	/* handle the new child who might not be in core->children yet */
1965 	if (core->new_child) {
1966 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1967 		if (tmp_clk)
1968 			fail_clk = tmp_clk;
1969 	}
1970 
1971 	return fail_clk;
1972 }
1973 
1974 /*
1975  * walk down a subtree and set the new rates notifying the rate
1976  * change on the way
1977  */
1978 static void clk_change_rate(struct clk_core *core)
1979 {
1980 	struct clk_core *child;
1981 	struct hlist_node *tmp;
1982 	unsigned long old_rate;
1983 	unsigned long best_parent_rate = 0;
1984 	bool skip_set_rate = false;
1985 	struct clk_core *old_parent;
1986 	struct clk_core *parent = NULL;
1987 
1988 	old_rate = core->rate;
1989 
1990 	if (core->new_parent) {
1991 		parent = core->new_parent;
1992 		best_parent_rate = core->new_parent->rate;
1993 	} else if (core->parent) {
1994 		parent = core->parent;
1995 		best_parent_rate = core->parent->rate;
1996 	}
1997 
1998 	if (clk_pm_runtime_get(core))
1999 		return;
2000 
2001 	if (core->flags & CLK_SET_RATE_UNGATE) {
2002 		unsigned long flags;
2003 
2004 		clk_core_prepare(core);
2005 		flags = clk_enable_lock();
2006 		clk_core_enable(core);
2007 		clk_enable_unlock(flags);
2008 	}
2009 
2010 	if (core->new_parent && core->new_parent != core->parent) {
2011 		old_parent = __clk_set_parent_before(core, core->new_parent);
2012 		trace_clk_set_parent(core, core->new_parent);
2013 
2014 		if (core->ops->set_rate_and_parent) {
2015 			skip_set_rate = true;
2016 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2017 					best_parent_rate,
2018 					core->new_parent_index);
2019 		} else if (core->ops->set_parent) {
2020 			core->ops->set_parent(core->hw, core->new_parent_index);
2021 		}
2022 
2023 		trace_clk_set_parent_complete(core, core->new_parent);
2024 		__clk_set_parent_after(core, core->new_parent, old_parent);
2025 	}
2026 
2027 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2028 		clk_core_prepare_enable(parent);
2029 
2030 	trace_clk_set_rate(core, core->new_rate);
2031 
2032 	if (!skip_set_rate && core->ops->set_rate)
2033 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2034 
2035 	trace_clk_set_rate_complete(core, core->new_rate);
2036 
2037 	core->rate = clk_recalc(core, best_parent_rate);
2038 
2039 	if (core->flags & CLK_SET_RATE_UNGATE) {
2040 		unsigned long flags;
2041 
2042 		flags = clk_enable_lock();
2043 		clk_core_disable(core);
2044 		clk_enable_unlock(flags);
2045 		clk_core_unprepare(core);
2046 	}
2047 
2048 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2049 		clk_core_disable_unprepare(parent);
2050 
2051 	if (core->notifier_count && old_rate != core->rate)
2052 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2053 
2054 	if (core->flags & CLK_RECALC_NEW_RATES)
2055 		(void)clk_calc_new_rates(core, core->new_rate);
2056 
2057 	/*
2058 	 * Use safe iteration, as change_rate can actually swap parents
2059 	 * for certain clock types.
2060 	 */
2061 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2062 		/* Skip children who will be reparented to another clock */
2063 		if (child->new_parent && child->new_parent != core)
2064 			continue;
2065 		clk_change_rate(child);
2066 	}
2067 
2068 	/* handle the new child who might not be in core->children yet */
2069 	if (core->new_child)
2070 		clk_change_rate(core->new_child);
2071 
2072 	clk_pm_runtime_put(core);
2073 }
2074 
2075 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2076 						     unsigned long req_rate)
2077 {
2078 	int ret, cnt;
2079 	struct clk_rate_request req;
2080 
2081 	lockdep_assert_held(&prepare_lock);
2082 
2083 	if (!core)
2084 		return 0;
2085 
2086 	/* simulate what the rate would be if it could be freely set */
2087 	cnt = clk_core_rate_nuke_protect(core);
2088 	if (cnt < 0)
2089 		return cnt;
2090 
2091 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2092 	req.rate = req_rate;
2093 
2094 	ret = clk_core_round_rate_nolock(core, &req);
2095 
2096 	/* restore the protection */
2097 	clk_core_rate_restore_protect(core, cnt);
2098 
2099 	return ret ? 0 : req.rate;
2100 }
2101 
2102 static int clk_core_set_rate_nolock(struct clk_core *core,
2103 				    unsigned long req_rate)
2104 {
2105 	struct clk_core *top, *fail_clk;
2106 	unsigned long rate;
2107 	int ret = 0;
2108 
2109 	if (!core)
2110 		return 0;
2111 
2112 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2113 
2114 	/* bail early if nothing to do */
2115 	if (rate == clk_core_get_rate_nolock(core))
2116 		return 0;
2117 
2118 	/* fail on a direct rate set of a protected provider */
2119 	if (clk_core_rate_is_protected(core))
2120 		return -EBUSY;
2121 
2122 	/* calculate new rates and get the topmost changed clock */
2123 	top = clk_calc_new_rates(core, req_rate);
2124 	if (!top)
2125 		return -EINVAL;
2126 
2127 	ret = clk_pm_runtime_get(core);
2128 	if (ret)
2129 		return ret;
2130 
2131 	/* notify that we are about to change rates */
2132 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2133 	if (fail_clk) {
2134 		pr_debug("%s: failed to set %s rate\n", __func__,
2135 				fail_clk->name);
2136 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2137 		ret = -EBUSY;
2138 		goto err;
2139 	}
2140 
2141 	/* change the rates */
2142 	clk_change_rate(top);
2143 
2144 	core->req_rate = req_rate;
2145 err:
2146 	clk_pm_runtime_put(core);
2147 
2148 	return ret;
2149 }
2150 
2151 /**
2152  * clk_set_rate - specify a new rate for clk
2153  * @clk: the clk whose rate is being changed
2154  * @rate: the new rate for clk
2155  *
2156  * In the simplest case clk_set_rate will only adjust the rate of clk.
2157  *
2158  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2159  * propagate up to clk's parent; whether or not this happens depends on the
2160  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2161  * after calling .round_rate then upstream parent propagation is ignored.  If
2162  * *parent_rate comes back with a new rate for clk's parent then we propagate
2163  * up to clk's parent and set its rate.  Upward propagation will continue
2164  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2165  * .round_rate stops requesting changes to clk's parent_rate.
2166  *
2167  * Rate changes are accomplished via tree traversal that also recalculates the
2168  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2169  *
2170  * Returns 0 on success, -EERROR otherwise.
2171  */
2172 int clk_set_rate(struct clk *clk, unsigned long rate)
2173 {
2174 	int ret;
2175 
2176 	if (!clk)
2177 		return 0;
2178 
2179 	/* prevent racing with updates to the clock topology */
2180 	clk_prepare_lock();
2181 
2182 	if (clk->exclusive_count)
2183 		clk_core_rate_unprotect(clk->core);
2184 
2185 	ret = clk_core_set_rate_nolock(clk->core, rate);
2186 
2187 	if (clk->exclusive_count)
2188 		clk_core_rate_protect(clk->core);
2189 
2190 	clk_prepare_unlock();
2191 
2192 	return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(clk_set_rate);
2195 
2196 /**
2197  * clk_set_rate_exclusive - specify a new rate get exclusive control
2198  * @clk: the clk whose rate is being changed
2199  * @rate: the new rate for clk
2200  *
2201  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2202  * within a critical section
2203  *
2204  * This can be used initially to ensure that at least 1 consumer is
2205  * statisfied when several consumers are competing for exclusivity over the
2206  * same clock provider.
2207  *
2208  * The exclusivity is not applied if setting the rate failed.
2209  *
2210  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2211  * clk_rate_exclusive_put().
2212  *
2213  * Returns 0 on success, -EERROR otherwise.
2214  */
2215 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2216 {
2217 	int ret;
2218 
2219 	if (!clk)
2220 		return 0;
2221 
2222 	/* prevent racing with updates to the clock topology */
2223 	clk_prepare_lock();
2224 
2225 	/*
2226 	 * The temporary protection removal is not here, on purpose
2227 	 * This function is meant to be used instead of clk_rate_protect,
2228 	 * so before the consumer code path protect the clock provider
2229 	 */
2230 
2231 	ret = clk_core_set_rate_nolock(clk->core, rate);
2232 	if (!ret) {
2233 		clk_core_rate_protect(clk->core);
2234 		clk->exclusive_count++;
2235 	}
2236 
2237 	clk_prepare_unlock();
2238 
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2242 
2243 /**
2244  * clk_set_rate_range - set a rate range for a clock source
2245  * @clk: clock source
2246  * @min: desired minimum clock rate in Hz, inclusive
2247  * @max: desired maximum clock rate in Hz, inclusive
2248  *
2249  * Returns success (0) or negative errno.
2250  */
2251 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2252 {
2253 	int ret = 0;
2254 	unsigned long old_min, old_max, rate;
2255 
2256 	if (!clk)
2257 		return 0;
2258 
2259 	if (min > max) {
2260 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2261 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2262 		       min, max);
2263 		return -EINVAL;
2264 	}
2265 
2266 	clk_prepare_lock();
2267 
2268 	if (clk->exclusive_count)
2269 		clk_core_rate_unprotect(clk->core);
2270 
2271 	/* Save the current values in case we need to rollback the change */
2272 	old_min = clk->min_rate;
2273 	old_max = clk->max_rate;
2274 	clk->min_rate = min;
2275 	clk->max_rate = max;
2276 
2277 	rate = clk_core_get_rate_nolock(clk->core);
2278 	if (rate < min || rate > max) {
2279 		/*
2280 		 * FIXME:
2281 		 * We are in bit of trouble here, current rate is outside the
2282 		 * the requested range. We are going try to request appropriate
2283 		 * range boundary but there is a catch. It may fail for the
2284 		 * usual reason (clock broken, clock protected, etc) but also
2285 		 * because:
2286 		 * - round_rate() was not favorable and fell on the wrong
2287 		 *   side of the boundary
2288 		 * - the determine_rate() callback does not really check for
2289 		 *   this corner case when determining the rate
2290 		 */
2291 
2292 		if (rate < min)
2293 			rate = min;
2294 		else
2295 			rate = max;
2296 
2297 		ret = clk_core_set_rate_nolock(clk->core, rate);
2298 		if (ret) {
2299 			/* rollback the changes */
2300 			clk->min_rate = old_min;
2301 			clk->max_rate = old_max;
2302 		}
2303 	}
2304 
2305 	if (clk->exclusive_count)
2306 		clk_core_rate_protect(clk->core);
2307 
2308 	clk_prepare_unlock();
2309 
2310 	return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2313 
2314 /**
2315  * clk_set_min_rate - set a minimum clock rate for a clock source
2316  * @clk: clock source
2317  * @rate: desired minimum clock rate in Hz, inclusive
2318  *
2319  * Returns success (0) or negative errno.
