1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** private data structures ***/ 41 42 struct clk_core { 43 const char *name; 44 const struct clk_ops *ops; 45 struct clk_hw *hw; 46 struct module *owner; 47 struct device *dev; 48 struct clk_core *parent; 49 const char **parent_names; 50 struct clk_core **parents; 51 u8 num_parents; 52 u8 new_parent_index; 53 unsigned long rate; 54 unsigned long req_rate; 55 unsigned long new_rate; 56 struct clk_core *new_parent; 57 struct clk_core *new_child; 58 unsigned long flags; 59 bool orphan; 60 unsigned int enable_count; 61 unsigned int prepare_count; 62 unsigned int protect_count; 63 unsigned long min_rate; 64 unsigned long max_rate; 65 unsigned long accuracy; 66 int phase; 67 struct clk_duty duty; 68 struct hlist_head children; 69 struct hlist_node child_node; 70 struct hlist_head clks; 71 unsigned int notifier_count; 72 #ifdef CONFIG_DEBUG_FS 73 struct dentry *dentry; 74 struct hlist_node debug_node; 75 #endif 76 struct kref ref; 77 }; 78 79 #define CREATE_TRACE_POINTS 80 #include <trace/events/clk.h> 81 82 struct clk { 83 struct clk_core *core; 84 const char *dev_id; 85 const char *con_id; 86 unsigned long min_rate; 87 unsigned long max_rate; 88 unsigned int exclusive_count; 89 struct hlist_node clks_node; 90 }; 91 92 /*** runtime pm ***/ 93 static int clk_pm_runtime_get(struct clk_core *core) 94 { 95 int ret = 0; 96 97 if (!core->dev) 98 return 0; 99 100 ret = pm_runtime_get_sync(core->dev); 101 return ret < 0 ? ret : 0; 102 } 103 104 static void clk_pm_runtime_put(struct clk_core *core) 105 { 106 if (!core->dev) 107 return; 108 109 pm_runtime_put_sync(core->dev); 110 } 111 112 /*** locking ***/ 113 static void clk_prepare_lock(void) 114 { 115 if (!mutex_trylock(&prepare_lock)) { 116 if (prepare_owner == current) { 117 prepare_refcnt++; 118 return; 119 } 120 mutex_lock(&prepare_lock); 121 } 122 WARN_ON_ONCE(prepare_owner != NULL); 123 WARN_ON_ONCE(prepare_refcnt != 0); 124 prepare_owner = current; 125 prepare_refcnt = 1; 126 } 127 128 static void clk_prepare_unlock(void) 129 { 130 WARN_ON_ONCE(prepare_owner != current); 131 WARN_ON_ONCE(prepare_refcnt == 0); 132 133 if (--prepare_refcnt) 134 return; 135 prepare_owner = NULL; 136 mutex_unlock(&prepare_lock); 137 } 138 139 static unsigned long clk_enable_lock(void) 140 __acquires(enable_lock) 141 { 142 unsigned long flags; 143 144 /* 145 * On UP systems, spin_trylock_irqsave() always returns true, even if 146 * we already hold the lock. So, in that case, we rely only on 147 * reference counting. 148 */ 149 if (!IS_ENABLED(CONFIG_SMP) || 150 !spin_trylock_irqsave(&enable_lock, flags)) { 151 if (enable_owner == current) { 152 enable_refcnt++; 153 __acquire(enable_lock); 154 if (!IS_ENABLED(CONFIG_SMP)) 155 local_save_flags(flags); 156 return flags; 157 } 158 spin_lock_irqsave(&enable_lock, flags); 159 } 160 WARN_ON_ONCE(enable_owner != NULL); 161 WARN_ON_ONCE(enable_refcnt != 0); 162 enable_owner = current; 163 enable_refcnt = 1; 164 return flags; 165 } 166 167 static void clk_enable_unlock(unsigned long flags) 168 __releases(enable_lock) 169 { 170 WARN_ON_ONCE(enable_owner != current); 171 WARN_ON_ONCE(enable_refcnt == 0); 172 173 if (--enable_refcnt) { 174 __release(enable_lock); 175 return; 176 } 177 enable_owner = NULL; 178 spin_unlock_irqrestore(&enable_lock, flags); 179 } 180 181 static bool clk_core_rate_is_protected(struct clk_core *core) 182 { 183 return core->protect_count; 184 } 185 186 static bool clk_core_is_prepared(struct clk_core *core) 187 { 188 bool ret = false; 189 190 /* 191 * .is_prepared is optional for clocks that can prepare 192 * fall back to software usage counter if it is missing 193 */ 194 if (!core->ops->is_prepared) 195 return core->prepare_count; 196 197 if (!clk_pm_runtime_get(core)) { 198 ret = core->ops->is_prepared(core->hw); 199 clk_pm_runtime_put(core); 200 } 201 202 return ret; 203 } 204 205 static bool clk_core_is_enabled(struct clk_core *core) 206 { 207 bool ret = false; 208 209 /* 210 * .is_enabled is only mandatory for clocks that gate 211 * fall back to software usage counter if .is_enabled is missing 212 */ 213 if (!core->ops->is_enabled) 214 return core->enable_count; 215 216 /* 217 * Check if clock controller's device is runtime active before 218 * calling .is_enabled callback. If not, assume that clock is 219 * disabled, because we might be called from atomic context, from 220 * which pm_runtime_get() is not allowed. 221 * This function is called mainly from clk_disable_unused_subtree, 222 * which ensures proper runtime pm activation of controller before 223 * taking enable spinlock, but the below check is needed if one tries 224 * to call it from other places. 225 */ 226 if (core->dev) { 227 pm_runtime_get_noresume(core->dev); 228 if (!pm_runtime_active(core->dev)) { 229 ret = false; 230 goto done; 231 } 232 } 233 234 ret = core->ops->is_enabled(core->hw); 235 done: 236 if (core->dev) 237 pm_runtime_put(core->dev); 238 239 return ret; 240 } 241 242 /*** helper functions ***/ 243 244 const char *__clk_get_name(const struct clk *clk) 245 { 246 return !clk ? NULL : clk->core->name; 247 } 248 EXPORT_SYMBOL_GPL(__clk_get_name); 249 250 const char *clk_hw_get_name(const struct clk_hw *hw) 251 { 252 return hw->core->name; 253 } 254 EXPORT_SYMBOL_GPL(clk_hw_get_name); 255 256 struct clk_hw *__clk_get_hw(struct clk *clk) 257 { 258 return !clk ? NULL : clk->core->hw; 259 } 260 EXPORT_SYMBOL_GPL(__clk_get_hw); 261 262 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 263 { 264 return hw->core->num_parents; 265 } 266 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 267 268 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 269 { 270 return hw->core->parent ? hw->core->parent->hw : NULL; 271 } 272 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 273 274 static struct clk_core *__clk_lookup_subtree(const char *name, 275 struct clk_core *core) 276 { 277 struct clk_core *child; 278 struct clk_core *ret; 279 280 if (!strcmp(core->name, name)) 281 return core; 282 283 hlist_for_each_entry(child, &core->children, child_node) { 284 ret = __clk_lookup_subtree(name, child); 285 if (ret) 286 return ret; 287 } 288 289 return NULL; 290 } 291 292 static struct clk_core *clk_core_lookup(const char *name) 293 { 294 struct clk_core *root_clk; 295 struct clk_core *ret; 296 297 if (!name) 298 return NULL; 299 300 /* search the 'proper' clk tree first */ 301 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 302 ret = __clk_lookup_subtree(name, root_clk); 303 if (ret) 304 return ret; 305 } 306 307 /* if not found, then search the orphan tree */ 308 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 309 ret = __clk_lookup_subtree(name, root_clk); 310 if (ret) 311 return ret; 312 } 313 314 return NULL; 315 } 316 317 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 318 u8 index) 319 { 320 if (!core || index >= core->num_parents) 321 return NULL; 322 323 if (!core->parents[index]) 324 core->parents[index] = 325 clk_core_lookup(core->parent_names[index]); 326 327 return core->parents[index]; 328 } 329 330 struct clk_hw * 331 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 332 { 333 struct clk_core *parent; 334 335 parent = clk_core_get_parent_by_index(hw->core, index); 336 337 return !parent ? NULL : parent->hw; 338 } 339 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 340 341 unsigned int __clk_get_enable_count(struct clk *clk) 342 { 343 return !clk ? 0 : clk->core->enable_count; 344 } 345 346 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 347 { 348 unsigned long ret; 349 350 if (!core) { 351 ret = 0; 352 goto out; 353 } 354 355 ret = core->rate; 356 357 if (!core->num_parents) 358 goto out; 359 360 if (!core->parent) 361 ret = 0; 362 363 out: 364 return ret; 365 } 366 367 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 368 { 369 return clk_core_get_rate_nolock(hw->core); 370 } 371 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 372 373 static unsigned long __clk_get_accuracy(struct clk_core *core) 374 { 375 if (!core) 376 return 0; 377 378 return core->accuracy; 379 } 380 381 unsigned long __clk_get_flags(struct clk *clk) 382 { 383 return !clk ? 0 : clk->core->flags; 384 } 385 EXPORT_SYMBOL_GPL(__clk_get_flags); 386 387 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 388 { 389 return hw->core->flags; 390 } 391 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 392 393 bool clk_hw_is_prepared(const struct clk_hw *hw) 394 { 395 return clk_core_is_prepared(hw->core); 396 } 397 398 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 399 { 400 return clk_core_rate_is_protected(hw->core); 401 } 402 403 bool clk_hw_is_enabled(const struct clk_hw *hw) 404 { 405 return clk_core_is_enabled(hw->core); 406 } 407 408 bool __clk_is_enabled(struct clk *clk) 409 { 410 if (!clk) 411 return false; 412 413 return clk_core_is_enabled(clk->core); 414 } 415 EXPORT_SYMBOL_GPL(__clk_is_enabled); 416 417 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 418 unsigned long best, unsigned long flags) 419 { 420 if (flags & CLK_MUX_ROUND_CLOSEST) 421 return abs(now - rate) < abs(best - rate); 422 423 return now <= rate && now > best; 424 } 425 426 int clk_mux_determine_rate_flags(struct clk_hw *hw, 427 struct clk_rate_request *req, 428 unsigned long flags) 429 { 430 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 431 int i, num_parents, ret; 432 unsigned long best = 0; 433 struct clk_rate_request parent_req = *req; 434 435 /* if NO_REPARENT flag set, pass through to current parent */ 436 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 437 parent = core->parent; 438 if (core->flags & CLK_SET_RATE_PARENT) { 439 ret = __clk_determine_rate(parent ? parent->hw : NULL, 440 &parent_req); 441 if (ret) 442 return ret; 443 444 best = parent_req.rate; 445 } else if (parent) { 446 best = clk_core_get_rate_nolock(parent); 447 } else { 448 best = clk_core_get_rate_nolock(core); 449 } 450 451 goto out; 452 } 453 454 /* find the parent that can provide the fastest rate <= rate */ 455 num_parents = core->num_parents; 456 for (i = 0; i < num_parents; i++) { 457 parent = clk_core_get_parent_by_index(core, i); 458 if (!parent) 459 continue; 460 461 if (core->flags & CLK_SET_RATE_PARENT) { 462 parent_req = *req; 463 ret = __clk_determine_rate(parent->hw, &parent_req); 464 if (ret) 465 continue; 466 } else { 467 parent_req.rate = clk_core_get_rate_nolock(parent); 468 } 469 470 if (mux_is_better_rate(req->rate, parent_req.rate, 471 best, flags)) { 472 best_parent = parent; 473 best = parent_req.rate; 474 } 475 } 476 477 if (!best_parent) 478 return -EINVAL; 479 480 out: 481 if (best_parent) 482 req->best_parent_hw = best_parent->hw; 483 req->best_parent_rate = best; 484 req->rate = best; 485 486 return 0; 487 } 488 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 489 490 struct clk *__clk_lookup(const char *name) 491 { 492 struct clk_core *core = clk_core_lookup(name); 493 494 return !core ? NULL : core->hw->clk; 495 } 496 497 static void clk_core_get_boundaries(struct clk_core *core, 498 unsigned long *min_rate, 499 unsigned long *max_rate) 500 { 501 struct clk *clk_user; 502 503 *min_rate = core->min_rate; 504 *max_rate = core->max_rate; 505 506 hlist_for_each_entry(clk_user, &core->clks, clks_node) 507 *min_rate = max(*min_rate, clk_user->min_rate); 508 509 hlist_for_each_entry(clk_user, &core->clks, clks_node) 510 *max_rate = min(*max_rate, clk_user->max_rate); 511 } 512 513 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 514 unsigned long max_rate) 515 { 516 hw->core->min_rate = min_rate; 517 hw->core->max_rate = max_rate; 518 } 519 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 520 521 /* 522 * Helper for finding best parent to provide a given frequency. This can be used 523 * directly as a determine_rate callback (e.g. for a mux), or from a more 524 * complex clock that may combine a mux with other operations. 525 */ 526 int __clk_mux_determine_rate(struct clk_hw *hw, 527 struct clk_rate_request *req) 528 { 529 return clk_mux_determine_rate_flags(hw, req, 0); 530 } 531 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 532 533 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 534 struct clk_rate_request *req) 535 { 536 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 537 } 538 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 539 540 /*** clk api ***/ 541 542 static void clk_core_rate_unprotect(struct clk_core *core) 543 { 544 lockdep_assert_held(&prepare_lock); 545 546 if (!core) 547 return; 548 549 if (WARN(core->protect_count == 0, 550 "%s already unprotected\n", core->name)) 551 return; 552 553 if (--core->protect_count > 0) 554 return; 555 556 clk_core_rate_unprotect(core->parent); 557 } 558 559 static int clk_core_rate_nuke_protect(struct clk_core *core) 560 { 561 int ret; 562 563 lockdep_assert_held(&prepare_lock); 564 565 if (!core) 566 return -EINVAL; 567 568 if (core->protect_count == 0) 569 return 0; 570 571 ret = core->protect_count; 572 core->protect_count = 1; 573 clk_core_rate_unprotect(core); 574 575 return ret; 576 } 577 578 /** 579 * clk_rate_exclusive_put - release exclusivity over clock rate control 580 * @clk: the clk over which the exclusivity is released 581 * 582 * clk_rate_exclusive_put() completes a critical section during which a clock 583 * consumer cannot tolerate any other consumer making any operation on the 584 * clock which could result in a rate change or rate glitch. Exclusive clocks 585 * cannot have their rate changed, either directly or indirectly due to changes 586 * further up the parent chain of clocks. As a result, clocks up parent chain 587 * also get under exclusive control of the calling consumer. 588 * 589 * If exlusivity is claimed more than once on clock, even by the same consumer, 590 * the rate effectively gets locked as exclusivity can't be preempted. 591 * 592 * Calls to clk_rate_exclusive_put() must be balanced with calls to 593 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 594 * error status. 