xref: /openbmc/linux/drivers/clk/clk.c (revision a2fb4d78)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 
24 #include "clk.h"
25 
26 static DEFINE_SPINLOCK(enable_lock);
27 static DEFINE_MUTEX(prepare_lock);
28 
29 static struct task_struct *prepare_owner;
30 static struct task_struct *enable_owner;
31 
32 static int prepare_refcnt;
33 static int enable_refcnt;
34 
35 static HLIST_HEAD(clk_root_list);
36 static HLIST_HEAD(clk_orphan_list);
37 static LIST_HEAD(clk_notifier_list);
38 
39 /***           locking             ***/
40 static void clk_prepare_lock(void)
41 {
42 	if (!mutex_trylock(&prepare_lock)) {
43 		if (prepare_owner == current) {
44 			prepare_refcnt++;
45 			return;
46 		}
47 		mutex_lock(&prepare_lock);
48 	}
49 	WARN_ON_ONCE(prepare_owner != NULL);
50 	WARN_ON_ONCE(prepare_refcnt != 0);
51 	prepare_owner = current;
52 	prepare_refcnt = 1;
53 }
54 
55 static void clk_prepare_unlock(void)
56 {
57 	WARN_ON_ONCE(prepare_owner != current);
58 	WARN_ON_ONCE(prepare_refcnt == 0);
59 
60 	if (--prepare_refcnt)
61 		return;
62 	prepare_owner = NULL;
63 	mutex_unlock(&prepare_lock);
64 }
65 
66 static unsigned long clk_enable_lock(void)
67 {
68 	unsigned long flags;
69 
70 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
71 		if (enable_owner == current) {
72 			enable_refcnt++;
73 			return flags;
74 		}
75 		spin_lock_irqsave(&enable_lock, flags);
76 	}
77 	WARN_ON_ONCE(enable_owner != NULL);
78 	WARN_ON_ONCE(enable_refcnt != 0);
79 	enable_owner = current;
80 	enable_refcnt = 1;
81 	return flags;
82 }
83 
84 static void clk_enable_unlock(unsigned long flags)
85 {
86 	WARN_ON_ONCE(enable_owner != current);
87 	WARN_ON_ONCE(enable_refcnt == 0);
88 
89 	if (--enable_refcnt)
90 		return;
91 	enable_owner = NULL;
92 	spin_unlock_irqrestore(&enable_lock, flags);
93 }
94 
95 /***        debugfs support        ***/
96 
97 #ifdef CONFIG_DEBUG_FS
98 #include <linux/debugfs.h>
99 
100 static struct dentry *rootdir;
101 static struct dentry *orphandir;
102 static int inited = 0;
103 
104 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
105 {
106 	if (!c)
107 		return;
108 
109 	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu %-11lu",
110 		   level * 3 + 1, "",
111 		   30 - level * 3, c->name,
112 		   c->enable_count, c->prepare_count, clk_get_rate(c),
113 		   clk_get_accuracy(c));
114 	seq_printf(s, "\n");
115 }
116 
117 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
118 				     int level)
119 {
120 	struct clk *child;
121 
122 	if (!c)
123 		return;
124 
125 	clk_summary_show_one(s, c, level);
126 
127 	hlist_for_each_entry(child, &c->children, child_node)
128 		clk_summary_show_subtree(s, child, level + 1);
129 }
130 
131 static int clk_summary_show(struct seq_file *s, void *data)
132 {
133 	struct clk *c;
134 
135 	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate        accuracy\n");
136 	seq_printf(s, "---------------------------------------------------------------------------------\n");
137 
138 	clk_prepare_lock();
139 
140 	hlist_for_each_entry(c, &clk_root_list, child_node)
141 		clk_summary_show_subtree(s, c, 0);
142 
143 	hlist_for_each_entry(c, &clk_orphan_list, child_node)
144 		clk_summary_show_subtree(s, c, 0);
145 
146 	clk_prepare_unlock();
147 
148 	return 0;
149 }
150 
151 
152 static int clk_summary_open(struct inode *inode, struct file *file)
153 {
154 	return single_open(file, clk_summary_show, inode->i_private);
155 }
156 
157 static const struct file_operations clk_summary_fops = {
158 	.open		= clk_summary_open,
159 	.read		= seq_read,
160 	.llseek		= seq_lseek,
161 	.release	= single_release,
162 };
163 
164 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
165 {
166 	if (!c)
167 		return;
168 
169 	seq_printf(s, "\"%s\": { ", c->name);
170 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
171 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
172 	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
173 	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
174 }
175 
176 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
177 {
178 	struct clk *child;
179 
180 	if (!c)
181 		return;
182 
183 	clk_dump_one(s, c, level);
184 
185 	hlist_for_each_entry(child, &c->children, child_node) {
186 		seq_printf(s, ",");
187 		clk_dump_subtree(s, child, level + 1);
188 	}
189 
190 	seq_printf(s, "}");
191 }
192 
193 static int clk_dump(struct seq_file *s, void *data)
194 {
195 	struct clk *c;
196 	bool first_node = true;
197 
198 	seq_printf(s, "{");
199 
200 	clk_prepare_lock();
201 
202 	hlist_for_each_entry(c, &clk_root_list, child_node) {
203 		if (!first_node)
204 			seq_printf(s, ",");
205 		first_node = false;
206 		clk_dump_subtree(s, c, 0);
207 	}
208 
209 	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
210 		seq_printf(s, ",");
211 		clk_dump_subtree(s, c, 0);
212 	}
213 
214 	clk_prepare_unlock();
215 
216 	seq_printf(s, "}");
217 	return 0;
218 }
219 
220 
221 static int clk_dump_open(struct inode *inode, struct file *file)
222 {
223 	return single_open(file, clk_dump, inode->i_private);
224 }
225 
226 static const struct file_operations clk_dump_fops = {
227 	.open		= clk_dump_open,
228 	.read		= seq_read,
229 	.llseek		= seq_lseek,
230 	.release	= single_release,
231 };
232 
233 /* caller must hold prepare_lock */
234 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
235 {
236 	struct dentry *d;
237 	int ret = -ENOMEM;
238 
239 	if (!clk || !pdentry) {
240 		ret = -EINVAL;
241 		goto out;
242 	}
243 
244 	d = debugfs_create_dir(clk->name, pdentry);
245 	if (!d)
246 		goto out;
247 
248 	clk->dentry = d;
249 
250 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
251 			(u32 *)&clk->rate);
252 	if (!d)
253 		goto err_out;
254 
255 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
256 			(u32 *)&clk->accuracy);
257 	if (!d)
258 		goto err_out;
259 
260 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
261 			(u32 *)&clk->flags);
262 	if (!d)
263 		goto err_out;
264 
265 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
266 			(u32 *)&clk->prepare_count);
267 	if (!d)
268 		goto err_out;
269 
270 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
271 			(u32 *)&clk->enable_count);
272 	if (!d)
273 		goto err_out;
274 
275 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
276 			(u32 *)&clk->notifier_count);
277 	if (!d)
278 		goto err_out;
279 
280 	ret = 0;
281 	goto out;
282 
283 err_out:
284 	debugfs_remove_recursive(clk->dentry);
285 	clk->dentry = NULL;
286 out:
287 	return ret;
288 }
289 
290 /* caller must hold prepare_lock */
291 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
292 {
293 	struct clk *child;
294 	int ret = -EINVAL;;
295 
296 	if (!clk || !pdentry)
297 		goto out;
298 
299 	ret = clk_debug_create_one(clk, pdentry);
300 
301 	if (ret)
302 		goto out;
303 
304 	hlist_for_each_entry(child, &clk->children, child_node)
305 		clk_debug_create_subtree(child, clk->dentry);
306 
307 	ret = 0;
308 out:
309 	return ret;
310 }
311 
312 /**
313  * clk_debug_register - add a clk node to the debugfs clk tree
314  * @clk: the clk being added to the debugfs clk tree
315  *
316  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
317  * initialized.  Otherwise it bails out early since the debugfs clk tree
318  * will be created lazily by clk_debug_init as part of a late_initcall.
319  *
320  * Caller must hold prepare_lock.  Only clk_init calls this function (so
321  * far) so this is taken care.
322  */
323 static int clk_debug_register(struct clk *clk)
324 {
325 	struct clk *parent;
326 	struct dentry *pdentry;
327 	int ret = 0;
328 
329 	if (!inited)
330 		goto out;
331 
332 	parent = clk->parent;
333 
334 	/*
335 	 * Check to see if a clk is a root clk.  Also check that it is
336 	 * safe to add this clk to debugfs
337 	 */
338 	if (!parent)
339 		if (clk->flags & CLK_IS_ROOT)
340 			pdentry = rootdir;
341 		else
342 			pdentry = orphandir;
343 	else
344 		if (parent->dentry)
345 			pdentry = parent->dentry;
346 		else
347 			goto out;
348 
349 	ret = clk_debug_create_subtree(clk, pdentry);
350 
351 out:
352 	return ret;
353 }
354 
355  /**
356  * clk_debug_unregister - remove a clk node from the debugfs clk tree
357  * @clk: the clk being removed from the debugfs clk tree
358  *
359  * Dynamically removes a clk and all it's children clk nodes from the
360  * debugfs clk tree if clk->dentry points to debugfs created by
361  * clk_debug_register in __clk_init.
362  *
363  * Caller must hold prepare_lock.