2320  */
2321 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2322 {
2323 	if (!clk)
2324 		return 0;
2325 
2326 	return clk_set_rate_range(clk, rate, clk->max_rate);
2327 }
2328 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2329 
2330 /**
2331  * clk_set_max_rate - set a maximum clock rate for a clock source
2332  * @clk: clock source
2333  * @rate: desired maximum clock rate in Hz, inclusive
2334  *
2335  * Returns success (0) or negative errno.
2336  */
2337 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2338 {
2339 	if (!clk)
2340 		return 0;
2341 
2342 	return clk_set_rate_range(clk, clk->min_rate, rate);
2343 }
2344 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2345 
2346 /**
2347  * clk_get_parent - return the parent of a clk
2348  * @clk: the clk whose parent gets returned
2349  *
2350  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2351  */
2352 struct clk *clk_get_parent(struct clk *clk)
2353 {
2354 	struct clk *parent;
2355 
2356 	if (!clk)
2357 		return NULL;
2358 
2359 	clk_prepare_lock();
2360 	/* TODO: Create a per-user clk and change callers to call clk_put */
2361 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2362 	clk_prepare_unlock();
2363 
2364 	return parent;
2365 }
2366 EXPORT_SYMBOL_GPL(clk_get_parent);
2367 
2368 static struct clk_core *__clk_init_parent(struct clk_core *core)
2369 {
2370 	u8 index = 0;
2371 
2372 	if (core->num_parents > 1 && core->ops->get_parent)
2373 		index = core->ops->get_parent(core->hw);
2374 
2375 	return clk_core_get_parent_by_index(core, index);
2376 }
2377 
2378 static void clk_core_reparent(struct clk_core *core,
2379 				  struct clk_core *new_parent)
2380 {
2381 	clk_reparent(core, new_parent);
2382 	__clk_recalc_accuracies(core);
2383 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2384 }
2385 
2386 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2387 {
2388 	if (!hw)
2389 		return;
2390 
2391 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2392 }
2393 
2394 /**
2395  * clk_has_parent - check if a clock is a possible parent for another
2396  * @clk: clock source
2397  * @parent: parent clock source
2398  *
2399  * This function can be used in drivers that need to check that a clock can be
2400  * the parent of another without actually changing the parent.
2401  *
2402  * Returns true if @parent is a possible parent for @clk, false otherwise.
2403  */
2404 bool clk_has_parent(struct clk *clk, struct clk *parent)
2405 {
2406 	struct clk_core *core, *parent_core;
2407 	int i;
2408 
2409 	/* NULL clocks should be nops, so return success if either is NULL. */
2410 	if (!clk || !parent)
2411 		return true;
2412 
2413 	core = clk->core;
2414 	parent_core = parent->core;
2415 
2416 	/* Optimize for the case where the parent is already the parent. */
2417 	if (core->parent == parent_core)
2418 		return true;
2419 
2420 	for (i = 0; i < core->num_parents; i++)
2421 		if (!strcmp(core->parents[i].name, parent_core->name))
2422 			return true;
2423 
2424 	return false;
2425 }
2426 EXPORT_SYMBOL_GPL(clk_has_parent);
2427 
2428 static int clk_core_set_parent_nolock(struct clk_core *core,
2429 				      struct clk_core *parent)
2430 {
2431 	int ret = 0;
2432 	int p_index = 0;
2433 	unsigned long p_rate = 0;
2434 
2435 	lockdep_assert_held(&prepare_lock);
2436 
2437 	if (!core)
2438 		return 0;
2439 
2440 	if (core->parent == parent)
2441 		return 0;
2442 
2443 	/* verify ops for for multi-parent clks */
2444 	if (core->num_parents > 1 && !core->ops->set_parent)
2445 		return -EPERM;
2446 
2447 	/* check that we are allowed to re-parent if the clock is in use */
2448 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2449 		return -EBUSY;
2450 
2451 	if (clk_core_rate_is_protected(core))
2452 		return -EBUSY;
2453 
2454 	/* try finding the new parent index */
2455 	if (parent) {
2456 		p_index = clk_fetch_parent_index(core, parent);
2457 		if (p_index < 0) {
2458 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2459 					__func__, parent->name, core->name);
2460 			return p_index;
2461 		}
2462 		p_rate = parent->rate;
2463 	}
2464 
2465 	ret = clk_pm_runtime_get(core);
2466 	if (ret)
2467 		return ret;
2468 
2469 	/* propagate PRE_RATE_CHANGE notifications */
2470 	ret = __clk_speculate_rates(core, p_rate);
2471 
2472 	/* abort if a driver objects */
2473 	if (ret & NOTIFY_STOP_MASK)
2474 		goto runtime_put;
2475 
2476 	/* do the re-parent */
2477 	ret = __clk_set_parent(core, parent, p_index);
2478 
2479 	/* propagate rate an accuracy recalculation accordingly */
2480 	if (ret) {
2481 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2482 	} else {
2483 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2484 		__clk_recalc_accuracies(core);
2485 	}
2486 
2487 runtime_put:
2488 	clk_pm_runtime_put(core);
2489 
2490 	return ret;
2491 }
2492 
2493 /**
2494  * clk_set_parent - switch the parent of a mux clk
2495  * @clk: the mux clk whose input we are switching
2496  * @parent: the new input to clk
2497  *
2498  * Re-parent clk to use parent as its new input source.  If clk is in
2499  * prepared state, the clk will get enabled for the duration of this call. If
2500  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2501  * that, the reparenting is glitchy in hardware, etc), use the
2502  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2503  *
2504  * After successfully changing clk's parent clk_set_parent will update the
2505  * clk topology, sysfs topology and propagate rate recalculation via
2506  * __clk_recalc_rates.
2507  *
2508  * Returns 0 on success, -EERROR otherwise.
2509  */
2510 int clk_set_parent(struct clk *clk, struct clk *parent)
2511 {
2512 	int ret;
2513 
2514 	if (!clk)
2515 		return 0;
2516 
2517 	clk_prepare_lock();
2518 
2519 	if (clk->exclusive_count)
2520 		clk_core_rate_unprotect(clk->core);
2521 
2522 	ret = clk_core_set_parent_nolock(clk->core,
2523 					 parent ? parent->core : NULL);
2524 
2525 	if (clk->exclusive_count)
2526 		clk_core_rate_protect(clk->core);
2527 
2528 	clk_prepare_unlock();
2529 
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL_GPL(clk_set_parent);
2533 
2534 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2535 {
2536 	int ret = -EINVAL;
2537 
2538 	lockdep_assert_held(&prepare_lock);
2539 
2540 	if (!core)
2541 		return 0;
2542 
2543 	if (clk_core_rate_is_protected(core))
2544 		return -EBUSY;
2545 
2546 	trace_clk_set_phase(core, degrees);
2547 
2548 	if (core->ops->set_phase) {
2549 		ret = core->ops->set_phase(core->hw, degrees);
2550 		if (!ret)
2551 			core->phase = degrees;
2552 	}
2553 
2554 	trace_clk_set_phase_complete(core, degrees);
2555 
2556 	return ret;
2557 }
2558 
2559 /**
2560  * clk_set_phase - adjust the phase shift of a clock signal
2561  * @clk: clock signal source
2562  * @degrees: number of degrees the signal is shifted
2563  *
2564  * Shifts the phase of a clock signal by the specified
2565  * degrees. Returns 0 on success, -EERROR otherwise.
2566  *
2567  * This function makes no distinction about the input or reference
2568  * signal that we adjust the clock signal phase against. For example
2569  * phase locked-loop clock signal generators we may shift phase with
2570  * respect to feedback clock signal input, but for other cases the
2571  * clock phase may be shifted with respect to some other, unspecified
2572  * signal.
2573  *
2574  * Additionally the concept of phase shift does not propagate through
2575  * the clock tree hierarchy, which sets it apart from clock rates and
2576  * clock accuracy. A parent clock phase attribute does not have an
2577  * impact on the phase attribute of a child clock.
2578  */
2579 int clk_set_phase(struct clk *clk, int degrees)
2580 {
2581 	int ret;
2582 
2583 	if (!clk)
2584 		return 0;
2585 
2586 	/* sanity check degrees */
2587 	degrees %= 360;
2588 	if (degrees < 0)
2589 		degrees += 360;
2590 
2591 	clk_prepare_lock();
2592 
2593 	if (clk->exclusive_count)
2594 		clk_core_rate_unprotect(clk->core);
2595 
2596 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2597 
2598 	if (clk->exclusive_count)
2599 		clk_core_rate_protect(clk->core);
2600 
2601 	clk_prepare_unlock();
2602 
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL_GPL(clk_set_phase);
2606 
2607 static int clk_core_get_phase(struct clk_core *core)
2608 {
2609 	int ret;
2610 
2611 	clk_prepare_lock();
2612 	/* Always try to update cached phase if possible */
2613 	if (core->ops->get_phase)
2614 		core->phase = core->ops->get_phase(core->hw);
2615 	ret = core->phase;
2616 	clk_prepare_unlock();
2617 
2618 	return ret;
2619 }
2620 
2621 /**
2622  * clk_get_phase - return the phase shift of a clock signal
2623  * @clk: clock signal source
2624  *
2625  * Returns the phase shift of a clock node in degrees, otherwise returns
2626  * -EERROR.
