1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 return ret < 0 ? ret : 0; 118 } 119 120 static void clk_pm_runtime_put(struct clk_core *core) 121 { 122 if (!core->rpm_enabled) 123 return; 124 125 pm_runtime_put_sync(core->dev); 126 } 127 128 /*** locking ***/ 129 static void clk_prepare_lock(void) 130 { 131 if (!mutex_trylock(&prepare_lock)) { 132 if (prepare_owner == current) { 133 prepare_refcnt++; 134 return; 135 } 136 mutex_lock(&prepare_lock); 137 } 138 WARN_ON_ONCE(prepare_owner != NULL); 139 WARN_ON_ONCE(prepare_refcnt != 0); 140 prepare_owner = current; 141 prepare_refcnt = 1; 142 } 143 144 static void clk_prepare_unlock(void) 145 { 146 WARN_ON_ONCE(prepare_owner != current); 147 WARN_ON_ONCE(prepare_refcnt == 0); 148 149 if (--prepare_refcnt) 150 return; 151 prepare_owner = NULL; 152 mutex_unlock(&prepare_lock); 153 } 154 155 static unsigned long clk_enable_lock(void) 156 __acquires(enable_lock) 157 { 158 unsigned long flags; 159 160 /* 161 * On UP systems, spin_trylock_irqsave() always returns true, even if 162 * we already hold the lock. So, in that case, we rely only on 163 * reference counting. 164 */ 165 if (!IS_ENABLED(CONFIG_SMP) || 166 !spin_trylock_irqsave(&enable_lock, flags)) { 167 if (enable_owner == current) { 168 enable_refcnt++; 169 __acquire(enable_lock); 170 if (!IS_ENABLED(CONFIG_SMP)) 171 local_save_flags(flags); 172 return flags; 173 } 174 spin_lock_irqsave(&enable_lock, flags); 175 } 176 WARN_ON_ONCE(enable_owner != NULL); 177 WARN_ON_ONCE(enable_refcnt != 0); 178 enable_owner = current; 179 enable_refcnt = 1; 180 return flags; 181 } 182 183 static void clk_enable_unlock(unsigned long flags) 184 __releases(enable_lock) 185 { 186 WARN_ON_ONCE(enable_owner != current); 187 WARN_ON_ONCE(enable_refcnt == 0); 188 189 if (--enable_refcnt) { 190 __release(enable_lock); 191 return; 192 } 193 enable_owner = NULL; 194 spin_unlock_irqrestore(&enable_lock, flags); 195 } 196 197 static bool clk_core_rate_is_protected(struct clk_core *core) 198 { 199 return core->protect_count; 200 } 201 202 static bool clk_core_is_prepared(struct clk_core *core) 203 { 204 bool ret = false; 205 206 /* 207 * .is_prepared is optional for clocks that can prepare 208 * fall back to software usage counter if it is missing 209 */ 210 if (!core->ops->is_prepared) 211 return core->prepare_count; 212 213 if (!clk_pm_runtime_get(core)) { 214 ret = core->ops->is_prepared(core->hw); 215 clk_pm_runtime_put(core); 216 } 217 218 return ret; 219 } 220 221 static bool clk_core_is_enabled(struct clk_core *core) 222 { 223 bool ret = false; 224 225 /* 226 * .is_enabled is only mandatory for clocks that gate 227 * fall back to software usage counter if .is_enabled is missing 228 */ 229 if (!core->ops->is_enabled) 230 return core->enable_count; 231 232 /* 233 * Check if clock controller's device is runtime active before 234 * calling .is_enabled callback. If not, assume that clock is 235 * disabled, because we might be called from atomic context, from 236 * which pm_runtime_get() is not allowed. 237 * This function is called mainly from clk_disable_unused_subtree, 238 * which ensures proper runtime pm activation of controller before 239 * taking enable spinlock, but the below check is needed if one tries 240 * to call it from other places. 241 */ 242 if (core->rpm_enabled) { 243 pm_runtime_get_noresume(core->dev); 244 if (!pm_runtime_active(core->dev)) { 245 ret = false; 246 goto done; 247 } 248 } 249 250 ret = core->ops->is_enabled(core->hw); 251 done: 252 if (core->rpm_enabled) 253 pm_runtime_put(core->dev); 254 255 return ret; 256 } 257 258 /*** helper functions ***/ 259 260 const char *__clk_get_name(const struct clk *clk) 261 { 262 return !clk ? NULL : clk->core->name; 263 } 264 EXPORT_SYMBOL_GPL(__clk_get_name); 265 266 const char *clk_hw_get_name(const struct clk_hw *hw) 267 { 268 return hw->core->name; 269 } 270 EXPORT_SYMBOL_GPL(clk_hw_get_name); 271 272 struct clk_hw *__clk_get_hw(struct clk *clk) 273 { 274 return !clk ? NULL : clk->core->hw; 275 } 276 EXPORT_SYMBOL_GPL(__clk_get_hw); 277 278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 279 { 280 return hw->core->num_parents; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 283 284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 285 { 286 return hw->core->parent ? hw->core->parent->hw : NULL; 287 } 288 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 289 290 static struct clk_core *__clk_lookup_subtree(const char *name, 291 struct clk_core *core) 292 { 293 struct clk_core *child; 294 struct clk_core *ret; 295 296 if (!strcmp(core->name, name)) 297 return core; 298 299 hlist_for_each_entry(child, &core->children, child_node) { 300 ret = __clk_lookup_subtree(name, child); 301 if (ret) 302 return ret; 303 } 304 305 return NULL; 306 } 307 308 static struct clk_core *clk_core_lookup(const char *name) 309 { 310 struct clk_core *root_clk; 311 struct clk_core *ret; 312 313 if (!name) 314 return NULL; 315 316 /* search the 'proper' clk tree first */ 317 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 318 ret = __clk_lookup_subtree(name, root_clk); 319 if (ret) 320 return ret; 321 } 322 323 /* if not found, then search the orphan tree */ 324 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 325 ret = __clk_lookup_subtree(name, root_clk); 326 if (ret) 327 return ret; 328 } 329 330 return NULL; 331 } 332 333 #ifdef CONFIG_OF 334 static int of_parse_clkspec(const struct device_node *np, int index, 335 const char *name, struct of_phandle_args *out_args); 336 static struct clk_hw * 337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 338 #else 339 static inline int of_parse_clkspec(const struct device_node *np, int index, 340 const char *name, 341 struct of_phandle_args *out_args) 342 { 343 return -ENOENT; 344 } 345 static inline struct clk_hw * 346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 347 { 348 return ERR_PTR(-ENOENT); 349 } 350 #endif 351 352 /** 353 * clk_core_get - Find the clk_core parent of a clk 354 * @core: clk to find parent of 355 * @p_index: parent index to search for 356 * 357 * This is the preferred method for clk providers to find the parent of a 358 * clk when that parent is external to the clk controller. The parent_names 359 * array is indexed and treated as a local name matching a string in the device 360 * node's 'clock-names' property or as the 'con_id' matching the device's 361 * dev_name() in a clk_lookup. This allows clk providers to use their own 362 * namespace instead of looking for a globally unique parent string. 363 * 364 * For example the following DT snippet would allow a clock registered by the 365 * clock-controller@c001 that has a clk_init_data::parent_data array 366 * with 'xtal' in the 'name' member to find the clock provided by the 367 * clock-controller@f00abcd without needing to get the globally unique name of 368 * the xtal clk. 369 * 370 * parent: clock-controller@f00abcd { 371 * reg = <0xf00abcd 0xabcd>; 372 * #clock-cells = <0>; 373 * }; 374 * 375 * clock-controller@c001 { 376 * reg = <0xc001 0xf00d>; 377 * clocks = <&parent>; 378 * clock-names = "xtal"; 379 * #clock-cells = <1>; 380 * }; 381 * 382 * Returns: -ENOENT when the provider can't be found or the clk doesn't 383 * exist in the provider or the name can't be found in the DT node or 384 * in a clkdev lookup. NULL when the provider knows about the clk but it 385 * isn't provided on this system. 386 * A valid clk_core pointer when the clk can be found in the provider. 387 */ 388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 389 { 390 const char *name = core->parents[p_index].fw_name; 391 int index = core->parents[p_index].index; 392 struct clk_hw *hw = ERR_PTR(-ENOENT); 393 struct device *dev = core->dev; 394 const char *dev_id = dev ? dev_name(dev) : NULL; 395 struct device_node *np = core->of_node; 396 struct of_phandle_args clkspec; 397 398 if (np && (name || index >= 0) && 399 !of_parse_clkspec(np, index, name, &clkspec)) { 400 hw = of_clk_get_hw_from_clkspec(&clkspec); 401 of_node_put(clkspec.np); 402 } else if (name) { 403 /* 404 * If the DT search above couldn't find the provider fallback to 405 * looking up via clkdev based clk_lookups. 406 */ 407 hw = clk_find_hw(dev_id, name); 408 } 409 410 if (IS_ERR(hw)) 411 return ERR_CAST(hw); 412 413 return hw->core; 414 } 415 416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 417 { 418 struct clk_parent_map *entry = &core->parents[index]; 419 struct clk_core *parent = ERR_PTR(-ENOENT); 420 421 if (entry->hw) { 422 parent = entry->hw->core; 423 /* 424 * We have a direct reference but it isn't registered yet? 425 * Orphan it and let clk_reparent() update the orphan status 426 * when the parent is registered. 427 */ 428 if (!parent) 429 parent = ERR_PTR(-EPROBE_DEFER); 430 } else { 431 parent = clk_core_get(core, index); 432 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name) 433 parent = clk_core_lookup(entry->name); 434 } 435 436 /* Only cache it if it's not an error */ 437 if (!IS_ERR(parent)) 438 entry->core = parent; 439 } 440 441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 442 u8 index) 443 { 444 if (!core || index >= core->num_parents || !core->parents) 445 return NULL; 446 447 if (!core->parents[index].core) 448 clk_core_fill_parent_index(core, index); 449 450 return core->parents[index].core; 451 } 452 453 struct clk_hw * 454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 455 { 456 struct clk_core *parent; 457 458 parent = clk_core_get_parent_by_index(hw->core, index); 459 460 return !parent ? NULL : parent->hw; 461 } 462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 463 464 unsigned int __clk_get_enable_count(struct clk *clk) 465 { 466 return !clk ? 0 : clk->core->enable_count; 467 } 468 469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 470 { 471 if (!core) 472 return 0; 473 474 if (!core->num_parents || core->parent) 475 return core->rate; 476 477 /* 478 * Clk must have a parent because num_parents > 0 but the parent isn't 479 * known yet. Best to return 0 as the rate of this clk until we can 480 * properly recalc the rate based on the parent's rate. 481 */ 482 return 0; 483 } 484 485 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 486 { 487 return clk_core_get_rate_nolock(hw->core); 488 } 489 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 490 491 static unsigned long __clk_get_accuracy(struct clk_core *core) 492 { 493 if (!core) 494 return 0; 495 496 return core->accuracy; 497 } 498 499 unsigned long __clk_get_flags(struct clk *clk) 500 { 501 return !clk ? 0 : clk->core->flags; 502 } 503 EXPORT_SYMBOL_GPL(__clk_get_flags); 504 505 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 506 { 507 return hw->core->flags; 508 } 509 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 510 511 bool clk_hw_is_prepared(const struct clk_hw *hw) 512 { 513 return clk_core_is_prepared(hw->core); 514 } 515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 516 517 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 518 { 519 return clk_core_rate_is_protected(hw->core); 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 522 523 bool clk_hw_is_enabled(const struct clk_hw *hw) 524 { 525 return clk_core_is_enabled(hw->core); 526 } 527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 528 529 bool __clk_is_enabled(struct clk *clk) 530 { 531 if (!clk) 532 return false; 533 534 return clk_core_is_enabled(clk->core); 535 } 536 EXPORT_SYMBOL_GPL(__clk_is_enabled); 537 538 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 539 unsigned long best, unsigned long flags) 540 { 541 if (flags & CLK_MUX_ROUND_CLOSEST) 542 return abs(now - rate) < abs(best - rate); 543 544 return now <= rate && now > best; 545 } 546 547 int clk_mux_determine_rate_flags(struct clk_hw *hw, 548 struct clk_rate_request *req, 549 unsigned long flags) 550 { 551 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 552 int i, num_parents, ret; 553 unsigned long best = 0; 554 struct clk_rate_request parent_req = *req; 555 556 /* if NO_REPARENT flag set, pass through to current parent */ 557 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 558 parent = core->parent; 559 if (core->flags & CLK_SET_RATE_PARENT) { 560 ret = __clk_determine_rate(parent ? parent->hw : NULL, 561 &parent_req); 562 if (ret) 563 return ret; 564 565 best = parent_req.rate; 566 } else if (parent) { 567 best = clk_core_get_rate_nolock(parent); 568 } else { 569 best = clk_core_get_rate_nolock(core); 570 } 571 572 goto out; 573 } 574 575 /* find the parent that can provide the fastest rate <= rate */ 576 num_parents = core->num_parents; 577 for (i = 0; i < num_parents; i++) { 578 parent = clk_core_get_parent_by_index(core, i); 579 if (!parent) 580 continue; 581 582 if (core->flags & CLK_SET_RATE_PARENT) { 583 parent_req = *req; 584 ret = __clk_determine_rate(parent->hw, &parent_req); 585 if (ret) 586 continue; 587 } else { 588 parent_req.rate = clk_core_get_rate_nolock(parent); 589 } 590 591 if (mux_is_better_rate(req->rate, parent_req.rate, 592 best, flags)) { 593 best_parent = parent; 594 best = parent_req.rate; 595 } 596 } 597 598 if (!best_parent) 599 return -EINVAL; 600 601 out: 602 if (best_parent) 603 req->best_parent_hw = best_parent->hw; 604 req->best_parent_rate = best; 605 req->rate = best; 606 607 return 0; 608 } 609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 610 611 struct clk *__clk_lookup(const char *name) 612 { 613 struct clk_core *core = clk_core_lookup(name); 614 615 return !core ? NULL : core->hw->clk; 616 } 617 618 static void clk_core_get_boundaries(struct clk_core *core, 619 unsigned long *min_rate, 620 unsigned long *max_rate) 621 { 622 struct clk *clk_user; 623 624 lockdep_assert_held(&prepare_lock); 625 626 *min_rate = core->min_rate; 627 *max_rate = core->max_rate; 628 629 hlist_for_each_entry(clk_user, &core->clks, clks_node) 630 *min_rate = max(*min_rate, clk_user->min_rate); 631 632 hlist_for_each_entry(clk_user, &core->clks, clks_node) 633 *max_rate = min(*max_rate, clk_user->max_rate); 634 } 635 636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 637 unsigned long max_rate) 638 { 639 hw->core->min_rate = min_rate; 640 hw->core->max_rate = max_rate; 641 } 642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 643 644 /* 645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 646 * @hw: mux type clk to determine rate on 647 * @req: rate request, also used to return preferred parent and frequencies 648 * 649 * Helper for finding best parent to provide a given frequency. This can be used 650 * directly as a determine_rate callback (e.g. for a mux), or from a more 651 * complex clock that may combine a mux with other operations. 652 * 653 * Returns: 0 on success, -EERROR value on error 654 */ 655 int __clk_mux_determine_rate(struct clk_hw *hw, 656 struct clk_rate_request *req) 657 { 658 return clk_mux_determine_rate_flags(hw, req, 0); 659 } 660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 661 662 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 663 struct clk_rate_request *req) 664 { 665 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 666 } 667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 668 669 /*** clk api ***/ 670 671 static void clk_core_rate_unprotect(struct clk_core *core) 672 { 673 lockdep_assert_held(&prepare_lock); 674 675 if (!core) 676 return; 677 678 if (WARN(core->protect_count == 0, 679 "%s already unprotected\n", core->name)) 680 return; 681 682 if (--core->protect_count > 0) 683 return; 684 685 clk_core_rate_unprotect(core->parent); 686 } 687 688 static int clk_core_rate_nuke_protect(struct clk_core *core) 689 { 690 int ret; 691 692 lockdep_assert_held(&prepare_lock); 693 694 if (!core) 695 return -EINVAL; 696 697 if (core->protect_count == 0) 698 return 0; 699 700 ret = core->protect_count; 701 core->protect_count = 1; 702 clk_core_rate_unprotect(core); 703 704 return ret; 705 } 706 707 /** 708 * clk_rate_exclusive_put - release exclusivity over clock rate control 709 * @clk: the clk over which the exclusivity is released 710 * 711 * clk_rate_exclusive_put() completes a critical section during which a clock 712 * consumer cannot tolerate any other consumer making any operation on the 713 * clock which could result in a rate change or rate glitch. Exclusive clocks 714 * cannot have their rate changed, either directly or indirectly due to changes 715 * further up the parent chain of clocks. As a result, clocks up parent chain 716 * also get under exclusive control of the calling consumer. 717 * 718 * If exlusivity is claimed more than once on clock, even by the same consumer, 719 * the rate effectively gets locked as exclusivity can't be preempted. 