1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-private.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/spinlock.h> 16 #include <linux/err.h> 17 #include <linux/list.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/device.h> 21 #include <linux/init.h> 22 #include <linux/sched.h> 23 24 static DEFINE_SPINLOCK(enable_lock); 25 static DEFINE_MUTEX(prepare_lock); 26 27 static struct task_struct *prepare_owner; 28 static struct task_struct *enable_owner; 29 30 static int prepare_refcnt; 31 static int enable_refcnt; 32 33 static HLIST_HEAD(clk_root_list); 34 static HLIST_HEAD(clk_orphan_list); 35 static LIST_HEAD(clk_notifier_list); 36 37 /*** locking ***/ 38 static void clk_prepare_lock(void) 39 { 40 if (!mutex_trylock(&prepare_lock)) { 41 if (prepare_owner == current) { 42 prepare_refcnt++; 43 return; 44 } 45 mutex_lock(&prepare_lock); 46 } 47 WARN_ON_ONCE(prepare_owner != NULL); 48 WARN_ON_ONCE(prepare_refcnt != 0); 49 prepare_owner = current; 50 prepare_refcnt = 1; 51 } 52 53 static void clk_prepare_unlock(void) 54 { 55 WARN_ON_ONCE(prepare_owner != current); 56 WARN_ON_ONCE(prepare_refcnt == 0); 57 58 if (--prepare_refcnt) 59 return; 60 prepare_owner = NULL; 61 mutex_unlock(&prepare_lock); 62 } 63 64 static unsigned long clk_enable_lock(void) 65 { 66 unsigned long flags; 67 68 if (!spin_trylock_irqsave(&enable_lock, flags)) { 69 if (enable_owner == current) { 70 enable_refcnt++; 71 return flags; 72 } 73 spin_lock_irqsave(&enable_lock, flags); 74 } 75 WARN_ON_ONCE(enable_owner != NULL); 76 WARN_ON_ONCE(enable_refcnt != 0); 77 enable_owner = current; 78 enable_refcnt = 1; 79 return flags; 80 } 81 82 static void clk_enable_unlock(unsigned long flags) 83 { 84 WARN_ON_ONCE(enable_owner != current); 85 WARN_ON_ONCE(enable_refcnt == 0); 86 87 if (--enable_refcnt) 88 return; 89 enable_owner = NULL; 90 spin_unlock_irqrestore(&enable_lock, flags); 91 } 92 93 /*** debugfs support ***/ 94 95 #ifdef CONFIG_COMMON_CLK_DEBUG 96 #include <linux/debugfs.h> 97 98 static struct dentry *rootdir; 99 static struct dentry *orphandir; 100 static int inited = 0; 101 102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level) 103 { 104 if (!c) 105 return; 106 107 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu", 108 level * 3 + 1, "", 109 30 - level * 3, c->name, 110 c->enable_count, c->prepare_count, clk_get_rate(c)); 111 seq_printf(s, "\n"); 112 } 113 114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c, 115 int level) 116 { 117 struct clk *child; 118 119 if (!c) 120 return; 121 122 clk_summary_show_one(s, c, level); 123 124 hlist_for_each_entry(child, &c->children, child_node) 125 clk_summary_show_subtree(s, child, level + 1); 126 } 127 128 static int clk_summary_show(struct seq_file *s, void *data) 129 { 130 struct clk *c; 131 132 seq_printf(s, " clock enable_cnt prepare_cnt rate\n"); 133 seq_printf(s, "---------------------------------------------------------------------\n"); 134 135 clk_prepare_lock(); 136 137 hlist_for_each_entry(c, &clk_root_list, child_node) 138 clk_summary_show_subtree(s, c, 0); 139 140 hlist_for_each_entry(c, &clk_orphan_list, child_node) 141 clk_summary_show_subtree(s, c, 0); 142 143 clk_prepare_unlock(); 144 145 return 0; 146 } 147 148 149 static int clk_summary_open(struct inode *inode, struct file *file) 150 { 151 return single_open(file, clk_summary_show, inode->i_private); 152 } 153 154 static const struct file_operations clk_summary_fops = { 155 .open = clk_summary_open, 156 .read = seq_read, 157 .llseek = seq_lseek, 158 .release = single_release, 159 }; 160 161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level) 162 { 163 if (!c) 164 return; 165 166 seq_printf(s, "\"%s\": { ", c->name); 167 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 168 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 169 seq_printf(s, "\"rate\": %lu", clk_get_rate(c)); 170 } 171 172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level) 173 { 174 struct clk *child; 175 176 if (!c) 177 return; 178 179 clk_dump_one(s, c, level); 180 181 hlist_for_each_entry(child, &c->children, child_node) { 182 seq_printf(s, ","); 183 clk_dump_subtree(s, child, level + 1); 184 } 185 186 seq_printf(s, "}"); 187 } 188 189 static int clk_dump(struct seq_file *s, void *data) 190 { 191 struct clk *c; 192 bool first_node = true; 193 194 seq_printf(s, "{"); 195 196 clk_prepare_lock(); 197 198 hlist_for_each_entry(c, &clk_root_list, child_node) { 199 if (!first_node) 200 seq_printf(s, ","); 201 first_node = false; 202 clk_dump_subtree(s, c, 0); 203 } 204 205 hlist_for_each_entry(c, &clk_orphan_list, child_node) { 206 seq_printf(s, ","); 207 clk_dump_subtree(s, c, 0); 208 } 209 210 clk_prepare_unlock(); 211 212 seq_printf(s, "}"); 213 return 0; 214 } 215 216 217 static int clk_dump_open(struct inode *inode, struct file *file) 218 { 219 return single_open(file, clk_dump, inode->i_private); 220 } 221 222 static const struct file_operations clk_dump_fops = { 223 .open = clk_dump_open, 224 .read = seq_read, 225 .llseek = seq_lseek, 226 .release = single_release, 227 }; 228 229 /* caller must hold prepare_lock */ 230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry) 231 { 232 struct dentry *d; 233 int ret = -ENOMEM; 234 235 if (!clk || !pdentry) { 236 ret = -EINVAL; 237 goto out; 238 } 239 240 d = debugfs_create_dir(clk->name, pdentry); 241 if (!d) 242 goto out; 243 244 clk->dentry = d; 245 246 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry, 247 (u32 *)&clk->rate); 248 if (!d) 249 goto err_out; 250 251 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry, 252 (u32 *)&clk->flags); 253 if (!d) 254 goto err_out; 255 256 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry, 257 (u32 *)&clk->prepare_count); 258 if (!d) 259 goto err_out; 260 261 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry, 262 (u32 *)&clk->enable_count); 263 if (!d) 264 goto err_out; 265 266 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry, 267 (u32 *)&clk->notifier_count); 268 if (!d) 269 goto err_out; 270 271 ret = 0; 272 goto out; 273 274 err_out: 275 debugfs_remove(clk->dentry); 276 out: 277 return ret; 278 } 279 280 /* caller must hold prepare_lock */ 281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry) 282 { 283 struct clk *child; 284 int ret = -EINVAL;; 285 286 if (!clk || !pdentry) 287 goto out; 288 289 ret = clk_debug_create_one(clk, pdentry); 290 291 if (ret) 292 goto out; 293 294 hlist_for_each_entry(child, &clk->children, child_node) 295 clk_debug_create_subtree(child, clk->dentry); 296 297 ret = 0; 298 out: 299 return ret; 300 } 301 302 /** 303 * clk_debug_register - add a clk node to the debugfs clk tree 304 * @clk: the clk being added to the debugfs clk tree 305 * 306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been 307 * initialized. Otherwise it bails out early since the debugfs clk tree 308 * will be created lazily by clk_debug_init as part of a late_initcall. 309 * 310 * Caller must hold prepare_lock. Only clk_init calls this function (so 311 * far) so this is taken care. 312 */ 313 static int clk_debug_register(struct clk *clk) 314 { 315 struct clk *parent; 316 struct dentry *pdentry; 317 int ret = 0; 318 319 if (!inited) 320 goto out; 321 322 parent = clk->parent; 323 324 /* 325 * Check to see if a clk is a root clk. Also check that it is 326 * safe to add this clk to debugfs 327 */ 328 if (!parent) 329 if (clk->flags & CLK_IS_ROOT) 330 pdentry = rootdir; 331 else 332 pdentry = orphandir; 333 else 334 if (parent->dentry) 335 pdentry = parent->dentry; 336 else 337 goto out; 338 339 ret = clk_debug_create_subtree(clk, pdentry); 340 341 out: 342 return ret; 343 } 344 345 /** 346 * clk_debug_reparent - reparent clk node in the debugfs clk tree 347 * @clk: the clk being reparented 348 * @new_parent: the new clk parent, may be NULL 349 * 350 * Rename clk entry in the debugfs clk tree if debugfs has been 351 * initialized. Otherwise it bails out early since the debugfs clk tree 352 * will be created lazily by clk_debug_init as part of a late_initcall. 