2627  */
2628 int clk_get_phase(struct clk *clk)
2629 {
2630 	if (!clk)
2631 		return 0;
2632 
2633 	return clk_core_get_phase(clk->core);
2634 }
2635 EXPORT_SYMBOL_GPL(clk_get_phase);
2636 
2637 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2638 {
2639 	/* Assume a default value of 50% */
2640 	core->duty.num = 1;
2641 	core->duty.den = 2;
2642 }
2643 
2644 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2645 
2646 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2647 {
2648 	struct clk_duty *duty = &core->duty;
2649 	int ret = 0;
2650 
2651 	if (!core->ops->get_duty_cycle)
2652 		return clk_core_update_duty_cycle_parent_nolock(core);
2653 
2654 	ret = core->ops->get_duty_cycle(core->hw, duty);
2655 	if (ret)
2656 		goto reset;
2657 
2658 	/* Don't trust the clock provider too much */
2659 	if (duty->den == 0 || duty->num > duty->den) {
2660 		ret = -EINVAL;
2661 		goto reset;
2662 	}
2663 
2664 	return 0;
2665 
2666 reset:
2667 	clk_core_reset_duty_cycle_nolock(core);
2668 	return ret;
2669 }
2670 
2671 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2672 {
2673 	int ret = 0;
2674 
2675 	if (core->parent &&
2676 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2677 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2678 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2679 	} else {
2680 		clk_core_reset_duty_cycle_nolock(core);
2681 	}
2682 
2683 	return ret;
2684 }
2685 
2686 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2687 						 struct clk_duty *duty);
2688 
2689 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2690 					  struct clk_duty *duty)
2691 {
2692 	int ret;
2693 
2694 	lockdep_assert_held(&prepare_lock);
2695 
2696 	if (clk_core_rate_is_protected(core))
2697 		return -EBUSY;
2698 
2699 	trace_clk_set_duty_cycle(core, duty);
2700 
2701 	if (!core->ops->set_duty_cycle)
2702 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2703 
2704 	ret = core->ops->set_duty_cycle(core->hw, duty);
2705 	if (!ret)
2706 		memcpy(&core->duty, duty, sizeof(*duty));
2707 
2708 	trace_clk_set_duty_cycle_complete(core, duty);
2709 
2710 	return ret;
2711 }
2712 
2713 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2714 						 struct clk_duty *duty)
2715 {
2716 	int ret = 0;
2717 
2718 	if (core->parent &&
2719 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2720 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2721 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2722 	}
2723 
2724 	return ret;
2725 }
2726 
2727 /**
2728  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2729  * @clk: clock signal source
2730  * @num: numerator of the duty cycle ratio to be applied
2731  * @den: denominator of the duty cycle ratio to be applied
2732  *
2733  * Apply the duty cycle ratio if the ratio is valid and the clock can
2734  * perform this operation
2735  *
2736  * Returns (0) on success, a negative errno otherwise.
2737  */
2738 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2739 {
2740 	int ret;
2741 	struct clk_duty duty;
2742 
2743 	if (!clk)
2744 		return 0;
2745 
2746 	/* sanity check the ratio */
2747 	if (den == 0 || num > den)
2748 		return -EINVAL;
2749 
2750 	duty.num = num;
2751 	duty.den = den;
2752 
2753 	clk_prepare_lock();
2754 
2755 	if (clk->exclusive_count)
2756 		clk_core_rate_unprotect(clk->core);
2757 
2758 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2759 
2760 	if (clk->exclusive_count)
2761 		clk_core_rate_protect(clk->core);
2762 
2763 	clk_prepare_unlock();
2764 
2765 	return ret;
2766 }
2767 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2768 
2769 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2770 					  unsigned int scale)
2771 {
2772 	struct clk_duty *duty = &core->duty;
2773 	int ret;
2774 
2775 	clk_prepare_lock();
2776 
2777 	ret = clk_core_update_duty_cycle_nolock(core);
2778 	if (!ret)
2779 		ret = mult_frac(scale, duty->num, duty->den);
2780 
2781 	clk_prepare_unlock();
2782 
2783 	return ret;
2784 }
2785 
2786 /**
2787  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2788  * @clk: clock signal source
2789  * @scale: scaling factor to be applied to represent the ratio as an integer
2790  *
2791  * Returns the duty cycle ratio of a clock node multiplied by the provided
2792  * scaling factor, or negative errno on error.
2793  */
2794 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2795 {
2796 	if (!clk)
2797 		return 0;
2798 
2799 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2800 }
2801 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2802 
2803 /**
2804  * clk_is_match - check if two clk's point to the same hardware clock
2805  * @p: clk compared against q
2806  * @q: clk compared against p
2807  *
2808  * Returns true if the two struct clk pointers both point to the same hardware
2809  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2810  * share the same struct clk_core object.
2811  *
2812  * Returns false otherwise. Note that two NULL clks are treated as matching.
2813  */
2814 bool clk_is_match(const struct clk *p, const struct clk *q)
2815 {
2816 	/* trivial case: identical struct clk's or both NULL */
2817 	if (p == q)
2818 		return true;
2819 
2820 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2821 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2822 		if (p->core == q->core)
2823 			return true;
2824 
2825 	return false;
2826 }
2827 EXPORT_SYMBOL_GPL(clk_is_match);
2828 
2829 /***        debugfs support        ***/
2830 
2831 #ifdef CONFIG_DEBUG_FS
2832 #include <linux/debugfs.h>
2833 
2834 static struct dentry *rootdir;
2835 static int inited = 0;
2836 static DEFINE_MUTEX(clk_debug_lock);
2837 static HLIST_HEAD(clk_debug_list);
2838 
2839 static struct hlist_head *all_lists[] = {
2840 	&clk_root_list,
2841 	&clk_orphan_list,
2842 	NULL,
2843 };
2844 
2845 static struct hlist_head *orphan_list[] = {
2846 	&clk_orphan_list,
2847 	NULL,
2848 };
2849 
2850 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2851 				 int level)
2852 {
2853 	if (!c)
2854 		return;
2855 
2856 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2857 		   level * 3 + 1, "",
2858 		   30 - level * 3, c->name,
2859 		   c->enable_count, c->prepare_count, c->protect_count,
2860 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2861 		   clk_core_get_phase(c),
2862 		   clk_core_get_scaled_duty_cycle(c, 100000));
2863 }
2864 
2865 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2866 				     int level)
2867 {
2868 	struct clk_core *child;
2869 
2870 	if (!c)
2871 		return;
2872 
2873 	clk_summary_show_one(s, c, level);
2874 
2875 	hlist_for_each_entry(child, &c->children, child_node)
2876 		clk_summary_show_subtree(s, child, level + 1);
2877 }
2878 
2879 static int clk_summary_show(struct seq_file *s, void *data)
2880 {
2881 	struct clk_core *c;
2882 	struct hlist_head **lists = (struct hlist_head **)s->private;
2883 
2884 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2885 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2886 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2887 
2888 	clk_prepare_lock();
2889 
2890 	for (; *lists; lists++)
2891 		hlist_for_each_entry(c, *lists, child_node)
2892 			clk_summary_show_subtree(s, c, 0);
2893 
2894 	clk_prepare_unlock();
2895 
2896 	return 0;
2897 }
2898 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2899 
2900 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2901 {
2902 	if (!c)
2903 		return;
2904 
2905 	/* This should be JSON format, i.e. elements separated with a comma */
2906 	seq_printf(s, "\"%s\": { ", c->name);
2907 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2908 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2909 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2910 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2911 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2912 	seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2913 	seq_printf(s, "\"duty_cycle\": %u",
2914 		   clk_core_get_scaled_duty_cycle(c, 100000));
2915 }
2916 
2917 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2918 {
2919 	struct clk_core *child;
2920 
2921 	if (!c)
2922 		return;
2923 
2924 	clk_dump_one(s, c, level);
2925 
2926 	hlist_for_each_entry(child, &c->children, child_node) {
2927 		seq_putc(s, ',');
2928 		clk_dump_subtree(s, child, level + 1);
2929 	}
2930 
2931 	seq_putc(s, '}');
2932 }
2933 
2934 static int clk_dump_show(struct seq_file *s, void *data)
2935 {
2936 	struct clk_core *c;
2937 	bool first_node = true;
2938 	struct hlist_head **lists = (struct hlist_head **)s->private;
2939 
2940 	seq_putc(s, '{');
2941 	clk_prepare_lock();
2942 
2943 	for (; *lists; lists++) {
2944 		hlist_for_each_entry(c, *lists, child_node) {
2945 			if (!first_node)
2946 				seq_putc(s, ',');
2947 			first_node = false;
2948 			clk_dump_subtree(s, c, 0);
2949 		}
2950 	}
2951 
2952 	clk_prepare_unlock();
2953 
2954 	seq_puts(s, "}\n");
2955 	return 0;
2956 }
2957 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2958 
2959 static const struct {
2960 	unsigned long flag;
2961 	const char *name;
2962 } clk_flags[] = {
2963 #define ENTRY(f) { f, #f }
2964 	ENTRY(CLK_SET_RATE_GATE),
2965 	ENTRY(CLK_SET_PARENT_GATE),
2966 	ENTRY(CLK_SET_RATE_PARENT),
2967 	ENTRY(CLK_IGNORE_UNUSED),
2968 	ENTRY(CLK_GET_RATE_NOCACHE),
2969 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2970 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2971 	ENTRY(CLK_RECALC_NEW_RATES),
2972 	ENTRY(CLK_SET_RATE_UNGATE),
2973 	ENTRY(CLK_IS_CRITICAL),
2974 	ENTRY(CLK_OPS_PARENT_ENABLE),
2975 	ENTRY(CLK_DUTY_CYCLE_PARENT),
2976 #undef ENTRY
2977 };
2978 
2979 static int clk_flags_show(struct seq_file *s, void *data)
2980 {
2981 	struct clk_core *core = s->private;
2982 	unsigned long flags = core->flags;
2983 	unsigned int i;
2984 
2985 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2986 		if (flags & clk_flags[i].flag) {
2987 			seq_printf(s, "%s\n", clk_flags[i].name);
2988 			flags &= ~clk_flags[i].flag;
2989 		}
2990 	}
2991 	if (flags) {
2992 		/* Unknown flags */
2993 		seq_printf(s, "0x%lx\n", flags);
2994 	}
2995 
2996 	return 0;
2997 }
2998 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2999 
3000 static int possible_parents_show(struct seq_file *s, void *data)
3001 {
3002 	struct clk_core *core = s->private;
3003 	int i;
3004 
3005 	for (i = 0; i < core->num_parents - 1; i++)
3006 		seq_printf(s, "%s ", core->parents[i].name);
3007 
3008 	seq_printf(s, "%s\n", core->parents[i].name);
3009 
3010 	return 0;
3011 }
3012 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3013 
3014 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3015 {
3016 	struct clk_core *core = s->private;
3017 	struct clk_duty *duty = &core->duty;
3018 
3019 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3020 
3021 	return 0;
3022 }
3023 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3024 
3025 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3026 {
3027 	struct dentry *root;
3028 
3029 	if (!core || !pdentry)
3030 		return;
3031 
3032 	root = debugfs_create_dir(core->name, pdentry);
3033 	core->dentry = root;
3034 
3035 	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
3036 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3037 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3038 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3039 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3040 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3041 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3042 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3043 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3044 			    &clk_duty_cycle_fops);
3045 
3046 	if (core->num_parents > 1)
3047 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3048 				    &possible_parents_fops);
3049 
3050 	if (core->ops->debug_init)
3051 		core->ops->debug_init(core->hw, core->dentry);
3052 }
3053 
3054 /**
3055  * clk_debug_register - add a clk node to the debugfs clk directory
3056  * @core: the clk being added to the debugfs clk directory
3057  *
3058  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3059  * initialized.  Otherwise it bails out early since the debugfs clk directory
3060  * will be created lazily by clk_debug_init as part of a late_initcall.