720 * 721 * Calls to clk_rate_exclusive_put() must be balanced with calls to 722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 723 * error status. 724 */ 725 void clk_rate_exclusive_put(struct clk *clk) 726 { 727 if (!clk) 728 return; 729 730 clk_prepare_lock(); 731 732 /* 733 * if there is something wrong with this consumer protect count, stop 734 * here before messing with the provider 735 */ 736 if (WARN_ON(clk->exclusive_count <= 0)) 737 goto out; 738 739 clk_core_rate_unprotect(clk->core); 740 clk->exclusive_count--; 741 out: 742 clk_prepare_unlock(); 743 } 744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 745 746 static void clk_core_rate_protect(struct clk_core *core) 747 { 748 lockdep_assert_held(&prepare_lock); 749 750 if (!core) 751 return; 752 753 if (core->protect_count == 0) 754 clk_core_rate_protect(core->parent); 755 756 core->protect_count++; 757 } 758 759 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 760 { 761 lockdep_assert_held(&prepare_lock); 762 763 if (!core) 764 return; 765 766 if (count == 0) 767 return; 768 769 clk_core_rate_protect(core); 770 core->protect_count = count; 771 } 772 773 /** 774 * clk_rate_exclusive_get - get exclusivity over the clk rate control 775 * @clk: the clk over which the exclusity of rate control is requested 776 * 777 * clk_rate_exlusive_get() begins a critical section during which a clock 778 * consumer cannot tolerate any other consumer making any operation on the 779 * clock which could result in a rate change or rate glitch. Exclusive clocks 780 * cannot have their rate changed, either directly or indirectly due to changes 781 * further up the parent chain of clocks. As a result, clocks up parent chain 782 * also get under exclusive control of the calling consumer. 783 * 784 * If exlusivity is claimed more than once on clock, even by the same consumer, 785 * the rate effectively gets locked as exclusivity can't be preempted. 786 * 787 * Calls to clk_rate_exclusive_get() should be balanced with calls to 788 * clk_rate_exclusive_put(). Calls to this function may sleep. 789 * Returns 0 on success, -EERROR otherwise 790 */ 791 int clk_rate_exclusive_get(struct clk *clk) 792 { 793 if (!clk) 794 return 0; 795 796 clk_prepare_lock(); 797 clk_core_rate_protect(clk->core); 798 clk->exclusive_count++; 799 clk_prepare_unlock(); 800 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 804 805 static void clk_core_unprepare(struct clk_core *core) 806 { 807 lockdep_assert_held(&prepare_lock); 808 809 if (!core) 810 return; 811 812 if (WARN(core->prepare_count == 0, 813 "%s already unprepared\n", core->name)) 814 return; 815 816 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 817 "Unpreparing critical %s\n", core->name)) 818 return; 819 820 if (core->flags & CLK_SET_RATE_GATE) 821 clk_core_rate_unprotect(core); 822 823 if (--core->prepare_count > 0) 824 return; 825 826 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 827 828 trace_clk_unprepare(core); 829 830 if (core->ops->unprepare) 831 core->ops->unprepare(core->hw); 832 833 clk_pm_runtime_put(core); 834 835 trace_clk_unprepare_complete(core); 836 clk_core_unprepare(core->parent); 837 } 838 839 static void clk_core_unprepare_lock(struct clk_core *core) 840 { 841 clk_prepare_lock(); 842 clk_core_unprepare(core); 843 clk_prepare_unlock(); 844 } 845 846 /** 847 * clk_unprepare - undo preparation of a clock source 848 * @clk: the clk being unprepared 849 * 850 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 852 * if the operation may sleep. One example is a clk which is accessed over 853 * I2c. In the complex case a clk gate operation may require a fast and a slow 854 * part. It is this reason that clk_unprepare and clk_disable are not mutually 855 * exclusive. In fact clk_disable must be called before clk_unprepare. 856 */ 857 void clk_unprepare(struct clk *clk) 858 { 859 if (IS_ERR_OR_NULL(clk)) 860 return; 861 862 clk_core_unprepare_lock(clk->core); 863 } 864 EXPORT_SYMBOL_GPL(clk_unprepare); 865 866 static int clk_core_prepare(struct clk_core *core) 867 { 868 int ret = 0; 869 870 lockdep_assert_held(&prepare_lock); 871 872 if (!core) 873 return 0; 874 875 if (core->prepare_count == 0) { 876 ret = clk_pm_runtime_get(core); 877 if (ret) 878 return ret; 879 880 ret = clk_core_prepare(core->parent); 881 if (ret) 882 goto runtime_put; 883 884 trace_clk_prepare(core); 885 886 if (core->ops->prepare) 887 ret = core->ops->prepare(core->hw); 888 889 trace_clk_prepare_complete(core); 890 891 if (ret) 892 goto unprepare; 893 } 894 895 core->prepare_count++; 896 897 /* 898 * CLK_SET_RATE_GATE is a special case of clock protection 899 * Instead of a consumer claiming exclusive rate control, it is 900 * actually the provider which prevents any consumer from making any 901 * operation which could result in a rate change or rate glitch while 902 * the clock is prepared. 903 */ 904 if (core->flags & CLK_SET_RATE_GATE) 905 clk_core_rate_protect(core); 906 907 return 0; 908 unprepare: 909 clk_core_unprepare(core->parent); 910 runtime_put: 911 clk_pm_runtime_put(core); 912 return ret; 913 } 914 915 static int clk_core_prepare_lock(struct clk_core *core) 916 { 917 int ret; 918 919 clk_prepare_lock(); 920 ret = clk_core_prepare(core); 921 clk_prepare_unlock(); 922 923 return ret; 924 } 925 926 /** 927 * clk_prepare - prepare a clock source 928 * @clk: the clk being prepared 929 * 930 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 932 * operation may sleep. One example is a clk which is accessed over I2c. In 933 * the complex case a clk ungate operation may require a fast and a slow part. 934 * It is this reason that clk_prepare and clk_enable are not mutually 935 * exclusive. In fact clk_prepare must be called before clk_enable. 936 * Returns 0 on success, -EERROR otherwise. 937 */ 938 int clk_prepare(struct clk *clk) 939 { 940 if (!clk) 941 return 0; 942 943 return clk_core_prepare_lock(clk->core); 944 } 945 EXPORT_SYMBOL_GPL(clk_prepare); 946 947 static void clk_core_disable(struct clk_core *core) 948 { 949 lockdep_assert_held(&enable_lock); 950 951 if (!core) 952 return; 953 954 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 955 return; 956 957 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 958 "Disabling critical %s\n", core->name)) 959 return; 960 961 if (--core->enable_count > 0) 962 return; 963 964 trace_clk_disable_rcuidle(core); 965 966 if (core->ops->disable) 967 core->ops->disable(core->hw); 968 969 trace_clk_disable_complete_rcuidle(core); 970 971 clk_core_disable(core->parent); 972 } 973 974 static void clk_core_disable_lock(struct clk_core *core) 975 { 976 unsigned long flags; 977 978 flags = clk_enable_lock(); 979 clk_core_disable(core); 980 clk_enable_unlock(flags); 981 } 982 983 /** 984 * clk_disable - gate a clock 985 * @clk: the clk being gated 986 * 987 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 989 * clk if the operation is fast and will never sleep. One example is a 990 * SoC-internal clk which is controlled via simple register writes. In the 991 * complex case a clk gate operation may require a fast and a slow part. It is 992 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 993 * In fact clk_disable must be called before clk_unprepare. 994 */ 995 void clk_disable(struct clk *clk) 996 { 997 if (IS_ERR_OR_NULL(clk)) 998 return; 999 1000 clk_core_disable_lock(clk->core); 1001 } 1002 EXPORT_SYMBOL_GPL(clk_disable); 1003 1004 static int clk_core_enable(struct clk_core *core) 1005 { 1006 int ret = 0; 1007 1008 lockdep_assert_held(&enable_lock); 1009 1010 if (!core) 1011 return 0; 1012 1013 if (WARN(core->prepare_count == 0, 1014 "Enabling unprepared %s\n", core->name)) 1015 return -ESHUTDOWN; 1016 1017 if (core->enable_count == 0) { 1018 ret = clk_core_enable(core->parent); 1019 1020 if (ret) 1021 return ret; 1022 1023 trace_clk_enable_rcuidle(core); 1024 1025 if (core->ops->enable) 1026 ret = core->ops->enable(core->hw); 1027 1028 trace_clk_enable_complete_rcuidle(core); 1029 1030 if (ret) { 1031 clk_core_disable(core->parent); 1032 return ret; 1033 } 1034 } 1035 1036 core->enable_count++; 1037 return 0; 1038 } 1039 1040 static int clk_core_enable_lock(struct clk_core *core) 1041 { 1042 unsigned long flags; 1043 int ret; 1044 1045 flags = clk_enable_lock(); 1046 ret = clk_core_enable(core); 1047 clk_enable_unlock(flags); 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * clk_gate_restore_context - restore context for poweroff 1054 * @hw: the clk_hw pointer of clock whose state is to be restored 1055 * 1056 * The clock gate restore context function enables or disables 1057 * the gate clocks based on the enable_count. This is done in cases 1058 * where the clock context is lost and based on the enable_count 1059 * the clock either needs to be enabled/disabled. This 1060 * helps restore the state of gate clocks. 1061 */ 1062 void clk_gate_restore_context(struct clk_hw *hw) 1063 { 1064 struct clk_core *core = hw->core; 1065 1066 if (core->enable_count) 1067 core->ops->enable(hw); 1068 else 1069 core->ops->disable(hw); 1070 } 1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1072 1073 static int clk_core_save_context(struct clk_core *core) 1074 { 1075 struct clk_core *child; 1076 int ret = 0; 1077 1078 hlist_for_each_entry(child, &core->children, child_node) { 1079 ret = clk_core_save_context(child); 1080 if (ret < 0) 1081 return ret; 1082 } 1083 1084 if (core->ops && core->ops->save_context) 1085 ret = core->ops->save_context(core->hw); 1086 1087 return ret; 1088 } 1089 1090 static void clk_core_restore_context(struct clk_core *core) 1091 { 1092 struct clk_core *child; 1093 1094 if (core->ops && core->ops->restore_context) 1095 core->ops->restore_context(core->hw); 1096 1097 hlist_for_each_entry(child, &core->children, child_node) 1098 clk_core_restore_context(child); 1099 } 1100 1101 /** 1102 * clk_save_context - save clock context for poweroff 1103 * 1104 * Saves the context of the clock register for powerstates in which the 1105 * contents of the registers will be lost. Occurs deep within the suspend 1106 * code. Returns 0 on success. 1107 */ 1108 int clk_save_context(void) 1109 { 1110 struct clk_core *clk; 1111 int ret; 1112 1113 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1114 ret = clk_core_save_context(clk); 1115 if (ret < 0) 1116 return ret; 1117 } 1118 1119 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1120 ret = clk_core_save_context(clk); 1121 if (ret < 0) 1122 return ret; 1123 } 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(clk_save_context); 1128 1129 /** 1130 * clk_restore_context - restore clock context after poweroff 1131 * 1132 * Restore the saved clock context upon resume. 1133 * 1134 */ 1135 void clk_restore_context(void) 1136 { 1137 struct clk_core *core; 1138 1139 hlist_for_each_entry(core, &clk_root_list, child_node) 1140 clk_core_restore_context(core); 1141 1142 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1143 clk_core_restore_context(core); 1144 } 1145 EXPORT_SYMBOL_GPL(clk_restore_context); 1146 1147 /** 1148 * clk_enable - ungate a clock 1149 * @clk: the clk being ungated 1150 * 1151 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1153 * if the operation will never sleep. One example is a SoC-internal clk which 1154 * is controlled via simple register writes. In the complex case a clk ungate 1155 * operation may require a fast and a slow part. It is this reason that 1156 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1157 * must be called before clk_enable. Returns 0 on success, -EERROR 1158 * otherwise. 1159 */ 1160 int clk_enable(struct clk *clk) 1161 { 1162 if (!clk) 1163 return 0; 1164 1165 return clk_core_enable_lock(clk->core); 1166 } 1167 EXPORT_SYMBOL_GPL(clk_enable); 1168 1169 static int clk_core_prepare_enable(struct clk_core *core) 1170 { 1171 int ret; 1172 1173 ret = clk_core_prepare_lock(core); 1174 if (ret) 1175 return ret; 1176 1177 ret = clk_core_enable_lock(core); 1178 if (ret) 1179 clk_core_unprepare_lock(core); 1180 1181 return ret; 1182 } 1183 1184 static void clk_core_disable_unprepare(struct clk_core *core) 1185 { 1186 clk_core_disable_lock(core); 1187 clk_core_unprepare_lock(core); 1188 } 1189 1190 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1191 { 1192 struct clk_core *child; 1193 1194 lockdep_assert_held(&prepare_lock); 1195 1196 hlist_for_each_entry(child, &core->children, child_node) 1197 clk_unprepare_unused_subtree(child); 1198 1199 if (core->prepare_count) 1200 return; 1201 1202 if (core->flags & CLK_IGNORE_UNUSED) 1203 return; 1204 1205 if (clk_pm_runtime_get(core)) 1206 return; 1207 1208 if (clk_core_is_prepared(core)) { 1209 trace_clk_unprepare(core); 1210 if (core->ops->unprepare_unused) 1211 core->ops->unprepare_unused(core->hw); 1212 else if (core->ops->unprepare) 1213 core->ops->unprepare(core->hw); 1214 trace_clk_unprepare_complete(core); 1215 } 1216 1217 clk_pm_runtime_put(core); 1218 } 1219 1220 static void __init clk_disable_unused_subtree(struct clk_core *core) 1221 { 1222 struct clk_core *child; 1223 unsigned long flags; 1224 1225 lockdep_assert_held(&prepare_lock); 1226 1227 hlist_for_each_entry(child, &core->children, child_node) 1228 clk_disable_unused_subtree(child); 1229 1230 if (core->flags & CLK_OPS_PARENT_ENABLE) 1231 clk_core_prepare_enable(core->parent); 1232 1233 if (clk_pm_runtime_get(core)) 1234 goto unprepare_out; 1235 1236 flags = clk_enable_lock(); 1237 1238 if (core->enable_count) 1239 goto unlock_out; 1240 1241 if (core->flags & CLK_IGNORE_UNUSED) 1242 goto unlock_out; 1243 1244 /* 1245 * some gate clocks have special needs during the disable-unused 1246 * sequence. call .disable_unused if available, otherwise fall 1247 * back to .disable 1248 */ 1249 if (clk_core_is_enabled(core)) { 1250 trace_clk_disable(core); 1251 if (core->ops->disable_unused) 1252 core->ops->disable_unused(core->hw); 1253 else if (core->ops->disable) 1254 core->ops->disable(core->hw); 1255 trace_clk_disable_complete(core); 1256 } 1257 1258 unlock_out: 1259 clk_enable_unlock(flags); 1260 clk_pm_runtime_put(core); 1261 unprepare_out: 1262 if (core->flags & CLK_OPS_PARENT_ENABLE) 1263 clk_core_disable_unprepare(core->parent); 1264 } 1265 1266 static bool clk_ignore_unused __initdata; 1267 static int __init clk_ignore_unused_setup(char *__unused) 1268 { 1269 clk_ignore_unused = true; 1270 return 1; 1271 } 1272 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1273 1274 static int __init clk_disable_unused(void) 1275 { 1276 struct clk_core *core; 1277 1278 if (clk_ignore_unused) { 1279 pr_warn("clk: Not disabling unused clocks\n"); 1280 return 0; 1281 } 1282 1283 clk_prepare_lock(); 1284 1285 hlist_for_each_entry(core, &clk_root_list, child_node) 1286 clk_disable_unused_subtree(core); 1287 1288 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1289 clk_disable_unused_subtree(core); 1290 1291 hlist_for_each_entry(core, &clk_root_list, child_node) 1292 clk_unprepare_unused_subtree(core); 1293 1294 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1295 clk_unprepare_unused_subtree(core); 1296 1297 clk_prepare_unlock(); 1298 1299 return 0; 1300 } 1301 late_initcall_sync(clk_disable_unused); 1302 1303 static int clk_core_determine_round_nolock(struct clk_core *core, 1304 struct clk_rate_request *req) 1305 { 1306 long rate; 1307 1308 lockdep_assert_held(&prepare_lock); 1309 1310 if (!core) 1311 return 0; 1312 1313 /* 1314 * At this point, core protection will be disabled if 1315 * - if the provider is not protected at all 1316 * - if the calling consumer is the only one which has exclusivity 1317 * over the provider 1318 */ 1319 if (clk_core_rate_is_protected(core)) { 1320 req->rate = core->rate; 1321 } else if (core->ops->determine_rate) { 1322 return core->ops->determine_rate(core->hw, req); 1323 } else if (core->ops->round_rate) { 1324 rate = core->ops->round_rate(core->hw, req->rate, 1325 &req->best_parent_rate); 1326 if (rate < 0) 1327 return rate; 1328 1329 req->rate = rate; 1330 } else { 1331 return -EINVAL; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static void clk_core_init_rate_req(struct clk_core * const core, 1338 struct clk_rate_request *req) 1339 { 1340 struct clk_core *parent; 1341 1342 if (WARN_ON(!core || !req)) 1343 return; 1344 1345 parent = core->parent; 1346 if (parent) { 1347 req->best_parent_hw = parent->hw; 1348 req->best_parent_rate = parent->rate; 1349 } else { 1350 req->best_parent_hw = NULL; 1351 req->best_parent_rate = 0; 1352 } 1353 } 1354 1355 static bool clk_core_can_round(struct clk_core * const core) 1356 { 1357 return core->ops->determine_rate || core->ops->round_rate; 1358 } 1359 1360 static int clk_core_round_rate_nolock(struct clk_core *core, 1361 struct clk_rate_request *req) 1362 { 1363 lockdep_assert_held(&prepare_lock); 1364 1365 if (!core) { 1366 req->rate = 0; 1367 return 0; 1368 } 1369 1370 clk_core_init_rate_req(core, req); 1371 1372 if (clk_core_can_round(core)) 1373 return clk_core_determine_round_nolock(core, req); 1374 else if (core->flags & CLK_SET_RATE_PARENT) 1375 return clk_core_round_rate_nolock(core->parent, req); 1376 1377 req->rate = core->rate; 1378 return 0; 1379 } 1380 1381 /** 1382 * __clk_determine_rate - get the closest rate actually supported by a clock 1383 * @hw: determine the rate of this clock 1384 * @req: target rate request 1385 * 1386 * Useful for clk_ops such as .set_rate and .determine_rate. 1387 */ 1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1389 { 1390 if (!hw) { 1391 req->rate = 0; 1392 return 0; 1393 } 1394 1395 return clk_core_round_rate_nolock(hw->core, req); 1396 } 1397 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1398 1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1400 { 1401 int ret; 1402 struct clk_rate_request req; 1403 1404 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1405 req.rate = rate; 1406 1407 ret = clk_core_round_rate_nolock(hw->core, &req); 1408 if (ret) 1409 return 0; 1410 1411 return req.rate; 1412 } 1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1414 1415 /** 1416 * clk_round_rate - round the given rate for a clk 1417 * @clk: the clk for which we are rounding a rate 1418 * @rate: the rate which is to be rounded 1419 * 1420 * Takes in a rate as input and rounds it to a rate that the clk can actually 1421 * use which is then returned. If clk doesn't support round_rate operation 1422 * then the parent rate is returned. 