1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** private data structures ***/ 41 42 struct clk_parent_map { 43 const struct clk_hw *hw; 44 struct clk_core *core; 45 const char *fw_name; 46 const char *name; 47 int index; 48 }; 49 50 struct clk_core { 51 const char *name; 52 const struct clk_ops *ops; 53 struct clk_hw *hw; 54 struct module *owner; 55 struct device *dev; 56 struct device_node *of_node; 57 struct clk_core *parent; 58 struct clk_parent_map *parents; 59 u8 num_parents; 60 u8 new_parent_index; 61 unsigned long rate; 62 unsigned long req_rate; 63 unsigned long new_rate; 64 struct clk_core *new_parent; 65 struct clk_core *new_child; 66 unsigned long flags; 67 bool orphan; 68 bool rpm_enabled; 69 unsigned int enable_count; 70 unsigned int prepare_count; 71 unsigned int protect_count; 72 unsigned long min_rate; 73 unsigned long max_rate; 74 unsigned long accuracy; 75 int phase; 76 struct clk_duty duty; 77 struct hlist_head children; 78 struct hlist_node child_node; 79 struct hlist_head clks; 80 unsigned int notifier_count; 81 #ifdef CONFIG_DEBUG_FS 82 struct dentry *dentry; 83 struct hlist_node debug_node; 84 #endif 85 struct kref ref; 86 }; 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/clk.h> 90 91 struct clk { 92 struct clk_core *core; 93 struct device *dev; 94 const char *dev_id; 95 const char *con_id; 96 unsigned long min_rate; 97 unsigned long max_rate; 98 unsigned int exclusive_count; 99 struct hlist_node clks_node; 100 }; 101 102 /*** runtime pm ***/ 103 static int clk_pm_runtime_get(struct clk_core *core) 104 { 105 int ret; 106 107 if (!core->rpm_enabled) 108 return 0; 109 110 ret = pm_runtime_get_sync(core->dev); 111 return ret < 0 ? ret : 0; 112 } 113 114 static void clk_pm_runtime_put(struct clk_core *core) 115 { 116 if (!core->rpm_enabled) 117 return; 118 119 pm_runtime_put_sync(core->dev); 120 } 121 122 /*** locking ***/ 123 static void clk_prepare_lock(void) 124 { 125 if (!mutex_trylock(&prepare_lock)) { 126 if (prepare_owner == current) { 127 prepare_refcnt++; 128 return; 129 } 130 mutex_lock(&prepare_lock); 131 } 132 WARN_ON_ONCE(prepare_owner != NULL); 133 WARN_ON_ONCE(prepare_refcnt != 0); 134 prepare_owner = current; 135 prepare_refcnt = 1; 136 } 137 138 static void clk_prepare_unlock(void) 139 { 140 WARN_ON_ONCE(prepare_owner != current); 141 WARN_ON_ONCE(prepare_refcnt == 0); 142 143 if (--prepare_refcnt) 144 return; 145 prepare_owner = NULL; 146 mutex_unlock(&prepare_lock); 147 } 148 149 static unsigned long clk_enable_lock(void) 150 __acquires(enable_lock) 151 { 152 unsigned long flags; 153 154 /* 155 * On UP systems, spin_trylock_irqsave() always returns true, even if 156 * we already hold the lock. So, in that case, we rely only on 157 * reference counting. 158 */ 159 if (!IS_ENABLED(CONFIG_SMP) || 160 !spin_trylock_irqsave(&enable_lock, flags)) { 161 if (enable_owner == current) { 162 enable_refcnt++; 163 __acquire(enable_lock); 164 if (!IS_ENABLED(CONFIG_SMP)) 165 local_save_flags(flags); 166 return flags; 167 } 168 spin_lock_irqsave(&enable_lock, flags); 169 } 170 WARN_ON_ONCE(enable_owner != NULL); 171 WARN_ON_ONCE(enable_refcnt != 0); 172 enable_owner = current; 173 enable_refcnt = 1; 174 return flags; 175 } 176 177 static void clk_enable_unlock(unsigned long flags) 178 __releases(enable_lock) 179 { 180 WARN_ON_ONCE(enable_owner != current); 181 WARN_ON_ONCE(enable_refcnt == 0); 182 183 if (--enable_refcnt) { 184 __release(enable_lock); 185 return; 186 } 187 enable_owner = NULL; 188 spin_unlock_irqrestore(&enable_lock, flags); 189 } 190 191 static bool clk_core_rate_is_protected(struct clk_core *core) 192 { 193 return core->protect_count; 194 } 195 196 static bool clk_core_is_prepared(struct clk_core *core) 197 { 198 bool ret = false; 199 200 /* 201 * .is_prepared is optional for clocks that can prepare 202 * fall back to software usage counter if it is missing 203 */ 204 if (!core->ops->is_prepared) 205 return core->prepare_count; 206 207 if (!clk_pm_runtime_get(core)) { 208 ret = core->ops->is_prepared(core->hw); 209 clk_pm_runtime_put(core); 210 } 211 212 return ret; 213 } 214 215 static bool clk_core_is_enabled(struct clk_core *core) 216 { 217 bool ret = false; 218 219 /* 220 * .is_enabled is only mandatory for clocks that gate 221 * fall back to software usage counter if .is_enabled is missing 222 */ 223 if (!core->ops->is_enabled) 224 return core->enable_count; 225 226 /* 227 * Check if clock controller's device is runtime active before 228 * calling .is_enabled callback. If not, assume that clock is 229 * disabled, because we might be called from atomic context, from 230 * which pm_runtime_get() is not allowed. 231 * This function is called mainly from clk_disable_unused_subtree, 232 * which ensures proper runtime pm activation of controller before 233 * taking enable spinlock, but the below check is needed if one tries 234 * to call it from other places. 235 */ 236 if (core->rpm_enabled) { 237 pm_runtime_get_noresume(core->dev); 238 if (!pm_runtime_active(core->dev)) { 239 ret = false; 240 goto done; 241 } 242 } 243 244 ret = core->ops->is_enabled(core->hw); 245 done: 246 if (core->rpm_enabled) 247 pm_runtime_put(core->dev); 248 249 return ret; 250 } 251 252 /*** helper functions ***/ 253 254 const char *__clk_get_name(const struct clk *clk) 255 { 256 return !clk ? NULL : clk->core->name; 257 } 258 EXPORT_SYMBOL_GPL(__clk_get_name); 259 260 const char *clk_hw_get_name(const struct clk_hw *hw) 261 { 262 return hw->core->name; 263 } 264 EXPORT_SYMBOL_GPL(clk_hw_get_name); 265 266 struct clk_hw *__clk_get_hw(struct clk *clk) 267 { 268 return !clk ? NULL : clk->core->hw; 269 } 270 EXPORT_SYMBOL_GPL(__clk_get_hw); 271 272 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 273 { 274 return hw->core->num_parents; 275 } 276 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 277 278 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 279 { 280 return hw->core->parent ? hw->core->parent->hw : NULL; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 283 284 static struct clk_core *__clk_lookup_subtree(const char *name, 285 struct clk_core *core) 286 { 287 struct clk_core *child; 288 struct clk_core *ret; 289 290 if (!strcmp(core->name, name)) 291 return core; 292 293 hlist_for_each_entry(child, &core->children, child_node) { 294 ret = __clk_lookup_subtree(name, child); 295 if (ret) 296 return ret; 297 } 298 299 return NULL; 300 } 301 302 static struct clk_core *clk_core_lookup(const char *name) 303 { 304 struct clk_core *root_clk; 305 struct clk_core *ret; 306 307 if (!name) 308 return NULL; 309 310 /* search the 'proper' clk tree first */ 311 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 /* if not found, then search the orphan tree */ 318 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 319 ret = __clk_lookup_subtree(name, root_clk); 320 if (ret) 321 return ret; 322 } 323 324 return NULL; 325 } 326 327 /** 328 * clk_core_get - Find the clk_core parent of a clk 329 * @core: clk to find parent of 330 * @p_index: parent index to search for 331 * 332 * This is the preferred method for clk providers to find the parent of a 333 * clk when that parent is external to the clk controller. The parent_names 334 * array is indexed and treated as a local name matching a string in the device 335 * node's 'clock-names' property or as the 'con_id' matching the device's 336 * dev_name() in a clk_lookup. This allows clk providers to use their own 337 * namespace instead of looking for a globally unique parent string. 338 * 339 * For example the following DT snippet would allow a clock registered by the 340 * clock-controller@c001 that has a clk_init_data::parent_data array 341 * with 'xtal' in the 'name' member to find the clock provided by the 342 * clock-controller@f00abcd without needing to get the globally unique name of 343 * the xtal clk. 344 * 345 * parent: clock-controller@f00abcd { 346 * reg = <0xf00abcd 0xabcd>; 347 * #clock-cells = <0>; 348 * }; 349 * 350 * clock-controller@c001 { 351 * reg = <0xc001 0xf00d>; 352 * clocks = <&parent>; 353 * clock-names = "xtal"; 354 * #clock-cells = <1>; 355 * }; 356 * 357 * Returns: -ENOENT when the provider can't be found or the clk doesn't 358 * exist in the provider. -EINVAL when the name can't be found. NULL when the 359 * provider knows about the clk but it isn't provided on this system. 360 * A valid clk_core pointer when the clk can be found in the provider. 361 */ 362 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 363 { 364 const char *name = core->parents[p_index].fw_name; 365 int index = core->parents[p_index].index; 366 struct clk_hw *hw = ERR_PTR(-ENOENT); 367 struct device *dev = core->dev; 368 const char *dev_id = dev ? dev_name(dev) : NULL; 369 struct device_node *np = core->of_node; 370 371 if (np && index >= 0) 372 hw = of_clk_get_hw(np, index, name); 373 374 /* 375 * If the DT search above couldn't find the provider or the provider 376 * didn't know about this clk, fallback to looking up via clkdev based 377 * clk_lookups 378 */ 379 if (PTR_ERR(hw) == -ENOENT && name) 380 hw = clk_find_hw(dev_id, name); 381 382 if (IS_ERR(hw)) 383 return ERR_CAST(hw); 384 385 return hw->core; 386 } 387 388 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 389 { 390 struct clk_parent_map *entry = &core->parents[index]; 391 struct clk_core *parent = ERR_PTR(-ENOENT); 392 393 if (entry->hw) { 394 parent = entry->hw->core; 395 /* 396 * We have a direct reference but it isn't registered yet? 397 * Orphan it and let clk_reparent() update the orphan status 398 * when the parent is registered. 399 */ 400 if (!parent) 401 parent = ERR_PTR(-EPROBE_DEFER); 402 } else { 403 parent = clk_core_get(core, index); 404 if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT) 405 parent = clk_core_lookup(entry->name); 406 } 407 408 /* Only cache it if it's not an error */ 409 if (!IS_ERR(parent)) 410 entry->core = parent; 411 } 412 413 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 414 u8 index) 415 { 416 if (!core || index >= core->num_parents || !core->parents) 417 return NULL; 418 419 if (!core->parents[index].core) 420 clk_core_fill_parent_index(core, index); 421 422 return core->parents[index].core; 423 } 424 425 struct clk_hw * 426 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 427 { 428 struct clk_core *parent; 429 430 parent = clk_core_get_parent_by_index(hw->core, index); 431 432 return !parent ? NULL : parent->hw; 433 } 434 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 435 436 unsigned int __clk_get_enable_count(struct clk *clk) 437 { 438 return !clk ? 0 : clk->core->enable_count; 439 } 440 441 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 442 { 443 if (!core) 444 return 0; 445 446 if (!core->num_parents || core->parent) 447 return core->rate; 448 449 /* 450 * Clk must have a parent because num_parents > 0 but the parent isn't 451 * known yet. Best to return 0 as the rate of this clk until we can 452 * properly recalc the rate based on the parent's rate. 453 */ 454 return 0; 455 } 456 457 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 458 { 459 return clk_core_get_rate_nolock(hw->core); 460 } 461 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 462 463 static unsigned long __clk_get_accuracy(struct clk_core *core) 464 { 465 if (!core) 466 return 0; 467 468 return core->accuracy; 469 } 470 471 unsigned long __clk_get_flags(struct clk *clk) 472 { 473 return !clk ? 0 : clk->core->flags; 474 } 475 EXPORT_SYMBOL_GPL(__clk_get_flags); 476 477 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 478 { 479 return hw->core->flags; 480 } 481 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 482 483 bool clk_hw_is_prepared(const struct clk_hw *hw) 484 { 485 return clk_core_is_prepared(hw->core); 486 } 487 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 488 489 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 490 { 491 return clk_core_rate_is_protected(hw->core); 492 } 493 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 494 495 bool clk_hw_is_enabled(const struct clk_hw *hw) 496 { 497 return clk_core_is_enabled(hw->core); 498 } 499 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 500 501 bool __clk_is_enabled(struct clk *clk) 502 { 503 if (!clk) 504 return false; 505 506 return clk_core_is_enabled(clk->core); 507 } 508 EXPORT_SYMBOL_GPL(__clk_is_enabled); 509 510 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 511 unsigned long best, unsigned long flags) 512 { 513 if (flags & CLK_MUX_ROUND_CLOSEST) 514 return abs(now - rate) < abs(best - rate); 515 516 return now <= rate && now > best; 517 } 518 519 int clk_mux_determine_rate_flags(struct clk_hw *hw, 520 struct clk_rate_request *req, 521 unsigned long flags) 522 { 523 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 524 int i, num_parents, ret; 525 unsigned long best = 0; 526 struct clk_rate_request parent_req = *req; 527 528 /* if NO_REPARENT flag set, pass through to current parent */ 529 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 530 parent = core->parent; 531 if (core->flags & CLK_SET_RATE_PARENT) { 532 ret = __clk_determine_rate(parent ? parent->hw : NULL, 533 &parent_req); 534 if (ret) 535 return ret; 536 537 best = parent_req.rate; 538 } else if (parent) { 539 best = clk_core_get_rate_nolock(parent); 540 } else { 541 best = clk_core_get_rate_nolock(core); 542 } 543 544 goto out; 545 } 546 547 /* find the parent that can provide the fastest rate <= rate */ 548 num_parents = core->num_parents; 549 for (i = 0; i < num_parents; i++) { 550 parent = clk_core_get_parent_by_index(core, i); 551 if (!parent) 552 continue; 553 554 if (core->flags & CLK_SET_RATE_PARENT) { 555 parent_req = *req; 556 ret = __clk_determine_rate(parent->hw, &parent_req); 557 if (ret) 558 continue; 559 } else { 560 parent_req.rate = clk_core_get_rate_nolock(parent); 561 } 562 563 if (mux_is_better_rate(req->rate, parent_req.rate, 564 best, flags)) { 565 best_parent = parent; 566 best = parent_req.rate; 567 } 568 } 569 570 if (!best_parent) 571 return -EINVAL; 572 573 out: 574 if (best_parent) 575 req->best_parent_hw = best_parent->hw; 576 req->best_parent_rate = best; 577 req->rate = best; 578 579 return 0; 580 } 581 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 582 583 struct clk *__clk_lookup(const char *name) 584 { 585 struct clk_core *core = clk_core_lookup(name); 586 587 return !core ? NULL : core->hw->clk; 588 } 589 590 static void clk_core_get_boundaries(struct clk_core *core, 591 unsigned long *min_rate, 592 unsigned long *max_rate) 593 { 594 struct clk *clk_user; 595 596 *min_rate = core->min_rate; 597 *max_rate = core->max_rate; 598 599 hlist_for_each_entry(clk_user, &core->clks, clks_node) 600 *min_rate = max(*min_rate, clk_user->min_rate); 601 602 hlist_for_each_entry(clk_user, &core->clks, clks_node) 603 *max_rate = min(*max_rate, clk_user->max_rate); 604 } 605 606 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 607 unsigned long max_rate) 608 { 609 hw->core->min_rate = min_rate; 610 hw->core->max_rate = max_rate; 611 } 612 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 613 614 /* 615 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 616 * @hw: mux type clk to determine rate on 617 * @req: rate request, also used to return preferred parent and frequencies 618 * 619 * Helper for finding best parent to provide a given frequency. This can be used 620 * directly as a determine_rate callback (e.g. for a mux), or from a more 621 * complex clock that may combine a mux with other operations. 