3061  */
3062 static void clk_debug_register(struct clk_core *core)
3063 {
3064 	mutex_lock(&clk_debug_lock);
3065 	hlist_add_head(&core->debug_node, &clk_debug_list);
3066 	if (inited)
3067 		clk_debug_create_one(core, rootdir);
3068 	mutex_unlock(&clk_debug_lock);
3069 }
3070 
3071  /**
3072  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3073  * @core: the clk being removed from the debugfs clk directory
3074  *
3075  * Dynamically removes a clk and all its child nodes from the
3076  * debugfs clk directory if clk->dentry points to debugfs created by
3077  * clk_debug_register in __clk_core_init.
3078  */
3079 static void clk_debug_unregister(struct clk_core *core)
3080 {
3081 	mutex_lock(&clk_debug_lock);
3082 	hlist_del_init(&core->debug_node);
3083 	debugfs_remove_recursive(core->dentry);
3084 	core->dentry = NULL;
3085 	mutex_unlock(&clk_debug_lock);
3086 }
3087 
3088 /**
3089  * clk_debug_init - lazily populate the debugfs clk directory
3090  *
3091  * clks are often initialized very early during boot before memory can be
3092  * dynamically allocated and well before debugfs is setup. This function
3093  * populates the debugfs clk directory once at boot-time when we know that
3094  * debugfs is setup. It should only be called once at boot-time, all other clks
3095  * added dynamically will be done so with clk_debug_register.
3096  */
3097 static int __init clk_debug_init(void)
3098 {
3099 	struct clk_core *core;
3100 
3101 	rootdir = debugfs_create_dir("clk", NULL);
3102 
3103 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3104 			    &clk_summary_fops);
3105 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3106 			    &clk_dump_fops);
3107 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3108 			    &clk_summary_fops);
3109 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3110 			    &clk_dump_fops);
3111 
3112 	mutex_lock(&clk_debug_lock);
3113 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3114 		clk_debug_create_one(core, rootdir);
3115 
3116 	inited = 1;
3117 	mutex_unlock(&clk_debug_lock);
3118 
3119 	return 0;
3120 }
3121 late_initcall(clk_debug_init);
3122 #else
3123 static inline void clk_debug_register(struct clk_core *core) { }
3124 static inline void clk_debug_reparent(struct clk_core *core,
3125 				      struct clk_core *new_parent)
3126 {
3127 }
3128 static inline void clk_debug_unregister(struct clk_core *core)
3129 {
3130 }
3131 #endif
3132 
3133 /**
3134  * __clk_core_init - initialize the data structures in a struct clk_core
3135  * @core:	clk_core being initialized
3136  *
3137  * Initializes the lists in struct clk_core, queries the hardware for the
3138  * parent and rate and sets them both.
3139  */
3140 static int __clk_core_init(struct clk_core *core)
3141 {
3142 	int ret;
3143 	struct clk_core *orphan;
3144 	struct hlist_node *tmp2;
3145 	unsigned long rate;
3146 
3147 	if (!core)
3148 		return -EINVAL;
3149 
3150 	clk_prepare_lock();
3151 
3152 	ret = clk_pm_runtime_get(core);
3153 	if (ret)
3154 		goto unlock;
3155 
3156 	/* check to see if a clock with this name is already registered */
3157 	if (clk_core_lookup(core->name)) {
3158 		pr_debug("%s: clk %s already initialized\n",
3159 				__func__, core->name);
3160 		ret = -EEXIST;
3161 		goto out;
3162 	}
3163 
3164 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3165 	if (core->ops->set_rate &&
3166 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3167 	      core->ops->recalc_rate)) {
3168 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3169 		       __func__, core->name);
3170 		ret = -EINVAL;
3171 		goto out;
3172 	}
3173 
3174 	if (core->ops->set_parent && !core->ops->get_parent) {
3175 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3176 		       __func__, core->name);
3177 		ret = -EINVAL;
3178 		goto out;
3179 	}
3180 
3181 	if (core->num_parents > 1 && !core->ops->get_parent) {
3182 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3183 		       __func__, core->name);
3184 		ret = -EINVAL;
3185 		goto out;
3186 	}
3187 
3188 	if (core->ops->set_rate_and_parent &&
3189 			!(core->ops->set_parent && core->ops->set_rate)) {
3190 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3191 				__func__, core->name);
3192 		ret = -EINVAL;
3193 		goto out;
3194 	}
3195 
3196 	core->parent = __clk_init_parent(core);
3197 
3198 	/*
3199 	 * Populate core->parent if parent has already been clk_core_init'd. If
3200 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3201 	 * list.  If clk doesn't have any parents then place it in the root
3202 	 * clk list.
3203 	 *
3204 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3205 	 * clocks and re-parent any that are children of the clock currently
3206 	 * being clk_init'd.
3207 	 */
3208 	if (core->parent) {
3209 		hlist_add_head(&core->child_node,
3210 				&core->parent->children);
3211 		core->orphan = core->parent->orphan;
3212 	} else if (!core->num_parents) {
3213 		hlist_add_head(&core->child_node, &clk_root_list);
3214 		core->orphan = false;
3215 	} else {
3216 		hlist_add_head(&core->child_node, &clk_orphan_list);
3217 		core->orphan = true;
3218 	}
3219 
3220 	/*
3221 	 * optional platform-specific magic
3222 	 *
3223 	 * The .init callback is not used by any of the basic clock types, but
3224 	 * exists for weird hardware that must perform initialization magic.
3225 	 * Please consider other ways of solving initialization problems before
3226 	 * using this callback, as its use is discouraged.
3227 	 */
3228 	if (core->ops->init)
3229 		core->ops->init(core->hw);
3230 
3231 	/*
3232 	 * Set clk's accuracy.  The preferred method is to use
3233 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3234 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3235 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3236 	 * clock).
3237 	 */
3238 	if (core->ops->recalc_accuracy)
3239 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3240 					__clk_get_accuracy(core->parent));
3241 	else if (core->parent)
3242 		core->accuracy = core->parent->accuracy;
3243 	else
3244 		core->accuracy = 0;
3245 
3246 	/*
3247 	 * Set clk's phase.
3248 	 * Since a phase is by definition relative to its parent, just
3249 	 * query the current clock phase, or just assume it's in phase.
3250 	 */
3251 	if (core->ops->get_phase)
3252 		core->phase = core->ops->get_phase(core->hw);
3253 	else
3254 		core->phase = 0;
3255 
3256 	/*
3257 	 * Set clk's duty cycle.
3258 	 */
3259 	clk_core_update_duty_cycle_nolock(core);
3260 
3261 	/*
3262 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3263 	 * simple clocks and lazy developers the default fallback is to use the
3264 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3265 	 * then rate is set to zero.
3266 	 */
3267 	if (core->ops->recalc_rate)
3268 		rate = core->ops->recalc_rate(core->hw,
3269 				clk_core_get_rate_nolock(core->parent));
3270 	else if (core->parent)
3271 		rate = core->parent->rate;
3272 	else
3273 		rate = 0;
3274 	core->rate = core->req_rate = rate;
3275 
3276 	/*
3277 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3278 	 * don't get accidentally disabled when walking the orphan tree and
3279 	 * reparenting clocks
3280 	 */
3281 	if (core->flags & CLK_IS_CRITICAL) {
3282 		unsigned long flags;
3283 
3284 		clk_core_prepare(core);
3285 
3286 		flags = clk_enable_lock();
3287 		clk_core_enable(core);
3288 		clk_enable_unlock(flags);
3289 	}
3290 
3291 	/*
3292 	 * walk the list of orphan clocks and reparent any that newly finds a
3293 	 * parent.
3294 	 */
3295 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3296 		struct clk_core *parent = __clk_init_parent(orphan);
3297 
3298 		/*
3299 		 * We need to use __clk_set_parent_before() and _after() to
3300 		 * to properly migrate any prepare/enable count of the orphan
3301 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3302 		 * are enabled during init but might not have a parent yet.
