1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/sched.h> 26 #include <linux/clkdev.h> 27 #include <linux/stringify.h> 28 29 #include "clk.h" 30 31 static DEFINE_SPINLOCK(enable_lock); 32 static DEFINE_MUTEX(prepare_lock); 33 34 static struct task_struct *prepare_owner; 35 static struct task_struct *enable_owner; 36 37 static int prepare_refcnt; 38 static int enable_refcnt; 39 40 static HLIST_HEAD(clk_root_list); 41 static HLIST_HEAD(clk_orphan_list); 42 static LIST_HEAD(clk_notifier_list); 43 44 /*** private data structures ***/ 45 46 struct clk_core { 47 const char *name; 48 const struct clk_ops *ops; 49 struct clk_hw *hw; 50 struct module *owner; 51 struct device *dev; 52 struct clk_core *parent; 53 const char **parent_names; 54 struct clk_core **parents; 55 u8 num_parents; 56 u8 new_parent_index; 57 unsigned long rate; 58 unsigned long req_rate; 59 unsigned long new_rate; 60 struct clk_core *new_parent; 61 struct clk_core *new_child; 62 unsigned long flags; 63 bool orphan; 64 unsigned int enable_count; 65 unsigned int prepare_count; 66 unsigned int protect_count; 67 unsigned long min_rate; 68 unsigned long max_rate; 69 unsigned long accuracy; 70 int phase; 71 struct hlist_head children; 72 struct hlist_node child_node; 73 struct hlist_head clks; 74 unsigned int notifier_count; 75 #ifdef CONFIG_DEBUG_FS 76 struct dentry *dentry; 77 struct hlist_node debug_node; 78 #endif 79 struct kref ref; 80 }; 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/clk.h> 84 85 struct clk { 86 struct clk_core *core; 87 const char *dev_id; 88 const char *con_id; 89 unsigned long min_rate; 90 unsigned long max_rate; 91 unsigned int exclusive_count; 92 struct hlist_node clks_node; 93 }; 94 95 /*** runtime pm ***/ 96 static int clk_pm_runtime_get(struct clk_core *core) 97 { 98 int ret = 0; 99 100 if (!core->dev) 101 return 0; 102 103 ret = pm_runtime_get_sync(core->dev); 104 return ret < 0 ? ret : 0; 105 } 106 107 static void clk_pm_runtime_put(struct clk_core *core) 108 { 109 if (!core->dev) 110 return; 111 112 pm_runtime_put_sync(core->dev); 113 } 114 115 /*** locking ***/ 116 static void clk_prepare_lock(void) 117 { 118 if (!mutex_trylock(&prepare_lock)) { 119 if (prepare_owner == current) { 120 prepare_refcnt++; 121 return; 122 } 123 mutex_lock(&prepare_lock); 124 } 125 WARN_ON_ONCE(prepare_owner != NULL); 126 WARN_ON_ONCE(prepare_refcnt != 0); 127 prepare_owner = current; 128 prepare_refcnt = 1; 129 } 130 131 static void clk_prepare_unlock(void) 132 { 133 WARN_ON_ONCE(prepare_owner != current); 134 WARN_ON_ONCE(prepare_refcnt == 0); 135 136 if (--prepare_refcnt) 137 return; 138 prepare_owner = NULL; 139 mutex_unlock(&prepare_lock); 140 } 141 142 static unsigned long clk_enable_lock(void) 143 __acquires(enable_lock) 144 { 145 unsigned long flags; 146 147 /* 148 * On UP systems, spin_trylock_irqsave() always returns true, even if 149 * we already hold the lock. So, in that case, we rely only on 150 * reference counting. 151 */ 152 if (!IS_ENABLED(CONFIG_SMP) || 153 !spin_trylock_irqsave(&enable_lock, flags)) { 154 if (enable_owner == current) { 155 enable_refcnt++; 156 __acquire(enable_lock); 157 if (!IS_ENABLED(CONFIG_SMP)) 158 local_save_flags(flags); 159 return flags; 160 } 161 spin_lock_irqsave(&enable_lock, flags); 162 } 163 WARN_ON_ONCE(enable_owner != NULL); 164 WARN_ON_ONCE(enable_refcnt != 0); 165 enable_owner = current; 166 enable_refcnt = 1; 167 return flags; 168 } 169 170 static void clk_enable_unlock(unsigned long flags) 171 __releases(enable_lock) 172 { 173 WARN_ON_ONCE(enable_owner != current); 174 WARN_ON_ONCE(enable_refcnt == 0); 175 176 if (--enable_refcnt) { 177 __release(enable_lock); 178 return; 179 } 180 enable_owner = NULL; 181 spin_unlock_irqrestore(&enable_lock, flags); 182 } 183 184 static bool clk_core_rate_is_protected(struct clk_core *core) 185 { 186 return core->protect_count; 187 } 188 189 static bool clk_core_is_prepared(struct clk_core *core) 190 { 191 bool ret = false; 192 193 /* 194 * .is_prepared is optional for clocks that can prepare 195 * fall back to software usage counter if it is missing 196 */ 197 if (!core->ops->is_prepared) 198 return core->prepare_count; 199 200 if (!clk_pm_runtime_get(core)) { 201 ret = core->ops->is_prepared(core->hw); 202 clk_pm_runtime_put(core); 203 } 204 205 return ret; 206 } 207 208 static bool clk_core_is_enabled(struct clk_core *core) 209 { 210 bool ret = false; 211 212 /* 213 * .is_enabled is only mandatory for clocks that gate 214 * fall back to software usage counter if .is_enabled is missing 215 */ 216 if (!core->ops->is_enabled) 217 return core->enable_count; 218 219 /* 220 * Check if clock controller's device is runtime active before 221 * calling .is_enabled callback. If not, assume that clock is 222 * disabled, because we might be called from atomic context, from 223 * which pm_runtime_get() is not allowed. 224 * This function is called mainly from clk_disable_unused_subtree, 225 * which ensures proper runtime pm activation of controller before 226 * taking enable spinlock, but the below check is needed if one tries 227 * to call it from other places. 228 */ 229 if (core->dev) { 230 pm_runtime_get_noresume(core->dev); 231 if (!pm_runtime_active(core->dev)) { 232 ret = false; 233 goto done; 234 } 235 } 236 237 ret = core->ops->is_enabled(core->hw); 238 done: 239 if (core->dev) 240 pm_runtime_put(core->dev); 241 242 return ret; 243 } 244 245 /*** helper functions ***/ 246 247 const char *__clk_get_name(const struct clk *clk) 248 { 249 return !clk ? NULL : clk->core->name; 250 } 251 EXPORT_SYMBOL_GPL(__clk_get_name); 252 253 const char *clk_hw_get_name(const struct clk_hw *hw) 254 { 255 return hw->core->name; 256 } 257 EXPORT_SYMBOL_GPL(clk_hw_get_name); 258 259 struct clk_hw *__clk_get_hw(struct clk *clk) 260 { 261 return !clk ? NULL : clk->core->hw; 262 } 263 EXPORT_SYMBOL_GPL(__clk_get_hw); 264 265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 266 { 267 return hw->core->num_parents; 268 } 269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 270 271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 272 { 273 return hw->core->parent ? hw->core->parent->hw : NULL; 274 } 275 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 276 277 static struct clk_core *__clk_lookup_subtree(const char *name, 278 struct clk_core *core) 279 { 280 struct clk_core *child; 281 struct clk_core *ret; 282 283 if (!strcmp(core->name, name)) 284 return core; 285 286 hlist_for_each_entry(child, &core->children, child_node) { 287 ret = __clk_lookup_subtree(name, child); 288 if (ret) 289 return ret; 290 } 291 292 return NULL; 293 } 294 295 static struct clk_core *clk_core_lookup(const char *name) 296 { 297 struct clk_core *root_clk; 298 struct clk_core *ret; 299 300 if (!name) 301 return NULL; 302 303 /* search the 'proper' clk tree first */ 304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 305 ret = __clk_lookup_subtree(name, root_clk); 306 if (ret) 307 return ret; 308 } 309 310 /* if not found, then search the orphan tree */ 311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 return NULL; 318 } 319 320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 321 u8 index) 322 { 323 if (!core || index >= core->num_parents) 324 return NULL; 325 326 if (!core->parents[index]) 327 core->parents[index] = 328 clk_core_lookup(core->parent_names[index]); 329 330 return core->parents[index]; 331 } 332 333 struct clk_hw * 334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 335 { 336 struct clk_core *parent; 337 338 parent = clk_core_get_parent_by_index(hw->core, index); 339 340 return !parent ? NULL : parent->hw; 341 } 342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 343 344 unsigned int __clk_get_enable_count(struct clk *clk) 345 { 346 return !clk ? 0 : clk->core->enable_count; 347 } 348 349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 350 { 351 unsigned long ret; 352 353 if (!core) { 354 ret = 0; 355 goto out; 356 } 357 358 ret = core->rate; 359 360 if (!core->num_parents) 361 goto out; 362 363 if (!core->parent) 364 ret = 0; 365 366 out: 367 return ret; 368 } 369 370 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 371 { 372 return clk_core_get_rate_nolock(hw->core); 373 } 374 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 375 376 static unsigned long __clk_get_accuracy(struct clk_core *core) 377 { 378 if (!core) 379 return 0; 380 381 return core->accuracy; 382 } 383 384 unsigned long __clk_get_flags(struct clk *clk) 385 { 386 return !clk ? 0 : clk->core->flags; 387 } 388 EXPORT_SYMBOL_GPL(__clk_get_flags); 389 390 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 391 { 392 return hw->core->flags; 393 } 394 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 395 396 bool clk_hw_is_prepared(const struct clk_hw *hw) 397 { 398 return clk_core_is_prepared(hw->core); 399 } 400 401 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 402 { 403 return clk_core_rate_is_protected(hw->core); 404 } 405 406 bool clk_hw_is_enabled(const struct clk_hw *hw) 407 { 408 return clk_core_is_enabled(hw->core); 409 } 410 411 bool __clk_is_enabled(struct clk *clk) 412 { 413 if (!clk) 414 return false; 415 416 return clk_core_is_enabled(clk->core); 417 } 418 EXPORT_SYMBOL_GPL(__clk_is_enabled); 419 420 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 421 unsigned long best, unsigned long flags) 422 { 423 if (flags & CLK_MUX_ROUND_CLOSEST) 424 return abs(now - rate) < abs(best - rate); 425 426 return now <= rate && now > best; 427 } 428 429 static int 430 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, 431 unsigned long flags) 432 { 433 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 434 int i, num_parents, ret; 435 unsigned long best = 0; 436 struct clk_rate_request parent_req = *req; 437 438 /* if NO_REPARENT flag set, pass through to current parent */ 439 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 440 parent = core->parent; 441 if (core->flags & CLK_SET_RATE_PARENT) { 442 ret = __clk_determine_rate(parent ? parent->hw : NULL, 443 &parent_req); 444 if (ret) 445 return ret; 446 447 best = parent_req.rate; 448 } else if (parent) { 449 best = clk_core_get_rate_nolock(parent); 450 } else { 451 best = clk_core_get_rate_nolock(core); 452 } 453 454 goto out; 455 } 456 457 /* find the parent that can provide the fastest rate <= rate */ 458 num_parents = core->num_parents; 459 for (i = 0; i < num_parents; i++) { 460 parent = clk_core_get_parent_by_index(core, i); 461 if (!parent) 462 continue; 463 464 if (core->flags & CLK_SET_RATE_PARENT) { 465 parent_req = *req; 466 ret = __clk_determine_rate(parent->hw, &parent_req); 467 if (ret) 468 continue; 469 } else { 470 parent_req.rate = clk_core_get_rate_nolock(parent); 471 } 472 473 if (mux_is_better_rate(req->rate, parent_req.rate, 474 best, flags)) { 475 best_parent = parent; 476 best = parent_req.rate; 477 } 478 } 479 480 if (!best_parent) 481 return -EINVAL; 482 483 out: 484 if (best_parent) 485 req->best_parent_hw = best_parent->hw; 486 req->best_parent_rate = best; 487 req->rate = best; 488 489 return 0; 490 } 491 492 struct clk *__clk_lookup(const char *name) 493 { 494 struct clk_core *core = clk_core_lookup(name); 495 496 return !core ? NULL : core->hw->clk; 497 } 498 499 static void clk_core_get_boundaries(struct clk_core *core, 500 unsigned long *min_rate, 501 unsigned long *max_rate) 502 { 503 struct clk *clk_user; 504 505 *min_rate = core->min_rate; 506 *max_rate = core->max_rate; 507 508 hlist_for_each_entry(clk_user, &core->clks, clks_node) 509 *min_rate = max(*min_rate, clk_user->min_rate); 510 511 hlist_for_each_entry(clk_user, &core->clks, clks_node) 512 *max_rate = min(*max_rate, clk_user->max_rate); 513 } 514 515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 516 unsigned long max_rate) 517 { 518 hw->core->min_rate = min_rate; 519 hw->core->max_rate = max_rate; 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 522 523 /* 524 * Helper for finding best parent to provide a given frequency. This can be used 525 * directly as a determine_rate callback (e.g. for a mux), or from a more 526 * complex clock that may combine a mux with other operations. 527 */ 528 int __clk_mux_determine_rate(struct clk_hw *hw, 529 struct clk_rate_request *req) 530 { 531 return clk_mux_determine_rate_flags(hw, req, 0); 532 } 533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 534 535 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 536 struct clk_rate_request *req) 537 { 538 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 539 } 540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 541 542 /*** clk api ***/ 543 544 static void clk_core_rate_unprotect(struct clk_core *core) 545 { 546 lockdep_assert_held(&prepare_lock); 547 548 if (!core) 549 return; 550 551 if (WARN_ON(core->protect_count == 0)) 552 return; 553 554 if (--core->protect_count > 0) 555 return; 556 557 clk_core_rate_unprotect(core->parent); 558 } 559 560 static int clk_core_rate_nuke_protect(struct clk_core *core) 561 { 562 int ret; 563 564 lockdep_assert_held(&prepare_lock); 565 566 if (!core) 567 return -EINVAL; 568 569 if (core->protect_count == 0) 570 return 0; 571 572 ret = core->protect_count; 573 core->protect_count = 1; 574 clk_core_rate_unprotect(core); 575 576 return ret; 577 } 578 579 /** 580 * clk_rate_exclusive_put - release exclusivity over clock rate control 581 * @clk: the clk over which the exclusivity is released 582 * 583 * clk_rate_exclusive_put() completes a critical section during which a clock 584 * consumer cannot tolerate any other consumer making any operation on the 585 * clock which could result in a rate change or rate glitch. Exclusive clocks 586 * cannot have their rate changed, either directly or indirectly due to changes 587 * further up the parent chain of clocks. As a result, clocks up parent chain 588 * also get under exclusive control of the calling consumer. 