1423 */ 1424 long clk_round_rate(struct clk *clk, unsigned long rate) 1425 { 1426 struct clk_rate_request req; 1427 int ret; 1428 1429 if (!clk) 1430 return 0; 1431 1432 clk_prepare_lock(); 1433 1434 if (clk->exclusive_count) 1435 clk_core_rate_unprotect(clk->core); 1436 1437 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1438 req.rate = rate; 1439 1440 ret = clk_core_round_rate_nolock(clk->core, &req); 1441 1442 if (clk->exclusive_count) 1443 clk_core_rate_protect(clk->core); 1444 1445 clk_prepare_unlock(); 1446 1447 if (ret) 1448 return ret; 1449 1450 return req.rate; 1451 } 1452 EXPORT_SYMBOL_GPL(clk_round_rate); 1453 1454 /** 1455 * __clk_notify - call clk notifier chain 1456 * @core: clk that is changing rate 1457 * @msg: clk notifier type (see include/linux/clk.h) 1458 * @old_rate: old clk rate 1459 * @new_rate: new clk rate 1460 * 1461 * Triggers a notifier call chain on the clk rate-change notification 1462 * for 'clk'. Passes a pointer to the struct clk and the previous 1463 * and current rates to the notifier callback. Intended to be called by 1464 * internal clock code only. Returns NOTIFY_DONE from the last driver 1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1466 * a driver returns that. 1467 */ 1468 static int __clk_notify(struct clk_core *core, unsigned long msg, 1469 unsigned long old_rate, unsigned long new_rate) 1470 { 1471 struct clk_notifier *cn; 1472 struct clk_notifier_data cnd; 1473 int ret = NOTIFY_DONE; 1474 1475 cnd.old_rate = old_rate; 1476 cnd.new_rate = new_rate; 1477 1478 list_for_each_entry(cn, &clk_notifier_list, node) { 1479 if (cn->clk->core == core) { 1480 cnd.clk = cn->clk; 1481 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1482 &cnd); 1483 if (ret & NOTIFY_STOP_MASK) 1484 return ret; 1485 } 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * __clk_recalc_accuracies 1493 * @core: first clk in the subtree 1494 * 1495 * Walks the subtree of clks starting with clk and recalculates accuracies as 1496 * it goes. Note that if a clk does not implement the .recalc_accuracy 1497 * callback then it is assumed that the clock will take on the accuracy of its 1498 * parent. 1499 */ 1500 static void __clk_recalc_accuracies(struct clk_core *core) 1501 { 1502 unsigned long parent_accuracy = 0; 1503 struct clk_core *child; 1504 1505 lockdep_assert_held(&prepare_lock); 1506 1507 if (core->parent) 1508 parent_accuracy = core->parent->accuracy; 1509 1510 if (core->ops->recalc_accuracy) 1511 core->accuracy = core->ops->recalc_accuracy(core->hw, 1512 parent_accuracy); 1513 else 1514 core->accuracy = parent_accuracy; 1515 1516 hlist_for_each_entry(child, &core->children, child_node) 1517 __clk_recalc_accuracies(child); 1518 } 1519 1520 static long clk_core_get_accuracy(struct clk_core *core) 1521 { 1522 unsigned long accuracy; 1523 1524 clk_prepare_lock(); 1525 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1526 __clk_recalc_accuracies(core); 1527 1528 accuracy = __clk_get_accuracy(core); 1529 clk_prepare_unlock(); 1530 1531 return accuracy; 1532 } 1533 1534 /** 1535 * clk_get_accuracy - return the accuracy of clk 1536 * @clk: the clk whose accuracy is being returned 1537 * 1538 * Simply returns the cached accuracy of the clk, unless 1539 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1540 * issued. 1541 * If clk is NULL then returns 0. 1542 */ 1543 long clk_get_accuracy(struct clk *clk) 1544 { 1545 if (!clk) 1546 return 0; 1547 1548 return clk_core_get_accuracy(clk->core); 1549 } 1550 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1551 1552 static unsigned long clk_recalc(struct clk_core *core, 1553 unsigned long parent_rate) 1554 { 1555 unsigned long rate = parent_rate; 1556 1557 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1558 rate = core->ops->recalc_rate(core->hw, parent_rate); 1559 clk_pm_runtime_put(core); 1560 } 1561 return rate; 1562 } 1563 1564 /** 1565 * __clk_recalc_rates 1566 * @core: first clk in the subtree 1567 * @msg: notification type (see include/linux/clk.h) 1568 * 1569 * Walks the subtree of clks starting with clk and recalculates rates as it 1570 * goes. Note that if a clk does not implement the .recalc_rate callback then 1571 * it is assumed that the clock will take on the rate of its parent. 1572 * 1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1574 * if necessary. 1575 */ 1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1577 { 1578 unsigned long old_rate; 1579 unsigned long parent_rate = 0; 1580 struct clk_core *child; 1581 1582 lockdep_assert_held(&prepare_lock); 1583 1584 old_rate = core->rate; 1585 1586 if (core->parent) 1587 parent_rate = core->parent->rate; 1588 1589 core->rate = clk_recalc(core, parent_rate); 1590 1591 /* 1592 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1593 * & ABORT_RATE_CHANGE notifiers 1594 */ 1595 if (core->notifier_count && msg) 1596 __clk_notify(core, msg, old_rate, core->rate); 1597 1598 hlist_for_each_entry(child, &core->children, child_node) 1599 __clk_recalc_rates(child, msg); 1600 } 1601 1602 static unsigned long clk_core_get_rate(struct clk_core *core) 1603 { 1604 unsigned long rate; 1605 1606 clk_prepare_lock(); 1607 1608 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1609 __clk_recalc_rates(core, 0); 1610 1611 rate = clk_core_get_rate_nolock(core); 1612 clk_prepare_unlock(); 1613 1614 return rate; 1615 } 1616 1617 /** 1618 * clk_get_rate - return the rate of clk 1619 * @clk: the clk whose rate is being returned 1620 * 1621 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1622 * is set, which means a recalc_rate will be issued. 1623 * If clk is NULL then returns 0. 1624 */ 1625 unsigned long clk_get_rate(struct clk *clk) 1626 { 1627 if (!clk) 1628 return 0; 1629 1630 return clk_core_get_rate(clk->core); 1631 } 1632 EXPORT_SYMBOL_GPL(clk_get_rate); 1633 1634 static int clk_fetch_parent_index(struct clk_core *core, 1635 struct clk_core *parent) 1636 { 1637 int i; 1638 1639 if (!parent) 1640 return -EINVAL; 1641 1642 for (i = 0; i < core->num_parents; i++) { 1643 /* Found it first try! */ 1644 if (core->parents[i].core == parent) 1645 return i; 1646 1647 /* Something else is here, so keep looking */ 1648 if (core->parents[i].core) 1649 continue; 1650 1651 /* Maybe core hasn't been cached but the hw is all we know? */ 1652 if (core->parents[i].hw) { 1653 if (core->parents[i].hw == parent->hw) 1654 break; 1655 1656 /* Didn't match, but we're expecting a clk_hw */ 1657 continue; 1658 } 1659 1660 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1661 if (parent == clk_core_get(core, i)) 1662 break; 1663 1664 /* Fallback to comparing globally unique names */ 1665 if (core->parents[i].name && 1666 !strcmp(parent->name, core->parents[i].name)) 1667 break; 1668 } 1669 1670 if (i == core->num_parents) 1671 return -EINVAL; 1672 1673 core->parents[i].core = parent; 1674 return i; 1675 } 1676 1677 /** 1678 * clk_hw_get_parent_index - return the index of the parent clock 1679 * @hw: clk_hw associated with the clk being consumed 1680 * 1681 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1682 * clock does not have a current parent. 1683 */ 1684 int clk_hw_get_parent_index(struct clk_hw *hw) 1685 { 1686 struct clk_hw *parent = clk_hw_get_parent(hw); 1687 1688 if (WARN_ON(parent == NULL)) 1689 return -EINVAL; 1690 1691 return clk_fetch_parent_index(hw->core, parent->core); 1692 } 1693 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1694 1695 /* 1696 * Update the orphan status of @core and all its children. 1697 */ 1698 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1699 { 1700 struct clk_core *child; 1701 1702 core->orphan = is_orphan; 1703 1704 hlist_for_each_entry(child, &core->children, child_node) 1705 clk_core_update_orphan_status(child, is_orphan); 1706 } 1707 1708 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1709 { 1710 bool was_orphan = core->orphan; 1711 1712 hlist_del(&core->child_node); 1713 1714 if (new_parent) { 1715 bool becomes_orphan = new_parent->orphan; 1716 1717 /* avoid duplicate POST_RATE_CHANGE notifications */ 1718 if (new_parent->new_child == core) 1719 new_parent->new_child = NULL; 1720 1721 hlist_add_head(&core->child_node, &new_parent->children); 1722 1723 if (was_orphan != becomes_orphan) 1724 clk_core_update_orphan_status(core, becomes_orphan); 1725 } else { 1726 hlist_add_head(&core->child_node, &clk_orphan_list); 1727 if (!was_orphan) 1728 clk_core_update_orphan_status(core, true); 1729 } 1730 1731 core->parent = new_parent; 1732 } 1733 1734 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1735 struct clk_core *parent) 1736 { 1737 unsigned long flags; 1738 struct clk_core *old_parent = core->parent; 1739 1740 /* 1741 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1742 * 1743 * 2. Migrate prepare state between parents and prevent race with 1744 * clk_enable(). 1745 * 1746 * If the clock is not prepared, then a race with 1747 * clk_enable/disable() is impossible since we already have the 1748 * prepare lock (future calls to clk_enable() need to be preceded by 1749 * a clk_prepare()). 1750 * 1751 * If the clock is prepared, migrate the prepared state to the new 1752 * parent and also protect against a race with clk_enable() by 1753 * forcing the clock and the new parent on. This ensures that all 1754 * future calls to clk_enable() are practically NOPs with respect to 1755 * hardware and software states. 1756 * 1757 * See also: Comment for clk_set_parent() below. 1758 */ 1759 1760 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1761 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1762 clk_core_prepare_enable(old_parent); 1763 clk_core_prepare_enable(parent); 1764 } 1765 1766 /* migrate prepare count if > 0 */ 1767 if (core->prepare_count) { 1768 clk_core_prepare_enable(parent); 1769 clk_core_enable_lock(core); 1770 } 1771 1772 /* update the clk tree topology */ 1773 flags = clk_enable_lock(); 1774 clk_reparent(core, parent); 1775 clk_enable_unlock(flags); 1776 1777 return old_parent; 1778 } 1779 1780 static void __clk_set_parent_after(struct clk_core *core, 1781 struct clk_core *parent, 1782 struct clk_core *old_parent) 1783 { 1784 /* 1785 * Finish the migration of prepare state and undo the changes done 1786 * for preventing a race with clk_enable(). 1787 */ 1788 if (core->prepare_count) { 1789 clk_core_disable_lock(core); 1790 clk_core_disable_unprepare(old_parent); 1791 } 1792 1793 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1794 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1795 clk_core_disable_unprepare(parent); 1796 clk_core_disable_unprepare(old_parent); 1797 } 1798 } 1799 1800 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1801 u8 p_index) 1802 { 1803 unsigned long flags; 1804 int ret = 0; 1805 struct clk_core *old_parent; 1806 1807 old_parent = __clk_set_parent_before(core, parent); 1808 1809 trace_clk_set_parent(core, parent); 1810 1811 /* change clock input source */ 1812 if (parent && core->ops->set_parent) 1813 ret = core->ops->set_parent(core->hw, p_index); 1814 1815 trace_clk_set_parent_complete(core, parent); 1816 1817 if (ret) { 1818 flags = clk_enable_lock(); 1819 clk_reparent(core, old_parent); 1820 clk_enable_unlock(flags); 1821 __clk_set_parent_after(core, old_parent, parent); 1822 1823 return ret; 1824 } 1825 1826 __clk_set_parent_after(core, parent, old_parent); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * __clk_speculate_rates 1833 * @core: first clk in the subtree 1834 * @parent_rate: the "future" rate of clk's parent 1835 * 1836 * Walks the subtree of clks starting with clk, speculating rates as it 1837 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1838 * 1839 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1840 * pre-rate change notifications and returns early if no clks in the 1841 * subtree have subscribed to the notifications. Note that if a clk does not 1842 * implement the .recalc_rate callback then it is assumed that the clock will 1843 * take on the rate of its parent. 1844 */ 1845 static int __clk_speculate_rates(struct clk_core *core, 1846 unsigned long parent_rate) 1847 { 1848 struct clk_core *child; 1849 unsigned long new_rate; 1850 int ret = NOTIFY_DONE; 1851 1852 lockdep_assert_held(&prepare_lock); 1853 1854 new_rate = clk_recalc(core, parent_rate); 1855 1856 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1857 if (core->notifier_count) 1858 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1859 1860 if (ret & NOTIFY_STOP_MASK) { 1861 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1862 __func__, core->name, ret); 1863 goto out; 1864 } 1865 1866 hlist_for_each_entry(child, &core->children, child_node) { 1867 ret = __clk_speculate_rates(child, new_rate); 1868 if (ret & NOTIFY_STOP_MASK) 1869 break; 1870 } 1871 1872 out: 1873 return ret; 1874 } 1875 1876 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1877 struct clk_core *new_parent, u8 p_index) 1878 { 1879 struct clk_core *child; 1880 1881 core->new_rate = new_rate; 1882 core->new_parent = new_parent; 1883 core->new_parent_index = p_index; 1884 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1885 core->new_child = NULL; 1886 if (new_parent && new_parent != core->parent) 1887 new_parent->new_child = core; 1888 1889 hlist_for_each_entry(child, &core->children, child_node) { 1890 child->new_rate = clk_recalc(child, new_rate); 1891 clk_calc_subtree(child, child->new_rate, NULL, 0); 1892 } 1893 } 1894 1895 /* 1896 * calculate the new rates returning the topmost clock that has to be 1897 * changed. 1898 */ 1899 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1900 unsigned long rate) 1901 { 1902 struct clk_core *top = core; 1903 struct clk_core *old_parent, *parent; 1904 unsigned long best_parent_rate = 0; 1905 unsigned long new_rate; 1906 unsigned long min_rate; 1907 unsigned long max_rate; 1908 int p_index = 0; 1909 long ret; 1910 1911 /* sanity */ 1912 if (IS_ERR_OR_NULL(core)) 1913 return NULL; 1914 1915 /* save parent rate, if it exists */ 1916 parent = old_parent = core->parent; 1917 if (parent) 1918 best_parent_rate = parent->rate; 1919 1920 clk_core_get_boundaries(core, &min_rate, &max_rate); 1921 1922 /* find the closest rate and parent clk/rate */ 1923 if (clk_core_can_round(core)) { 1924 struct clk_rate_request req; 1925 1926 req.rate = rate; 1927 req.min_rate = min_rate; 1928 req.max_rate = max_rate; 1929 1930 clk_core_init_rate_req(core, &req); 1931 1932 ret = clk_core_determine_round_nolock(core, &req); 1933 if (ret < 0) 1934 return NULL; 1935 1936 best_parent_rate = req.best_parent_rate; 1937 new_rate = req.rate; 1938 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1939 1940 if (new_rate < min_rate || new_rate > max_rate) 1941 return NULL; 1942 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1943 /* pass-through clock without adjustable parent */ 1944 core->new_rate = core->rate; 1945 return NULL; 1946 } else { 1947 /* pass-through clock with adjustable parent */ 1948 top = clk_calc_new_rates(parent, rate); 1949 new_rate = parent->new_rate; 1950 goto out; 1951 } 1952 1953 /* some clocks must be gated to change parent */ 1954 if (parent != old_parent && 1955 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1956 pr_debug("%s: %s not gated but wants to reparent\n", 1957 __func__, core->name); 1958 return NULL; 1959 } 1960 1961 /* try finding the new parent index */ 1962 if (parent && core->num_parents > 1) { 1963 p_index = clk_fetch_parent_index(core, parent); 1964 if (p_index < 0) { 1965 pr_debug("%s: clk %s can not be parent of clk %s\n", 1966 __func__, parent->name, core->name); 1967 return NULL; 1968 } 1969 } 1970 1971 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1972 best_parent_rate != parent->rate) 1973 top = clk_calc_new_rates(parent, best_parent_rate); 1974 1975 out: 1976 clk_calc_subtree(core, new_rate, parent, p_index); 1977 1978 return top; 1979 } 1980 1981 /* 1982 * Notify about rate changes in a subtree. Always walk down the whole tree 1983 * so that in case of an error we can walk down the whole tree again and 1984 * abort the change. 