353 * 354 * Caller must hold prepare_lock. 355 */ 356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent) 357 { 358 struct dentry *d; 359 struct dentry *new_parent_d; 360 361 if (!inited) 362 return; 363 364 if (new_parent) 365 new_parent_d = new_parent->dentry; 366 else 367 new_parent_d = orphandir; 368 369 d = debugfs_rename(clk->dentry->d_parent, clk->dentry, 370 new_parent_d, clk->name); 371 if (d) 372 clk->dentry = d; 373 else 374 pr_debug("%s: failed to rename debugfs entry for %s\n", 375 __func__, clk->name); 376 } 377 378 /** 379 * clk_debug_init - lazily create the debugfs clk tree visualization 380 * 381 * clks are often initialized very early during boot before memory can 382 * be dynamically allocated and well before debugfs is setup. 383 * clk_debug_init walks the clk tree hierarchy while holding 384 * prepare_lock and creates the topology as part of a late_initcall, 385 * thus insuring that clks initialized very early will still be 386 * represented in the debugfs clk tree. This function should only be 387 * called once at boot-time, and all other clks added dynamically will 388 * be done so with clk_debug_register. 389 */ 390 static int __init clk_debug_init(void) 391 { 392 struct clk *clk; 393 struct dentry *d; 394 395 rootdir = debugfs_create_dir("clk", NULL); 396 397 if (!rootdir) 398 return -ENOMEM; 399 400 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL, 401 &clk_summary_fops); 402 if (!d) 403 return -ENOMEM; 404 405 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL, 406 &clk_dump_fops); 407 if (!d) 408 return -ENOMEM; 409 410 orphandir = debugfs_create_dir("orphans", rootdir); 411 412 if (!orphandir) 413 return -ENOMEM; 414 415 clk_prepare_lock(); 416 417 hlist_for_each_entry(clk, &clk_root_list, child_node) 418 clk_debug_create_subtree(clk, rootdir); 419 420 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 421 clk_debug_create_subtree(clk, orphandir); 422 423 inited = 1; 424 425 clk_prepare_unlock(); 426 427 return 0; 428 } 429 late_initcall(clk_debug_init); 430 #else 431 static inline int clk_debug_register(struct clk *clk) { return 0; } 432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent) 433 { 434 } 435 #endif 436 437 /* caller must hold prepare_lock */ 438 static void clk_unprepare_unused_subtree(struct clk *clk) 439 { 440 struct clk *child; 441 442 if (!clk) 443 return; 444 445 hlist_for_each_entry(child, &clk->children, child_node) 446 clk_unprepare_unused_subtree(child); 447 448 if (clk->prepare_count) 449 return; 450 451 if (clk->flags & CLK_IGNORE_UNUSED) 452 return; 453 454 if (__clk_is_prepared(clk)) { 455 if (clk->ops->unprepare_unused) 456 clk->ops->unprepare_unused(clk->hw); 457 else if (clk->ops->unprepare) 458 clk->ops->unprepare(clk->hw); 459 } 460 } 461 462 /* caller must hold prepare_lock */ 463 static void clk_disable_unused_subtree(struct clk *clk) 464 { 465 struct clk *child; 466 unsigned long flags; 467 468 if (!clk) 469 goto out; 470 471 hlist_for_each_entry(child, &clk->children, child_node) 472 clk_disable_unused_subtree(child); 473 474 flags = clk_enable_lock(); 475 476 if (clk->enable_count) 477 goto unlock_out; 478 479 if (clk->flags & CLK_IGNORE_UNUSED) 480 goto unlock_out; 481 482 /* 483 * some gate clocks have special needs during the disable-unused 484 * sequence. call .disable_unused if available, otherwise fall 485 * back to .disable 486 */ 487 if (__clk_is_enabled(clk)) { 488 if (clk->ops->disable_unused) 489 clk->ops->disable_unused(clk->hw); 490 else if (clk->ops->disable) 491 clk->ops->disable(clk->hw); 492 } 493 494 unlock_out: 495 clk_enable_unlock(flags); 496 497 out: 498 return; 499 } 500 501 static bool clk_ignore_unused; 502 static int __init clk_ignore_unused_setup(char *__unused) 503 { 504 clk_ignore_unused = true; 505 return 1; 506 } 507 __setup("clk_ignore_unused", clk_ignore_unused_setup); 508 509 static int clk_disable_unused(void) 510 { 511 struct clk *clk; 512 513 if (clk_ignore_unused) { 514 pr_warn("clk: Not disabling unused clocks\n"); 515 return 0; 516 } 517 518 clk_prepare_lock(); 519 520 hlist_for_each_entry(clk, &clk_root_list, child_node) 521 clk_disable_unused_subtree(clk); 522 523 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 524 clk_disable_unused_subtree(clk); 525 526 hlist_for_each_entry(clk, &clk_root_list, child_node) 527 clk_unprepare_unused_subtree(clk); 528 529 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 530 clk_unprepare_unused_subtree(clk); 531 532 clk_prepare_unlock(); 533 534 return 0; 535 } 536 late_initcall_sync(clk_disable_unused); 537 538 /*** helper functions ***/ 539 540 const char *__clk_get_name(struct clk *clk) 541 { 542 return !clk ? NULL : clk->name; 543 } 544 EXPORT_SYMBOL_GPL(__clk_get_name); 545 546 struct clk_hw *__clk_get_hw(struct clk *clk) 547 { 548 return !clk ? NULL : clk->hw; 549 } 550 551 u8 __clk_get_num_parents(struct clk *clk) 552 { 553 return !clk ? 0 : clk->num_parents; 554 } 555 556 struct clk *__clk_get_parent(struct clk *clk) 557 { 558 return !clk ? NULL : clk->parent; 559 } 560 561 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index) 562 { 563 if (!clk || index >= clk->num_parents) 564 return NULL; 565 else if (!clk->parents) 566 return __clk_lookup(clk->parent_names[index]); 567 else if (!clk->parents[index]) 568 return clk->parents[index] = 569 __clk_lookup(clk->parent_names[index]); 570 else 571 return clk->parents[index]; 572 } 573 574 unsigned int __clk_get_enable_count(struct clk *clk) 575 { 576 return !clk ? 0 : clk->enable_count; 577 } 578 579 unsigned int __clk_get_prepare_count(struct clk *clk) 580 { 581 return !clk ? 0 : clk->prepare_count; 582 } 583 584 unsigned long __clk_get_rate(struct clk *clk) 585 { 586 unsigned long ret; 587 588 if (!clk) { 589 ret = 0; 590 goto out; 591 } 592 593 ret = clk->rate; 594 595 if (clk->flags & CLK_IS_ROOT) 596 goto out; 597 598 if (!clk->parent) 599 ret = 0; 600 601 out: 602 return ret; 603 } 604 605 unsigned long __clk_get_flags(struct clk *clk) 606 { 607 return !clk ? 0 : clk->flags; 608 } 609 EXPORT_SYMBOL_GPL(__clk_get_flags); 610 611 bool __clk_is_prepared(struct clk *clk) 612 { 613 int ret; 614 615 if (!clk) 616 return false; 617 618 /* 619 * .is_prepared is optional for clocks that can prepare 620 * fall back to software usage counter if it is missing 621 */ 622 if (!clk->ops->is_prepared) { 623 ret = clk->prepare_count ? 1 : 0; 624 goto out; 625 } 626 627 ret = clk->ops->is_prepared(clk->hw); 628 out: 629 return !!ret; 630 } 631 632 bool __clk_is_enabled(struct clk *clk) 633 { 634 int ret; 635 636 if (!clk) 637 return false; 638 639 /* 640 * .is_enabled is only mandatory for clocks that gate 641 * fall back to software usage counter if .is_enabled is missing 642 */ 643 if (!clk->ops->is_enabled) { 644 ret = clk->enable_count ? 