3303 		 */
3304 		if (parent) {
3305 			/* update the clk tree topology */
3306 			__clk_set_parent_before(orphan, parent);
3307 			__clk_set_parent_after(orphan, parent, NULL);
3308 			__clk_recalc_accuracies(orphan);
3309 			__clk_recalc_rates(orphan, 0);
3310 		}
3311 	}
3312 
3313 	kref_init(&core->ref);
3314 out:
3315 	clk_pm_runtime_put(core);
3316 unlock:
3317 	clk_prepare_unlock();
3318 
3319 	if (!ret)
3320 		clk_debug_register(core);
3321 
3322 	return ret;
3323 }
3324 
3325 /**
3326  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3327  * @core: clk to add consumer to
3328  * @clk: consumer to link to a clk
3329  */
3330 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3331 {
3332 	clk_prepare_lock();
3333 	hlist_add_head(&clk->clks_node, &core->clks);
3334 	clk_prepare_unlock();
3335 }
3336 
3337 /**
3338  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3339  * @clk: consumer to unlink
3340  */
3341 static void clk_core_unlink_consumer(struct clk *clk)
3342 {
3343 	lockdep_assert_held(&prepare_lock);
3344 	hlist_del(&clk->clks_node);
3345 }
3346 
3347 /**
3348  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3349  * @core: clk to allocate a consumer for
3350  * @dev_id: string describing device name
3351  * @con_id: connection ID string on device
3352  *
3353  * Returns: clk consumer left unlinked from the consumer list
3354  */
3355 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3356 			     const char *con_id)
3357 {
3358 	struct clk *clk;
3359 
3360 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3361 	if (!clk)
3362 		return ERR_PTR(-ENOMEM);
3363 
3364 	clk->core = core;
3365 	clk->dev_id = dev_id;
3366 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3367 	clk->max_rate = ULONG_MAX;
3368 
3369 	return clk;
3370 }
3371 
3372 /**
3373  * free_clk - Free a clk consumer
3374  * @clk: clk consumer to free
3375  *
3376  * Note, this assumes the clk has been unlinked from the clk_core consumer
3377  * list.
3378  */
3379 static void free_clk(struct clk *clk)
3380 {
3381 	kfree_const(clk->con_id);
3382 	kfree(clk);
3383 }
3384 
3385 /**
3386  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3387  * a clk_hw
3388  * @dev: clk consumer device
3389  * @hw: clk_hw associated with the clk being consumed
3390  * @dev_id: string describing device name
3391  * @con_id: connection ID string on device
3392  *
3393  * This is the main function used to create a clk pointer for use by clk
3394  * consumers. It connects a consumer to the clk_core and clk_hw structures
3395  * used by the framework and clk provider respectively.
3396  */
3397 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3398 			      const char *dev_id, const char *con_id)
3399 {
3400 	struct clk *clk;
3401 	struct clk_core *core;
3402 
3403 	/* This is to allow this function to be chained to others */
3404 	if (IS_ERR_OR_NULL(hw))
3405 		return ERR_CAST(hw);
3406 
3407 	core = hw->core;
3408 	clk = alloc_clk(core, dev_id, con_id);
3409 	if (IS_ERR(clk))
3410 		return clk;
3411 	clk->dev = dev;
3412 
3413 	if (!try_module_get(core->owner)) {
3414 		free_clk(clk);
3415 		return ERR_PTR(-ENOENT);
3416 	}
3417 
3418 	kref_get(&core->ref);
3419 	clk_core_link_consumer(core, clk);
3420 
3421 	return clk;
3422 }
3423 
3424 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3425 {
3426 	const char *dst;
3427 
3428 	if (!src) {
3429 		if (must_exist)
3430 			return -EINVAL;
3431 		return 0;
3432 	}
3433 
3434 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3435 	if (!dst)
3436 		return -ENOMEM;
3437 
3438 	return 0;
3439 }
3440 
3441 static int clk_core_populate_parent_map(struct clk_core *core)
3442 {
3443 	const struct clk_init_data *init = core->hw->init;
3444 	u8 num_parents = init->num_parents;
3445 	const char * const *parent_names = init->parent_names;
3446 	const struct clk_hw **parent_hws = init->parent_hws;
3447 	const struct clk_parent_data *parent_data = init->parent_data;
3448 	int i, ret = 0;
3449 	struct clk_parent_map *parents, *parent;
3450 
3451 	if (!num_parents)
3452 		return 0;
3453 
3454 	/*
3455 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3456 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3457 	 */
3458 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3459 	core->parents = parents;
3460 	if (!parents)
3461 		return -ENOMEM;
3462 
3463 	/* Copy everything over because it might be __initdata */
3464 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3465 		parent->index = -1;
3466 		if (parent_names) {
3467 			/* throw a WARN if any entries are NULL */
3468 			WARN(!parent_names[i],
3469 				"%s: invalid NULL in %s's .parent_names\n",
3470 				__func__, core->name);
3471 			ret = clk_cpy_name(&parent->name, parent_names[i],
3472 					   true);
3473 		} else if (parent_data) {
3474 			parent->hw = parent_data[i].hw;
3475 			parent->index = parent_data[i].index;
3476 			ret = clk_cpy_name(&parent->fw_name,
3477 					   parent_data[i].fw_name, false);
3478 			if (!ret)
3479 				ret = clk_cpy_name(&parent->name,
3480 						   parent_data[i].name,
3481 						   false);
3482 		} else if (parent_hws) {
3483 			parent->hw = parent_hws[i];
3484 		} else {
3485 			ret = -EINVAL;
3486 			WARN(1, "Must specify parents if num_parents > 0\n");
3487 		}
3488 
3489 		if (ret) {
3490 			do {
3491 				kfree_const(parents[i].name);
3492 				kfree_const(parents[i].fw_name);
3493 			} while (--i >= 0);
3494 			kfree(parents);
3495 
3496 			return ret;
3497 		}
3498 	}
3499 
3500 	return 0;
3501 }
3502 
3503 static void clk_core_free_parent_map(struct clk_core *core)
3504 {
3505 	int i = core->num_parents;
3506 
3507 	if (!core->num_parents)
3508 		return;
3509 
3510 	while (--i >= 0) {
3511 		kfree_const(core->parents[i].name);
3512 		kfree_const(core->parents[i].fw_name);
3513 	}
3514 
3515 	kfree(core->parents);
3516 }
3517 
3518 static struct clk *
3519 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3520 {
3521 	int ret;
3522 	struct clk_core *core;
3523 
3524 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3525 	if (!core) {
3526 		ret = -ENOMEM;
3527 		goto fail_out;
3528 	}
3529 
3530 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3531 	if (!core->name) {
3532 		ret = -ENOMEM;
3533 		goto fail_name;
3534 	}
3535 
3536 	if (WARN_ON(!hw->init->ops)) {
3537 		ret = -EINVAL;
3538 		goto fail_ops;
3539 	}
3540 	core->ops = hw->init->ops;
3541 
3542 	if (dev && pm_runtime_enabled(dev))
3543 		core->rpm_enabled = true;
3544 	core->dev = dev;
3545 	core->of_node = np;
3546 	if (dev && dev->driver)
3547 		core->owner = dev->driver->owner;
3548 	core->hw = hw;
3549 	core->flags = hw->init->flags;
3550 	core->num_parents = hw->init->num_parents;
3551 	core->min_rate = 0;
3552 	core->max_rate = ULONG_MAX;
3553 	hw->core = core;
3554 
3555 	ret = clk_core_populate_parent_map(core);
3556 	if (ret)
3557 		goto fail_parents;
3558 
3559 	INIT_HLIST_HEAD(&core->clks);
3560 
3561 	/*
3562 	 * Don't call clk_hw_create_clk() here because that would pin the
3563 	 * provider module to itself and prevent it from ever being removed.
3564 	 */
3565 	hw->clk = alloc_clk(core, NULL, NULL);
3566 	if (IS_ERR(hw->clk)) {
3567 		ret = PTR_ERR(hw->clk);
3568 		goto fail_create_clk;
3569 	}
3570 
3571 	clk_core_link_consumer(hw->core, hw->clk);
3572 
3573 	ret = __clk_core_init(core);
3574 	if (!ret)
3575 		return hw->clk;
3576 
3577 	clk_prepare_lock();
3578 	clk_core_unlink_consumer(hw->clk);
3579 	clk_prepare_unlock();
3580 
3581 	free_clk(hw->clk);
3582 	hw->clk = NULL;
3583 
3584 fail_create_clk:
3585 	clk_core_free_parent_map(core);
3586 fail_parents:
3587 fail_ops:
3588 	kfree_const(core->name);
3589 fail_name:
3590 	kfree(core);
3591 fail_out:
3592 	return ERR_PTR(ret);
3593 }
3594 
3595 /**
3596  * clk_register - allocate a new clock, register it and return an opaque cookie
3597  * @dev: device that is registering this clock
3598  * @hw: link to hardware-specific clock data
3599  *
3600  * clk_register is the *deprecated* interface for populating the clock tree with
3601  * new clock nodes. Use clk_hw_register() instead.
3602  *
3603  * Returns: a pointer to the newly allocated struct clk which
3604  * cannot be dereferenced by driver code but may be used in conjunction with the
3605  * rest of the clock API.  In the event of an error clk_register will return an
3606  * error code; drivers must test for an error code after calling clk_register.
3607  */
3608 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3609 {
3610 	return __clk_register(dev, dev_of_node(dev), hw);
3611 }
3612 EXPORT_SYMBOL_GPL(clk_register);
3613 
3614 /**
3615  * clk_hw_register - register a clk_hw and return an error code
3616  * @dev: device that is registering this clock
3617  * @hw: link to hardware-specific clock data
3618  *
3619  * clk_hw_register is the primary interface for populating the clock tree with
3620  * new clock nodes. It returns an integer equal to zero indicating success or
3621  * less than zero indicating failure. Drivers must test for an error code after
3622  * calling clk_hw_register().
3623  */
3624 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3625 {
3626 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw));
3627 }
3628 EXPORT_SYMBOL_GPL(clk_hw_register);
3629 
3630 /*
3631  * of_clk_hw_register - register a clk_hw and return an error code
3632  * @node: device_node of device that is registering this clock
3633  * @hw: link to hardware-specific clock data
3634  *
3635  * of_clk_hw_register() is the primary interface for populating the clock tree
3636  * with new clock nodes when a struct device is not available, but a struct
3637  * device_node is. It returns an integer equal to zero indicating success or
3638  * less than zero indicating failure. Drivers must test for an error code after
3639  * calling of_clk_hw_register().