1985 */ 1986 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1987 unsigned long event) 1988 { 1989 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1990 int ret = NOTIFY_DONE; 1991 1992 if (core->rate == core->new_rate) 1993 return NULL; 1994 1995 if (core->notifier_count) { 1996 ret = __clk_notify(core, event, core->rate, core->new_rate); 1997 if (ret & NOTIFY_STOP_MASK) 1998 fail_clk = core; 1999 } 2000 2001 hlist_for_each_entry(child, &core->children, child_node) { 2002 /* Skip children who will be reparented to another clock */ 2003 if (child->new_parent && child->new_parent != core) 2004 continue; 2005 tmp_clk = clk_propagate_rate_change(child, event); 2006 if (tmp_clk) 2007 fail_clk = tmp_clk; 2008 } 2009 2010 /* handle the new child who might not be in core->children yet */ 2011 if (core->new_child) { 2012 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2013 if (tmp_clk) 2014 fail_clk = tmp_clk; 2015 } 2016 2017 return fail_clk; 2018 } 2019 2020 /* 2021 * walk down a subtree and set the new rates notifying the rate 2022 * change on the way 2023 */ 2024 static void clk_change_rate(struct clk_core *core) 2025 { 2026 struct clk_core *child; 2027 struct hlist_node *tmp; 2028 unsigned long old_rate; 2029 unsigned long best_parent_rate = 0; 2030 bool skip_set_rate = false; 2031 struct clk_core *old_parent; 2032 struct clk_core *parent = NULL; 2033 2034 old_rate = core->rate; 2035 2036 if (core->new_parent) { 2037 parent = core->new_parent; 2038 best_parent_rate = core->new_parent->rate; 2039 } else if (core->parent) { 2040 parent = core->parent; 2041 best_parent_rate = core->parent->rate; 2042 } 2043 2044 if (clk_pm_runtime_get(core)) 2045 return; 2046 2047 if (core->flags & CLK_SET_RATE_UNGATE) { 2048 unsigned long flags; 2049 2050 clk_core_prepare(core); 2051 flags = clk_enable_lock(); 2052 clk_core_enable(core); 2053 clk_enable_unlock(flags); 2054 } 2055 2056 if (core->new_parent && core->new_parent != core->parent) { 2057 old_parent = __clk_set_parent_before(core, core->new_parent); 2058 trace_clk_set_parent(core, core->new_parent); 2059 2060 if (core->ops->set_rate_and_parent) { 2061 skip_set_rate = true; 2062 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2063 best_parent_rate, 2064 core->new_parent_index); 2065 } else if (core->ops->set_parent) { 2066 core->ops->set_parent(core->hw, core->new_parent_index); 2067 } 2068 2069 trace_clk_set_parent_complete(core, core->new_parent); 2070 __clk_set_parent_after(core, core->new_parent, old_parent); 2071 } 2072 2073 if (core->flags & CLK_OPS_PARENT_ENABLE) 2074 clk_core_prepare_enable(parent); 2075 2076 trace_clk_set_rate(core, core->new_rate); 2077 2078 if (!skip_set_rate && core->ops->set_rate) 2079 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2080 2081 trace_clk_set_rate_complete(core, core->new_rate); 2082 2083 core->rate = clk_recalc(core, best_parent_rate); 2084 2085 if (core->flags & CLK_SET_RATE_UNGATE) { 2086 unsigned long flags; 2087 2088 flags = clk_enable_lock(); 2089 clk_core_disable(core); 2090 clk_enable_unlock(flags); 2091 clk_core_unprepare(core); 2092 } 2093 2094 if (core->flags & CLK_OPS_PARENT_ENABLE) 2095 clk_core_disable_unprepare(parent); 2096 2097 if (core->notifier_count && old_rate != core->rate) 2098 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2099 2100 if (core->flags & CLK_RECALC_NEW_RATES) 2101 (void)clk_calc_new_rates(core, core->new_rate); 2102 2103 /* 2104 * Use safe iteration, as change_rate can actually swap parents 2105 * for certain clock types. 2106 */ 2107 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2108 /* Skip children who will be reparented to another clock */ 2109 if (child->new_parent && child->new_parent != core) 2110 continue; 2111 clk_change_rate(child); 2112 } 2113 2114 /* handle the new child who might not be in core->children yet */ 2115 if (core->new_child) 2116 clk_change_rate(core->new_child); 2117 2118 clk_pm_runtime_put(core); 2119 } 2120 2121 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2122 unsigned long req_rate) 2123 { 2124 int ret, cnt; 2125 struct clk_rate_request req; 2126 2127 lockdep_assert_held(&prepare_lock); 2128 2129 if (!core) 2130 return 0; 2131 2132 /* simulate what the rate would be if it could be freely set */ 2133 cnt = clk_core_rate_nuke_protect(core); 2134 if (cnt < 0) 2135 return cnt; 2136 2137 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2138 req.rate = req_rate; 2139 2140 ret = clk_core_round_rate_nolock(core, &req); 2141 2142 /* restore the protection */ 2143 clk_core_rate_restore_protect(core, cnt); 2144 2145 return ret ? 0 : req.rate; 2146 } 2147 2148 static int clk_core_set_rate_nolock(struct clk_core *core, 2149 unsigned long req_rate) 2150 { 2151 struct clk_core *top, *fail_clk; 2152 unsigned long rate; 2153 int ret = 0; 2154 2155 if (!core) 2156 return 0; 2157 2158 rate = clk_core_req_round_rate_nolock(core, req_rate); 2159 2160 /* bail early if nothing to do */ 2161 if (rate == clk_core_get_rate_nolock(core)) 2162 return 0; 2163 2164 /* fail on a direct rate set of a protected provider */ 2165 if (clk_core_rate_is_protected(core)) 2166 return -EBUSY; 2167 2168 /* calculate new rates and get the topmost changed clock */ 2169 top = clk_calc_new_rates(core, req_rate); 2170 if (!top) 2171 return -EINVAL; 2172 2173 ret = clk_pm_runtime_get(core); 2174 if (ret) 2175 return ret; 2176 2177 /* notify that we are about to change rates */ 2178 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2179 if (fail_clk) { 2180 pr_debug("%s: failed to set %s rate\n", __func__, 2181 fail_clk->name); 2182 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2183 ret = -EBUSY; 2184 goto err; 2185 } 2186 2187 /* change the rates */ 2188 clk_change_rate(top); 2189 2190 core->req_rate = req_rate; 2191 err: 2192 clk_pm_runtime_put(core); 2193 2194 return ret; 2195 } 2196 2197 /** 2198 * clk_set_rate - specify a new rate for clk 2199 * @clk: the clk whose rate is being changed 2200 * @rate: the new rate for clk 2201 * 2202 * In the simplest case clk_set_rate will only adjust the rate of clk. 2203 * 2204 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2205 * propagate up to clk's parent; whether or not this happens depends on the 2206 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2207 * after calling .round_rate then upstream parent propagation is ignored. If 2208 * *parent_rate comes back with a new rate for clk's parent then we propagate 2209 * up to clk's parent and set its rate. Upward propagation will continue 2210 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2211 * .round_rate stops requesting changes to clk's parent_rate. 2212 * 2213 * Rate changes are accomplished via tree traversal that also recalculates the 2214 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2215 * 2216 * Returns 0 on success, -EERROR otherwise. 2217 */ 2218 int clk_set_rate(struct clk *clk, unsigned long rate) 2219 { 2220 int ret; 2221 2222 if (!clk) 2223 return 0; 2224 2225 /* prevent racing with updates to the clock topology */ 2226 clk_prepare_lock(); 2227 2228 if (clk->exclusive_count) 2229 clk_core_rate_unprotect(clk->core); 2230 2231 ret = clk_core_set_rate_nolock(clk->core, rate); 2232 2233 if (clk->exclusive_count) 2234 clk_core_rate_protect(clk->core); 2235 2236 clk_prepare_unlock(); 2237 2238 return ret; 2239 } 2240 EXPORT_SYMBOL_GPL(clk_set_rate); 2241 2242 /** 2243 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2244 * @clk: the clk whose rate is being changed 2245 * @rate: the new rate for clk 2246 * 2247 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2248 * within a critical section 2249 * 2250 * This can be used initially to ensure that at least 1 consumer is 2251 * satisfied when several consumers are competing for exclusivity over the 2252 * same clock provider. 2253 * 2254 * The exclusivity is not applied if setting the rate failed. 2255 * 2256 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2257 * clk_rate_exclusive_put(). 2258 * 2259 * Returns 0 on success, -EERROR otherwise. 2260 */ 2261 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2262 { 2263 int ret; 2264 2265 if (!clk) 2266 return 0; 2267 2268 /* prevent racing with updates to the clock topology */ 2269 clk_prepare_lock(); 2270 2271 /* 2272 * The temporary protection removal is not here, on purpose 2273 * This function is meant to be used instead of clk_rate_protect, 2274 * so before the consumer code path protect the clock provider 2275 */ 2276 2277 ret = clk_core_set_rate_nolock(clk->core, rate); 2278 if (!ret) { 2279 clk_core_rate_protect(clk->core); 2280 clk->exclusive_count++; 2281 } 2282 2283 clk_prepare_unlock(); 2284 2285 return ret; 2286 } 2287 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2288 2289 /** 2290 * clk_set_rate_range - set a rate range for a clock source 2291 * @clk: clock source 2292 * @min: desired minimum clock rate in Hz, inclusive 2293 * @max: desired maximum clock rate in Hz, inclusive 2294 * 2295 * Returns success (0) or negative errno. 2296 */ 2297 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2298 { 2299 int ret = 0; 2300 unsigned long old_min, old_max, rate; 2301 2302 if (!clk) 2303 return 0; 2304 2305 if (min > max) { 2306 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2307 __func__, clk->core->name, clk->dev_id, clk->con_id, 2308 min, max); 2309 return -EINVAL; 2310 } 2311 2312 clk_prepare_lock(); 2313 2314 if (clk->exclusive_count) 2315 clk_core_rate_unprotect(clk->core); 2316 2317 /* Save the current values in case we need to rollback the change */ 2318 old_min = clk->min_rate; 2319 old_max = clk->max_rate; 2320 clk->min_rate = min; 2321 clk->max_rate = max; 2322 2323 rate = clk_core_get_rate_nolock(clk->core); 2324 if (rate < min || rate > max) { 2325 /* 2326 * FIXME: 2327 * We are in bit of trouble here, current rate is outside the 2328 * the requested range. We are going try to request appropriate 2329 * range boundary but there is a catch. It may fail for the 2330 * usual reason (clock broken, clock protected, etc) but also 2331 * because: 2332 * - round_rate() was not favorable and fell on the wrong 2333 * side of the boundary 2334 * - the determine_rate() callback does not really check for 2335 * this corner case when determining the rate 2336 */ 2337 2338 if (rate < min) 2339 rate = min; 2340 else 2341 rate = max; 2342 2343 ret = clk_core_set_rate_nolock(clk->core, rate); 2344 if (ret) { 2345 /* rollback the changes */ 2346 clk->min_rate = old_min; 2347 clk->max_rate = old_max; 2348 } 2349 } 2350 2351 if (clk->exclusive_count) 2352 clk_core_rate_protect(clk->core); 2353 2354 clk_prepare_unlock(); 2355 2356 return ret; 2357 } 2358 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2359 2360 /** 2361 * clk_set_min_rate - set a minimum clock rate for a clock source 2362 * @clk: clock source 2363 * @rate: desired minimum clock rate in Hz, inclusive 2364 * 2365 * Returns success (0) or negative errno. 2366 */ 2367 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2368 { 2369 if (!clk) 2370 return 0; 2371 2372 return clk_set_rate_range(clk, rate, clk->max_rate); 2373 } 2374 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2375 2376 /** 2377 * clk_set_max_rate - set a maximum clock rate for a clock source 2378 * @clk: clock source 2379 * @rate: desired maximum clock rate in Hz, inclusive 2380 * 2381 * Returns success (0) or negative errno. 2382 */ 2383 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2384 { 2385 if (!clk) 2386 return 0; 2387 2388 return clk_set_rate_range(clk, clk->min_rate, rate); 2389 } 2390 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2391 2392 /** 2393 * clk_get_parent - return the parent of a clk 2394 * @clk: the clk whose parent gets returned 2395 * 2396 * Simply returns clk->parent. Returns NULL if clk is NULL. 2397 */ 2398 struct clk *clk_get_parent(struct clk *clk) 2399 { 2400 struct clk *parent; 2401 2402 if (!clk) 2403 return NULL; 2404 2405 clk_prepare_lock(); 2406 /* TODO: Create a per-user clk and change callers to call clk_put */ 2407 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2408 clk_prepare_unlock(); 2409 2410 return parent; 2411 } 2412 EXPORT_SYMBOL_GPL(clk_get_parent); 2413 2414 static struct clk_core *__clk_init_parent(struct clk_core *core) 2415 { 2416 u8 index = 0; 2417 2418 if (core->num_parents > 1 && core->ops->get_parent) 2419 index = core->ops->get_parent(core->hw); 2420 2421 return clk_core_get_parent_by_index(core, index); 2422 } 2423 2424 static void clk_core_reparent(struct clk_core *core, 2425 struct clk_core *new_parent) 2426 { 2427 clk_reparent(core, new_parent); 2428 __clk_recalc_accuracies(core); 2429 __clk_recalc_rates(core, POST_RATE_CHANGE); 2430 } 2431 2432 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2433 { 2434 if (!hw) 2435 return; 2436 2437 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2438 } 2439 2440 /** 2441 * clk_has_parent - check if a clock is a possible parent for another 2442 * @clk: clock source 2443 * @parent: parent clock source 2444 * 2445 * This function can be used in drivers that need to check that a clock can be 2446 * the parent of another without actually changing the parent. 2447 * 2448 * Returns true if @parent is a possible parent for @clk, false otherwise. 2449 */ 2450 bool clk_has_parent(struct clk *clk, struct clk *parent) 2451 { 2452 struct clk_core *core, *parent_core; 2453 int i; 2454 2455 /* NULL clocks should be nops, so return success if either is NULL. */ 2456 if (!clk || !parent) 2457 return true; 2458 2459 core = clk->core; 2460 parent_core = parent->core; 2461 2462 /* Optimize for the case where the parent is already the parent. */ 2463 if (core->parent == parent_core) 2464 return true; 2465 2466 for (i = 0; i < core->num_parents; i++) 2467 if (!strcmp(core->parents[i].name, parent_core->name)) 2468 return true; 2469 2470 return false; 2471 } 2472 EXPORT_SYMBOL_GPL(clk_has_parent); 2473 2474 static int clk_core_set_parent_nolock(struct clk_core *core, 2475 struct clk_core *parent) 2476 { 2477 int ret = 0; 2478 int p_index = 0; 2479 unsigned long p_rate = 0; 2480 2481 lockdep_assert_held(&prepare_lock); 2482 2483 if (!core) 2484 return 0; 2485 2486 if (core->parent == parent) 2487 return 0; 2488 2489 /* verify ops for multi-parent clks */ 2490 if (core->num_parents > 1 && !core->ops->set_parent) 2491 return -EPERM; 2492 2493 /* check that we are allowed to re-parent if the clock is in use */ 2494 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2495 return -EBUSY; 2496 2497 if (clk_core_rate_is_protected(core)) 2498 return -EBUSY; 2499 2500 /* try finding the new parent index */ 2501 if (parent) { 2502 p_index = clk_fetch_parent_index(core, parent); 2503 if (p_index < 0) { 2504 pr_debug("%s: clk %s can not be parent of clk %s\n", 2505 __func__, parent->name, core->name); 2506 return p_index; 2507 } 2508 p_rate = parent->rate; 2509 } 2510 2511 ret = clk_pm_runtime_get(core); 2512 if (ret) 2513 return ret; 2514 2515 /* propagate PRE_RATE_CHANGE notifications */ 2516 ret = __clk_speculate_rates(core, p_rate); 2517 2518 /* abort if a driver objects */ 2519 if (ret & NOTIFY_STOP_MASK) 2520 goto runtime_put; 2521 2522 /* do the re-parent */ 2523 ret = __clk_set_parent(core, parent, p_index); 2524 2525 /* propagate rate an accuracy recalculation accordingly */ 2526 if (ret) { 2527 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2528 } else { 2529 __clk_recalc_rates(core, POST_RATE_CHANGE); 2530 __clk_recalc_accuracies(core); 2531 } 2532 2533 runtime_put: 2534 clk_pm_runtime_put(core); 2535 2536 return ret; 2537 } 2538 2539 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2540 { 2541 return clk_core_set_parent_nolock(hw->core, parent->core); 2542 } 2543 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2544 2545 /** 2546 * clk_set_parent - switch the parent of a mux clk 2547 * @clk: the mux clk whose input we are switching 2548 * @parent: the new input to clk 2549 * 2550 * Re-parent clk to use parent as its new input source. If clk is in 2551 * prepared state, the clk will get enabled for the duration of this call. If 2552 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2553 * that, the reparenting is glitchy in hardware, etc), use the 2554 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2555 * 2556 * After successfully changing clk's parent clk_set_parent will update the 2557 * clk topology, sysfs topology and propagate rate recalculation via 2558 * __clk_recalc_rates. 