589 * 590 * If exlusivity is claimed more than once on clock, even by the same consumer, 591 * the rate effectively gets locked as exclusivity can't be preempted. 592 * 593 * Calls to clk_rate_exclusive_put() must be balanced with calls to 594 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 595 * error status. 596 */ 597 void clk_rate_exclusive_put(struct clk *clk) 598 { 599 if (!clk) 600 return; 601 602 clk_prepare_lock(); 603 604 /* 605 * if there is something wrong with this consumer protect count, stop 606 * here before messing with the provider 607 */ 608 if (WARN_ON(clk->exclusive_count <= 0)) 609 goto out; 610 611 clk_core_rate_unprotect(clk->core); 612 clk->exclusive_count--; 613 out: 614 clk_prepare_unlock(); 615 } 616 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 617 618 static void clk_core_rate_protect(struct clk_core *core) 619 { 620 lockdep_assert_held(&prepare_lock); 621 622 if (!core) 623 return; 624 625 if (core->protect_count == 0) 626 clk_core_rate_protect(core->parent); 627 628 core->protect_count++; 629 } 630 631 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 632 { 633 lockdep_assert_held(&prepare_lock); 634 635 if (!core) 636 return; 637 638 if (count == 0) 639 return; 640 641 clk_core_rate_protect(core); 642 core->protect_count = count; 643 } 644 645 /** 646 * clk_rate_exclusive_get - get exclusivity over the clk rate control 647 * @clk: the clk over which the exclusity of rate control is requested 648 * 649 * clk_rate_exlusive_get() begins a critical section during which a clock 650 * consumer cannot tolerate any other consumer making any operation on the 651 * clock which could result in a rate change or rate glitch. Exclusive clocks 652 * cannot have their rate changed, either directly or indirectly due to changes 653 * further up the parent chain of clocks. As a result, clocks up parent chain 654 * also get under exclusive control of the calling consumer. 655 * 656 * If exlusivity is claimed more than once on clock, even by the same consumer, 657 * the rate effectively gets locked as exclusivity can't be preempted. 658 * 659 * Calls to clk_rate_exclusive_get() should be balanced with calls to 660 * clk_rate_exclusive_put(). Calls to this function may sleep. 661 * Returns 0 on success, -EERROR otherwise 662 */ 663 int clk_rate_exclusive_get(struct clk *clk) 664 { 665 if (!clk) 666 return 0; 667 668 clk_prepare_lock(); 669 clk_core_rate_protect(clk->core); 670 clk->exclusive_count++; 671 clk_prepare_unlock(); 672 673 return 0; 674 } 675 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 676 677 static void clk_core_unprepare(struct clk_core *core) 678 { 679 lockdep_assert_held(&prepare_lock); 680 681 if (!core) 682 return; 683 684 if (WARN_ON(core->prepare_count == 0)) 685 return; 686 687 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL)) 688 return; 689 690 if (--core->prepare_count > 0) 691 return; 692 693 WARN_ON(core->enable_count > 0); 694 695 trace_clk_unprepare(core); 696 697 if (core->ops->unprepare) 698 core->ops->unprepare(core->hw); 699 700 clk_pm_runtime_put(core); 701 702 trace_clk_unprepare_complete(core); 703 clk_core_unprepare(core->parent); 704 } 705 706 static void clk_core_unprepare_lock(struct clk_core *core) 707 { 708 clk_prepare_lock(); 709 clk_core_unprepare(core); 710 clk_prepare_unlock(); 711 } 712 713 /** 714 * clk_unprepare - undo preparation of a clock source 715 * @clk: the clk being unprepared 716 * 717 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 718 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 719 * if the operation may sleep. One example is a clk which is accessed over 720 * I2c. In the complex case a clk gate operation may require a fast and a slow 721 * part. It is this reason that clk_unprepare and clk_disable are not mutually 722 * exclusive. In fact clk_disable must be called before clk_unprepare. 723 */ 724 void clk_unprepare(struct clk *clk) 725 { 726 if (IS_ERR_OR_NULL(clk)) 727 return; 728 729 clk_core_unprepare_lock(clk->core); 730 } 731 EXPORT_SYMBOL_GPL(clk_unprepare); 732 733 static int clk_core_prepare(struct clk_core *core) 734 { 735 int ret = 0; 736 737 lockdep_assert_held(&prepare_lock); 738 739 if (!core) 740 return 0; 741 742 if (core->prepare_count == 0) { 743 ret = clk_pm_runtime_get(core); 744 if (ret) 745 return ret; 746 747 ret = clk_core_prepare(core->parent); 748 if (ret) 749 goto runtime_put; 750 751 trace_clk_prepare(core); 752 753 if (core->ops->prepare) 754 ret = core->ops->prepare(core->hw); 755 756 trace_clk_prepare_complete(core); 757 758 if (ret) 759 goto unprepare; 760 } 761 762 core->prepare_count++; 763 764 return 0; 765 unprepare: 766 clk_core_unprepare(core->parent); 767 runtime_put: 768 clk_pm_runtime_put(core); 769 return ret; 770 } 771 772 static int clk_core_prepare_lock(struct clk_core *core) 773 { 774 int ret; 775 776 clk_prepare_lock(); 777 ret = clk_core_prepare(core); 778 clk_prepare_unlock(); 779 780 return ret; 781 } 782 783 /** 784 * clk_prepare - prepare a clock source 785 * @clk: the clk being prepared 786 * 787 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 788 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 789 * operation may sleep. One example is a clk which is accessed over I2c. In 790 * the complex case a clk ungate operation may require a fast and a slow part. 791 * It is this reason that clk_prepare and clk_enable are not mutually 792 * exclusive. In fact clk_prepare must be called before clk_enable. 793 * Returns 0 on success, -EERROR otherwise. 794 */ 795 int clk_prepare(struct clk *clk) 796 { 797 if (!clk) 798 return 0; 799 800 return clk_core_prepare_lock(clk->core); 801 } 802 EXPORT_SYMBOL_GPL(clk_prepare); 803 804 static void clk_core_disable(struct clk_core *core) 805 { 806 lockdep_assert_held(&enable_lock); 807 808 if (!core) 809 return; 810 811 if (WARN_ON(core->enable_count == 0)) 812 return; 813 814 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL)) 815 return; 816 817 if (--core->enable_count > 0) 818 return; 819 820 trace_clk_disable_rcuidle(core); 821 822 if (core->ops->disable) 823 core->ops->disable(core->hw); 824 825 trace_clk_disable_complete_rcuidle(core); 826 827 clk_core_disable(core->parent); 828 } 829 830 static void clk_core_disable_lock(struct clk_core *core) 831 { 832 unsigned long flags; 833 834 flags = clk_enable_lock(); 835 clk_core_disable(core); 836 clk_enable_unlock(flags); 837 } 838 839 /** 840 * clk_disable - gate a clock 841 * @clk: the clk being gated 842 * 843 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 844 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 845 * clk if the operation is fast and will never sleep. One example is a 846 * SoC-internal clk which is controlled via simple register writes. In the 847 * complex case a clk gate operation may require a fast and a slow part. It is 848 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 849 * In fact clk_disable must be called before clk_unprepare. 850 */ 851 void clk_disable(struct clk *clk) 852 { 853 if (IS_ERR_OR_NULL(clk)) 854 return; 855 856 clk_core_disable_lock(clk->core); 857 } 858 EXPORT_SYMBOL_GPL(clk_disable); 859 860 static int clk_core_enable(struct clk_core *core) 861 { 862 int ret = 0; 863 864 lockdep_assert_held(&enable_lock); 865 866 if (!core) 867 return 0; 868 869 if (WARN_ON(core->prepare_count == 0)) 870 return -ESHUTDOWN; 871 872 if (core->enable_count == 0) { 873 ret = clk_core_enable(core->parent); 874 875 if (ret) 876 return ret; 877 878 trace_clk_enable_rcuidle(core); 879 880 if (core->ops->enable) 881 ret = core->ops->enable(core->hw); 882 883 trace_clk_enable_complete_rcuidle(core); 884 885 if (ret) { 886 clk_core_disable(core->parent); 887 return ret; 888 } 889 } 890 891 core->enable_count++; 892 return 0; 893 } 894 895 static int clk_core_enable_lock(struct clk_core *core) 896 { 897 unsigned long flags; 898 int ret; 899 900 flags = clk_enable_lock(); 901 ret = clk_core_enable(core); 902 clk_enable_unlock(flags); 903 904 return ret; 905 } 906 907 /** 908 * clk_enable - ungate a clock 909 * @clk: the clk being ungated 910 * 911 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 912 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 913 * if the operation will never sleep. One example is a SoC-internal clk which 914 * is controlled via simple register writes. In the complex case a clk ungate 915 * operation may require a fast and a slow part. It is this reason that 916 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 917 * must be called before clk_enable. Returns 0 on success, -EERROR 918 * otherwise. 919 */ 920 int clk_enable(struct clk *clk) 921 { 922 if (!clk) 923 return 0; 924 925 return clk_core_enable_lock(clk->core); 926 } 927 EXPORT_SYMBOL_GPL(clk_enable); 928 929 static int clk_core_prepare_enable(struct clk_core *core) 930 { 931 int ret; 932 933 ret = clk_core_prepare_lock(core); 934 if (ret) 935 return ret; 936 937 ret = clk_core_enable_lock(core); 938 if (ret) 939 clk_core_unprepare_lock(core); 940 941 return ret; 942 } 943 944 static void clk_core_disable_unprepare(struct clk_core *core) 945 { 946 clk_core_disable_lock(core); 947 clk_core_unprepare_lock(core); 948 } 949 950 static void clk_unprepare_unused_subtree(struct clk_core *core) 951 { 952 struct clk_core *child; 953 954 lockdep_assert_held(&prepare_lock); 955 956 hlist_for_each_entry(child, &core->children, child_node) 957 clk_unprepare_unused_subtree(child); 958 959 if (core->prepare_count) 960 return; 961 962 if (core->flags & CLK_IGNORE_UNUSED) 963 return; 964 965 if (clk_pm_runtime_get(core)) 966 return; 967 968 if (clk_core_is_prepared(core)) { 969 trace_clk_unprepare(core); 970 if (core->ops->unprepare_unused) 971 core->ops->unprepare_unused(core->hw); 972 else if (core->ops->unprepare) 973 core->ops->unprepare(core->hw); 974 trace_clk_unprepare_complete(core); 975 } 976 977 clk_pm_runtime_put(core); 978 } 979 980 static void clk_disable_unused_subtree(struct clk_core *core) 981 { 982 struct clk_core *child; 983 unsigned long flags; 984 985 lockdep_assert_held(&prepare_lock); 986 987 hlist_for_each_entry(child, &core->children, child_node) 988 clk_disable_unused_subtree(child); 989 990 if (core->flags & CLK_OPS_PARENT_ENABLE) 991 clk_core_prepare_enable(core->parent); 992 993 if (clk_pm_runtime_get(core)) 994 goto unprepare_out; 995 996 flags = clk_enable_lock(); 997 998 if (core->enable_count) 999 goto unlock_out; 1000 1001 if (core->flags & CLK_IGNORE_UNUSED) 1002 goto unlock_out; 1003 1004 /* 1005 * some gate clocks have special needs during the disable-unused 1006 * sequence. call .disable_unused if available, otherwise fall 1007 * back to .disable 1008 */ 1009 if (clk_core_is_enabled(core)) { 1010 trace_clk_disable(core); 1011 if (core->ops->disable_unused) 1012 core->ops->disable_unused(core->hw); 1013 else if (core->ops->disable) 1014 core->ops->disable(core->hw); 1015 trace_clk_disable_complete(core); 1016 } 1017 1018 unlock_out: 1019 clk_enable_unlock(flags); 1020 clk_pm_runtime_put(core); 1021 unprepare_out: 1022 if (core->flags & CLK_OPS_PARENT_ENABLE) 1023 clk_core_disable_unprepare(core->parent); 1024 } 1025 1026 static bool clk_ignore_unused; 1027 static int __init clk_ignore_unused_setup(char *__unused) 1028 { 1029 clk_ignore_unused = true; 1030 return 1; 1031 } 1032 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1033 1034 static int clk_disable_unused(void) 1035 { 1036 struct clk_core *core; 1037 1038 if (clk_ignore_unused) { 1039 pr_warn("clk: Not disabling unused clocks\n"); 1040 return 0; 1041 } 1042 1043 clk_prepare_lock(); 1044 1045 hlist_for_each_entry(core, &clk_root_list, child_node) 1046 clk_disable_unused_subtree(core); 1047 1048 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1049 clk_disable_unused_subtree(core); 1050 1051 hlist_for_each_entry(core, &clk_root_list, child_node) 1052 clk_unprepare_unused_subtree(core); 1053 1054 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1055 clk_unprepare_unused_subtree(core); 1056 1057 clk_prepare_unlock(); 1058 1059 return 0; 1060 } 1061 late_initcall_sync(clk_disable_unused); 1062 1063 static int clk_core_determine_round_nolock(struct clk_core *core, 1064 struct clk_rate_request *req) 1065 { 1066 long rate; 1067 1068 lockdep_assert_held(&prepare_lock); 1069 1070 if (!core) 1071 return 0; 1072 1073 /* 1074 * At this point, core protection will be disabled if 1075 * - if the provider is not protected at all 1076 * - if the calling consumer is the only one which has exclusivity 1077 * over the provider 1078 */ 1079 if (clk_core_rate_is_protected(core)) { 1080 req->rate = core->rate; 1081 } else if (core->ops->determine_rate) { 1082 return core->ops->determine_rate(core->hw, req); 1083 } else if (core->ops->round_rate) { 1084 rate = core->ops->round_rate(core->hw, req->rate, 1085 &req->best_parent_rate); 1086 if (rate < 0) 1087 return rate; 1088 1089 req->rate = rate; 1090 } else { 1091 return -EINVAL; 1092 } 1093 1094 return 0; 1095 } 1096 1097 static void clk_core_init_rate_req(struct clk_core * const core, 1098 struct clk_rate_request *req) 1099 { 1100 struct clk_core *parent; 1101 1102 if (WARN_ON(!core || !req)) 1103 return; 1104 1105 parent = core->parent; 1106 if (parent) { 1107 req->best_parent_hw = parent->hw; 1108 req->best_parent_rate = parent->rate; 1109 } else { 1110 req->best_parent_hw = NULL; 1111 req->best_parent_rate = 0; 1112 } 1113 } 1114 1115 static bool clk_core_can_round(struct clk_core * const core) 1116 { 1117 if (core->ops->determine_rate || core->ops->round_rate) 1118 return true; 1119 1120 return false; 1121 } 1122 1123 static int clk_core_round_rate_nolock(struct clk_core *core, 1124 struct clk_rate_request *req) 1125 { 1126 lockdep_assert_held(&prepare_lock); 1127 1128 if (!core) { 1129 req->rate = 0; 1130 return 0; 1131 } 1132 1133 clk_core_init_rate_req(core, req); 1134 1135 if (clk_core_can_round(core)) 1136 return clk_core_determine_round_nolock(core, req); 1137 else if (core->flags & CLK_SET_RATE_PARENT) 1138 return clk_core_round_rate_nolock(core->parent, req); 1139 1140 req->rate = core->rate; 1141 return 0; 1142 } 1143 1144 /** 1145 * __clk_determine_rate - get the closest rate actually supported by a clock 1146 * @hw: determine the rate of this clock 1147 * @req: target rate request 1148 * 1149 * Useful for clk_ops such as .set_rate and .determine_rate. 1150 */ 1151 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1152 { 1153 if (!hw) { 1154 req->rate = 0; 1155 return 0; 1156 } 1157 1158 return clk_core_round_rate_nolock(hw->core, req); 1159 } 1160 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1161 1162 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1163 { 1164 int ret; 1165 struct clk_rate_request req; 1166 1167 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1168 req.rate = rate; 1169 1170 ret = clk_core_round_rate_nolock(hw->core, &req); 1171 if (ret) 1172 return 0; 1173 1174 return req.rate; 1175 } 1176 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1177 1178 /** 1179 * clk_round_rate - round the given rate for a clk 1180 * @clk: the clk for which we are rounding a rate 1181 * @rate: the rate which is to be rounded 1182 * 1183 * Takes in a rate as input and rounds it to a rate that the clk can actually 1184 * use which is then returned. If clk doesn't support round_rate operation 1185 * then the parent rate is returned. 