595 */ 596 void clk_rate_exclusive_put(struct clk *clk) 597 { 598 if (!clk) 599 return; 600 601 clk_prepare_lock(); 602 603 /* 604 * if there is something wrong with this consumer protect count, stop 605 * here before messing with the provider 606 */ 607 if (WARN_ON(clk->exclusive_count <= 0)) 608 goto out; 609 610 clk_core_rate_unprotect(clk->core); 611 clk->exclusive_count--; 612 out: 613 clk_prepare_unlock(); 614 } 615 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 616 617 static void clk_core_rate_protect(struct clk_core *core) 618 { 619 lockdep_assert_held(&prepare_lock); 620 621 if (!core) 622 return; 623 624 if (core->protect_count == 0) 625 clk_core_rate_protect(core->parent); 626 627 core->protect_count++; 628 } 629 630 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 631 { 632 lockdep_assert_held(&prepare_lock); 633 634 if (!core) 635 return; 636 637 if (count == 0) 638 return; 639 640 clk_core_rate_protect(core); 641 core->protect_count = count; 642 } 643 644 /** 645 * clk_rate_exclusive_get - get exclusivity over the clk rate control 646 * @clk: the clk over which the exclusity of rate control is requested 647 * 648 * clk_rate_exlusive_get() begins a critical section during which a clock 649 * consumer cannot tolerate any other consumer making any operation on the 650 * clock which could result in a rate change or rate glitch. Exclusive clocks 651 * cannot have their rate changed, either directly or indirectly due to changes 652 * further up the parent chain of clocks. As a result, clocks up parent chain 653 * also get under exclusive control of the calling consumer. 654 * 655 * If exlusivity is claimed more than once on clock, even by the same consumer, 656 * the rate effectively gets locked as exclusivity can't be preempted. 657 * 658 * Calls to clk_rate_exclusive_get() should be balanced with calls to 659 * clk_rate_exclusive_put(). Calls to this function may sleep. 660 * Returns 0 on success, -EERROR otherwise 661 */ 662 int clk_rate_exclusive_get(struct clk *clk) 663 { 664 if (!clk) 665 return 0; 666 667 clk_prepare_lock(); 668 clk_core_rate_protect(clk->core); 669 clk->exclusive_count++; 670 clk_prepare_unlock(); 671 672 return 0; 673 } 674 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 675 676 static void clk_core_unprepare(struct clk_core *core) 677 { 678 lockdep_assert_held(&prepare_lock); 679 680 if (!core) 681 return; 682 683 if (WARN(core->prepare_count == 0, 684 "%s already unprepared\n", core->name)) 685 return; 686 687 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 688 "Unpreparing critical %s\n", core->name)) 689 return; 690 691 if (core->flags & CLK_SET_RATE_GATE) 692 clk_core_rate_unprotect(core); 693 694 if (--core->prepare_count > 0) 695 return; 696 697 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 698 699 trace_clk_unprepare(core); 700 701 if (core->ops->unprepare) 702 core->ops->unprepare(core->hw); 703 704 clk_pm_runtime_put(core); 705 706 trace_clk_unprepare_complete(core); 707 clk_core_unprepare(core->parent); 708 } 709 710 static void clk_core_unprepare_lock(struct clk_core *core) 711 { 712 clk_prepare_lock(); 713 clk_core_unprepare(core); 714 clk_prepare_unlock(); 715 } 716 717 /** 718 * clk_unprepare - undo preparation of a clock source 719 * @clk: the clk being unprepared 720 * 721 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 722 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 723 * if the operation may sleep. One example is a clk which is accessed over 724 * I2c. In the complex case a clk gate operation may require a fast and a slow 725 * part. It is this reason that clk_unprepare and clk_disable are not mutually 726 * exclusive. In fact clk_disable must be called before clk_unprepare. 727 */ 728 void clk_unprepare(struct clk *clk) 729 { 730 if (IS_ERR_OR_NULL(clk)) 731 return; 732 733 clk_core_unprepare_lock(clk->core); 734 } 735 EXPORT_SYMBOL_GPL(clk_unprepare); 736 737 static int clk_core_prepare(struct clk_core *core) 738 { 739 int ret = 0; 740 741 lockdep_assert_held(&prepare_lock); 742 743 if (!core) 744 return 0; 745 746 if (core->prepare_count == 0) { 747 ret = clk_pm_runtime_get(core); 748 if (ret) 749 return ret; 750 751 ret = clk_core_prepare(core->parent); 752 if (ret) 753 goto runtime_put; 754 755 trace_clk_prepare(core); 756 757 if (core->ops->prepare) 758 ret = core->ops->prepare(core->hw); 759 760 trace_clk_prepare_complete(core); 761 762 if (ret) 763 goto unprepare; 764 } 765 766 core->prepare_count++; 767 768 /* 769 * CLK_SET_RATE_GATE is a special case of clock protection 770 * Instead of a consumer claiming exclusive rate control, it is 771 * actually the provider which prevents any consumer from making any 772 * operation which could result in a rate change or rate glitch while 773 * the clock is prepared. 774 */ 775 if (core->flags & CLK_SET_RATE_GATE) 776 clk_core_rate_protect(core); 777 778 return 0; 779 unprepare: 780 clk_core_unprepare(core->parent); 781 runtime_put: 782 clk_pm_runtime_put(core); 783 return ret; 784 } 785 786 static int clk_core_prepare_lock(struct clk_core *core) 787 { 788 int ret; 789 790 clk_prepare_lock(); 791 ret = clk_core_prepare(core); 792 clk_prepare_unlock(); 793 794 return ret; 795 } 796 797 /** 798 * clk_prepare - prepare a clock source 799 * @clk: the clk being prepared 800 * 801 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 802 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 803 * operation may sleep. One example is a clk which is accessed over I2c. In 804 * the complex case a clk ungate operation may require a fast and a slow part. 805 * It is this reason that clk_prepare and clk_enable are not mutually 806 * exclusive. In fact clk_prepare must be called before clk_enable. 807 * Returns 0 on success, -EERROR otherwise. 808 */ 809 int clk_prepare(struct clk *clk) 810 { 811 if (!clk) 812 return 0; 813 814 return clk_core_prepare_lock(clk->core); 815 } 816 EXPORT_SYMBOL_GPL(clk_prepare); 817 818 static void clk_core_disable(struct clk_core *core) 819 { 820 lockdep_assert_held(&enable_lock); 821 822 if (!core) 823 return; 824 825 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 826 return; 827 828 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 829 "Disabling critical %s\n", core->name)) 830 return; 831 832 if (--core->enable_count > 0) 833 return; 834 835 trace_clk_disable_rcuidle(core); 836 837 if (core->ops->disable) 838 core->ops->disable(core->hw); 839 840 trace_clk_disable_complete_rcuidle(core); 841 842 clk_core_disable(core->parent); 843 } 844 845 static void clk_core_disable_lock(struct clk_core *core) 846 { 847 unsigned long flags; 848 849 flags = clk_enable_lock(); 850 clk_core_disable(core); 851 clk_enable_unlock(flags); 852 } 853 854 /** 855 * clk_disable - gate a clock 856 * @clk: the clk being gated 857 * 858 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 859 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 860 * clk if the operation is fast and will never sleep. One example is a 861 * SoC-internal clk which is controlled via simple register writes. In the 862 * complex case a clk gate operation may require a fast and a slow part. It is 863 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 864 * In fact clk_disable must be called before clk_unprepare. 865 */ 866 void clk_disable(struct clk *clk) 867 { 868 if (IS_ERR_OR_NULL(clk)) 869 return; 870 871 clk_core_disable_lock(clk->core); 872 } 873 EXPORT_SYMBOL_GPL(clk_disable); 874 875 static int clk_core_enable(struct clk_core *core) 876 { 877 int ret = 0; 878 879 lockdep_assert_held(&enable_lock); 880 881 if (!core) 882 return 0; 883 884 if (WARN(core->prepare_count == 0, 885 "Enabling unprepared %s\n", core->name)) 886 return -ESHUTDOWN; 887 888 if (core->enable_count == 0) { 889 ret = clk_core_enable(core->parent); 890 891 if (ret) 892 return ret; 893 894 trace_clk_enable_rcuidle(core); 895 896 if (core->ops->enable) 897 ret = core->ops->enable(core->hw); 898 899 trace_clk_enable_complete_rcuidle(core); 900 901 if (ret) { 902 clk_core_disable(core->parent); 903 return ret; 904 } 905 } 906 907 core->enable_count++; 908 return 0; 909 } 910 911 static int clk_core_enable_lock(struct clk_core *core) 912 { 913 unsigned long flags; 914 int ret; 915 916 flags = clk_enable_lock(); 917 ret = clk_core_enable(core); 918 clk_enable_unlock(flags); 919 920 return ret; 921 } 922 923 /** 924 * clk_gate_restore_context - restore context for poweroff 925 * @hw: the clk_hw pointer of clock whose state is to be restored 926 * 927 * The clock gate restore context function enables or disables 928 * the gate clocks based on the enable_count. This is done in cases 929 * where the clock context is lost and based on the enable_count 930 * the clock either needs to be enabled/disabled. This 931 * helps restore the state of gate clocks. 932 */ 933 void clk_gate_restore_context(struct clk_hw *hw) 934 { 935 struct clk_core *core = hw->core; 936 937 if (core->enable_count) 938 core->ops->enable(hw); 939 else 940 core->ops->disable(hw); 941 } 942 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 943 944 static int clk_core_save_context(struct clk_core *core) 945 { 946 struct clk_core *child; 947 int ret = 0; 948 949 hlist_for_each_entry(child, &core->children, child_node) { 950 ret = clk_core_save_context(child); 951 if (ret < 0) 952 return ret; 953 } 954 955 if (core->ops && core->ops->save_context) 956 ret = core->ops->save_context(core->hw); 957 958 return ret; 959 } 960 961 static void clk_core_restore_context(struct clk_core *core) 962 { 963 struct clk_core *child; 964 965 if (core->ops && core->ops->restore_context) 966 core->ops->restore_context(core->hw); 967 968 hlist_for_each_entry(child, &core->children, child_node) 969 clk_core_restore_context(child); 970 } 971 972 /** 973 * clk_save_context - save clock context for poweroff 974 * 975 * Saves the context of the clock register for powerstates in which the 976 * contents of the registers will be lost. Occurs deep within the suspend 977 * code. Returns 0 on success. 978 */ 979 int clk_save_context(void) 980 { 981 struct clk_core *clk; 982 int ret; 983 984 hlist_for_each_entry(clk, &clk_root_list, child_node) { 985 ret = clk_core_save_context(clk); 986 if (ret < 0) 987 return ret; 988 } 989 990 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 991 ret = clk_core_save_context(clk); 992 if (ret < 0) 993 return ret; 994 } 995 996 return 0; 997 } 998 EXPORT_SYMBOL_GPL(clk_save_context); 999 1000 /** 1001 * clk_restore_context - restore clock context after poweroff 1002 * 1003 * Restore the saved clock context upon resume. 1004 * 1005 */ 1006 void clk_restore_context(void) 1007 { 1008 struct clk_core *core; 1009 1010 hlist_for_each_entry(core, &clk_root_list, child_node) 1011 clk_core_restore_context(core); 1012 1013 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1014 clk_core_restore_context(core); 1015 } 1016 EXPORT_SYMBOL_GPL(clk_restore_context); 1017 1018 /** 1019 * clk_enable - ungate a clock 1020 * @clk: the clk being ungated 1021 * 1022 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1023 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1024 * if the operation will never sleep. One example is a SoC-internal clk which 1025 * is controlled via simple register writes. In the complex case a clk ungate 1026 * operation may require a fast and a slow part. It is this reason that 1027 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1028 * must be called before clk_enable. Returns 0 on success, -EERROR 1029 * otherwise. 1030 */ 1031 int clk_enable(struct clk *clk) 1032 { 1033 if (!clk) 1034 return 0; 1035 1036 return clk_core_enable_lock(clk->core); 1037 } 1038 EXPORT_SYMBOL_GPL(clk_enable); 1039 1040 static int clk_core_prepare_enable(struct clk_core *core) 1041 { 1042 int ret; 1043 1044 ret = clk_core_prepare_lock(core); 1045 if (ret) 1046 return ret; 1047 1048 ret = clk_core_enable_lock(core); 1049 if (ret) 1050 clk_core_unprepare_lock(core); 1051 1052 return ret; 1053 } 1054 1055 static void clk_core_disable_unprepare(struct clk_core *core) 1056 { 1057 clk_core_disable_lock(core); 1058 clk_core_unprepare_lock(core); 1059 } 1060 1061 static void clk_unprepare_unused_subtree(struct clk_core *core) 1062 { 1063 struct clk_core *child; 1064 1065 lockdep_assert_held(&prepare_lock); 1066 1067 hlist_for_each_entry(child, &core->children, child_node) 1068 clk_unprepare_unused_subtree(child); 1069 1070 if (core->prepare_count) 1071 return; 1072 1073 if (core->flags & CLK_IGNORE_UNUSED) 1074 return; 1075 1076 if (clk_pm_runtime_get(core)) 1077 return; 1078 1079 if (clk_core_is_prepared(core)) { 1080 trace_clk_unprepare(core); 1081 if (core->ops->unprepare_unused) 1082 core->ops->unprepare_unused(core->hw); 1083 else if (core->ops->unprepare) 1084 core->ops->unprepare(core->hw); 1085 trace_clk_unprepare_complete(core); 1086 } 1087 1088 clk_pm_runtime_put(core); 1089 } 1090 1091 static void clk_disable_unused_subtree(struct clk_core *core) 1092 { 1093 struct clk_core *child; 1094 unsigned long flags; 1095 1096 lockdep_assert_held(&prepare_lock); 1097 1098 hlist_for_each_entry(child, &core->children, child_node) 1099 clk_disable_unused_subtree(child); 1100 1101 if (core->flags & CLK_OPS_PARENT_ENABLE) 1102 clk_core_prepare_enable(core->parent); 1103 1104 if (clk_pm_runtime_get(core)) 1105 goto unprepare_out; 1106 1107 flags = clk_enable_lock(); 1108 1109 if (core->enable_count) 1110 goto unlock_out; 1111 1112 if (core->flags & CLK_IGNORE_UNUSED) 1113 goto unlock_out; 1114 1115 /* 1116 * some gate clocks have special needs during the disable-unused 1117 * sequence. call .disable_unused if available, otherwise fall 1118 * back to .disable 1119 */ 1120 if (clk_core_is_enabled(core)) { 1121 trace_clk_disable(core); 1122 if (core->ops->disable_unused) 1123 core->ops->disable_unused(core->hw); 1124 else if (core->ops->disable) 1125 core->ops->disable(core->hw); 1126 trace_clk_disable_complete(core); 1127 } 1128 1129 unlock_out: 1130 clk_enable_unlock(flags); 1131 clk_pm_runtime_put(core); 1132 unprepare_out: 1133 if (core->flags & CLK_OPS_PARENT_ENABLE) 1134 clk_core_disable_unprepare(core->parent); 1135 } 1136 1137 static bool clk_ignore_unused; 1138 static int __init clk_ignore_unused_setup(char *__unused) 1139 { 1140 clk_ignore_unused = true; 1141 return 1; 1142 } 1143 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1144 1145 static int clk_disable_unused(void) 1146 { 1147 struct clk_core *core; 1148 1149 if (clk_ignore_unused) { 1150 pr_warn("clk: Not disabling unused clocks\n"); 1151 return 0; 1152 } 1153 1154 clk_prepare_lock(); 1155 1156 hlist_for_each_entry(core, &clk_root_list, child_node) 1157 clk_disable_unused_subtree(core); 1158 1159 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1160 clk_disable_unused_subtree(core); 1161 1162 hlist_for_each_entry(core, &clk_root_list, child_node) 1163 clk_unprepare_unused_subtree(core); 1164 1165 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1166 clk_unprepare_unused_subtree(core); 1167 1168 clk_prepare_unlock(); 1169 1170 return 0; 1171 } 1172 late_initcall_sync(clk_disable_unused); 1173 1174 static int clk_core_determine_round_nolock(struct clk_core *core, 1175 struct clk_rate_request *req) 1176 { 1177 long rate; 1178 1179 lockdep_assert_held(&prepare_lock); 1180 1181 if (!core) 1182 return 0; 1183 1184 /* 1185 * At this point, core protection will be disabled if 1186 * - if the provider is not protected at all 1187 * - if the calling consumer is the only one which has exclusivity 1188 * over the provider 1189 */ 1190 if (clk_core_rate_is_protected(core)) { 