622 * 623 * Returns: 0 on success, -EERROR value on error 624 */ 625 int __clk_mux_determine_rate(struct clk_hw *hw, 626 struct clk_rate_request *req) 627 { 628 return clk_mux_determine_rate_flags(hw, req, 0); 629 } 630 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 631 632 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 633 struct clk_rate_request *req) 634 { 635 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 636 } 637 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 638 639 /*** clk api ***/ 640 641 static void clk_core_rate_unprotect(struct clk_core *core) 642 { 643 lockdep_assert_held(&prepare_lock); 644 645 if (!core) 646 return; 647 648 if (WARN(core->protect_count == 0, 649 "%s already unprotected\n", core->name)) 650 return; 651 652 if (--core->protect_count > 0) 653 return; 654 655 clk_core_rate_unprotect(core->parent); 656 } 657 658 static int clk_core_rate_nuke_protect(struct clk_core *core) 659 { 660 int ret; 661 662 lockdep_assert_held(&prepare_lock); 663 664 if (!core) 665 return -EINVAL; 666 667 if (core->protect_count == 0) 668 return 0; 669 670 ret = core->protect_count; 671 core->protect_count = 1; 672 clk_core_rate_unprotect(core); 673 674 return ret; 675 } 676 677 /** 678 * clk_rate_exclusive_put - release exclusivity over clock rate control 679 * @clk: the clk over which the exclusivity is released 680 * 681 * clk_rate_exclusive_put() completes a critical section during which a clock 682 * consumer cannot tolerate any other consumer making any operation on the 683 * clock which could result in a rate change or rate glitch. Exclusive clocks 684 * cannot have their rate changed, either directly or indirectly due to changes 685 * further up the parent chain of clocks. As a result, clocks up parent chain 686 * also get under exclusive control of the calling consumer. 687 * 688 * If exlusivity is claimed more than once on clock, even by the same consumer, 689 * the rate effectively gets locked as exclusivity can't be preempted. 690 * 691 * Calls to clk_rate_exclusive_put() must be balanced with calls to 692 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 693 * error status. 694 */ 695 void clk_rate_exclusive_put(struct clk *clk) 696 { 697 if (!clk) 698 return; 699 700 clk_prepare_lock(); 701 702 /* 703 * if there is something wrong with this consumer protect count, stop 704 * here before messing with the provider 705 */ 706 if (WARN_ON(clk->exclusive_count <= 0)) 707 goto out; 708 709 clk_core_rate_unprotect(clk->core); 710 clk->exclusive_count--; 711 out: 712 clk_prepare_unlock(); 713 } 714 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 715 716 static void clk_core_rate_protect(struct clk_core *core) 717 { 718 lockdep_assert_held(&prepare_lock); 719 720 if (!core) 721 return; 722 723 if (core->protect_count == 0) 724 clk_core_rate_protect(core->parent); 725 726 core->protect_count++; 727 } 728 729 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 730 { 731 lockdep_assert_held(&prepare_lock); 732 733 if (!core) 734 return; 735 736 if (count == 0) 737 return; 738 739 clk_core_rate_protect(core); 740 core->protect_count = count; 741 } 742 743 /** 744 * clk_rate_exclusive_get - get exclusivity over the clk rate control 745 * @clk: the clk over which the exclusity of rate control is requested 746 * 747 * clk_rate_exlusive_get() begins a critical section during which a clock 748 * consumer cannot tolerate any other consumer making any operation on the 749 * clock which could result in a rate change or rate glitch. Exclusive clocks 750 * cannot have their rate changed, either directly or indirectly due to changes 751 * further up the parent chain of clocks. As a result, clocks up parent chain 752 * also get under exclusive control of the calling consumer. 753 * 754 * If exlusivity is claimed more than once on clock, even by the same consumer, 755 * the rate effectively gets locked as exclusivity can't be preempted. 756 * 757 * Calls to clk_rate_exclusive_get() should be balanced with calls to 758 * clk_rate_exclusive_put(). Calls to this function may sleep. 759 * Returns 0 on success, -EERROR otherwise 760 */ 761 int clk_rate_exclusive_get(struct clk *clk) 762 { 763 if (!clk) 764 return 0; 765 766 clk_prepare_lock(); 767 clk_core_rate_protect(clk->core); 768 clk->exclusive_count++; 769 clk_prepare_unlock(); 770 771 return 0; 772 } 773 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 774 775 static void clk_core_unprepare(struct clk_core *core) 776 { 777 lockdep_assert_held(&prepare_lock); 778 779 if (!core) 780 return; 781 782 if (WARN(core->prepare_count == 0, 783 "%s already unprepared\n", core->name)) 784 return; 785 786 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 787 "Unpreparing critical %s\n", core->name)) 788 return; 789 790 if (core->flags & CLK_SET_RATE_GATE) 791 clk_core_rate_unprotect(core); 792 793 if (--core->prepare_count > 0) 794 return; 795 796 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 797 798 trace_clk_unprepare(core); 799 800 if (core->ops->unprepare) 801 core->ops->unprepare(core->hw); 802 803 clk_pm_runtime_put(core); 804 805 trace_clk_unprepare_complete(core); 806 clk_core_unprepare(core->parent); 807 } 808 809 static void clk_core_unprepare_lock(struct clk_core *core) 810 { 811 clk_prepare_lock(); 812 clk_core_unprepare(core); 813 clk_prepare_unlock(); 814 } 815 816 /** 817 * clk_unprepare - undo preparation of a clock source 818 * @clk: the clk being unprepared 819 * 820 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 821 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 822 * if the operation may sleep. One example is a clk which is accessed over 823 * I2c. In the complex case a clk gate operation may require a fast and a slow 824 * part. It is this reason that clk_unprepare and clk_disable are not mutually 825 * exclusive. In fact clk_disable must be called before clk_unprepare. 826 */ 827 void clk_unprepare(struct clk *clk) 828 { 829 if (IS_ERR_OR_NULL(clk)) 830 return; 831 832 clk_core_unprepare_lock(clk->core); 833 } 834 EXPORT_SYMBOL_GPL(clk_unprepare); 835 836 static int clk_core_prepare(struct clk_core *core) 837 { 838 int ret = 0; 839 840 lockdep_assert_held(&prepare_lock); 841 842 if (!core) 843 return 0; 844 845 if (core->prepare_count == 0) { 846 ret = clk_pm_runtime_get(core); 847 if (ret) 848 return ret; 849 850 ret = clk_core_prepare(core->parent); 851 if (ret) 852 goto runtime_put; 853 854 trace_clk_prepare(core); 855 856 if (core->ops->prepare) 857 ret = core->ops->prepare(core->hw); 858 859 trace_clk_prepare_complete(core); 860 861 if (ret) 862 goto unprepare; 863 } 864 865 core->prepare_count++; 866 867 /* 868 * CLK_SET_RATE_GATE is a special case of clock protection 869 * Instead of a consumer claiming exclusive rate control, it is 870 * actually the provider which prevents any consumer from making any 871 * operation which could result in a rate change or rate glitch while 872 * the clock is prepared. 873 */ 874 if (core->flags & CLK_SET_RATE_GATE) 875 clk_core_rate_protect(core); 876 877 return 0; 878 unprepare: 879 clk_core_unprepare(core->parent); 880 runtime_put: 881 clk_pm_runtime_put(core); 882 return ret; 883 } 884 885 static int clk_core_prepare_lock(struct clk_core *core) 886 { 887 int ret; 888 889 clk_prepare_lock(); 890 ret = clk_core_prepare(core); 891 clk_prepare_unlock(); 892 893 return ret; 894 } 895 896 /** 897 * clk_prepare - prepare a clock source 898 * @clk: the clk being prepared 899 * 900 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 901 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 902 * operation may sleep. One example is a clk which is accessed over I2c. In 903 * the complex case a clk ungate operation may require a fast and a slow part. 904 * It is this reason that clk_prepare and clk_enable are not mutually 905 * exclusive. In fact clk_prepare must be called before clk_enable. 906 * Returns 0 on success, -EERROR otherwise. 907 */ 908 int clk_prepare(struct clk *clk) 909 { 910 if (!clk) 911 return 0; 912 913 return clk_core_prepare_lock(clk->core); 914 } 915 EXPORT_SYMBOL_GPL(clk_prepare); 916 917 static void clk_core_disable(struct clk_core *core) 918 { 919 lockdep_assert_held(&enable_lock); 920 921 if (!core) 922 return; 923 924 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 925 return; 926 927 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 928 "Disabling critical %s\n", core->name)) 929 return; 930 931 if (--core->enable_count > 0) 932 return; 933 934 trace_clk_disable_rcuidle(core); 935 936 if (core->ops->disable) 937 core->ops->disable(core->hw); 938 939 trace_clk_disable_complete_rcuidle(core); 940 941 clk_core_disable(core->parent); 942 } 943 944 static void clk_core_disable_lock(struct clk_core *core) 945 { 946 unsigned long flags; 947 948 flags = clk_enable_lock(); 949 clk_core_disable(core); 950 clk_enable_unlock(flags); 951 } 952 953 /** 954 * clk_disable - gate a clock 955 * @clk: the clk being gated 956 * 957 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 958 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 959 * clk if the operation is fast and will never sleep. One example is a 960 * SoC-internal clk which is controlled via simple register writes. In the 961 * complex case a clk gate operation may require a fast and a slow part. It is 962 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 963 * In fact clk_disable must be called before clk_unprepare. 964 */ 965 void clk_disable(struct clk *clk) 966 { 967 if (IS_ERR_OR_NULL(clk)) 968 return; 969 970 clk_core_disable_lock(clk->core); 971 } 972 EXPORT_SYMBOL_GPL(clk_disable); 973 974 static int clk_core_enable(struct clk_core *core) 975 { 976 int ret = 0; 977 978 lockdep_assert_held(&enable_lock); 979 980 if (!core) 981 return 0; 982 983 if (WARN(core->prepare_count == 0, 984 "Enabling unprepared %s\n", core->name)) 985 return -ESHUTDOWN; 986 987 if (core->enable_count == 0) { 988 ret = clk_core_enable(core->parent); 989 990 if (ret) 991 return ret; 992 993 trace_clk_enable_rcuidle(core); 994 995 if (core->ops->enable) 996 ret = core->ops->enable(core->hw); 997 998 trace_clk_enable_complete_rcuidle(core); 999 1000 if (ret) { 1001 clk_core_disable(core->parent); 1002 return ret; 1003 } 1004 } 1005 1006 core->enable_count++; 1007 return 0; 1008 } 1009 1010 static int clk_core_enable_lock(struct clk_core *core) 1011 { 1012 unsigned long flags; 1013 int ret; 1014 1015 flags = clk_enable_lock(); 1016 ret = clk_core_enable(core); 1017 clk_enable_unlock(flags); 1018 1019 return ret; 1020 } 1021 1022 /** 1023 * clk_gate_restore_context - restore context for poweroff 1024 * @hw: the clk_hw pointer of clock whose state is to be restored 1025 * 1026 * The clock gate restore context function enables or disables 1027 * the gate clocks based on the enable_count. This is done in cases 1028 * where the clock context is lost and based on the enable_count 1029 * the clock either needs to be enabled/disabled. This 1030 * helps restore the state of gate clocks. 1031 */ 1032 void clk_gate_restore_context(struct clk_hw *hw) 1033 { 1034 struct clk_core *core = hw->core; 1035 1036 if (core->enable_count) 1037 core->ops->enable(hw); 1038 else 1039 core->ops->disable(hw); 1040 } 1041 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1042 1043 static int clk_core_save_context(struct clk_core *core) 1044 { 1045 struct clk_core *child; 1046 int ret = 0; 1047 1048 hlist_for_each_entry(child, &core->children, child_node) { 1049 ret = clk_core_save_context(child); 1050 if (ret < 0) 1051 return ret; 1052 } 1053 1054 if (core->ops && core->ops->save_context) 1055 ret = core->ops->save_context(core->hw); 1056 1057 return ret; 1058 } 1059 1060 static void clk_core_restore_context(struct clk_core *core) 1061 { 1062 struct clk_core *child; 1063 1064 if (core->ops && core->ops->restore_context) 1065 core->ops->restore_context(core->hw); 1066 1067 hlist_for_each_entry(child, &core->children, child_node) 1068 clk_core_restore_context(child); 1069 } 1070 1071 /** 1072 * clk_save_context - save clock context for poweroff 1073 * 1074 * Saves the context of the clock register for powerstates in which the 1075 * contents of the registers will be lost. Occurs deep within the suspend 1076 * code. Returns 0 on success. 1077 */ 1078 int clk_save_context(void) 1079 { 1080 struct clk_core *clk; 1081 int ret; 1082 1083 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1084 ret = clk_core_save_context(clk); 1085 if (ret < 0) 1086 return ret; 1087 } 1088 1089 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1090 ret = clk_core_save_context(clk); 1091 if (ret < 0) 1092 return ret; 1093 } 1094 1095 return 0; 1096 } 1097 EXPORT_SYMBOL_GPL(clk_save_context); 1098 1099 /** 1100 * clk_restore_context - restore clock context after poweroff 1101 * 1102 * Restore the saved clock context upon resume. 