1186 */ 1187 long clk_round_rate(struct clk *clk, unsigned long rate) 1188 { 1189 struct clk_rate_request req; 1190 int ret; 1191 1192 if (!clk) 1193 return 0; 1194 1195 clk_prepare_lock(); 1196 1197 if (clk->exclusive_count) 1198 clk_core_rate_unprotect(clk->core); 1199 1200 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1201 req.rate = rate; 1202 1203 ret = clk_core_round_rate_nolock(clk->core, &req); 1204 1205 if (clk->exclusive_count) 1206 clk_core_rate_protect(clk->core); 1207 1208 clk_prepare_unlock(); 1209 1210 if (ret) 1211 return ret; 1212 1213 return req.rate; 1214 } 1215 EXPORT_SYMBOL_GPL(clk_round_rate); 1216 1217 /** 1218 * __clk_notify - call clk notifier chain 1219 * @core: clk that is changing rate 1220 * @msg: clk notifier type (see include/linux/clk.h) 1221 * @old_rate: old clk rate 1222 * @new_rate: new clk rate 1223 * 1224 * Triggers a notifier call chain on the clk rate-change notification 1225 * for 'clk'. Passes a pointer to the struct clk and the previous 1226 * and current rates to the notifier callback. Intended to be called by 1227 * internal clock code only. Returns NOTIFY_DONE from the last driver 1228 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1229 * a driver returns that. 1230 */ 1231 static int __clk_notify(struct clk_core *core, unsigned long msg, 1232 unsigned long old_rate, unsigned long new_rate) 1233 { 1234 struct clk_notifier *cn; 1235 struct clk_notifier_data cnd; 1236 int ret = NOTIFY_DONE; 1237 1238 cnd.old_rate = old_rate; 1239 cnd.new_rate = new_rate; 1240 1241 list_for_each_entry(cn, &clk_notifier_list, node) { 1242 if (cn->clk->core == core) { 1243 cnd.clk = cn->clk; 1244 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1245 &cnd); 1246 if (ret & NOTIFY_STOP_MASK) 1247 return ret; 1248 } 1249 } 1250 1251 return ret; 1252 } 1253 1254 /** 1255 * __clk_recalc_accuracies 1256 * @core: first clk in the subtree 1257 * 1258 * Walks the subtree of clks starting with clk and recalculates accuracies as 1259 * it goes. Note that if a clk does not implement the .recalc_accuracy 1260 * callback then it is assumed that the clock will take on the accuracy of its 1261 * parent. 1262 */ 1263 static void __clk_recalc_accuracies(struct clk_core *core) 1264 { 1265 unsigned long parent_accuracy = 0; 1266 struct clk_core *child; 1267 1268 lockdep_assert_held(&prepare_lock); 1269 1270 if (core->parent) 1271 parent_accuracy = core->parent->accuracy; 1272 1273 if (core->ops->recalc_accuracy) 1274 core->accuracy = core->ops->recalc_accuracy(core->hw, 1275 parent_accuracy); 1276 else 1277 core->accuracy = parent_accuracy; 1278 1279 hlist_for_each_entry(child, &core->children, child_node) 1280 __clk_recalc_accuracies(child); 1281 } 1282 1283 static long clk_core_get_accuracy(struct clk_core *core) 1284 { 1285 unsigned long accuracy; 1286 1287 clk_prepare_lock(); 1288 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1289 __clk_recalc_accuracies(core); 1290 1291 accuracy = __clk_get_accuracy(core); 1292 clk_prepare_unlock(); 1293 1294 return accuracy; 1295 } 1296 1297 /** 1298 * clk_get_accuracy - return the accuracy of clk 1299 * @clk: the clk whose accuracy is being returned 1300 * 1301 * Simply returns the cached accuracy of the clk, unless 1302 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1303 * issued. 1304 * If clk is NULL then returns 0. 1305 */ 1306 long clk_get_accuracy(struct clk *clk) 1307 { 1308 if (!clk) 1309 return 0; 1310 1311 return clk_core_get_accuracy(clk->core); 1312 } 1313 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1314 1315 static unsigned long clk_recalc(struct clk_core *core, 1316 unsigned long parent_rate) 1317 { 1318 unsigned long rate = parent_rate; 1319 1320 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1321 rate = core->ops->recalc_rate(core->hw, parent_rate); 1322 clk_pm_runtime_put(core); 1323 } 1324 return rate; 1325 } 1326 1327 /** 1328 * __clk_recalc_rates 1329 * @core: first clk in the subtree 1330 * @msg: notification type (see include/linux/clk.h) 1331 * 1332 * Walks the subtree of clks starting with clk and recalculates rates as it 1333 * goes. Note that if a clk does not implement the .recalc_rate callback then 1334 * it is assumed that the clock will take on the rate of its parent. 1335 * 1336 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1337 * if necessary. 1338 */ 1339 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1340 { 1341 unsigned long old_rate; 1342 unsigned long parent_rate = 0; 1343 struct clk_core *child; 1344 1345 lockdep_assert_held(&prepare_lock); 1346 1347 old_rate = core->rate; 1348 1349 if (core->parent) 1350 parent_rate = core->parent->rate; 1351 1352 core->rate = clk_recalc(core, parent_rate); 1353 1354 /* 1355 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1356 * & ABORT_RATE_CHANGE notifiers 1357 */ 1358 if (core->notifier_count && msg) 1359 __clk_notify(core, msg, old_rate, core->rate); 1360 1361 hlist_for_each_entry(child, &core->children, child_node) 1362 __clk_recalc_rates(child, msg); 1363 } 1364 1365 static unsigned long clk_core_get_rate(struct clk_core *core) 1366 { 1367 unsigned long rate; 1368 1369 clk_prepare_lock(); 1370 1371 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1372 __clk_recalc_rates(core, 0); 1373 1374 rate = clk_core_get_rate_nolock(core); 1375 clk_prepare_unlock(); 1376 1377 return rate; 1378 } 1379 1380 /** 1381 * clk_get_rate - return the rate of clk 1382 * @clk: the clk whose rate is being returned 1383 * 1384 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1385 * is set, which means a recalc_rate will be issued. 1386 * If clk is NULL then returns 0. 1387 */ 1388 unsigned long clk_get_rate(struct clk *clk) 1389 { 1390 if (!clk) 1391 return 0; 1392 1393 return clk_core_get_rate(clk->core); 1394 } 1395 EXPORT_SYMBOL_GPL(clk_get_rate); 1396 1397 static int clk_fetch_parent_index(struct clk_core *core, 1398 struct clk_core *parent) 1399 { 1400 int i; 1401 1402 if (!parent) 1403 return -EINVAL; 1404 1405 for (i = 0; i < core->num_parents; i++) 1406 if (clk_core_get_parent_by_index(core, i) == parent) 1407 return i; 1408 1409 return -EINVAL; 1410 } 1411 1412 /* 1413 * Update the orphan status of @core and all its children. 1414 */ 1415 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1416 { 1417 struct clk_core *child; 1418 1419 core->orphan = is_orphan; 1420 1421 hlist_for_each_entry(child, &core->children, child_node) 1422 clk_core_update_orphan_status(child, is_orphan); 1423 } 1424 1425 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1426 { 1427 bool was_orphan = core->orphan; 1428 1429 hlist_del(&core->child_node); 1430 1431 if (new_parent) { 1432 bool becomes_orphan = new_parent->orphan; 1433 1434 /* avoid duplicate POST_RATE_CHANGE notifications */ 1435 if (new_parent->new_child == core) 1436 new_parent->new_child = NULL; 1437 1438 hlist_add_head(&core->child_node, &new_parent->children); 1439 1440 if (was_orphan != becomes_orphan) 1441 clk_core_update_orphan_status(core, becomes_orphan); 1442 } else { 1443 hlist_add_head(&core->child_node, &clk_orphan_list); 1444 if (!was_orphan) 1445 clk_core_update_orphan_status(core, true); 1446 } 1447 1448 core->parent = new_parent; 1449 } 1450 1451 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1452 struct clk_core *parent) 1453 { 1454 unsigned long flags; 1455 struct clk_core *old_parent = core->parent; 1456 1457 /* 1458 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1459 * 1460 * 2. Migrate prepare state between parents and prevent race with 1461 * clk_enable(). 1462 * 1463 * If the clock is not prepared, then a race with 1464 * clk_enable/disable() is impossible since we already have the 1465 * prepare lock (future calls to clk_enable() need to be preceded by 1466 * a clk_prepare()). 1467 * 1468 * If the clock is prepared, migrate the prepared state to the new 1469 * parent and also protect against a race with clk_enable() by 1470 * forcing the clock and the new parent on. This ensures that all 1471 * future calls to clk_enable() are practically NOPs with respect to 1472 * hardware and software states. 1473 * 1474 * See also: Comment for clk_set_parent() below. 1475 */ 1476 1477 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1478 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1479 clk_core_prepare_enable(old_parent); 1480 clk_core_prepare_enable(parent); 1481 } 1482 1483 /* migrate prepare count if > 0 */ 1484 if (core->prepare_count) { 1485 clk_core_prepare_enable(parent); 1486 clk_core_enable_lock(core); 1487 } 1488 1489 /* update the clk tree topology */ 1490 flags = clk_enable_lock(); 1491 clk_reparent(core, parent); 1492 clk_enable_unlock(flags); 1493 1494 return old_parent; 1495 } 1496 1497 static void __clk_set_parent_after(struct clk_core *core, 1498 struct clk_core *parent, 1499 struct clk_core *old_parent) 1500 { 1501 /* 1502 * Finish the migration of prepare state and undo the changes done 1503 * for preventing a race with clk_enable(). 1504 */ 1505 if (core->prepare_count) { 1506 clk_core_disable_lock(core); 1507 clk_core_disable_unprepare(old_parent); 1508 } 1509 1510 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1511 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1512 clk_core_disable_unprepare(parent); 1513 clk_core_disable_unprepare(old_parent); 1514 } 1515 } 1516 1517 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1518 u8 p_index) 1519 { 1520 unsigned long flags; 1521 int ret = 0; 1522 struct clk_core *old_parent; 1523 1524 old_parent = __clk_set_parent_before(core, parent); 1525 1526 trace_clk_set_parent(core, parent); 1527 1528 /* change clock input source */ 1529 if (parent && core->ops->set_parent) 1530 ret = core->ops->set_parent(core->hw, p_index); 1531 1532 trace_clk_set_parent_complete(core, parent); 1533 1534 if (ret) { 1535 flags = clk_enable_lock(); 1536 clk_reparent(core, old_parent); 1537 clk_enable_unlock(flags); 1538 __clk_set_parent_after(core, old_parent, parent); 1539 1540 return ret; 1541 } 1542 1543 __clk_set_parent_after(core, parent, old_parent); 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * __clk_speculate_rates 1550 * @core: first clk in the subtree 1551 * @parent_rate: the "future" rate of clk's parent 1552 * 1553 * Walks the subtree of clks starting with clk, speculating rates as it 1554 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1555 * 1556 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1557 * pre-rate change notifications and returns early if no clks in the 1558 * subtree have subscribed to the notifications. Note that if a clk does not 1559 * implement the .recalc_rate callback then it is assumed that the clock will 1560 * take on the rate of its parent. 1561 */ 1562 static int __clk_speculate_rates(struct clk_core *core, 1563 unsigned long parent_rate) 1564 { 1565 struct clk_core *child; 1566 unsigned long new_rate; 1567 int ret = NOTIFY_DONE; 1568 1569 lockdep_assert_held(&prepare_lock); 1570 1571 new_rate = clk_recalc(core, parent_rate); 1572 1573 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1574 if (core->notifier_count) 1575 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1576 1577 if (ret & NOTIFY_STOP_MASK) { 1578 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1579 __func__, core->name, ret); 1580 goto out; 1581 } 1582 1583 hlist_for_each_entry(child, &core->children, child_node) { 1584 ret = __clk_speculate_rates(child, new_rate); 1585 if (ret & NOTIFY_STOP_MASK) 1586 break; 1587 } 1588 1589 out: 1590 return ret; 1591 } 1592 1593 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1594 struct clk_core *new_parent, u8 p_index) 1595 { 1596 struct clk_core *child; 1597 1598 core->new_rate = new_rate; 1599 core->new_parent = new_parent; 1600 core->new_parent_index = p_index; 1601 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1602 core->new_child = NULL; 1603 if (new_parent && new_parent != core->parent) 1604 new_parent->new_child = core; 1605 1606 hlist_for_each_entry(child, &core->children, child_node) { 1607 child->new_rate = clk_recalc(child, new_rate); 1608 clk_calc_subtree(child, child->new_rate, NULL, 0); 1609 } 1610 } 1611 1612 /* 1613 * calculate the new rates returning the topmost clock that has to be 1614 * changed. 