2559 * 2560 * Returns 0 on success, -EERROR otherwise. 2561 */ 2562 int clk_set_parent(struct clk *clk, struct clk *parent) 2563 { 2564 int ret; 2565 2566 if (!clk) 2567 return 0; 2568 2569 clk_prepare_lock(); 2570 2571 if (clk->exclusive_count) 2572 clk_core_rate_unprotect(clk->core); 2573 2574 ret = clk_core_set_parent_nolock(clk->core, 2575 parent ? parent->core : NULL); 2576 2577 if (clk->exclusive_count) 2578 clk_core_rate_protect(clk->core); 2579 2580 clk_prepare_unlock(); 2581 2582 return ret; 2583 } 2584 EXPORT_SYMBOL_GPL(clk_set_parent); 2585 2586 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2587 { 2588 int ret = -EINVAL; 2589 2590 lockdep_assert_held(&prepare_lock); 2591 2592 if (!core) 2593 return 0; 2594 2595 if (clk_core_rate_is_protected(core)) 2596 return -EBUSY; 2597 2598 trace_clk_set_phase(core, degrees); 2599 2600 if (core->ops->set_phase) { 2601 ret = core->ops->set_phase(core->hw, degrees); 2602 if (!ret) 2603 core->phase = degrees; 2604 } 2605 2606 trace_clk_set_phase_complete(core, degrees); 2607 2608 return ret; 2609 } 2610 2611 /** 2612 * clk_set_phase - adjust the phase shift of a clock signal 2613 * @clk: clock signal source 2614 * @degrees: number of degrees the signal is shifted 2615 * 2616 * Shifts the phase of a clock signal by the specified 2617 * degrees. Returns 0 on success, -EERROR otherwise. 2618 * 2619 * This function makes no distinction about the input or reference 2620 * signal that we adjust the clock signal phase against. For example 2621 * phase locked-loop clock signal generators we may shift phase with 2622 * respect to feedback clock signal input, but for other cases the 2623 * clock phase may be shifted with respect to some other, unspecified 2624 * signal. 2625 * 2626 * Additionally the concept of phase shift does not propagate through 2627 * the clock tree hierarchy, which sets it apart from clock rates and 2628 * clock accuracy. A parent clock phase attribute does not have an 2629 * impact on the phase attribute of a child clock. 2630 */ 2631 int clk_set_phase(struct clk *clk, int degrees) 2632 { 2633 int ret; 2634 2635 if (!clk) 2636 return 0; 2637 2638 /* sanity check degrees */ 2639 degrees %= 360; 2640 if (degrees < 0) 2641 degrees += 360; 2642 2643 clk_prepare_lock(); 2644 2645 if (clk->exclusive_count) 2646 clk_core_rate_unprotect(clk->core); 2647 2648 ret = clk_core_set_phase_nolock(clk->core, degrees); 2649 2650 if (clk->exclusive_count) 2651 clk_core_rate_protect(clk->core); 2652 2653 clk_prepare_unlock(); 2654 2655 return ret; 2656 } 2657 EXPORT_SYMBOL_GPL(clk_set_phase); 2658 2659 static int clk_core_get_phase(struct clk_core *core) 2660 { 2661 int ret; 2662 2663 clk_prepare_lock(); 2664 /* Always try to update cached phase if possible */ 2665 if (core->ops->get_phase) 2666 core->phase = core->ops->get_phase(core->hw); 2667 ret = core->phase; 2668 clk_prepare_unlock(); 2669 2670 return ret; 2671 } 2672 2673 /** 2674 * clk_get_phase - return the phase shift of a clock signal 2675 * @clk: clock signal source 2676 * 2677 * Returns the phase shift of a clock node in degrees, otherwise returns 2678 * -EERROR. 2679 */ 2680 int clk_get_phase(struct clk *clk) 2681 { 2682 if (!clk) 2683 return 0; 2684 2685 return clk_core_get_phase(clk->core); 2686 } 2687 EXPORT_SYMBOL_GPL(clk_get_phase); 2688 2689 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2690 { 2691 /* Assume a default value of 50% */ 2692 core->duty.num = 1; 2693 core->duty.den = 2; 2694 } 2695 2696 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2697 2698 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2699 { 2700 struct clk_duty *duty = &core->duty; 2701 int ret = 0; 2702 2703 if (!core->ops->get_duty_cycle) 2704 return clk_core_update_duty_cycle_parent_nolock(core); 2705 2706 ret = core->ops->get_duty_cycle(core->hw, duty); 2707 if (ret) 2708 goto reset; 2709 2710 /* Don't trust the clock provider too much */ 2711 if (duty->den == 0 || duty->num > duty->den) { 2712 ret = -EINVAL; 2713 goto reset; 2714 } 2715 2716 return 0; 2717 2718 reset: 2719 clk_core_reset_duty_cycle_nolock(core); 2720 return ret; 2721 } 2722 2723 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2724 { 2725 int ret = 0; 2726 2727 if (core->parent && 2728 core->flags & CLK_DUTY_CYCLE_PARENT) { 2729 ret = clk_core_update_duty_cycle_nolock(core->parent); 2730 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2731 } else { 2732 clk_core_reset_duty_cycle_nolock(core); 2733 } 2734 2735 return ret; 2736 } 2737 2738 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2739 struct clk_duty *duty); 2740 2741 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2742 struct clk_duty *duty) 2743 { 2744 int ret; 2745 2746 lockdep_assert_held(&prepare_lock); 2747 2748 if (clk_core_rate_is_protected(core)) 2749 return -EBUSY; 2750 2751 trace_clk_set_duty_cycle(core, duty); 2752 2753 if (!core->ops->set_duty_cycle) 2754 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2755 2756 ret = core->ops->set_duty_cycle(core->hw, duty); 2757 if (!ret) 2758 memcpy(&core->duty, duty, sizeof(*duty)); 2759 2760 trace_clk_set_duty_cycle_complete(core, duty); 2761 2762 return ret; 2763 } 2764 2765 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2766 struct clk_duty *duty) 2767 { 2768 int ret = 0; 2769 2770 if (core->parent && 2771 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2772 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2773 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2774 } 2775 2776 return ret; 2777 } 2778 2779 /** 2780 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2781 * @clk: clock signal source 2782 * @num: numerator of the duty cycle ratio to be applied 2783 * @den: denominator of the duty cycle ratio to be applied 2784 * 2785 * Apply the duty cycle ratio if the ratio is valid and the clock can 2786 * perform this operation 2787 * 2788 * Returns (0) on success, a negative errno otherwise. 2789 */ 2790 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2791 { 2792 int ret; 2793 struct clk_duty duty; 2794 2795 if (!clk) 2796 return 0; 2797 2798 /* sanity check the ratio */ 2799 if (den == 0 || num > den) 2800 return -EINVAL; 2801 2802 duty.num = num; 2803 duty.den = den; 2804 2805 clk_prepare_lock(); 2806 2807 if (clk->exclusive_count) 2808 clk_core_rate_unprotect(clk->core); 2809 2810 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2811 2812 if (clk->exclusive_count) 2813 clk_core_rate_protect(clk->core); 2814 2815 clk_prepare_unlock(); 2816 2817 return ret; 2818 } 2819 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2820 2821 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2822 unsigned int scale) 2823 { 2824 struct clk_duty *duty = &core->duty; 2825 int ret; 2826 2827 clk_prepare_lock(); 2828 2829 ret = clk_core_update_duty_cycle_nolock(core); 2830 if (!ret) 2831 ret = mult_frac(scale, duty->num, duty->den); 2832 2833 clk_prepare_unlock(); 2834 2835 return ret; 2836 } 2837 2838 /** 2839 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2840 * @clk: clock signal source 2841 * @scale: scaling factor to be applied to represent the ratio as an integer 2842 * 2843 * Returns the duty cycle ratio of a clock node multiplied by the provided 2844 * scaling factor, or negative errno on error. 2845 */ 2846 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2847 { 2848 if (!clk) 2849 return 0; 2850 2851 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2852 } 2853 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2854 2855 /** 2856 * clk_is_match - check if two clk's point to the same hardware clock 2857 * @p: clk compared against q 2858 * @q: clk compared against p 2859 * 2860 * Returns true if the two struct clk pointers both point to the same hardware 2861 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2862 * share the same struct clk_core object. 2863 * 2864 * Returns false otherwise. Note that two NULL clks are treated as matching. 2865 */ 2866 bool clk_is_match(const struct clk *p, const struct clk *q) 2867 { 2868 /* trivial case: identical struct clk's or both NULL */ 2869 if (p == q) 2870 return true; 2871 2872 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2873 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2874 if (p->core == q->core) 2875 return true; 2876 2877 return false; 2878 } 2879 EXPORT_SYMBOL_GPL(clk_is_match); 2880 2881 /*** debugfs support ***/ 2882 2883 #ifdef CONFIG_DEBUG_FS 2884 #include <linux/debugfs.h> 2885 2886 static struct dentry *rootdir; 2887 static int inited = 0; 2888 static DEFINE_MUTEX(clk_debug_lock); 2889 static HLIST_HEAD(clk_debug_list); 2890 2891 static struct hlist_head *orphan_list[] = { 2892 &clk_orphan_list, 2893 NULL, 2894 }; 2895 2896 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2897 int level) 2898 { 2899 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2900 level * 3 + 1, "", 2901 30 - level * 3, c->name, 2902 c->enable_count, c->prepare_count, c->protect_count, 2903 clk_core_get_rate(c), clk_core_get_accuracy(c), 2904 clk_core_get_phase(c), 2905 clk_core_get_scaled_duty_cycle(c, 100000)); 2906 } 2907 2908 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2909 int level) 2910 { 2911 struct clk_core *child; 2912 2913 clk_summary_show_one(s, c, level); 2914 2915 hlist_for_each_entry(child, &c->children, child_node) 2916 clk_summary_show_subtree(s, child, level + 1); 2917 } 2918 2919 static int clk_summary_show(struct seq_file *s, void *data) 2920 { 2921 struct clk_core *c; 2922 struct hlist_head **lists = (struct hlist_head **)s->private; 2923 2924 seq_puts(s, " enable prepare protect duty\n"); 2925 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2926 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2927 2928 clk_prepare_lock(); 2929 2930 for (; *lists; lists++) 2931 hlist_for_each_entry(c, *lists, child_node) 2932 clk_summary_show_subtree(s, c, 0); 2933 2934 clk_prepare_unlock(); 2935 2936 return 0; 2937 } 2938 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2939 2940 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2941 { 2942 unsigned long min_rate, max_rate; 2943 2944 clk_core_get_boundaries(c, &min_rate, &max_rate); 2945 2946 /* This should be JSON format, i.e. elements separated with a comma */ 2947 seq_printf(s, "\"%s\": { ", c->name); 2948 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2949 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2950 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2951 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2952 seq_printf(s, "\"min_rate\": %lu,", min_rate); 2953 seq_printf(s, "\"max_rate\": %lu,", max_rate); 2954 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2955 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2956 seq_printf(s, "\"duty_cycle\": %u", 2957 clk_core_get_scaled_duty_cycle(c, 100000)); 2958 } 2959 2960 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2961 { 2962 struct clk_core *child; 2963 2964 clk_dump_one(s, c, level); 2965 2966 hlist_for_each_entry(child, &c->children, child_node) { 2967 seq_putc(s, ','); 2968 clk_dump_subtree(s, child, level + 1); 2969 } 2970 2971 seq_putc(s, '}'); 2972 } 2973 2974 static int clk_dump_show(struct seq_file *s, void *data) 2975 { 2976 struct clk_core *c; 2977 bool first_node = true; 2978 struct hlist_head **lists = (struct hlist_head **)s->private; 2979 2980 seq_putc(s, '{'); 2981 clk_prepare_lock(); 2982 2983 for (; *lists; lists++) { 2984 hlist_for_each_entry(c, *lists, child_node) { 2985 if (!first_node) 2986 seq_putc(s, ','); 2987 first_node = false; 2988 clk_dump_subtree(s, c, 0); 2989 } 2990 } 2991 2992 clk_prepare_unlock(); 2993 2994 seq_puts(s, "}\n"); 2995 return 0; 2996 } 2997 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2998 2999 static const struct { 3000 unsigned long flag; 3001 const char *name; 3002 } clk_flags[] = { 3003 #define ENTRY(f) { f, #f } 3004 ENTRY(CLK_SET_RATE_GATE), 3005 ENTRY(CLK_SET_PARENT_GATE), 3006 ENTRY(CLK_SET_RATE_PARENT), 3007 ENTRY(CLK_IGNORE_UNUSED), 3008 ENTRY(CLK_GET_RATE_NOCACHE), 3009 ENTRY(CLK_SET_RATE_NO_REPARENT), 3010 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3011 ENTRY(CLK_RECALC_NEW_RATES), 3012 ENTRY(CLK_SET_RATE_UNGATE), 3013 ENTRY(CLK_IS_CRITICAL), 3014 ENTRY(CLK_OPS_PARENT_ENABLE), 3015 ENTRY(CLK_DUTY_CYCLE_PARENT), 3016 #undef ENTRY 3017 }; 3018 3019 static int clk_flags_show(struct seq_file *s, void *data) 3020 { 3021 struct clk_core *core = s->private; 3022 unsigned long flags = core->flags; 3023 unsigned int i; 3024 3025 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3026 if (flags & clk_flags[i].flag) { 3027 seq_printf(s, "%s\n", clk_flags[i].name); 3028 flags &= ~clk_flags[i].flag; 3029 } 3030 } 3031 if (flags) { 3032 /* Unknown flags */ 3033 seq_printf(s, "0x%lx\n", flags); 3034 } 3035 3036 return 0; 3037 } 3038 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3039 3040 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3041 unsigned int i, char terminator) 3042 { 3043 struct clk_core *parent; 3044 3045 /* 3046 * Go through the following options to fetch a parent's name. 3047 * 3048 * 1. Fetch the registered parent clock and use its name 3049 * 2. Use the global (fallback) name if specified 3050 * 3. Use the local fw_name if provided 3051 * 4. Fetch parent clock's clock-output-name if DT index was set 3052 * 3053 * This may still fail in some cases, such as when the parent is 3054 * specified directly via a struct clk_hw pointer, but it isn't 3055 * registered (yet). 3056 */ 3057 parent = clk_core_get_parent_by_index(core, i); 3058 if (parent) 3059 seq_puts(s, parent->name); 3060 else if (core->parents[i].name) 3061 seq_puts(s, core->parents[i].name); 3062 else if (core->parents[i].fw_name) 3063 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3064 else if (core->parents[i].index >= 0) 3065 seq_puts(s, 3066 of_clk_get_parent_name(core->of_node, 3067 core->parents[i].index)); 3068 else 3069 seq_puts(s, "(missing)"); 3070 3071 seq_putc(s, terminator); 3072 } 3073 3074 static int possible_parents_show(struct seq_file *s, void *data) 3075 { 3076 struct clk_core *core = s->private; 3077 int i; 3078 3079 for (i = 0; i < core->num_parents - 1; i++) 3080 possible_parent_show(s, core, i, ' '); 3081 3082 possible_parent_show(s, core, i, '\n'); 3083 3084 return 0; 3085 } 3086 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3087 3088 static int current_parent_show(struct seq_file *s, void *data) 3089 { 3090 struct clk_core *core = s->private; 3091 3092 if (core->parent) 3093 seq_printf(s, "%s\n", core->parent->name); 3094 3095 return 0; 3096 } 3097 DEFINE_SHOW_ATTRIBUTE(current_parent); 3098 3099 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3100 { 3101 struct clk_core *core = s->private; 3102 struct clk_duty *duty = &core->duty; 3103 3104 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3105 3106 return 0; 3107 } 3108 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3109 3110 static int clk_min_rate_show(struct seq_file *s, void *data) 3111 { 3112 struct clk_core *core = s->private; 3113 unsigned long min_rate, max_rate; 3114 3115 clk_prepare_lock(); 3116 clk_core_get_boundaries(core, &min_rate, &max_rate); 3117 clk_prepare_unlock(); 3118 seq_printf(s, "%lu\n", min_rate); 3119 3120 return 0; 3121 } 3122 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3123 3124 static int clk_max_rate_show(struct seq_file *s, void *data) 3125 { 3126 struct clk_core *core = s->private; 3127 unsigned long min_rate, max_rate; 3128 3129 clk_prepare_lock(); 3130 clk_core_get_boundaries(core, &min_rate, &max_rate); 3131 clk_prepare_unlock(); 3132 seq_printf(s, "%lu\n", max_rate); 3133 3134 return 0; 3135 } 3136 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3137 3138 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3139 { 3140 struct dentry *root; 3141 3142 if (!core || !pdentry) 3143 return; 3144 3145 root = debugfs_create_dir(core->name, pdentry); 3146 core->dentry = root; 3147 3148 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 3149 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3150 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3151 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3152 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3153 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3154 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3155 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3156 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3157 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3158 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3159 &clk_duty_cycle_fops); 3160 3161 if (core->num_parents > 0) 3162 debugfs_create_file("clk_parent", 0444, root, core, 3163 ¤t_parent_fops); 3164 3165 if (core->num_parents > 1) 3166 debugfs_create_file("clk_possible_parents", 0444, root, core, 3167 &possible_parents_fops); 3168 3169 if (core->ops->debug_init) 3170 core->ops->debug_init(core->hw, core->dentry); 3171 } 3172 3173 /** 3174 * clk_debug_register - add a clk node to the debugfs clk directory 3175 * @core: the clk being added to the debugfs clk directory 3176 * 3177 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3178 * initialized. Otherwise it bails out early since the debugfs clk directory 3179 * will be created lazily by clk_debug_init as part of a late_initcall. 