1103 * 1104 */ 1105 void clk_restore_context(void) 1106 { 1107 struct clk_core *core; 1108 1109 hlist_for_each_entry(core, &clk_root_list, child_node) 1110 clk_core_restore_context(core); 1111 1112 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1113 clk_core_restore_context(core); 1114 } 1115 EXPORT_SYMBOL_GPL(clk_restore_context); 1116 1117 /** 1118 * clk_enable - ungate a clock 1119 * @clk: the clk being ungated 1120 * 1121 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1122 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1123 * if the operation will never sleep. One example is a SoC-internal clk which 1124 * is controlled via simple register writes. In the complex case a clk ungate 1125 * operation may require a fast and a slow part. It is this reason that 1126 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1127 * must be called before clk_enable. Returns 0 on success, -EERROR 1128 * otherwise. 1129 */ 1130 int clk_enable(struct clk *clk) 1131 { 1132 if (!clk) 1133 return 0; 1134 1135 return clk_core_enable_lock(clk->core); 1136 } 1137 EXPORT_SYMBOL_GPL(clk_enable); 1138 1139 static int clk_core_prepare_enable(struct clk_core *core) 1140 { 1141 int ret; 1142 1143 ret = clk_core_prepare_lock(core); 1144 if (ret) 1145 return ret; 1146 1147 ret = clk_core_enable_lock(core); 1148 if (ret) 1149 clk_core_unprepare_lock(core); 1150 1151 return ret; 1152 } 1153 1154 static void clk_core_disable_unprepare(struct clk_core *core) 1155 { 1156 clk_core_disable_lock(core); 1157 clk_core_unprepare_lock(core); 1158 } 1159 1160 static void clk_unprepare_unused_subtree(struct clk_core *core) 1161 { 1162 struct clk_core *child; 1163 1164 lockdep_assert_held(&prepare_lock); 1165 1166 hlist_for_each_entry(child, &core->children, child_node) 1167 clk_unprepare_unused_subtree(child); 1168 1169 if (core->prepare_count) 1170 return; 1171 1172 if (core->flags & CLK_IGNORE_UNUSED) 1173 return; 1174 1175 if (clk_pm_runtime_get(core)) 1176 return; 1177 1178 if (clk_core_is_prepared(core)) { 1179 trace_clk_unprepare(core); 1180 if (core->ops->unprepare_unused) 1181 core->ops->unprepare_unused(core->hw); 1182 else if (core->ops->unprepare) 1183 core->ops->unprepare(core->hw); 1184 trace_clk_unprepare_complete(core); 1185 } 1186 1187 clk_pm_runtime_put(core); 1188 } 1189 1190 static void clk_disable_unused_subtree(struct clk_core *core) 1191 { 1192 struct clk_core *child; 1193 unsigned long flags; 1194 1195 lockdep_assert_held(&prepare_lock); 1196 1197 hlist_for_each_entry(child, &core->children, child_node) 1198 clk_disable_unused_subtree(child); 1199 1200 if (core->flags & CLK_OPS_PARENT_ENABLE) 1201 clk_core_prepare_enable(core->parent); 1202 1203 if (clk_pm_runtime_get(core)) 1204 goto unprepare_out; 1205 1206 flags = clk_enable_lock(); 1207 1208 if (core->enable_count) 1209 goto unlock_out; 1210 1211 if (core->flags & CLK_IGNORE_UNUSED) 1212 goto unlock_out; 1213 1214 /* 1215 * some gate clocks have special needs during the disable-unused 1216 * sequence. call .disable_unused if available, otherwise fall 1217 * back to .disable 1218 */ 1219 if (clk_core_is_enabled(core)) { 1220 trace_clk_disable(core); 1221 if (core->ops->disable_unused) 1222 core->ops->disable_unused(core->hw); 1223 else if (core->ops->disable) 1224 core->ops->disable(core->hw); 1225 trace_clk_disable_complete(core); 1226 } 1227 1228 unlock_out: 1229 clk_enable_unlock(flags); 1230 clk_pm_runtime_put(core); 1231 unprepare_out: 1232 if (core->flags & CLK_OPS_PARENT_ENABLE) 1233 clk_core_disable_unprepare(core->parent); 1234 } 1235 1236 static bool clk_ignore_unused; 1237 static int __init clk_ignore_unused_setup(char *__unused) 1238 { 1239 clk_ignore_unused = true; 1240 return 1; 1241 } 1242 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1243 1244 static int clk_disable_unused(void) 1245 { 1246 struct clk_core *core; 1247 1248 if (clk_ignore_unused) { 1249 pr_warn("clk: Not disabling unused clocks\n"); 1250 return 0; 1251 } 1252 1253 clk_prepare_lock(); 1254 1255 hlist_for_each_entry(core, &clk_root_list, child_node) 1256 clk_disable_unused_subtree(core); 1257 1258 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1259 clk_disable_unused_subtree(core); 1260 1261 hlist_for_each_entry(core, &clk_root_list, child_node) 1262 clk_unprepare_unused_subtree(core); 1263 1264 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1265 clk_unprepare_unused_subtree(core); 1266 1267 clk_prepare_unlock(); 1268 1269 return 0; 1270 } 1271 late_initcall_sync(clk_disable_unused); 1272 1273 static int clk_core_determine_round_nolock(struct clk_core *core, 1274 struct clk_rate_request *req) 1275 { 1276 long rate; 1277 1278 lockdep_assert_held(&prepare_lock); 1279 1280 if (!core) 1281 return 0; 1282 1283 /* 1284 * At this point, core protection will be disabled if 1285 * - if the provider is not protected at all 1286 * - if the calling consumer is the only one which has exclusivity 1287 * over the provider 1288 */ 1289 if (clk_core_rate_is_protected(core)) { 1290 req->rate = core->rate; 1291 } else if (core->ops->determine_rate) { 1292 return core->ops->determine_rate(core->hw, req); 1293 } else if (core->ops->round_rate) { 1294 rate = core->ops->round_rate(core->hw, req->rate, 1295 &req->best_parent_rate); 1296 if (rate < 0) 1297 return rate; 1298 1299 req->rate = rate; 1300 } else { 1301 return -EINVAL; 1302 } 1303 1304 return 0; 1305 } 1306 1307 static void clk_core_init_rate_req(struct clk_core * const core, 1308 struct clk_rate_request *req) 1309 { 1310 struct clk_core *parent; 1311 1312 if (WARN_ON(!core || !req)) 1313 return; 1314 1315 parent = core->parent; 1316 if (parent) { 1317 req->best_parent_hw = parent->hw; 1318 req->best_parent_rate = parent->rate; 1319 } else { 1320 req->best_parent_hw = NULL; 1321 req->best_parent_rate = 0; 1322 } 1323 } 1324 1325 static bool clk_core_can_round(struct clk_core * const core) 1326 { 1327 if (core->ops->determine_rate || core->ops->round_rate) 1328 return true; 1329 1330 return false; 1331 } 1332 1333 static int clk_core_round_rate_nolock(struct clk_core *core, 1334 struct clk_rate_request *req) 1335 { 1336 lockdep_assert_held(&prepare_lock); 1337 1338 if (!core) { 1339 req->rate = 0; 1340 return 0; 1341 } 1342 1343 clk_core_init_rate_req(core, req); 1344 1345 if (clk_core_can_round(core)) 1346 return clk_core_determine_round_nolock(core, req); 1347 else if (core->flags & CLK_SET_RATE_PARENT) 1348 return clk_core_round_rate_nolock(core->parent, req); 1349 1350 req->rate = core->rate; 1351 return 0; 1352 } 1353 1354 /** 1355 * __clk_determine_rate - get the closest rate actually supported by a clock 1356 * @hw: determine the rate of this clock 1357 * @req: target rate request 1358 * 1359 * Useful for clk_ops such as .set_rate and .determine_rate. 1360 */ 1361 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1362 { 1363 if (!hw) { 1364 req->rate = 0; 1365 return 0; 1366 } 1367 1368 return clk_core_round_rate_nolock(hw->core, req); 1369 } 1370 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1371 1372 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1373 { 1374 int ret; 1375 struct clk_rate_request req; 1376 1377 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1378 req.rate = rate; 1379 1380 ret = clk_core_round_rate_nolock(hw->core, &req); 1381 if (ret) 1382 return 0; 1383 1384 return req.rate; 1385 } 1386 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1387 1388 /** 1389 * clk_round_rate - round the given rate for a clk 1390 * @clk: the clk for which we are rounding a rate 1391 * @rate: the rate which is to be rounded 1392 * 1393 * Takes in a rate as input and rounds it to a rate that the clk can actually 1394 * use which is then returned. If clk doesn't support round_rate operation 1395 * then the parent rate is returned. 1396 */ 1397 long clk_round_rate(struct clk *clk, unsigned long rate) 1398 { 1399 struct clk_rate_request req; 1400 int ret; 1401 1402 if (!clk) 1403 return 0; 1404 1405 clk_prepare_lock(); 1406 1407 if (clk->exclusive_count) 1408 clk_core_rate_unprotect(clk->core); 1409 1410 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1411 req.rate = rate; 1412 1413 ret = clk_core_round_rate_nolock(clk->core, &req); 1414 1415 if (clk->exclusive_count) 1416 clk_core_rate_protect(clk->core); 1417 1418 clk_prepare_unlock(); 1419 1420 if (ret) 1421 return ret; 1422 1423 return req.rate; 1424 } 1425 EXPORT_SYMBOL_GPL(clk_round_rate); 1426 1427 /** 1428 * __clk_notify - call clk notifier chain 1429 * @core: clk that is changing rate 1430 * @msg: clk notifier type (see include/linux/clk.h) 1431 * @old_rate: old clk rate 1432 * @new_rate: new clk rate 1433 * 1434 * Triggers a notifier call chain on the clk rate-change notification 1435 * for 'clk'. Passes a pointer to the struct clk and the previous 1436 * and current rates to the notifier callback. Intended to be called by 1437 * internal clock code only. Returns NOTIFY_DONE from the last driver 1438 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1439 * a driver returns that. 1440 */ 1441 static int __clk_notify(struct clk_core *core, unsigned long msg, 1442 unsigned long old_rate, unsigned long new_rate) 1443 { 1444 struct clk_notifier *cn; 1445 struct clk_notifier_data cnd; 1446 int ret = NOTIFY_DONE; 1447 1448 cnd.old_rate = old_rate; 1449 cnd.new_rate = new_rate; 1450 1451 list_for_each_entry(cn, &clk_notifier_list, node) { 1452 if (cn->clk->core == core) { 1453 cnd.clk = cn->clk; 1454 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1455 &cnd); 1456 if (ret & NOTIFY_STOP_MASK) 1457 return ret; 1458 } 1459 } 1460 1461 return ret; 1462 } 1463 1464 /** 1465 * __clk_recalc_accuracies 1466 * @core: first clk in the subtree 1467 * 1468 * Walks the subtree of clks starting with clk and recalculates accuracies as 1469 * it goes. Note that if a clk does not implement the .recalc_accuracy 1470 * callback then it is assumed that the clock will take on the accuracy of its 1471 * parent. 1472 */ 1473 static void __clk_recalc_accuracies(struct clk_core *core) 1474 { 1475 unsigned long parent_accuracy = 0; 1476 struct clk_core *child; 1477 1478 lockdep_assert_held(&prepare_lock); 1479 1480 if (core->parent) 1481 parent_accuracy = core->parent->accuracy; 1482 1483 if (core->ops->recalc_accuracy) 1484 core->accuracy = core->ops->recalc_accuracy(core->hw, 1485 parent_accuracy); 1486 else 1487 core->accuracy = parent_accuracy; 1488 1489 hlist_for_each_entry(child, &core->children, child_node) 1490 __clk_recalc_accuracies(child); 1491 } 1492 1493 static long clk_core_get_accuracy(struct clk_core *core) 1494 { 1495 unsigned long accuracy; 1496 1497 clk_prepare_lock(); 1498 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1499 __clk_recalc_accuracies(core); 1500 1501 accuracy = __clk_get_accuracy(core); 1502 clk_prepare_unlock(); 1503 1504 return accuracy; 1505 } 1506 1507 /** 1508 * clk_get_accuracy - return the accuracy of clk 1509 * @clk: the clk whose accuracy is being returned 1510 * 1511 * Simply returns the cached accuracy of the clk, unless 1512 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1513 * issued. 1514 * If clk is NULL then returns 0. 1515 */ 1516 long clk_get_accuracy(struct clk *clk) 1517 { 1518 if (!clk) 1519 return 0; 1520 1521 return clk_core_get_accuracy(clk->core); 1522 } 1523 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1524 1525 static unsigned long clk_recalc(struct clk_core *core, 1526 unsigned long parent_rate) 1527 { 1528 unsigned long rate = parent_rate; 1529 1530 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1531 rate = core->ops->recalc_rate(core->hw, parent_rate); 1532 clk_pm_runtime_put(core); 1533 } 1534 return rate; 1535 } 1536 1537 /** 1538 * __clk_recalc_rates 1539 * @core: first clk in the subtree 1540 * @msg: notification type (see include/linux/clk.h) 1541 * 1542 * Walks the subtree of clks starting with clk and recalculates rates as it 1543 * goes. Note that if a clk does not implement the .recalc_rate callback then 1544 * it is assumed that the clock will take on the rate of its parent. 1545 * 1546 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1547 * if necessary. 1548 */ 1549 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1550 { 1551 unsigned long old_rate; 1552 unsigned long parent_rate = 0; 1553 struct clk_core *child; 1554 1555 lockdep_assert_held(&prepare_lock); 1556 1557 old_rate = core->rate; 1558 1559 if (core->parent) 1560 parent_rate = core->parent->rate; 1561 1562 core->rate = clk_recalc(core, parent_rate); 1563 1564 /* 1565 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1566 * & ABORT_RATE_CHANGE notifiers 1567 */ 1568 if (core->notifier_count && msg) 1569 __clk_notify(core, msg, old_rate, core->rate); 1570 1571 hlist_for_each_entry(child, &core->children, child_node) 1572 __clk_recalc_rates(child, msg); 1573 } 1574 1575 static unsigned long clk_core_get_rate(struct clk_core *core) 1576 { 1577 unsigned long rate; 1578 1579 clk_prepare_lock(); 1580 1581 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1582 __clk_recalc_rates(core, 0); 1583 1584 rate = clk_core_get_rate_nolock(core); 1585 clk_prepare_unlock(); 1586 1587 return rate; 1588 } 1589 1590 /** 1591 * clk_get_rate - return the rate of clk 1592 * @clk: the clk whose rate is being returned 1593 * 1594 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1595 * is set, which means a recalc_rate will be issued. 1596 * If clk is NULL then returns 0. 1597 */ 1598 unsigned long clk_get_rate(struct clk *clk) 1599 { 1600 if (!clk) 1601 return 0; 1602 1603 return clk_core_get_rate(clk->core); 1604 } 1605 EXPORT_SYMBOL_GPL(clk_get_rate); 1606 1607 static int clk_fetch_parent_index(struct clk_core *core, 1608 struct clk_core *parent) 1609 { 1610 int i; 1611 1612 if (!parent) 1613 return -EINVAL; 1614 1615 for (i = 0; i < core->num_parents; i++) { 1616 /* Found it first try! */ 1617 if (core->parents[i].core == parent) 1618 return i; 1619 1620 /* Something else is here, so keep looking */ 1621 if (core->parents[i].core) 1622 continue; 1623 1624 /* Maybe core hasn't been cached but the hw is all we know? */ 1625 if (core->parents[i].hw) { 1626 if (core->parents[i].hw == parent->hw) 1627 break; 1628 1629 /* Didn't match, but we're expecting a clk_hw */ 1630 continue; 1631 } 1632 1633 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1634 if (parent == clk_core_get(core, i)) 1635 break; 1636 1637 /* Fallback to comparing globally unique names */ 1638 if (!strcmp(parent->name, core->parents[i].name)) 1639 break; 1640 } 1641 1642 if (i == core->num_parents) 1643 return -EINVAL; 1644 1645 core->parents[i].core = parent; 1646 return i; 1647 } 1648 1649 /* 1650 * Update the orphan status of @core and all its children. 