1191 req->rate = core->rate; 1192 } else if (core->ops->determine_rate) { 1193 return core->ops->determine_rate(core->hw, req); 1194 } else if (core->ops->round_rate) { 1195 rate = core->ops->round_rate(core->hw, req->rate, 1196 &req->best_parent_rate); 1197 if (rate < 0) 1198 return rate; 1199 1200 req->rate = rate; 1201 } else { 1202 return -EINVAL; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static void clk_core_init_rate_req(struct clk_core * const core, 1209 struct clk_rate_request *req) 1210 { 1211 struct clk_core *parent; 1212 1213 if (WARN_ON(!core || !req)) 1214 return; 1215 1216 parent = core->parent; 1217 if (parent) { 1218 req->best_parent_hw = parent->hw; 1219 req->best_parent_rate = parent->rate; 1220 } else { 1221 req->best_parent_hw = NULL; 1222 req->best_parent_rate = 0; 1223 } 1224 } 1225 1226 static bool clk_core_can_round(struct clk_core * const core) 1227 { 1228 if (core->ops->determine_rate || core->ops->round_rate) 1229 return true; 1230 1231 return false; 1232 } 1233 1234 static int clk_core_round_rate_nolock(struct clk_core *core, 1235 struct clk_rate_request *req) 1236 { 1237 lockdep_assert_held(&prepare_lock); 1238 1239 if (!core) { 1240 req->rate = 0; 1241 return 0; 1242 } 1243 1244 clk_core_init_rate_req(core, req); 1245 1246 if (clk_core_can_round(core)) 1247 return clk_core_determine_round_nolock(core, req); 1248 else if (core->flags & CLK_SET_RATE_PARENT) 1249 return clk_core_round_rate_nolock(core->parent, req); 1250 1251 req->rate = core->rate; 1252 return 0; 1253 } 1254 1255 /** 1256 * __clk_determine_rate - get the closest rate actually supported by a clock 1257 * @hw: determine the rate of this clock 1258 * @req: target rate request 1259 * 1260 * Useful for clk_ops such as .set_rate and .determine_rate. 1261 */ 1262 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1263 { 1264 if (!hw) { 1265 req->rate = 0; 1266 return 0; 1267 } 1268 1269 return clk_core_round_rate_nolock(hw->core, req); 1270 } 1271 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1272 1273 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1274 { 1275 int ret; 1276 struct clk_rate_request req; 1277 1278 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1279 req.rate = rate; 1280 1281 ret = clk_core_round_rate_nolock(hw->core, &req); 1282 if (ret) 1283 return 0; 1284 1285 return req.rate; 1286 } 1287 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1288 1289 /** 1290 * clk_round_rate - round the given rate for a clk 1291 * @clk: the clk for which we are rounding a rate 1292 * @rate: the rate which is to be rounded 1293 * 1294 * Takes in a rate as input and rounds it to a rate that the clk can actually 1295 * use which is then returned. If clk doesn't support round_rate operation 1296 * then the parent rate is returned. 1297 */ 1298 long clk_round_rate(struct clk *clk, unsigned long rate) 1299 { 1300 struct clk_rate_request req; 1301 int ret; 1302 1303 if (!clk) 1304 return 0; 1305 1306 clk_prepare_lock(); 1307 1308 if (clk->exclusive_count) 1309 clk_core_rate_unprotect(clk->core); 1310 1311 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1312 req.rate = rate; 1313 1314 ret = clk_core_round_rate_nolock(clk->core, &req); 1315 1316 if (clk->exclusive_count) 1317 clk_core_rate_protect(clk->core); 1318 1319 clk_prepare_unlock(); 1320 1321 if (ret) 1322 return ret; 1323 1324 return req.rate; 1325 } 1326 EXPORT_SYMBOL_GPL(clk_round_rate); 1327 1328 /** 1329 * __clk_notify - call clk notifier chain 1330 * @core: clk that is changing rate 1331 * @msg: clk notifier type (see include/linux/clk.h) 1332 * @old_rate: old clk rate 1333 * @new_rate: new clk rate 1334 * 1335 * Triggers a notifier call chain on the clk rate-change notification 1336 * for 'clk'. Passes a pointer to the struct clk and the previous 1337 * and current rates to the notifier callback. Intended to be called by 1338 * internal clock code only. Returns NOTIFY_DONE from the last driver 1339 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1340 * a driver returns that. 1341 */ 1342 static int __clk_notify(struct clk_core *core, unsigned long msg, 1343 unsigned long old_rate, unsigned long new_rate) 1344 { 1345 struct clk_notifier *cn; 1346 struct clk_notifier_data cnd; 1347 int ret = NOTIFY_DONE; 1348 1349 cnd.old_rate = old_rate; 1350 cnd.new_rate = new_rate; 1351 1352 list_for_each_entry(cn, &clk_notifier_list, node) { 1353 if (cn->clk->core == core) { 1354 cnd.clk = cn->clk; 1355 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1356 &cnd); 1357 if (ret & NOTIFY_STOP_MASK) 1358 return ret; 1359 } 1360 } 1361 1362 return ret; 1363 } 1364 1365 /** 1366 * __clk_recalc_accuracies 1367 * @core: first clk in the subtree 1368 * 1369 * Walks the subtree of clks starting with clk and recalculates accuracies as 1370 * it goes. Note that if a clk does not implement the .recalc_accuracy 1371 * callback then it is assumed that the clock will take on the accuracy of its 1372 * parent. 1373 */ 1374 static void __clk_recalc_accuracies(struct clk_core *core) 1375 { 1376 unsigned long parent_accuracy = 0; 1377 struct clk_core *child; 1378 1379 lockdep_assert_held(&prepare_lock); 1380 1381 if (core->parent) 1382 parent_accuracy = core->parent->accuracy; 1383 1384 if (core->ops->recalc_accuracy) 1385 core->accuracy = core->ops->recalc_accuracy(core->hw, 1386 parent_accuracy); 1387 else 1388 core->accuracy = parent_accuracy; 1389 1390 hlist_for_each_entry(child, &core->children, child_node) 1391 __clk_recalc_accuracies(child); 1392 } 1393 1394 static long clk_core_get_accuracy(struct clk_core *core) 1395 { 1396 unsigned long accuracy; 1397 1398 clk_prepare_lock(); 1399 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1400 __clk_recalc_accuracies(core); 1401 1402 accuracy = __clk_get_accuracy(core); 1403 clk_prepare_unlock(); 1404 1405 return accuracy; 1406 } 1407 1408 /** 1409 * clk_get_accuracy - return the accuracy of clk 1410 * @clk: the clk whose accuracy is being returned 1411 * 1412 * Simply returns the cached accuracy of the clk, unless 1413 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1414 * issued. 1415 * If clk is NULL then returns 0. 1416 */ 1417 long clk_get_accuracy(struct clk *clk) 1418 { 1419 if (!clk) 1420 return 0; 1421 1422 return clk_core_get_accuracy(clk->core); 1423 } 1424 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1425 1426 static unsigned long clk_recalc(struct clk_core *core, 1427 unsigned long parent_rate) 1428 { 1429 unsigned long rate = parent_rate; 1430 1431 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1432 rate = core->ops->recalc_rate(core->hw, parent_rate); 1433 clk_pm_runtime_put(core); 1434 } 1435 return rate; 1436 } 1437 1438 /** 1439 * __clk_recalc_rates 1440 * @core: first clk in the subtree 1441 * @msg: notification type (see include/linux/clk.h) 1442 * 1443 * Walks the subtree of clks starting with clk and recalculates rates as it 1444 * goes. Note that if a clk does not implement the .recalc_rate callback then 1445 * it is assumed that the clock will take on the rate of its parent. 1446 * 1447 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1448 * if necessary. 1449 */ 1450 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1451 { 1452 unsigned long old_rate; 1453 unsigned long parent_rate = 0; 1454 struct clk_core *child; 1455 1456 lockdep_assert_held(&prepare_lock); 1457 1458 old_rate = core->rate; 1459 1460 if (core->parent) 1461 parent_rate = core->parent->rate; 1462 1463 core->rate = clk_recalc(core, parent_rate); 1464 1465 /* 1466 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1467 * & ABORT_RATE_CHANGE notifiers 1468 */ 1469 if (core->notifier_count && msg) 1470 __clk_notify(core, msg, old_rate, core->rate); 1471 1472 hlist_for_each_entry(child, &core->children, child_node) 1473 __clk_recalc_rates(child, msg); 1474 } 1475 1476 static unsigned long clk_core_get_rate(struct clk_core *core) 1477 { 1478 unsigned long rate; 1479 1480 clk_prepare_lock(); 1481 1482 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1483 __clk_recalc_rates(core, 0); 1484 1485 rate = clk_core_get_rate_nolock(core); 1486 clk_prepare_unlock(); 1487 1488 return rate; 1489 } 1490 1491 /** 1492 * clk_get_rate - return the rate of clk 1493 * @clk: the clk whose rate is being returned 1494 * 1495 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1496 * is set, which means a recalc_rate will be issued. 1497 * If clk is NULL then returns 0. 1498 */ 1499 unsigned long clk_get_rate(struct clk *clk) 1500 { 1501 if (!clk) 1502 return 0; 1503 1504 return clk_core_get_rate(clk->core); 1505 } 1506 EXPORT_SYMBOL_GPL(clk_get_rate); 1507 1508 static int clk_fetch_parent_index(struct clk_core *core, 1509 struct clk_core *parent) 1510 { 1511 int i; 1512 1513 if (!parent) 1514 return -EINVAL; 1515 1516 for (i = 0; i < core->num_parents; i++) 1517 if (clk_core_get_parent_by_index(core, i) == parent) 1518 return i; 1519 1520 return -EINVAL; 1521 } 1522 1523 /* 1524 * Update the orphan status of @core and all its children. 1525 */ 1526 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1527 { 1528 struct clk_core *child; 1529 1530 core->orphan = is_orphan; 1531 1532 hlist_for_each_entry(child, &core->children, child_node) 1533 clk_core_update_orphan_status(child, is_orphan); 1534 } 1535 1536 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1537 { 1538 bool was_orphan = core->orphan; 1539 1540 hlist_del(&core->child_node); 1541 1542 if (new_parent) { 1543 bool becomes_orphan = new_parent->orphan; 1544 1545 /* avoid duplicate POST_RATE_CHANGE notifications */ 1546 if (new_parent->new_child == core) 1547 new_parent->new_child = NULL; 1548 1549 hlist_add_head(&core->child_node, &new_parent->children); 1550 1551 if (was_orphan != becomes_orphan) 1552 clk_core_update_orphan_status(core, becomes_orphan); 1553 } else { 1554 hlist_add_head(&core->child_node, &clk_orphan_list); 1555 if (!was_orphan) 1556 clk_core_update_orphan_status(core, true); 1557 } 1558 1559 core->parent = new_parent; 1560 } 1561 1562 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1563 struct clk_core *parent) 1564 { 1565 unsigned long flags; 1566 struct clk_core *old_parent = core->parent; 1567 1568 /* 1569 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1570 * 1571 * 2. Migrate prepare state between parents and prevent race with 1572 * clk_enable(). 1573 * 1574 * If the clock is not prepared, then a race with 1575 * clk_enable/disable() is impossible since we already have the 1576 * prepare lock (future calls to clk_enable() need to be preceded by 1577 * a clk_prepare()). 1578 * 1579 * If the clock is prepared, migrate the prepared state to the new 1580 * parent and also protect against a race with clk_enable() by 1581 * forcing the clock and the new parent on. This ensures that all 1582 * future calls to clk_enable() are practically NOPs with respect to 1583 * hardware and software states. 1584 * 1585 * See also: Comment for clk_set_parent() below. 1586 */ 1587 1588 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1589 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1590 clk_core_prepare_enable(old_parent); 1591 clk_core_prepare_enable(parent); 1592 } 1593 1594 /* migrate prepare count if > 0 */ 1595 if (core->prepare_count) { 1596 clk_core_prepare_enable(parent); 1597 clk_core_enable_lock(core); 1598 } 1599 1600 /* update the clk tree topology */ 1601 flags = clk_enable_lock(); 1602 clk_reparent(core, parent); 1603 clk_enable_unlock(flags); 1604 1605 return old_parent; 1606 } 1607 1608 static void __clk_set_parent_after(struct clk_core *core, 1609 struct clk_core *parent, 1610 struct clk_core *old_parent) 1611 { 1612 /* 1613 * Finish the migration of prepare state and undo the changes done 1614 * for preventing a race with clk_enable(). 1615 */ 1616 if (core->prepare_count) { 1617 clk_core_disable_lock(core); 1618 clk_core_disable_unprepare(old_parent); 1619 } 1620 1621 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1622 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1623 clk_core_disable_unprepare(parent); 1624 clk_core_disable_unprepare(old_parent); 1625 } 1626 } 1627 1628 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1629 u8 p_index) 1630 { 1631 unsigned long flags; 1632 int ret = 0; 1633 struct clk_core *old_parent; 1634 1635 old_parent = __clk_set_parent_before(core, parent); 1636 1637 trace_clk_set_parent(core, parent); 1638 1639 /* change clock input source */ 1640 if (parent && core->ops->set_parent) 1641 ret = core->ops->set_parent(core->hw, p_index); 1642 1643 trace_clk_set_parent_complete(core, parent); 1644 1645 if (ret) { 1646 flags = clk_enable_lock(); 1647 clk_reparent(core, old_parent); 1648 clk_enable_unlock(flags); 1649 __clk_set_parent_after(core, old_parent, parent); 1650 1651 return ret; 1652 } 1653 1654 __clk_set_parent_after(core, parent, old_parent); 1655 1656 return 0; 1657 } 1658 1659 /** 1660 * __clk_speculate_rates 1661 * @core: first clk in the subtree 1662 * @parent_rate: the "future" rate of clk's parent 1663 * 1664 * Walks the subtree of clks starting with clk, speculating rates as it 1665 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1666 * 1667 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1668 * pre-rate change notifications and returns early if no clks in the 1669 * subtree have subscribed to the notifications. Note that if a clk does not 1670 * implement the .recalc_rate callback then it is assumed that the clock will 1671 * take on the rate of its parent. 1672 */ 1673 static int __clk_speculate_rates(struct clk_core *core, 1674 unsigned long parent_rate) 1675 { 1676 struct clk_core *child; 1677 unsigned long new_rate; 1678 int ret = NOTIFY_DONE; 1679 1680 lockdep_assert_held(&prepare_lock); 1681 1682 new_rate = clk_recalc(core, parent_rate); 1683 1684 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1685 if (core->notifier_count) 1686 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1687 1688 if (ret & NOTIFY_STOP_MASK) { 1689 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1690 __func__, core->name, ret); 1691 goto out; 1692 } 1693 1694 hlist_for_each_entry(child, &core->children, child_node) { 1695 ret = __clk_speculate_rates(child, new_rate); 1696 if (ret & NOTIFY_STOP_MASK) 1697 break; 1698 } 1699 1700 out: 1701 return ret; 1702 } 1703 1704 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1705 struct clk_core *new_parent, u8 p_index) 1706 { 1707 struct clk_core *child; 1708 1709 core->new_rate = new_rate; 1710 core->new_parent = new_parent; 1711 core->new_parent_index = p_index; 1712 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1713 core->new_child = NULL; 1714 if (new_parent && new_parent != core->parent) 1715 new_parent->new_child = core; 1716 1717 hlist_for_each_entry(child, &core->children, child_node) { 1718 child->new_rate = clk_recalc(child, new_rate); 1719 clk_calc_subtree(child, child->new_rate, NULL, 0); 1720 } 1721 } 1722 1723 /* 1724 * calculate the new rates returning the topmost clock that has to be 1725 * changed. 