3640  */
3641 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3642 {
3643 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3644 }
3645 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3646 
3647 /* Free memory allocated for a clock. */
3648 static void __clk_release(struct kref *ref)
3649 {
3650 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3651 
3652 	lockdep_assert_held(&prepare_lock);
3653 
3654 	clk_core_free_parent_map(core);
3655 	kfree_const(core->name);
3656 	kfree(core);
3657 }
3658 
3659 /*
3660  * Empty clk_ops for unregistered clocks. These are used temporarily
3661  * after clk_unregister() was called on a clock and until last clock
3662  * consumer calls clk_put() and the struct clk object is freed.
3663  */
3664 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3665 {
3666 	return -ENXIO;
3667 }
3668 
3669 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3670 {
3671 	WARN_ON_ONCE(1);
3672 }
3673 
3674 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3675 					unsigned long parent_rate)
3676 {
3677 	return -ENXIO;
3678 }
3679 
3680 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3681 {
3682 	return -ENXIO;
3683 }
3684 
3685 static const struct clk_ops clk_nodrv_ops = {
3686 	.enable		= clk_nodrv_prepare_enable,
3687 	.disable	= clk_nodrv_disable_unprepare,
3688 	.prepare	= clk_nodrv_prepare_enable,
3689 	.unprepare	= clk_nodrv_disable_unprepare,
3690 	.set_rate	= clk_nodrv_set_rate,
3691 	.set_parent	= clk_nodrv_set_parent,
3692 };
3693 
3694 /**
3695  * clk_unregister - unregister a currently registered clock
3696  * @clk: clock to unregister
3697  */
3698 void clk_unregister(struct clk *clk)
3699 {
3700 	unsigned long flags;
3701 
3702 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3703 		return;
3704 
3705 	clk_debug_unregister(clk->core);
3706 
3707 	clk_prepare_lock();
3708 
3709 	if (clk->core->ops == &clk_nodrv_ops) {
3710 		pr_err("%s: unregistered clock: %s\n", __func__,
3711 		       clk->core->name);
3712 		goto unlock;
3713 	}
3714 	/*
3715 	 * Assign empty clock ops for consumers that might still hold
3716 	 * a reference to this clock.
3717 	 */
3718 	flags = clk_enable_lock();
3719 	clk->core->ops = &clk_nodrv_ops;
3720 	clk_enable_unlock(flags);
3721 
3722 	if (!hlist_empty(&clk->core->children)) {
3723 		struct clk_core *child;
3724 		struct hlist_node *t;
3725 
3726 		/* Reparent all children to the orphan list. */
3727 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3728 					  child_node)
3729 			clk_core_set_parent_nolock(child, NULL);
3730 	}
3731 
3732 	hlist_del_init(&clk->core->child_node);
3733 
3734 	if (clk->core->prepare_count)
3735 		pr_warn("%s: unregistering prepared clock: %s\n",
3736 					__func__, clk->core->name);
3737 
3738 	if (clk->core->protect_count)
3739 		pr_warn("%s: unregistering protected clock: %s\n",
3740 					__func__, clk->core->name);
3741 
3742 	kref_put(&clk->core->ref, __clk_release);
3743 unlock:
3744 	clk_prepare_unlock();
3745 }
3746 EXPORT_SYMBOL_GPL(clk_unregister);
3747 
3748 /**
3749  * clk_hw_unregister - unregister a currently registered clk_hw
3750  * @hw: hardware-specific clock data to unregister
3751  */
3752 void clk_hw_unregister(struct clk_hw *hw)
3753 {
3754 	clk_unregister(hw->clk);
3755 }
3756 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3757 
3758 static void devm_clk_release(struct device *dev, void *res)
3759 {
3760 	clk_unregister(*(struct clk **)res);
3761 }
3762 
3763 static void devm_clk_hw_release(struct device *dev, void *res)
3764 {
3765 	clk_hw_unregister(*(struct clk_hw **)res);
3766 }
3767 
3768 /**
3769  * devm_clk_register - resource managed clk_register()
3770  * @dev: device that is registering this clock
3771  * @hw: link to hardware-specific clock data
3772  *
3773  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
3774  *
3775  * Clocks returned from this function are automatically clk_unregister()ed on
3776  * driver detach. See clk_register() for more information.
3777  */
3778 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3779 {
3780 	struct clk *clk;
3781 	struct clk **clkp;
3782 
3783 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3784 	if (!clkp)
3785 		return ERR_PTR(-ENOMEM);
3786 
3787 	clk = clk_register(dev, hw);
3788 	if (!IS_ERR(clk)) {
3789 		*clkp = clk;
3790 		devres_add(dev, clkp);
3791 	} else {
3792 		devres_free(clkp);
3793 	}
3794 
3795 	return clk;
3796 }
3797 EXPORT_SYMBOL_GPL(devm_clk_register);
3798 
3799 /**
3800  * devm_clk_hw_register - resource managed clk_hw_register()
3801  * @dev: device that is registering this clock
3802  * @hw: link to hardware-specific clock data
3803  *
3804  * Managed clk_hw_register(). Clocks registered by this function are
3805  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3806  * for more information.
3807  */
3808 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3809 {
3810 	struct clk_hw **hwp;
3811 	int ret;
3812 
3813 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3814 	if (!hwp)
3815 		return -ENOMEM;
3816 
3817 	ret = clk_hw_register(dev, hw);
3818 	if (!ret) {
3819 		*hwp = hw;
3820 		devres_add(dev, hwp);
3821 	} else {
3822 		devres_free(hwp);
3823 	}
3824 
3825 	return ret;
3826 }
3827 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3828 
3829 static int devm_clk_match(struct device *dev, void *res, void *data)
3830 {
3831 	struct clk *c = res;
3832 	if (WARN_ON(!c))
3833 		return 0;
3834 	return c == data;
3835 }
3836 
3837 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3838 {
3839 	struct clk_hw *hw = res;
3840 
3841 	if (WARN_ON(!hw))
3842 		return 0;
3843 	return hw == data;
3844 }
3845 
3846 /**
3847  * devm_clk_unregister - resource managed clk_unregister()
3848  * @clk: clock to unregister
3849  *
3850  * Deallocate a clock allocated with devm_clk_register(). Normally
3851  * this function will not need to be called and the resource management
3852  * code will ensure that the resource is freed.
3853  */
3854 void devm_clk_unregister(struct device *dev, struct clk *clk)
3855 {
3856 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3857 }
3858 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3859 
3860 /**
3861  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3862  * @dev: device that is unregistering the hardware-specific clock data
3863  * @hw: link to hardware-specific clock data
3864  *
3865  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3866  * this function will not need to be called and the resource management
3867  * code will ensure that the resource is freed.
3868  */
3869 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3870 {
3871 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3872 				hw));
3873 }
3874 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3875 
3876 /*
3877  * clkdev helpers
3878  */
3879 
3880 void __clk_put(struct clk *clk)
3881 {
3882 	struct module *owner;
3883 
3884 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3885 		return;
3886 
3887 	clk_prepare_lock();
3888 
3889 	/*
3890 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3891 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3892 	 * and by that same consumer
3893 	 */
3894 	if (WARN_ON(clk->exclusive_count)) {
3895 		/* We voiced our concern, let's sanitize the situation */
3896 		clk->core->protect_count -= (clk->exclusive_count - 1);
3897 		clk_core_rate_unprotect(clk->core);
3898 		clk->exclusive_count = 0;
3899 	}
3900 
3901 	hlist_del(&clk->clks_node);
3902 	if (clk->min_rate > clk->core->req_rate ||
3903 	    clk->max_rate < clk->core->req_rate)
3904 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3905 
3906 	owner = clk->core->owner;
3907 	kref_put(&clk->core->ref, __clk_release);
3908 
3909 	clk_prepare_unlock();
3910 
3911 	module_put(owner);
3912 
3913 	free_clk(clk);
3914 }
3915 
3916 /***        clk rate change notifiers        ***/
3917 
3918 /**
3919  * clk_notifier_register - add a clk rate change notifier
3920  * @clk: struct clk * to watch
3921  * @nb: struct notifier_block * with callback info
3922  *
3923  * Request notification when clk's rate changes.  This uses an SRCU
3924  * notifier because we want it to block and notifier unregistrations are
3925  * uncommon.  The callbacks associated with the notifier must not
3926  * re-enter into the clk framework by calling any top-level clk APIs;
3927  * this will cause a nested prepare_lock mutex.
3928  *
3929  * In all notification cases (pre, post and abort rate change) the original
3930  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3931  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3932  *
3933  * clk_notifier_register() must be called from non-atomic context.
3934  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3935  * allocation failure; otherwise, passes along the return value of
3936  * srcu_notifier_chain_register().
3937  */
3938 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3939 {
3940 	struct clk_notifier *cn;
3941 	int ret = -ENOMEM;
3942 
3943 	if (!clk || !nb)
3944 		return -EINVAL;
3945 
3946 	clk_prepare_lock();
3947 
3948 	/* search the list of notifiers for this clk */
3949 	list_for_each_entry(cn, &clk_notifier_list, node)
3950 		if (cn->clk == clk)
3951 			break;
3952 
3953 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3954 	if (cn->clk != clk) {
3955 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3956 		if (!cn)
3957 			goto out;
3958 
3959 		cn->clk = clk;
3960 		srcu_init_notifier_head(&cn->notifier_head);
3961 
3962 		list_add(&cn->node, &clk_notifier_list);
3963 	}
3964 
3965 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3966 
3967 	clk->core->notifier_count++;
3968 
3969 out:
3970 	clk_prepare_unlock();
3971 
3972 	return ret;
3973 }
3974 EXPORT_SYMBOL_GPL(clk_notifier_register);
3975 
3976 /**
3977  * clk_notifier_unregister - remove a clk rate change notifier
3978  * @clk: struct clk *
3979  * @nb: struct notifier_block * with callback info
3980  *
3981  * Request no further notification for changes to 'clk' and frees memory
3982  * allocated in clk_notifier_register.
3983  *
3984  * Returns -EINVAL if called with null arguments; otherwise, passes
3985  * along the return value of srcu_notifier_chain_unregister().