3180 */ 3181 static void clk_debug_register(struct clk_core *core) 3182 { 3183 mutex_lock(&clk_debug_lock); 3184 hlist_add_head(&core->debug_node, &clk_debug_list); 3185 if (inited) 3186 clk_debug_create_one(core, rootdir); 3187 mutex_unlock(&clk_debug_lock); 3188 } 3189 3190 /** 3191 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3192 * @core: the clk being removed from the debugfs clk directory 3193 * 3194 * Dynamically removes a clk and all its child nodes from the 3195 * debugfs clk directory if clk->dentry points to debugfs created by 3196 * clk_debug_register in __clk_core_init. 3197 */ 3198 static void clk_debug_unregister(struct clk_core *core) 3199 { 3200 mutex_lock(&clk_debug_lock); 3201 hlist_del_init(&core->debug_node); 3202 debugfs_remove_recursive(core->dentry); 3203 core->dentry = NULL; 3204 mutex_unlock(&clk_debug_lock); 3205 } 3206 3207 /** 3208 * clk_debug_init - lazily populate the debugfs clk directory 3209 * 3210 * clks are often initialized very early during boot before memory can be 3211 * dynamically allocated and well before debugfs is setup. This function 3212 * populates the debugfs clk directory once at boot-time when we know that 3213 * debugfs is setup. It should only be called once at boot-time, all other clks 3214 * added dynamically will be done so with clk_debug_register. 3215 */ 3216 static int __init clk_debug_init(void) 3217 { 3218 struct clk_core *core; 3219 3220 rootdir = debugfs_create_dir("clk", NULL); 3221 3222 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3223 &clk_summary_fops); 3224 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3225 &clk_dump_fops); 3226 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3227 &clk_summary_fops); 3228 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3229 &clk_dump_fops); 3230 3231 mutex_lock(&clk_debug_lock); 3232 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3233 clk_debug_create_one(core, rootdir); 3234 3235 inited = 1; 3236 mutex_unlock(&clk_debug_lock); 3237 3238 return 0; 3239 } 3240 late_initcall(clk_debug_init); 3241 #else 3242 static inline void clk_debug_register(struct clk_core *core) { } 3243 static inline void clk_debug_reparent(struct clk_core *core, 3244 struct clk_core *new_parent) 3245 { 3246 } 3247 static inline void clk_debug_unregister(struct clk_core *core) 3248 { 3249 } 3250 #endif 3251 3252 /** 3253 * __clk_core_init - initialize the data structures in a struct clk_core 3254 * @core: clk_core being initialized 3255 * 3256 * Initializes the lists in struct clk_core, queries the hardware for the 3257 * parent and rate and sets them both. 3258 */ 3259 static int __clk_core_init(struct clk_core *core) 3260 { 3261 int ret; 3262 struct clk_core *orphan; 3263 struct hlist_node *tmp2; 3264 unsigned long rate; 3265 3266 if (!core) 3267 return -EINVAL; 3268 3269 clk_prepare_lock(); 3270 3271 ret = clk_pm_runtime_get(core); 3272 if (ret) 3273 goto unlock; 3274 3275 /* check to see if a clock with this name is already registered */ 3276 if (clk_core_lookup(core->name)) { 3277 pr_debug("%s: clk %s already initialized\n", 3278 __func__, core->name); 3279 ret = -EEXIST; 3280 goto out; 3281 } 3282 3283 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3284 if (core->ops->set_rate && 3285 !((core->ops->round_rate || core->ops->determine_rate) && 3286 core->ops->recalc_rate)) { 3287 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3288 __func__, core->name); 3289 ret = -EINVAL; 3290 goto out; 3291 } 3292 3293 if (core->ops->set_parent && !core->ops->get_parent) { 3294 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3295 __func__, core->name); 3296 ret = -EINVAL; 3297 goto out; 3298 } 3299 3300 if (core->num_parents > 1 && !core->ops->get_parent) { 3301 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3302 __func__, core->name); 3303 ret = -EINVAL; 3304 goto out; 3305 } 3306 3307 if (core->ops->set_rate_and_parent && 3308 !(core->ops->set_parent && core->ops->set_rate)) { 3309 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3310 __func__, core->name); 3311 ret = -EINVAL; 3312 goto out; 3313 } 3314 3315 core->parent = __clk_init_parent(core); 3316 3317 /* 3318 * Populate core->parent if parent has already been clk_core_init'd. If 3319 * parent has not yet been clk_core_init'd then place clk in the orphan 3320 * list. If clk doesn't have any parents then place it in the root 3321 * clk list. 3322 * 3323 * Every time a new clk is clk_init'd then we walk the list of orphan 3324 * clocks and re-parent any that are children of the clock currently 3325 * being clk_init'd. 3326 */ 3327 if (core->parent) { 3328 hlist_add_head(&core->child_node, 3329 &core->parent->children); 3330 core->orphan = core->parent->orphan; 3331 } else if (!core->num_parents) { 3332 hlist_add_head(&core->child_node, &clk_root_list); 3333 core->orphan = false; 3334 } else { 3335 hlist_add_head(&core->child_node, &clk_orphan_list); 3336 core->orphan = true; 3337 } 3338 3339 /* 3340 * optional platform-specific magic 3341 * 3342 * The .init callback is not used by any of the basic clock types, but 3343 * exists for weird hardware that must perform initialization magic. 3344 * Please consider other ways of solving initialization problems before 3345 * using this callback, as its use is discouraged. 3346 */ 3347 if (core->ops->init) 3348 core->ops->init(core->hw); 3349 3350 /* 3351 * Set clk's accuracy. The preferred method is to use 3352 * .recalc_accuracy. For simple clocks and lazy developers the default 3353 * fallback is to use the parent's accuracy. If a clock doesn't have a 3354 * parent (or is orphaned) then accuracy is set to zero (perfect 3355 * clock). 3356 */ 3357 if (core->ops->recalc_accuracy) 3358 core->accuracy = core->ops->recalc_accuracy(core->hw, 3359 __clk_get_accuracy(core->parent)); 3360 else if (core->parent) 3361 core->accuracy = core->parent->accuracy; 3362 else 3363 core->accuracy = 0; 3364 3365 /* 3366 * Set clk's phase. 3367 * Since a phase is by definition relative to its parent, just 3368 * query the current clock phase, or just assume it's in phase. 3369 */ 3370 if (core->ops->get_phase) 3371 core->phase = core->ops->get_phase(core->hw); 3372 else 3373 core->phase = 0; 3374 3375 /* 3376 * Set clk's duty cycle. 3377 */ 3378 clk_core_update_duty_cycle_nolock(core); 3379 3380 /* 3381 * Set clk's rate. The preferred method is to use .recalc_rate. For 3382 * simple clocks and lazy developers the default fallback is to use the 3383 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3384 * then rate is set to zero. 3385 */ 3386 if (core->ops->recalc_rate) 3387 rate = core->ops->recalc_rate(core->hw, 3388 clk_core_get_rate_nolock(core->parent)); 3389 else if (core->parent) 3390 rate = core->parent->rate; 3391 else 3392 rate = 0; 3393 core->rate = core->req_rate = rate; 3394 3395 /* 3396 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3397 * don't get accidentally disabled when walking the orphan tree and 3398 * reparenting clocks 3399 */ 3400 if (core->flags & CLK_IS_CRITICAL) { 3401 unsigned long flags; 3402 3403 clk_core_prepare(core); 3404 3405 flags = clk_enable_lock(); 3406 clk_core_enable(core); 3407 clk_enable_unlock(flags); 3408 } 3409 3410 /* 3411 * walk the list of orphan clocks and reparent any that newly finds a 3412 * parent. 3413 */ 3414 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3415 struct clk_core *parent = __clk_init_parent(orphan); 3416 3417 /* 3418 * We need to use __clk_set_parent_before() and _after() to 3419 * to properly migrate any prepare/enable count of the orphan 3420 * clock. This is important for CLK_IS_CRITICAL clocks, which 3421 * are enabled during init but might not have a parent yet. 3422 */ 3423 if (parent) { 3424 /* update the clk tree topology */ 3425 __clk_set_parent_before(orphan, parent); 3426 __clk_set_parent_after(orphan, parent, NULL); 3427 __clk_recalc_accuracies(orphan); 3428 __clk_recalc_rates(orphan, 0); 3429 } 3430 } 3431 3432 kref_init(&core->ref); 3433 out: 3434 clk_pm_runtime_put(core); 3435 unlock: 3436 clk_prepare_unlock(); 3437 3438 if (!ret) 3439 clk_debug_register(core); 3440 3441 return ret; 3442 } 3443 3444 /** 3445 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3446 * @core: clk to add consumer to 3447 * @clk: consumer to link to a clk 3448 */ 3449 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3450 { 3451 clk_prepare_lock(); 3452 hlist_add_head(&clk->clks_node, &core->clks); 3453 clk_prepare_unlock(); 3454 } 3455 3456 /** 3457 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3458 * @clk: consumer to unlink 3459 */ 3460 static void clk_core_unlink_consumer(struct clk *clk) 3461 { 3462 lockdep_assert_held(&prepare_lock); 3463 hlist_del(&clk->clks_node); 3464 } 3465 3466 /** 3467 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3468 * @core: clk to allocate a consumer for 3469 * @dev_id: string describing device name 3470 * @con_id: connection ID string on device 3471 * 3472 * Returns: clk consumer left unlinked from the consumer list 3473 */ 3474 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3475 const char *con_id) 3476 { 3477 struct clk *clk; 3478 3479 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3480 if (!clk) 3481 return ERR_PTR(-ENOMEM); 3482 3483 clk->core = core; 3484 clk->dev_id = dev_id; 3485 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3486 clk->max_rate = ULONG_MAX; 3487 3488 return clk; 3489 } 3490 3491 /** 3492 * free_clk - Free a clk consumer 3493 * @clk: clk consumer to free 3494 * 3495 * Note, this assumes the clk has been unlinked from the clk_core consumer 3496 * list. 3497 */ 3498 static void free_clk(struct clk *clk) 3499 { 3500 kfree_const(clk->con_id); 3501 kfree(clk); 3502 } 3503 3504 /** 3505 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3506 * a clk_hw 3507 * @dev: clk consumer device 3508 * @hw: clk_hw associated with the clk being consumed 3509 * @dev_id: string describing device name 3510 * @con_id: connection ID string on device 3511 * 3512 * This is the main function used to create a clk pointer for use by clk 3513 * consumers. It connects a consumer to the clk_core and clk_hw structures 3514 * used by the framework and clk provider respectively. 3515 */ 3516 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3517 const char *dev_id, const char *con_id) 3518 { 3519 struct clk *clk; 3520 struct clk_core *core; 3521 3522 /* This is to allow this function to be chained to others */ 3523 if (IS_ERR_OR_NULL(hw)) 3524 return ERR_CAST(hw); 3525 3526 core = hw->core; 3527 clk = alloc_clk(core, dev_id, con_id); 3528 if (IS_ERR(clk)) 3529 return clk; 3530 clk->dev = dev; 3531 3532 if (!try_module_get(core->owner)) { 3533 free_clk(clk); 3534 return ERR_PTR(-ENOENT); 3535 } 3536 3537 kref_get(&core->ref); 3538 clk_core_link_consumer(core, clk); 3539 3540 return clk; 3541 } 3542 3543 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3544 { 3545 const char *dst; 3546 3547 if (!src) { 3548 if (must_exist) 3549 return -EINVAL; 3550 return 0; 3551 } 3552 3553 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3554 if (!dst) 3555 return -ENOMEM; 3556 3557 return 0; 3558 } 3559 3560 static int clk_core_populate_parent_map(struct clk_core *core, 3561 const struct clk_init_data *init) 3562 { 3563 u8 num_parents = init->num_parents; 3564 const char * const *parent_names = init->parent_names; 3565 const struct clk_hw **parent_hws = init->parent_hws; 3566 const struct clk_parent_data *parent_data = init->parent_data; 3567 int i, ret = 0; 3568 struct clk_parent_map *parents, *parent; 3569 3570 if (!num_parents) 3571 return 0; 3572 3573 /* 3574 * Avoid unnecessary string look-ups of clk_core's possible parents by 3575 * having a cache of names/clk_hw pointers to clk_core pointers. 3576 */ 3577 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3578 core->parents = parents; 3579 if (!parents) 3580 return -ENOMEM; 3581 3582 /* Copy everything over because it might be __initdata */ 3583 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3584 parent->index = -1; 3585 if (parent_names) { 3586 /* throw a WARN if any entries are NULL */ 3587 WARN(!parent_names[i], 3588 "%s: invalid NULL in %s's .parent_names\n", 3589 __func__, core->name); 3590 ret = clk_cpy_name(&parent->name, parent_names[i], 3591 true); 3592 } else if (parent_data) { 3593 parent->hw = parent_data[i].hw; 3594 parent->index = parent_data[i].index; 3595 ret = clk_cpy_name(&parent->fw_name, 3596 parent_data[i].fw_name, false); 3597 if (!ret) 3598 ret = clk_cpy_name(&parent->name, 3599 parent_data[i].name, 3600 false); 3601 } else if (parent_hws) { 3602 parent->hw = parent_hws[i]; 3603 } else { 3604 ret = -EINVAL; 3605 WARN(1, "Must specify parents if num_parents > 0\n"); 3606 } 3607 3608 if (ret) { 3609 do { 3610 kfree_const(parents[i].name); 3611 kfree_const(parents[i].fw_name); 3612 } while (--i >= 0); 3613 kfree(parents); 3614 3615 return ret; 3616 } 3617 } 3618 3619 return 0; 3620 } 3621 3622 static void clk_core_free_parent_map(struct clk_core *core) 3623 { 3624 int i = core->num_parents; 3625 3626 if (!core->num_parents) 3627 return; 3628 3629 while (--i >= 0) { 3630 kfree_const(core->parents[i].name); 3631 kfree_const(core->parents[i].fw_name); 3632 } 3633 3634 kfree(core->parents); 3635 } 3636 3637 static struct clk * 3638 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3639 { 3640 int ret; 3641 struct clk_core *core; 3642 const struct clk_init_data *init = hw->init; 3643 3644 /* 3645 * The init data is not supposed to be used outside of registration path. 3646 * Set it to NULL so that provider drivers can't use it either and so that 3647 * we catch use of hw->init early on in the core. 3648 */ 3649 hw->init = NULL; 3650 3651 core = kzalloc(sizeof(*core), GFP_KERNEL); 3652 if (!core) { 3653 ret = -ENOMEM; 3654 goto fail_out; 3655 } 3656 3657 core->name = kstrdup_const(init->name, GFP_KERNEL); 3658 if (!core->name) { 3659 ret = -ENOMEM; 3660 goto fail_name; 3661 } 3662 3663 if (WARN_ON(!init->ops)) { 3664 ret = -EINVAL; 3665 goto fail_ops; 3666 } 3667 core->ops = init->ops; 3668 3669 if (dev && pm_runtime_enabled(dev)) 3670 core->rpm_enabled = true; 3671 core->dev = dev; 3672 core->of_node = np; 3673 if (dev && dev->driver) 3674 core->owner = dev->driver->owner; 3675 core->hw = hw; 3676 core->flags = init->flags; 3677 core->num_parents = init->num_parents; 3678 core->min_rate = 0; 3679 core->max_rate = ULONG_MAX; 3680 hw->core = core; 3681 3682 ret = clk_core_populate_parent_map(core, init); 3683 if (ret) 3684 goto fail_parents; 3685 3686 INIT_HLIST_HEAD(&core->clks); 3687 3688 /* 3689 * Don't call clk_hw_create_clk() here because that would pin the 3690 * provider module to itself and prevent it from ever being removed. 3691 */ 3692 hw->clk = alloc_clk(core, NULL, NULL); 3693 if (IS_ERR(hw->clk)) { 3694 ret = PTR_ERR(hw->clk); 3695 goto fail_create_clk; 3696 } 3697 3698 clk_core_link_consumer(hw->core, hw->clk); 3699 3700 ret = __clk_core_init(core); 3701 if (!ret) 3702 return hw->clk; 3703 3704 clk_prepare_lock(); 3705 clk_core_unlink_consumer(hw->clk); 3706 clk_prepare_unlock(); 3707 3708 free_clk(hw->clk); 3709 hw->clk = NULL; 3710 3711 fail_create_clk: 3712 clk_core_free_parent_map(core); 3713 fail_parents: 3714 fail_ops: 3715 kfree_const(core->name); 3716 fail_name: 3717 kfree(core); 3718 fail_out: 3719 return ERR_PTR(ret); 3720 } 3721 3722 /** 3723 * clk_register - allocate a new clock, register it and return an opaque cookie 3724 * @dev: device that is registering this clock 3725 * @hw: link to hardware-specific clock data 3726 * 3727 * clk_register is the *deprecated* interface for populating the clock tree with 3728 * new clock nodes. Use clk_hw_register() instead. 