1615 */ 1616 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1617 unsigned long rate) 1618 { 1619 struct clk_core *top = core; 1620 struct clk_core *old_parent, *parent; 1621 unsigned long best_parent_rate = 0; 1622 unsigned long new_rate; 1623 unsigned long min_rate; 1624 unsigned long max_rate; 1625 int p_index = 0; 1626 long ret; 1627 1628 /* sanity */ 1629 if (IS_ERR_OR_NULL(core)) 1630 return NULL; 1631 1632 /* save parent rate, if it exists */ 1633 parent = old_parent = core->parent; 1634 if (parent) 1635 best_parent_rate = parent->rate; 1636 1637 clk_core_get_boundaries(core, &min_rate, &max_rate); 1638 1639 /* find the closest rate and parent clk/rate */ 1640 if (clk_core_can_round(core)) { 1641 struct clk_rate_request req; 1642 1643 req.rate = rate; 1644 req.min_rate = min_rate; 1645 req.max_rate = max_rate; 1646 1647 clk_core_init_rate_req(core, &req); 1648 1649 ret = clk_core_determine_round_nolock(core, &req); 1650 if (ret < 0) 1651 return NULL; 1652 1653 best_parent_rate = req.best_parent_rate; 1654 new_rate = req.rate; 1655 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1656 1657 if (new_rate < min_rate || new_rate > max_rate) 1658 return NULL; 1659 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1660 /* pass-through clock without adjustable parent */ 1661 core->new_rate = core->rate; 1662 return NULL; 1663 } else { 1664 /* pass-through clock with adjustable parent */ 1665 top = clk_calc_new_rates(parent, rate); 1666 new_rate = parent->new_rate; 1667 goto out; 1668 } 1669 1670 /* some clocks must be gated to change parent */ 1671 if (parent != old_parent && 1672 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1673 pr_debug("%s: %s not gated but wants to reparent\n", 1674 __func__, core->name); 1675 return NULL; 1676 } 1677 1678 /* try finding the new parent index */ 1679 if (parent && core->num_parents > 1) { 1680 p_index = clk_fetch_parent_index(core, parent); 1681 if (p_index < 0) { 1682 pr_debug("%s: clk %s can not be parent of clk %s\n", 1683 __func__, parent->name, core->name); 1684 return NULL; 1685 } 1686 } 1687 1688 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1689 best_parent_rate != parent->rate) 1690 top = clk_calc_new_rates(parent, best_parent_rate); 1691 1692 out: 1693 clk_calc_subtree(core, new_rate, parent, p_index); 1694 1695 return top; 1696 } 1697 1698 /* 1699 * Notify about rate changes in a subtree. Always walk down the whole tree 1700 * so that in case of an error we can walk down the whole tree again and 1701 * abort the change. 1702 */ 1703 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1704 unsigned long event) 1705 { 1706 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1707 int ret = NOTIFY_DONE; 1708 1709 if (core->rate == core->new_rate) 1710 return NULL; 1711 1712 if (core->notifier_count) { 1713 ret = __clk_notify(core, event, core->rate, core->new_rate); 1714 if (ret & NOTIFY_STOP_MASK) 1715 fail_clk = core; 1716 } 1717 1718 hlist_for_each_entry(child, &core->children, child_node) { 1719 /* Skip children who will be reparented to another clock */ 1720 if (child->new_parent && child->new_parent != core) 1721 continue; 1722 tmp_clk = clk_propagate_rate_change(child, event); 1723 if (tmp_clk) 1724 fail_clk = tmp_clk; 1725 } 1726 1727 /* handle the new child who might not be in core->children yet */ 1728 if (core->new_child) { 1729 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1730 if (tmp_clk) 1731 fail_clk = tmp_clk; 1732 } 1733 1734 return fail_clk; 1735 } 1736 1737 /* 1738 * walk down a subtree and set the new rates notifying the rate 1739 * change on the way 1740 */ 1741 static void clk_change_rate(struct clk_core *core) 1742 { 1743 struct clk_core *child; 1744 struct hlist_node *tmp; 1745 unsigned long old_rate; 1746 unsigned long best_parent_rate = 0; 1747 bool skip_set_rate = false; 1748 struct clk_core *old_parent; 1749 struct clk_core *parent = NULL; 1750 1751 old_rate = core->rate; 1752 1753 if (core->new_parent) { 1754 parent = core->new_parent; 1755 best_parent_rate = core->new_parent->rate; 1756 } else if (core->parent) { 1757 parent = core->parent; 1758 best_parent_rate = core->parent->rate; 1759 } 1760 1761 if (clk_pm_runtime_get(core)) 1762 return; 1763 1764 if (core->flags & CLK_SET_RATE_UNGATE) { 1765 unsigned long flags; 1766 1767 clk_core_prepare(core); 1768 flags = clk_enable_lock(); 1769 clk_core_enable(core); 1770 clk_enable_unlock(flags); 1771 } 1772 1773 if (core->new_parent && core->new_parent != core->parent) { 1774 old_parent = __clk_set_parent_before(core, core->new_parent); 1775 trace_clk_set_parent(core, core->new_parent); 1776 1777 if (core->ops->set_rate_and_parent) { 1778 skip_set_rate = true; 1779 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1780 best_parent_rate, 1781 core->new_parent_index); 1782 } else if (core->ops->set_parent) { 1783 core->ops->set_parent(core->hw, core->new_parent_index); 1784 } 1785 1786 trace_clk_set_parent_complete(core, core->new_parent); 1787 __clk_set_parent_after(core, core->new_parent, old_parent); 1788 } 1789 1790 if (core->flags & CLK_OPS_PARENT_ENABLE) 1791 clk_core_prepare_enable(parent); 1792 1793 trace_clk_set_rate(core, core->new_rate); 1794 1795 if (!skip_set_rate && core->ops->set_rate) 1796 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1797 1798 trace_clk_set_rate_complete(core, core->new_rate); 1799 1800 core->rate = clk_recalc(core, best_parent_rate); 1801 1802 if (core->flags & CLK_SET_RATE_UNGATE) { 1803 unsigned long flags; 1804 1805 flags = clk_enable_lock(); 1806 clk_core_disable(core); 1807 clk_enable_unlock(flags); 1808 clk_core_unprepare(core); 1809 } 1810 1811 if (core->flags & CLK_OPS_PARENT_ENABLE) 1812 clk_core_disable_unprepare(parent); 1813 1814 if (core->notifier_count && old_rate != core->rate) 1815 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1816 1817 if (core->flags & CLK_RECALC_NEW_RATES) 1818 (void)clk_calc_new_rates(core, core->new_rate); 1819 1820 /* 1821 * Use safe iteration, as change_rate can actually swap parents 1822 * for certain clock types. 1823 */ 1824 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1825 /* Skip children who will be reparented to another clock */ 1826 if (child->new_parent && child->new_parent != core) 1827 continue; 1828 clk_change_rate(child); 1829 } 1830 1831 /* handle the new child who might not be in core->children yet */ 1832 if (core->new_child) 1833 clk_change_rate(core->new_child); 1834 1835 clk_pm_runtime_put(core); 1836 } 1837 1838 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 1839 unsigned long req_rate) 1840 { 1841 int ret, cnt; 1842 struct clk_rate_request req; 1843 1844 lockdep_assert_held(&prepare_lock); 1845 1846 if (!core) 1847 return 0; 1848 1849 /* simulate what the rate would be if it could be freely set */ 1850 cnt = clk_core_rate_nuke_protect(core); 1851 if (cnt < 0) 1852 return cnt; 1853 1854 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 1855 req.rate = req_rate; 1856 1857 ret = clk_core_round_rate_nolock(core, &req); 1858 1859 /* restore the protection */ 1860 clk_core_rate_restore_protect(core, cnt); 1861 1862 return ret ? 0 : req.rate; 1863 } 1864 1865 static int clk_core_set_rate_nolock(struct clk_core *core, 1866 unsigned long req_rate) 1867 { 1868 struct clk_core *top, *fail_clk; 1869 unsigned long rate; 1870 int ret = 0; 1871 1872 if (!core) 1873 return 0; 1874 1875 rate = clk_core_req_round_rate_nolock(core, req_rate); 1876 1877 /* bail early if nothing to do */ 1878 if (rate == clk_core_get_rate_nolock(core)) 1879 return 0; 1880 1881 /* fail on a direct rate set of a protected provider */ 1882 if (clk_core_rate_is_protected(core)) 1883 return -EBUSY; 1884 1885 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1886 return -EBUSY; 1887 1888 /* calculate new rates and get the topmost changed clock */ 1889 top = clk_calc_new_rates(core, req_rate); 1890 if (!top) 1891 return -EINVAL; 1892 1893 ret = clk_pm_runtime_get(core); 1894 if (ret) 1895 return ret; 1896 1897 /* notify that we are about to change rates */ 1898 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1899 if (fail_clk) { 1900 pr_debug("%s: failed to set %s rate\n", __func__, 1901 fail_clk->name); 1902 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1903 ret = -EBUSY; 1904 goto err; 1905 } 1906 1907 /* change the rates */ 1908 clk_change_rate(top); 1909 1910 core->req_rate = req_rate; 1911 err: 1912 clk_pm_runtime_put(core); 1913 1914 return ret; 1915 } 1916 1917 /** 1918 * clk_set_rate - specify a new rate for clk 1919 * @clk: the clk whose rate is being changed 1920 * @rate: the new rate for clk 1921 * 1922 * In the simplest case clk_set_rate will only adjust the rate of clk. 1923 * 1924 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1925 * propagate up to clk's parent; whether or not this happens depends on the 1926 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1927 * after calling .round_rate then upstream parent propagation is ignored. If 1928 * *parent_rate comes back with a new rate for clk's parent then we propagate 1929 * up to clk's parent and set its rate. Upward propagation will continue 1930 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1931 * .round_rate stops requesting changes to clk's parent_rate. 1932 * 1933 * Rate changes are accomplished via tree traversal that also recalculates the 1934 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1935 * 1936 * Returns 0 on success, -EERROR otherwise. 1937 */ 1938 int clk_set_rate(struct clk *clk, unsigned long rate) 1939 { 1940 int ret; 1941 1942 if (!clk) 1943 return 0; 1944 1945 /* prevent racing with updates to the clock topology */ 1946 clk_prepare_lock(); 1947 1948 if (clk->exclusive_count) 1949 clk_core_rate_unprotect(clk->core); 1950 1951 ret = clk_core_set_rate_nolock(clk->core, rate); 1952 1953 if (clk->exclusive_count) 1954 clk_core_rate_protect(clk->core); 1955 1956 clk_prepare_unlock(); 1957 1958 return ret; 1959 } 1960 EXPORT_SYMBOL_GPL(clk_set_rate); 1961 1962 /** 1963 * clk_set_rate_exclusive - specify a new rate get exclusive control 1964 * @clk: the clk whose rate is being changed 1965 * @rate: the new rate for clk 1966 * 1967 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 1968 * within a critical section 1969 * 1970 * This can be used initially to ensure that at least 1 consumer is 1971 * statisfied when several consumers are competing for exclusivity over the 1972 * same clock provider. 1973 * 1974 * The exclusivity is not applied if setting the rate failed. 1975 * 1976 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1977 * clk_rate_exclusive_put(). 1978 * 1979 * Returns 0 on success, -EERROR otherwise. 1980 */ 1981 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 1982 { 1983 int ret; 1984 1985 if (!clk) 1986 return 0; 1987 1988 /* prevent racing with updates to the clock topology */ 1989 clk_prepare_lock(); 1990 1991 /* 1992 * The temporary protection removal is not here, on purpose 1993 * This function is meant to be used instead of clk_rate_protect, 1994 * so before the consumer code path protect the clock provider 1995 */ 1996 1997 ret = clk_core_set_rate_nolock(clk->core, rate); 1998 if (!ret) { 1999 clk_core_rate_protect(clk->core); 2000 clk->exclusive_count++; 2001 } 2002 2003 clk_prepare_unlock(); 2004 2005 return ret; 2006 } 2007 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2008 2009 /** 2010 * clk_set_rate_range - set a rate range for a clock source 2011 * @clk: clock source 2012 * @min: desired minimum clock rate in Hz, inclusive 2013 * @max: desired maximum clock rate in Hz, inclusive 2014 * 2015 * Returns success (0) or negative errno. 2016 */ 2017 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2018 { 2019 int ret = 0; 2020 unsigned long old_min, old_max, rate; 2021 2022 if (!clk) 2023 return 0; 2024 2025 if (min > max) { 2026 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2027 __func__, clk->core->name, clk->dev_id, clk->con_id, 2028 min, max); 2029 return -EINVAL; 2030 } 2031 2032 clk_prepare_lock(); 2033 2034 if (clk->exclusive_count) 2035 clk_core_rate_unprotect(clk->core); 2036 2037 /* Save the current values in case we need to rollback the change */ 2038 old_min = clk->min_rate; 2039 old_max = clk->max_rate; 2040 clk->min_rate = min; 2041 clk->max_rate = max; 2042 2043 rate = clk_core_get_rate_nolock(clk->core); 2044 if (rate < min || rate > max) { 2045 /* 2046 * FIXME: 2047 * We are in bit of trouble here, current rate is outside the 2048 * the requested range. We are going try to request appropriate 2049 * range boundary but there is a catch. It may fail for the 2050 * usual reason (clock broken, clock protected, etc) but also 2051 * because: 2052 * - round_rate() was not favorable and fell on the wrong 2053 * side of the boundary 2054 * - the determine_rate() callback does not really check for 2055 * this corner case when determining the rate 2056 */ 2057 2058 if (rate < min) 2059 rate = min; 2060 else 2061 rate = max; 2062 2063 ret = clk_core_set_rate_nolock(clk->core, rate); 2064 if (ret) { 2065 /* rollback the changes */ 2066 clk->min_rate = old_min; 2067 clk->max_rate = old_max; 2068 } 2069 } 2070 2071 if (clk->exclusive_count) 2072 clk_core_rate_protect(clk->core); 2073 2074 clk_prepare_unlock(); 2075 2076 return ret; 2077 } 2078 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2079 2080 /** 2081 * clk_set_min_rate - set a minimum clock rate for a clock source 2082 * @clk: clock source 2083 * @rate: desired minimum clock rate in Hz, inclusive 2084 * 2085 * Returns success (0) or negative errno. 2086 */ 2087 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2088 { 2089 if (!clk) 2090 return 0; 2091 2092 return clk_set_rate_range(clk, rate, clk->max_rate); 2093 } 2094 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2095 2096 /** 2097 * clk_set_max_rate - set a maximum clock rate for a clock source 2098 * @clk: clock source 2099 * @rate: desired maximum clock rate in Hz, inclusive 2100 * 2101 * Returns success (0) or negative errno. 