1651 */ 1652 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1653 { 1654 struct clk_core *child; 1655 1656 core->orphan = is_orphan; 1657 1658 hlist_for_each_entry(child, &core->children, child_node) 1659 clk_core_update_orphan_status(child, is_orphan); 1660 } 1661 1662 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1663 { 1664 bool was_orphan = core->orphan; 1665 1666 hlist_del(&core->child_node); 1667 1668 if (new_parent) { 1669 bool becomes_orphan = new_parent->orphan; 1670 1671 /* avoid duplicate POST_RATE_CHANGE notifications */ 1672 if (new_parent->new_child == core) 1673 new_parent->new_child = NULL; 1674 1675 hlist_add_head(&core->child_node, &new_parent->children); 1676 1677 if (was_orphan != becomes_orphan) 1678 clk_core_update_orphan_status(core, becomes_orphan); 1679 } else { 1680 hlist_add_head(&core->child_node, &clk_orphan_list); 1681 if (!was_orphan) 1682 clk_core_update_orphan_status(core, true); 1683 } 1684 1685 core->parent = new_parent; 1686 } 1687 1688 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1689 struct clk_core *parent) 1690 { 1691 unsigned long flags; 1692 struct clk_core *old_parent = core->parent; 1693 1694 /* 1695 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1696 * 1697 * 2. Migrate prepare state between parents and prevent race with 1698 * clk_enable(). 1699 * 1700 * If the clock is not prepared, then a race with 1701 * clk_enable/disable() is impossible since we already have the 1702 * prepare lock (future calls to clk_enable() need to be preceded by 1703 * a clk_prepare()). 1704 * 1705 * If the clock is prepared, migrate the prepared state to the new 1706 * parent and also protect against a race with clk_enable() by 1707 * forcing the clock and the new parent on. This ensures that all 1708 * future calls to clk_enable() are practically NOPs with respect to 1709 * hardware and software states. 1710 * 1711 * See also: Comment for clk_set_parent() below. 1712 */ 1713 1714 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1715 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1716 clk_core_prepare_enable(old_parent); 1717 clk_core_prepare_enable(parent); 1718 } 1719 1720 /* migrate prepare count if > 0 */ 1721 if (core->prepare_count) { 1722 clk_core_prepare_enable(parent); 1723 clk_core_enable_lock(core); 1724 } 1725 1726 /* update the clk tree topology */ 1727 flags = clk_enable_lock(); 1728 clk_reparent(core, parent); 1729 clk_enable_unlock(flags); 1730 1731 return old_parent; 1732 } 1733 1734 static void __clk_set_parent_after(struct clk_core *core, 1735 struct clk_core *parent, 1736 struct clk_core *old_parent) 1737 { 1738 /* 1739 * Finish the migration of prepare state and undo the changes done 1740 * for preventing a race with clk_enable(). 1741 */ 1742 if (core->prepare_count) { 1743 clk_core_disable_lock(core); 1744 clk_core_disable_unprepare(old_parent); 1745 } 1746 1747 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1748 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1749 clk_core_disable_unprepare(parent); 1750 clk_core_disable_unprepare(old_parent); 1751 } 1752 } 1753 1754 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1755 u8 p_index) 1756 { 1757 unsigned long flags; 1758 int ret = 0; 1759 struct clk_core *old_parent; 1760 1761 old_parent = __clk_set_parent_before(core, parent); 1762 1763 trace_clk_set_parent(core, parent); 1764 1765 /* change clock input source */ 1766 if (parent && core->ops->set_parent) 1767 ret = core->ops->set_parent(core->hw, p_index); 1768 1769 trace_clk_set_parent_complete(core, parent); 1770 1771 if (ret) { 1772 flags = clk_enable_lock(); 1773 clk_reparent(core, old_parent); 1774 clk_enable_unlock(flags); 1775 __clk_set_parent_after(core, old_parent, parent); 1776 1777 return ret; 1778 } 1779 1780 __clk_set_parent_after(core, parent, old_parent); 1781 1782 return 0; 1783 } 1784 1785 /** 1786 * __clk_speculate_rates 1787 * @core: first clk in the subtree 1788 * @parent_rate: the "future" rate of clk's parent 1789 * 1790 * Walks the subtree of clks starting with clk, speculating rates as it 1791 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1792 * 1793 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1794 * pre-rate change notifications and returns early if no clks in the 1795 * subtree have subscribed to the notifications. Note that if a clk does not 1796 * implement the .recalc_rate callback then it is assumed that the clock will 1797 * take on the rate of its parent. 1798 */ 1799 static int __clk_speculate_rates(struct clk_core *core, 1800 unsigned long parent_rate) 1801 { 1802 struct clk_core *child; 1803 unsigned long new_rate; 1804 int ret = NOTIFY_DONE; 1805 1806 lockdep_assert_held(&prepare_lock); 1807 1808 new_rate = clk_recalc(core, parent_rate); 1809 1810 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1811 if (core->notifier_count) 1812 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1813 1814 if (ret & NOTIFY_STOP_MASK) { 1815 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1816 __func__, core->name, ret); 1817 goto out; 1818 } 1819 1820 hlist_for_each_entry(child, &core->children, child_node) { 1821 ret = __clk_speculate_rates(child, new_rate); 1822 if (ret & NOTIFY_STOP_MASK) 1823 break; 1824 } 1825 1826 out: 1827 return ret; 1828 } 1829 1830 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1831 struct clk_core *new_parent, u8 p_index) 1832 { 1833 struct clk_core *child; 1834 1835 core->new_rate = new_rate; 1836 core->new_parent = new_parent; 1837 core->new_parent_index = p_index; 1838 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1839 core->new_child = NULL; 1840 if (new_parent && new_parent != core->parent) 1841 new_parent->new_child = core; 1842 1843 hlist_for_each_entry(child, &core->children, child_node) { 1844 child->new_rate = clk_recalc(child, new_rate); 1845 clk_calc_subtree(child, child->new_rate, NULL, 0); 1846 } 1847 } 1848 1849 /* 1850 * calculate the new rates returning the topmost clock that has to be 1851 * changed. 1852 */ 1853 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1854 unsigned long rate) 1855 { 1856 struct clk_core *top = core; 1857 struct clk_core *old_parent, *parent; 1858 unsigned long best_parent_rate = 0; 1859 unsigned long new_rate; 1860 unsigned long min_rate; 1861 unsigned long max_rate; 1862 int p_index = 0; 1863 long ret; 1864 1865 /* sanity */ 1866 if (IS_ERR_OR_NULL(core)) 1867 return NULL; 1868 1869 /* save parent rate, if it exists */ 1870 parent = old_parent = core->parent; 1871 if (parent) 1872 best_parent_rate = parent->rate; 1873 1874 clk_core_get_boundaries(core, &min_rate, &max_rate); 1875 1876 /* find the closest rate and parent clk/rate */ 1877 if (clk_core_can_round(core)) { 1878 struct clk_rate_request req; 1879 1880 req.rate = rate; 1881 req.min_rate = min_rate; 1882 req.max_rate = max_rate; 1883 1884 clk_core_init_rate_req(core, &req); 1885 1886 ret = clk_core_determine_round_nolock(core, &req); 1887 if (ret < 0) 1888 return NULL; 1889 1890 best_parent_rate = req.best_parent_rate; 1891 new_rate = req.rate; 1892 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1893 1894 if (new_rate < min_rate || new_rate > max_rate) 1895 return NULL; 1896 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1897 /* pass-through clock without adjustable parent */ 1898 core->new_rate = core->rate; 1899 return NULL; 1900 } else { 1901 /* pass-through clock with adjustable parent */ 1902 top = clk_calc_new_rates(parent, rate); 1903 new_rate = parent->new_rate; 1904 goto out; 1905 } 1906 1907 /* some clocks must be gated to change parent */ 1908 if (parent != old_parent && 1909 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1910 pr_debug("%s: %s not gated but wants to reparent\n", 1911 __func__, core->name); 1912 return NULL; 1913 } 1914 1915 /* try finding the new parent index */ 1916 if (parent && core->num_parents > 1) { 1917 p_index = clk_fetch_parent_index(core, parent); 1918 if (p_index < 0) { 1919 pr_debug("%s: clk %s can not be parent of clk %s\n", 1920 __func__, parent->name, core->name); 1921 return NULL; 1922 } 1923 } 1924 1925 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1926 best_parent_rate != parent->rate) 1927 top = clk_calc_new_rates(parent, best_parent_rate); 1928 1929 out: 1930 clk_calc_subtree(core, new_rate, parent, p_index); 1931 1932 return top; 1933 } 1934 1935 /* 1936 * Notify about rate changes in a subtree. Always walk down the whole tree 1937 * so that in case of an error we can walk down the whole tree again and 1938 * abort the change. 1939 */ 1940 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1941 unsigned long event) 1942 { 1943 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1944 int ret = NOTIFY_DONE; 1945 1946 if (core->rate == core->new_rate) 1947 return NULL; 1948 1949 if (core->notifier_count) { 1950 ret = __clk_notify(core, event, core->rate, core->new_rate); 1951 if (ret & NOTIFY_STOP_MASK) 1952 fail_clk = core; 1953 } 1954 1955 hlist_for_each_entry(child, &core->children, child_node) { 1956 /* Skip children who will be reparented to another clock */ 1957 if (child->new_parent && child->new_parent != core) 1958 continue; 1959 tmp_clk = clk_propagate_rate_change(child, event); 1960 if (tmp_clk) 1961 fail_clk = tmp_clk; 1962 } 1963 1964 /* handle the new child who might not be in core->children yet */ 1965 if (core->new_child) { 1966 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1967 if (tmp_clk) 1968 fail_clk = tmp_clk; 1969 } 1970 1971 return fail_clk; 1972 } 1973 1974 /* 1975 * walk down a subtree and set the new rates notifying the rate 1976 * change on the way 1977 */ 1978 static void clk_change_rate(struct clk_core *core) 1979 { 1980 struct clk_core *child; 1981 struct hlist_node *tmp; 1982 unsigned long old_rate; 1983 unsigned long best_parent_rate = 0; 1984 bool skip_set_rate = false; 1985 struct clk_core *old_parent; 1986 struct clk_core *parent = NULL; 1987 1988 old_rate = core->rate; 1989 1990 if (core->new_parent) { 1991 parent = core->new_parent; 1992 best_parent_rate = core->new_parent->rate; 1993 } else if (core->parent) { 1994 parent = core->parent; 1995 best_parent_rate = core->parent->rate; 1996 } 1997 1998 if (clk_pm_runtime_get(core)) 1999 return; 2000 2001 if (core->flags & CLK_SET_RATE_UNGATE) { 2002 unsigned long flags; 2003 2004 clk_core_prepare(core); 2005 flags = clk_enable_lock(); 2006 clk_core_enable(core); 2007 clk_enable_unlock(flags); 2008 } 2009 2010 if (core->new_parent && core->new_parent != core->parent) { 2011 old_parent = __clk_set_parent_before(core, core->new_parent); 2012 trace_clk_set_parent(core, core->new_parent); 2013 2014 if (core->ops->set_rate_and_parent) { 2015 skip_set_rate = true; 2016 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2017 best_parent_rate, 2018 core->new_parent_index); 2019 } else if (core->ops->set_parent) { 2020 core->ops->set_parent(core->hw, core->new_parent_index); 2021 } 2022 2023 trace_clk_set_parent_complete(core, core->new_parent); 2024 __clk_set_parent_after(core, core->new_parent, old_parent); 2025 } 2026 2027 if (core->flags & CLK_OPS_PARENT_ENABLE) 2028 clk_core_prepare_enable(parent); 2029 2030 trace_clk_set_rate(core, core->new_rate); 2031 2032 if (!skip_set_rate && core->ops->set_rate) 2033 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2034 2035 trace_clk_set_rate_complete(core, core->new_rate); 2036 2037 core->rate = clk_recalc(core, best_parent_rate); 2038 2039 if (core->flags & CLK_SET_RATE_UNGATE) { 2040 unsigned long flags; 2041 2042 flags = clk_enable_lock(); 2043 clk_core_disable(core); 2044 clk_enable_unlock(flags); 2045 clk_core_unprepare(core); 2046 } 2047 2048 if (core->flags & CLK_OPS_PARENT_ENABLE) 2049 clk_core_disable_unprepare(parent); 2050 2051 if (core->notifier_count && old_rate != core->rate) 2052 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2053 2054 if (core->flags & CLK_RECALC_NEW_RATES) 2055 (void)clk_calc_new_rates(core, core->new_rate); 2056 2057 /* 2058 * Use safe iteration, as change_rate can actually swap parents 2059 * for certain clock types. 2060 */ 2061 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2062 /* Skip children who will be reparented to another clock */ 2063 if (child->new_parent && child->new_parent != core) 2064 continue; 2065 clk_change_rate(child); 2066 } 2067 2068 /* handle the new child who might not be in core->children yet */ 2069 if (core->new_child) 2070 clk_change_rate(core->new_child); 2071 2072 clk_pm_runtime_put(core); 2073 } 2074 2075 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2076 unsigned long req_rate) 2077 { 2078 int ret, cnt; 2079 struct clk_rate_request req; 2080 2081 lockdep_assert_held(&prepare_lock); 2082 2083 if (!core) 2084 return 0; 2085 2086 /* simulate what the rate would be if it could be freely set */ 2087 cnt = clk_core_rate_nuke_protect(core); 2088 if (cnt < 0) 2089 return cnt; 2090 2091 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2092 req.rate = req_rate; 2093 2094 ret = clk_core_round_rate_nolock(core, &req); 2095 2096 /* restore the protection */ 2097 clk_core_rate_restore_protect(core, cnt); 2098 2099 return ret ? 