1726 */ 1727 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1728 unsigned long rate) 1729 { 1730 struct clk_core *top = core; 1731 struct clk_core *old_parent, *parent; 1732 unsigned long best_parent_rate = 0; 1733 unsigned long new_rate; 1734 unsigned long min_rate; 1735 unsigned long max_rate; 1736 int p_index = 0; 1737 long ret; 1738 1739 /* sanity */ 1740 if (IS_ERR_OR_NULL(core)) 1741 return NULL; 1742 1743 /* save parent rate, if it exists */ 1744 parent = old_parent = core->parent; 1745 if (parent) 1746 best_parent_rate = parent->rate; 1747 1748 clk_core_get_boundaries(core, &min_rate, &max_rate); 1749 1750 /* find the closest rate and parent clk/rate */ 1751 if (clk_core_can_round(core)) { 1752 struct clk_rate_request req; 1753 1754 req.rate = rate; 1755 req.min_rate = min_rate; 1756 req.max_rate = max_rate; 1757 1758 clk_core_init_rate_req(core, &req); 1759 1760 ret = clk_core_determine_round_nolock(core, &req); 1761 if (ret < 0) 1762 return NULL; 1763 1764 best_parent_rate = req.best_parent_rate; 1765 new_rate = req.rate; 1766 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1767 1768 if (new_rate < min_rate || new_rate > max_rate) 1769 return NULL; 1770 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1771 /* pass-through clock without adjustable parent */ 1772 core->new_rate = core->rate; 1773 return NULL; 1774 } else { 1775 /* pass-through clock with adjustable parent */ 1776 top = clk_calc_new_rates(parent, rate); 1777 new_rate = parent->new_rate; 1778 goto out; 1779 } 1780 1781 /* some clocks must be gated to change parent */ 1782 if (parent != old_parent && 1783 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1784 pr_debug("%s: %s not gated but wants to reparent\n", 1785 __func__, core->name); 1786 return NULL; 1787 } 1788 1789 /* try finding the new parent index */ 1790 if (parent && core->num_parents > 1) { 1791 p_index = clk_fetch_parent_index(core, parent); 1792 if (p_index < 0) { 1793 pr_debug("%s: clk %s can not be parent of clk %s\n", 1794 __func__, parent->name, core->name); 1795 return NULL; 1796 } 1797 } 1798 1799 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1800 best_parent_rate != parent->rate) 1801 top = clk_calc_new_rates(parent, best_parent_rate); 1802 1803 out: 1804 clk_calc_subtree(core, new_rate, parent, p_index); 1805 1806 return top; 1807 } 1808 1809 /* 1810 * Notify about rate changes in a subtree. Always walk down the whole tree 1811 * so that in case of an error we can walk down the whole tree again and 1812 * abort the change. 1813 */ 1814 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1815 unsigned long event) 1816 { 1817 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1818 int ret = NOTIFY_DONE; 1819 1820 if (core->rate == core->new_rate) 1821 return NULL; 1822 1823 if (core->notifier_count) { 1824 ret = __clk_notify(core, event, core->rate, core->new_rate); 1825 if (ret & NOTIFY_STOP_MASK) 1826 fail_clk = core; 1827 } 1828 1829 hlist_for_each_entry(child, &core->children, child_node) { 1830 /* Skip children who will be reparented to another clock */ 1831 if (child->new_parent && child->new_parent != core) 1832 continue; 1833 tmp_clk = clk_propagate_rate_change(child, event); 1834 if (tmp_clk) 1835 fail_clk = tmp_clk; 1836 } 1837 1838 /* handle the new child who might not be in core->children yet */ 1839 if (core->new_child) { 1840 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1841 if (tmp_clk) 1842 fail_clk = tmp_clk; 1843 } 1844 1845 return fail_clk; 1846 } 1847 1848 /* 1849 * walk down a subtree and set the new rates notifying the rate 1850 * change on the way 1851 */ 1852 static void clk_change_rate(struct clk_core *core) 1853 { 1854 struct clk_core *child; 1855 struct hlist_node *tmp; 1856 unsigned long old_rate; 1857 unsigned long best_parent_rate = 0; 1858 bool skip_set_rate = false; 1859 struct clk_core *old_parent; 1860 struct clk_core *parent = NULL; 1861 1862 old_rate = core->rate; 1863 1864 if (core->new_parent) { 1865 parent = core->new_parent; 1866 best_parent_rate = core->new_parent->rate; 1867 } else if (core->parent) { 1868 parent = core->parent; 1869 best_parent_rate = core->parent->rate; 1870 } 1871 1872 if (clk_pm_runtime_get(core)) 1873 return; 1874 1875 if (core->flags & CLK_SET_RATE_UNGATE) { 1876 unsigned long flags; 1877 1878 clk_core_prepare(core); 1879 flags = clk_enable_lock(); 1880 clk_core_enable(core); 1881 clk_enable_unlock(flags); 1882 } 1883 1884 if (core->new_parent && core->new_parent != core->parent) { 1885 old_parent = __clk_set_parent_before(core, core->new_parent); 1886 trace_clk_set_parent(core, core->new_parent); 1887 1888 if (core->ops->set_rate_and_parent) { 1889 skip_set_rate = true; 1890 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1891 best_parent_rate, 1892 core->new_parent_index); 1893 } else if (core->ops->set_parent) { 1894 core->ops->set_parent(core->hw, core->new_parent_index); 1895 } 1896 1897 trace_clk_set_parent_complete(core, core->new_parent); 1898 __clk_set_parent_after(core, core->new_parent, old_parent); 1899 } 1900 1901 if (core->flags & CLK_OPS_PARENT_ENABLE) 1902 clk_core_prepare_enable(parent); 1903 1904 trace_clk_set_rate(core, core->new_rate); 1905 1906 if (!skip_set_rate && core->ops->set_rate) 1907 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1908 1909 trace_clk_set_rate_complete(core, core->new_rate); 1910 1911 core->rate = clk_recalc(core, best_parent_rate); 1912 1913 if (core->flags & CLK_SET_RATE_UNGATE) { 1914 unsigned long flags; 1915 1916 flags = clk_enable_lock(); 1917 clk_core_disable(core); 1918 clk_enable_unlock(flags); 1919 clk_core_unprepare(core); 1920 } 1921 1922 if (core->flags & CLK_OPS_PARENT_ENABLE) 1923 clk_core_disable_unprepare(parent); 1924 1925 if (core->notifier_count && old_rate != core->rate) 1926 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1927 1928 if (core->flags & CLK_RECALC_NEW_RATES) 1929 (void)clk_calc_new_rates(core, core->new_rate); 1930 1931 /* 1932 * Use safe iteration, as change_rate can actually swap parents 1933 * for certain clock types. 1934 */ 1935 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1936 /* Skip children who will be reparented to another clock */ 1937 if (child->new_parent && child->new_parent != core) 1938 continue; 1939 clk_change_rate(child); 1940 } 1941 1942 /* handle the new child who might not be in core->children yet */ 1943 if (core->new_child) 1944 clk_change_rate(core->new_child); 1945 1946 clk_pm_runtime_put(core); 1947 } 1948 1949 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 1950 unsigned long req_rate) 1951 { 1952 int ret, cnt; 1953 struct clk_rate_request req; 1954 1955 lockdep_assert_held(&prepare_lock); 1956 1957 if (!core) 1958 return 0; 1959 1960 /* simulate what the rate would be if it could be freely set */ 1961 cnt = clk_core_rate_nuke_protect(core); 1962 if (cnt < 0) 1963 return cnt; 1964 1965 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 1966 req.rate = req_rate; 1967 1968 ret = clk_core_round_rate_nolock(core, &req); 1969 1970 /* restore the protection */ 1971 clk_core_rate_restore_protect(core, cnt); 1972 1973 return ret ? 0 : req.rate; 1974 } 1975 1976 static int clk_core_set_rate_nolock(struct clk_core *core, 1977 unsigned long req_rate) 1978 { 1979 struct clk_core *top, *fail_clk; 1980 unsigned long rate; 1981 int ret = 0; 1982 1983 if (!core) 1984 return 0; 1985 1986 rate = clk_core_req_round_rate_nolock(core, req_rate); 1987 1988 /* bail early if nothing to do */ 1989 if (rate == clk_core_get_rate_nolock(core)) 1990 return 0; 1991 1992 /* fail on a direct rate set of a protected provider */ 1993 if (clk_core_rate_is_protected(core)) 1994 return -EBUSY; 1995 1996 /* calculate new rates and get the topmost changed clock */ 1997 top = clk_calc_new_rates(core, req_rate); 1998 if (!top) 1999 return -EINVAL; 2000 2001 ret = clk_pm_runtime_get(core); 2002 if (ret) 2003 return ret; 2004 2005 /* notify that we are about to change rates */ 2006 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2007 if (fail_clk) { 2008 pr_debug("%s: failed to set %s rate\n", __func__, 2009 fail_clk->name); 2010 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2011 ret = -EBUSY; 2012 goto err; 2013 } 2014 2015 /* change the rates */ 2016 clk_change_rate(top); 2017 2018 core->req_rate = req_rate; 2019 err: 2020 clk_pm_runtime_put(core); 2021 2022 return ret; 2023 } 2024 2025 /** 2026 * clk_set_rate - specify a new rate for clk 2027 * @clk: the clk whose rate is being changed 2028 * @rate: the new rate for clk 2029 * 2030 * In the simplest case clk_set_rate will only adjust the rate of clk. 2031 * 2032 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2033 * propagate up to clk's parent; whether or not this happens depends on the 2034 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2035 * after calling .round_rate then upstream parent propagation is ignored. If 2036 * *parent_rate comes back with a new rate for clk's parent then we propagate 2037 * up to clk's parent and set its rate. Upward propagation will continue 2038 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2039 * .round_rate stops requesting changes to clk's parent_rate. 2040 * 2041 * Rate changes are accomplished via tree traversal that also recalculates the 2042 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2043 * 2044 * Returns 0 on success, -EERROR otherwise. 2045 */ 2046 int clk_set_rate(struct clk *clk, unsigned long rate) 2047 { 2048 int ret; 2049 2050 if (!clk) 2051 return 0; 2052 2053 /* prevent racing with updates to the clock topology */ 2054 clk_prepare_lock(); 2055 2056 if (clk->exclusive_count) 2057 clk_core_rate_unprotect(clk->core); 2058 2059 ret = clk_core_set_rate_nolock(clk->core, rate); 2060 2061 if (clk->exclusive_count) 2062 clk_core_rate_protect(clk->core); 2063 2064 clk_prepare_unlock(); 2065 2066 return ret; 2067 } 2068 EXPORT_SYMBOL_GPL(clk_set_rate); 2069 2070 /** 2071 * clk_set_rate_exclusive - specify a new rate get exclusive control 2072 * @clk: the clk whose rate is being changed 2073 * @rate: the new rate for clk 2074 * 2075 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2076 * within a critical section 2077 * 2078 * This can be used initially to ensure that at least 1 consumer is 2079 * statisfied when several consumers are competing for exclusivity over the 2080 * same clock provider. 2081 * 2082 * The exclusivity is not applied if setting the rate failed. 2083 * 2084 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2085 * clk_rate_exclusive_put(). 2086 * 2087 * Returns 0 on success, -EERROR otherwise. 2088 */ 2089 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2090 { 2091 int ret; 2092 2093 if (!clk) 2094 return 0; 2095 2096 /* prevent racing with updates to the clock topology */ 2097 clk_prepare_lock(); 2098 2099 /* 2100 * The temporary protection removal is not here, on purpose 2101 * This function is meant to be used instead of clk_rate_protect, 2102 * so before the consumer code path protect the clock provider 2103 */ 2104 2105 ret = clk_core_set_rate_nolock(clk->core, rate); 2106 if (!ret) { 2107 clk_core_rate_protect(clk->core); 2108 clk->exclusive_count++; 2109 } 2110 2111 clk_prepare_unlock(); 2112 2113 return ret; 2114 } 2115 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2116 2117 /** 2118 * clk_set_rate_range - set a rate range for a clock source 2119 * @clk: clock source 2120 * @min: desired minimum clock rate in Hz, inclusive 2121 * @max: desired maximum clock rate in Hz, inclusive 2122 * 2123 * Returns success (0) or negative errno. 2124 */ 2125 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2126 { 2127 int ret = 0; 2128 unsigned long old_min, old_max, rate; 2129 2130 if (!clk) 2131 return 0; 2132 2133 if (min > max) { 2134 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2135 __func__, clk->core->name, clk->dev_id, clk->con_id, 2136 min, max); 2137 return -EINVAL; 2138 } 2139 2140 clk_prepare_lock(); 2141 2142 if (clk->exclusive_count) 2143 clk_core_rate_unprotect(clk->core); 2144 2145 /* Save the current values in case we need to rollback the change */ 2146 old_min = clk->min_rate; 2147 old_max = clk->max_rate; 2148 clk->min_rate = min; 2149 clk->max_rate = max; 2150 2151 rate = clk_core_get_rate_nolock(clk->core); 2152 if (rate < min || rate > max) { 2153 /* 2154 * FIXME: 2155 * We are in bit of trouble here, current rate is outside the 2156 * the requested range. We are going try to request appropriate 2157 * range boundary but there is a catch. It may fail for the 2158 * usual reason (clock broken, clock protected, etc) but also 2159 * because: 2160 * - round_rate() was not favorable and fell on the wrong 2161 * side of the boundary 2162 * - the determine_rate() callback does not really check for 2163 * this corner case when determining the rate 2164 */ 2165 2166 if (rate < min) 2167 rate = min; 2168 else 2169 rate = max; 2170 2171 ret = clk_core_set_rate_nolock(clk->core, rate); 2172 if (ret) { 2173 /* rollback the changes */ 2174 clk->min_rate = old_min; 2175 clk->max_rate = old_max; 2176 } 2177 } 2178 2179 if (clk->exclusive_count) 2180 clk_core_rate_protect(clk->core); 2181 2182 clk_prepare_unlock(); 2183 2184 return ret; 2185 } 2186 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2187 2188 /** 2189 * clk_set_min_rate - set a minimum clock rate for a clock source 2190 * @clk: clock source 2191 * @rate: desired minimum clock rate in Hz, inclusive 2192 * 2193 * Returns success (0) or negative errno. 2194 */ 2195 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2196 { 2197 if (!clk) 2198 return 0; 2199 2200 return clk_set_rate_range(clk, rate, clk->max_rate); 2201 } 2202 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2203 2204 /** 2205 * clk_set_max_rate - set a maximum clock rate for a clock source 2206 * @clk: clock source 2207 * @rate: desired maximum clock rate in Hz, inclusive 2208 * 2209 * Returns success (0) or negative errno. 