3729 * 3730 * Returns: a pointer to the newly allocated struct clk which 3731 * cannot be dereferenced by driver code but may be used in conjunction with the 3732 * rest of the clock API. In the event of an error clk_register will return an 3733 * error code; drivers must test for an error code after calling clk_register. 3734 */ 3735 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3736 { 3737 return __clk_register(dev, dev_of_node(dev), hw); 3738 } 3739 EXPORT_SYMBOL_GPL(clk_register); 3740 3741 /** 3742 * clk_hw_register - register a clk_hw and return an error code 3743 * @dev: device that is registering this clock 3744 * @hw: link to hardware-specific clock data 3745 * 3746 * clk_hw_register is the primary interface for populating the clock tree with 3747 * new clock nodes. It returns an integer equal to zero indicating success or 3748 * less than zero indicating failure. Drivers must test for an error code after 3749 * calling clk_hw_register(). 3750 */ 3751 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3752 { 3753 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw)); 3754 } 3755 EXPORT_SYMBOL_GPL(clk_hw_register); 3756 3757 /* 3758 * of_clk_hw_register - register a clk_hw and return an error code 3759 * @node: device_node of device that is registering this clock 3760 * @hw: link to hardware-specific clock data 3761 * 3762 * of_clk_hw_register() is the primary interface for populating the clock tree 3763 * with new clock nodes when a struct device is not available, but a struct 3764 * device_node is. It returns an integer equal to zero indicating success or 3765 * less than zero indicating failure. Drivers must test for an error code after 3766 * calling of_clk_hw_register(). 3767 */ 3768 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3769 { 3770 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3771 } 3772 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3773 3774 /* Free memory allocated for a clock. */ 3775 static void __clk_release(struct kref *ref) 3776 { 3777 struct clk_core *core = container_of(ref, struct clk_core, ref); 3778 3779 lockdep_assert_held(&prepare_lock); 3780 3781 clk_core_free_parent_map(core); 3782 kfree_const(core->name); 3783 kfree(core); 3784 } 3785 3786 /* 3787 * Empty clk_ops for unregistered clocks. These are used temporarily 3788 * after clk_unregister() was called on a clock and until last clock 3789 * consumer calls clk_put() and the struct clk object is freed. 3790 */ 3791 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3792 { 3793 return -ENXIO; 3794 } 3795 3796 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3797 { 3798 WARN_ON_ONCE(1); 3799 } 3800 3801 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3802 unsigned long parent_rate) 3803 { 3804 return -ENXIO; 3805 } 3806 3807 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3808 { 3809 return -ENXIO; 3810 } 3811 3812 static const struct clk_ops clk_nodrv_ops = { 3813 .enable = clk_nodrv_prepare_enable, 3814 .disable = clk_nodrv_disable_unprepare, 3815 .prepare = clk_nodrv_prepare_enable, 3816 .unprepare = clk_nodrv_disable_unprepare, 3817 .set_rate = clk_nodrv_set_rate, 3818 .set_parent = clk_nodrv_set_parent, 3819 }; 3820 3821 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 3822 struct clk_core *target) 3823 { 3824 int i; 3825 struct clk_core *child; 3826 3827 for (i = 0; i < root->num_parents; i++) 3828 if (root->parents[i].core == target) 3829 root->parents[i].core = NULL; 3830 3831 hlist_for_each_entry(child, &root->children, child_node) 3832 clk_core_evict_parent_cache_subtree(child, target); 3833 } 3834 3835 /* Remove this clk from all parent caches */ 3836 static void clk_core_evict_parent_cache(struct clk_core *core) 3837 { 3838 struct hlist_head **lists; 3839 struct clk_core *root; 3840 3841 lockdep_assert_held(&prepare_lock); 3842 3843 for (lists = all_lists; *lists; lists++) 3844 hlist_for_each_entry(root, *lists, child_node) 3845 clk_core_evict_parent_cache_subtree(root, core); 3846 3847 } 3848 3849 /** 3850 * clk_unregister - unregister a currently registered clock 3851 * @clk: clock to unregister 3852 */ 3853 void clk_unregister(struct clk *clk) 3854 { 3855 unsigned long flags; 3856 3857 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3858 return; 3859 3860 clk_debug_unregister(clk->core); 3861 3862 clk_prepare_lock(); 3863 3864 if (clk->core->ops == &clk_nodrv_ops) { 3865 pr_err("%s: unregistered clock: %s\n", __func__, 3866 clk->core->name); 3867 goto unlock; 3868 } 3869 /* 3870 * Assign empty clock ops for consumers that might still hold 3871 * a reference to this clock. 3872 */ 3873 flags = clk_enable_lock(); 3874 clk->core->ops = &clk_nodrv_ops; 3875 clk_enable_unlock(flags); 3876 3877 if (!hlist_empty(&clk->core->children)) { 3878 struct clk_core *child; 3879 struct hlist_node *t; 3880 3881 /* Reparent all children to the orphan list. */ 3882 hlist_for_each_entry_safe(child, t, &clk->core->children, 3883 child_node) 3884 clk_core_set_parent_nolock(child, NULL); 3885 } 3886 3887 clk_core_evict_parent_cache(clk->core); 3888 3889 hlist_del_init(&clk->core->child_node); 3890 3891 if (clk->core->prepare_count) 3892 pr_warn("%s: unregistering prepared clock: %s\n", 3893 __func__, clk->core->name); 3894 3895 if (clk->core->protect_count) 3896 pr_warn("%s: unregistering protected clock: %s\n", 3897 __func__, clk->core->name); 3898 3899 kref_put(&clk->core->ref, __clk_release); 3900 free_clk(clk); 3901 unlock: 3902 clk_prepare_unlock(); 3903 } 3904 EXPORT_SYMBOL_GPL(clk_unregister); 3905 3906 /** 3907 * clk_hw_unregister - unregister a currently registered clk_hw 3908 * @hw: hardware-specific clock data to unregister 3909 */ 3910 void clk_hw_unregister(struct clk_hw *hw) 3911 { 3912 clk_unregister(hw->clk); 3913 } 3914 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3915 3916 static void devm_clk_release(struct device *dev, void *res) 3917 { 3918 clk_unregister(*(struct clk **)res); 3919 } 3920 3921 static void devm_clk_hw_release(struct device *dev, void *res) 3922 { 3923 clk_hw_unregister(*(struct clk_hw **)res); 3924 } 3925 3926 /** 3927 * devm_clk_register - resource managed clk_register() 3928 * @dev: device that is registering this clock 3929 * @hw: link to hardware-specific clock data 3930 * 3931 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 3932 * 3933 * Clocks returned from this function are automatically clk_unregister()ed on 3934 * driver detach. See clk_register() for more information. 3935 */ 3936 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3937 { 3938 struct clk *clk; 3939 struct clk **clkp; 3940 3941 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3942 if (!clkp) 3943 return ERR_PTR(-ENOMEM); 3944 3945 clk = clk_register(dev, hw); 3946 if (!IS_ERR(clk)) { 3947 *clkp = clk; 3948 devres_add(dev, clkp); 3949 } else { 3950 devres_free(clkp); 3951 } 3952 3953 return clk; 3954 } 3955 EXPORT_SYMBOL_GPL(devm_clk_register); 3956 3957 /** 3958 * devm_clk_hw_register - resource managed clk_hw_register() 3959 * @dev: device that is registering this clock 3960 * @hw: link to hardware-specific clock data 3961 * 3962 * Managed clk_hw_register(). Clocks registered by this function are 3963 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3964 * for more information. 3965 */ 3966 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3967 { 3968 struct clk_hw **hwp; 3969 int ret; 3970 3971 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3972 if (!hwp) 3973 return -ENOMEM; 3974 3975 ret = clk_hw_register(dev, hw); 3976 if (!ret) { 3977 *hwp = hw; 3978 devres_add(dev, hwp); 3979 } else { 3980 devres_free(hwp); 3981 } 3982 3983 return ret; 3984 } 3985 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3986 3987 static int devm_clk_match(struct device *dev, void *res, void *data) 3988 { 3989 struct clk *c = res; 3990 if (WARN_ON(!c)) 3991 return 0; 3992 return c == data; 3993 } 3994 3995 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3996 { 3997 struct clk_hw *hw = res; 3998 3999 if (WARN_ON(!hw)) 4000 return 0; 4001 return hw == data; 4002 } 4003 4004 /** 4005 * devm_clk_unregister - resource managed clk_unregister() 4006 * @clk: clock to unregister 4007 * 4008 * Deallocate a clock allocated with devm_clk_register(). Normally 4009 * this function will not need to be called and the resource management 4010 * code will ensure that the resource is freed. 4011 */ 4012 void devm_clk_unregister(struct device *dev, struct clk *clk) 4013 { 4014 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 4015 } 4016 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4017 4018 /** 4019 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4020 * @dev: device that is unregistering the hardware-specific clock data 4021 * @hw: link to hardware-specific clock data 4022 * 4023 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4024 * this function will not need to be called and the resource management 4025 * code will ensure that the resource is freed. 4026 */ 4027 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4028 { 4029 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 4030 hw)); 4031 } 4032 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4033 4034 /* 4035 * clkdev helpers 4036 */ 4037 4038 void __clk_put(struct clk *clk) 4039 { 4040 struct module *owner; 4041 4042 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4043 return; 4044 4045 clk_prepare_lock(); 4046 4047 /* 4048 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4049 * given user should be balanced with calls to clk_rate_exclusive_put() 4050 * and by that same consumer 4051 */ 4052 if (WARN_ON(clk->exclusive_count)) { 4053 /* We voiced our concern, let's sanitize the situation */ 4054 clk->core->protect_count -= (clk->exclusive_count - 1); 4055 clk_core_rate_unprotect(clk->core); 4056 clk->exclusive_count = 0; 4057 } 4058 4059 hlist_del(&clk->clks_node); 4060 if (clk->min_rate > clk->core->req_rate || 4061 clk->max_rate < clk->core->req_rate) 4062 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4063 4064 owner = clk->core->owner; 4065 kref_put(&clk->core->ref, __clk_release); 4066 4067 clk_prepare_unlock(); 4068 4069 module_put(owner); 4070 4071 free_clk(clk); 4072 } 4073 4074 /*** clk rate change notifiers ***/ 4075 4076 /** 4077 * clk_notifier_register - add a clk rate change notifier 4078 * @clk: struct clk * to watch 4079 * @nb: struct notifier_block * with callback info 4080 * 4081 * Request notification when clk's rate changes. This uses an SRCU 4082 * notifier because we want it to block and notifier unregistrations are 4083 * uncommon. The callbacks associated with the notifier must not 4084 * re-enter into the clk framework by calling any top-level clk APIs; 4085 * this will cause a nested prepare_lock mutex. 4086 * 4087 * In all notification cases (pre, post and abort rate change) the original 4088 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4089 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4090 * 4091 * clk_notifier_register() must be called from non-atomic context. 4092 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4093 * allocation failure; otherwise, passes along the return value of 4094 * srcu_notifier_chain_register(). 4095 */ 4096 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4097 { 4098 struct clk_notifier *cn; 4099 int ret = -ENOMEM; 4100 4101 if (!clk || !nb) 4102 return -EINVAL; 4103 4104 clk_prepare_lock(); 4105 4106 /* search the list of notifiers for this clk */ 4107 list_for_each_entry(cn, &clk_notifier_list, node) 4108 if (cn->clk == clk) 4109 break; 4110 4111 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4112 if (cn->clk != clk) { 4113 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4114 if (!cn) 4115 goto out; 4116 4117 cn->clk = clk; 4118 srcu_init_notifier_head(&cn->notifier_head); 4119 4120 list_add(&cn->node, &clk_notifier_list); 4121 } 4122 4123 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4124 4125 clk->core->notifier_count++; 4126 4127 out: 4128 clk_prepare_unlock(); 4129 4130 return ret; 4131 } 4132 EXPORT_SYMBOL_GPL(clk_notifier_register); 4133 4134 /** 4135 * clk_notifier_unregister - remove a clk rate change notifier 4136 * @clk: struct clk * 4137 * @nb: struct notifier_block * with callback info 4138 * 4139 * Request no further notification for changes to 'clk' and frees memory 4140 * allocated in clk_notifier_register. 4141 * 4142 * Returns -EINVAL if called with null arguments; otherwise, passes 4143 * along the return value of srcu_notifier_chain_unregister(). 4144 */ 4145 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4146 { 4147 struct clk_notifier *cn = NULL; 4148 int ret = -EINVAL; 4149 4150 if (!clk || !nb) 4151 return -EINVAL; 4152 4153 clk_prepare_lock(); 4154 4155 list_for_each_entry(cn, &clk_notifier_list, node) 4156 if (cn->clk == clk) 4157 break; 4158 4159 if (cn->clk == clk) { 4160 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4161 4162 clk->core->notifier_count--; 4163 4164 /* XXX the notifier code should handle this better */ 4165 if (!cn->notifier_head.head) { 4166 srcu_cleanup_notifier_head(&cn->notifier_head); 4167 list_del(&cn->node); 4168 kfree(cn); 4169 } 4170 4171 } else { 4172 ret = -ENOENT; 4173 } 4174 4175 clk_prepare_unlock(); 4176 4177 return ret; 4178 } 4179 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4180 4181 #ifdef CONFIG_OF 4182 /** 4183 * struct of_clk_provider - Clock provider registration structure 4184 * @link: Entry in global list of clock providers 4185 * @node: Pointer to device tree node of clock provider 4186 * @get: Get clock callback. Returns NULL or a struct clk for the 4187 * given clock specifier 4188 * @data: context pointer to be passed into @get callback 4189 */ 4190 struct of_clk_provider { 4191 struct list_head link; 4192 4193 struct device_node *node; 4194 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4195 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4196 void *data; 4197 }; 4198 4199 extern struct of_device_id __clk_of_table; 4200 static const struct of_device_id __clk_of_table_sentinel 4201 __used __section(__clk_of_table_end); 4202 4203 static LIST_HEAD(of_clk_providers); 4204 static DEFINE_MUTEX(of_clk_mutex); 4205 4206 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4207 void *data) 4208 { 4209 return data; 4210 } 4211 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4212 4213 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4214 { 4215 return data; 4216 } 4217 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4218 4219 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4220 { 4221 struct clk_onecell_data *clk_data = data; 4222 unsigned int idx = clkspec->args[0]; 4223 4224 if (idx >= clk_data->clk_num) { 4225 pr_err("%s: invalid clock index %u\n", __func__, idx); 4226 return ERR_PTR(-EINVAL); 4227 } 4228 4229 return clk_data->clks[idx]; 4230 } 4231 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4232 4233 struct clk_hw * 4234 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4235 { 4236 struct clk_hw_onecell_data *hw_data = data; 4237 unsigned int idx = clkspec->args[0]; 4238 4239 if (idx >= hw_data->num) { 4240 pr_err("%s: invalid index %u\n", __func__, idx); 4241 return ERR_PTR(-EINVAL); 4242 } 4243 4244 return hw_data->hws[idx]; 4245 } 4246 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4247 4248 /** 4249 * of_clk_add_provider() - Register a clock provider for a node 4250 * @np: Device node pointer associated with clock provider 4251 * @clk_src_get: callback for decoding clock 4252 * @data: context pointer for @clk_src_get callback. 4253 * 4254 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4255 */ 4256 int of_clk_add_provider(struct device_node *np, 4257 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4258 void *data), 4259 void *data) 4260 { 4261 struct of_clk_provider *cp; 4262 int ret; 4263 4264 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4265 if (!cp) 4266 return -ENOMEM; 4267 4268 cp->node = of_node_get(np); 4269 cp->data = data; 4270 cp->get = clk_src_get; 4271 4272 mutex_lock(&of_clk_mutex); 4273 list_add(&cp->link, &of_clk_providers); 4274 mutex_unlock(&of_clk_mutex); 4275 pr_debug("Added clock from %pOF\n", np); 4276 4277 ret = of_clk_set_defaults(np, true); 4278 if (ret < 0) 4279 of_clk_del_provider(np); 4280 4281 return ret; 4282 } 4283 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4284 4285 /** 4286 * of_clk_add_hw_provider() - Register a clock provider for a node 4287 * @np: Device node pointer associated with clock provider 4288 * @get: callback for decoding clk_hw 4289 * @data: context pointer for @get callback. 