2102 */ 2103 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2104 { 2105 if (!clk) 2106 return 0; 2107 2108 return clk_set_rate_range(clk, clk->min_rate, rate); 2109 } 2110 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2111 2112 /** 2113 * clk_get_parent - return the parent of a clk 2114 * @clk: the clk whose parent gets returned 2115 * 2116 * Simply returns clk->parent. Returns NULL if clk is NULL. 2117 */ 2118 struct clk *clk_get_parent(struct clk *clk) 2119 { 2120 struct clk *parent; 2121 2122 if (!clk) 2123 return NULL; 2124 2125 clk_prepare_lock(); 2126 /* TODO: Create a per-user clk and change callers to call clk_put */ 2127 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2128 clk_prepare_unlock(); 2129 2130 return parent; 2131 } 2132 EXPORT_SYMBOL_GPL(clk_get_parent); 2133 2134 static struct clk_core *__clk_init_parent(struct clk_core *core) 2135 { 2136 u8 index = 0; 2137 2138 if (core->num_parents > 1 && core->ops->get_parent) 2139 index = core->ops->get_parent(core->hw); 2140 2141 return clk_core_get_parent_by_index(core, index); 2142 } 2143 2144 static void clk_core_reparent(struct clk_core *core, 2145 struct clk_core *new_parent) 2146 { 2147 clk_reparent(core, new_parent); 2148 __clk_recalc_accuracies(core); 2149 __clk_recalc_rates(core, POST_RATE_CHANGE); 2150 } 2151 2152 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2153 { 2154 if (!hw) 2155 return; 2156 2157 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2158 } 2159 2160 /** 2161 * clk_has_parent - check if a clock is a possible parent for another 2162 * @clk: clock source 2163 * @parent: parent clock source 2164 * 2165 * This function can be used in drivers that need to check that a clock can be 2166 * the parent of another without actually changing the parent. 2167 * 2168 * Returns true if @parent is a possible parent for @clk, false otherwise. 2169 */ 2170 bool clk_has_parent(struct clk *clk, struct clk *parent) 2171 { 2172 struct clk_core *core, *parent_core; 2173 unsigned int i; 2174 2175 /* NULL clocks should be nops, so return success if either is NULL. */ 2176 if (!clk || !parent) 2177 return true; 2178 2179 core = clk->core; 2180 parent_core = parent->core; 2181 2182 /* Optimize for the case where the parent is already the parent. */ 2183 if (core->parent == parent_core) 2184 return true; 2185 2186 for (i = 0; i < core->num_parents; i++) 2187 if (strcmp(core->parent_names[i], parent_core->name) == 0) 2188 return true; 2189 2190 return false; 2191 } 2192 EXPORT_SYMBOL_GPL(clk_has_parent); 2193 2194 static int clk_core_set_parent_nolock(struct clk_core *core, 2195 struct clk_core *parent) 2196 { 2197 int ret = 0; 2198 int p_index = 0; 2199 unsigned long p_rate = 0; 2200 2201 lockdep_assert_held(&prepare_lock); 2202 2203 if (!core) 2204 return 0; 2205 2206 if (core->parent == parent) 2207 return 0; 2208 2209 /* verify ops for for multi-parent clks */ 2210 if (core->num_parents > 1 && !core->ops->set_parent) 2211 return -EPERM; 2212 2213 /* check that we are allowed to re-parent if the clock is in use */ 2214 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2215 return -EBUSY; 2216 2217 if (clk_core_rate_is_protected(core)) 2218 return -EBUSY; 2219 2220 /* try finding the new parent index */ 2221 if (parent) { 2222 p_index = clk_fetch_parent_index(core, parent); 2223 if (p_index < 0) { 2224 pr_debug("%s: clk %s can not be parent of clk %s\n", 2225 __func__, parent->name, core->name); 2226 return p_index; 2227 } 2228 p_rate = parent->rate; 2229 } 2230 2231 ret = clk_pm_runtime_get(core); 2232 if (ret) 2233 return ret; 2234 2235 /* propagate PRE_RATE_CHANGE notifications */ 2236 ret = __clk_speculate_rates(core, p_rate); 2237 2238 /* abort if a driver objects */ 2239 if (ret & NOTIFY_STOP_MASK) 2240 goto runtime_put; 2241 2242 /* do the re-parent */ 2243 ret = __clk_set_parent(core, parent, p_index); 2244 2245 /* propagate rate an accuracy recalculation accordingly */ 2246 if (ret) { 2247 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2248 } else { 2249 __clk_recalc_rates(core, POST_RATE_CHANGE); 2250 __clk_recalc_accuracies(core); 2251 } 2252 2253 runtime_put: 2254 clk_pm_runtime_put(core); 2255 2256 return ret; 2257 } 2258 2259 /** 2260 * clk_set_parent - switch the parent of a mux clk 2261 * @clk: the mux clk whose input we are switching 2262 * @parent: the new input to clk 2263 * 2264 * Re-parent clk to use parent as its new input source. If clk is in 2265 * prepared state, the clk will get enabled for the duration of this call. If 2266 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2267 * that, the reparenting is glitchy in hardware, etc), use the 2268 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2269 * 2270 * After successfully changing clk's parent clk_set_parent will update the 2271 * clk topology, sysfs topology and propagate rate recalculation via 2272 * __clk_recalc_rates. 2273 * 2274 * Returns 0 on success, -EERROR otherwise. 2275 */ 2276 int clk_set_parent(struct clk *clk, struct clk *parent) 2277 { 2278 int ret; 2279 2280 if (!clk) 2281 return 0; 2282 2283 clk_prepare_lock(); 2284 2285 if (clk->exclusive_count) 2286 clk_core_rate_unprotect(clk->core); 2287 2288 ret = clk_core_set_parent_nolock(clk->core, 2289 parent ? parent->core : NULL); 2290 2291 if (clk->exclusive_count) 2292 clk_core_rate_protect(clk->core); 2293 2294 clk_prepare_unlock(); 2295 2296 return ret; 2297 } 2298 EXPORT_SYMBOL_GPL(clk_set_parent); 2299 2300 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2301 { 2302 int ret = -EINVAL; 2303 2304 lockdep_assert_held(&prepare_lock); 2305 2306 if (!core) 2307 return 0; 2308 2309 if (clk_core_rate_is_protected(core)) 2310 return -EBUSY; 2311 2312 trace_clk_set_phase(core, degrees); 2313 2314 if (core->ops->set_phase) { 2315 ret = core->ops->set_phase(core->hw, degrees); 2316 if (!ret) 2317 core->phase = degrees; 2318 } 2319 2320 trace_clk_set_phase_complete(core, degrees); 2321 2322 return ret; 2323 } 2324 2325 /** 2326 * clk_set_phase - adjust the phase shift of a clock signal 2327 * @clk: clock signal source 2328 * @degrees: number of degrees the signal is shifted 2329 * 2330 * Shifts the phase of a clock signal by the specified 2331 * degrees. Returns 0 on success, -EERROR otherwise. 2332 * 2333 * This function makes no distinction about the input or reference 2334 * signal that we adjust the clock signal phase against. For example 2335 * phase locked-loop clock signal generators we may shift phase with 2336 * respect to feedback clock signal input, but for other cases the 2337 * clock phase may be shifted with respect to some other, unspecified 2338 * signal. 2339 * 2340 * Additionally the concept of phase shift does not propagate through 2341 * the clock tree hierarchy, which sets it apart from clock rates and 2342 * clock accuracy. A parent clock phase attribute does not have an 2343 * impact on the phase attribute of a child clock. 2344 */ 2345 int clk_set_phase(struct clk *clk, int degrees) 2346 { 2347 int ret; 2348 2349 if (!clk) 2350 return 0; 2351 2352 /* sanity check degrees */ 2353 degrees %= 360; 2354 if (degrees < 0) 2355 degrees += 360; 2356 2357 clk_prepare_lock(); 2358 2359 if (clk->exclusive_count) 2360 clk_core_rate_unprotect(clk->core); 2361 2362 ret = clk_core_set_phase_nolock(clk->core, degrees); 2363 2364 if (clk->exclusive_count) 2365 clk_core_rate_protect(clk->core); 2366 2367 clk_prepare_unlock(); 2368 2369 return ret; 2370 } 2371 EXPORT_SYMBOL_GPL(clk_set_phase); 2372 2373 static int clk_core_get_phase(struct clk_core *core) 2374 { 2375 int ret; 2376 2377 clk_prepare_lock(); 2378 ret = core->phase; 2379 clk_prepare_unlock(); 2380 2381 return ret; 2382 } 2383 2384 /** 2385 * clk_get_phase - return the phase shift of a clock signal 2386 * @clk: clock signal source 2387 * 2388 * Returns the phase shift of a clock node in degrees, otherwise returns 2389 * -EERROR. 2390 */ 2391 int clk_get_phase(struct clk *clk) 2392 { 2393 if (!clk) 2394 return 0; 2395 2396 return clk_core_get_phase(clk->core); 2397 } 2398 EXPORT_SYMBOL_GPL(clk_get_phase); 2399 2400 /** 2401 * clk_is_match - check if two clk's point to the same hardware clock 2402 * @p: clk compared against q 2403 * @q: clk compared against p 2404 * 2405 * Returns true if the two struct clk pointers both point to the same hardware 2406 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2407 * share the same struct clk_core object. 2408 * 2409 * Returns false otherwise. Note that two NULL clks are treated as matching. 2410 */ 2411 bool clk_is_match(const struct clk *p, const struct clk *q) 2412 { 2413 /* trivial case: identical struct clk's or both NULL */ 2414 if (p == q) 2415 return true; 2416 2417 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2418 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2419 if (p->core == q->core) 2420 return true; 2421 2422 return false; 2423 } 2424 EXPORT_SYMBOL_GPL(clk_is_match); 2425 2426 /*** debugfs support ***/ 2427 2428 #ifdef CONFIG_DEBUG_FS 2429 #include <linux/debugfs.h> 2430 2431 static struct dentry *rootdir; 2432 static int inited = 0; 2433 static DEFINE_MUTEX(clk_debug_lock); 2434 static HLIST_HEAD(clk_debug_list); 2435 2436 static struct hlist_head *all_lists[] = { 2437 &clk_root_list, 2438 &clk_orphan_list, 2439 NULL, 2440 }; 2441 2442 static struct hlist_head *orphan_list[] = { 2443 &clk_orphan_list, 2444 NULL, 2445 }; 2446 2447 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2448 int level) 2449 { 2450 if (!c) 2451 return; 2452 2453 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n", 2454 level * 3 + 1, "", 2455 30 - level * 3, c->name, 2456 c->enable_count, c->prepare_count, c->protect_count, 2457 clk_core_get_rate(c), clk_core_get_accuracy(c), 2458 clk_core_get_phase(c)); 2459 } 2460 2461 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2462 int level) 2463 { 2464 struct clk_core *child; 2465 2466 if (!c) 2467 return; 2468 2469 clk_summary_show_one(s, c, level); 2470 2471 hlist_for_each_entry(child, &c->children, child_node) 2472 clk_summary_show_subtree(s, child, level + 1); 2473 } 2474 2475 static int clk_summary_show(struct seq_file *s, void *data) 2476 { 2477 struct clk_core *c; 2478 struct hlist_head **lists = (struct hlist_head **)s->private; 2479 2480 seq_puts(s, " enable prepare protect \n"); 2481 seq_puts(s, " clock count count count rate accuracy phase\n"); 2482 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2483 2484 clk_prepare_lock(); 2485 2486 for (; *lists; lists++) 2487 hlist_for_each_entry(c, *lists, child_node) 2488 clk_summary_show_subtree(s, c, 0); 2489 2490 clk_prepare_unlock(); 2491 2492 return 0; 2493 } 2494 2495 2496 static int clk_summary_open(struct inode *inode, struct file *file) 2497 { 2498 return single_open(file, clk_summary_show, inode->i_private); 2499 } 2500 2501 static const struct file_operations clk_summary_fops = { 2502 .open = clk_summary_open, 2503 .read = seq_read, 2504 .llseek = seq_lseek, 2505 .release = single_release, 2506 }; 2507 2508 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2509 { 2510 if (!c) 2511 return; 2512 2513 /* This should be JSON format, i.e. elements separated with a comma */ 2514 seq_printf(s, "\"%s\": { ", c->name); 2515 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2516 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2517 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2518 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2519 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2520 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2521 } 2522 2523 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2524 { 2525 struct clk_core *child; 2526 2527 if (!c) 2528 return; 2529 2530 clk_dump_one(s, c, level); 2531 2532 hlist_for_each_entry(child, &c->children, child_node) { 2533 seq_putc(s, ','); 2534 clk_dump_subtree(s, child, level + 1); 2535 } 2536 2537 seq_putc(s, '}'); 2538 } 2539 2540 static int clk_dump(struct seq_file *s, void *data) 2541 { 2542 struct clk_core *c; 2543 bool first_node = true; 2544 struct hlist_head **lists = (struct hlist_head **)s->private; 2545 2546 seq_putc(s, '{'); 2547 clk_prepare_lock(); 2548 2549 for (; *lists; lists++) { 2550 hlist_for_each_entry(c, *lists, child_node) { 2551 if (!first_node) 2552 seq_putc(s, ','); 2553 first_node = false; 2554 clk_dump_subtree(s, c, 0); 2555 } 2556 } 2557 2558 clk_prepare_unlock(); 2559 2560 seq_puts(s, "}\n"); 2561 return 0; 2562 } 2563 2564 2565 static int clk_dump_open(struct inode *inode, struct file *file) 2566 { 2567 return single_open(file, clk_dump, inode->i_private); 2568 } 2569 2570 static const struct file_operations clk_dump_fops = { 2571 .open = clk_dump_open, 2572 .read = seq_read, 2573 .llseek = seq_lseek, 2574 .release = single_release, 2575 }; 2576 2577 static const struct { 2578 unsigned long flag; 2579 const char *name; 2580 } clk_flags[] = { 2581 #define ENTRY(f) { f, __stringify(f) } 2582 ENTRY(CLK_SET_RATE_GATE), 2583 ENTRY(CLK_SET_PARENT_GATE), 2584 ENTRY(CLK_SET_RATE_PARENT), 2585 ENTRY(CLK_IGNORE_UNUSED), 2586 ENTRY(CLK_IS_BASIC), 2587 ENTRY(CLK_GET_RATE_NOCACHE), 2588 ENTRY(CLK_SET_RATE_NO_REPARENT), 2589 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2590 ENTRY(CLK_RECALC_NEW_RATES), 2591 ENTRY(CLK_SET_RATE_UNGATE), 2592 ENTRY(CLK_IS_CRITICAL), 2593 ENTRY(CLK_OPS_PARENT_ENABLE), 2594 #undef ENTRY 2595 }; 2596 2597 static int clk_flags_dump(struct seq_file *s, void *data) 2598 { 2599 struct clk_core *core = s->private; 2600 unsigned long flags = core->flags; 2601 unsigned int i; 2602 2603 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2604 if (flags & clk_flags[i].flag) { 2605 seq_printf(s, "%s\n", clk_flags[i].name); 2606 flags &= ~clk_flags[i].flag; 2607 } 2608 } 2609 if (flags) { 2610 /* Unknown flags */ 2611 seq_printf(s, "0x%lx\n", flags); 2612 } 2613 2614 return 0; 2615 } 2616 2617 static int clk_flags_open(struct inode *inode, struct file *file) 2618 { 2619 return single_open(file, clk_flags_dump, inode->i_private); 2620 } 2621 2622 static const struct file_operations clk_flags_fops = { 2623 .open = clk_flags_open, 2624 .read = seq_read, 2625 .llseek = seq_lseek, 2626 .release = single_release, 2627 }; 2628 2629 static int possible_parents_dump(struct seq_file *s, void *data) 2630 { 2631 struct clk_core *core = s->private; 2632 int i; 2633 2634 for (i = 0; i < core->num_parents - 1; i++) 2635 seq_printf(s, "%s ", core->parent_names[i]); 2636 2637 seq_printf(s, "%s\n", core->parent_names[i]); 2638 2639 return 0; 2640 } 2641 2642 static int possible_parents_open(struct inode *inode, struct file *file) 2643 { 2644 return single_open(file, possible_parents_dump, inode->i_private); 2645 } 2646 2647 static const struct file_operations possible_parents_fops = { 2648 .open = possible_parents_open, 2649 .read = seq_read, 2650 .llseek = seq_lseek, 2651 .release = single_release, 2652 }; 2653 2654 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2655 { 2656 struct dentry *d; 2657 int ret = -ENOMEM; 2658 2659 if (!core || !pdentry) { 2660 ret = -EINVAL; 2661 goto out; 2662 } 2663 2664 d = debugfs_create_dir(core->name, pdentry); 2665 if (!d) 2666 goto out; 2667 2668 core->dentry = d; 2669 2670 d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate); 2671 if (!d) 2672 goto err_out; 2673 2674 d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry, 2675 &core->accuracy); 2676 if (!d) 2677 goto err_out; 2678 2679 d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase); 2680 if (!d) 2681 goto err_out; 2682 2683 d = debugfs_create_file("clk_flags", 0444, core->dentry, core, 2684 &clk_flags_fops); 2685 if (!d) 2686 goto err_out; 2687 2688 d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry, 2689 &core->prepare_count); 2690 if (!d) 2691 goto err_out; 2692 2693 d = debugfs_create_u32("clk_enable_count", 0444, core->dentry, 2694 &core->enable_count); 2695 if (!d) 2696 goto err_out; 2697 2698 d = debugfs_create_u32("clk_protect_count", 0444, core->dentry, 2699 &core->protect_count); 2700 if (!d) 2701 goto err_out; 2702 2703 d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry, 2704 &core->notifier_count); 2705 if (!d) 2706 goto err_out; 2707 2708 if (core->num_parents > 1) { 2709 d = debugfs_create_file("clk_possible_parents", 0444, 2710 core->dentry, core, &possible_parents_fops); 2711 if (!d) 2712 goto err_out; 2713 } 2714 2715 if (core->ops->debug_init) { 2716 ret = core->ops->debug_init(core->hw, core->dentry); 2717 if (ret) 2718 goto err_out; 2719 } 2720 2721 ret = 0; 2722 goto out; 2723 2724 err_out: 2725 debugfs_remove_recursive(core->dentry); 2726 core->dentry = NULL; 2727 out: 2728 return ret; 2729 } 2730 2731 /** 2732 * clk_debug_register - add a clk node to the debugfs clk directory 2733 * @core: the clk being added to the debugfs clk directory 2734 * 2735 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2736 * initialized. Otherwise it bails out early since the debugfs clk directory 2737 * will be created lazily by clk_debug_init as part of a late_initcall. 2738 */ 2739 static int clk_debug_register(struct clk_core *core) 2740 { 2741 int ret = 0; 2742 2743 mutex_lock(&clk_debug_lock); 2744 hlist_add_head(&core->debug_node, &clk_debug_list); 2745 if (inited) 2746 ret = clk_debug_create_one(core, rootdir); 2747 mutex_unlock(&clk_debug_lock); 2748 2749 return ret; 2750 } 2751 2752 /** 2753 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2754 * @core: the clk being removed from the debugfs clk directory 2755 * 2756 * Dynamically removes a clk and all its child nodes from the 2757 * debugfs clk directory if clk->dentry points to debugfs created by 2758 * clk_debug_register in __clk_core_init. 2759 */ 2760 static void clk_debug_unregister(struct clk_core *core) 2761 { 2762 mutex_lock(&clk_debug_lock); 2763 hlist_del_init(&core->debug_node); 2764 debugfs_remove_recursive(core->dentry); 2765 core->dentry = NULL; 2766 mutex_unlock(&clk_debug_lock); 2767 } 2768 2769 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2770 void *data, const struct file_operations *fops) 2771 { 2772 struct dentry *d = NULL; 2773 2774 if (hw->core->dentry) 2775 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2776 fops); 2777 2778 return d; 2779 } 2780 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2781 2782 /** 2783 * clk_debug_init - lazily populate the debugfs clk directory 2784 * 2785 * clks are often initialized very early during boot before memory can be 2786 * dynamically allocated and well before debugfs is setup. This function 2787 * populates the debugfs clk directory once at boot-time when we know that 2788 * debugfs is setup. It should only be called once at boot-time, all other clks 2789 * added dynamically will be done so with clk_debug_register. 2790 */ 2791 static int __init clk_debug_init(void) 2792 { 2793 struct clk_core *core; 2794 struct dentry *d; 2795 2796 rootdir = debugfs_create_dir("clk", NULL); 2797 2798 if (!rootdir) 2799 return -ENOMEM; 2800 2801 d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 2802 &clk_summary_fops); 2803 if (!d) 2804 return -ENOMEM; 2805 2806 d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 2807 &clk_dump_fops); 2808 if (!d) 2809 return -ENOMEM; 2810 2811 d = debugfs_create_file("clk_orphan_summary", 0444, rootdir, 2812 &orphan_list, &clk_summary_fops); 2813 if (!d) 2814 return -ENOMEM; 2815 2816 d = debugfs_create_file("clk_orphan_dump", 0444, rootdir, 2817 &orphan_list, &clk_dump_fops); 2818 if (!d) 2819 return -ENOMEM; 2820 2821 mutex_lock(&clk_debug_lock); 2822 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2823 clk_debug_create_one(core, rootdir); 2824 2825 inited = 1; 2826 mutex_unlock(&clk_debug_lock); 2827 2828 return 0; 2829 } 2830 late_initcall(clk_debug_init); 2831 #else 2832 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2833 static inline void clk_debug_reparent(struct clk_core *core, 2834 struct clk_core *new_parent) 2835 { 2836 } 2837 static inline void clk_debug_unregister(struct clk_core *core) 2838 { 2839 } 2840 #endif 2841 2842 /** 2843 * __clk_core_init - initialize the data structures in a struct clk_core 2844 * @core: clk_core being initialized 2845 * 2846 * Initializes the lists in struct clk_core, queries the hardware for the 2847 * parent and rate and sets them both. 2848 */ 2849 static int __clk_core_init(struct clk_core *core) 2850 { 2851 int i, ret; 2852 struct clk_core *orphan; 2853 struct hlist_node *tmp2; 2854 unsigned long rate; 2855 2856 if (!core) 2857 return -EINVAL; 2858 2859 clk_prepare_lock(); 2860 2861 ret = clk_pm_runtime_get(core); 2862 if (ret) 2863 goto unlock; 2864 2865 /* check to see if a clock with this name is already registered */ 2866 if (clk_core_lookup(core->name)) { 2867 pr_debug("%s: clk %s already initialized\n", 2868 __func__, core->name); 2869 ret = -EEXIST; 2870 goto out; 2871 } 2872 2873 /* check that clk_ops are sane. See Documentation/clk.txt */ 2874 if (core->ops->set_rate && 2875 !((core->ops->round_rate || core->ops->determine_rate) && 2876 core->ops->recalc_rate)) { 2877 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2878 __func__, core->name); 2879 ret = -EINVAL; 2880 goto out; 2881 } 2882 2883 if (core->ops->set_parent && !core->ops->get_parent) { 2884 pr_err("%s: %s must implement .get_parent & .set_parent\n", 2885 __func__, core->name); 2886 ret = -EINVAL; 2887 goto out; 2888 } 2889 2890 if (core->num_parents > 1 && !core->ops->get_parent) { 2891 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 2892 __func__, core->name); 2893 ret = -EINVAL; 2894 goto out; 2895 } 2896 2897 if (core->ops->set_rate_and_parent && 2898 !(core->ops->set_parent && core->ops->set_rate)) { 2899 pr_err("%s: %s must implement .set_parent & .set_rate\n", 2900 __func__, core->name); 2901 ret = -EINVAL; 2902 goto out; 2903 } 2904 2905 /* throw a WARN if any entries in parent_names are NULL */ 2906 for (i = 0; i < core->num_parents; i++) 2907 WARN(!core->parent_names[i], 2908 "%s: invalid NULL in %s's .parent_names\n", 2909 __func__, core->name); 2910 2911 core->parent = __clk_init_parent(core); 2912 2913 /* 2914 * Populate core->parent if parent has already been clk_core_init'd. If 2915 * parent has not yet been clk_core_init'd then place clk in the orphan 2916 * list. If clk doesn't have any parents then place it in the root 2917 * clk list. 2918 * 2919 * Every time a new clk is clk_init'd then we walk the list of orphan 2920 * clocks and re-parent any that are children of the clock currently 2921 * being clk_init'd. 2922 */ 2923 if (core->parent) { 2924 hlist_add_head(&core->child_node, 2925 &core->parent->children); 2926 core->orphan = core->parent->orphan; 2927 } else if (!core->num_parents) { 2928 hlist_add_head(&core->child_node, &clk_root_list); 2929 core->orphan = false; 2930 } else { 2931 hlist_add_head(&core->child_node, &clk_orphan_list); 2932 core->orphan = true; 2933 } 2934 2935 /* 2936 * Set clk's accuracy. The preferred method is to use 2937 * .recalc_accuracy. For simple clocks and lazy developers the default 2938 * fallback is to use the parent's accuracy. If a clock doesn't have a 2939 * parent (or is orphaned) then accuracy is set to zero (perfect 2940 * clock). 2941 */ 2942 if (core->ops->recalc_accuracy) 2943 core->accuracy = core->ops->recalc_accuracy(core->hw, 2944 __clk_get_accuracy(core->parent)); 2945 else if (core->parent) 2946 core->accuracy = core->parent->accuracy; 2947 else 2948 core->accuracy = 0; 2949 2950 /* 2951 * Set clk's phase. 2952 * Since a phase is by definition relative to its parent, just 2953 * query the current clock phase, or just assume it's in phase. 2954 */ 2955 if (core->ops->get_phase) 2956 core->phase = core->ops->get_phase(core->hw); 2957 else 2958 core->phase = 0; 2959 2960 /* 2961 * Set clk's rate. The preferred method is to use .recalc_rate. For 2962 * simple clocks and lazy developers the default fallback is to use the 2963 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2964 * then rate is set to zero. 2965 */ 2966 if (core->ops->recalc_rate) 2967 rate = core->ops->recalc_rate(core->hw, 2968 clk_core_get_rate_nolock(core->parent)); 2969 else if (core->parent) 2970 rate = core->parent->rate; 2971 else 2972 rate = 0; 2973 core->rate = core->req_rate = rate; 2974 2975 /* 2976 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 2977 * don't get accidentally disabled when walking the orphan tree and 2978 * reparenting clocks 2979 */ 2980 if (core->flags & CLK_IS_CRITICAL) { 2981 unsigned long flags; 2982 2983 clk_core_prepare(core); 2984 2985 flags = clk_enable_lock(); 2986 clk_core_enable(core); 2987 clk_enable_unlock(flags); 2988 } 2989 2990 /* 2991 * walk the list of orphan clocks and reparent any that newly finds a 2992 * parent. 2993 */ 2994 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2995 struct clk_core *parent = __clk_init_parent(orphan); 2996 2997 /* 2998 * We need to use __clk_set_parent_before() and _after() to 2999 * to properly migrate any prepare/enable count of the orphan 3000 * clock. This is important for CLK_IS_CRITICAL clocks, which 3001 * are enabled during init but might not have a parent yet. 3002 */ 3003 if (parent) { 3004 /* update the clk tree topology */ 3005 __clk_set_parent_before(orphan, parent); 3006 __clk_set_parent_after(orphan, parent, NULL); 3007 __clk_recalc_accuracies(orphan); 3008 __clk_recalc_rates(orphan, 0); 3009 } 3010 } 3011 3012 /* 3013 * optional platform-specific magic 3014 * 3015 * The .init callback is not used by any of the basic clock types, but 3016 * exists for weird hardware that must perform initialization magic. 3017 * Please consider other ways of solving initialization problems before 3018 * using this callback, as its use is discouraged. 3019 */ 3020 if (core->ops->init) 3021 core->ops->init(core->hw); 3022 3023 kref_init(&core->ref); 3024 out: 3025 clk_pm_runtime_put(core); 3026 unlock: 3027 clk_prepare_unlock(); 3028 3029 if (!ret) 3030 clk_debug_register(core); 3031 3032 return ret; 3033 } 3034 3035 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 3036 const char *con_id) 3037 { 3038 struct clk *clk; 3039 3040 /* This is to allow this function to be chained to others */ 3041 if (IS_ERR_OR_NULL(hw)) 3042 return ERR_CAST(hw); 3043 3044 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3045 if (!clk) 3046 return ERR_PTR(-ENOMEM); 3047 3048 clk->core = hw->core; 3049 clk->dev_id = dev_id; 3050 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3051 clk->max_rate = ULONG_MAX; 3052 3053 clk_prepare_lock(); 3054 hlist_add_head(&clk->clks_node, &hw->core->clks); 3055 clk_prepare_unlock(); 3056 3057 return clk; 3058 } 3059 3060 void __clk_free_clk(struct clk *clk) 3061 { 3062 clk_prepare_lock(); 3063 hlist_del(&clk->clks_node); 3064 clk_prepare_unlock(); 3065 3066 kfree_const(clk->con_id); 3067 kfree(clk); 3068 } 3069 3070 /** 3071 * clk_register - allocate a new clock, register it and return an opaque cookie 3072 * @dev: device that is registering this clock 3073 * @hw: link to hardware-specific clock data 3074 * 3075 * clk_register is the primary interface for populating the clock tree with new 3076 * clock nodes. It returns a pointer to the newly allocated struct clk which 3077 * cannot be dereferenced by driver code but may be used in conjunction with the 3078 * rest of the clock API. In the event of an error clk_register will return an 3079 * error code; drivers must test for an error code after calling clk_register. 