364  */
365 static void clk_debug_unregister(struct clk *clk)
366 {
367 	debugfs_remove_recursive(clk->dentry);
368 }
369 
370 /**
371  * clk_debug_reparent - reparent clk node in the debugfs clk tree
372  * @clk: the clk being reparented
373  * @new_parent: the new clk parent, may be NULL
374  *
375  * Rename clk entry in the debugfs clk tree if debugfs has been
376  * initialized.  Otherwise it bails out early since the debugfs clk tree
377  * will be created lazily by clk_debug_init as part of a late_initcall.
378  *
379  * Caller must hold prepare_lock.
380  */
381 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
382 {
383 	struct dentry *d;
384 	struct dentry *new_parent_d;
385 
386 	if (!inited)
387 		return;
388 
389 	if (new_parent)
390 		new_parent_d = new_parent->dentry;
391 	else
392 		new_parent_d = orphandir;
393 
394 	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
395 			new_parent_d, clk->name);
396 	if (d)
397 		clk->dentry = d;
398 	else
399 		pr_debug("%s: failed to rename debugfs entry for %s\n",
400 				__func__, clk->name);
401 }
402 
403 /**
404  * clk_debug_init - lazily create the debugfs clk tree visualization
405  *
406  * clks are often initialized very early during boot before memory can
407  * be dynamically allocated and well before debugfs is setup.
408  * clk_debug_init walks the clk tree hierarchy while holding
409  * prepare_lock and creates the topology as part of a late_initcall,
410  * thus insuring that clks initialized very early will still be
411  * represented in the debugfs clk tree.  This function should only be
412  * called once at boot-time, and all other clks added dynamically will
413  * be done so with clk_debug_register.
414  */
415 static int __init clk_debug_init(void)
416 {
417 	struct clk *clk;
418 	struct dentry *d;
419 
420 	rootdir = debugfs_create_dir("clk", NULL);
421 
422 	if (!rootdir)
423 		return -ENOMEM;
424 
425 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
426 				&clk_summary_fops);
427 	if (!d)
428 		return -ENOMEM;
429 
430 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
431 				&clk_dump_fops);
432 	if (!d)
433 		return -ENOMEM;
434 
435 	orphandir = debugfs_create_dir("orphans", rootdir);
436 
437 	if (!orphandir)
438 		return -ENOMEM;
439 
440 	clk_prepare_lock();
441 
442 	hlist_for_each_entry(clk, &clk_root_list, child_node)
443 		clk_debug_create_subtree(clk, rootdir);
444 
445 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
446 		clk_debug_create_subtree(clk, orphandir);
447 
448 	inited = 1;
449 
450 	clk_prepare_unlock();
451 
452 	return 0;
453 }
454 late_initcall(clk_debug_init);
455 #else
456 static inline int clk_debug_register(struct clk *clk) { return 0; }
457 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
458 {
459 }
460 static inline void clk_debug_unregister(struct clk *clk)
461 {
462 }
463 #endif
464 
465 /* caller must hold prepare_lock */
466 static void clk_unprepare_unused_subtree(struct clk *clk)
467 {
468 	struct clk *child;
469 
470 	if (!clk)
471 		return;
472 
473 	hlist_for_each_entry(child, &clk->children, child_node)
474 		clk_unprepare_unused_subtree(child);
475 
476 	if (clk->prepare_count)
477 		return;
478 
479 	if (clk->flags & CLK_IGNORE_UNUSED)
480 		return;
481 
482 	if (__clk_is_prepared(clk)) {
483 		if (clk->ops->unprepare_unused)
484 			clk->ops->unprepare_unused(clk->hw);
485 		else if (clk->ops->unprepare)
486 			clk->ops->unprepare(clk->hw);
487 	}
488 }
489 
490 /* caller must hold prepare_lock */
491 static void clk_disable_unused_subtree(struct clk *clk)
492 {
493 	struct clk *child;
494 	unsigned long flags;
495 
496 	if (!clk)
497 		goto out;
498 
499 	hlist_for_each_entry(child, &clk->children, child_node)
500 		clk_disable_unused_subtree(child);
501 
502 	flags = clk_enable_lock();
503 
504 	if (clk->enable_count)
505 		goto unlock_out;
506 
507 	if (clk->flags & CLK_IGNORE_UNUSED)
508 		goto unlock_out;
509 
510 	/*
511 	 * some gate clocks have special needs during the disable-unused
512 	 * sequence.  call .disable_unused if available, otherwise fall
513 	 * back to .disable
514 	 */
515 	if (__clk_is_enabled(clk)) {
516 		if (clk->ops->disable_unused)
517 			clk->ops->disable_unused(clk->hw);
518 		else if (clk->ops->disable)
519 			clk->ops->disable(clk->hw);
520 	}
521 
522 unlock_out:
523 	clk_enable_unlock(flags);
524 
525 out:
526 	return;
527 }
528 
529 static bool clk_ignore_unused;
530 static int __init clk_ignore_unused_setup(char *__unused)
531 {
532 	clk_ignore_unused = true;
533 	return 1;
534 }
535 __setup("clk_ignore_unused", clk_ignore_unused_setup);
536 
537 static int clk_disable_unused(void)
538 {
539 	struct clk *clk;
540 
541 	if (clk_ignore_unused) {
542 		pr_warn("clk: Not disabling unused clocks\n");
543 		return 0;
544 	}
545 
546 	clk_prepare_lock();
547 
548 	hlist_for_each_entry(clk, &clk_root_list, child_node)
549 		clk_disable_unused_subtree(clk);
550 
551 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
552 		clk_disable_unused_subtree(clk);
553 
554 	hlist_for_each_entry(clk, &clk_root_list, child_node)
555 		clk_unprepare_unused_subtree(clk);
556 
557 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
558 		clk_unprepare_unused_subtree(clk);
559 
560 	clk_prepare_unlock();
561 
562 	return 0;
563 }
564 late_initcall_sync(clk_disable_unused);
565 
566 /***    helper functions   ***/
567 
568 const char *__clk_get_name(struct clk *clk)
569 {
570 	return !clk ? NULL : clk->name;
571 }
572 EXPORT_SYMBOL_GPL(__clk_get_name);
573 
574 struct clk_hw *__clk_get_hw(struct clk *clk)
575 {
576 	return !clk ? NULL : clk->hw;
577 }
578 EXPORT_SYMBOL_GPL(__clk_get_hw);
579 
580 u8 __clk_get_num_parents(struct clk *clk)
581 {
582 	return !clk ? 0 : clk->num_parents;
583 }
584 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
585 
586 struct clk *__clk_get_parent(struct clk *clk)
587 {
588 	return !clk ? NULL : clk->parent;
589 }
590 EXPORT_SYMBOL_GPL(__clk_get_parent);
591 
592 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
593 {
594 	if (!clk || index >= clk->num_parents)
595 		return NULL;
596 	else if (!clk->parents)
597 		return __clk_lookup(clk->parent_names[index]);
598 	else if (!clk->parents[index])
599 		return clk->parents[index] =
600 			__clk_lookup(clk->parent_names[index]);
601 	else
602 		return clk->parents[index];
603 }
604 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
605 
606 unsigned int __clk_get_enable_count(struct clk *clk)
607 {
608 	return !clk ? 0 : clk->enable_count;
609 }
610 
611 unsigned int __clk_get_prepare_count(struct clk *clk)
612 {
613 	return !clk ? 0 : clk->prepare_count;
614 }
615 
616 unsigned long __clk_get_rate(struct clk *clk)
617 {
618 	unsigned long ret;
619 
620 	if (!clk) {
621 		ret = 0;
622 		goto out;
623 	}
624 
625 	ret = clk->rate;
626 
627 	if (clk->flags & CLK_IS_ROOT)
628 		goto out;
629 
630 	if (!clk->parent)
631 		ret = 0;
632 
633 out:
634 	return ret;
635 }
636 EXPORT_SYMBOL_GPL(__clk_get_rate);
637 
638 unsigned long __clk_get_accuracy(struct clk *clk)
639 {
640 	if (!clk)
641 		return 0;
642 
643 	return clk->accuracy;
644 }
645 
646 unsigned long __clk_get_flags(struct clk *clk)
647 {
648 	return !clk ? 0 : clk->flags;
649 }
650 EXPORT_SYMBOL_GPL(__clk_get_flags);
651 
652 bool __clk_is_prepared(struct clk *clk)
653 {
654 	int ret;
655 
656 	if (!clk)
657 		return false;
658 
659 	/*
660 	 * .is_prepared is optional for clocks that can prepare
661 	 * fall back to software usage counter if it is missing
662 	 */
663 	if (!clk->ops->is_prepared) {
664 		ret = clk->prepare_count ? 1 : 0;
665 		goto out;
666 	}
667 
668 	ret = clk->ops->is_prepared(clk->hw);
669 out:
670 	return !!ret;
671 }
672 
673 bool __clk_is_enabled(struct clk *clk)
674 {
675 	int ret;
676 
677 	if (!clk)
678 		return false;
679 
680 	/*
681 	 * .is_enabled is only mandatory for clocks that gate
682 	 * fall back to software usage counter if .is_enabled is missing
683 	 */
684 	if (!clk->ops->is_enabled) {
685 		ret = clk->enable_count ? 1 : 0;
686 		goto out;
687 	}
688 
689 	ret = clk->ops->is_enabled(clk->hw);
690 out:
691 	return !!ret;
692 }
693 EXPORT_SYMBOL_GPL(__clk_is_enabled);
694 
695 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
696 {
697 	struct clk *child;
698 	struct clk *ret;
699 
700 	if (!strcmp(clk->name, name))
701 		return clk;
702 
703 	hlist_for_each_entry(child, &clk->children, child_node) {
704 		ret = __clk_lookup_subtree(name, child);
705 		if (ret)
706 			return ret;
707 	}
708 
709 	return NULL;
710 }
711 
712 struct clk *__clk_lookup(const char *name)
713 {
714 	struct clk *root_clk;
715 	struct clk *ret;
716 
717 	if (!name)
718 		return NULL;
719 
720 	/* search the 'proper' clk tree first */
721 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
722 		ret = __clk_lookup_subtree(name, root_clk);
723 		if (ret)
724 			return ret;
725 	}
726 
727 	/* if not found, then search the orphan tree */
728 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
729 		ret = __clk_lookup_subtree(name, root_clk);
730 		if (ret)
731 			return ret;
732 	}
733 
734 	return NULL;
735 }
736 
737 /*
738  * Helper for finding best parent to provide a given frequency. This can be used
739  * directly as a determine_rate callback (e.g. for a mux), or from a more
740  * complex clock that may combine a mux with other operations.