4290 */ 4291 int of_clk_add_hw_provider(struct device_node *np, 4292 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4293 void *data), 4294 void *data) 4295 { 4296 struct of_clk_provider *cp; 4297 int ret; 4298 4299 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4300 if (!cp) 4301 return -ENOMEM; 4302 4303 cp->node = of_node_get(np); 4304 cp->data = data; 4305 cp->get_hw = get; 4306 4307 mutex_lock(&of_clk_mutex); 4308 list_add(&cp->link, &of_clk_providers); 4309 mutex_unlock(&of_clk_mutex); 4310 pr_debug("Added clk_hw provider from %pOF\n", np); 4311 4312 ret = of_clk_set_defaults(np, true); 4313 if (ret < 0) 4314 of_clk_del_provider(np); 4315 4316 return ret; 4317 } 4318 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4319 4320 static void devm_of_clk_release_provider(struct device *dev, void *res) 4321 { 4322 of_clk_del_provider(*(struct device_node **)res); 4323 } 4324 4325 /* 4326 * We allow a child device to use its parent device as the clock provider node 4327 * for cases like MFD sub-devices where the child device driver wants to use 4328 * devm_*() APIs but not list the device in DT as a sub-node. 4329 */ 4330 static struct device_node *get_clk_provider_node(struct device *dev) 4331 { 4332 struct device_node *np, *parent_np; 4333 4334 np = dev->of_node; 4335 parent_np = dev->parent ? dev->parent->of_node : NULL; 4336 4337 if (!of_find_property(np, "#clock-cells", NULL)) 4338 if (of_find_property(parent_np, "#clock-cells", NULL)) 4339 np = parent_np; 4340 4341 return np; 4342 } 4343 4344 /** 4345 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4346 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4347 * @get: callback for decoding clk_hw 4348 * @data: context pointer for @get callback 4349 * 4350 * Registers clock provider for given device's node. If the device has no DT 4351 * node or if the device node lacks of clock provider information (#clock-cells) 4352 * then the parent device's node is scanned for this information. If parent node 4353 * has the #clock-cells then it is used in registration. Provider is 4354 * automatically released at device exit. 4355 * 4356 * Return: 0 on success or an errno on failure. 4357 */ 4358 int devm_of_clk_add_hw_provider(struct device *dev, 4359 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4360 void *data), 4361 void *data) 4362 { 4363 struct device_node **ptr, *np; 4364 int ret; 4365 4366 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4367 GFP_KERNEL); 4368 if (!ptr) 4369 return -ENOMEM; 4370 4371 np = get_clk_provider_node(dev); 4372 ret = of_clk_add_hw_provider(np, get, data); 4373 if (!ret) { 4374 *ptr = np; 4375 devres_add(dev, ptr); 4376 } else { 4377 devres_free(ptr); 4378 } 4379 4380 return ret; 4381 } 4382 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4383 4384 /** 4385 * of_clk_del_provider() - Remove a previously registered clock provider 4386 * @np: Device node pointer associated with clock provider 4387 */ 4388 void of_clk_del_provider(struct device_node *np) 4389 { 4390 struct of_clk_provider *cp; 4391 4392 mutex_lock(&of_clk_mutex); 4393 list_for_each_entry(cp, &of_clk_providers, link) { 4394 if (cp->node == np) { 4395 list_del(&cp->link); 4396 of_node_put(cp->node); 4397 kfree(cp); 4398 break; 4399 } 4400 } 4401 mutex_unlock(&of_clk_mutex); 4402 } 4403 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4404 4405 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4406 { 4407 struct device_node **np = res; 4408 4409 if (WARN_ON(!np || !*np)) 4410 return 0; 4411 4412 return *np == data; 4413 } 4414 4415 /** 4416 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4417 * @dev: Device to whose lifetime the clock provider was bound 4418 */ 4419 void devm_of_clk_del_provider(struct device *dev) 4420 { 4421 int ret; 4422 struct device_node *np = get_clk_provider_node(dev); 4423 4424 ret = devres_release(dev, devm_of_clk_release_provider, 4425 devm_clk_provider_match, np); 4426 4427 WARN_ON(ret); 4428 } 4429 EXPORT_SYMBOL(devm_of_clk_del_provider); 4430 4431 /** 4432 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4433 * @np: device node to parse clock specifier from 4434 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4435 * @name: clock name to find and parse. If name is NULL, the index is used 4436 * @out_args: Result of parsing the clock specifier 4437 * 4438 * Parses a device node's "clocks" and "clock-names" properties to find the 4439 * phandle and cells for the index or name that is desired. The resulting clock 4440 * specifier is placed into @out_args, or an errno is returned when there's a 4441 * parsing error. The @index argument is ignored if @name is non-NULL. 4442 * 4443 * Example: 4444 * 4445 * phandle1: clock-controller@1 { 4446 * #clock-cells = <2>; 4447 * } 4448 * 4449 * phandle2: clock-controller@2 { 4450 * #clock-cells = <1>; 4451 * } 4452 * 4453 * clock-consumer@3 { 4454 * clocks = <&phandle1 1 2 &phandle2 3>; 4455 * clock-names = "name1", "name2"; 4456 * } 4457 * 4458 * To get a device_node for `clock-controller@2' node you may call this 4459 * function a few different ways: 4460 * 4461 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4462 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4463 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4464 * 4465 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4466 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4467 * the "clock-names" property of @np. 4468 */ 4469 static int of_parse_clkspec(const struct device_node *np, int index, 4470 const char *name, struct of_phandle_args *out_args) 4471 { 4472 int ret = -ENOENT; 4473 4474 /* Walk up the tree of devices looking for a clock property that matches */ 4475 while (np) { 4476 /* 4477 * For named clocks, first look up the name in the 4478 * "clock-names" property. If it cannot be found, then index 4479 * will be an error code and of_parse_phandle_with_args() will 4480 * return -EINVAL. 4481 */ 4482 if (name) 4483 index = of_property_match_string(np, "clock-names", name); 4484 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4485 index, out_args); 4486 if (!ret) 4487 break; 4488 if (name && index >= 0) 4489 break; 4490 4491 /* 4492 * No matching clock found on this node. If the parent node 4493 * has a "clock-ranges" property, then we can try one of its 4494 * clocks. 4495 */ 4496 np = np->parent; 4497 if (np && !of_get_property(np, "clock-ranges", NULL)) 4498 break; 4499 index = 0; 4500 } 4501 4502 return ret; 4503 } 4504 4505 static struct clk_hw * 4506 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4507 struct of_phandle_args *clkspec) 4508 { 4509 struct clk *clk; 4510 4511 if (provider->get_hw) 4512 return provider->get_hw(clkspec, provider->data); 4513 4514 clk = provider->get(clkspec, provider->data); 4515 if (IS_ERR(clk)) 4516 return ERR_CAST(clk); 4517 return __clk_get_hw(clk); 4518 } 4519 4520 static struct clk_hw * 4521 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4522 { 4523 struct of_clk_provider *provider; 4524 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4525 4526 if (!clkspec) 4527 return ERR_PTR(-EINVAL); 4528 4529 mutex_lock(&of_clk_mutex); 4530 list_for_each_entry(provider, &of_clk_providers, link) { 4531 if (provider->node == clkspec->np) { 4532 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4533 if (!IS_ERR(hw)) 4534 break; 4535 } 4536 } 4537 mutex_unlock(&of_clk_mutex); 4538 4539 return hw; 4540 } 4541 4542 /** 4543 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4544 * @clkspec: pointer to a clock specifier data structure 4545 * 4546 * This function looks up a struct clk from the registered list of clock 4547 * providers, an input is a clock specifier data structure as returned 4548 * from the of_parse_phandle_with_args() function call. 4549 */ 4550 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4551 { 4552 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4553 4554 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4555 } 4556 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4557 4558 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4559 const char *con_id) 4560 { 4561 int ret; 4562 struct clk_hw *hw; 4563 struct of_phandle_args clkspec; 4564 4565 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4566 if (ret) 4567 return ERR_PTR(ret); 4568 4569 hw = of_clk_get_hw_from_clkspec(&clkspec); 4570 of_node_put(clkspec.np); 4571 4572 return hw; 4573 } 4574 4575 static struct clk *__of_clk_get(struct device_node *np, 4576 int index, const char *dev_id, 4577 const char *con_id) 4578 { 4579 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4580 4581 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4582 } 4583 4584 struct clk *of_clk_get(struct device_node *np, int index) 4585 { 4586 return __of_clk_get(np, index, np->full_name, NULL); 4587 } 4588 EXPORT_SYMBOL(of_clk_get); 4589 4590 /** 4591 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4592 * @np: pointer to clock consumer node 4593 * @name: name of consumer's clock input, or NULL for the first clock reference 4594 * 4595 * This function parses the clocks and clock-names properties, 4596 * and uses them to look up the struct clk from the registered list of clock 4597 * providers. 4598 */ 4599 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4600 { 4601 if (!np) 4602 return ERR_PTR(-ENOENT); 4603 4604 return __of_clk_get(np, 0, np->full_name, name); 4605 } 4606 EXPORT_SYMBOL(of_clk_get_by_name); 4607 4608 /** 4609 * of_clk_get_parent_count() - Count the number of clocks a device node has 4610 * @np: device node to count 4611 * 4612 * Returns: The number of clocks that are possible parents of this node 4613 */ 4614 unsigned int of_clk_get_parent_count(struct device_node *np) 4615 { 4616 int count; 4617 4618 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4619 if (count < 0) 4620 return 0; 4621 4622 return count; 4623 } 4624 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4625 4626 const char *of_clk_get_parent_name(struct device_node *np, int index) 4627 { 4628 struct of_phandle_args clkspec; 4629 struct property *prop; 4630 const char *clk_name; 4631 const __be32 *vp; 4632 u32 pv; 4633 int rc; 4634 int count; 4635 struct clk *clk; 4636 4637 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4638 &clkspec); 4639 if (rc) 4640 return NULL; 4641 4642 index = clkspec.args_count ? clkspec.args[0] : 0; 4643 count = 0; 4644 4645 /* if there is an indices property, use it to transfer the index 4646 * specified into an array offset for the clock-output-names property. 4647 */ 4648 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4649 if (index == pv) { 4650 index = count; 4651 break; 4652 } 4653 count++; 4654 } 4655 /* We went off the end of 'clock-indices' without finding it */ 4656 if (prop && !vp) 4657 return NULL; 4658 4659 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4660 index, 4661 &clk_name) < 0) { 4662 /* 4663 * Best effort to get the name if the clock has been 4664 * registered with the framework. If the clock isn't 4665 * registered, we return the node name as the name of 4666 * the clock as long as #clock-cells = 0. 4667 */ 4668 clk = of_clk_get_from_provider(&clkspec); 4669 if (IS_ERR(clk)) { 4670 if (clkspec.args_count == 0) 4671 clk_name = clkspec.np->name; 4672 else 4673 clk_name = NULL; 4674 } else { 4675 clk_name = __clk_get_name(clk); 4676 clk_put(clk); 4677 } 4678 } 4679 4680 4681 of_node_put(clkspec.np); 4682 return clk_name; 4683 } 4684 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4685 4686 /** 4687 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4688 * number of parents 4689 * @np: Device node pointer associated with clock provider 4690 * @parents: pointer to char array that hold the parents' names 4691 * @size: size of the @parents array 4692 * 4693 * Return: number of parents for the clock node. 4694 */ 4695 int of_clk_parent_fill(struct device_node *np, const char **parents, 4696 unsigned int size) 4697 { 4698 unsigned int i = 0; 4699 4700 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4701 i++; 4702 4703 return i; 4704 } 4705 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4706 4707 struct clock_provider { 4708 void (*clk_init_cb)(struct device_node *); 4709 struct device_node *np; 4710 struct list_head node; 4711 }; 4712 4713 /* 4714 * This function looks for a parent clock. If there is one, then it 4715 * checks that the provider for this parent clock was initialized, in 4716 * this case the parent clock will be ready. 4717 */ 4718 static int parent_ready(struct device_node *np) 4719 { 4720 int i = 0; 4721 4722 while (true) { 4723 struct clk *clk = of_clk_get(np, i); 4724 4725 /* this parent is ready we can check the next one */ 4726 if (!IS_ERR(clk)) { 4727 clk_put(clk); 4728 i++; 4729 continue; 4730 } 4731 4732 /* at least one parent is not ready, we exit now */ 4733 if (PTR_ERR(clk) == -EPROBE_DEFER) 4734 return 0; 4735 4736 /* 4737 * Here we make assumption that the device tree is 4738 * written correctly. So an error means that there is 4739 * no more parent. As we didn't exit yet, then the 4740 * previous parent are ready. If there is no clock 4741 * parent, no need to wait for them, then we can 4742 * consider their absence as being ready 4743 */ 4744 return 1; 4745 } 4746 } 4747 4748 /** 4749 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4750 * @np: Device node pointer associated with clock provider 4751 * @index: clock index 4752 * @flags: pointer to top-level framework flags 4753 * 4754 * Detects if the clock-critical property exists and, if so, sets the 4755 * corresponding CLK_IS_CRITICAL flag. 4756 * 4757 * Do not use this function. It exists only for legacy Device Tree 4758 * bindings, such as the one-clock-per-node style that are outdated. 4759 * Those bindings typically put all clock data into .dts and the Linux 4760 * driver has no clock data, thus making it impossible to set this flag 4761 * correctly from the driver. Only those drivers may call 4762 * of_clk_detect_critical from their setup functions. 4763 * 4764 * Return: error code or zero on success 4765 */ 4766 int of_clk_detect_critical(struct device_node *np, 4767 int index, unsigned long *flags) 4768 { 4769 struct property *prop; 4770 const __be32 *cur; 4771 uint32_t idx; 4772 4773 if (!np || !flags) 4774 return -EINVAL; 4775 4776 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4777 if (index == idx) 4778 *flags |= CLK_IS_CRITICAL; 4779 4780 return 0; 4781 } 4782 4783 /** 4784 * of_clk_init() - Scan and init clock providers from the DT 4785 * @matches: array of compatible values and init functions for providers. 4786 * 4787 * This function scans the device tree for matching clock providers 4788 * and calls their initialization functions. It also does it by trying 4789 * to follow the dependencies. 4790 */ 4791 void __init of_clk_init(const struct of_device_id *matches) 4792 { 4793 const struct of_device_id *match; 4794 struct device_node *np; 4795 struct clock_provider *clk_provider, *next; 4796 bool is_init_done; 4797 bool force = false; 4798 LIST_HEAD(clk_provider_list); 4799 4800 if (!matches) 4801 matches = &__clk_of_table; 4802 4803 /* First prepare the list of the clocks providers */ 4804 for_each_matching_node_and_match(np, matches, &match) { 4805 struct clock_provider *parent; 4806 4807 if (!of_device_is_available(np)) 4808 continue; 4809 4810 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4811 if (!parent) { 4812 list_for_each_entry_safe(clk_provider, next, 4813 &clk_provider_list, node) { 4814 list_del(&clk_provider->node); 4815 of_node_put(clk_provider->np); 4816 kfree(clk_provider); 4817 } 4818 of_node_put(np); 4819 return; 4820 } 4821 4822 parent->clk_init_cb = match->data; 4823 parent->np = of_node_get(np); 4824 list_add_tail(&parent->node, &clk_provider_list); 4825 } 4826 4827 while (!list_empty(&clk_provider_list)) { 4828 is_init_done = false; 4829 list_for_each_entry_safe(clk_provider, next, 4830 &clk_provider_list, node) { 4831 if (force || parent_ready(clk_provider->np)) { 4832 4833 /* Don't populate platform devices */ 4834 of_node_set_flag(clk_provider->np, 4835 OF_POPULATED); 4836 4837 clk_provider->clk_init_cb(clk_provider->np); 4838 of_clk_set_defaults(clk_provider->np, true); 4839 4840 list_del(&clk_provider->node); 4841 of_node_put(clk_provider->np); 4842 kfree(clk_provider); 4843 is_init_done = true; 4844 } 4845 } 4846 4847 /* 4848 * We didn't manage to initialize any of the 4849 * remaining providers during the last loop, so now we 4850 * initialize all the remaining ones unconditionally 4851 * in case the clock parent was not mandatory 4852 */ 4853 if (!is_init_done) 4854 force = true; 4855 } 4856 } 4857 #endif 4858