1 : 0; 645 goto out; 646 } 647 648 ret = clk->ops->is_enabled(clk->hw); 649 out: 650 return !!ret; 651 } 652 653 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk) 654 { 655 struct clk *child; 656 struct clk *ret; 657 658 if (!strcmp(clk->name, name)) 659 return clk; 660 661 hlist_for_each_entry(child, &clk->children, child_node) { 662 ret = __clk_lookup_subtree(name, child); 663 if (ret) 664 return ret; 665 } 666 667 return NULL; 668 } 669 670 struct clk *__clk_lookup(const char *name) 671 { 672 struct clk *root_clk; 673 struct clk *ret; 674 675 if (!name) 676 return NULL; 677 678 /* search the 'proper' clk tree first */ 679 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 680 ret = __clk_lookup_subtree(name, root_clk); 681 if (ret) 682 return ret; 683 } 684 685 /* if not found, then search the orphan tree */ 686 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 687 ret = __clk_lookup_subtree(name, root_clk); 688 if (ret) 689 return ret; 690 } 691 692 return NULL; 693 } 694 695 /* 696 * Helper for finding best parent to provide a given frequency. This can be used 697 * directly as a determine_rate callback (e.g. for a mux), or from a more 698 * complex clock that may combine a mux with other operations. 699 */ 700 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate, 701 unsigned long *best_parent_rate, 702 struct clk **best_parent_p) 703 { 704 struct clk *clk = hw->clk, *parent, *best_parent = NULL; 705 int i, num_parents; 706 unsigned long parent_rate, best = 0; 707 708 /* if NO_REPARENT flag set, pass through to current parent */ 709 if (clk->flags & CLK_SET_RATE_NO_REPARENT) { 710 parent = clk->parent; 711 if (clk->flags & CLK_SET_RATE_PARENT) 712 best = __clk_round_rate(parent, rate); 713 else if (parent) 714 best = __clk_get_rate(parent); 715 else 716 best = __clk_get_rate(clk); 717 goto out; 718 } 719 720 /* find the parent that can provide the fastest rate <= rate */ 721 num_parents = clk->num_parents; 722 for (i = 0; i < num_parents; i++) { 723 parent = clk_get_parent_by_index(clk, i); 724 if (!parent) 725 continue; 726 if (clk->flags & CLK_SET_RATE_PARENT) 727 parent_rate = __clk_round_rate(parent, rate); 728 else 729 parent_rate = __clk_get_rate(parent); 730 if (parent_rate <= rate && parent_rate > best) { 731 best_parent = parent; 732 best = parent_rate; 733 } 734 } 735 736 out: 737 if (best_parent) 738 *best_parent_p = best_parent; 739 *best_parent_rate = best; 740 741 return best; 742 } 743 744 /*** clk api ***/ 745 746 void __clk_unprepare(struct clk *clk) 747 { 748 if (!clk) 749 return; 750 751 if (WARN_ON(clk->prepare_count == 0)) 752 return; 753 754 if (--clk->prepare_count > 0) 755 return; 756 757 WARN_ON(clk->enable_count > 0); 758 759 if (clk->ops->unprepare) 760 clk->ops->unprepare(clk->hw); 761 762 __clk_unprepare(clk->parent); 763 } 764 765 /** 766 * clk_unprepare - undo preparation of a clock source 767 * @clk: the clk being unprepared 768 * 769 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 770 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 771 * if the operation may sleep. One example is a clk which is accessed over 772 * I2c. In the complex case a clk gate operation may require a fast and a slow 773 * part. It is this reason that clk_unprepare and clk_disable are not mutually 774 * exclusive. In fact clk_disable must be called before clk_unprepare. 775 */ 776 void clk_unprepare(struct clk *clk) 777 { 778 clk_prepare_lock(); 779 __clk_unprepare(clk); 780 clk_prepare_unlock(); 781 } 782 EXPORT_SYMBOL_GPL(clk_unprepare); 783 784 int __clk_prepare(struct clk *clk) 785 { 786 int ret = 0; 787 788 if (!clk) 789 return 0; 790 791 if (clk->prepare_count == 0) { 792 ret = __clk_prepare(clk->parent); 793 if (ret) 794 return ret; 795 796 if (clk->ops->prepare) { 797 ret = clk->ops->prepare(clk->hw); 798 if (ret) { 799 __clk_unprepare(clk->parent); 800 return ret; 801 } 802 } 803 } 804 805 clk->prepare_count++; 806 807 return 0; 808 } 809 810 /** 811 * clk_prepare - prepare a clock source 812 * @clk: the clk being prepared 813 * 814 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 815 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 816 * operation may sleep. One example is a clk which is accessed over I2c. In 817 * the complex case a clk ungate operation may require a fast and a slow part. 818 * It is this reason that clk_prepare and clk_enable are not mutually 819 * exclusive. In fact clk_prepare must be called before clk_enable. 820 * Returns 0 on success, -EERROR otherwise. 821 */ 822 int clk_prepare(struct clk *clk) 823 { 824 int ret; 825 826 clk_prepare_lock(); 827 ret = __clk_prepare(clk); 828 clk_prepare_unlock(); 829 830 return ret; 831 } 832 EXPORT_SYMBOL_GPL(clk_prepare); 833 834 static void __clk_disable(struct clk *clk) 835 { 836 if (!clk) 837 return; 838 839 if (WARN_ON(IS_ERR(clk))) 840 return; 841 842 if (WARN_ON(clk->enable_count == 0)) 843 return; 844 845 if (--clk->enable_count > 0) 846 return; 847 848 if (clk->ops->disable) 849 clk->ops->disable(clk->hw); 850 851 __clk_disable(clk->parent); 852 } 853 854 /** 855 * clk_disable - gate a clock 856 * @clk: the clk being gated 857 * 858 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 859 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 860 * clk if the operation is fast and will never sleep. One example is a 861 * SoC-internal clk which is controlled via simple register writes. In the 862 * complex case a clk gate operation may require a fast and a slow part. It is 863 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 864 * In fact clk_disable must be called before clk_unprepare. 865 */ 866 void clk_disable(struct clk *clk) 867 { 868 unsigned long flags; 869 870 flags = clk_enable_lock(); 871 __clk_disable(clk); 872 clk_enable_unlock(flags); 873 } 874 EXPORT_SYMBOL_GPL(clk_disable); 875 876 static int __clk_enable(struct clk *clk) 877 { 878 int ret = 0; 879 880 if (!clk) 881 return 0; 882 883 if (WARN_ON(clk->prepare_count == 0)) 884 return -ESHUTDOWN; 885 886 if (clk->enable_count == 0) { 887 ret = __clk_enable(clk->parent); 888 889 if (ret) 890 return ret; 891 892 if (clk->ops->enable) { 893 ret = clk->ops->enable(clk->hw); 894 if (ret) { 895 __clk_disable(clk->parent); 896 return ret; 897 } 898 } 899 } 900 901 clk->enable_count++; 902 return 0; 903 } 904 905 /** 906 * clk_enable - ungate a clock 907 * @clk: the clk being ungated 908 * 909 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 910 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 911 * if the operation will never sleep. One example is a SoC-internal clk which 912 * is controlled via simple register writes. In the complex case a clk ungate 913 * operation may require a fast and a slow part. It is this reason that 914 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 915 * must be called before clk_enable. Returns 0 on success, -EERROR 916 * otherwise. 917 */ 918 int clk_enable(struct clk *clk) 919 { 920 unsigned long flags; 921 int ret; 922 923 flags = clk_enable_lock(); 924 ret = __clk_enable(clk); 925 clk_enable_unlock(flags); 926 927 return ret; 928 } 929 EXPORT_SYMBOL_GPL(clk_enable); 930 931 /** 932 * __clk_round_rate - round the given rate for a clk 933 * @clk: round the rate of this clock 934 * @rate: the rate which is to be rounded 935 * 936 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate 937 */ 938 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 939 { 940 unsigned long parent_rate = 0; 941 struct clk *parent; 942 943 if (!clk) 944 return 0; 945 946 parent = clk->parent; 947 if (parent) 948 parent_rate = parent->rate; 949 950 if (clk->ops->determine_rate) 951 return clk->ops->determine_rate(clk->hw, rate, &parent_rate, 952 &parent); 953 else if (clk->ops->round_rate) 954 return clk->ops->round_rate(clk->hw, rate, &parent_rate); 955 else if (clk->flags & CLK_SET_RATE_PARENT) 956 return __clk_round_rate(clk->parent, rate); 957 else 958 return clk->rate; 959 } 960 961 /** 962 * clk_round_rate - round the given rate for a clk 963 * @clk: the clk for which we are rounding a rate 964 * @rate: the rate which is to be rounded 965 * 966 * Takes in a rate as input and rounds it to a rate that the clk can actually 967 * use which is then returned. If clk doesn't support round_rate operation 968 * then the parent rate is returned. 