2210 */ 2211 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2212 { 2213 if (!clk) 2214 return 0; 2215 2216 return clk_set_rate_range(clk, clk->min_rate, rate); 2217 } 2218 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2219 2220 /** 2221 * clk_get_parent - return the parent of a clk 2222 * @clk: the clk whose parent gets returned 2223 * 2224 * Simply returns clk->parent. Returns NULL if clk is NULL. 2225 */ 2226 struct clk *clk_get_parent(struct clk *clk) 2227 { 2228 struct clk *parent; 2229 2230 if (!clk) 2231 return NULL; 2232 2233 clk_prepare_lock(); 2234 /* TODO: Create a per-user clk and change callers to call clk_put */ 2235 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2236 clk_prepare_unlock(); 2237 2238 return parent; 2239 } 2240 EXPORT_SYMBOL_GPL(clk_get_parent); 2241 2242 static struct clk_core *__clk_init_parent(struct clk_core *core) 2243 { 2244 u8 index = 0; 2245 2246 if (core->num_parents > 1 && core->ops->get_parent) 2247 index = core->ops->get_parent(core->hw); 2248 2249 return clk_core_get_parent_by_index(core, index); 2250 } 2251 2252 static void clk_core_reparent(struct clk_core *core, 2253 struct clk_core *new_parent) 2254 { 2255 clk_reparent(core, new_parent); 2256 __clk_recalc_accuracies(core); 2257 __clk_recalc_rates(core, POST_RATE_CHANGE); 2258 } 2259 2260 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2261 { 2262 if (!hw) 2263 return; 2264 2265 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2266 } 2267 2268 /** 2269 * clk_has_parent - check if a clock is a possible parent for another 2270 * @clk: clock source 2271 * @parent: parent clock source 2272 * 2273 * This function can be used in drivers that need to check that a clock can be 2274 * the parent of another without actually changing the parent. 2275 * 2276 * Returns true if @parent is a possible parent for @clk, false otherwise. 2277 */ 2278 bool clk_has_parent(struct clk *clk, struct clk *parent) 2279 { 2280 struct clk_core *core, *parent_core; 2281 2282 /* NULL clocks should be nops, so return success if either is NULL. */ 2283 if (!clk || !parent) 2284 return true; 2285 2286 core = clk->core; 2287 parent_core = parent->core; 2288 2289 /* Optimize for the case where the parent is already the parent. */ 2290 if (core->parent == parent_core) 2291 return true; 2292 2293 return match_string(core->parent_names, core->num_parents, 2294 parent_core->name) >= 0; 2295 } 2296 EXPORT_SYMBOL_GPL(clk_has_parent); 2297 2298 static int clk_core_set_parent_nolock(struct clk_core *core, 2299 struct clk_core *parent) 2300 { 2301 int ret = 0; 2302 int p_index = 0; 2303 unsigned long p_rate = 0; 2304 2305 lockdep_assert_held(&prepare_lock); 2306 2307 if (!core) 2308 return 0; 2309 2310 if (core->parent == parent) 2311 return 0; 2312 2313 /* verify ops for for multi-parent clks */ 2314 if (core->num_parents > 1 && !core->ops->set_parent) 2315 return -EPERM; 2316 2317 /* check that we are allowed to re-parent if the clock is in use */ 2318 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2319 return -EBUSY; 2320 2321 if (clk_core_rate_is_protected(core)) 2322 return -EBUSY; 2323 2324 /* try finding the new parent index */ 2325 if (parent) { 2326 p_index = clk_fetch_parent_index(core, parent); 2327 if (p_index < 0) { 2328 pr_debug("%s: clk %s can not be parent of clk %s\n", 2329 __func__, parent->name, core->name); 2330 return p_index; 2331 } 2332 p_rate = parent->rate; 2333 } 2334 2335 ret = clk_pm_runtime_get(core); 2336 if (ret) 2337 return ret; 2338 2339 /* propagate PRE_RATE_CHANGE notifications */ 2340 ret = __clk_speculate_rates(core, p_rate); 2341 2342 /* abort if a driver objects */ 2343 if (ret & NOTIFY_STOP_MASK) 2344 goto runtime_put; 2345 2346 /* do the re-parent */ 2347 ret = __clk_set_parent(core, parent, p_index); 2348 2349 /* propagate rate an accuracy recalculation accordingly */ 2350 if (ret) { 2351 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2352 } else { 2353 __clk_recalc_rates(core, POST_RATE_CHANGE); 2354 __clk_recalc_accuracies(core); 2355 } 2356 2357 runtime_put: 2358 clk_pm_runtime_put(core); 2359 2360 return ret; 2361 } 2362 2363 /** 2364 * clk_set_parent - switch the parent of a mux clk 2365 * @clk: the mux clk whose input we are switching 2366 * @parent: the new input to clk 2367 * 2368 * Re-parent clk to use parent as its new input source. If clk is in 2369 * prepared state, the clk will get enabled for the duration of this call. If 2370 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2371 * that, the reparenting is glitchy in hardware, etc), use the 2372 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2373 * 2374 * After successfully changing clk's parent clk_set_parent will update the 2375 * clk topology, sysfs topology and propagate rate recalculation via 2376 * __clk_recalc_rates. 2377 * 2378 * Returns 0 on success, -EERROR otherwise. 2379 */ 2380 int clk_set_parent(struct clk *clk, struct clk *parent) 2381 { 2382 int ret; 2383 2384 if (!clk) 2385 return 0; 2386 2387 clk_prepare_lock(); 2388 2389 if (clk->exclusive_count) 2390 clk_core_rate_unprotect(clk->core); 2391 2392 ret = clk_core_set_parent_nolock(clk->core, 2393 parent ? parent->core : NULL); 2394 2395 if (clk->exclusive_count) 2396 clk_core_rate_protect(clk->core); 2397 2398 clk_prepare_unlock(); 2399 2400 return ret; 2401 } 2402 EXPORT_SYMBOL_GPL(clk_set_parent); 2403 2404 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2405 { 2406 int ret = -EINVAL; 2407 2408 lockdep_assert_held(&prepare_lock); 2409 2410 if (!core) 2411 return 0; 2412 2413 if (clk_core_rate_is_protected(core)) 2414 return -EBUSY; 2415 2416 trace_clk_set_phase(core, degrees); 2417 2418 if (core->ops->set_phase) { 2419 ret = core->ops->set_phase(core->hw, degrees); 2420 if (!ret) 2421 core->phase = degrees; 2422 } 2423 2424 trace_clk_set_phase_complete(core, degrees); 2425 2426 return ret; 2427 } 2428 2429 /** 2430 * clk_set_phase - adjust the phase shift of a clock signal 2431 * @clk: clock signal source 2432 * @degrees: number of degrees the signal is shifted 2433 * 2434 * Shifts the phase of a clock signal by the specified 2435 * degrees. Returns 0 on success, -EERROR otherwise. 2436 * 2437 * This function makes no distinction about the input or reference 2438 * signal that we adjust the clock signal phase against. For example 2439 * phase locked-loop clock signal generators we may shift phase with 2440 * respect to feedback clock signal input, but for other cases the 2441 * clock phase may be shifted with respect to some other, unspecified 2442 * signal. 2443 * 2444 * Additionally the concept of phase shift does not propagate through 2445 * the clock tree hierarchy, which sets it apart from clock rates and 2446 * clock accuracy. A parent clock phase attribute does not have an 2447 * impact on the phase attribute of a child clock. 2448 */ 2449 int clk_set_phase(struct clk *clk, int degrees) 2450 { 2451 int ret; 2452 2453 if (!clk) 2454 return 0; 2455 2456 /* sanity check degrees */ 2457 degrees %= 360; 2458 if (degrees < 0) 2459 degrees += 360; 2460 2461 clk_prepare_lock(); 2462 2463 if (clk->exclusive_count) 2464 clk_core_rate_unprotect(clk->core); 2465 2466 ret = clk_core_set_phase_nolock(clk->core, degrees); 2467 2468 if (clk->exclusive_count) 2469 clk_core_rate_protect(clk->core); 2470 2471 clk_prepare_unlock(); 2472 2473 return ret; 2474 } 2475 EXPORT_SYMBOL_GPL(clk_set_phase); 2476 2477 static int clk_core_get_phase(struct clk_core *core) 2478 { 2479 int ret; 2480 2481 clk_prepare_lock(); 2482 /* Always try to update cached phase if possible */ 2483 if (core->ops->get_phase) 2484 core->phase = core->ops->get_phase(core->hw); 2485 ret = core->phase; 2486 clk_prepare_unlock(); 2487 2488 return ret; 2489 } 2490 2491 /** 2492 * clk_get_phase - return the phase shift of a clock signal 2493 * @clk: clock signal source 2494 * 2495 * Returns the phase shift of a clock node in degrees, otherwise returns 2496 * -EERROR. 2497 */ 2498 int clk_get_phase(struct clk *clk) 2499 { 2500 if (!clk) 2501 return 0; 2502 2503 return clk_core_get_phase(clk->core); 2504 } 2505 EXPORT_SYMBOL_GPL(clk_get_phase); 2506 2507 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2508 { 2509 /* Assume a default value of 50% */ 2510 core->duty.num = 1; 2511 core->duty.den = 2; 2512 } 2513 2514 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2515 2516 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2517 { 2518 struct clk_duty *duty = &core->duty; 2519 int ret = 0; 2520 2521 if (!core->ops->get_duty_cycle) 2522 return clk_core_update_duty_cycle_parent_nolock(core); 2523 2524 ret = core->ops->get_duty_cycle(core->hw, duty); 2525 if (ret) 2526 goto reset; 2527 2528 /* Don't trust the clock provider too much */ 2529 if (duty->den == 0 || duty->num > duty->den) { 2530 ret = -EINVAL; 2531 goto reset; 2532 } 2533 2534 return 0; 2535 2536 reset: 2537 clk_core_reset_duty_cycle_nolock(core); 2538 return ret; 2539 } 2540 2541 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2542 { 2543 int ret = 0; 2544 2545 if (core->parent && 2546 core->flags & CLK_DUTY_CYCLE_PARENT) { 2547 ret = clk_core_update_duty_cycle_nolock(core->parent); 2548 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2549 } else { 2550 clk_core_reset_duty_cycle_nolock(core); 2551 } 2552 2553 return ret; 2554 } 2555 2556 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2557 struct clk_duty *duty); 2558 2559 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2560 struct clk_duty *duty) 2561 { 2562 int ret; 2563 2564 lockdep_assert_held(&prepare_lock); 2565 2566 if (clk_core_rate_is_protected(core)) 2567 return -EBUSY; 2568 2569 trace_clk_set_duty_cycle(core, duty); 2570 2571 if (!core->ops->set_duty_cycle) 2572 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2573 2574 ret = core->ops->set_duty_cycle(core->hw, duty); 2575 if (!ret) 2576 memcpy(&core->duty, duty, sizeof(*duty)); 2577 2578 trace_clk_set_duty_cycle_complete(core, duty); 2579 2580 return ret; 2581 } 2582 2583 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2584 struct clk_duty *duty) 2585 { 2586 int ret = 0; 2587 2588 if (core->parent && 2589 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2590 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2591 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2592 } 2593 2594 return ret; 2595 } 2596 2597 /** 2598 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2599 * @clk: clock signal source 2600 * @num: numerator of the duty cycle ratio to be applied 2601 * @den: denominator of the duty cycle ratio to be applied 2602 * 2603 * Apply the duty cycle ratio if the ratio is valid and the clock can 2604 * perform this operation 2605 * 2606 * Returns (0) on success, a negative errno otherwise. 2607 */ 2608 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2609 { 2610 int ret; 2611 struct clk_duty duty; 2612 2613 if (!clk) 2614 return 0; 2615 2616 /* sanity check the ratio */ 2617 if (den == 0 || num > den) 2618 return -EINVAL; 2619 2620 duty.num = num; 2621 duty.den = den; 2622 2623 clk_prepare_lock(); 2624 2625 if (clk->exclusive_count) 2626 clk_core_rate_unprotect(clk->core); 2627 2628 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2629 2630 if (clk->exclusive_count) 2631 clk_core_rate_protect(clk->core); 2632 2633 clk_prepare_unlock(); 2634 2635 return ret; 2636 } 2637 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2638 2639 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2640 unsigned int scale) 2641 { 2642 struct clk_duty *duty = &core->duty; 2643 int ret; 2644 2645 clk_prepare_lock(); 2646 2647 ret = clk_core_update_duty_cycle_nolock(core); 2648 if (!ret) 2649 ret = mult_frac(scale, duty->num, duty->den); 2650 2651 clk_prepare_unlock(); 2652 2653 return ret; 2654 } 2655 2656 /** 2657 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2658 * @clk: clock signal source 2659 * @scale: scaling factor to be applied to represent the ratio as an integer 2660 * 2661 * Returns the duty cycle ratio of a clock node multiplied by the provided 2662 * scaling factor, or negative errno on error. 2663 */ 2664 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2665 { 2666 if (!clk) 2667 return 0; 2668 2669 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2670 } 2671 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2672 2673 /** 2674 * clk_is_match - check if two clk's point to the same hardware clock 2675 * @p: clk compared against q 2676 * @q: clk compared against p 2677 * 2678 * Returns true if the two struct clk pointers both point to the same hardware 2679 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2680 * share the same struct clk_core object. 2681 * 2682 * Returns false otherwise. Note that two NULL clks are treated as matching. 2683 */ 2684 bool clk_is_match(const struct clk *p, const struct clk *q) 2685 { 2686 /* trivial case: identical struct clk's or both NULL */ 2687 if (p == q) 2688 return true; 2689 2690 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2691 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2692 if (p->core == q->core) 2693 return true; 2694 2695 return false; 2696 } 2697 EXPORT_SYMBOL_GPL(clk_is_match); 2698 2699 /*** debugfs support ***/ 2700 2701 #ifdef CONFIG_DEBUG_FS 2702 #include <linux/debugfs.h> 2703 2704 static struct dentry *rootdir; 2705 static int inited = 0; 2706 static DEFINE_MUTEX(clk_debug_lock); 2707 static HLIST_HEAD(clk_debug_list); 2708 2709 static struct hlist_head *all_lists[] = { 2710 &clk_root_list, 2711 &clk_orphan_list, 2712 NULL, 2713 }; 2714 2715 static struct hlist_head *orphan_list[] = { 2716 &clk_orphan_list, 2717 NULL, 2718 }; 2719 2720 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2721 int level) 2722 { 2723 if (!c) 2724 return; 2725 2726 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2727 level * 3 + 1, "", 2728 30 - level * 3, c->name, 2729 c->enable_count, c->prepare_count, c->protect_count, 2730 clk_core_get_rate(c), clk_core_get_accuracy(c), 2731 clk_core_get_phase(c), 2732 clk_core_get_scaled_duty_cycle(c, 100000)); 2733 } 2734 2735 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2736 int level) 2737 { 2738 struct clk_core *child; 2739 2740 if (!c) 2741 return; 2742 2743 clk_summary_show_one(s, c, level); 2744 2745 hlist_for_each_entry(child, &c->children, child_node) 2746 clk_summary_show_subtree(s, child, level + 1); 2747 } 2748 2749 static int clk_summary_show(struct seq_file *s, void *data) 2750 { 2751 struct clk_core *c; 2752 struct hlist_head **lists = (struct hlist_head **)s->private; 2753 2754 seq_puts(s, " enable prepare protect duty\n"); 2755 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2756 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2757 2758 clk_prepare_lock(); 2759 2760 for (; *lists; lists++) 2761 hlist_for_each_entry(c, *lists, child_node) 2762 clk_summary_show_subtree(s, c, 0); 2763 2764 clk_prepare_unlock(); 2765 2766 return 0; 2767 } 2768 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2769 2770 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2771 { 2772 if (!c) 2773 return; 2774 2775 /* This should be JSON format, i.e. elements separated with a comma */ 2776 seq_printf(s, "\"%s\": { ", c->name); 2777 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2778 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2779 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2780 