3080 */ 3081 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3082 { 3083 int i, ret; 3084 struct clk_core *core; 3085 3086 core = kzalloc(sizeof(*core), GFP_KERNEL); 3087 if (!core) { 3088 ret = -ENOMEM; 3089 goto fail_out; 3090 } 3091 3092 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3093 if (!core->name) { 3094 ret = -ENOMEM; 3095 goto fail_name; 3096 } 3097 3098 if (WARN_ON(!hw->init->ops)) { 3099 ret = -EINVAL; 3100 goto fail_ops; 3101 } 3102 core->ops = hw->init->ops; 3103 3104 if (dev && pm_runtime_enabled(dev)) 3105 core->dev = dev; 3106 if (dev && dev->driver) 3107 core->owner = dev->driver->owner; 3108 core->hw = hw; 3109 core->flags = hw->init->flags; 3110 core->num_parents = hw->init->num_parents; 3111 core->min_rate = 0; 3112 core->max_rate = ULONG_MAX; 3113 hw->core = core; 3114 3115 /* allocate local copy in case parent_names is __initdata */ 3116 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 3117 GFP_KERNEL); 3118 3119 if (!core->parent_names) { 3120 ret = -ENOMEM; 3121 goto fail_parent_names; 3122 } 3123 3124 3125 /* copy each string name in case parent_names is __initdata */ 3126 for (i = 0; i < core->num_parents; i++) { 3127 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 3128 GFP_KERNEL); 3129 if (!core->parent_names[i]) { 3130 ret = -ENOMEM; 3131 goto fail_parent_names_copy; 3132 } 3133 } 3134 3135 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 3136 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 3137 GFP_KERNEL); 3138 if (!core->parents) { 3139 ret = -ENOMEM; 3140 goto fail_parents; 3141 }; 3142 3143 INIT_HLIST_HEAD(&core->clks); 3144 3145 hw->clk = __clk_create_clk(hw, NULL, NULL); 3146 if (IS_ERR(hw->clk)) { 3147 ret = PTR_ERR(hw->clk); 3148 goto fail_parents; 3149 } 3150 3151 ret = __clk_core_init(core); 3152 if (!ret) 3153 return hw->clk; 3154 3155 __clk_free_clk(hw->clk); 3156 hw->clk = NULL; 3157 3158 fail_parents: 3159 kfree(core->parents); 3160 fail_parent_names_copy: 3161 while (--i >= 0) 3162 kfree_const(core->parent_names[i]); 3163 kfree(core->parent_names); 3164 fail_parent_names: 3165 fail_ops: 3166 kfree_const(core->name); 3167 fail_name: 3168 kfree(core); 3169 fail_out: 3170 return ERR_PTR(ret); 3171 } 3172 EXPORT_SYMBOL_GPL(clk_register); 3173 3174 /** 3175 * clk_hw_register - register a clk_hw and return an error code 3176 * @dev: device that is registering this clock 3177 * @hw: link to hardware-specific clock data 3178 * 3179 * clk_hw_register is the primary interface for populating the clock tree with 3180 * new clock nodes. It returns an integer equal to zero indicating success or 3181 * less than zero indicating failure. Drivers must test for an error code after 3182 * calling clk_hw_register(). 3183 */ 3184 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3185 { 3186 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 3187 } 3188 EXPORT_SYMBOL_GPL(clk_hw_register); 3189 3190 /* Free memory allocated for a clock. */ 3191 static void __clk_release(struct kref *ref) 3192 { 3193 struct clk_core *core = container_of(ref, struct clk_core, ref); 3194 int i = core->num_parents; 3195 3196 lockdep_assert_held(&prepare_lock); 3197 3198 kfree(core->parents); 3199 while (--i >= 0) 3200 kfree_const(core->parent_names[i]); 3201 3202 kfree(core->parent_names); 3203 kfree_const(core->name); 3204 kfree(core); 3205 } 3206 3207 /* 3208 * Empty clk_ops for unregistered clocks. These are used temporarily 3209 * after clk_unregister() was called on a clock and until last clock 3210 * consumer calls clk_put() and the struct clk object is freed. 3211 */ 3212 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3213 { 3214 return -ENXIO; 3215 } 3216 3217 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3218 { 3219 WARN_ON_ONCE(1); 3220 } 3221 3222 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3223 unsigned long parent_rate) 3224 { 3225 return -ENXIO; 3226 } 3227 3228 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3229 { 3230 return -ENXIO; 3231 } 3232 3233 static const struct clk_ops clk_nodrv_ops = { 3234 .enable = clk_nodrv_prepare_enable, 3235 .disable = clk_nodrv_disable_unprepare, 3236 .prepare = clk_nodrv_prepare_enable, 3237 .unprepare = clk_nodrv_disable_unprepare, 3238 .set_rate = clk_nodrv_set_rate, 3239 .set_parent = clk_nodrv_set_parent, 3240 }; 3241 3242 /** 3243 * clk_unregister - unregister a currently registered clock 3244 * @clk: clock to unregister 3245 */ 3246 void clk_unregister(struct clk *clk) 3247 { 3248 unsigned long flags; 3249 3250 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3251 return; 3252 3253 clk_debug_unregister(clk->core); 3254 3255 clk_prepare_lock(); 3256 3257 if (clk->core->ops == &clk_nodrv_ops) { 3258 pr_err("%s: unregistered clock: %s\n", __func__, 3259 clk->core->name); 3260 goto unlock; 3261 } 3262 /* 3263 * Assign empty clock ops for consumers that might still hold 3264 * a reference to this clock. 3265 */ 3266 flags = clk_enable_lock(); 3267 clk->core->ops = &clk_nodrv_ops; 3268 clk_enable_unlock(flags); 3269 3270 if (!hlist_empty(&clk->core->children)) { 3271 struct clk_core *child; 3272 struct hlist_node *t; 3273 3274 /* Reparent all children to the orphan list. */ 3275 hlist_for_each_entry_safe(child, t, &clk->core->children, 3276 child_node) 3277 clk_core_set_parent_nolock(child, NULL); 3278 } 3279 3280 hlist_del_init(&clk->core->child_node); 3281 3282 if (clk->core->prepare_count) 3283 pr_warn("%s: unregistering prepared clock: %s\n", 3284 __func__, clk->core->name); 3285 3286 if (clk->core->protect_count) 3287 pr_warn("%s: unregistering protected clock: %s\n", 3288 __func__, clk->core->name); 3289 3290 kref_put(&clk->core->ref, __clk_release); 3291 unlock: 3292 clk_prepare_unlock(); 3293 } 3294 EXPORT_SYMBOL_GPL(clk_unregister); 3295 3296 /** 3297 * clk_hw_unregister - unregister a currently registered clk_hw 3298 * @hw: hardware-specific clock data to unregister 3299 */ 3300 void clk_hw_unregister(struct clk_hw *hw) 3301 { 3302 clk_unregister(hw->clk); 3303 } 3304 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3305 3306 static void devm_clk_release(struct device *dev, void *res) 3307 { 3308 clk_unregister(*(struct clk **)res); 3309 } 3310 3311 static void devm_clk_hw_release(struct device *dev, void *res) 3312 { 3313 clk_hw_unregister(*(struct clk_hw **)res); 3314 } 3315 3316 /** 3317 * devm_clk_register - resource managed clk_register() 3318 * @dev: device that is registering this clock 3319 * @hw: link to hardware-specific clock data 3320 * 3321 * Managed clk_register(). Clocks returned from this function are 3322 * automatically clk_unregister()ed on driver detach. See clk_register() for 3323 * more information. 3324 */ 3325 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3326 { 3327 struct clk *clk; 3328 struct clk **clkp; 3329 3330 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3331 if (!clkp) 3332 return ERR_PTR(-ENOMEM); 3333 3334 clk = clk_register(dev, hw); 3335 if (!IS_ERR(clk)) { 3336 *clkp = clk; 3337 devres_add(dev, clkp); 3338 } else { 3339 devres_free(clkp); 3340 } 3341 3342 return clk; 3343 } 3344 EXPORT_SYMBOL_GPL(devm_clk_register); 3345 3346 /** 3347 * devm_clk_hw_register - resource managed clk_hw_register() 3348 * @dev: device that is registering this clock 3349 * @hw: link to hardware-specific clock data 3350 * 3351 * Managed clk_hw_register(). Clocks registered by this function are 3352 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3353 * for more information. 3354 */ 3355 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3356 { 3357 struct clk_hw **hwp; 3358 int ret; 3359 3360 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3361 if (!hwp) 3362 return -ENOMEM; 3363 3364 ret = clk_hw_register(dev, hw); 3365 if (!ret) { 3366 *hwp = hw; 3367 devres_add(dev, hwp); 3368 } else { 3369 devres_free(hwp); 3370 } 3371 3372 return ret; 3373 } 3374 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3375 3376 static int devm_clk_match(struct device *dev, void *res, void *data) 3377 { 3378 struct clk *c = res; 3379 if (WARN_ON(!c)) 3380 return 0; 3381 return c == data; 3382 } 3383 3384 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3385 { 3386 struct clk_hw *hw = res; 3387 3388 if (WARN_ON(!hw)) 3389 return 0; 3390 return hw == data; 3391 } 3392 3393 /** 3394 * devm_clk_unregister - resource managed clk_unregister() 3395 * @clk: clock to unregister 3396 * 3397 * Deallocate a clock allocated with devm_clk_register(). Normally 3398 * this function will not need to be called and the resource management 3399 * code will ensure that the resource is freed. 3400 */ 3401 void devm_clk_unregister(struct device *dev, struct clk *clk) 3402 { 3403 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3404 } 3405 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3406 3407 /** 3408 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3409 * @dev: device that is unregistering the hardware-specific clock data 3410 * @hw: link to hardware-specific clock data 3411 * 3412 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3413 * this function will not need to be called and the resource management 3414 * code will ensure that the resource is freed. 3415 */ 3416 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3417 { 3418 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3419 hw)); 3420 } 3421 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3422 3423 /* 3424 * clkdev helpers 3425 */ 3426 int __clk_get(struct clk *clk) 3427 { 3428 struct clk_core *core = !clk ? NULL : clk->core; 3429 3430 if (core) { 3431 if (!try_module_get(core->owner)) 3432 return 0; 3433 3434 kref_get(&core->ref); 3435 } 3436 return 1; 3437 } 3438 3439 void __clk_put(struct clk *clk) 3440 { 3441 struct module *owner; 3442 3443 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3444 return; 3445 3446 clk_prepare_lock(); 3447 3448 /* 3449 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3450 * given user should be balanced with calls to clk_rate_exclusive_put() 3451 * and by that same consumer 3452 */ 3453 if (WARN_ON(clk->exclusive_count)) { 3454 /* We voiced our concern, let's sanitize the situation */ 3455 clk->core->protect_count -= (clk->exclusive_count - 1); 3456 clk_core_rate_unprotect(clk->core); 3457 clk->exclusive_count = 0; 3458 } 3459 3460 hlist_del(&clk->clks_node); 3461 if (clk->min_rate > clk->core->req_rate || 3462 clk->max_rate < clk->core->req_rate) 3463 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3464 3465 owner = clk->core->owner; 3466 kref_put(&clk->core->ref, __clk_release); 3467 3468 clk_prepare_unlock(); 3469 3470 module_put(owner); 3471 3472 kfree(clk); 3473 } 3474 3475 /*** clk rate change notifiers ***/ 3476 3477 /** 3478 * clk_notifier_register - add a clk rate change notifier 3479 * @clk: struct clk * to watch 3480 * @nb: struct notifier_block * with callback info 3481 * 3482 * Request notification when clk's rate changes. This uses an SRCU 3483 * notifier because we want it to block and notifier unregistrations are 3484 * uncommon. The callbacks associated with the notifier must not 3485 * re-enter into the clk framework by calling any top-level clk APIs; 3486 * this will cause a nested prepare_lock mutex. 3487 * 3488 * In all notification cases (pre, post and abort rate change) the original 3489 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3490 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3491 * 3492 * clk_notifier_register() must be called from non-atomic context. 3493 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3494 * allocation failure; otherwise, passes along the return value of 3495 * srcu_notifier_chain_register(). 3496 */ 3497 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3498 { 3499 struct clk_notifier *cn; 3500 int ret = -ENOMEM; 3501 3502 if (!clk || !nb) 3503 return -EINVAL; 3504 3505 clk_prepare_lock(); 3506 3507 /* search the list of notifiers for this clk */ 3508 list_for_each_entry(cn, &clk_notifier_list, node) 3509 if (cn->clk == clk) 3510 break; 3511 3512 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3513 if (cn->clk != clk) { 3514 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3515 if (!cn) 3516 goto out; 3517 3518 cn->clk = clk; 3519 srcu_init_notifier_head(&cn->notifier_head); 3520 3521 list_add(&cn->node, &clk_notifier_list); 3522 } 3523 3524 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3525 3526 clk->core->notifier_count++; 3527 3528 out: 3529 clk_prepare_unlock(); 3530 3531 return ret; 3532 } 3533 EXPORT_SYMBOL_GPL(clk_notifier_register); 3534 3535 /** 3536 * clk_notifier_unregister - remove a clk rate change notifier 3537 * @clk: struct clk * 3538 * @nb: struct notifier_block * with callback info 3539 * 3540 * Request no further notification for changes to 'clk' and frees memory 3541 * allocated in clk_notifier_register. 3542 * 3543 * Returns -EINVAL if called with null arguments; otherwise, passes 3544 * along the return value of srcu_notifier_chain_unregister(). 3545 */ 3546 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3547 { 3548 struct clk_notifier *cn = NULL; 3549 int ret = -EINVAL; 3550 3551 if (!clk || !nb) 3552 return -EINVAL; 3553 3554 clk_prepare_lock(); 3555 3556 list_for_each_entry(cn, &clk_notifier_list, node) 3557 if (cn->clk == clk) 3558 break; 3559 3560 if (cn->clk == clk) { 3561 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3562 3563 clk->core->notifier_count--; 3564 3565 /* XXX the notifier code should handle this better */ 3566 if (!cn->notifier_head.head) { 3567 srcu_cleanup_notifier_head(&cn->notifier_head); 3568 list_del(&cn->node); 3569 kfree(cn); 3570 } 3571 3572 } else { 3573 ret = -ENOENT; 3574 } 3575 3576 clk_prepare_unlock(); 3577 3578 return ret; 3579 } 3580 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3581 3582 #ifdef CONFIG_OF 3583 /** 3584 * struct of_clk_provider - Clock provider registration structure 3585 * @link: Entry in global list of clock providers 3586 * @node: Pointer to device tree node of clock provider 3587 * @get: Get clock callback. Returns NULL or a struct clk for the 3588 * given clock specifier 3589 * @data: context pointer to be passed into @get callback 3590 */ 3591 struct of_clk_provider { 3592 struct list_head link; 3593 3594 struct device_node *node; 3595 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3596 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3597 void *data; 3598 }; 3599 3600 static const struct of_device_id __clk_of_table_sentinel 3601 __used __section(__clk_of_table_end); 3602 3603 static LIST_HEAD(of_clk_providers); 3604 static DEFINE_MUTEX(of_clk_mutex); 3605 3606 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3607 void *data) 3608 { 3609 return data; 3610 } 3611 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3612 3613 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3614 { 3615 return data; 3616 } 3617 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3618 3619 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3620 { 3621 struct clk_onecell_data *clk_data = data; 3622 unsigned int idx = clkspec->args[0]; 3623 3624 if (idx >= clk_data->clk_num) { 3625 pr_err("%s: invalid clock index %u\n", __func__, idx); 3626 return ERR_PTR(-EINVAL); 3627 } 3628 3629 return clk_data->clks[idx]; 3630 } 3631 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3632 3633 struct clk_hw * 3634 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3635 { 3636 struct clk_hw_onecell_data *hw_data = data; 3637 unsigned int idx = clkspec->args[0]; 3638 3639 if (idx >= hw_data->num) { 3640 pr_err("%s: invalid index %u\n", __func__, idx); 3641 return ERR_PTR(-EINVAL); 3642 } 3643 3644 return hw_data->hws[idx]; 3645 } 3646 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3647 3648 /** 3649 * of_clk_add_provider() - Register a clock provider for a node 3650 * @np: Device node pointer associated with clock provider 3651 * @clk_src_get: callback for decoding clock 3652 * @data: context pointer for @clk_src_get callback. 