969 */ 970 long clk_round_rate(struct clk *clk, unsigned long rate) 971 { 972 unsigned long ret; 973 974 clk_prepare_lock(); 975 ret = __clk_round_rate(clk, rate); 976 clk_prepare_unlock(); 977 978 return ret; 979 } 980 EXPORT_SYMBOL_GPL(clk_round_rate); 981 982 /** 983 * __clk_notify - call clk notifier chain 984 * @clk: struct clk * that is changing rate 985 * @msg: clk notifier type (see include/linux/clk.h) 986 * @old_rate: old clk rate 987 * @new_rate: new clk rate 988 * 989 * Triggers a notifier call chain on the clk rate-change notification 990 * for 'clk'. Passes a pointer to the struct clk and the previous 991 * and current rates to the notifier callback. Intended to be called by 992 * internal clock code only. Returns NOTIFY_DONE from the last driver 993 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 994 * a driver returns that. 995 */ 996 static int __clk_notify(struct clk *clk, unsigned long msg, 997 unsigned long old_rate, unsigned long new_rate) 998 { 999 struct clk_notifier *cn; 1000 struct clk_notifier_data cnd; 1001 int ret = NOTIFY_DONE; 1002 1003 cnd.clk = clk; 1004 cnd.old_rate = old_rate; 1005 cnd.new_rate = new_rate; 1006 1007 list_for_each_entry(cn, &clk_notifier_list, node) { 1008 if (cn->clk == clk) { 1009 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1010 &cnd); 1011 break; 1012 } 1013 } 1014 1015 return ret; 1016 } 1017 1018 /** 1019 * __clk_recalc_rates 1020 * @clk: first clk in the subtree 1021 * @msg: notification type (see include/linux/clk.h) 1022 * 1023 * Walks the subtree of clks starting with clk and recalculates rates as it 1024 * goes. Note that if a clk does not implement the .recalc_rate callback then 1025 * it is assumed that the clock will take on the rate of its parent. 1026 * 1027 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1028 * if necessary. 1029 * 1030 * Caller must hold prepare_lock. 1031 */ 1032 static void __clk_recalc_rates(struct clk *clk, unsigned long msg) 1033 { 1034 unsigned long old_rate; 1035 unsigned long parent_rate = 0; 1036 struct clk *child; 1037 1038 old_rate = clk->rate; 1039 1040 if (clk->parent) 1041 parent_rate = clk->parent->rate; 1042 1043 if (clk->ops->recalc_rate) 1044 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate); 1045 else 1046 clk->rate = parent_rate; 1047 1048 /* 1049 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1050 * & ABORT_RATE_CHANGE notifiers 1051 */ 1052 if (clk->notifier_count && msg) 1053 __clk_notify(clk, msg, old_rate, clk->rate); 1054 1055 hlist_for_each_entry(child, &clk->children, child_node) 1056 __clk_recalc_rates(child, msg); 1057 } 1058 1059 /** 1060 * clk_get_rate - return the rate of clk 1061 * @clk: the clk whose rate is being returned 1062 * 1063 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1064 * is set, which means a recalc_rate will be issued. 1065 * If clk is NULL then returns 0. 1066 */ 1067 unsigned long clk_get_rate(struct clk *clk) 1068 { 1069 unsigned long rate; 1070 1071 clk_prepare_lock(); 1072 1073 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE)) 1074 __clk_recalc_rates(clk, 0); 1075 1076 rate = __clk_get_rate(clk); 1077 clk_prepare_unlock(); 1078 1079 return rate; 1080 } 1081 EXPORT_SYMBOL_GPL(clk_get_rate); 1082 1083 static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent) 1084 { 1085 u8 i; 1086 1087 if (!clk->parents) 1088 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents), 1089 GFP_KERNEL); 1090 1091 /* 1092 * find index of new parent clock using cached parent ptrs, 1093 * or if not yet cached, use string name comparison and cache 1094 * them now to avoid future calls to __clk_lookup. 1095 */ 1096 for (i = 0; i < clk->num_parents; i++) { 1097 if (clk->parents && clk->parents[i] == parent) 1098 break; 1099 else if (!strcmp(clk->parent_names[i], parent->name)) { 1100 if (clk->parents) 1101 clk->parents[i] = __clk_lookup(parent->name); 1102 break; 1103 } 1104 } 1105 1106 return i; 1107 } 1108 1109 static void clk_reparent(struct clk *clk, struct clk *new_parent) 1110 { 1111 hlist_del(&clk->child_node); 1112 1113 if (new_parent) { 1114 /* avoid duplicate POST_RATE_CHANGE notifications */ 1115 if (new_parent->new_child == clk) 1116 new_parent->new_child = NULL; 1117 1118 hlist_add_head(&clk->child_node, &new_parent->children); 1119 } else { 1120 hlist_add_head(&clk->child_node, &clk_orphan_list); 1121 } 1122 1123 clk->parent = new_parent; 1124 } 1125 1126 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index) 1127 { 1128 unsigned long flags; 1129 int ret = 0; 1130 struct clk *old_parent = clk->parent; 1131 1132 /* 1133 * Migrate prepare state between parents and prevent race with 1134 * clk_enable(). 1135 * 1136 * If the clock is not prepared, then a race with 1137 * clk_enable/disable() is impossible since we already have the 1138 * prepare lock (future calls to clk_enable() need to be preceded by 1139 * a clk_prepare()). 1140 * 1141 * If the clock is prepared, migrate the prepared state to the new 1142 * parent and also protect against a race with clk_enable() by 1143 * forcing the clock and the new parent on. This ensures that all 1144 * future calls to clk_enable() are practically NOPs with respect to 1145 * hardware and software states. 1146 * 1147 * See also: Comment for clk_set_parent() below. 1148 */ 1149 if (clk->prepare_count) { 1150 __clk_prepare(parent); 1151 clk_enable(parent); 1152 clk_enable(clk); 1153 } 1154 1155 /* update the clk tree topology */ 1156 flags = clk_enable_lock(); 1157 clk_reparent(clk, parent); 1158 clk_enable_unlock(flags); 1159 1160 /* change clock input source */ 1161 if (parent && clk->ops->set_parent) 1162 ret = clk->ops->set_parent(clk->hw, p_index); 1163 1164 if (ret) { 1165 flags = clk_enable_lock(); 1166 clk_reparent(clk, old_parent); 1167 clk_enable_unlock(flags); 1168 1169 if (clk->prepare_count) { 1170 clk_disable(clk); 1171 clk_disable(parent); 1172 __clk_unprepare(parent); 1173 } 1174 return ret; 1175 } 1176 1177 /* 1178 * Finish the migration of prepare state and undo the changes done 1179 * for preventing a race with clk_enable(). 1180 */ 1181 if (clk->prepare_count) { 1182 clk_disable(clk); 1183 clk_disable(old_parent); 1184 __clk_unprepare(old_parent); 1185 } 1186 1187 /* update debugfs with new clk tree topology */ 1188 clk_debug_reparent(clk, parent); 1189 return 0; 1190 } 1191 1192 /** 1193 * __clk_speculate_rates 1194 * @clk: first clk in the subtree 1195 * @parent_rate: the "future" rate of clk's parent 1196 * 1197 * Walks the subtree of clks starting with clk, speculating rates as it 1198 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1199 * 1200 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1201 * pre-rate change notifications and returns early if no clks in the 1202 * subtree have subscribed to the notifications. Note that if a clk does not 1203 * implement the .recalc_rate callback then it is assumed that the clock will 1204 * take on the rate of its parent. 