741  */
742 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
743 			      unsigned long *best_parent_rate,
744 			      struct clk **best_parent_p)
745 {
746 	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
747 	int i, num_parents;
748 	unsigned long parent_rate, best = 0;
749 
750 	/* if NO_REPARENT flag set, pass through to current parent */
751 	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
752 		parent = clk->parent;
753 		if (clk->flags & CLK_SET_RATE_PARENT)
754 			best = __clk_round_rate(parent, rate);
755 		else if (parent)
756 			best = __clk_get_rate(parent);
757 		else
758 			best = __clk_get_rate(clk);
759 		goto out;
760 	}
761 
762 	/* find the parent that can provide the fastest rate <= rate */
763 	num_parents = clk->num_parents;
764 	for (i = 0; i < num_parents; i++) {
765 		parent = clk_get_parent_by_index(clk, i);
766 		if (!parent)
767 			continue;
768 		if (clk->flags & CLK_SET_RATE_PARENT)
769 			parent_rate = __clk_round_rate(parent, rate);
770 		else
771 			parent_rate = __clk_get_rate(parent);
772 		if (parent_rate <= rate && parent_rate > best) {
773 			best_parent = parent;
774 			best = parent_rate;
775 		}
776 	}
777 
778 out:
779 	if (best_parent)
780 		*best_parent_p = best_parent;
781 	*best_parent_rate = best;
782 
783 	return best;
784 }
785 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
786 
787 /***        clk api        ***/
788 
789 void __clk_unprepare(struct clk *clk)
790 {
791 	if (!clk)
792 		return;
793 
794 	if (WARN_ON(clk->prepare_count == 0))
795 		return;
796 
797 	if (--clk->prepare_count > 0)
798 		return;
799 
800 	WARN_ON(clk->enable_count > 0);
801 
802 	if (clk->ops->unprepare)
803 		clk->ops->unprepare(clk->hw);
804 
805 	__clk_unprepare(clk->parent);
806 }
807 
808 /**
809  * clk_unprepare - undo preparation of a clock source
810  * @clk: the clk being unprepared
811  *
812  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
813  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
814  * if the operation may sleep.  One example is a clk which is accessed over
815  * I2c.  In the complex case a clk gate operation may require a fast and a slow
816  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
817  * exclusive.  In fact clk_disable must be called before clk_unprepare.
818  */
819 void clk_unprepare(struct clk *clk)
820 {
821 	clk_prepare_lock();
822 	__clk_unprepare(clk);
823 	clk_prepare_unlock();
824 }
825 EXPORT_SYMBOL_GPL(clk_unprepare);
826 
827 int __clk_prepare(struct clk *clk)
828 {
829 	int ret = 0;
830 
831 	if (!clk)
832 		return 0;
833 
834 	if (clk->prepare_count == 0) {
835 		ret = __clk_prepare(clk->parent);
836 		if (ret)
837 			return ret;
838 
839 		if (clk->ops->prepare) {
840 			ret = clk->ops->prepare(clk->hw);
841 			if (ret) {
842 				__clk_unprepare(clk->parent);
843 				return ret;
844 			}
845 		}
846 	}
847 
848 	clk->prepare_count++;
849 
850 	return 0;
851 }
852 
853 /**
854  * clk_prepare - prepare a clock source
855  * @clk: the clk being prepared
856  *
857  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
858  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
859  * operation may sleep.  One example is a clk which is accessed over I2c.  In
860  * the complex case a clk ungate operation may require a fast and a slow part.
861  * It is this reason that clk_prepare and clk_enable are not mutually
862  * exclusive.  In fact clk_prepare must be called before clk_enable.
863  * Returns 0 on success, -EERROR otherwise.
864  */
865 int clk_prepare(struct clk *clk)
866 {
867 	int ret;
868 
869 	clk_prepare_lock();
870 	ret = __clk_prepare(clk);
871 	clk_prepare_unlock();
872 
873 	return ret;
874 }
875 EXPORT_SYMBOL_GPL(clk_prepare);
876 
877 static void __clk_disable(struct clk *clk)
878 {
879 	if (!clk)
880 		return;
881 
882 	if (WARN_ON(IS_ERR(clk)))
883 		return;
884 
885 	if (WARN_ON(clk->enable_count == 0))
886 		return;
887 
888 	if (--clk->enable_count > 0)
889 		return;
890 
891 	if (clk->ops->disable)
892 		clk->ops->disable(clk->hw);
893 
894 	__clk_disable(clk->parent);
895 }
896 
897 /**
898  * clk_disable - gate a clock
899  * @clk: the clk being gated
900  *
901  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
902  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
903  * clk if the operation is fast and will never sleep.  One example is a
904  * SoC-internal clk which is controlled via simple register writes.  In the
905  * complex case a clk gate operation may require a fast and a slow part.  It is
906  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
907  * In fact clk_disable must be called before clk_unprepare.
908  */
909 void clk_disable(struct clk *clk)
910 {
911 	unsigned long flags;
912 
913 	flags = clk_enable_lock();
914 	__clk_disable(clk);
915 	clk_enable_unlock(flags);
916 }
917 EXPORT_SYMBOL_GPL(clk_disable);
918 
919 static int __clk_enable(struct clk *clk)
920 {
921 	int ret = 0;
922 
923 	if (!clk)
924 		return 0;
925 
926 	if (WARN_ON(clk->prepare_count == 0))
927 		return -ESHUTDOWN;
928 
929 	if (clk->enable_count == 0) {
930 		ret = __clk_enable(clk->parent);
931 
932 		if (ret)
933 			return ret;
934 
935 		if (clk->ops->enable) {
936 			ret = clk->ops->enable(clk->hw);
937 			if (ret) {
938 				__clk_disable(clk->parent);
939 				return ret;
940 			}
941 		}
942 	}
943 
944 	clk->enable_count++;
945 	return 0;
946 }
947 
948 /**
949  * clk_enable - ungate a clock
950  * @clk: the clk being ungated
951  *
952  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
953  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
954  * if the operation will never sleep.  One example is a SoC-internal clk which
955  * is controlled via simple register writes.  In the complex case a clk ungate
956  * operation may require a fast and a slow part.  It is this reason that
957  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
958  * must be called before clk_enable.  Returns 0 on success, -EERROR
959  * otherwise.
960  */
961 int clk_enable(struct clk *clk)
962 {
963 	unsigned long flags;
964 	int ret;
965 
966 	flags = clk_enable_lock();
967 	ret = __clk_enable(clk);
968 	clk_enable_unlock(flags);
969 
970 	return ret;
971 }
972 EXPORT_SYMBOL_GPL(clk_enable);
973 
974 /**
975  * __clk_round_rate - round the given rate for a clk
976  * @clk: round the rate of this clock
977  * @rate: the rate which is to be rounded
978  *
979  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
980  */
981 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
982 {
983 	unsigned long parent_rate = 0;
984 	struct clk *parent;
985 
986 	if (!clk)
987 		return 0;
988 
989 	parent = clk->parent;
990 	if (parent)
991 		parent_rate = parent->rate;
992 
993 	if (clk->ops->determine_rate)
994 		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
995 						&parent);
996 	else if (clk->ops->round_rate)
997 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
998 	else if (clk->flags & CLK_SET_RATE_PARENT)
999 		return __clk_round_rate(clk->parent, rate);
1000 	else
1001 		return clk->rate;
1002 }
1003 
1004 /**
1005  * clk_round_rate - round the given rate for a clk
1006  * @clk: the clk for which we are rounding a rate
1007  * @rate: the rate which is to be rounded
1008  *
1009  * Takes in a rate as input and rounds it to a rate that the clk can actually
1010  * use which is then returned.  If clk doesn't support round_rate operation
1011  * then the parent rate is returned.
1012  */
1013 long clk_round_rate(struct clk *clk, unsigned long rate)
1014 {
1015 	unsigned long ret;
1016 
1017 	clk_prepare_lock();
1018 	ret = __clk_round_rate(clk, rate);
1019 	clk_prepare_unlock();
1020 
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL_GPL(clk_round_rate);
1024 
1025 /**
1026  * __clk_notify - call clk notifier chain
1027  * @clk: struct clk * that is changing rate
1028  * @msg: clk notifier type (see include/linux/clk.h)
1029  * @old_rate: old clk rate
1030  * @new_rate: new clk rate
1031  *
1032  * Triggers a notifier call chain on the clk rate-change notification
1033  * for 'clk'.  Passes a pointer to the struct clk and the previous
1034  * and current rates to the notifier callback.  Intended to be called by
1035  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1036  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1037  * a driver returns that.