0 : req.rate; 2100 } 2101 2102 static int clk_core_set_rate_nolock(struct clk_core *core, 2103 unsigned long req_rate) 2104 { 2105 struct clk_core *top, *fail_clk; 2106 unsigned long rate; 2107 int ret = 0; 2108 2109 if (!core) 2110 return 0; 2111 2112 rate = clk_core_req_round_rate_nolock(core, req_rate); 2113 2114 /* bail early if nothing to do */ 2115 if (rate == clk_core_get_rate_nolock(core)) 2116 return 0; 2117 2118 /* fail on a direct rate set of a protected provider */ 2119 if (clk_core_rate_is_protected(core)) 2120 return -EBUSY; 2121 2122 /* calculate new rates and get the topmost changed clock */ 2123 top = clk_calc_new_rates(core, req_rate); 2124 if (!top) 2125 return -EINVAL; 2126 2127 ret = clk_pm_runtime_get(core); 2128 if (ret) 2129 return ret; 2130 2131 /* notify that we are about to change rates */ 2132 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2133 if (fail_clk) { 2134 pr_debug("%s: failed to set %s rate\n", __func__, 2135 fail_clk->name); 2136 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2137 ret = -EBUSY; 2138 goto err; 2139 } 2140 2141 /* change the rates */ 2142 clk_change_rate(top); 2143 2144 core->req_rate = req_rate; 2145 err: 2146 clk_pm_runtime_put(core); 2147 2148 return ret; 2149 } 2150 2151 /** 2152 * clk_set_rate - specify a new rate for clk 2153 * @clk: the clk whose rate is being changed 2154 * @rate: the new rate for clk 2155 * 2156 * In the simplest case clk_set_rate will only adjust the rate of clk. 2157 * 2158 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2159 * propagate up to clk's parent; whether or not this happens depends on the 2160 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2161 * after calling .round_rate then upstream parent propagation is ignored. If 2162 * *parent_rate comes back with a new rate for clk's parent then we propagate 2163 * up to clk's parent and set its rate. Upward propagation will continue 2164 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2165 * .round_rate stops requesting changes to clk's parent_rate. 2166 * 2167 * Rate changes are accomplished via tree traversal that also recalculates the 2168 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2169 * 2170 * Returns 0 on success, -EERROR otherwise. 2171 */ 2172 int clk_set_rate(struct clk *clk, unsigned long rate) 2173 { 2174 int ret; 2175 2176 if (!clk) 2177 return 0; 2178 2179 /* prevent racing with updates to the clock topology */ 2180 clk_prepare_lock(); 2181 2182 if (clk->exclusive_count) 2183 clk_core_rate_unprotect(clk->core); 2184 2185 ret = clk_core_set_rate_nolock(clk->core, rate); 2186 2187 if (clk->exclusive_count) 2188 clk_core_rate_protect(clk->core); 2189 2190 clk_prepare_unlock(); 2191 2192 return ret; 2193 } 2194 EXPORT_SYMBOL_GPL(clk_set_rate); 2195 2196 /** 2197 * clk_set_rate_exclusive - specify a new rate get exclusive control 2198 * @clk: the clk whose rate is being changed 2199 * @rate: the new rate for clk 2200 * 2201 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2202 * within a critical section 2203 * 2204 * This can be used initially to ensure that at least 1 consumer is 2205 * statisfied when several consumers are competing for exclusivity over the 2206 * same clock provider. 2207 * 2208 * The exclusivity is not applied if setting the rate failed. 2209 * 2210 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2211 * clk_rate_exclusive_put(). 2212 * 2213 * Returns 0 on success, -EERROR otherwise. 2214 */ 2215 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2216 { 2217 int ret; 2218 2219 if (!clk) 2220 return 0; 2221 2222 /* prevent racing with updates to the clock topology */ 2223 clk_prepare_lock(); 2224 2225 /* 2226 * The temporary protection removal is not here, on purpose 2227 * This function is meant to be used instead of clk_rate_protect, 2228 * so before the consumer code path protect the clock provider 2229 */ 2230 2231 ret = clk_core_set_rate_nolock(clk->core, rate); 2232 if (!ret) { 2233 clk_core_rate_protect(clk->core); 2234 clk->exclusive_count++; 2235 } 2236 2237 clk_prepare_unlock(); 2238 2239 return ret; 2240 } 2241 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2242 2243 /** 2244 * clk_set_rate_range - set a rate range for a clock source 2245 * @clk: clock source 2246 * @min: desired minimum clock rate in Hz, inclusive 2247 * @max: desired maximum clock rate in Hz, inclusive 2248 * 2249 * Returns success (0) or negative errno. 2250 */ 2251 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2252 { 2253 int ret = 0; 2254 unsigned long old_min, old_max, rate; 2255 2256 if (!clk) 2257 return 0; 2258 2259 if (min > max) { 2260 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2261 __func__, clk->core->name, clk->dev_id, clk->con_id, 2262 min, max); 2263 return -EINVAL; 2264 } 2265 2266 clk_prepare_lock(); 2267 2268 if (clk->exclusive_count) 2269 clk_core_rate_unprotect(clk->core); 2270 2271 /* Save the current values in case we need to rollback the change */ 2272 old_min = clk->min_rate; 2273 old_max = clk->max_rate; 2274 clk->min_rate = min; 2275 clk->max_rate = max; 2276 2277 rate = clk_core_get_rate_nolock(clk->core); 2278 if (rate < min || rate > max) { 2279 /* 2280 * FIXME: 2281 * We are in bit of trouble here, current rate is outside the 2282 * the requested range. We are going try to request appropriate 2283 * range boundary but there is a catch. It may fail for the 2284 * usual reason (clock broken, clock protected, etc) but also 2285 * because: 2286 * - round_rate() was not favorable and fell on the wrong 2287 * side of the boundary 2288 * - the determine_rate() callback does not really check for 2289 * this corner case when determining the rate 2290 */ 2291 2292 if (rate < min) 2293 rate = min; 2294 else 2295 rate = max; 2296 2297 ret = clk_core_set_rate_nolock(clk->core, rate); 2298 if (ret) { 2299 /* rollback the changes */ 2300 clk->min_rate = old_min; 2301 clk->max_rate = old_max; 2302 } 2303 } 2304 2305 if (clk->exclusive_count) 2306 clk_core_rate_protect(clk->core); 2307 2308 clk_prepare_unlock(); 2309 2310 return ret; 2311 } 2312 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2313 2314 /** 2315 * clk_set_min_rate - set a minimum clock rate for a clock source 2316 * @clk: clock source 2317 * @rate: desired minimum clock rate in Hz, inclusive 2318 * 2319 * Returns success (0) or negative errno. 2320 */ 2321 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2322 { 2323 if (!clk) 2324 return 0; 2325 2326 return clk_set_rate_range(clk, rate, clk->max_rate); 2327 } 2328 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2329 2330 /** 2331 * clk_set_max_rate - set a maximum clock rate for a clock source 2332 * @clk: clock source 2333 * @rate: desired maximum clock rate in Hz, inclusive 2334 * 2335 * Returns success (0) or negative errno. 2336 */ 2337 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2338 { 2339 if (!clk) 2340 return 0; 2341 2342 return clk_set_rate_range(clk, clk->min_rate, rate); 2343 } 2344 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2345 2346 /** 2347 * clk_get_parent - return the parent of a clk 2348 * @clk: the clk whose parent gets returned 2349 * 2350 * Simply returns clk->parent. Returns NULL if clk is NULL. 2351 */ 2352 struct clk *clk_get_parent(struct clk *clk) 2353 { 2354 struct clk *parent; 2355 2356 if (!clk) 2357 return NULL; 2358 2359 clk_prepare_lock(); 2360 /* TODO: Create a per-user clk and change callers to call clk_put */ 2361 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2362 clk_prepare_unlock(); 2363 2364 return parent; 2365 } 2366 EXPORT_SYMBOL_GPL(clk_get_parent); 2367 2368 static struct clk_core *__clk_init_parent(struct clk_core *core) 2369 { 2370 u8 index = 0; 2371 2372 if (core->num_parents > 1 && core->ops->get_parent) 2373 index = core->ops->get_parent(core->hw); 2374 2375 return clk_core_get_parent_by_index(core, index); 2376 } 2377 2378 static void clk_core_reparent(struct clk_core *core, 2379 struct clk_core *new_parent) 2380 { 2381 clk_reparent(core, new_parent); 2382 __clk_recalc_accuracies(core); 2383 __clk_recalc_rates(core, POST_RATE_CHANGE); 2384 } 2385 2386 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2387 { 2388 if (!hw) 2389 return; 2390 2391 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2392 } 2393 2394 /** 2395 * clk_has_parent - check if a clock is a possible parent for another 2396 * @clk: clock source 2397 * @parent: parent clock source 2398 * 2399 * This function can be used in drivers that need to check that a clock can be 2400 * the parent of another without actually changing the parent. 2401 * 2402 * Returns true if @parent is a possible parent for @clk, false otherwise. 2403 */ 2404 bool clk_has_parent(struct clk *clk, struct clk *parent) 2405 { 2406 struct clk_core *core, *parent_core; 2407 int i; 2408 2409 /* NULL clocks should be nops, so return success if either is NULL. */ 2410 if (!clk || !parent) 2411 return true; 2412 2413 core = clk->core; 2414 parent_core = parent->core; 2415 2416 /* Optimize for the case where the parent is already the parent. */ 2417 if (core->parent == parent_core) 2418 return true; 2419 2420 for (i = 0; i < core->num_parents; i++) 2421 if (!strcmp(core->parents[i].name, parent_core->name)) 2422 return true; 2423 2424 return false; 2425 } 2426 EXPORT_SYMBOL_GPL(clk_has_parent); 2427 2428 static int clk_core_set_parent_nolock(struct clk_core *core, 2429 struct clk_core *parent) 2430 { 2431 int ret = 0; 2432 int p_index = 0; 2433 unsigned long p_rate = 0; 2434 2435 lockdep_assert_held(&prepare_lock); 2436 2437 if (!core) 2438 return 0; 2439 2440 if (core->parent == parent) 2441 return 0; 2442 2443 /* verify ops for for multi-parent clks */ 2444 if (core->num_parents > 1 && !core->ops->set_parent) 2445 return -EPERM; 2446 2447 /* check that we are allowed to re-parent if the clock is in use */ 2448 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2449 return -EBUSY; 2450 2451 if (clk_core_rate_is_protected(core)) 2452 return -EBUSY; 2453 2454 /* try finding the new parent index */ 2455 if (parent) { 2456 p_index = clk_fetch_parent_index(core, parent); 2457 if (p_index < 0) { 2458 pr_debug("%s: clk %s can not be parent of clk %s\n", 2459 __func__, parent->name, core->name); 2460 return p_index; 2461 } 2462 p_rate = parent->rate; 2463 } 2464 2465 ret = clk_pm_runtime_get(core); 2466 if (ret) 2467 return ret; 2468 2469 /* propagate PRE_RATE_CHANGE notifications */ 2470 ret = __clk_speculate_rates(core, p_rate); 2471 2472 /* abort if a driver objects */ 2473 if (ret & NOTIFY_STOP_MASK) 2474 goto runtime_put; 2475 2476 /* do the re-parent */ 2477 ret = __clk_set_parent(core, parent, p_index); 2478 2479 /* propagate rate an accuracy recalculation accordingly */ 2480 if (ret) { 2481 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2482 } else { 2483 __clk_recalc_rates(core, POST_RATE_CHANGE); 2484 __clk_recalc_accuracies(core); 2485 } 2486 2487 runtime_put: 2488 clk_pm_runtime_put(core); 2489 2490 return ret; 2491 } 2492 2493 /** 2494 * clk_set_parent - switch the parent of a mux clk 2495 * @clk: the mux clk whose input we are switching 2496 * @parent: the new input to clk 2497 * 2498 * Re-parent clk to use parent as its new input source. If clk is in 2499 * prepared state, the clk will get enabled for the duration of this call. If 2500 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2501 * that, the reparenting is glitchy in hardware, etc), use the 2502 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2503 * 2504 * After successfully changing clk's parent clk_set_parent will update the 2505 * clk topology, sysfs topology and propagate rate recalculation via 2506 * __clk_recalc_rates. 2507 * 2508 * Returns 0 on success, -EERROR otherwise. 2509 */ 2510 int clk_set_parent(struct clk *clk, struct clk *parent) 2511 { 2512 int ret; 2513 2514 if (!clk) 2515 return 0; 2516 2517 clk_prepare_lock(); 2518 2519 if (clk->exclusive_count) 2520 clk_core_rate_unprotect(clk->core); 2521 2522 ret = clk_core_set_parent_nolock(clk->core, 2523 parent ? parent->core : NULL); 2524 2525 if (clk->exclusive_count) 2526 clk_core_rate_protect(clk->core); 2527 2528 clk_prepare_unlock(); 2529 2530 return ret; 2531 } 2532 EXPORT_SYMBOL_GPL(clk_set_parent); 2533 2534 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2535 { 2536 int ret = -EINVAL; 2537 2538 lockdep_assert_held(&prepare_lock); 2539 2540 if (!core) 2541 return 0; 2542 2543 if (clk_core_rate_is_protected(core)) 2544 return -EBUSY; 2545 2546 trace_clk_set_phase(core, degrees); 2547 2548 if (core->ops->set_phase) { 2549 ret = core->ops->set_phase(core->hw, degrees); 2550 if (!ret) 2551 core->phase = degrees; 2552 } 2553 2554 trace_clk_set_phase_complete(core, degrees); 2555 2556 return ret; 2557 } 2558 2559 /** 2560 * clk_set_phase - adjust the phase shift of a clock signal 2561 * @clk: clock signal source 2562 * @degrees: number of degrees the signal is shifted 2563 * 2564 * Shifts the phase of a clock signal by the specified 2565 * degrees. Returns 0 on success, -EERROR otherwise. 2566 * 2567 * This function makes no distinction about the input or reference 2568 * signal that we adjust the clock signal phase against. For example 2569 * phase locked-loop clock signal generators we may shift phase with 2570 * respect to feedback clock signal input, but for other cases the 2571 * clock phase may be shifted with respect to some other, unspecified 2572 * signal. 2573 * 2574 * Additionally the concept of phase shift does not propagate through 2575 * the clock tree hierarchy, which sets it apart from clock rates and 2576 * clock accuracy. A parent clock phase attribute does not have an 2577 * impact on the phase attribute of a child clock. 2578 */ 2579 int clk_set_phase(struct clk *clk, int degrees) 2580 { 2581 int ret; 2582 2583 if (!clk) 2584 return 0; 2585 2586 /* sanity check degrees */ 2587 degrees %= 360; 2588 if (degrees < 0) 2589 degrees += 360; 2590 2591 clk_prepare_lock(); 2592 2593 if (clk->exclusive_count) 2594 clk_core_rate_unprotect(clk->core); 2595 2596 ret = clk_core_set_phase_nolock(clk->core, degrees); 2597 2598 if (clk->exclusive_count) 2599 clk_core_rate_protect(clk->core); 2600 2601 clk_prepare_unlock(); 2602 2603 return ret; 2604 } 2605 EXPORT_SYMBOL_GPL(clk_set_phase); 2606 2607 static int clk_core_get_phase(struct clk_core *core) 2608 { 2609 int ret; 2610 2611 clk_prepare_lock(); 2612 /* Always try to update cached phase if possible */ 2613 if (core->ops->get_phase) 2614 core->phase = core->ops->get_phase(core->hw); 2615 ret = core->phase; 2616 clk_prepare_unlock(); 2617 2618 return ret; 2619 } 2620 2621 /** 2622 * clk_get_phase - return the phase shift of a clock signal 2623 * @clk: clock signal source 2624 * 2625 * Returns the phase shift of a clock node in degrees, otherwise returns 2626 * -EERROR. 