1205 * 1206 * Caller must hold prepare_lock. 1207 */ 1208 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate) 1209 { 1210 struct clk *child; 1211 unsigned long new_rate; 1212 int ret = NOTIFY_DONE; 1213 1214 if (clk->ops->recalc_rate) 1215 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate); 1216 else 1217 new_rate = parent_rate; 1218 1219 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1220 if (clk->notifier_count) 1221 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate); 1222 1223 if (ret & NOTIFY_STOP_MASK) 1224 goto out; 1225 1226 hlist_for_each_entry(child, &clk->children, child_node) { 1227 ret = __clk_speculate_rates(child, new_rate); 1228 if (ret & NOTIFY_STOP_MASK) 1229 break; 1230 } 1231 1232 out: 1233 return ret; 1234 } 1235 1236 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate, 1237 struct clk *new_parent, u8 p_index) 1238 { 1239 struct clk *child; 1240 1241 clk->new_rate = new_rate; 1242 clk->new_parent = new_parent; 1243 clk->new_parent_index = p_index; 1244 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1245 clk->new_child = NULL; 1246 if (new_parent && new_parent != clk->parent) 1247 new_parent->new_child = clk; 1248 1249 hlist_for_each_entry(child, &clk->children, child_node) { 1250 if (child->ops->recalc_rate) 1251 child->new_rate = child->ops->recalc_rate(child->hw, new_rate); 1252 else 1253 child->new_rate = new_rate; 1254 clk_calc_subtree(child, child->new_rate, NULL, 0); 1255 } 1256 } 1257 1258 /* 1259 * calculate the new rates returning the topmost clock that has to be 1260 * changed. 1261 */ 1262 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate) 1263 { 1264 struct clk *top = clk; 1265 struct clk *old_parent, *parent; 1266 unsigned long best_parent_rate = 0; 1267 unsigned long new_rate; 1268 u8 p_index = 0; 1269 1270 /* sanity */ 1271 if (IS_ERR_OR_NULL(clk)) 1272 return NULL; 1273 1274 /* save parent rate, if it exists */ 1275 parent = old_parent = clk->parent; 1276 if (parent) 1277 best_parent_rate = parent->rate; 1278 1279 /* find the closest rate and parent clk/rate */ 1280 if (clk->ops->determine_rate) { 1281 new_rate = clk->ops->determine_rate(clk->hw, rate, 1282 &best_parent_rate, 1283 &parent); 1284 } else if (clk->ops->round_rate) { 1285 new_rate = clk->ops->round_rate(clk->hw, rate, 1286 &best_parent_rate); 1287 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) { 1288 /* pass-through clock without adjustable parent */ 1289 clk->new_rate = clk->rate; 1290 return NULL; 1291 } else { 1292 /* pass-through clock with adjustable parent */ 1293 top = clk_calc_new_rates(parent, rate); 1294 new_rate = parent->new_rate; 1295 goto out; 1296 } 1297 1298 /* some clocks must be gated to change parent */ 1299 if (parent != old_parent && 1300 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1301 pr_debug("%s: %s not gated but wants to reparent\n", 1302 __func__, clk->name); 1303 return NULL; 1304 } 1305 1306 /* try finding the new parent index */ 1307 if (parent) { 1308 p_index = clk_fetch_parent_index(clk, parent); 1309 if (p_index == clk->num_parents) { 1310 pr_debug("%s: clk %s can not be parent of clk %s\n", 1311 __func__, parent->name, clk->name); 1312 return NULL; 1313 } 1314 } 1315 1316 if ((clk->flags & CLK_SET_RATE_PARENT) && parent && 1317 best_parent_rate != parent->rate) 1318 top = clk_calc_new_rates(parent, best_parent_rate); 1319 1320 out: 1321 clk_calc_subtree(clk, new_rate, parent, p_index); 1322 1323 return top; 1324 } 1325 1326 /* 1327 * Notify about rate changes in a subtree. Always walk down the whole tree 1328 * so that in case of an error we can walk down the whole tree again and 1329 * abort the change. 1330 */ 1331 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event) 1332 { 1333 struct clk *child, *tmp_clk, *fail_clk = NULL; 1334 int ret = NOTIFY_DONE; 1335 1336 if (clk->rate == clk->new_rate) 1337 return NULL; 1338 1339 if (clk->notifier_count) { 1340 ret = __clk_notify(clk, event, clk->rate, clk->new_rate); 1341 if (ret & NOTIFY_STOP_MASK) 1342 fail_clk = clk; 1343 } 1344 1345 hlist_for_each_entry(child, &clk->children, child_node) { 1346 /* Skip children who will be reparented to another clock */ 1347 if (child->new_parent && child->new_parent != clk) 1348 continue; 1349 tmp_clk = clk_propagate_rate_change(child, event); 1350 if (tmp_clk) 1351 fail_clk = tmp_clk; 1352 } 1353 1354 /* handle the new child who might not be in clk->children yet */ 1355 if (clk->new_child) { 1356 tmp_clk = clk_propagate_rate_change(clk->new_child, event); 1357 if (tmp_clk) 1358 fail_clk = tmp_clk; 1359 } 1360 1361 return fail_clk; 1362 } 1363 1364 /* 1365 * walk down a subtree and set the new rates notifying the rate 1366 * change on the way 1367 */ 1368 static void clk_change_rate(struct clk *clk) 1369 { 1370 struct clk *child; 1371 unsigned long old_rate; 1372 unsigned long best_parent_rate = 0; 1373 1374 old_rate = clk->rate; 1375 1376 /* set parent */ 1377 if (clk->new_parent && clk->new_parent != clk->parent) 1378 __clk_set_parent(clk, clk->new_parent, clk->new_parent_index); 1379 1380 if (clk->parent) 1381 best_parent_rate = clk->parent->rate; 1382 1383 if (clk->ops->set_rate) 1384 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate); 1385 1386 if (clk->ops->recalc_rate) 1387 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate); 1388 else 1389 clk->rate = best_parent_rate; 1390 1391 if (clk->notifier_count && old_rate != clk->rate) 1392 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate); 1393 1394 hlist_for_each_entry(child, &clk->children, child_node) { 1395 /* Skip children who will be reparented to another clock */ 1396 if (child->new_parent && child->new_parent != clk) 1397 continue; 1398 clk_change_rate(child); 1399 } 1400 1401 /* handle the new child who might not be in clk->children yet */ 1402 if (clk->new_child) 1403 clk_change_rate(clk->new_child); 1404 } 1405 1406 /** 1407 * clk_set_rate - specify a new rate for clk 1408 * @clk: the clk whose rate is being changed 1409 * @rate: the new rate for clk 1410 * 1411 * In the simplest case clk_set_rate will only adjust the rate of clk. 1412 * 1413 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1414 * propagate up to clk's parent; whether or not this happens depends on the 1415 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1416 * after calling .round_rate then upstream parent propagation is ignored. If 1417 * *parent_rate comes back with a new rate for clk's parent then we propagate 1418 * up to clk's parent and set its rate. Upward propagation will continue 1419 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1420 * .round_rate stops requesting changes to clk's parent_rate. 1421 * 1422 * Rate changes are accomplished via tree traversal that also recalculates the 1423 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1424 * 1425 * Returns 0 on success, -EERROR otherwise. 1426 */ 1427 int clk_set_rate(struct clk *clk, unsigned long rate) 1428 { 1429 struct clk *top, *fail_clk; 1430 int ret = 0; 1431 1432 if (!clk) 1433 return 0; 1434 1435 /* prevent racing with updates to the clock topology */ 1436 clk_prepare_lock(); 1437 1438 /* bail early if nothing to do */ 1439 if (rate == clk_get_rate(clk)) 1440 goto out; 1441 1442 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) { 1443 ret = -EBUSY; 1444 goto out; 1445 } 1446 1447 /* calculate new rates and get the topmost changed clock */ 1448 top = clk_calc_new_rates(clk, rate); 1449 if (!top) { 1450 ret = -EINVAL; 1451 goto out; 1452 } 1453 1454 /* notify that we are about to change rates */ 1455 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1456 if (fail_clk) { 1457 pr_warn("%s: failed to set %s rate\n", __func__, 1458 fail_clk->name); 1459 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1460 ret = -EBUSY; 1461 goto out; 1462 } 1463 1464 /* change the rates */ 1465 clk_change_rate(top); 1466 1467 out: 1468 clk_prepare_unlock(); 1469 1470 return ret; 1471 } 1472 EXPORT_SYMBOL_GPL(clk_set_rate); 1473 1474 /** 1475 * clk_get_parent - return the parent of a clk 1476 * @clk: the clk whose parent gets returned 1477 * 1478 * Simply returns clk->parent. Returns NULL if clk is NULL. 1479 */ 1480 struct clk *clk_get_parent(struct clk *clk) 1481 { 1482 struct clk *parent; 1483 1484 clk_prepare_lock(); 1485 parent = __clk_get_parent(clk); 1486 clk_prepare_unlock(); 1487 1488 return parent; 1489 } 1490 EXPORT_SYMBOL_GPL(clk_get_parent); 1491 1492 /* 1493 * .get_parent is mandatory for clocks with multiple possible parents. It is 1494 * optional for single-parent clocks. Always call .get_parent if it is 1495 * available and WARN if it is missing for multi-parent clocks. 