3986  */
3987 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3988 {
3989 	struct clk_notifier *cn = NULL;
3990 	int ret = -EINVAL;
3991 
3992 	if (!clk || !nb)
3993 		return -EINVAL;
3994 
3995 	clk_prepare_lock();
3996 
3997 	list_for_each_entry(cn, &clk_notifier_list, node)
3998 		if (cn->clk == clk)
3999 			break;
4000 
4001 	if (cn->clk == clk) {
4002 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4003 
4004 		clk->core->notifier_count--;
4005 
4006 		/* XXX the notifier code should handle this better */
4007 		if (!cn->notifier_head.head) {
4008 			srcu_cleanup_notifier_head(&cn->notifier_head);
4009 			list_del(&cn->node);
4010 			kfree(cn);
4011 		}
4012 
4013 	} else {
4014 		ret = -ENOENT;
4015 	}
4016 
4017 	clk_prepare_unlock();
4018 
4019 	return ret;
4020 }
4021 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4022 
4023 #ifdef CONFIG_OF
4024 /**
4025  * struct of_clk_provider - Clock provider registration structure
4026  * @link: Entry in global list of clock providers
4027  * @node: Pointer to device tree node of clock provider
4028  * @get: Get clock callback.  Returns NULL or a struct clk for the
4029  *       given clock specifier
4030  * @data: context pointer to be passed into @get callback
4031  */
4032 struct of_clk_provider {
4033 	struct list_head link;
4034 
4035 	struct device_node *node;
4036 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4037 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4038 	void *data;
4039 };
4040 
4041 static const struct of_device_id __clk_of_table_sentinel
4042 	__used __section(__clk_of_table_end);
4043 
4044 static LIST_HEAD(of_clk_providers);
4045 static DEFINE_MUTEX(of_clk_mutex);
4046 
4047 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4048 				     void *data)
4049 {
4050 	return data;
4051 }
4052 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4053 
4054 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4055 {
4056 	return data;
4057 }
4058 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4059 
4060 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4061 {
4062 	struct clk_onecell_data *clk_data = data;
4063 	unsigned int idx = clkspec->args[0];
4064 
4065 	if (idx >= clk_data->clk_num) {
4066 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4067 		return ERR_PTR(-EINVAL);
4068 	}
4069 
4070 	return clk_data->clks[idx];
4071 }
4072 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4073 
4074 struct clk_hw *
4075 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4076 {
4077 	struct clk_hw_onecell_data *hw_data = data;
4078 	unsigned int idx = clkspec->args[0];
4079 
4080 	if (idx >= hw_data->num) {
4081 		pr_err("%s: invalid index %u\n", __func__, idx);
4082 		return ERR_PTR(-EINVAL);
4083 	}
4084 
4085 	return hw_data->hws[idx];
4086 }
4087 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4088 
4089 /**
4090  * of_clk_add_provider() - Register a clock provider for a node
4091  * @np: Device node pointer associated with clock provider
4092  * @clk_src_get: callback for decoding clock
4093  * @data: context pointer for @clk_src_get callback.
4094  *
4095  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4096  */
4097 int of_clk_add_provider(struct device_node *np,
4098 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4099 						   void *data),
4100 			void *data)
4101 {
4102 	struct of_clk_provider *cp;
4103 	int ret;
4104 
4105 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4106 	if (!cp)
4107 		return -ENOMEM;
4108 
4109 	cp->node = of_node_get(np);
4110 	cp->data = data;
4111 	cp->get = clk_src_get;
4112 
4113 	mutex_lock(&of_clk_mutex);
4114 	list_add(&cp->link, &of_clk_providers);
4115 	mutex_unlock(&of_clk_mutex);
4116 	pr_debug("Added clock from %pOF\n", np);
4117 
4118 	ret = of_clk_set_defaults(np, true);
4119 	if (ret < 0)
4120 		of_clk_del_provider(np);
4121 
4122 	return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4125 
4126 /**
4127  * of_clk_add_hw_provider() - Register a clock provider for a node
4128  * @np: Device node pointer associated with clock provider
4129  * @get: callback for decoding clk_hw
4130  * @data: context pointer for @get callback.
4131  */
4132 int of_clk_add_hw_provider(struct device_node *np,
4133 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4134 						 void *data),
4135 			   void *data)
4136 {
4137 	struct of_clk_provider *cp;
4138 	int ret;
4139 
4140 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4141 	if (!cp)
4142 		return -ENOMEM;
4143 
4144 	cp->node = of_node_get(np);
4145 	cp->data = data;
4146 	cp->get_hw = get;
4147 
4148 	mutex_lock(&of_clk_mutex);
4149 	list_add(&cp->link, &of_clk_providers);
4150 	mutex_unlock(&of_clk_mutex);
4151 	pr_debug("Added clk_hw provider from %pOF\n", np);
4152 
4153 	ret = of_clk_set_defaults(np, true);
4154 	if (ret < 0)
4155 		of_clk_del_provider(np);
4156 
4157 	return ret;
4158 }
4159 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4160 
4161 static void devm_of_clk_release_provider(struct device *dev, void *res)
4162 {
4163 	of_clk_del_provider(*(struct device_node **)res);
4164 }
4165 
4166 /*
4167  * We allow a child device to use its parent device as the clock provider node
4168  * for cases like MFD sub-devices where the child device driver wants to use
4169  * devm_*() APIs but not list the device in DT as a sub-node.
4170  */
4171 static struct device_node *get_clk_provider_node(struct device *dev)
4172 {
4173 	struct device_node *np, *parent_np;
4174 
4175 	np = dev->of_node;
4176 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4177 
4178 	if (!of_find_property(np, "#clock-cells", NULL))
4179 		if (of_find_property(parent_np, "#clock-cells", NULL))
4180 			np = parent_np;
4181 
4182 	return np;
4183 }
4184 
4185 /**
4186  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4187  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4188  * @get: callback for decoding clk_hw
4189  * @data: context pointer for @get callback
4190  *
4191  * Registers clock provider for given device's node. If the device has no DT
4192  * node or if the device node lacks of clock provider information (#clock-cells)
4193  * then the parent device's node is scanned for this information. If parent node
4194  * has the #clock-cells then it is used in registration. Provider is
4195  * automatically released at device exit.
4196  *
4197  * Return: 0 on success or an errno on failure.
4198  */
4199 int devm_of_clk_add_hw_provider(struct device *dev,
4200 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4201 					      void *data),
4202 			void *data)
4203 {
4204 	struct device_node **ptr, *np;
4205 	int ret;
4206 
4207 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4208 			   GFP_KERNEL);
4209 	if (!ptr)
4210 		return -ENOMEM;
4211 
4212 	np = get_clk_provider_node(dev);
4213 	ret = of_clk_add_hw_provider(np, get, data);
4214 	if (!ret) {
4215 		*ptr = np;
4216 		devres_add(dev, ptr);
4217 	} else {
4218 		devres_free(ptr);
4219 	}
4220 
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4224 
4225 /**
4226  * of_clk_del_provider() - Remove a previously registered clock provider
4227  * @np: Device node pointer associated with clock provider
4228  */
4229 void of_clk_del_provider(struct device_node *np)
4230 {
4231 	struct of_clk_provider *cp;
4232 
4233 	mutex_lock(&of_clk_mutex);
4234 	list_for_each_entry(cp, &of_clk_providers, link) {
4235 		if (cp->node == np) {
4236 			list_del(&cp->link);
4237 			of_node_put(cp->node);
4238 			kfree(cp);
4239 			break;
4240 		}
4241 	}
4242 	mutex_unlock(&of_clk_mutex);
4243 }
4244 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4245 
4246 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4247 {
4248 	struct device_node **np = res;
4249 
4250 	if (WARN_ON(!np || !*np))
4251 		return 0;
4252 
4253 	return *np == data;
4254 }
4255 
4256 /**
4257  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4258  * @dev: Device to whose lifetime the clock provider was bound
4259  */
4260 void devm_of_clk_del_provider(struct device *dev)
4261 {
4262 	int ret;
4263 	struct device_node *np = get_clk_provider_node(dev);
4264 
4265 	ret = devres_release(dev, devm_of_clk_release_provider,
4266 			     devm_clk_provider_match, np);
4267 
4268 	WARN_ON(ret);
4269 }
4270 EXPORT_SYMBOL(devm_of_clk_del_provider);
4271 
4272 /*
4273  * Beware the return values when np is valid, but no clock provider is found.
4274  * If name == NULL, the function returns -ENOENT.
4275  * If name != NULL, the function returns -EINVAL. This is because
4276  * of_parse_phandle_with_args() is called even if of_property_match_string()
4277  * returns an error.
4278  */
4279 static int of_parse_clkspec(const struct device_node *np, int index,
4280 			    const char *name, struct of_phandle_args *out_args)
4281 {
4282 	int ret = -ENOENT;
4283 
4284 	/* Walk up the tree of devices looking for a clock property that matches */
4285 	while (np) {
4286 		/*
4287 		 * For named clocks, first look up the name in the
4288 		 * "clock-names" property.  If it cannot be found, then index
4289 		 * will be an error code and of_parse_phandle_with_args() will
4290 		 * return -EINVAL.
4291 		 */
4292 		if (name)
4293 			index = of_property_match_string(np, "clock-names", name);
4294 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4295 						 index, out_args);
4296 		if (!ret)
4297 			break;
4298 		if (name && index >= 0)
4299 			break;
4300 
4301 		/*
4302 		 * No matching clock found on this node.  If the parent node
4303 		 * has a "clock-ranges" property, then we can try one of its
4304 		 * clocks.