1038  */
1039 static int __clk_notify(struct clk *clk, unsigned long msg,
1040 		unsigned long old_rate, unsigned long new_rate)
1041 {
1042 	struct clk_notifier *cn;
1043 	struct clk_notifier_data cnd;
1044 	int ret = NOTIFY_DONE;
1045 
1046 	cnd.clk = clk;
1047 	cnd.old_rate = old_rate;
1048 	cnd.new_rate = new_rate;
1049 
1050 	list_for_each_entry(cn, &clk_notifier_list, node) {
1051 		if (cn->clk == clk) {
1052 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1053 					&cnd);
1054 			break;
1055 		}
1056 	}
1057 
1058 	return ret;
1059 }
1060 
1061 /**
1062  * __clk_recalc_accuracies
1063  * @clk: first clk in the subtree
1064  *
1065  * Walks the subtree of clks starting with clk and recalculates accuracies as
1066  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1067  * callback then it is assumed that the clock will take on the accuracy of it's
1068  * parent.
1069  *
1070  * Caller must hold prepare_lock.
1071  */
1072 static void __clk_recalc_accuracies(struct clk *clk)
1073 {
1074 	unsigned long parent_accuracy = 0;
1075 	struct clk *child;
1076 
1077 	if (clk->parent)
1078 		parent_accuracy = clk->parent->accuracy;
1079 
1080 	if (clk->ops->recalc_accuracy)
1081 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1082 							  parent_accuracy);
1083 	else
1084 		clk->accuracy = parent_accuracy;
1085 
1086 	hlist_for_each_entry(child, &clk->children, child_node)
1087 		__clk_recalc_accuracies(child);
1088 }
1089 
1090 /**
1091  * clk_get_accuracy - return the accuracy of clk
1092  * @clk: the clk whose accuracy is being returned
1093  *
1094  * Simply returns the cached accuracy of the clk, unless
1095  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1096  * issued.
1097  * If clk is NULL then returns 0.
1098  */
1099 long clk_get_accuracy(struct clk *clk)
1100 {
1101 	unsigned long accuracy;
1102 
1103 	clk_prepare_lock();
1104 	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1105 		__clk_recalc_accuracies(clk);
1106 
1107 	accuracy = __clk_get_accuracy(clk);
1108 	clk_prepare_unlock();
1109 
1110 	return accuracy;
1111 }
1112 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1113 
1114 /**
1115  * __clk_recalc_rates
1116  * @clk: first clk in the subtree
1117  * @msg: notification type (see include/linux/clk.h)
1118  *
1119  * Walks the subtree of clks starting with clk and recalculates rates as it
1120  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1121  * it is assumed that the clock will take on the rate of its parent.
1122  *
1123  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1124  * if necessary.
1125  *
1126  * Caller must hold prepare_lock.
1127  */
1128 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1129 {
1130 	unsigned long old_rate;
1131 	unsigned long parent_rate = 0;
1132 	struct clk *child;
1133 
1134 	old_rate = clk->rate;
1135 
1136 	if (clk->parent)
1137 		parent_rate = clk->parent->rate;
1138 
1139 	if (clk->ops->recalc_rate)
1140 		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1141 	else
1142 		clk->rate = parent_rate;
1143 
1144 	/*
1145 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1146 	 * & ABORT_RATE_CHANGE notifiers
1147 	 */
1148 	if (clk->notifier_count && msg)
1149 		__clk_notify(clk, msg, old_rate, clk->rate);
1150 
1151 	hlist_for_each_entry(child, &clk->children, child_node)
1152 		__clk_recalc_rates(child, msg);
1153 }
1154 
1155 /**
1156  * clk_get_rate - return the rate of clk
1157  * @clk: the clk whose rate is being returned
1158  *
1159  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1160  * is set, which means a recalc_rate will be issued.
1161  * If clk is NULL then returns 0.
1162  */
1163 unsigned long clk_get_rate(struct clk *clk)
1164 {
1165 	unsigned long rate;
1166 
1167 	clk_prepare_lock();
1168 
1169 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1170 		__clk_recalc_rates(clk, 0);
1171 
1172 	rate = __clk_get_rate(clk);
1173 	clk_prepare_unlock();
1174 
1175 	return rate;
1176 }
1177 EXPORT_SYMBOL_GPL(clk_get_rate);
1178 
1179 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1180 {
1181 	int i;
1182 
1183 	if (!clk->parents) {
1184 		clk->parents = kcalloc(clk->num_parents,
1185 					sizeof(struct clk *), GFP_KERNEL);
1186 		if (!clk->parents)
1187 			return -ENOMEM;
1188 	}
1189 
1190 	/*
1191 	 * find index of new parent clock using cached parent ptrs,
1192 	 * or if not yet cached, use string name comparison and cache
1193 	 * them now to avoid future calls to __clk_lookup.
1194 	 */
1195 	for (i = 0; i < clk->num_parents; i++) {
1196 		if (clk->parents[i] == parent)
1197 			return i;
1198 
1199 		if (clk->parents[i])
1200 			continue;
1201 
1202 		if (!strcmp(clk->parent_names[i], parent->name)) {
1203 			clk->parents[i] = __clk_lookup(parent->name);
1204 			return i;
1205 		}
1206 	}
1207 
1208 	return -EINVAL;
1209 }
1210 
1211 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1212 {
1213 	hlist_del(&clk->child_node);
1214 
1215 	if (new_parent) {
1216 		/* avoid duplicate POST_RATE_CHANGE notifications */
1217 		if (new_parent->new_child == clk)
1218 			new_parent->new_child = NULL;
1219 
1220 		hlist_add_head(&clk->child_node, &new_parent->children);
1221 	} else {
1222 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1223 	}
1224 
1225 	clk->parent = new_parent;
1226 }
1227 
1228 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1229 {
1230 	unsigned long flags;
1231 	struct clk *old_parent = clk->parent;
1232 
1233 	/*
1234 	 * Migrate prepare state between parents and prevent race with
1235 	 * clk_enable().
1236 	 *
1237 	 * If the clock is not prepared, then a race with
1238 	 * clk_enable/disable() is impossible since we already have the
1239 	 * prepare lock (future calls to clk_enable() need to be preceded by
1240 	 * a clk_prepare()).
1241 	 *
1242 	 * If the clock is prepared, migrate the prepared state to the new
1243 	 * parent and also protect against a race with clk_enable() by
1244 	 * forcing the clock and the new parent on.  This ensures that all
1245 	 * future calls to clk_enable() are practically NOPs with respect to
1246 	 * hardware and software states.
1247 	 *
1248 	 * See also: Comment for clk_set_parent() below.
1249 	 */
1250 	if (clk->prepare_count) {
1251 		__clk_prepare(parent);
1252 		clk_enable(parent);
1253 		clk_enable(clk);
1254 	}
1255 
1256 	/* update the clk tree topology */
1257 	flags = clk_enable_lock();
1258 	clk_reparent(clk, parent);
1259 	clk_enable_unlock(flags);
1260 
1261 	return old_parent;
1262 }
1263 
1264 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1265 		struct clk *old_parent)
1266 {
1267 	/*
1268 	 * Finish the migration of prepare state and undo the changes done
1269 	 * for preventing a race with clk_enable().
1270 	 */
1271 	if (clk->prepare_count) {
1272 		clk_disable(clk);
1273 		clk_disable(old_parent);
1274 		__clk_unprepare(old_parent);
1275 	}
1276 
1277 	/* update debugfs with new clk tree topology */
1278 	clk_debug_reparent(clk, parent);
1279 }
1280 
1281 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1282 {
1283 	unsigned long flags;
1284 	int ret = 0;
1285 	struct clk *old_parent;
1286 
1287 	old_parent = __clk_set_parent_before(clk, parent);
1288 
1289 	/* change clock input source */
1290 	if (parent && clk->ops->set_parent)
1291 		ret = clk->ops->set_parent(clk->hw, p_index);
1292 
1293 	if (ret) {
1294 		flags = clk_enable_lock();
1295 		clk_reparent(clk, old_parent);
1296 		clk_enable_unlock(flags);
1297 
1298 		if (clk->prepare_count) {
1299 			clk_disable(clk);
1300 			clk_disable(parent);
1301 			__clk_unprepare(parent);
1302 		}
1303 		return ret;
1304 	}
1305 
1306 	__clk_set_parent_after(clk, parent, old_parent);
1307 
1308 	return 0;
1309 }
1310 
1311 /**
1312  * __clk_speculate_rates
1313  * @clk: first clk in the subtree
1314  * @parent_rate: the "future" rate of clk's parent
1315  *
1316  * Walks the subtree of clks starting with clk, speculating rates as it
1317  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1318  *
1319  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1320  * pre-rate change notifications and returns early if no clks in the
1321  * subtree have subscribed to the notifications.  Note that if a clk does not
1322  * implement the .recalc_rate callback then it is assumed that the clock will
1323  * take on the rate of its parent.
1324  *
1325  * Caller must hold prepare_lock.