1496 * 1497 * For single-parent clocks without .get_parent, first check to see if the 1498 * .parents array exists, and if so use it to avoid an expensive tree 1499 * traversal. If .parents does not exist then walk the tree with __clk_lookup. 1500 */ 1501 static struct clk *__clk_init_parent(struct clk *clk) 1502 { 1503 struct clk *ret = NULL; 1504 u8 index; 1505 1506 /* handle the trivial cases */ 1507 1508 if (!clk->num_parents) 1509 goto out; 1510 1511 if (clk->num_parents == 1) { 1512 if (IS_ERR_OR_NULL(clk->parent)) 1513 ret = clk->parent = __clk_lookup(clk->parent_names[0]); 1514 ret = clk->parent; 1515 goto out; 1516 } 1517 1518 if (!clk->ops->get_parent) { 1519 WARN(!clk->ops->get_parent, 1520 "%s: multi-parent clocks must implement .get_parent\n", 1521 __func__); 1522 goto out; 1523 }; 1524 1525 /* 1526 * Do our best to cache parent clocks in clk->parents. This prevents 1527 * unnecessary and expensive calls to __clk_lookup. We don't set 1528 * clk->parent here; that is done by the calling function 1529 */ 1530 1531 index = clk->ops->get_parent(clk->hw); 1532 1533 if (!clk->parents) 1534 clk->parents = 1535 kzalloc((sizeof(struct clk*) * clk->num_parents), 1536 GFP_KERNEL); 1537 1538 ret = clk_get_parent_by_index(clk, index); 1539 1540 out: 1541 return ret; 1542 } 1543 1544 void __clk_reparent(struct clk *clk, struct clk *new_parent) 1545 { 1546 clk_reparent(clk, new_parent); 1547 clk_debug_reparent(clk, new_parent); 1548 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1549 } 1550 1551 /** 1552 * clk_set_parent - switch the parent of a mux clk 1553 * @clk: the mux clk whose input we are switching 1554 * @parent: the new input to clk 1555 * 1556 * Re-parent clk to use parent as its new input source. If clk is in 1557 * prepared state, the clk will get enabled for the duration of this call. If 1558 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1559 * that, the reparenting is glitchy in hardware, etc), use the 1560 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1561 * 1562 * After successfully changing clk's parent clk_set_parent will update the 1563 * clk topology, sysfs topology and propagate rate recalculation via 1564 * __clk_recalc_rates. 1565 * 1566 * Returns 0 on success, -EERROR otherwise. 1567 */ 1568 int clk_set_parent(struct clk *clk, struct clk *parent) 1569 { 1570 int ret = 0; 1571 u8 p_index = 0; 1572 unsigned long p_rate = 0; 1573 1574 if (!clk) 1575 return 0; 1576 1577 if (!clk->ops) 1578 return -EINVAL; 1579 1580 /* verify ops for for multi-parent clks */ 1581 if ((clk->num_parents > 1) && (!clk->ops->set_parent)) 1582 return -ENOSYS; 1583 1584 /* prevent racing with updates to the clock topology */ 1585 clk_prepare_lock(); 1586 1587 if (clk->parent == parent) 1588 goto out; 1589 1590 /* check that we are allowed to re-parent if the clock is in use */ 1591 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1592 ret = -EBUSY; 1593 goto out; 1594 } 1595 1596 /* try finding the new parent index */ 1597 if (parent) { 1598 p_index = clk_fetch_parent_index(clk, parent); 1599 p_rate = parent->rate; 1600 if (p_index == clk->num_parents) { 1601 pr_debug("%s: clk %s can not be parent of clk %s\n", 1602 __func__, parent->name, clk->name); 1603 ret = -EINVAL; 1604 goto out; 1605 } 1606 } 1607 1608 /* propagate PRE_RATE_CHANGE notifications */ 1609 ret = __clk_speculate_rates(clk, p_rate); 1610 1611 /* abort if a driver objects */ 1612 if (ret & NOTIFY_STOP_MASK) 1613 goto out; 1614 1615 /* do the re-parent */ 1616 ret = __clk_set_parent(clk, parent, p_index); 1617 1618 /* propagate rate recalculation accordingly */ 1619 if (ret) 1620 __clk_recalc_rates(clk, ABORT_RATE_CHANGE); 1621 else 1622 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1623 1624 out: 1625 clk_prepare_unlock(); 1626 1627 return ret; 1628 } 1629 EXPORT_SYMBOL_GPL(clk_set_parent); 1630 1631 /** 1632 * __clk_init - initialize the data structures in a struct clk 1633 * @dev: device initializing this clk, placeholder for now 1634 * @clk: clk being initialized 1635 * 1636 * Initializes the lists in struct clk, queries the hardware for the 1637 * parent and rate and sets them both. 1638 */ 1639 int __clk_init(struct device *dev, struct clk *clk) 1640 { 1641 int i, ret = 0; 1642 struct clk *orphan; 1643 struct hlist_node *tmp2; 1644 1645 if (!clk) 1646 return -EINVAL; 1647 1648 clk_prepare_lock(); 1649 1650 /* check to see if a clock with this name is already registered */ 1651 if (__clk_lookup(clk->name)) { 1652 pr_debug("%s: clk %s already initialized\n", 1653 __func__, clk->name); 1654 ret = -EEXIST; 1655 goto out; 1656 } 1657 1658 /* check that clk_ops are sane. See Documentation/clk.txt */ 1659 if (clk->ops->set_rate && 1660 !((clk->ops->round_rate || clk->ops->determine_rate) && 1661 clk->ops->recalc_rate)) { 1662 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 1663 __func__, clk->name); 1664 ret = -EINVAL; 1665 goto out; 1666 } 1667 1668 if (clk->ops->set_parent && !clk->ops->get_parent) { 1669 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 1670 __func__, clk->name); 1671 ret = -EINVAL; 1672 goto out; 1673 } 1674 1675 /* throw a WARN if any entries in parent_names are NULL */ 1676 for (i = 0; i < clk->num_parents; i++) 1677 WARN(!clk->parent_names[i], 1678 "%s: invalid NULL in %s's .parent_names\n", 1679 __func__, clk->name); 1680 1681 /* 1682 * Allocate an array of struct clk *'s to avoid unnecessary string 1683 * look-ups of clk's possible parents. This can fail for clocks passed 1684 * in to clk_init during early boot; thus any access to clk->parents[] 1685 * must always check for a NULL pointer and try to populate it if 1686 * necessary. 1687 * 1688 * If clk->parents is not NULL we skip this entire block. This allows 1689 * for clock drivers to statically initialize clk->parents. 1690 */ 1691 if (clk->num_parents > 1 && !clk->parents) { 1692 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents), 1693 GFP_KERNEL); 1694 /* 1695 * __clk_lookup returns NULL for parents that have not been 1696 * clk_init'd; thus any access to clk->parents[] must check 1697 * for a NULL pointer. We can always perform lazy lookups for 1698 * missing parents later on. 1699 */ 1700 if (clk->parents) 1701 for (i = 0; i < clk->num_parents; i++) 1702 clk->parents[i] = 1703 __clk_lookup(clk->parent_names[i]); 1704 } 1705 1706 clk->parent = __clk_init_parent(clk); 1707 1708 /* 1709 * Populate clk->parent if parent has already been __clk_init'd. If 1710 * parent has not yet been __clk_init'd then place clk in the orphan 1711 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 1712 * clk list. 1713 * 1714 * Every time a new clk is clk_init'd then we walk the list of orphan 1715 * clocks and re-parent any that are children of the clock currently 1716 * being clk_init'd. 1717 */ 1718 if (clk->parent) 1719 hlist_add_head(&clk->child_node, 1720 &clk->parent->children); 1721 else if (clk->flags & CLK_IS_ROOT) 1722 hlist_add_head(&clk->child_node, &clk_root_list); 1723 else 1724 hlist_add_head(&clk->child_node, &clk_orphan_list); 1725 1726 /* 1727 * Set clk's rate. The preferred method is to use .recalc_rate. For 1728 * simple clocks and lazy developers the default fallback is to use the 1729 * parent's rate. If a clock doesn't have a parent (or is orphaned) 1730 * then rate is set to zero. 1731 */ 1732 if (clk->ops->recalc_rate) 1733 clk->rate = clk->ops->recalc_rate(clk->hw, 1734 __clk_get_rate(clk->parent)); 1735 else if (clk->parent) 1736 clk->rate = clk->parent->rate; 1737 else 1738 clk->rate = 0; 1739 1740 /* 1741 * walk the list of orphan clocks and reparent any that are children of 1742 * this clock 1743 */ 1744 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 1745 if (orphan->num_parents && orphan->ops->get_parent) { 1746 i = orphan->ops->get_parent(orphan->hw); 1747 if (!strcmp(clk->name, orphan->parent_names[i])) 1748 __clk_reparent(orphan, clk); 1749 continue; 1750 } 1751 1752 for (i = 0; i < orphan->num_parents; i++) 1753 if (!strcmp(clk->name, orphan->parent_names[i])) { 1754 __clk_reparent(orphan, clk); 1755 break; 1756 } 1757 } 1758 1759 /* 1760 * optional platform-specific magic 1761 * 1762 * The .init callback is not used by any of the basic clock types, but 1763 * exists for weird hardware that must perform initialization magic. 