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2781 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2782 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2783 seq_printf(s, "\"duty_cycle\": %u", 2784 clk_core_get_scaled_duty_cycle(c, 100000)); 2785 } 2786 2787 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2788 { 2789 struct clk_core *child; 2790 2791 if (!c) 2792 return; 2793 2794 clk_dump_one(s, c, level); 2795 2796 hlist_for_each_entry(child, &c->children, child_node) { 2797 seq_putc(s, ','); 2798 clk_dump_subtree(s, child, level + 1); 2799 } 2800 2801 seq_putc(s, '}'); 2802 } 2803 2804 static int clk_dump_show(struct seq_file *s, void *data) 2805 { 2806 struct clk_core *c; 2807 bool first_node = true; 2808 struct hlist_head **lists = (struct hlist_head **)s->private; 2809 2810 seq_putc(s, '{'); 2811 clk_prepare_lock(); 2812 2813 for (; *lists; lists++) { 2814 hlist_for_each_entry(c, *lists, child_node) { 2815 if (!first_node) 2816 seq_putc(s, ','); 2817 first_node = false; 2818 clk_dump_subtree(s, c, 0); 2819 } 2820 } 2821 2822 clk_prepare_unlock(); 2823 2824 seq_puts(s, "}\n"); 2825 return 0; 2826 } 2827 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2828 2829 static const struct { 2830 unsigned long flag; 2831 const char *name; 2832 } clk_flags[] = { 2833 #define ENTRY(f) { f, #f } 2834 ENTRY(CLK_SET_RATE_GATE), 2835 ENTRY(CLK_SET_PARENT_GATE), 2836 ENTRY(CLK_SET_RATE_PARENT), 2837 ENTRY(CLK_IGNORE_UNUSED), 2838 ENTRY(CLK_IS_BASIC), 2839 ENTRY(CLK_GET_RATE_NOCACHE), 2840 ENTRY(CLK_SET_RATE_NO_REPARENT), 2841 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2842 ENTRY(CLK_RECALC_NEW_RATES), 2843 ENTRY(CLK_SET_RATE_UNGATE), 2844 ENTRY(CLK_IS_CRITICAL), 2845 ENTRY(CLK_OPS_PARENT_ENABLE), 2846 ENTRY(CLK_DUTY_CYCLE_PARENT), 2847 #undef ENTRY 2848 }; 2849 2850 static int clk_flags_show(struct seq_file *s, void *data) 2851 { 2852 struct clk_core *core = s->private; 2853 unsigned long flags = core->flags; 2854 unsigned int i; 2855 2856 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2857 if (flags & clk_flags[i].flag) { 2858 seq_printf(s, "%s\n", clk_flags[i].name); 2859 flags &= ~clk_flags[i].flag; 2860 } 2861 } 2862 if (flags) { 2863 /* Unknown flags */ 2864 seq_printf(s, "0x%lx\n", flags); 2865 } 2866 2867 return 0; 2868 } 2869 DEFINE_SHOW_ATTRIBUTE(clk_flags); 2870 2871 static int possible_parents_show(struct seq_file *s, void *data) 2872 { 2873 struct clk_core *core = s->private; 2874 int i; 2875 2876 for (i = 0; i < core->num_parents - 1; i++) 2877 seq_printf(s, "%s ", core->parent_names[i]); 2878 2879 seq_printf(s, "%s\n", core->parent_names[i]); 2880 2881 return 0; 2882 } 2883 DEFINE_SHOW_ATTRIBUTE(possible_parents); 2884 2885 static int clk_duty_cycle_show(struct seq_file *s, void *data) 2886 { 2887 struct clk_core *core = s->private; 2888 struct clk_duty *duty = &core->duty; 2889 2890 seq_printf(s, "%u/%u\n", duty->num, duty->den); 2891 2892 return 0; 2893 } 2894 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 2895 2896 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2897 { 2898 struct dentry *root; 2899 2900 if (!core || !pdentry) 2901 return; 2902 2903 root = debugfs_create_dir(core->name, pdentry); 2904 core->dentry = root; 2905 2906 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 2907 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 2908 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 2909 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 2910 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 2911 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 2912 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 2913 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 2914 debugfs_create_file("clk_duty_cycle", 0444, root, core, 2915 &clk_duty_cycle_fops); 2916 2917 if (core->num_parents > 1) 2918 debugfs_create_file("clk_possible_parents", 0444, root, core, 2919 &possible_parents_fops); 2920 2921 if (core->ops->debug_init) 2922 core->ops->debug_init(core->hw, core->dentry); 2923 } 2924 2925 /** 2926 * clk_debug_register - add a clk node to the debugfs clk directory 2927 * @core: the clk being added to the debugfs clk directory 2928 * 2929 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2930 * initialized. Otherwise it bails out early since the debugfs clk directory 2931 * will be created lazily by clk_debug_init as part of a late_initcall. 2932 */ 2933 static void clk_debug_register(struct clk_core *core) 2934 { 2935 mutex_lock(&clk_debug_lock); 2936 hlist_add_head(&core->debug_node, &clk_debug_list); 2937 if (inited) 2938 clk_debug_create_one(core, rootdir); 2939 mutex_unlock(&clk_debug_lock); 2940 } 2941 2942 /** 2943 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2944 * @core: the clk being removed from the debugfs clk directory 2945 * 2946 * Dynamically removes a clk and all its child nodes from the 2947 * debugfs clk directory if clk->dentry points to debugfs created by 2948 * clk_debug_register in __clk_core_init. 2949 */ 2950 static void clk_debug_unregister(struct clk_core *core) 2951 { 2952 mutex_lock(&clk_debug_lock); 2953 hlist_del_init(&core->debug_node); 2954 debugfs_remove_recursive(core->dentry); 2955 core->dentry = NULL; 2956 mutex_unlock(&clk_debug_lock); 2957 } 2958 2959 /** 2960 * clk_debug_init - lazily populate the debugfs clk directory 2961 * 2962 * clks are often initialized very early during boot before memory can be 2963 * dynamically allocated and well before debugfs is setup. This function 2964 * populates the debugfs clk directory once at boot-time when we know that 2965 * debugfs is setup. It should only be called once at boot-time, all other clks 2966 * added dynamically will be done so with clk_debug_register. 2967 */ 2968 static int __init clk_debug_init(void) 2969 { 2970 struct clk_core *core; 2971 2972 rootdir = debugfs_create_dir("clk", NULL); 2973 2974 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 2975 &clk_summary_fops); 2976 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 2977 &clk_dump_fops); 2978 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 2979 &clk_summary_fops); 2980 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 2981 &clk_dump_fops); 2982 2983 mutex_lock(&clk_debug_lock); 2984 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2985 clk_debug_create_one(core, rootdir); 2986 2987 inited = 1; 2988 mutex_unlock(&clk_debug_lock); 2989 2990 return 0; 2991 } 2992 late_initcall(clk_debug_init); 2993 #else 2994 static inline void clk_debug_register(struct clk_core *core) { } 2995 static inline void clk_debug_reparent(struct clk_core *core, 2996 struct clk_core *new_parent) 2997 { 2998 } 2999 static inline void clk_debug_unregister(struct clk_core *core) 3000 { 3001 } 3002 #endif 3003 3004 /** 3005 * __clk_core_init - initialize the data structures in a struct clk_core 3006 * @core: clk_core being initialized 3007 * 3008 * Initializes the lists in struct clk_core, queries the hardware for the 3009 * parent and rate and sets them both. 3010 */ 3011 static int __clk_core_init(struct clk_core *core) 3012 { 3013 int i, ret; 3014 struct clk_core *orphan; 3015 struct hlist_node *tmp2; 3016 unsigned long rate; 3017 3018 if (!core) 3019 return -EINVAL; 3020 3021 clk_prepare_lock(); 3022 3023 ret = clk_pm_runtime_get(core); 3024 if (ret) 3025 goto unlock; 3026 3027 /* check to see if a clock with this name is already registered */ 3028 if (clk_core_lookup(core->name)) { 3029 pr_debug("%s: clk %s already initialized\n", 3030 __func__, core->name); 3031 ret = -EEXIST; 3032 goto out; 3033 } 3034 3035 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3036 if (core->ops->set_rate && 3037 !((core->ops->round_rate || core->ops->determine_rate) && 3038 core->ops->recalc_rate)) { 3039 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3040 __func__, core->name); 3041 ret = -EINVAL; 3042 goto out; 3043 } 3044 3045 if (core->ops->set_parent && !core->ops->get_parent) { 3046 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3047 __func__, core->name); 3048 ret = -EINVAL; 3049 goto out; 3050 } 3051 3052 if (core->num_parents > 1 && !core->ops->get_parent) { 3053 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3054 __func__, core->name); 3055 ret = -EINVAL; 3056 goto out; 3057 } 3058 3059 if (core->ops->set_rate_and_parent && 3060 !(core->ops->set_parent && core->ops->set_rate)) { 3061 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3062 __func__, core->name); 3063 ret = -EINVAL; 3064 goto out; 3065 } 3066 3067 /* throw a WARN if any entries in parent_names are NULL */ 3068 for (i = 0; i < core->num_parents; i++) 3069 WARN(!core->parent_names[i], 3070 "%s: invalid NULL in %s's .parent_names\n", 3071 __func__, core->name); 3072 3073 core->parent = __clk_init_parent(core); 3074 3075 /* 3076 * Populate core->parent if parent has already been clk_core_init'd. If 3077 * parent has not yet been clk_core_init'd then place clk in the orphan 3078 * list. If clk doesn't have any parents then place it in the root 3079 * clk list. 3080 * 3081 * Every time a new clk is clk_init'd then we walk the list of orphan 3082 * clocks and re-parent any that are children of the clock currently 3083 * being clk_init'd. 3084 */ 3085 if (core->parent) { 3086 hlist_add_head(&core->child_node, 3087 &core->parent->children); 3088 core->orphan = core->parent->orphan; 3089 } else if (!core->num_parents) { 3090 hlist_add_head(&core->child_node, &clk_root_list); 3091 core->orphan = false; 3092 } else { 3093 hlist_add_head(&core->child_node, &clk_orphan_list); 3094 core->orphan = true; 3095 } 3096 3097 /* 3098 * optional platform-specific magic 3099 * 3100 * The .init callback is not used by any of the basic clock types, but 3101 * exists for weird hardware that must perform initialization magic. 3102 * Please consider other ways of solving initialization problems before 3103 * using this callback, as its use is discouraged. 3104 */ 3105 if (core->ops->init) 3106 core->ops->init(core->hw); 3107 3108 /* 3109 * Set clk's accuracy. The preferred method is to use 3110 * .recalc_accuracy. For simple clocks and lazy developers the default 3111 * fallback is to use the parent's accuracy. If a clock doesn't have a 3112 * parent (or is orphaned) then accuracy is set to zero (perfect 3113 * clock). 3114 */ 3115 if (core->ops->recalc_accuracy) 3116 core->accuracy = core->ops->recalc_accuracy(core->hw, 3117 __clk_get_accuracy(core->parent)); 3118 else if (core->parent) 3119 core->accuracy = core->parent->accuracy; 3120 else 3121 core->accuracy = 0; 3122 3123 /* 3124 * Set clk's phase. 3125 * Since a phase is by definition relative to its parent, just 3126 * query the current clock phase, or just assume it's in phase. 3127 */ 3128 if (core->ops->get_phase) 3129 core->phase = core->ops->get_phase(core->hw); 3130 else 3131 core->phase = 0; 3132 3133 /* 3134 * Set clk's duty cycle. 3135 */ 3136 clk_core_update_duty_cycle_nolock(core); 3137 3138 /* 3139 * Set clk's rate. The preferred method is to use .recalc_rate. For 3140 * simple clocks and lazy developers the default fallback is to use the 3141 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3142 * then rate is set to zero. 3143 */ 3144 if (core->ops->recalc_rate) 3145 rate = core->ops->recalc_rate(core->hw, 3146 clk_core_get_rate_nolock(core->parent)); 3147 else if (core->parent) 3148 rate = core->parent->rate; 3149 else 3150 rate = 0; 3151 core->rate = core->req_rate = rate; 3152 3153 /* 3154 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3155 * don't get accidentally disabled when walking the orphan tree and 3156 * reparenting clocks 3157 */ 3158 if (core->flags & CLK_IS_CRITICAL) { 3159 unsigned long flags; 3160 3161 clk_core_prepare(core); 3162 3163 flags = clk_enable_lock(); 3164 clk_core_enable(core); 3165 clk_enable_unlock(flags); 3166 } 3167 3168 /* 3169 * walk the list of orphan clocks and reparent any that newly finds a 3170 * parent. 3171 */ 3172 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3173 struct clk_core *parent = __clk_init_parent(orphan); 3174 3175 /* 3176 * We need to use __clk_set_parent_before() and _after() to 3177 * to properly migrate any prepare/enable count of the orphan 3178 * clock. This is important for CLK_IS_CRITICAL clocks, which 3179 * are enabled during init but might not have a parent yet. 3180 */ 3181 if (parent) { 3182 /* update the clk tree topology */ 3183 __clk_set_parent_before(orphan, parent); 3184 __clk_set_parent_after(orphan, parent, NULL); 3185 __clk_recalc_accuracies(orphan); 3186 __clk_recalc_rates(orphan, 0); 3187 } 3188 } 3189 3190 kref_init(&core->ref); 3191 out: 3192 clk_pm_runtime_put(core); 3193 unlock: 3194 clk_prepare_unlock(); 3195 3196 if (!ret) 3197 clk_debug_register(core); 3198 3199 return ret; 3200 } 3201 3202 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 3203 const char *con_id) 3204 { 3205 struct clk *clk; 3206 3207 /* This is to allow this function to be chained to others */ 3208 if (IS_ERR_OR_NULL(hw)) 3209 return ERR_CAST(hw); 3210 3211 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3212 if (!clk) 3213 return ERR_PTR(-ENOMEM); 3214 3215 clk->core = hw->core; 3216 clk->dev_id = dev_id; 3217 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3218 clk->max_rate = ULONG_MAX; 3219 3220 clk_prepare_lock(); 3221 hlist_add_head(&clk->clks_node, &hw->core->clks); 3222 clk_prepare_unlock(); 3223 3224 return clk; 3225 } 3226 3227 /* keep in sync with __clk_put */ 3228 void __clk_free_clk(struct clk *clk) 3229 { 3230 clk_prepare_lock(); 3231 hlist_del(&clk->clks_node); 3232 clk_prepare_unlock(); 3233 3234 kfree_const(clk->con_id); 3235 kfree(clk); 3236 } 3237 3238 /** 3239 * clk_register - allocate a new clock, register it and return an opaque cookie 3240 * @dev: device that is registering this clock 3241 * @hw: link to hardware-specific clock data 3242 * 3243 * clk_register is the primary interface for populating the clock tree with new 3244 * clock nodes. It returns a pointer to the newly allocated struct clk which 3245 * cannot be dereferenced by driver code but may be used in conjunction with the 3246 * rest of the clock API. In the event of an error clk_register will return an 3247 * error code; drivers must test for an error code after calling clk_register. 