2627 */ 2628 int clk_get_phase(struct clk *clk) 2629 { 2630 if (!clk) 2631 return 0; 2632 2633 return clk_core_get_phase(clk->core); 2634 } 2635 EXPORT_SYMBOL_GPL(clk_get_phase); 2636 2637 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2638 { 2639 /* Assume a default value of 50% */ 2640 core->duty.num = 1; 2641 core->duty.den = 2; 2642 } 2643 2644 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2645 2646 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2647 { 2648 struct clk_duty *duty = &core->duty; 2649 int ret = 0; 2650 2651 if (!core->ops->get_duty_cycle) 2652 return clk_core_update_duty_cycle_parent_nolock(core); 2653 2654 ret = core->ops->get_duty_cycle(core->hw, duty); 2655 if (ret) 2656 goto reset; 2657 2658 /* Don't trust the clock provider too much */ 2659 if (duty->den == 0 || duty->num > duty->den) { 2660 ret = -EINVAL; 2661 goto reset; 2662 } 2663 2664 return 0; 2665 2666 reset: 2667 clk_core_reset_duty_cycle_nolock(core); 2668 return ret; 2669 } 2670 2671 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2672 { 2673 int ret = 0; 2674 2675 if (core->parent && 2676 core->flags & CLK_DUTY_CYCLE_PARENT) { 2677 ret = clk_core_update_duty_cycle_nolock(core->parent); 2678 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2679 } else { 2680 clk_core_reset_duty_cycle_nolock(core); 2681 } 2682 2683 return ret; 2684 } 2685 2686 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2687 struct clk_duty *duty); 2688 2689 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2690 struct clk_duty *duty) 2691 { 2692 int ret; 2693 2694 lockdep_assert_held(&prepare_lock); 2695 2696 if (clk_core_rate_is_protected(core)) 2697 return -EBUSY; 2698 2699 trace_clk_set_duty_cycle(core, duty); 2700 2701 if (!core->ops->set_duty_cycle) 2702 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2703 2704 ret = core->ops->set_duty_cycle(core->hw, duty); 2705 if (!ret) 2706 memcpy(&core->duty, duty, sizeof(*duty)); 2707 2708 trace_clk_set_duty_cycle_complete(core, duty); 2709 2710 return ret; 2711 } 2712 2713 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2714 struct clk_duty *duty) 2715 { 2716 int ret = 0; 2717 2718 if (core->parent && 2719 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2720 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2721 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2722 } 2723 2724 return ret; 2725 } 2726 2727 /** 2728 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2729 * @clk: clock signal source 2730 * @num: numerator of the duty cycle ratio to be applied 2731 * @den: denominator of the duty cycle ratio to be applied 2732 * 2733 * Apply the duty cycle ratio if the ratio is valid and the clock can 2734 * perform this operation 2735 * 2736 * Returns (0) on success, a negative errno otherwise. 2737 */ 2738 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2739 { 2740 int ret; 2741 struct clk_duty duty; 2742 2743 if (!clk) 2744 return 0; 2745 2746 /* sanity check the ratio */ 2747 if (den == 0 || num > den) 2748 return -EINVAL; 2749 2750 duty.num = num; 2751 duty.den = den; 2752 2753 clk_prepare_lock(); 2754 2755 if (clk->exclusive_count) 2756 clk_core_rate_unprotect(clk->core); 2757 2758 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2759 2760 if (clk->exclusive_count) 2761 clk_core_rate_protect(clk->core); 2762 2763 clk_prepare_unlock(); 2764 2765 return ret; 2766 } 2767 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2768 2769 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2770 unsigned int scale) 2771 { 2772 struct clk_duty *duty = &core->duty; 2773 int ret; 2774 2775 clk_prepare_lock(); 2776 2777 ret = clk_core_update_duty_cycle_nolock(core); 2778 if (!ret) 2779 ret = mult_frac(scale, duty->num, duty->den); 2780 2781 clk_prepare_unlock(); 2782 2783 return ret; 2784 } 2785 2786 /** 2787 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2788 * @clk: clock signal source 2789 * @scale: scaling factor to be applied to represent the ratio as an integer 2790 * 2791 * Returns the duty cycle ratio of a clock node multiplied by the provided 2792 * scaling factor, or negative errno on error. 2793 */ 2794 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2795 { 2796 if (!clk) 2797 return 0; 2798 2799 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2800 } 2801 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2802 2803 /** 2804 * clk_is_match - check if two clk's point to the same hardware clock 2805 * @p: clk compared against q 2806 * @q: clk compared against p 2807 * 2808 * Returns true if the two struct clk pointers both point to the same hardware 2809 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2810 * share the same struct clk_core object. 2811 * 2812 * Returns false otherwise. Note that two NULL clks are treated as matching. 2813 */ 2814 bool clk_is_match(const struct clk *p, const struct clk *q) 2815 { 2816 /* trivial case: identical struct clk's or both NULL */ 2817 if (p == q) 2818 return true; 2819 2820 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2821 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2822 if (p->core == q->core) 2823 return true; 2824 2825 return false; 2826 } 2827 EXPORT_SYMBOL_GPL(clk_is_match); 2828 2829 /*** debugfs support ***/ 2830 2831 #ifdef CONFIG_DEBUG_FS 2832 #include <linux/debugfs.h> 2833 2834 static struct dentry *rootdir; 2835 static int inited = 0; 2836 static DEFINE_MUTEX(clk_debug_lock); 2837 static HLIST_HEAD(clk_debug_list); 2838 2839 static struct hlist_head *all_lists[] = { 2840 &clk_root_list, 2841 &clk_orphan_list, 2842 NULL, 2843 }; 2844 2845 static struct hlist_head *orphan_list[] = { 2846 &clk_orphan_list, 2847 NULL, 2848 }; 2849 2850 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2851 int level) 2852 { 2853 if (!c) 2854 return; 2855 2856 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2857 level * 3 + 1, "", 2858 30 - level * 3, c->name, 2859 c->enable_count, c->prepare_count, c->protect_count, 2860 clk_core_get_rate(c), clk_core_get_accuracy(c), 2861 clk_core_get_phase(c), 2862 clk_core_get_scaled_duty_cycle(c, 100000)); 2863 } 2864 2865 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2866 int level) 2867 { 2868 struct clk_core *child; 2869 2870 if (!c) 2871 return; 2872 2873 clk_summary_show_one(s, c, level); 2874 2875 hlist_for_each_entry(child, &c->children, child_node) 2876 clk_summary_show_subtree(s, child, level + 1); 2877 } 2878 2879 static int clk_summary_show(struct seq_file *s, void *data) 2880 { 2881 struct clk_core *c; 2882 struct hlist_head **lists = (struct hlist_head **)s->private; 2883 2884 seq_puts(s, " enable prepare protect duty\n"); 2885 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2886 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2887 2888 clk_prepare_lock(); 2889 2890 for (; *lists; lists++) 2891 hlist_for_each_entry(c, *lists, child_node) 2892 clk_summary_show_subtree(s, c, 0); 2893 2894 clk_prepare_unlock(); 2895 2896 return 0; 2897 } 2898 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2899 2900 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2901 { 2902 if (!c) 2903 return; 2904 2905 /* This should be JSON format, i.e. elements separated with a comma */ 2906 seq_printf(s, "\"%s\": { ", c->name); 2907 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2908 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2909 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2910 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2911 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2912 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2913 seq_printf(s, "\"duty_cycle\": %u", 2914 clk_core_get_scaled_duty_cycle(c, 100000)); 2915 } 2916 2917 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2918 { 2919 struct clk_core *child; 2920 2921 if (!c) 2922 return; 2923 2924 clk_dump_one(s, c, level); 2925 2926 hlist_for_each_entry(child, &c->children, child_node) { 2927 seq_putc(s, ','); 2928 clk_dump_subtree(s, child, level + 1); 2929 } 2930 2931 seq_putc(s, '}'); 2932 } 2933 2934 static int clk_dump_show(struct seq_file *s, void *data) 2935 { 2936 struct clk_core *c; 2937 bool first_node = true; 2938 struct hlist_head **lists = (struct hlist_head **)s->private; 2939 2940 seq_putc(s, '{'); 2941 clk_prepare_lock(); 2942 2943 for (; *lists; lists++) { 2944 hlist_for_each_entry(c, *lists, child_node) { 2945 if (!first_node) 2946 seq_putc(s, ','); 2947 first_node = false; 2948 clk_dump_subtree(s, c, 0); 2949 } 2950 } 2951 2952 clk_prepare_unlock(); 2953 2954 seq_puts(s, "}\n"); 2955 return 0; 2956 } 2957 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2958 2959 static const struct { 2960 unsigned long flag; 2961 const char *name; 2962 } clk_flags[] = { 2963 #define ENTRY(f) { f, #f } 2964 ENTRY(CLK_SET_RATE_GATE), 2965 ENTRY(CLK_SET_PARENT_GATE), 2966 ENTRY(CLK_SET_RATE_PARENT), 2967 ENTRY(CLK_IGNORE_UNUSED), 2968 ENTRY(CLK_GET_RATE_NOCACHE), 2969 ENTRY(CLK_SET_RATE_NO_REPARENT), 2970 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2971 ENTRY(CLK_RECALC_NEW_RATES), 2972 ENTRY(CLK_SET_RATE_UNGATE), 2973 ENTRY(CLK_IS_CRITICAL), 2974 ENTRY(CLK_OPS_PARENT_ENABLE), 2975 ENTRY(CLK_DUTY_CYCLE_PARENT), 2976 #undef ENTRY 2977 }; 2978 2979 static int clk_flags_show(struct seq_file *s, void *data) 2980 { 2981 struct clk_core *core = s->private; 2982 unsigned long flags = core->flags; 2983 unsigned int i; 2984 2985 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2986 if (flags & clk_flags[i].flag) { 2987 seq_printf(s, "%s\n", clk_flags[i].name); 2988 flags &= ~clk_flags[i].flag; 2989 } 2990 } 2991 if (flags) { 2992 /* Unknown flags */ 2993 seq_printf(s, "0x%lx\n", flags); 2994 } 2995 2996 return 0; 2997 } 2998 DEFINE_SHOW_ATTRIBUTE(clk_flags); 2999 3000 static int possible_parents_show(struct seq_file *s, void *data) 3001 { 3002 struct clk_core *core = s->private; 3003 int i; 3004 3005 for (i = 0; i < core->num_parents - 1; i++) 3006 seq_printf(s, "%s ", core->parents[i].name); 3007 3008 seq_printf(s, "%s\n", core->parents[i].name); 3009 3010 return 0; 3011 } 3012 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3013 3014 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3015 { 3016 struct clk_core *core = s->private; 3017 struct clk_duty *duty = &core->duty; 3018 3019 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3020 3021 return 0; 3022 } 3023 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3024 3025 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3026 { 3027 struct dentry *root; 3028 3029 if (!core || !pdentry) 3030 return; 3031 3032 root = debugfs_create_dir(core->name, pdentry); 3033 core->dentry = root; 3034 3035 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 3036 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3037 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3038 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3039 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3040 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3041 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3042 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3043 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3044 &clk_duty_cycle_fops); 3045 3046 if (core->num_parents > 1) 3047 debugfs_create_file("clk_possible_parents", 0444, root, core, 3048 &possible_parents_fops); 3049 3050 if (core->ops->debug_init) 3051 core->ops->debug_init(core->hw, core->dentry); 3052 } 3053 3054 /** 3055 * clk_debug_register - add a clk node to the debugfs clk directory 3056 * @core: the clk being added to the debugfs clk directory 3057 * 3058 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3059 * initialized. Otherwise it bails out early since the debugfs clk directory 3060 * will be created lazily by clk_debug_init as part of a late_initcall. 3061 */ 3062 static void clk_debug_register(struct clk_core *core) 3063 { 3064 mutex_lock(&clk_debug_lock); 3065 hlist_add_head(&core->debug_node, &clk_debug_list); 3066 if (inited) 3067 clk_debug_create_one(core, rootdir); 3068 mutex_unlock(&clk_debug_lock); 3069 } 3070 3071 /** 3072 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3073 * @core: the clk being removed from the debugfs clk directory 3074 * 3075 * Dynamically removes a clk and all its child nodes from the 3076 * debugfs clk directory if clk->dentry points to debugfs created by 3077 * clk_debug_register in __clk_core_init. 3078 */ 3079 static void clk_debug_unregister(struct clk_core *core) 3080 { 3081 mutex_lock(&clk_debug_lock); 3082 hlist_del_init(&core->debug_node); 3083 debugfs_remove_recursive(core->dentry); 3084 core->dentry = NULL; 3085 mutex_unlock(&clk_debug_lock); 3086 } 3087 3088 /** 3089 * clk_debug_init - lazily populate the debugfs clk directory 3090 * 3091 * clks are often initialized very early during boot before memory can be 3092 * dynamically allocated and well before debugfs is setup. This function 3093 * populates the debugfs clk directory once at boot-time when we know that 3094 * debugfs is setup. It should only be called once at boot-time, all other clks 3095 * added dynamically will be done so with clk_debug_register. 3096 */ 3097 static int __init clk_debug_init(void) 3098 { 3099 struct clk_core *core; 3100 3101 rootdir = debugfs_create_dir("clk", NULL); 3102 3103 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3104 &clk_summary_fops); 3105 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3106 &clk_dump_fops); 3107 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3108 &clk_summary_fops); 3109 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3110 &clk_dump_fops); 3111 3112 mutex_lock(&clk_debug_lock); 3113 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3114 clk_debug_create_one(core, rootdir); 3115 3116 inited = 1; 3117 mutex_unlock(&clk_debug_lock); 3118 3119 return 0; 3120 } 3121 late_initcall(clk_debug_init); 3122 #else 3123 static inline void clk_debug_register(struct clk_core *core) { } 3124 static inline void clk_debug_reparent(struct clk_core *core, 3125 struct clk_core *new_parent) 3126 { 3127 } 3128 static inline void clk_debug_unregister(struct clk_core *core) 3129 { 3130 } 3131 #endif 3132 3133 /** 3134 * __clk_core_init - initialize the data structures in a struct clk_core 3135 * @core: clk_core being initialized 3136 * 3137 * Initializes the lists in struct clk_core, queries the hardware for the 3138 * parent and rate and sets them both. 3139 */ 3140 static int __clk_core_init(struct clk_core *core) 3141 { 3142 int ret; 3143 struct clk_core *orphan; 3144 struct hlist_node *tmp2; 3145 unsigned long rate; 3146 3147 if (!core) 3148 return -EINVAL; 3149 3150 clk_prepare_lock(); 3151 3152 ret = clk_pm_runtime_get(core); 3153 if (ret) 3154 goto unlock; 3155 3156 /* check to see if a clock with this name is already registered */ 3157 if (clk_core_lookup(core->name)) { 3158 pr_debug("%s: clk %s already initialized\n", 3159 __func__, core->name); 3160 ret = -EEXIST; 3161 goto out; 3162 } 3163 3164 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3165 if (core->ops->set_rate && 3166 !