1326  */
1327 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1328 {
1329 	struct clk *child;
1330 	unsigned long new_rate;
1331 	int ret = NOTIFY_DONE;
1332 
1333 	if (clk->ops->recalc_rate)
1334 		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1335 	else
1336 		new_rate = parent_rate;
1337 
1338 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1339 	if (clk->notifier_count)
1340 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1341 
1342 	if (ret & NOTIFY_STOP_MASK)
1343 		goto out;
1344 
1345 	hlist_for_each_entry(child, &clk->children, child_node) {
1346 		ret = __clk_speculate_rates(child, new_rate);
1347 		if (ret & NOTIFY_STOP_MASK)
1348 			break;
1349 	}
1350 
1351 out:
1352 	return ret;
1353 }
1354 
1355 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1356 			     struct clk *new_parent, u8 p_index)
1357 {
1358 	struct clk *child;
1359 
1360 	clk->new_rate = new_rate;
1361 	clk->new_parent = new_parent;
1362 	clk->new_parent_index = p_index;
1363 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1364 	clk->new_child = NULL;
1365 	if (new_parent && new_parent != clk->parent)
1366 		new_parent->new_child = clk;
1367 
1368 	hlist_for_each_entry(child, &clk->children, child_node) {
1369 		if (child->ops->recalc_rate)
1370 			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1371 		else
1372 			child->new_rate = new_rate;
1373 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1374 	}
1375 }
1376 
1377 /*
1378  * calculate the new rates returning the topmost clock that has to be
1379  * changed.
1380  */
1381 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1382 {
1383 	struct clk *top = clk;
1384 	struct clk *old_parent, *parent;
1385 	unsigned long best_parent_rate = 0;
1386 	unsigned long new_rate;
1387 	int p_index = 0;
1388 
1389 	/* sanity */
1390 	if (IS_ERR_OR_NULL(clk))
1391 		return NULL;
1392 
1393 	/* save parent rate, if it exists */
1394 	parent = old_parent = clk->parent;
1395 	if (parent)
1396 		best_parent_rate = parent->rate;
1397 
1398 	/* find the closest rate and parent clk/rate */
1399 	if (clk->ops->determine_rate) {
1400 		new_rate = clk->ops->determine_rate(clk->hw, rate,
1401 						    &best_parent_rate,
1402 						    &parent);
1403 	} else if (clk->ops->round_rate) {
1404 		new_rate = clk->ops->round_rate(clk->hw, rate,
1405 						&best_parent_rate);
1406 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1407 		/* pass-through clock without adjustable parent */
1408 		clk->new_rate = clk->rate;
1409 		return NULL;
1410 	} else {
1411 		/* pass-through clock with adjustable parent */
1412 		top = clk_calc_new_rates(parent, rate);
1413 		new_rate = parent->new_rate;
1414 		goto out;
1415 	}
1416 
1417 	/* some clocks must be gated to change parent */
1418 	if (parent != old_parent &&
1419 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1420 		pr_debug("%s: %s not gated but wants to reparent\n",
1421 			 __func__, clk->name);
1422 		return NULL;
1423 	}
1424 
1425 	/* try finding the new parent index */
1426 	if (parent) {
1427 		p_index = clk_fetch_parent_index(clk, parent);
1428 		if (p_index < 0) {
1429 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1430 				 __func__, parent->name, clk->name);
1431 			return NULL;
1432 		}
1433 	}
1434 
1435 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1436 	    best_parent_rate != parent->rate)
1437 		top = clk_calc_new_rates(parent, best_parent_rate);
1438 
1439 out:
1440 	clk_calc_subtree(clk, new_rate, parent, p_index);
1441 
1442 	return top;
1443 }
1444 
1445 /*
1446  * Notify about rate changes in a subtree. Always walk down the whole tree
1447  * so that in case of an error we can walk down the whole tree again and
1448  * abort the change.
1449  */
1450 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1451 {
1452 	struct clk *child, *tmp_clk, *fail_clk = NULL;
1453 	int ret = NOTIFY_DONE;
1454 
1455 	if (clk->rate == clk->new_rate)
1456 		return NULL;
1457 
1458 	if (clk->notifier_count) {
1459 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1460 		if (ret & NOTIFY_STOP_MASK)
1461 			fail_clk = clk;
1462 	}
1463 
1464 	hlist_for_each_entry(child, &clk->children, child_node) {
1465 		/* Skip children who will be reparented to another clock */
1466 		if (child->new_parent && child->new_parent != clk)
1467 			continue;
1468 		tmp_clk = clk_propagate_rate_change(child, event);
1469 		if (tmp_clk)
1470 			fail_clk = tmp_clk;
1471 	}
1472 
1473 	/* handle the new child who might not be in clk->children yet */
1474 	if (clk->new_child) {
1475 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1476 		if (tmp_clk)
1477 			fail_clk = tmp_clk;
1478 	}
1479 
1480 	return fail_clk;
1481 }
1482 
1483 /*
1484  * walk down a subtree and set the new rates notifying the rate
1485  * change on the way
1486  */
1487 static void clk_change_rate(struct clk *clk)
1488 {
1489 	struct clk *child;
1490 	unsigned long old_rate;
1491 	unsigned long best_parent_rate = 0;
1492 	bool skip_set_rate = false;
1493 	struct clk *old_parent;
1494 
1495 	old_rate = clk->rate;
1496 
1497 	if (clk->new_parent)
1498 		best_parent_rate = clk->new_parent->rate;
1499 	else if (clk->parent)
1500 		best_parent_rate = clk->parent->rate;
1501 
1502 	if (clk->new_parent && clk->new_parent != clk->parent) {
1503 		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1504 
1505 		if (clk->ops->set_rate_and_parent) {
1506 			skip_set_rate = true;
1507 			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1508 					best_parent_rate,
1509 					clk->new_parent_index);
1510 		} else if (clk->ops->set_parent) {
1511 			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1512 		}
1513 
1514 		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1515 	}
1516 
1517 	if (!skip_set_rate && clk->ops->set_rate)
1518 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1519 
1520 	if (clk->ops->recalc_rate)
1521 		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1522 	else
1523 		clk->rate = best_parent_rate;
1524 
1525 	if (clk->notifier_count && old_rate != clk->rate)
1526 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1527 
1528 	hlist_for_each_entry(child, &clk->children, child_node) {
1529 		/* Skip children who will be reparented to another clock */
1530 		if (child->new_parent && child->new_parent != clk)
1531 			continue;
1532 		clk_change_rate(child);
1533 	}
1534 
1535 	/* handle the new child who might not be in clk->children yet */
1536 	if (clk->new_child)
1537 		clk_change_rate(clk->new_child);
1538 }
1539 
1540 /**
1541  * clk_set_rate - specify a new rate for clk
1542  * @clk: the clk whose rate is being changed
1543  * @rate: the new rate for clk
1544  *
1545  * In the simplest case clk_set_rate will only adjust the rate of clk.
1546  *
1547  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1548  * propagate up to clk's parent; whether or not this happens depends on the
1549  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1550  * after calling .round_rate then upstream parent propagation is ignored.  If
1551  * *parent_rate comes back with a new rate for clk's parent then we propagate
1552  * up to clk's parent and set its rate.  Upward propagation will continue
1553  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1554  * .round_rate stops requesting changes to clk's parent_rate.
1555  *
1556  * Rate changes are accomplished via tree traversal that also recalculates the
1557  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1558  *
1559  * Returns 0 on success, -EERROR otherwise.
1560  */
1561 int clk_set_rate(struct clk *clk, unsigned long rate)
1562 {
1563 	struct clk *top, *fail_clk;
1564 	int ret = 0;
1565 
1566 	if (!clk)
1567 		return 0;
1568 
1569 	/* prevent racing with updates to the clock topology */
1570 	clk_prepare_lock();
1571 
1572 	/* bail early if nothing to do */
1573 	if (rate == clk_get_rate(clk))
1574 		goto out;
1575 
1576 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1577 		ret = -EBUSY;
1578 		goto out;
1579 	}
1580 
1581 	/* calculate new rates and get the topmost changed clock */
1582 	top = clk_calc_new_rates(clk, rate);
1583 	if (!top) {
1584 		ret = -EINVAL;
1585 		goto out;
1586 	}
1587 
1588 	/* notify that we are about to change rates */
1589 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1590 	if (fail_clk) {
1591 		pr_warn("%s: failed to set %s rate\n", __func__,
1592 				fail_clk->name);
1593 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1594 		ret = -EBUSY;
1595 		goto out;
1596 	}
1597 
1598 	/* change the rates */
1599 	clk_change_rate(top);
1600 
1601 out:
1602 	clk_prepare_unlock();
1603 
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(clk_set_rate);
1607 
1608 /**
1609  * clk_get_parent - return the parent of a clk
1610  * @clk: the clk whose parent gets returned
1611  *
1612  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1613  */
1614 struct clk *clk_get_parent(struct clk *clk)
1615 {
1616 	struct clk *parent;
1617 
1618 	clk_prepare_lock();
1619 	parent = __clk_get_parent(clk);
1620 	clk_prepare_unlock();
1621 
1622 	return parent;
1623 }
1624 EXPORT_SYMBOL_GPL(clk_get_parent);
1625 
1626 /*
1627  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1628  * optional for single-parent clocks.  Always call .get_parent if it is
1629  * available and WARN if it is missing for multi-parent clocks.