1764 * Please consider other ways of solving initialization problems before 1765 * using this callback, as its use is discouraged. 1766 */ 1767 if (clk->ops->init) 1768 clk->ops->init(clk->hw); 1769 1770 clk_debug_register(clk); 1771 1772 out: 1773 clk_prepare_unlock(); 1774 1775 return ret; 1776 } 1777 1778 /** 1779 * __clk_register - register a clock and return a cookie. 1780 * 1781 * Same as clk_register, except that the .clk field inside hw shall point to a 1782 * preallocated (generally statically allocated) struct clk. None of the fields 1783 * of the struct clk need to be initialized. 1784 * 1785 * The data pointed to by .init and .clk field shall NOT be marked as init 1786 * data. 1787 * 1788 * __clk_register is only exposed via clk-private.h and is intended for use with 1789 * very large numbers of clocks that need to be statically initialized. It is 1790 * a layering violation to include clk-private.h from any code which implements 1791 * a clock's .ops; as such any statically initialized clock data MUST be in a 1792 * separate C file from the logic that implements its operations. Returns 0 1793 * on success, otherwise an error code. 1794 */ 1795 struct clk *__clk_register(struct device *dev, struct clk_hw *hw) 1796 { 1797 int ret; 1798 struct clk *clk; 1799 1800 clk = hw->clk; 1801 clk->name = hw->init->name; 1802 clk->ops = hw->init->ops; 1803 clk->hw = hw; 1804 clk->flags = hw->init->flags; 1805 clk->parent_names = hw->init->parent_names; 1806 clk->num_parents = hw->init->num_parents; 1807 1808 ret = __clk_init(dev, clk); 1809 if (ret) 1810 return ERR_PTR(ret); 1811 1812 return clk; 1813 } 1814 EXPORT_SYMBOL_GPL(__clk_register); 1815 1816 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk) 1817 { 1818 int i, ret; 1819 1820 clk->name = kstrdup(hw->init->name, GFP_KERNEL); 1821 if (!clk->name) { 1822 pr_err("%s: could not allocate clk->name\n", __func__); 1823 ret = -ENOMEM; 1824 goto fail_name; 1825 } 1826 clk->ops = hw->init->ops; 1827 clk->hw = hw; 1828 clk->flags = hw->init->flags; 1829 clk->num_parents = hw->init->num_parents; 1830 hw->clk = clk; 1831 1832 /* allocate local copy in case parent_names is __initdata */ 1833 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents), 1834 GFP_KERNEL); 1835 1836 if (!clk->parent_names) { 1837 pr_err("%s: could not allocate clk->parent_names\n", __func__); 1838 ret = -ENOMEM; 1839 goto fail_parent_names; 1840 } 1841 1842 1843 /* copy each string name in case parent_names is __initdata */ 1844 for (i = 0; i < clk->num_parents; i++) { 1845 clk->parent_names[i] = kstrdup(hw->init->parent_names[i], 1846 GFP_KERNEL); 1847 if (!clk->parent_names[i]) { 1848 pr_err("%s: could not copy parent_names\n", __func__); 1849 ret = -ENOMEM; 1850 goto fail_parent_names_copy; 1851 } 1852 } 1853 1854 ret = __clk_init(dev, clk); 1855 if (!ret) 1856 return 0; 1857 1858 fail_parent_names_copy: 1859 while (--i >= 0) 1860 kfree(clk->parent_names[i]); 1861 kfree(clk->parent_names); 1862 fail_parent_names: 1863 kfree(clk->name); 1864 fail_name: 1865 return ret; 1866 } 1867 1868 /** 1869 * clk_register - allocate a new clock, register it and return an opaque cookie 1870 * @dev: device that is registering this clock 1871 * @hw: link to hardware-specific clock data 1872 * 1873 * clk_register is the primary interface for populating the clock tree with new 1874 * clock nodes. It returns a pointer to the newly allocated struct clk which 1875 * cannot be dereferenced by driver code but may be used in conjuction with the 1876 * rest of the clock API. In the event of an error clk_register will return an 1877 * error code; drivers must test for an error code after calling clk_register. 1878 */ 1879 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 1880 { 1881 int ret; 1882 struct clk *clk; 1883 1884 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 1885 if (!clk) { 1886 pr_err("%s: could not allocate clk\n", __func__); 1887 ret = -ENOMEM; 1888 goto fail_out; 1889 } 1890 1891 ret = _clk_register(dev, hw, clk); 1892 if (!ret) 1893 return clk; 1894 1895 kfree(clk); 1896 fail_out: 1897 return ERR_PTR(ret); 1898 } 1899 EXPORT_SYMBOL_GPL(clk_register); 1900 1901 /** 1902 * clk_unregister - unregister a currently registered clock 1903 * @clk: clock to unregister 1904 * 1905 * Currently unimplemented. 1906 */ 1907 void clk_unregister(struct clk *clk) {} 1908 EXPORT_SYMBOL_GPL(clk_unregister); 1909 1910 static void devm_clk_release(struct device *dev, void *res) 1911 { 1912 clk_unregister(res); 1913 } 1914 1915 /** 1916 * devm_clk_register - resource managed clk_register() 1917 * @dev: device that is registering this clock 1918 * @hw: link to hardware-specific clock data 1919 * 1920 * Managed clk_register(). Clocks returned from this function are 1921 * automatically clk_unregister()ed on driver detach. See clk_register() for 1922 * more information. 1923 */ 1924 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 1925 { 1926 struct clk *clk; 1927 int ret; 1928 1929 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL); 1930 if (!clk) 1931 return ERR_PTR(-ENOMEM); 1932 1933 ret = _clk_register(dev, hw, clk); 1934 if (!ret) { 1935 devres_add(dev, clk); 1936 } else { 1937 devres_free(clk); 1938 clk = ERR_PTR(ret); 1939 } 1940 1941 return clk; 1942 } 1943 EXPORT_SYMBOL_GPL(devm_clk_register); 1944 1945 static int devm_clk_match(struct device *dev, void *res, void *data) 1946 { 1947 struct clk *c = res; 1948 if (WARN_ON(!c)) 1949 return 0; 1950 return c == data; 1951 } 1952 1953 /** 1954 * devm_clk_unregister - resource managed clk_unregister() 1955 * @clk: clock to unregister 1956 * 1957 * Deallocate a clock allocated with devm_clk_register(). Normally 1958 * this function will not need to be called and the resource management 1959 * code will ensure that the resource is freed. 1960 */ 1961 void devm_clk_unregister(struct device *dev, struct clk *clk) 1962 { 1963 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 1964 } 1965 EXPORT_SYMBOL_GPL(devm_clk_unregister); 1966 1967 /*** clk rate change notifiers ***/ 1968 1969 /** 1970 * clk_notifier_register - add a clk rate change notifier 1971 * @clk: struct clk * to watch 1972 * @nb: struct notifier_block * with callback info 1973 * 1974 * Request notification when clk's rate changes. This uses an SRCU 1975 * notifier because we want it to block and notifier unregistrations are 1976 * uncommon. The callbacks associated with the notifier must not 1977 * re-enter into the clk framework by calling any top-level clk APIs; 1978 * this will cause a nested prepare_lock mutex. 