((core->ops->round_rate || core->ops->determine_rate) && 3167 core->ops->recalc_rate)) { 3168 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3169 __func__, core->name); 3170 ret = -EINVAL; 3171 goto out; 3172 } 3173 3174 if (core->ops->set_parent && !core->ops->get_parent) { 3175 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3176 __func__, core->name); 3177 ret = -EINVAL; 3178 goto out; 3179 } 3180 3181 if (core->num_parents > 1 && !core->ops->get_parent) { 3182 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3183 __func__, core->name); 3184 ret = -EINVAL; 3185 goto out; 3186 } 3187 3188 if (core->ops->set_rate_and_parent && 3189 !(core->ops->set_parent && core->ops->set_rate)) { 3190 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3191 __func__, core->name); 3192 ret = -EINVAL; 3193 goto out; 3194 } 3195 3196 core->parent = __clk_init_parent(core); 3197 3198 /* 3199 * Populate core->parent if parent has already been clk_core_init'd. If 3200 * parent has not yet been clk_core_init'd then place clk in the orphan 3201 * list. If clk doesn't have any parents then place it in the root 3202 * clk list. 3203 * 3204 * Every time a new clk is clk_init'd then we walk the list of orphan 3205 * clocks and re-parent any that are children of the clock currently 3206 * being clk_init'd. 3207 */ 3208 if (core->parent) { 3209 hlist_add_head(&core->child_node, 3210 &core->parent->children); 3211 core->orphan = core->parent->orphan; 3212 } else if (!core->num_parents) { 3213 hlist_add_head(&core->child_node, &clk_root_list); 3214 core->orphan = false; 3215 } else { 3216 hlist_add_head(&core->child_node, &clk_orphan_list); 3217 core->orphan = true; 3218 } 3219 3220 /* 3221 * optional platform-specific magic 3222 * 3223 * The .init callback is not used by any of the basic clock types, but 3224 * exists for weird hardware that must perform initialization magic. 3225 * Please consider other ways of solving initialization problems before 3226 * using this callback, as its use is discouraged. 3227 */ 3228 if (core->ops->init) 3229 core->ops->init(core->hw); 3230 3231 /* 3232 * Set clk's accuracy. The preferred method is to use 3233 * .recalc_accuracy. For simple clocks and lazy developers the default 3234 * fallback is to use the parent's accuracy. If a clock doesn't have a 3235 * parent (or is orphaned) then accuracy is set to zero (perfect 3236 * clock). 3237 */ 3238 if (core->ops->recalc_accuracy) 3239 core->accuracy = core->ops->recalc_accuracy(core->hw, 3240 __clk_get_accuracy(core->parent)); 3241 else if (core->parent) 3242 core->accuracy = core->parent->accuracy; 3243 else 3244 core->accuracy = 0; 3245 3246 /* 3247 * Set clk's phase. 3248 * Since a phase is by definition relative to its parent, just 3249 * query the current clock phase, or just assume it's in phase. 3250 */ 3251 if (core->ops->get_phase) 3252 core->phase = core->ops->get_phase(core->hw); 3253 else 3254 core->phase = 0; 3255 3256 /* 3257 * Set clk's duty cycle. 3258 */ 3259 clk_core_update_duty_cycle_nolock(core); 3260 3261 /* 3262 * Set clk's rate. The preferred method is to use .recalc_rate. For 3263 * simple clocks and lazy developers the default fallback is to use the 3264 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3265 * then rate is set to zero. 3266 */ 3267 if (core->ops->recalc_rate) 3268 rate = core->ops->recalc_rate(core->hw, 3269 clk_core_get_rate_nolock(core->parent)); 3270 else if (core->parent) 3271 rate = core->parent->rate; 3272 else 3273 rate = 0; 3274 core->rate = core->req_rate = rate; 3275 3276 /* 3277 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3278 * don't get accidentally disabled when walking the orphan tree and 3279 * reparenting clocks 3280 */ 3281 if (core->flags & CLK_IS_CRITICAL) { 3282 unsigned long flags; 3283 3284 clk_core_prepare(core); 3285 3286 flags = clk_enable_lock(); 3287 clk_core_enable(core); 3288 clk_enable_unlock(flags); 3289 } 3290 3291 /* 3292 * walk the list of orphan clocks and reparent any that newly finds a 3293 * parent. 3294 */ 3295 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3296 struct clk_core *parent = __clk_init_parent(orphan); 3297 3298 /* 3299 * We need to use __clk_set_parent_before() and _after() to 3300 * to properly migrate any prepare/enable count of the orphan 3301 * clock. This is important for CLK_IS_CRITICAL clocks, which 3302 * are enabled during init but might not have a parent yet. 3303 */ 3304 if (parent) { 3305 /* update the clk tree topology */ 3306 __clk_set_parent_before(orphan, parent); 3307 __clk_set_parent_after(orphan, parent, NULL); 3308 __clk_recalc_accuracies(orphan); 3309 __clk_recalc_rates(orphan, 0); 3310 } 3311 } 3312 3313 kref_init(&core->ref); 3314 out: 3315 clk_pm_runtime_put(core); 3316 unlock: 3317 clk_prepare_unlock(); 3318 3319 if (!ret) 3320 clk_debug_register(core); 3321 3322 return ret; 3323 } 3324 3325 /** 3326 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3327 * @core: clk to add consumer to 3328 * @clk: consumer to link to a clk 3329 */ 3330 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3331 { 3332 clk_prepare_lock(); 3333 hlist_add_head(&clk->clks_node, &core->clks); 3334 clk_prepare_unlock(); 3335 } 3336 3337 /** 3338 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3339 * @clk: consumer to unlink 3340 */ 3341 static void clk_core_unlink_consumer(struct clk *clk) 3342 { 3343 lockdep_assert_held(&prepare_lock); 3344 hlist_del(&clk->clks_node); 3345 } 3346 3347 /** 3348 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3349 * @core: clk to allocate a consumer for 3350 * @dev_id: string describing device name 3351 * @con_id: connection ID string on device 3352 * 3353 * Returns: clk consumer left unlinked from the consumer list 3354 */ 3355 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3356 const char *con_id) 3357 { 3358 struct clk *clk; 3359 3360 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3361 if (!clk) 3362 return ERR_PTR(-ENOMEM); 3363 3364 clk->core = core; 3365 clk->dev_id = dev_id; 3366 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3367 clk->max_rate = ULONG_MAX; 3368 3369 return clk; 3370 } 3371 3372 /** 3373 * free_clk - Free a clk consumer 3374 * @clk: clk consumer to free 3375 * 3376 * Note, this assumes the clk has been unlinked from the clk_core consumer 3377 * list. 3378 */ 3379 static void free_clk(struct clk *clk) 3380 { 3381 kfree_const(clk->con_id); 3382 kfree(clk); 3383 } 3384 3385 /** 3386 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3387 * a clk_hw 3388 * @dev: clk consumer device 3389 * @hw: clk_hw associated with the clk being consumed 3390 * @dev_id: string describing device name 3391 * @con_id: connection ID string on device 3392 * 3393 * This is the main function used to create a clk pointer for use by clk 3394 * consumers. It connects a consumer to the clk_core and clk_hw structures 3395 * used by the framework and clk provider respectively. 3396 */ 3397 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3398 const char *dev_id, const char *con_id) 3399 { 3400 struct clk *clk; 3401 struct clk_core *core; 3402 3403 /* This is to allow this function to be chained to others */ 3404 if (IS_ERR_OR_NULL(hw)) 3405 return ERR_CAST(hw); 3406 3407 core = hw->core; 3408 clk = alloc_clk(core, dev_id, con_id); 3409 if (IS_ERR(clk)) 3410 return clk; 3411 clk->dev = dev; 3412 3413 if (!try_module_get(core->owner)) { 3414 free_clk(clk); 3415 return ERR_PTR(-ENOENT); 3416 } 3417 3418 kref_get(&core->ref); 3419 clk_core_link_consumer(core, clk); 3420 3421 return clk; 3422 } 3423 3424 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3425 { 3426 const char *dst; 3427 3428 if (!src) { 3429 if (must_exist) 3430 return -EINVAL; 3431 return 0; 3432 } 3433 3434 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3435 if (!dst) 3436 return -ENOMEM; 3437 3438 return 0; 3439 } 3440 3441 static int clk_core_populate_parent_map(struct clk_core *core) 3442 { 3443 const struct clk_init_data *init = core->hw->init; 3444 u8 num_parents = init->num_parents; 3445 const char * const *parent_names = init->parent_names; 3446 const struct clk_hw **parent_hws = init->parent_hws; 3447 const struct clk_parent_data *parent_data = init->parent_data; 3448 int i, ret = 0; 3449 struct clk_parent_map *parents, *parent; 3450 3451 if (!num_parents) 3452 return 0; 3453 3454 /* 3455 * Avoid unnecessary string look-ups of clk_core's possible parents by 3456 * having a cache of names/clk_hw pointers to clk_core pointers. 3457 */ 3458 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3459 core->parents = parents; 3460 if (!parents) 3461 return -ENOMEM; 3462 3463 /* Copy everything over because it might be __initdata */ 3464 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3465 parent->index = -1; 3466 if (parent_names) { 3467 /* throw a WARN if any entries are NULL */ 3468 WARN(!parent_names[i], 3469 "%s: invalid NULL in %s's .parent_names\n", 3470 __func__, core->name); 3471 ret = clk_cpy_name(&parent->name, parent_names[i], 3472 true); 3473 } else if (parent_data) { 3474 parent->hw = parent_data[i].hw; 3475 parent->index = parent_data[i].index; 3476 ret = clk_cpy_name(&parent->fw_name, 3477 parent_data[i].fw_name, false); 3478 if (!ret) 3479 ret = clk_cpy_name(&parent->name, 3480 parent_data[i].name, 3481 false); 3482 } else if (parent_hws) { 3483 parent->hw = parent_hws[i]; 3484 } else { 3485 ret = -EINVAL; 3486 WARN(1, "Must specify parents if num_parents > 0\n"); 3487 } 3488 3489 if (ret) { 3490 do { 3491 kfree_const(parents[i].name); 3492 kfree_const(parents[i].fw_name); 3493 } while (--i >= 0); 3494 kfree(parents); 3495 3496 return ret; 3497 } 3498 } 3499 3500 return 0; 3501 } 3502 3503 static void clk_core_free_parent_map(struct clk_core *core) 3504 { 3505 int i = core->num_parents; 3506 3507 if (!core->num_parents) 3508 return; 3509 3510 while (--i >= 0) { 3511 kfree_const(core->parents[i].name); 3512 kfree_const(core->parents[i].fw_name); 3513 } 3514 3515 kfree(core->parents); 3516 } 3517 3518 static struct clk * 3519 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3520 { 3521 int ret; 3522 struct clk_core *core; 3523 3524 core = kzalloc(sizeof(*core), GFP_KERNEL); 3525 if (!core) { 3526 ret = -ENOMEM; 3527 goto fail_out; 3528 } 3529 3530 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3531 if (!core->name) { 3532 ret = -ENOMEM; 3533 goto fail_name; 3534 } 3535 3536 if (WARN_ON(!hw->init->ops)) { 3537 ret = -EINVAL; 3538 goto fail_ops; 3539 } 3540 core->ops = hw->init->ops; 3541 3542 if (dev && pm_runtime_enabled(dev)) 3543 core->rpm_enabled = true; 3544 core->dev = dev; 3545 core->of_node = np; 3546 if (dev && dev->driver) 3547 core->owner = dev->driver->owner; 3548 core->hw = hw; 3549 core->flags = hw->init->flags; 3550 core->num_parents = hw->init->num_parents; 3551 core->min_rate = 0; 3552 core->max_rate = ULONG_MAX; 3553 hw->core = core; 3554 3555 ret = clk_core_populate_parent_map(core); 3556 if (ret) 3557 goto fail_parents; 3558 3559 INIT_HLIST_HEAD(&core->clks); 3560 3561 /* 3562 * Don't call clk_hw_create_clk() here because that would pin the 3563 * provider module to itself and prevent it from ever being removed. 3564 */ 3565 hw->clk = alloc_clk(core, NULL, NULL); 3566 if (IS_ERR(hw->clk)) { 3567 ret = PTR_ERR(hw->clk); 3568 goto fail_create_clk; 3569 } 3570 3571 clk_core_link_consumer(hw->core, hw->clk); 3572 3573 ret = __clk_core_init(core); 3574 if (!ret) 3575 return hw->clk; 3576 3577 clk_prepare_lock(); 3578 clk_core_unlink_consumer(hw->clk); 3579 clk_prepare_unlock(); 3580 3581 free_clk(hw->clk); 3582 hw->clk = NULL; 3583 3584 fail_create_clk: 3585 clk_core_free_parent_map(core); 3586 fail_parents: 3587 fail_ops: 3588 kfree_const(core->name); 3589 fail_name: 3590 kfree(core); 3591 fail_out: 3592 return ERR_PTR(ret); 3593 } 3594 3595 /** 3596 * clk_register - allocate a new clock, register it and return an opaque cookie 3597 * @dev: device that is registering this clock 3598 * @hw: link to hardware-specific clock data 3599 * 3600 * clk_register is the *deprecated* interface for populating the clock tree with 3601 * new clock nodes. Use clk_hw_register() instead. 3602 * 3603 * Returns: a pointer to the newly allocated struct clk which 3604 * cannot be dereferenced by driver code but may be used in conjunction with the 3605 * rest of the clock API. In the event of an error clk_register will return an 3606 * error code; drivers must test for an error code after calling clk_register. 3607 */ 3608 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3609 { 3610 return __clk_register(dev, dev_of_node(dev), hw); 3611 } 3612 EXPORT_SYMBOL_GPL(clk_register); 3613 3614 /** 3615 * clk_hw_register - register a clk_hw and return an error code 3616 * @dev: device that is registering this clock 3617 * @hw: link to hardware-specific clock data 3618 * 3619 * clk_hw_register is the primary interface for populating the clock tree with 3620 * new clock nodes. It returns an integer equal to zero indicating success or 3621 * less than zero indicating failure. Drivers must test for an error code after 3622 * calling clk_hw_register(). 