3653 */ 3654 int of_clk_add_provider(struct device_node *np, 3655 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3656 void *data), 3657 void *data) 3658 { 3659 struct of_clk_provider *cp; 3660 int ret; 3661 3662 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3663 if (!cp) 3664 return -ENOMEM; 3665 3666 cp->node = of_node_get(np); 3667 cp->data = data; 3668 cp->get = clk_src_get; 3669 3670 mutex_lock(&of_clk_mutex); 3671 list_add(&cp->link, &of_clk_providers); 3672 mutex_unlock(&of_clk_mutex); 3673 pr_debug("Added clock from %pOF\n", np); 3674 3675 ret = of_clk_set_defaults(np, true); 3676 if (ret < 0) 3677 of_clk_del_provider(np); 3678 3679 return ret; 3680 } 3681 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3682 3683 /** 3684 * of_clk_add_hw_provider() - Register a clock provider for a node 3685 * @np: Device node pointer associated with clock provider 3686 * @get: callback for decoding clk_hw 3687 * @data: context pointer for @get callback. 3688 */ 3689 int of_clk_add_hw_provider(struct device_node *np, 3690 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3691 void *data), 3692 void *data) 3693 { 3694 struct of_clk_provider *cp; 3695 int ret; 3696 3697 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3698 if (!cp) 3699 return -ENOMEM; 3700 3701 cp->node = of_node_get(np); 3702 cp->data = data; 3703 cp->get_hw = get; 3704 3705 mutex_lock(&of_clk_mutex); 3706 list_add(&cp->link, &of_clk_providers); 3707 mutex_unlock(&of_clk_mutex); 3708 pr_debug("Added clk_hw provider from %pOF\n", np); 3709 3710 ret = of_clk_set_defaults(np, true); 3711 if (ret < 0) 3712 of_clk_del_provider(np); 3713 3714 return ret; 3715 } 3716 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3717 3718 static void devm_of_clk_release_provider(struct device *dev, void *res) 3719 { 3720 of_clk_del_provider(*(struct device_node **)res); 3721 } 3722 3723 int devm_of_clk_add_hw_provider(struct device *dev, 3724 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3725 void *data), 3726 void *data) 3727 { 3728 struct device_node **ptr, *np; 3729 int ret; 3730 3731 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 3732 GFP_KERNEL); 3733 if (!ptr) 3734 return -ENOMEM; 3735 3736 np = dev->of_node; 3737 ret = of_clk_add_hw_provider(np, get, data); 3738 if (!ret) { 3739 *ptr = np; 3740 devres_add(dev, ptr); 3741 } else { 3742 devres_free(ptr); 3743 } 3744 3745 return ret; 3746 } 3747 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 3748 3749 /** 3750 * of_clk_del_provider() - Remove a previously registered clock provider 3751 * @np: Device node pointer associated with clock provider 3752 */ 3753 void of_clk_del_provider(struct device_node *np) 3754 { 3755 struct of_clk_provider *cp; 3756 3757 mutex_lock(&of_clk_mutex); 3758 list_for_each_entry(cp, &of_clk_providers, link) { 3759 if (cp->node == np) { 3760 list_del(&cp->link); 3761 of_node_put(cp->node); 3762 kfree(cp); 3763 break; 3764 } 3765 } 3766 mutex_unlock(&of_clk_mutex); 3767 } 3768 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3769 3770 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 3771 { 3772 struct device_node **np = res; 3773 3774 if (WARN_ON(!np || !*np)) 3775 return 0; 3776 3777 return *np == data; 3778 } 3779 3780 void devm_of_clk_del_provider(struct device *dev) 3781 { 3782 int ret; 3783 3784 ret = devres_release(dev, devm_of_clk_release_provider, 3785 devm_clk_provider_match, dev->of_node); 3786 3787 WARN_ON(ret); 3788 } 3789 EXPORT_SYMBOL(devm_of_clk_del_provider); 3790 3791 static struct clk_hw * 3792 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 3793 struct of_phandle_args *clkspec) 3794 { 3795 struct clk *clk; 3796 3797 if (provider->get_hw) 3798 return provider->get_hw(clkspec, provider->data); 3799 3800 clk = provider->get(clkspec, provider->data); 3801 if (IS_ERR(clk)) 3802 return ERR_CAST(clk); 3803 return __clk_get_hw(clk); 3804 } 3805 3806 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3807 const char *dev_id, const char *con_id) 3808 { 3809 struct of_clk_provider *provider; 3810 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3811 struct clk_hw *hw; 3812 3813 if (!clkspec) 3814 return ERR_PTR(-EINVAL); 3815 3816 /* Check if we have such a provider in our array */ 3817 mutex_lock(&of_clk_mutex); 3818 list_for_each_entry(provider, &of_clk_providers, link) { 3819 if (provider->node == clkspec->np) { 3820 hw = __of_clk_get_hw_from_provider(provider, clkspec); 3821 clk = __clk_create_clk(hw, dev_id, con_id); 3822 } 3823 3824 if (!IS_ERR(clk)) { 3825 if (!__clk_get(clk)) { 3826 __clk_free_clk(clk); 3827 clk = ERR_PTR(-ENOENT); 3828 } 3829 3830 break; 3831 } 3832 } 3833 mutex_unlock(&of_clk_mutex); 3834 3835 return clk; 3836 } 3837 3838 /** 3839 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3840 * @clkspec: pointer to a clock specifier data structure 3841 * 3842 * This function looks up a struct clk from the registered list of clock 3843 * providers, an input is a clock specifier data structure as returned 3844 * from the of_parse_phandle_with_args() function call. 3845 */ 3846 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3847 { 3848 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3849 } 3850 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 3851 3852 /** 3853 * of_clk_get_parent_count() - Count the number of clocks a device node has 3854 * @np: device node to count 3855 * 3856 * Returns: The number of clocks that are possible parents of this node 3857 */ 3858 unsigned int of_clk_get_parent_count(struct device_node *np) 3859 { 3860 int count; 3861 3862 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3863 if (count < 0) 3864 return 0; 3865 3866 return count; 3867 } 3868 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3869 3870 const char *of_clk_get_parent_name(struct device_node *np, int index) 3871 { 3872 struct of_phandle_args clkspec; 3873 struct property *prop; 3874 const char *clk_name; 3875 const __be32 *vp; 3876 u32 pv; 3877 int rc; 3878 int count; 3879 struct clk *clk; 3880 3881 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3882 &clkspec); 3883 if (rc) 3884 return NULL; 3885 3886 index = clkspec.args_count ? clkspec.args[0] : 0; 3887 count = 0; 3888 3889 /* if there is an indices property, use it to transfer the index 3890 * specified into an array offset for the clock-output-names property. 3891 */ 3892 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3893 if (index == pv) { 3894 index = count; 3895 break; 3896 } 3897 count++; 3898 } 3899 /* We went off the end of 'clock-indices' without finding it */ 3900 if (prop && !vp) 3901 return NULL; 3902 3903 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3904 index, 3905 &clk_name) < 0) { 3906 /* 3907 * Best effort to get the name if the clock has been 3908 * registered with the framework. If the clock isn't 3909 * registered, we return the node name as the name of 3910 * the clock as long as #clock-cells = 0. 3911 */ 3912 clk = of_clk_get_from_provider(&clkspec); 3913 if (IS_ERR(clk)) { 3914 if (clkspec.args_count == 0) 3915 clk_name = clkspec.np->name; 3916 else 3917 clk_name = NULL; 3918 } else { 3919 clk_name = __clk_get_name(clk); 3920 clk_put(clk); 3921 } 3922 } 3923 3924 3925 of_node_put(clkspec.np); 3926 return clk_name; 3927 } 3928 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3929 3930 /** 3931 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3932 * number of parents 3933 * @np: Device node pointer associated with clock provider 3934 * @parents: pointer to char array that hold the parents' names 3935 * @size: size of the @parents array 3936 * 3937 * Return: number of parents for the clock node. 3938 */ 3939 int of_clk_parent_fill(struct device_node *np, const char **parents, 3940 unsigned int size) 3941 { 3942 unsigned int i = 0; 3943 3944 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3945 i++; 3946 3947 return i; 3948 } 3949 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3950 3951 struct clock_provider { 3952 of_clk_init_cb_t clk_init_cb; 3953 struct device_node *np; 3954 struct list_head node; 3955 }; 3956 3957 /* 3958 * This function looks for a parent clock. If there is one, then it 3959 * checks that the provider for this parent clock was initialized, in 3960 * this case the parent clock will be ready. 3961 */ 3962 static int parent_ready(struct device_node *np) 3963 { 3964 int i = 0; 3965 3966 while (true) { 3967 struct clk *clk = of_clk_get(np, i); 3968 3969 /* this parent is ready we can check the next one */ 3970 if (!IS_ERR(clk)) { 3971 clk_put(clk); 3972 i++; 3973 continue; 3974 } 3975 3976 /* at least one parent is not ready, we exit now */ 3977 if (PTR_ERR(clk) == -EPROBE_DEFER) 3978 return 0; 3979 3980 /* 3981 * Here we make assumption that the device tree is 3982 * written correctly. So an error means that there is 3983 * no more parent. As we didn't exit yet, then the 3984 * previous parent are ready. If there is no clock 3985 * parent, no need to wait for them, then we can 3986 * consider their absence as being ready 3987 */ 3988 return 1; 3989 } 3990 } 3991 3992 /** 3993 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 3994 * @np: Device node pointer associated with clock provider 3995 * @index: clock index 3996 * @flags: pointer to top-level framework flags 3997 * 3998 * Detects if the clock-critical property exists and, if so, sets the 3999 * corresponding CLK_IS_CRITICAL flag. 4000 * 4001 * Do not use this function. It exists only for legacy Device Tree 4002 * bindings, such as the one-clock-per-node style that are outdated. 4003 * Those bindings typically put all clock data into .dts and the Linux 4004 * driver has no clock data, thus making it impossible to set this flag 4005 * correctly from the driver. Only those drivers may call 4006 * of_clk_detect_critical from their setup functions. 4007 * 4008 * Return: error code or zero on success 4009 */ 4010 int of_clk_detect_critical(struct device_node *np, 4011 int index, unsigned long *flags) 4012 { 4013 struct property *prop; 4014 const __be32 *cur; 4015 uint32_t idx; 4016 4017 if (!np || !flags) 4018 return -EINVAL; 4019 4020 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4021 if (index == idx) 4022 *flags |= CLK_IS_CRITICAL; 4023 4024 return 0; 4025 } 4026 4027 /** 4028 * of_clk_init() - Scan and init clock providers from the DT 4029 * @matches: array of compatible values and init functions for providers. 4030 * 4031 * This function scans the device tree for matching clock providers 4032 * and calls their initialization functions. It also does it by trying 4033 * to follow the dependencies. 4034 */ 4035 void __init of_clk_init(const struct of_device_id *matches) 4036 { 4037 const struct of_device_id *match; 4038 struct device_node *np; 4039 struct clock_provider *clk_provider, *next; 4040 bool is_init_done; 4041 bool force = false; 4042 LIST_HEAD(clk_provider_list); 4043 4044 if (!matches) 4045 matches = &__clk_of_table; 4046 4047 /* First prepare the list of the clocks providers */ 4048 for_each_matching_node_and_match(np, matches, &match) { 4049 struct clock_provider *parent; 4050 4051 if (!of_device_is_available(np)) 4052 continue; 4053 4054 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4055 if (!parent) { 4056 list_for_each_entry_safe(clk_provider, next, 4057 &clk_provider_list, node) { 4058 list_del(&clk_provider->node); 4059 of_node_put(clk_provider->np); 4060 kfree(clk_provider); 4061 } 4062 of_node_put(np); 4063 return; 4064 } 4065 4066 parent->clk_init_cb = match->data; 4067 parent->np = of_node_get(np); 4068 list_add_tail(&parent->node, &clk_provider_list); 4069 } 4070 4071 while (!list_empty(&clk_provider_list)) { 4072 is_init_done = false; 4073 list_for_each_entry_safe(clk_provider, next, 4074 &clk_provider_list, node) { 4075 if (force || parent_ready(clk_provider->np)) { 4076 4077 /* Don't populate platform devices */ 4078 of_node_set_flag(clk_provider->np, 4079 OF_POPULATED); 4080 4081 clk_provider->clk_init_cb(clk_provider->np); 4082 of_clk_set_defaults(clk_provider->np, true); 4083 4084 list_del(&clk_provider->node); 4085 of_node_put(clk_provider->np); 4086 kfree(clk_provider); 4087 is_init_done = true; 4088 } 4089 } 4090 4091 /* 4092 * We didn't manage to initialize any of the 4093 * remaining providers during the last loop, so now we 4094 * initialize all the remaining ones unconditionally 4095 * in case the clock parent was not mandatory 4096 */ 4097 if (!is_init_done) 4098 force = true; 4099 } 4100 } 4101 #endif 4102