1630  *
1631  * For single-parent clocks without .get_parent, first check to see if the
1632  * .parents array exists, and if so use it to avoid an expensive tree
1633  * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1634  */
1635 static struct clk *__clk_init_parent(struct clk *clk)
1636 {
1637 	struct clk *ret = NULL;
1638 	u8 index;
1639 
1640 	/* handle the trivial cases */
1641 
1642 	if (!clk->num_parents)
1643 		goto out;
1644 
1645 	if (clk->num_parents == 1) {
1646 		if (IS_ERR_OR_NULL(clk->parent))
1647 			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1648 		ret = clk->parent;
1649 		goto out;
1650 	}
1651 
1652 	if (!clk->ops->get_parent) {
1653 		WARN(!clk->ops->get_parent,
1654 			"%s: multi-parent clocks must implement .get_parent\n",
1655 			__func__);
1656 		goto out;
1657 	};
1658 
1659 	/*
1660 	 * Do our best to cache parent clocks in clk->parents.  This prevents
1661 	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1662 	 * clk->parent here; that is done by the calling function
1663 	 */
1664 
1665 	index = clk->ops->get_parent(clk->hw);
1666 
1667 	if (!clk->parents)
1668 		clk->parents =
1669 			kcalloc(clk->num_parents, sizeof(struct clk *),
1670 					GFP_KERNEL);
1671 
1672 	ret = clk_get_parent_by_index(clk, index);
1673 
1674 out:
1675 	return ret;
1676 }
1677 
1678 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1679 {
1680 	clk_reparent(clk, new_parent);
1681 	clk_debug_reparent(clk, new_parent);
1682 	__clk_recalc_accuracies(clk);
1683 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1684 }
1685 
1686 /**
1687  * clk_set_parent - switch the parent of a mux clk
1688  * @clk: the mux clk whose input we are switching
1689  * @parent: the new input to clk
1690  *
1691  * Re-parent clk to use parent as its new input source.  If clk is in
1692  * prepared state, the clk will get enabled for the duration of this call. If
1693  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1694  * that, the reparenting is glitchy in hardware, etc), use the
1695  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1696  *
1697  * After successfully changing clk's parent clk_set_parent will update the
1698  * clk topology, sysfs topology and propagate rate recalculation via
1699  * __clk_recalc_rates.
1700  *
1701  * Returns 0 on success, -EERROR otherwise.
1702  */
1703 int clk_set_parent(struct clk *clk, struct clk *parent)
1704 {
1705 	int ret = 0;
1706 	int p_index = 0;
1707 	unsigned long p_rate = 0;
1708 
1709 	if (!clk)
1710 		return 0;
1711 
1712 	if (!clk->ops)
1713 		return -EINVAL;
1714 
1715 	/* verify ops for for multi-parent clks */
1716 	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1717 		return -ENOSYS;
1718 
1719 	/* prevent racing with updates to the clock topology */
1720 	clk_prepare_lock();
1721 
1722 	if (clk->parent == parent)
1723 		goto out;
1724 
1725 	/* check that we are allowed to re-parent if the clock is in use */
1726 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1727 		ret = -EBUSY;
1728 		goto out;
1729 	}
1730 
1731 	/* try finding the new parent index */
1732 	if (parent) {
1733 		p_index = clk_fetch_parent_index(clk, parent);
1734 		p_rate = parent->rate;
1735 		if (p_index < 0) {
1736 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1737 					__func__, parent->name, clk->name);
1738 			ret = p_index;
1739 			goto out;
1740 		}
1741 	}
1742 
1743 	/* propagate PRE_RATE_CHANGE notifications */
1744 	ret = __clk_speculate_rates(clk, p_rate);
1745 
1746 	/* abort if a driver objects */
1747 	if (ret & NOTIFY_STOP_MASK)
1748 		goto out;
1749 
1750 	/* do the re-parent */
1751 	ret = __clk_set_parent(clk, parent, p_index);
1752 
1753 	/* propagate rate an accuracy recalculation accordingly */
1754 	if (ret) {
1755 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1756 	} else {
1757 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1758 		__clk_recalc_accuracies(clk);
1759 	}
1760 
1761 out:
1762 	clk_prepare_unlock();
1763 
1764 	return ret;
1765 }
1766 EXPORT_SYMBOL_GPL(clk_set_parent);
1767 
1768 /**
1769  * __clk_init - initialize the data structures in a struct clk
1770  * @dev:	device initializing this clk, placeholder for now
1771  * @clk:	clk being initialized
1772  *
1773  * Initializes the lists in struct clk, queries the hardware for the
1774  * parent and rate and sets them both.
1775  */
1776 int __clk_init(struct device *dev, struct clk *clk)
1777 {
1778 	int i, ret = 0;
1779 	struct clk *orphan;
1780 	struct hlist_node *tmp2;
1781 
1782 	if (!clk)
1783 		return -EINVAL;
1784 
1785 	clk_prepare_lock();
1786 
1787 	/* check to see if a clock with this name is already registered */
1788 	if (__clk_lookup(clk->name)) {
1789 		pr_debug("%s: clk %s already initialized\n",
1790 				__func__, clk->name);
1791 		ret = -EEXIST;
1792 		goto out;
1793 	}
1794 
1795 	/* check that clk_ops are sane.  See Documentation/clk.txt */
1796 	if (clk->ops->set_rate &&
1797 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1798 	      clk->ops->recalc_rate)) {
1799 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1800 				__func__, clk->name);
1801 		ret = -EINVAL;
1802 		goto out;
1803 	}
1804 
1805 	if (clk->ops->set_parent && !clk->ops->get_parent) {
1806 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1807 				__func__, clk->name);
1808 		ret = -EINVAL;
1809 		goto out;
1810 	}
1811 
1812 	if (clk->ops->set_rate_and_parent &&
1813 			!(clk->ops->set_parent && clk->ops->set_rate)) {
1814 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1815 				__func__, clk->name);
1816 		ret = -EINVAL;
1817 		goto out;
1818 	}
1819 
1820 	/* throw a WARN if any entries in parent_names are NULL */
1821 	for (i = 0; i < clk->num_parents; i++)
1822 		WARN(!clk->parent_names[i],
1823 				"%s: invalid NULL in %s's .parent_names\n",
1824 				__func__, clk->name);
1825 
1826 	/*
1827 	 * Allocate an array of struct clk *'s to avoid unnecessary string
1828 	 * look-ups of clk's possible parents.  This can fail for clocks passed
1829 	 * in to clk_init during early boot; thus any access to clk->parents[]
1830 	 * must always check for a NULL pointer and try to populate it if
1831 	 * necessary.
1832 	 *
1833 	 * If clk->parents is not NULL we skip this entire block.  This allows
1834 	 * for clock drivers to statically initialize clk->parents.
1835 	 */
1836 	if (clk->num_parents > 1 && !clk->parents) {
1837 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1838 					GFP_KERNEL);
1839 		/*
1840 		 * __clk_lookup returns NULL for parents that have not been
1841 		 * clk_init'd; thus any access to clk->parents[] must check
1842 		 * for a NULL pointer.  We can always perform lazy lookups for
1843 		 * missing parents later on.
1844 		 */
1845 		if (clk->parents)
1846 			for (i = 0; i < clk->num_parents; i++)
1847 				clk->parents[i] =
1848 					__clk_lookup(clk->parent_names[i]);
1849 	}
1850 
1851 	clk->parent = __clk_init_parent(clk);
1852 
1853 	/*
1854 	 * Populate clk->parent if parent has already been __clk_init'd.  If
1855 	 * parent has not yet been __clk_init'd then place clk in the orphan
1856 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1857 	 * clk list.
1858 	 *
1859 	 * Every time a new clk is clk_init'd then we walk the list of orphan
1860 	 * clocks and re-parent any that are children of the clock currently
1861 	 * being clk_init'd.
1862 	 */
1863 	if (clk->parent)
1864 		hlist_add_head(&clk->child_node,
1865 				&clk->parent->children);
1866 	else if (clk->flags & CLK_IS_ROOT)
1867 		hlist_add_head(&clk->child_node, &clk_root_list);
1868 	else
1869 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1870 
1871 	/*
1872 	 * Set clk's accuracy.  The preferred method is to use
1873 	 * .recalc_accuracy. For simple clocks and lazy developers the default
1874 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
1875 	 * parent (or is orphaned) then accuracy is set to zero (perfect
1876 	 * clock).
1877 	 */
1878 	if (clk->ops->recalc_accuracy)
1879 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1880 					__clk_get_accuracy(clk->parent));
1881 	else if (clk->parent)
1882 		clk->accuracy = clk->parent->accuracy;
1883 	else
1884 		clk->accuracy = 0;
1885 
1886 	/*
1887 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1888 	 * simple clocks and lazy developers the default fallback is to use the
1889 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1890 	 * then rate is set to zero.
1891 	 */
1892 	if (clk->ops->recalc_rate)
1893 		clk->rate = clk->ops->recalc_rate(clk->hw,
1894 				__clk_get_rate(clk->parent));
1895 	else if (clk->parent)
1896 		clk->rate = clk->parent->rate;
1897 	else
1898 		clk->rate = 0;
1899 
1900 	clk_debug_register(clk);
1901 	/*
1902 	 * walk the list of orphan clocks and reparent any that are children of
1903 	 * this clock
1904 	 */
1905 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1906 		if (orphan->num_parents && orphan->ops->get_parent) {
1907 			i = orphan->ops->get_parent(orphan->hw);
1908 			if (!strcmp(clk->name, orphan->parent_names[i]))
1909 				__clk_reparent(orphan, clk);
1910 			continue;
1911 		}
1912 
1913 		for (i = 0; i < orphan->num_parents; i++)
1914 			if (!strcmp(clk->name, orphan->parent_names[i])) {
1915 				__clk_reparent(orphan, clk);
1916 				break;
1917 			}
1918 	 }
1919 
1920 	/*
1921 	 * optional platform-specific magic
1922 	 *
1923 	 * The .init callback is not used by any of the basic clock types, but
1924 	 * exists for weird hardware that must perform initialization magic.
1925 	 * Please consider other ways of solving initialization problems before
1926 	 * using this callback, as its use is discouraged.