1979 * 1980 * Pre-change notifier callbacks will be passed the current, pre-change 1981 * rate of the clk via struct clk_notifier_data.old_rate. The new, 1982 * post-change rate of the clk is passed via struct 1983 * clk_notifier_data.new_rate. 1984 * 1985 * Post-change notifiers will pass the now-current, post-change rate of 1986 * the clk in both struct clk_notifier_data.old_rate and struct 1987 * clk_notifier_data.new_rate. 1988 * 1989 * Abort-change notifiers are effectively the opposite of pre-change 1990 * notifiers: the original pre-change clk rate is passed in via struct 1991 * clk_notifier_data.new_rate and the failed post-change rate is passed 1992 * in via struct clk_notifier_data.old_rate. 1993 * 1994 * clk_notifier_register() must be called from non-atomic context. 1995 * Returns -EINVAL if called with null arguments, -ENOMEM upon 1996 * allocation failure; otherwise, passes along the return value of 1997 * srcu_notifier_chain_register(). 1998 */ 1999 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2000 { 2001 struct clk_notifier *cn; 2002 int ret = -ENOMEM; 2003 2004 if (!clk || !nb) 2005 return -EINVAL; 2006 2007 clk_prepare_lock(); 2008 2009 /* search the list of notifiers for this clk */ 2010 list_for_each_entry(cn, &clk_notifier_list, node) 2011 if (cn->clk == clk) 2012 break; 2013 2014 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2015 if (cn->clk != clk) { 2016 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2017 if (!cn) 2018 goto out; 2019 2020 cn->clk = clk; 2021 srcu_init_notifier_head(&cn->notifier_head); 2022 2023 list_add(&cn->node, &clk_notifier_list); 2024 } 2025 2026 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2027 2028 clk->notifier_count++; 2029 2030 out: 2031 clk_prepare_unlock(); 2032 2033 return ret; 2034 } 2035 EXPORT_SYMBOL_GPL(clk_notifier_register); 2036 2037 /** 2038 * clk_notifier_unregister - remove a clk rate change notifier 2039 * @clk: struct clk * 2040 * @nb: struct notifier_block * with callback info 2041 * 2042 * Request no further notification for changes to 'clk' and frees memory 2043 * allocated in clk_notifier_register. 2044 * 2045 * Returns -EINVAL if called with null arguments; otherwise, passes 2046 * along the return value of srcu_notifier_chain_unregister(). 2047 */ 2048 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2049 { 2050 struct clk_notifier *cn = NULL; 2051 int ret = -EINVAL; 2052 2053 if (!clk || !nb) 2054 return -EINVAL; 2055 2056 clk_prepare_lock(); 2057 2058 list_for_each_entry(cn, &clk_notifier_list, node) 2059 if (cn->clk == clk) 2060 break; 2061 2062 if (cn->clk == clk) { 2063 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2064 2065 clk->notifier_count--; 2066 2067 /* XXX the notifier code should handle this better */ 2068 if (!cn->notifier_head.head) { 2069 srcu_cleanup_notifier_head(&cn->notifier_head); 2070 list_del(&cn->node); 2071 kfree(cn); 2072 } 2073 2074 } else { 2075 ret = -ENOENT; 2076 } 2077 2078 clk_prepare_unlock(); 2079 2080 return ret; 2081 } 2082 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2083 2084 #ifdef CONFIG_OF 2085 /** 2086 * struct of_clk_provider - Clock provider registration structure 2087 * @link: Entry in global list of clock providers 2088 * @node: Pointer to device tree node of clock provider 2089 * @get: Get clock callback. Returns NULL or a struct clk for the 2090 * given clock specifier 2091 * @data: context pointer to be passed into @get callback 2092 */ 2093 struct of_clk_provider { 2094 struct list_head link; 2095 2096 struct device_node *node; 2097 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2098 void *data; 2099 }; 2100 2101 extern struct of_device_id __clk_of_table[]; 2102 2103 static const struct of_device_id __clk_of_table_sentinel 2104 __used __section(__clk_of_table_end); 2105 2106 static LIST_HEAD(of_clk_providers); 2107 static DEFINE_MUTEX(of_clk_lock); 2108 2109 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2110 void *data) 2111 { 2112 return data; 2113 } 2114 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2115 2116 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2117 { 2118 struct clk_onecell_data *clk_data = data; 2119 unsigned int idx = clkspec->args[0]; 2120 2121 if (idx >= clk_data->clk_num) { 2122 pr_err("%s: invalid clock index %d\n", __func__, idx); 2123 return ERR_PTR(-EINVAL); 2124 } 2125 2126 return clk_data->clks[idx]; 2127 } 2128 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2129 2130 /** 2131 * of_clk_add_provider() - Register a clock provider for a node 2132 * @np: Device node pointer associated with clock provider 2133 * @clk_src_get: callback for decoding clock 2134 * @data: context pointer for @clk_src_get callback. 2135 */ 2136 int of_clk_add_provider(struct device_node *np, 2137 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2138 void *data), 2139 void *data) 2140 { 2141 struct of_clk_provider *cp; 2142 2143 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2144 if (!cp) 2145 return -ENOMEM; 2146 2147 cp->node = of_node_get(np); 2148 cp->data = data; 2149 cp->get = clk_src_get; 2150 2151 mutex_lock(&of_clk_lock); 2152 list_add(&cp->link, &of_clk_providers); 2153 mutex_unlock(&of_clk_lock); 2154 pr_debug("Added clock from %s\n", np->full_name); 2155 2156 return 0; 2157 } 2158 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2159 2160 /** 2161 * of_clk_del_provider() - Remove a previously registered clock provider 2162 * @np: Device node pointer associated with clock provider 2163 */ 2164 void of_clk_del_provider(struct device_node *np) 2165 { 2166 struct of_clk_provider *cp; 2167 2168 mutex_lock(&of_clk_lock); 2169 list_for_each_entry(cp, &of_clk_providers, link) { 2170 if (cp->node == np) { 2171 list_del(&cp->link); 2172 of_node_put(cp->node); 2173 kfree(cp); 2174 break; 2175 } 2176 } 2177 mutex_unlock(&of_clk_lock); 2178 } 2179 EXPORT_SYMBOL_GPL(of_clk_del_provider); 2180 2181 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 2182 { 2183 struct of_clk_provider *provider; 2184 struct clk *clk = ERR_PTR(-ENOENT); 2185 2186 /* Check if we have such a provider in our array */ 2187 mutex_lock(&of_clk_lock); 2188 list_for_each_entry(provider, &of_clk_providers, link) { 2189 if (provider->node == clkspec->np) 2190 clk = provider->get(clkspec, provider->data); 2191 if (!IS_ERR(clk)) 2192 break; 2193 } 2194 mutex_unlock(&of_clk_lock); 2195 2196 return clk; 2197 } 2198 2199 const char *of_clk_get_parent_name(struct device_node *np, int index) 2200 { 2201 struct of_phandle_args clkspec; 2202 const char *clk_name; 2203 int rc; 2204 2205 if (index < 0) 2206 return NULL; 2207 2208 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 2209 &clkspec); 2210 if (rc) 2211 return NULL; 2212 2213 if (of_property_read_string_index(clkspec.np, "clock-output-names", 2214 clkspec.args_count ? clkspec.args[0] : 0, 2215 &clk_name) < 0) 2216 clk_name = clkspec.np->name; 2217 2218 of_node_put(clkspec.np); 2219 return clk_name; 2220 } 2221 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 2222 2223 /** 2224 * of_clk_init() - Scan and init clock providers from the DT 2225 * @matches: array of compatible values and init functions for providers. 2226 * 2227 * This function scans the device tree for matching clock providers and 2228 * calls their initialization functions 2229 */ 2230 void __init of_clk_init(const struct of_device_id *matches) 2231 { 2232 const struct of_device_id *match; 2233 struct device_node *np; 2234 2235 if (!matches) 2236 matches = __clk_of_table; 2237 2238 for_each_matching_node_and_match(np, matches, &match) { 2239 of_clk_init_cb_t clk_init_cb = match->data; 2240 clk_init_cb(np); 2241 } 2242 } 2243 #endif 2244