3248 */ 3249 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3250 { 3251 int i, ret; 3252 struct clk_core *core; 3253 3254 core = kzalloc(sizeof(*core), GFP_KERNEL); 3255 if (!core) { 3256 ret = -ENOMEM; 3257 goto fail_out; 3258 } 3259 3260 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3261 if (!core->name) { 3262 ret = -ENOMEM; 3263 goto fail_name; 3264 } 3265 3266 if (WARN_ON(!hw->init->ops)) { 3267 ret = -EINVAL; 3268 goto fail_ops; 3269 } 3270 core->ops = hw->init->ops; 3271 3272 if (dev && pm_runtime_enabled(dev)) 3273 core->dev = dev; 3274 if (dev && dev->driver) 3275 core->owner = dev->driver->owner; 3276 core->hw = hw; 3277 core->flags = hw->init->flags; 3278 core->num_parents = hw->init->num_parents; 3279 core->min_rate = 0; 3280 core->max_rate = ULONG_MAX; 3281 hw->core = core; 3282 3283 /* allocate local copy in case parent_names is __initdata */ 3284 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 3285 GFP_KERNEL); 3286 3287 if (!core->parent_names) { 3288 ret = -ENOMEM; 3289 goto fail_parent_names; 3290 } 3291 3292 3293 /* copy each string name in case parent_names is __initdata */ 3294 for (i = 0; i < core->num_parents; i++) { 3295 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 3296 GFP_KERNEL); 3297 if (!core->parent_names[i]) { 3298 ret = -ENOMEM; 3299 goto fail_parent_names_copy; 3300 } 3301 } 3302 3303 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 3304 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 3305 GFP_KERNEL); 3306 if (!core->parents) { 3307 ret = -ENOMEM; 3308 goto fail_parents; 3309 }; 3310 3311 INIT_HLIST_HEAD(&core->clks); 3312 3313 hw->clk = __clk_create_clk(hw, NULL, NULL); 3314 if (IS_ERR(hw->clk)) { 3315 ret = PTR_ERR(hw->clk); 3316 goto fail_parents; 3317 } 3318 3319 ret = __clk_core_init(core); 3320 if (!ret) 3321 return hw->clk; 3322 3323 __clk_free_clk(hw->clk); 3324 hw->clk = NULL; 3325 3326 fail_parents: 3327 kfree(core->parents); 3328 fail_parent_names_copy: 3329 while (--i >= 0) 3330 kfree_const(core->parent_names[i]); 3331 kfree(core->parent_names); 3332 fail_parent_names: 3333 fail_ops: 3334 kfree_const(core->name); 3335 fail_name: 3336 kfree(core); 3337 fail_out: 3338 return ERR_PTR(ret); 3339 } 3340 EXPORT_SYMBOL_GPL(clk_register); 3341 3342 /** 3343 * clk_hw_register - register a clk_hw and return an error code 3344 * @dev: device that is registering this clock 3345 * @hw: link to hardware-specific clock data 3346 * 3347 * clk_hw_register is the primary interface for populating the clock tree with 3348 * new clock nodes. It returns an integer equal to zero indicating success or 3349 * less than zero indicating failure. Drivers must test for an error code after 3350 * calling clk_hw_register(). 3351 */ 3352 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3353 { 3354 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 3355 } 3356 EXPORT_SYMBOL_GPL(clk_hw_register); 3357 3358 /* Free memory allocated for a clock. */ 3359 static void __clk_release(struct kref *ref) 3360 { 3361 struct clk_core *core = container_of(ref, struct clk_core, ref); 3362 int i = core->num_parents; 3363 3364 lockdep_assert_held(&prepare_lock); 3365 3366 kfree(core->parents); 3367 while (--i >= 0) 3368 kfree_const(core->parent_names[i]); 3369 3370 kfree(core->parent_names); 3371 kfree_const(core->name); 3372 kfree(core); 3373 } 3374 3375 /* 3376 * Empty clk_ops for unregistered clocks. These are used temporarily 3377 * after clk_unregister() was called on a clock and until last clock 3378 * consumer calls clk_put() and the struct clk object is freed. 3379 */ 3380 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3381 { 3382 return -ENXIO; 3383 } 3384 3385 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3386 { 3387 WARN_ON_ONCE(1); 3388 } 3389 3390 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3391 unsigned long parent_rate) 3392 { 3393 return -ENXIO; 3394 } 3395 3396 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3397 { 3398 return -ENXIO; 3399 } 3400 3401 static const struct clk_ops clk_nodrv_ops = { 3402 .enable = clk_nodrv_prepare_enable, 3403 .disable = clk_nodrv_disable_unprepare, 3404 .prepare = clk_nodrv_prepare_enable, 3405 .unprepare = clk_nodrv_disable_unprepare, 3406 .set_rate = clk_nodrv_set_rate, 3407 .set_parent = clk_nodrv_set_parent, 3408 }; 3409 3410 /** 3411 * clk_unregister - unregister a currently registered clock 3412 * @clk: clock to unregister 3413 */ 3414 void clk_unregister(struct clk *clk) 3415 { 3416 unsigned long flags; 3417 3418 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3419 return; 3420 3421 clk_debug_unregister(clk->core); 3422 3423 clk_prepare_lock(); 3424 3425 if (clk->core->ops == &clk_nodrv_ops) { 3426 pr_err("%s: unregistered clock: %s\n", __func__, 3427 clk->core->name); 3428 goto unlock; 3429 } 3430 /* 3431 * Assign empty clock ops for consumers that might still hold 3432 * a reference to this clock. 3433 */ 3434 flags = clk_enable_lock(); 3435 clk->core->ops = &clk_nodrv_ops; 3436 clk_enable_unlock(flags); 3437 3438 if (!hlist_empty(&clk->core->children)) { 3439 struct clk_core *child; 3440 struct hlist_node *t; 3441 3442 /* Reparent all children to the orphan list. */ 3443 hlist_for_each_entry_safe(child, t, &clk->core->children, 3444 child_node) 3445 clk_core_set_parent_nolock(child, NULL); 3446 } 3447 3448 hlist_del_init(&clk->core->child_node); 3449 3450 if (clk->core->prepare_count) 3451 pr_warn("%s: unregistering prepared clock: %s\n", 3452 __func__, clk->core->name); 3453 3454 if (clk->core->protect_count) 3455 pr_warn("%s: unregistering protected clock: %s\n", 3456 __func__, clk->core->name); 3457 3458 kref_put(&clk->core->ref, __clk_release); 3459 unlock: 3460 clk_prepare_unlock(); 3461 } 3462 EXPORT_SYMBOL_GPL(clk_unregister); 3463 3464 /** 3465 * clk_hw_unregister - unregister a currently registered clk_hw 3466 * @hw: hardware-specific clock data to unregister 3467 */ 3468 void clk_hw_unregister(struct clk_hw *hw) 3469 { 3470 clk_unregister(hw->clk); 3471 } 3472 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3473 3474 static void devm_clk_release(struct device *dev, void *res) 3475 { 3476 clk_unregister(*(struct clk **)res); 3477 } 3478 3479 static void devm_clk_hw_release(struct device *dev, void *res) 3480 { 3481 clk_hw_unregister(*(struct clk_hw **)res); 3482 } 3483 3484 /** 3485 * devm_clk_register - resource managed clk_register() 3486 * @dev: device that is registering this clock 3487 * @hw: link to hardware-specific clock data 3488 * 3489 * Managed clk_register(). Clocks returned from this function are 3490 * automatically clk_unregister()ed on driver detach. See clk_register() for 3491 * more information. 3492 */ 3493 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3494 { 3495 struct clk *clk; 3496 struct clk **clkp; 3497 3498 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3499 if (!clkp) 3500 return ERR_PTR(-ENOMEM); 3501 3502 clk = clk_register(dev, hw); 3503 if (!IS_ERR(clk)) { 3504 *clkp = clk; 3505 devres_add(dev, clkp); 3506 } else { 3507 devres_free(clkp); 3508 } 3509 3510 return clk; 3511 } 3512 EXPORT_SYMBOL_GPL(devm_clk_register); 3513 3514 /** 3515 * devm_clk_hw_register - resource managed clk_hw_register() 3516 * @dev: device that is registering this clock 3517 * @hw: link to hardware-specific clock data 3518 * 3519 * Managed clk_hw_register(). Clocks registered by this function are 3520 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3521 * for more information. 3522 */ 3523 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3524 { 3525 struct clk_hw **hwp; 3526 int ret; 3527 3528 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3529 if (!hwp) 3530 return -ENOMEM; 3531 3532 ret = clk_hw_register(dev, hw); 3533 if (!ret) { 3534 *hwp = hw; 3535 devres_add(dev, hwp); 3536 } else { 3537 devres_free(hwp); 3538 } 3539 3540 return ret; 3541 } 3542 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3543 3544 static int devm_clk_match(struct device *dev, void *res, void *data) 3545 { 3546 struct clk *c = res; 3547 if (WARN_ON(!c)) 3548 return 0; 3549 return c == data; 3550 } 3551 3552 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3553 { 3554 struct clk_hw *hw = res; 3555 3556 if (WARN_ON(!hw)) 3557 return 0; 3558 return hw == data; 3559 } 3560 3561 /** 3562 * devm_clk_unregister - resource managed clk_unregister() 3563 * @clk: clock to unregister 3564 * 3565 * Deallocate a clock allocated with devm_clk_register(). Normally 3566 * this function will not need to be called and the resource management 3567 * code will ensure that the resource is freed. 3568 */ 3569 void devm_clk_unregister(struct device *dev, struct clk *clk) 3570 { 3571 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3572 } 3573 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3574 3575 /** 3576 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3577 * @dev: device that is unregistering the hardware-specific clock data 3578 * @hw: link to hardware-specific clock data 3579 * 3580 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3581 * this function will not need to be called and the resource management 3582 * code will ensure that the resource is freed. 3583 */ 3584 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3585 { 3586 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3587 hw)); 3588 } 3589 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3590 3591 /* 3592 * clkdev helpers 3593 */ 3594 int __clk_get(struct clk *clk) 3595 { 3596 struct clk_core *core = !clk ? NULL : clk->core; 3597 3598 if (core) { 3599 if (!try_module_get(core->owner)) 3600 return 0; 3601 3602 kref_get(&core->ref); 3603 } 3604 return 1; 3605 } 3606 3607 /* keep in sync with __clk_free_clk */ 3608 void __clk_put(struct clk *clk) 3609 { 3610 struct module *owner; 3611 3612 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3613 return; 3614 3615 clk_prepare_lock(); 3616 3617 /* 3618 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3619 * given user should be balanced with calls to clk_rate_exclusive_put() 3620 * and by that same consumer 3621 */ 3622 if (WARN_ON(clk->exclusive_count)) { 3623 /* We voiced our concern, let's sanitize the situation */ 3624 clk->core->protect_count -= (clk->exclusive_count - 1); 3625 clk_core_rate_unprotect(clk->core); 3626 clk->exclusive_count = 0; 3627 } 3628 3629 hlist_del(&clk->clks_node); 3630 if (clk->min_rate > clk->core->req_rate || 3631 clk->max_rate < clk->core->req_rate) 3632 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3633 3634 owner = clk->core->owner; 3635 kref_put(&clk->core->ref, __clk_release); 3636 3637 clk_prepare_unlock(); 3638 3639 module_put(owner); 3640 3641 kfree_const(clk->con_id); 3642 kfree(clk); 3643 } 3644 3645 /*** clk rate change notifiers ***/ 3646 3647 /** 3648 * clk_notifier_register - add a clk rate change notifier 3649 * @clk: struct clk * to watch 3650 * @nb: struct notifier_block * with callback info 3651 * 3652 * Request notification when clk's rate changes. This uses an SRCU 3653 * notifier because we want it to block and notifier unregistrations are 3654 * uncommon. The callbacks associated with the notifier must not 3655 * re-enter into the clk framework by calling any top-level clk APIs; 3656 * this will cause a nested prepare_lock mutex. 3657 * 3658 * In all notification cases (pre, post and abort rate change) the original 3659 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3660 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3661 * 3662 * clk_notifier_register() must be called from non-atomic context. 3663 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3664 * allocation failure; otherwise, passes along the return value of 3665 * srcu_notifier_chain_register(). 3666 */ 3667 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3668 { 3669 struct clk_notifier *cn; 3670 int ret = -ENOMEM; 3671 3672 if (!clk || !nb) 3673 return -EINVAL; 3674 3675 clk_prepare_lock(); 3676 3677 /* search the list of notifiers for this clk */ 3678 list_for_each_entry(cn, &clk_notifier_list, node) 3679 if (cn->clk == clk) 3680 break; 3681 3682 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3683 if (cn->clk != clk) { 3684 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3685 if (!cn) 3686 goto out; 3687 3688 cn->clk = clk; 3689 srcu_init_notifier_head(&cn->notifier_head); 3690 3691 list_add(&cn->node, &clk_notifier_list); 3692 } 3693 3694 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3695 3696 clk->core->notifier_count++; 3697 3698 out: 3699 clk_prepare_unlock(); 3700 3701 return ret; 3702 } 3703 EXPORT_SYMBOL_GPL(clk_notifier_register); 3704 3705 /** 3706 * clk_notifier_unregister - remove a clk rate change notifier 3707 * @clk: struct clk * 3708 * @nb: struct notifier_block * with callback info 3709 * 3710 * Request no further notification for changes to 'clk' and frees memory 3711 * allocated in clk_notifier_register. 3712 * 3713 * Returns -EINVAL if called with null arguments; otherwise, passes 3714 * along the return value of srcu_notifier_chain_unregister(). 3715 */ 3716 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3717 { 3718 struct clk_notifier *cn = NULL; 3719 int ret = -EINVAL; 3720 3721 if (!clk || !nb) 3722 return -EINVAL; 3723 3724 clk_prepare_lock(); 3725 3726 list_for_each_entry(cn, &clk_notifier_list, node) 3727 if (cn->clk == clk) 3728 break; 3729 3730 if (cn->clk == clk) { 3731 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3732 3733 clk->core->notifier_count--; 3734 3735 /* XXX the notifier code should handle this better */ 3736 if (!cn->notifier_head.head) { 3737 srcu_cleanup_notifier_head(&cn->notifier_head); 3738 list_del(&cn->node); 3739 kfree(cn); 3740 } 3741 3742 } else { 3743 ret = -ENOENT; 3744 } 3745 3746 clk_prepare_unlock(); 3747 3748 return ret; 3749 } 3750 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3751 3752 #ifdef CONFIG_OF 3753 /** 3754 * struct of_clk_provider - Clock provider registration structure 3755 * @link: Entry in global list of clock providers 3756 * @node: Pointer to device tree node of clock provider 3757 * @get: Get clock callback. Returns NULL or a struct clk for the 3758 * given clock specifier 3759 * @data: context pointer to be passed into @get callback 3760 */ 3761 struct of_clk_provider { 3762 struct list_head link; 3763 3764 struct device_node *node; 3765 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3766 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3767 void *data; 3768 }; 3769 3770 static const struct of_device_id __clk_of_table_sentinel 3771 __used __section(__clk_of_table_end); 3772 3773 static LIST_HEAD(of_clk_providers); 3774 static DEFINE_MUTEX(of_clk_mutex); 3775 3776 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3777 void *data) 3778 { 3779 return data; 3780 } 3781 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3782 3783 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3784 { 3785 return data; 3786 } 3787 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3788 3789 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3790 { 3791 struct clk_onecell_data *clk_data = data; 3792 unsigned int idx = clkspec->args[0]; 3793 3794 if (idx >= clk_data->clk_num) { 3795 pr_err("%s: invalid clock index %u\n", __func__, idx); 3796 return ERR_PTR(-EINVAL); 3797 } 3798 3799 return clk_data->clks[idx]; 3800 } 3801 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3802 3803 struct clk_hw * 3804 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3805 { 3806 struct clk_hw_onecell_data *hw_data = data; 3807 unsigned int idx = clkspec->args[0]; 3808 3809 if (idx >= hw_data->num) { 3810 pr_err("%s: invalid index %u\n", __func__, idx); 3811 return ERR_PTR(-EINVAL); 3812 } 3813 3814 return hw_data->hws[idx]; 3815 } 3816 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3817 3818 /** 3819 * of_clk_add_provider() - Register a clock provider for a node 3820 * @np: Device node pointer associated with clock provider 3821 * @clk_src_get: callback for decoding clock 3822 * @data: context pointer for @clk_src_get callback. 