1927 	 */
1928 	if (clk->ops->init)
1929 		clk->ops->init(clk->hw);
1930 
1931 	kref_init(&clk->ref);
1932 out:
1933 	clk_prepare_unlock();
1934 
1935 	return ret;
1936 }
1937 
1938 /**
1939  * __clk_register - register a clock and return a cookie.
1940  *
1941  * Same as clk_register, except that the .clk field inside hw shall point to a
1942  * preallocated (generally statically allocated) struct clk. None of the fields
1943  * of the struct clk need to be initialized.
1944  *
1945  * The data pointed to by .init and .clk field shall NOT be marked as init
1946  * data.
1947  *
1948  * __clk_register is only exposed via clk-private.h and is intended for use with
1949  * very large numbers of clocks that need to be statically initialized.  It is
1950  * a layering violation to include clk-private.h from any code which implements
1951  * a clock's .ops; as such any statically initialized clock data MUST be in a
1952  * separate C file from the logic that implements its operations.  Returns 0
1953  * on success, otherwise an error code.
1954  */
1955 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1956 {
1957 	int ret;
1958 	struct clk *clk;
1959 
1960 	clk = hw->clk;
1961 	clk->name = hw->init->name;
1962 	clk->ops = hw->init->ops;
1963 	clk->hw = hw;
1964 	clk->flags = hw->init->flags;
1965 	clk->parent_names = hw->init->parent_names;
1966 	clk->num_parents = hw->init->num_parents;
1967 	if (dev && dev->driver)
1968 		clk->owner = dev->driver->owner;
1969 	else
1970 		clk->owner = NULL;
1971 
1972 	ret = __clk_init(dev, clk);
1973 	if (ret)
1974 		return ERR_PTR(ret);
1975 
1976 	return clk;
1977 }
1978 EXPORT_SYMBOL_GPL(__clk_register);
1979 
1980 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1981 {
1982 	int i, ret;
1983 
1984 	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1985 	if (!clk->name) {
1986 		pr_err("%s: could not allocate clk->name\n", __func__);
1987 		ret = -ENOMEM;
1988 		goto fail_name;
1989 	}
1990 	clk->ops = hw->init->ops;
1991 	if (dev && dev->driver)
1992 		clk->owner = dev->driver->owner;
1993 	clk->hw = hw;
1994 	clk->flags = hw->init->flags;
1995 	clk->num_parents = hw->init->num_parents;
1996 	hw->clk = clk;
1997 
1998 	/* allocate local copy in case parent_names is __initdata */
1999 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2000 					GFP_KERNEL);
2001 
2002 	if (!clk->parent_names) {
2003 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2004 		ret = -ENOMEM;
2005 		goto fail_parent_names;
2006 	}
2007 
2008 
2009 	/* copy each string name in case parent_names is __initdata */
2010 	for (i = 0; i < clk->num_parents; i++) {
2011 		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2012 						GFP_KERNEL);
2013 		if (!clk->parent_names[i]) {
2014 			pr_err("%s: could not copy parent_names\n", __func__);
2015 			ret = -ENOMEM;
2016 			goto fail_parent_names_copy;
2017 		}
2018 	}
2019 
2020 	ret = __clk_init(dev, clk);
2021 	if (!ret)
2022 		return 0;
2023 
2024 fail_parent_names_copy:
2025 	while (--i >= 0)
2026 		kfree(clk->parent_names[i]);
2027 	kfree(clk->parent_names);
2028 fail_parent_names:
2029 	kfree(clk->name);
2030 fail_name:
2031 	return ret;
2032 }
2033 
2034 /**
2035  * clk_register - allocate a new clock, register it and return an opaque cookie
2036  * @dev: device that is registering this clock
2037  * @hw: link to hardware-specific clock data
2038  *
2039  * clk_register is the primary interface for populating the clock tree with new
2040  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2041  * cannot be dereferenced by driver code but may be used in conjuction with the
2042  * rest of the clock API.  In the event of an error clk_register will return an
2043  * error code; drivers must test for an error code after calling clk_register.
2044  */
2045 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2046 {
2047 	int ret;
2048 	struct clk *clk;
2049 
2050 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2051 	if (!clk) {
2052 		pr_err("%s: could not allocate clk\n", __func__);
2053 		ret = -ENOMEM;
2054 		goto fail_out;
2055 	}
2056 
2057 	ret = _clk_register(dev, hw, clk);
2058 	if (!ret)
2059 		return clk;
2060 
2061 	kfree(clk);
2062 fail_out:
2063 	return ERR_PTR(ret);
2064 }
2065 EXPORT_SYMBOL_GPL(clk_register);
2066 
2067 /*
2068  * Free memory allocated for a clock.
2069  * Caller must hold prepare_lock.
2070  */
2071 static void __clk_release(struct kref *ref)
2072 {
2073 	struct clk *clk = container_of(ref, struct clk, ref);
2074 	int i = clk->num_parents;
2075 
2076 	kfree(clk->parents);
2077 	while (--i >= 0)
2078 		kfree(clk->parent_names[i]);
2079 
2080 	kfree(clk->parent_names);
2081 	kfree(clk->name);
2082 	kfree(clk);
2083 }
2084 
2085 /*
2086  * Empty clk_ops for unregistered clocks. These are used temporarily
2087  * after clk_unregister() was called on a clock and until last clock
2088  * consumer calls clk_put() and the struct clk object is freed.
2089  */
2090 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2091 {
2092 	return -ENXIO;
2093 }
2094 
2095 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2096 {
2097 	WARN_ON_ONCE(1);
2098 }
2099 
2100 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2101 					unsigned long parent_rate)
2102 {
2103 	return -ENXIO;
2104 }
2105 
2106 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2107 {
2108 	return -ENXIO;
2109 }
2110 
2111 static const struct clk_ops clk_nodrv_ops = {
2112 	.enable		= clk_nodrv_prepare_enable,
2113 	.disable	= clk_nodrv_disable_unprepare,
2114 	.prepare	= clk_nodrv_prepare_enable,
2115 	.unprepare	= clk_nodrv_disable_unprepare,
2116 	.set_rate	= clk_nodrv_set_rate,
2117 	.set_parent	= clk_nodrv_set_parent,
2118 };
2119 
2120 /**
2121  * clk_unregister - unregister a currently registered clock
2122  * @clk: clock to unregister
2123  */
2124 void clk_unregister(struct clk *clk)
2125 {
2126 	unsigned long flags;
2127 
2128        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2129                return;
2130 
2131 	clk_prepare_lock();
2132 
2133 	if (clk->ops == &clk_nodrv_ops) {
2134 		pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2135 		goto out;
2136 	}
2137 	/*
2138 	 * Assign empty clock ops for consumers that might still hold
2139 	 * a reference to this clock.
2140 	 */
2141 	flags = clk_enable_lock();
2142 	clk->ops = &clk_nodrv_ops;
2143 	clk_enable_unlock(flags);
2144 
2145 	if (!hlist_empty(&clk->children)) {
2146 		struct clk *child;
2147 
2148 		/* Reparent all children to the orphan list. */
2149 		hlist_for_each_entry(child, &clk->children, child_node)
2150 			clk_set_parent(child, NULL);
2151 	}
2152 
2153 	clk_debug_unregister(clk);
2154 
2155 	hlist_del_init(&clk->child_node);
2156 
2157 	if (clk->prepare_count)
2158 		pr_warn("%s: unregistering prepared clock: %s\n",
2159 					__func__, clk->name);
2160 
2161 	kref_put(&clk->ref, __clk_release);
2162 out:
2163 	clk_prepare_unlock();
2164 }
2165 EXPORT_SYMBOL_GPL(clk_unregister);
2166 
2167 static void devm_clk_release(struct device *dev, void *res)
2168 {
2169 	clk_unregister(res);
2170 }
2171 
2172 /**
2173  * devm_clk_register - resource managed clk_register()
2174  * @dev: device that is registering this clock
2175  * @hw: link to hardware-specific clock data
2176  *
2177  * Managed clk_register(). Clocks returned from this function are
2178  * automatically clk_unregister()ed on driver detach. See clk_register() for
2179  * more information.
2180  */
2181 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2182 {
2183 	struct clk *clk;
2184 	int ret;
2185 
2186 	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
2187 	if (!clk)
2188 		return ERR_PTR(-ENOMEM);
2189 
2190 	ret = _clk_register(dev, hw, clk);
2191 	if (!ret) {
2192 		devres_add(dev, clk);
2193 	} else {
2194 		devres_free(clk);
2195 		clk = ERR_PTR(ret);
2196 	}
2197 
2198 	return clk;
2199 }
2200 EXPORT_SYMBOL_GPL(devm_clk_register);
2201 
2202 static int devm_clk_match(struct device *dev, void *res, void *data)
2203 {
2204 	struct clk *c = res;
2205 	if (WARN_ON(!c))
2206 		return 0;
2207 	return c == data;
2208 }
2209 
2210 /**
2211  * devm_clk_unregister - resource managed clk_unregister()
2212  * @clk: clock to unregister
2213  *
2214  * Deallocate a clock allocated with devm_clk_register(). Normally
2215  * this function will not need to be called and the resource management
2216  * code will ensure that the resource is freed.