4305 		 */
4306 		np = np->parent;
4307 		if (np && !of_get_property(np, "clock-ranges", NULL))
4308 			break;
4309 		index = 0;
4310 	}
4311 
4312 	return ret;
4313 }
4314 
4315 static struct clk_hw *
4316 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4317 			      struct of_phandle_args *clkspec)
4318 {
4319 	struct clk *clk;
4320 
4321 	if (provider->get_hw)
4322 		return provider->get_hw(clkspec, provider->data);
4323 
4324 	clk = provider->get(clkspec, provider->data);
4325 	if (IS_ERR(clk))
4326 		return ERR_CAST(clk);
4327 	return __clk_get_hw(clk);
4328 }
4329 
4330 static struct clk_hw *
4331 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4332 {
4333 	struct of_clk_provider *provider;
4334 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4335 
4336 	if (!clkspec)
4337 		return ERR_PTR(-EINVAL);
4338 
4339 	mutex_lock(&of_clk_mutex);
4340 	list_for_each_entry(provider, &of_clk_providers, link) {
4341 		if (provider->node == clkspec->np) {
4342 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4343 			if (!IS_ERR(hw))
4344 				break;
4345 		}
4346 	}
4347 	mutex_unlock(&of_clk_mutex);
4348 
4349 	return hw;
4350 }
4351 
4352 /**
4353  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4354  * @clkspec: pointer to a clock specifier data structure
4355  *
4356  * This function looks up a struct clk from the registered list of clock
4357  * providers, an input is a clock specifier data structure as returned
4358  * from the of_parse_phandle_with_args() function call.
4359  */
4360 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4361 {
4362 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4363 
4364 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4365 }
4366 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4367 
4368 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4369 			     const char *con_id)
4370 {
4371 	int ret;
4372 	struct clk_hw *hw;
4373 	struct of_phandle_args clkspec;
4374 
4375 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4376 	if (ret)
4377 		return ERR_PTR(ret);
4378 
4379 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4380 	of_node_put(clkspec.np);
4381 
4382 	return hw;
4383 }
4384 
4385 static struct clk *__of_clk_get(struct device_node *np,
4386 				int index, const char *dev_id,
4387 				const char *con_id)
4388 {
4389 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4390 
4391 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4392 }
4393 
4394 struct clk *of_clk_get(struct device_node *np, int index)
4395 {
4396 	return __of_clk_get(np, index, np->full_name, NULL);
4397 }
4398 EXPORT_SYMBOL(of_clk_get);
4399 
4400 /**
4401  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4402  * @np: pointer to clock consumer node
4403  * @name: name of consumer's clock input, or NULL for the first clock reference
4404  *
4405  * This function parses the clocks and clock-names properties,
4406  * and uses them to look up the struct clk from the registered list of clock
4407  * providers.
4408  */
4409 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4410 {
4411 	if (!np)
4412 		return ERR_PTR(-ENOENT);
4413 
4414 	return __of_clk_get(np, 0, np->full_name, name);
4415 }
4416 EXPORT_SYMBOL(of_clk_get_by_name);
4417 
4418 /**
4419  * of_clk_get_parent_count() - Count the number of clocks a device node has
4420  * @np: device node to count
4421  *
4422  * Returns: The number of clocks that are possible parents of this node
4423  */
4424 unsigned int of_clk_get_parent_count(struct device_node *np)
4425 {
4426 	int count;
4427 
4428 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4429 	if (count < 0)
4430 		return 0;
4431 
4432 	return count;
4433 }
4434 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4435 
4436 const char *of_clk_get_parent_name(struct device_node *np, int index)
4437 {
4438 	struct of_phandle_args clkspec;
4439 	struct property *prop;
4440 	const char *clk_name;
4441 	const __be32 *vp;
4442 	u32 pv;
4443 	int rc;
4444 	int count;
4445 	struct clk *clk;
4446 
4447 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4448 					&clkspec);
4449 	if (rc)
4450 		return NULL;
4451 
4452 	index = clkspec.args_count ? clkspec.args[0] : 0;
4453 	count = 0;
4454 
4455 	/* if there is an indices property, use it to transfer the index
4456 	 * specified into an array offset for the clock-output-names property.
4457 	 */
4458 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4459 		if (index == pv) {
4460 			index = count;
4461 			break;
4462 		}
4463 		count++;
4464 	}
4465 	/* We went off the end of 'clock-indices' without finding it */
4466 	if (prop && !vp)
4467 		return NULL;
4468 
4469 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4470 					  index,
4471 					  &clk_name) < 0) {
4472 		/*
4473 		 * Best effort to get the name if the clock has been
4474 		 * registered with the framework. If the clock isn't
4475 		 * registered, we return the node name as the name of
4476 		 * the clock as long as #clock-cells = 0.
4477 		 */
4478 		clk = of_clk_get_from_provider(&clkspec);
4479 		if (IS_ERR(clk)) {
4480 			if (clkspec.args_count == 0)
4481 				clk_name = clkspec.np->name;
4482 			else
4483 				clk_name = NULL;
4484 		} else {
4485 			clk_name = __clk_get_name(clk);
4486 			clk_put(clk);
4487 		}
4488 	}
4489 
4490 
4491 	of_node_put(clkspec.np);
4492 	return clk_name;
4493 }
4494 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4495 
4496 /**
4497  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4498  * number of parents
4499  * @np: Device node pointer associated with clock provider
4500  * @parents: pointer to char array that hold the parents' names
4501  * @size: size of the @parents array
4502  *
4503  * Return: number of parents for the clock node.
4504  */
4505 int of_clk_parent_fill(struct device_node *np, const char **parents,
4506 		       unsigned int size)
4507 {
4508 	unsigned int i = 0;
4509 
4510 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4511 		i++;
4512 
4513 	return i;
4514 }
4515 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4516 
4517 struct clock_provider {
4518 	void (*clk_init_cb)(struct device_node *);
4519 	struct device_node *np;
4520 	struct list_head node;
4521 };
4522 
4523 /*
4524  * This function looks for a parent clock. If there is one, then it
4525  * checks that the provider for this parent clock was initialized, in
4526  * this case the parent clock will be ready.
4527  */
4528 static int parent_ready(struct device_node *np)
4529 {
4530 	int i = 0;
4531 
4532 	while (true) {
4533 		struct clk *clk = of_clk_get(np, i);
4534 
4535 		/* this parent is ready we can check the next one */
4536 		if (!IS_ERR(clk)) {
4537 			clk_put(clk);
4538 			i++;
4539 			continue;
4540 		}
4541 
4542 		/* at least one parent is not ready, we exit now */
4543 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4544 			return 0;
4545 
4546 		/*
4547 		 * Here we make assumption that the device tree is
4548 		 * written correctly. So an error means that there is
4549 		 * no more parent. As we didn't exit yet, then the
4550 		 * previous parent are ready. If there is no clock
4551 		 * parent, no need to wait for them, then we can
4552 		 * consider their absence as being ready
4553 		 */
4554 		return 1;
4555 	}
4556 }
4557 
4558 /**
4559  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4560  * @np: Device node pointer associated with clock provider
4561  * @index: clock index
4562  * @flags: pointer to top-level framework flags
4563  *
4564  * Detects if the clock-critical property exists and, if so, sets the
4565  * corresponding CLK_IS_CRITICAL flag.
4566  *
4567  * Do not use this function. It exists only for legacy Device Tree
4568  * bindings, such as the one-clock-per-node style that are outdated.
4569  * Those bindings typically put all clock data into .dts and the Linux
4570  * driver has no clock data, thus making it impossible to set this flag
4571  * correctly from the driver. Only those drivers may call
4572  * of_clk_detect_critical from their setup functions.
4573  *
4574  * Return: error code or zero on success
4575  */
4576 int of_clk_detect_critical(struct device_node *np,
4577 					  int index, unsigned long *flags)
4578 {
4579 	struct property *prop;
4580 	const __be32 *cur;
4581 	uint32_t idx;
4582 
4583 	if (!np || !flags)
4584 		return -EINVAL;
4585 
4586 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4587 		if (index == idx)
4588 			*flags |= CLK_IS_CRITICAL;
4589 
4590 	return 0;
4591 }
4592 
4593 /**
4594  * of_clk_init() - Scan and init clock providers from the DT
4595  * @matches: array of compatible values and init functions for providers.
4596  *
4597  * This function scans the device tree for matching clock providers
4598  * and calls their initialization functions. It also does it by trying
4599  * to follow the dependencies.
4600  */
4601 void __init of_clk_init(const struct of_device_id *matches)
4602 {
4603 	const struct of_device_id *match;
4604 	struct device_node *np;
4605 	struct clock_provider *clk_provider, *next;
4606 	bool is_init_done;
4607 	bool force = false;
4608 	LIST_HEAD(clk_provider_list);
4609 
4610 	if (!matches)
4611 		matches = &__clk_of_table;
4612 
4613 	/* First prepare the list of the clocks providers */
4614 	for_each_matching_node_and_match(np, matches, &match) {
4615 		struct clock_provider *parent;
4616 
4617 		if (!of_device_is_available(np))
4618 			continue;
4619 
4620 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4621 		if (!parent) {
4622 			list_for_each_entry_safe(clk_provider, next,
4623 						 &clk_provider_list, node) {
4624 				list_del(&clk_provider->node);
4625 				of_node_put(clk_provider->np);
4626 				kfree(clk_provider);
4627 			}
4628 			of_node_put(np);
4629 			return;
4630 		}
4631 
4632 		parent->clk_init_cb = match->data;
4633 		parent->np = of_node_get(np);
4634 		list_add_tail(&parent->node, &clk_provider_list);
4635 	}
4636 
4637 	while (!list_empty(&clk_provider_list)) {
4638 		is_init_done = false;
4639 		list_for_each_entry_safe(clk_provider, next,
4640 					&clk_provider_list, node) {
4641 			if (force || parent_ready(clk_provider->np)) {
4642 
4643 				/* Don't populate platform devices */
4644 				of_node_set_flag(clk_provider->np,
4645 						 OF_POPULATED);
4646 
4647 				clk_provider->clk_init_cb(clk_provider->np);
4648 				of_clk_set_defaults(clk_provider->np, true);
4649 
4650 				list_del(&clk_provider->node);
4651 				of_node_put(clk_provider->np);
4652 				kfree(clk_provider);
4653 				is_init_done = true;
4654 			}
4655 		}
4656 
4657 		/*
4658 		 * We didn't manage to initialize any of the
4659 		 * remaining providers during the last loop, so now we
4660 		 * initialize all the remaining ones unconditionally
4661 		 * in case the clock parent was not mandatory
4662 		 */
4663 		if (!is_init_done)
4664 			force = true;
4665 	}
4666 }
4667 #endif
4668