3823 */ 3824 int of_clk_add_provider(struct device_node *np, 3825 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3826 void *data), 3827 void *data) 3828 { 3829 struct of_clk_provider *cp; 3830 int ret; 3831 3832 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3833 if (!cp) 3834 return -ENOMEM; 3835 3836 cp->node = of_node_get(np); 3837 cp->data = data; 3838 cp->get = clk_src_get; 3839 3840 mutex_lock(&of_clk_mutex); 3841 list_add(&cp->link, &of_clk_providers); 3842 mutex_unlock(&of_clk_mutex); 3843 pr_debug("Added clock from %pOF\n", np); 3844 3845 ret = of_clk_set_defaults(np, true); 3846 if (ret < 0) 3847 of_clk_del_provider(np); 3848 3849 return ret; 3850 } 3851 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3852 3853 /** 3854 * of_clk_add_hw_provider() - Register a clock provider for a node 3855 * @np: Device node pointer associated with clock provider 3856 * @get: callback for decoding clk_hw 3857 * @data: context pointer for @get callback. 3858 */ 3859 int of_clk_add_hw_provider(struct device_node *np, 3860 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3861 void *data), 3862 void *data) 3863 { 3864 struct of_clk_provider *cp; 3865 int ret; 3866 3867 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3868 if (!cp) 3869 return -ENOMEM; 3870 3871 cp->node = of_node_get(np); 3872 cp->data = data; 3873 cp->get_hw = get; 3874 3875 mutex_lock(&of_clk_mutex); 3876 list_add(&cp->link, &of_clk_providers); 3877 mutex_unlock(&of_clk_mutex); 3878 pr_debug("Added clk_hw provider from %pOF\n", np); 3879 3880 ret = of_clk_set_defaults(np, true); 3881 if (ret < 0) 3882 of_clk_del_provider(np); 3883 3884 return ret; 3885 } 3886 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3887 3888 static void devm_of_clk_release_provider(struct device *dev, void *res) 3889 { 3890 of_clk_del_provider(*(struct device_node **)res); 3891 } 3892 3893 /* 3894 * We allow a child device to use its parent device as the clock provider node 3895 * for cases like MFD sub-devices where the child device driver wants to use 3896 * devm_*() APIs but not list the device in DT as a sub-node. 3897 */ 3898 static struct device_node *get_clk_provider_node(struct device *dev) 3899 { 3900 struct device_node *np, *parent_np; 3901 3902 np = dev->of_node; 3903 parent_np = dev->parent ? dev->parent->of_node : NULL; 3904 3905 if (!of_find_property(np, "#clock-cells", NULL)) 3906 if (of_find_property(parent_np, "#clock-cells", NULL)) 3907 np = parent_np; 3908 3909 return np; 3910 } 3911 3912 /** 3913 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 3914 * @dev: Device acting as the clock provider (used for DT node and lifetime) 3915 * @get: callback for decoding clk_hw 3916 * @data: context pointer for @get callback 3917 * 3918 * Registers clock provider for given device's node. If the device has no DT 3919 * node or if the device node lacks of clock provider information (#clock-cells) 3920 * then the parent device's node is scanned for this information. If parent node 3921 * has the #clock-cells then it is used in registration. Provider is 3922 * automatically released at device exit. 3923 * 3924 * Return: 0 on success or an errno on failure. 3925 */ 3926 int devm_of_clk_add_hw_provider(struct device *dev, 3927 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3928 void *data), 3929 void *data) 3930 { 3931 struct device_node **ptr, *np; 3932 int ret; 3933 3934 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 3935 GFP_KERNEL); 3936 if (!ptr) 3937 return -ENOMEM; 3938 3939 np = get_clk_provider_node(dev); 3940 ret = of_clk_add_hw_provider(np, get, data); 3941 if (!ret) { 3942 *ptr = np; 3943 devres_add(dev, ptr); 3944 } else { 3945 devres_free(ptr); 3946 } 3947 3948 return ret; 3949 } 3950 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 3951 3952 /** 3953 * of_clk_del_provider() - Remove a previously registered clock provider 3954 * @np: Device node pointer associated with clock provider 3955 */ 3956 void of_clk_del_provider(struct device_node *np) 3957 { 3958 struct of_clk_provider *cp; 3959 3960 mutex_lock(&of_clk_mutex); 3961 list_for_each_entry(cp, &of_clk_providers, link) { 3962 if (cp->node == np) { 3963 list_del(&cp->link); 3964 of_node_put(cp->node); 3965 kfree(cp); 3966 break; 3967 } 3968 } 3969 mutex_unlock(&of_clk_mutex); 3970 } 3971 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3972 3973 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 3974 { 3975 struct device_node **np = res; 3976 3977 if (WARN_ON(!np || !*np)) 3978 return 0; 3979 3980 return *np == data; 3981 } 3982 3983 /** 3984 * devm_of_clk_del_provider() - Remove clock provider registered using devm 3985 * @dev: Device to whose lifetime the clock provider was bound 3986 */ 3987 void devm_of_clk_del_provider(struct device *dev) 3988 { 3989 int ret; 3990 struct device_node *np = get_clk_provider_node(dev); 3991 3992 ret = devres_release(dev, devm_of_clk_release_provider, 3993 devm_clk_provider_match, np); 3994 3995 WARN_ON(ret); 3996 } 3997 EXPORT_SYMBOL(devm_of_clk_del_provider); 3998 3999 static struct clk_hw * 4000 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4001 struct of_phandle_args *clkspec) 4002 { 4003 struct clk *clk; 4004 4005 if (provider->get_hw) 4006 return provider->get_hw(clkspec, provider->data); 4007 4008 clk = provider->get(clkspec, provider->data); 4009 if (IS_ERR(clk)) 4010 return ERR_CAST(clk); 4011 return __clk_get_hw(clk); 4012 } 4013 4014 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 4015 const char *dev_id, const char *con_id) 4016 { 4017 struct of_clk_provider *provider; 4018 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 4019 struct clk_hw *hw; 4020 4021 if (!clkspec) 4022 return ERR_PTR(-EINVAL); 4023 4024 /* Check if we have such a provider in our array */ 4025 mutex_lock(&of_clk_mutex); 4026 list_for_each_entry(provider, &of_clk_providers, link) { 4027 if (provider->node == clkspec->np) { 4028 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4029 clk = __clk_create_clk(hw, dev_id, con_id); 4030 } 4031 4032 if (!IS_ERR(clk)) { 4033 if (!__clk_get(clk)) { 4034 __clk_free_clk(clk); 4035 clk = ERR_PTR(-ENOENT); 4036 } 4037 4038 break; 4039 } 4040 } 4041 mutex_unlock(&of_clk_mutex); 4042 4043 return clk; 4044 } 4045 4046 /** 4047 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4048 * @clkspec: pointer to a clock specifier data structure 4049 * 4050 * This function looks up a struct clk from the registered list of clock 4051 * providers, an input is a clock specifier data structure as returned 4052 * from the of_parse_phandle_with_args() function call. 4053 */ 4054 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4055 { 4056 return __of_clk_get_from_provider(clkspec, NULL, __func__); 4057 } 4058 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4059 4060 /** 4061 * of_clk_get_parent_count() - Count the number of clocks a device node has 4062 * @np: device node to count 4063 * 4064 * Returns: The number of clocks that are possible parents of this node 4065 */ 4066 unsigned int of_clk_get_parent_count(struct device_node *np) 4067 { 4068 int count; 4069 4070 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4071 if (count < 0) 4072 return 0; 4073 4074 return count; 4075 } 4076 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4077 4078 const char *of_clk_get_parent_name(struct device_node *np, int index) 4079 { 4080 struct of_phandle_args clkspec; 4081 struct property *prop; 4082 const char *clk_name; 4083 const __be32 *vp; 4084 u32 pv; 4085 int rc; 4086 int count; 4087 struct clk *clk; 4088 4089 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4090 &clkspec); 4091 if (rc) 4092 return NULL; 4093 4094 index = clkspec.args_count ? clkspec.args[0] : 0; 4095 count = 0; 4096 4097 /* if there is an indices property, use it to transfer the index 4098 * specified into an array offset for the clock-output-names property. 4099 */ 4100 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4101 if (index == pv) { 4102 index = count; 4103 break; 4104 } 4105 count++; 4106 } 4107 /* We went off the end of 'clock-indices' without finding it */ 4108 if (prop && !vp) 4109 return NULL; 4110 4111 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4112 index, 4113 &clk_name) < 0) { 4114 /* 4115 * Best effort to get the name if the clock has been 4116 * registered with the framework. If the clock isn't 4117 * registered, we return the node name as the name of 4118 * the clock as long as #clock-cells = 0. 4119 */ 4120 clk = of_clk_get_from_provider(&clkspec); 4121 if (IS_ERR(clk)) { 4122 if (clkspec.args_count == 0) 4123 clk_name = clkspec.np->name; 4124 else 4125 clk_name = NULL; 4126 } else { 4127 clk_name = __clk_get_name(clk); 4128 clk_put(clk); 4129 } 4130 } 4131 4132 4133 of_node_put(clkspec.np); 4134 return clk_name; 4135 } 4136 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4137 4138 /** 4139 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4140 * number of parents 4141 * @np: Device node pointer associated with clock provider 4142 * @parents: pointer to char array that hold the parents' names 4143 * @size: size of the @parents array 4144 * 4145 * Return: number of parents for the clock node. 4146 */ 4147 int of_clk_parent_fill(struct device_node *np, const char **parents, 4148 unsigned int size) 4149 { 4150 unsigned int i = 0; 4151 4152 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4153 i++; 4154 4155 return i; 4156 } 4157 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4158 4159 struct clock_provider { 4160 void (*clk_init_cb)(struct device_node *); 4161 struct device_node *np; 4162 struct list_head node; 4163 }; 4164 4165 /* 4166 * This function looks for a parent clock. If there is one, then it 4167 * checks that the provider for this parent clock was initialized, in 4168 * this case the parent clock will be ready. 4169 */ 4170 static int parent_ready(struct device_node *np) 4171 { 4172 int i = 0; 4173 4174 while (true) { 4175 struct clk *clk = of_clk_get(np, i); 4176 4177 /* this parent is ready we can check the next one */ 4178 if (!IS_ERR(clk)) { 4179 clk_put(clk); 4180 i++; 4181 continue; 4182 } 4183 4184 /* at least one parent is not ready, we exit now */ 4185 if (PTR_ERR(clk) == -EPROBE_DEFER) 4186 return 0; 4187 4188 /* 4189 * Here we make assumption that the device tree is 4190 * written correctly. So an error means that there is 4191 * no more parent. As we didn't exit yet, then the 4192 * previous parent are ready. If there is no clock 4193 * parent, no need to wait for them, then we can 4194 * consider their absence as being ready 4195 */ 4196 return 1; 4197 } 4198 } 4199 4200 /** 4201 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4202 * @np: Device node pointer associated with clock provider 4203 * @index: clock index 4204 * @flags: pointer to top-level framework flags 4205 * 4206 * Detects if the clock-critical property exists and, if so, sets the 4207 * corresponding CLK_IS_CRITICAL flag. 4208 * 4209 * Do not use this function. It exists only for legacy Device Tree 4210 * bindings, such as the one-clock-per-node style that are outdated. 4211 * Those bindings typically put all clock data into .dts and the Linux 4212 * driver has no clock data, thus making it impossible to set this flag 4213 * correctly from the driver. Only those drivers may call 4214 * of_clk_detect_critical from their setup functions. 4215 * 4216 * Return: error code or zero on success 4217 */ 4218 int of_clk_detect_critical(struct device_node *np, 4219 int index, unsigned long *flags) 4220 { 4221 struct property *prop; 4222 const __be32 *cur; 4223 uint32_t idx; 4224 4225 if (!np || !flags) 4226 return -EINVAL; 4227 4228 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4229 if (index == idx) 4230 *flags |= CLK_IS_CRITICAL; 4231 4232 return 0; 4233 } 4234 4235 /** 4236 * of_clk_init() - Scan and init clock providers from the DT 4237 * @matches: array of compatible values and init functions for providers. 4238 * 4239 * This function scans the device tree for matching clock providers 4240 * and calls their initialization functions. It also does it by trying 4241 * to follow the dependencies. 4242 */ 4243 void __init of_clk_init(const struct of_device_id *matches) 4244 { 4245 const struct of_device_id *match; 4246 struct device_node *np; 4247 struct clock_provider *clk_provider, *next; 4248 bool is_init_done; 4249 bool force = false; 4250 LIST_HEAD(clk_provider_list); 4251 4252 if (!matches) 4253 matches = &__clk_of_table; 4254 4255 /* First prepare the list of the clocks providers */ 4256 for_each_matching_node_and_match(np, matches, &match) { 4257 struct clock_provider *parent; 4258 4259 if (!of_device_is_available(np)) 4260 continue; 4261 4262 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4263 if (!parent) { 4264 list_for_each_entry_safe(clk_provider, next, 4265 &clk_provider_list, node) { 4266 list_del(&clk_provider->node); 4267 of_node_put(clk_provider->np); 4268 kfree(clk_provider); 4269 } 4270 of_node_put(np); 4271 return; 4272 } 4273 4274 parent->clk_init_cb = match->data; 4275 parent->np = of_node_get(np); 4276 list_add_tail(&parent->node, &clk_provider_list); 4277 } 4278 4279 while (!list_empty(&clk_provider_list)) { 4280 is_init_done = false; 4281 list_for_each_entry_safe(clk_provider, next, 4282 &clk_provider_list, node) { 4283 if (force || parent_ready(clk_provider->np)) { 4284 4285 /* Don't populate platform devices */ 4286 of_node_set_flag(clk_provider->np, 4287 OF_POPULATED); 4288 4289 clk_provider->clk_init_cb(clk_provider->np); 4290 of_clk_set_defaults(clk_provider->np, true); 4291 4292 list_del(&clk_provider->node); 4293 of_node_put(clk_provider->np); 4294 kfree(clk_provider); 4295 is_init_done = true; 4296 } 4297 } 4298 4299 /* 4300 * We didn't manage to initialize any of the 4301 * remaining providers during the last loop, so now we 4302 * initialize all the remaining ones unconditionally 4303 * in case the clock parent was not mandatory 4304 */ 4305 if (!is_init_done) 4306 force = true; 4307 } 4308 } 4309 #endif 4310