2217  */
2218 void devm_clk_unregister(struct device *dev, struct clk *clk)
2219 {
2220 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2221 }
2222 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2223 
2224 /*
2225  * clkdev helpers
2226  */
2227 int __clk_get(struct clk *clk)
2228 {
2229 	if (clk) {
2230 		if (!try_module_get(clk->owner))
2231 			return 0;
2232 
2233 		kref_get(&clk->ref);
2234 	}
2235 	return 1;
2236 }
2237 
2238 void __clk_put(struct clk *clk)
2239 {
2240 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2241 		return;
2242 
2243 	clk_prepare_lock();
2244 	kref_put(&clk->ref, __clk_release);
2245 	clk_prepare_unlock();
2246 
2247 	module_put(clk->owner);
2248 }
2249 
2250 /***        clk rate change notifiers        ***/
2251 
2252 /**
2253  * clk_notifier_register - add a clk rate change notifier
2254  * @clk: struct clk * to watch
2255  * @nb: struct notifier_block * with callback info
2256  *
2257  * Request notification when clk's rate changes.  This uses an SRCU
2258  * notifier because we want it to block and notifier unregistrations are
2259  * uncommon.  The callbacks associated with the notifier must not
2260  * re-enter into the clk framework by calling any top-level clk APIs;
2261  * this will cause a nested prepare_lock mutex.
2262  *
2263  * Pre-change notifier callbacks will be passed the current, pre-change
2264  * rate of the clk via struct clk_notifier_data.old_rate.  The new,
2265  * post-change rate of the clk is passed via struct
2266  * clk_notifier_data.new_rate.
2267  *
2268  * Post-change notifiers will pass the now-current, post-change rate of
2269  * the clk in both struct clk_notifier_data.old_rate and struct
2270  * clk_notifier_data.new_rate.
2271  *
2272  * Abort-change notifiers are effectively the opposite of pre-change
2273  * notifiers: the original pre-change clk rate is passed in via struct
2274  * clk_notifier_data.new_rate and the failed post-change rate is passed
2275  * in via struct clk_notifier_data.old_rate.
2276  *
2277  * clk_notifier_register() must be called from non-atomic context.
2278  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2279  * allocation failure; otherwise, passes along the return value of
2280  * srcu_notifier_chain_register().
2281  */
2282 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2283 {
2284 	struct clk_notifier *cn;
2285 	int ret = -ENOMEM;
2286 
2287 	if (!clk || !nb)
2288 		return -EINVAL;
2289 
2290 	clk_prepare_lock();
2291 
2292 	/* search the list of notifiers for this clk */
2293 	list_for_each_entry(cn, &clk_notifier_list, node)
2294 		if (cn->clk == clk)
2295 			break;
2296 
2297 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2298 	if (cn->clk != clk) {
2299 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2300 		if (!cn)
2301 			goto out;
2302 
2303 		cn->clk = clk;
2304 		srcu_init_notifier_head(&cn->notifier_head);
2305 
2306 		list_add(&cn->node, &clk_notifier_list);
2307 	}
2308 
2309 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2310 
2311 	clk->notifier_count++;
2312 
2313 out:
2314 	clk_prepare_unlock();
2315 
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(clk_notifier_register);
2319 
2320 /**
2321  * clk_notifier_unregister - remove a clk rate change notifier
2322  * @clk: struct clk *
2323  * @nb: struct notifier_block * with callback info
2324  *
2325  * Request no further notification for changes to 'clk' and frees memory
2326  * allocated in clk_notifier_register.
2327  *
2328  * Returns -EINVAL if called with null arguments; otherwise, passes
2329  * along the return value of srcu_notifier_chain_unregister().
2330  */
2331 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2332 {
2333 	struct clk_notifier *cn = NULL;
2334 	int ret = -EINVAL;
2335 
2336 	if (!clk || !nb)
2337 		return -EINVAL;
2338 
2339 	clk_prepare_lock();
2340 
2341 	list_for_each_entry(cn, &clk_notifier_list, node)
2342 		if (cn->clk == clk)
2343 			break;
2344 
2345 	if (cn->clk == clk) {
2346 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2347 
2348 		clk->notifier_count--;
2349 
2350 		/* XXX the notifier code should handle this better */
2351 		if (!cn->notifier_head.head) {
2352 			srcu_cleanup_notifier_head(&cn->notifier_head);
2353 			list_del(&cn->node);
2354 			kfree(cn);
2355 		}
2356 
2357 	} else {
2358 		ret = -ENOENT;
2359 	}
2360 
2361 	clk_prepare_unlock();
2362 
2363 	return ret;
2364 }
2365 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2366 
2367 #ifdef CONFIG_OF
2368 /**
2369  * struct of_clk_provider - Clock provider registration structure
2370  * @link: Entry in global list of clock providers
2371  * @node: Pointer to device tree node of clock provider
2372  * @get: Get clock callback.  Returns NULL or a struct clk for the
2373  *       given clock specifier
2374  * @data: context pointer to be passed into @get callback
2375  */
2376 struct of_clk_provider {
2377 	struct list_head link;
2378 
2379 	struct device_node *node;
2380 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2381 	void *data;
2382 };
2383 
2384 static const struct of_device_id __clk_of_table_sentinel
2385 	__used __section(__clk_of_table_end);
2386 
2387 static LIST_HEAD(of_clk_providers);
2388 static DEFINE_MUTEX(of_clk_mutex);
2389 
2390 /* of_clk_provider list locking helpers */
2391 void of_clk_lock(void)
2392 {
2393 	mutex_lock(&of_clk_mutex);
2394 }
2395 
2396 void of_clk_unlock(void)
2397 {
2398 	mutex_unlock(&of_clk_mutex);
2399 }
2400 
2401 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2402 				     void *data)
2403 {
2404 	return data;
2405 }
2406 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2407 
2408 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2409 {
2410 	struct clk_onecell_data *clk_data = data;
2411 	unsigned int idx = clkspec->args[0];
2412 
2413 	if (idx >= clk_data->clk_num) {
2414 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2415 		return ERR_PTR(-EINVAL);
2416 	}
2417 
2418 	return clk_data->clks[idx];
2419 }
2420 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2421 
2422 /**
2423  * of_clk_add_provider() - Register a clock provider for a node
2424  * @np: Device node pointer associated with clock provider
2425  * @clk_src_get: callback for decoding clock
2426  * @data: context pointer for @clk_src_get callback.
2427  */
2428 int of_clk_add_provider(struct device_node *np,
2429 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2430 						   void *data),
2431 			void *data)
2432 {
2433 	struct of_clk_provider *cp;
2434 
2435 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2436 	if (!cp)
2437 		return -ENOMEM;
2438 
2439 	cp->node = of_node_get(np);
2440 	cp->data = data;
2441 	cp->get = clk_src_get;
2442 
2443 	mutex_lock(&of_clk_mutex);
2444 	list_add(&cp->link, &of_clk_providers);
2445 	mutex_unlock(&of_clk_mutex);
2446 	pr_debug("Added clock from %s\n", np->full_name);
2447 
2448 	return 0;
2449 }
2450 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2451 
2452 /**
2453  * of_clk_del_provider() - Remove a previously registered clock provider
2454  * @np: Device node pointer associated with clock provider
2455  */
2456 void of_clk_del_provider(struct device_node *np)
2457 {
2458 	struct of_clk_provider *cp;
2459 
2460 	mutex_lock(&of_clk_mutex);
2461 	list_for_each_entry(cp, &of_clk_providers, link) {
2462 		if (cp->node == np) {
2463 			list_del(&cp->link);
2464 			of_node_put(cp->node);
2465 			kfree(cp);
2466 			break;
2467 		}
2468 	}
2469 	mutex_unlock(&of_clk_mutex);
2470 }
2471 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2472 
2473 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2474 {
2475 	struct of_clk_provider *provider;
2476 	struct clk *clk = ERR_PTR(-ENOENT);
2477 
2478 	/* Check if we have such a provider in our array */
2479 	list_for_each_entry(provider, &of_clk_providers, link) {
2480 		if (provider->node == clkspec->np)
2481 			clk = provider->get(clkspec, provider->data);
2482 		if (!IS_ERR(clk))
2483 			break;
2484 	}
2485 
2486 	return clk;
2487 }
2488 
2489 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2490 {
2491 	struct clk *clk;
2492 
2493 	mutex_lock(&of_clk_mutex);
2494 	clk = __of_clk_get_from_provider(clkspec);
2495 	mutex_unlock(&of_clk_mutex);
2496 
2497 	return clk;
2498 }
2499 
2500 int of_clk_get_parent_count(struct device_node *np)
2501 {
2502 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2503 }
2504 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2505 
2506 const char *of_clk_get_parent_name(struct device_node *np, int index)
2507 {
2508 	struct of_phandle_args clkspec;
2509 	const char *clk_name;
2510 	int rc;
2511 
2512 	if (index < 0)
2513 		return NULL;
2514 
2515 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2516 					&clkspec);
2517 	if (rc)
2518 		return NULL;
2519 
2520 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2521 					  clkspec.args_count ? clkspec.args[0] : 0,
2522 					  &clk_name) < 0)
2523 		clk_name = clkspec.np->name;
2524 
2525 	of_node_put(clkspec.np);
2526 	return clk_name;
2527 }
2528 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2529 
2530 /**
2531  * of_clk_init() - Scan and init clock providers from the DT
2532  * @matches: array of compatible values and init functions for providers.
2533  *
2534  * This function scans the device tree for matching clock providers and
2535  * calls their initialization functions
2536  */
2537 void __init of_clk_init(const struct of_device_id *matches)
2538 {
2539 	const struct of_device_id *match;
2540 	struct device_node *np;
2541 
2542 	if (!matches)
2543 		matches = &__clk_of_table;
2544 
2545 	for_each_matching_node_and_match(np, matches, &match) {
2546 		of_clk_init_cb_t clk_init_cb = match->data;
2547 		clk_init_cb(np);
2548 	}
2549 }
2550 #endif
2551