3623 */ 3624 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3625 { 3626 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw)); 3627 } 3628 EXPORT_SYMBOL_GPL(clk_hw_register); 3629 3630 /* 3631 * of_clk_hw_register - register a clk_hw and return an error code 3632 * @node: device_node of device that is registering this clock 3633 * @hw: link to hardware-specific clock data 3634 * 3635 * of_clk_hw_register() is the primary interface for populating the clock tree 3636 * with new clock nodes when a struct device is not available, but a struct 3637 * device_node is. It returns an integer equal to zero indicating success or 3638 * less than zero indicating failure. Drivers must test for an error code after 3639 * calling of_clk_hw_register(). 3640 */ 3641 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3642 { 3643 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3644 } 3645 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3646 3647 /* Free memory allocated for a clock. */ 3648 static void __clk_release(struct kref *ref) 3649 { 3650 struct clk_core *core = container_of(ref, struct clk_core, ref); 3651 3652 lockdep_assert_held(&prepare_lock); 3653 3654 clk_core_free_parent_map(core); 3655 kfree_const(core->name); 3656 kfree(core); 3657 } 3658 3659 /* 3660 * Empty clk_ops for unregistered clocks. These are used temporarily 3661 * after clk_unregister() was called on a clock and until last clock 3662 * consumer calls clk_put() and the struct clk object is freed. 3663 */ 3664 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3665 { 3666 return -ENXIO; 3667 } 3668 3669 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3670 { 3671 WARN_ON_ONCE(1); 3672 } 3673 3674 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3675 unsigned long parent_rate) 3676 { 3677 return -ENXIO; 3678 } 3679 3680 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3681 { 3682 return -ENXIO; 3683 } 3684 3685 static const struct clk_ops clk_nodrv_ops = { 3686 .enable = clk_nodrv_prepare_enable, 3687 .disable = clk_nodrv_disable_unprepare, 3688 .prepare = clk_nodrv_prepare_enable, 3689 .unprepare = clk_nodrv_disable_unprepare, 3690 .set_rate = clk_nodrv_set_rate, 3691 .set_parent = clk_nodrv_set_parent, 3692 }; 3693 3694 /** 3695 * clk_unregister - unregister a currently registered clock 3696 * @clk: clock to unregister 3697 */ 3698 void clk_unregister(struct clk *clk) 3699 { 3700 unsigned long flags; 3701 3702 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3703 return; 3704 3705 clk_debug_unregister(clk->core); 3706 3707 clk_prepare_lock(); 3708 3709 if (clk->core->ops == &clk_nodrv_ops) { 3710 pr_err("%s: unregistered clock: %s\n", __func__, 3711 clk->core->name); 3712 goto unlock; 3713 } 3714 /* 3715 * Assign empty clock ops for consumers that might still hold 3716 * a reference to this clock. 3717 */ 3718 flags = clk_enable_lock(); 3719 clk->core->ops = &clk_nodrv_ops; 3720 clk_enable_unlock(flags); 3721 3722 if (!hlist_empty(&clk->core->children)) { 3723 struct clk_core *child; 3724 struct hlist_node *t; 3725 3726 /* Reparent all children to the orphan list. */ 3727 hlist_for_each_entry_safe(child, t, &clk->core->children, 3728 child_node) 3729 clk_core_set_parent_nolock(child, NULL); 3730 } 3731 3732 hlist_del_init(&clk->core->child_node); 3733 3734 if (clk->core->prepare_count) 3735 pr_warn("%s: unregistering prepared clock: %s\n", 3736 __func__, clk->core->name); 3737 3738 if (clk->core->protect_count) 3739 pr_warn("%s: unregistering protected clock: %s\n", 3740 __func__, clk->core->name); 3741 3742 kref_put(&clk->core->ref, __clk_release); 3743 unlock: 3744 clk_prepare_unlock(); 3745 } 3746 EXPORT_SYMBOL_GPL(clk_unregister); 3747 3748 /** 3749 * clk_hw_unregister - unregister a currently registered clk_hw 3750 * @hw: hardware-specific clock data to unregister 3751 */ 3752 void clk_hw_unregister(struct clk_hw *hw) 3753 { 3754 clk_unregister(hw->clk); 3755 } 3756 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3757 3758 static void devm_clk_release(struct device *dev, void *res) 3759 { 3760 clk_unregister(*(struct clk **)res); 3761 } 3762 3763 static void devm_clk_hw_release(struct device *dev, void *res) 3764 { 3765 clk_hw_unregister(*(struct clk_hw **)res); 3766 } 3767 3768 /** 3769 * devm_clk_register - resource managed clk_register() 3770 * @dev: device that is registering this clock 3771 * @hw: link to hardware-specific clock data 3772 * 3773 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 3774 * 3775 * Clocks returned from this function are automatically clk_unregister()ed on 3776 * driver detach. See clk_register() for more information. 3777 */ 3778 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3779 { 3780 struct clk *clk; 3781 struct clk **clkp; 3782 3783 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3784 if (!clkp) 3785 return ERR_PTR(-ENOMEM); 3786 3787 clk = clk_register(dev, hw); 3788 if (!IS_ERR(clk)) { 3789 *clkp = clk; 3790 devres_add(dev, clkp); 3791 } else { 3792 devres_free(clkp); 3793 } 3794 3795 return clk; 3796 } 3797 EXPORT_SYMBOL_GPL(devm_clk_register); 3798 3799 /** 3800 * devm_clk_hw_register - resource managed clk_hw_register() 3801 * @dev: device that is registering this clock 3802 * @hw: link to hardware-specific clock data 3803 * 3804 * Managed clk_hw_register(). Clocks registered by this function are 3805 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3806 * for more information. 3807 */ 3808 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3809 { 3810 struct clk_hw **hwp; 3811 int ret; 3812 3813 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3814 if (!hwp) 3815 return -ENOMEM; 3816 3817 ret = clk_hw_register(dev, hw); 3818 if (!ret) { 3819 *hwp = hw; 3820 devres_add(dev, hwp); 3821 } else { 3822 devres_free(hwp); 3823 } 3824 3825 return ret; 3826 } 3827 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3828 3829 static int devm_clk_match(struct device *dev, void *res, void *data) 3830 { 3831 struct clk *c = res; 3832 if (WARN_ON(!c)) 3833 return 0; 3834 return c == data; 3835 } 3836 3837 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3838 { 3839 struct clk_hw *hw = res; 3840 3841 if (WARN_ON(!hw)) 3842 return 0; 3843 return hw == data; 3844 } 3845 3846 /** 3847 * devm_clk_unregister - resource managed clk_unregister() 3848 * @clk: clock to unregister 3849 * 3850 * Deallocate a clock allocated with devm_clk_register(). Normally 3851 * this function will not need to be called and the resource management 3852 * code will ensure that the resource is freed. 3853 */ 3854 void devm_clk_unregister(struct device *dev, struct clk *clk) 3855 { 3856 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3857 } 3858 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3859 3860 /** 3861 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3862 * @dev: device that is unregistering the hardware-specific clock data 3863 * @hw: link to hardware-specific clock data 3864 * 3865 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3866 * this function will not need to be called and the resource management 3867 * code will ensure that the resource is freed. 3868 */ 3869 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3870 { 3871 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3872 hw)); 3873 } 3874 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3875 3876 /* 3877 * clkdev helpers 3878 */ 3879 3880 void __clk_put(struct clk *clk) 3881 { 3882 struct module *owner; 3883 3884 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3885 return; 3886 3887 clk_prepare_lock(); 3888 3889 /* 3890 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3891 * given user should be balanced with calls to clk_rate_exclusive_put() 3892 * and by that same consumer 3893 */ 3894 if (WARN_ON(clk->exclusive_count)) { 3895 /* We voiced our concern, let's sanitize the situation */ 3896 clk->core->protect_count -= (clk->exclusive_count - 1); 3897 clk_core_rate_unprotect(clk->core); 3898 clk->exclusive_count = 0; 3899 } 3900 3901 hlist_del(&clk->clks_node); 3902 if (clk->min_rate > clk->core->req_rate || 3903 clk->max_rate < clk->core->req_rate) 3904 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3905 3906 owner = clk->core->owner; 3907 kref_put(&clk->core->ref, __clk_release); 3908 3909 clk_prepare_unlock(); 3910 3911 module_put(owner); 3912 3913 free_clk(clk); 3914 } 3915 3916 /*** clk rate change notifiers ***/ 3917 3918 /** 3919 * clk_notifier_register - add a clk rate change notifier 3920 * @clk: struct clk * to watch 3921 * @nb: struct notifier_block * with callback info 3922 * 3923 * Request notification when clk's rate changes. This uses an SRCU 3924 * notifier because we want it to block and notifier unregistrations are 3925 * uncommon. The callbacks associated with the notifier must not 3926 * re-enter into the clk framework by calling any top-level clk APIs; 3927 * this will cause a nested prepare_lock mutex. 3928 * 3929 * In all notification cases (pre, post and abort rate change) the original 3930 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3931 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3932 * 3933 * clk_notifier_register() must be called from non-atomic context. 3934 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3935 * allocation failure; otherwise, passes along the return value of 3936 * srcu_notifier_chain_register(). 3937 */ 3938 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3939 { 3940 struct clk_notifier *cn; 3941 int ret = -ENOMEM; 3942 3943 if (!clk || !nb) 3944 return -EINVAL; 3945 3946 clk_prepare_lock(); 3947 3948 /* search the list of notifiers for this clk */ 3949 list_for_each_entry(cn, &clk_notifier_list, node) 3950 if (cn->clk == clk) 3951 break; 3952 3953 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3954 if (cn->clk != clk) { 3955 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3956 if (!cn) 3957 goto out; 3958 3959 cn->clk = clk; 3960 srcu_init_notifier_head(&cn->notifier_head); 3961 3962 list_add(&cn->node, &clk_notifier_list); 3963 } 3964 3965 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3966 3967 clk->core->notifier_count++; 3968 3969 out: 3970 clk_prepare_unlock(); 3971 3972 return ret; 3973 } 3974 EXPORT_SYMBOL_GPL(clk_notifier_register); 3975 3976 /** 3977 * clk_notifier_unregister - remove a clk rate change notifier 3978 * @clk: struct clk * 3979 * @nb: struct notifier_block * with callback info 3980 * 3981 * Request no further notification for changes to 'clk' and frees memory 3982 * allocated in clk_notifier_register. 3983 * 3984 * Returns -EINVAL if called with null arguments; otherwise, passes 3985 * along the return value of srcu_notifier_chain_unregister(). 3986 */ 3987 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3988 { 3989 struct clk_notifier *cn = NULL; 3990 int ret = -EINVAL; 3991 3992 if (!clk || !nb) 3993 return -EINVAL; 3994 3995 clk_prepare_lock(); 3996 3997 list_for_each_entry(cn, &clk_notifier_list, node) 3998 if (cn->clk == clk) 3999 break; 4000 4001 if (cn->clk == clk) { 4002 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4003 4004 clk->core->notifier_count--; 4005 4006 /* XXX the notifier code should handle this better */ 4007 if (!cn->notifier_head.head) { 4008 srcu_cleanup_notifier_head(&cn->notifier_head); 4009 list_del(&cn->node); 4010 kfree(cn); 4011 } 4012 4013 } else { 4014 ret = -ENOENT; 4015 } 4016 4017 clk_prepare_unlock(); 4018 4019 return ret; 4020 } 4021 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4022 4023 #ifdef CONFIG_OF 4024 /** 4025 * struct of_clk_provider - Clock provider registration structure 4026 * @link: Entry in global list of clock providers 4027 * @node: Pointer to device tree node of clock provider 4028 * @get: Get clock callback. Returns NULL or a struct clk for the 4029 * given clock specifier 4030 * @data: context pointer to be passed into @get callback 4031 */ 4032 struct of_clk_provider { 4033 struct list_head link; 4034 4035 struct device_node *node; 4036 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4037 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4038 void *data; 4039 }; 4040 4041 static const struct of_device_id __clk_of_table_sentinel 4042 __used __section(__clk_of_table_end); 4043 4044 static LIST_HEAD(of_clk_providers); 4045 static DEFINE_MUTEX(of_clk_mutex); 4046 4047 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4048 void *data) 4049 { 4050 return data; 4051 } 4052 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4053 4054 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4055 { 4056 return data; 4057 } 4058 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4059 4060 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4061 { 4062 struct clk_onecell_data *clk_data = data; 4063 unsigned int idx = clkspec->args[0]; 4064 4065 if (idx >= clk_data->clk_num) { 4066 pr_err("%s: invalid clock index %u\n", __func__, idx); 4067 return ERR_PTR(-EINVAL); 4068 } 4069 4070 return clk_data->clks[idx]; 4071 } 4072 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4073 4074 struct clk_hw * 4075 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4076 { 4077 struct clk_hw_onecell_data *hw_data = data; 4078 unsigned int idx = clkspec->args[0]; 4079 4080 if (idx >= hw_data->num) { 4081 pr_err("%s: invalid index %u\n", __func__, idx); 4082 return ERR_PTR(-EINVAL); 4083 } 4084 4085 return hw_data->hws[idx]; 4086 } 4087 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4088 4089 /** 4090 * of_clk_add_provider() - Register a clock provider for a node 4091 * @np: Device node pointer associated with clock provider 4092 * @clk_src_get: callback for decoding clock 4093 * @data: context pointer for @clk_src_get callback. 4094 * 4095 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4096 */ 4097 int of_clk_add_provider(struct device_node *np, 4098 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4099 void *data), 4100 void *data) 4101 { 4102 struct of_clk_provider *cp; 4103 int ret; 4104 4105 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4106 if (!cp) 4107 return -ENOMEM; 4108 4109 cp->node = of_node_get(np); 4110 cp->data = data; 4111 cp->get = clk_src_get; 4112 4113 mutex_lock(&of_clk_mutex); 4114 list_add(&cp->link, &of_clk_providers); 4115 mutex_unlock(&of_clk_mutex); 4116 pr_debug("Added clock from %pOF\n", np); 4117 4118 ret = of_clk_set_defaults(np, true); 4119 if (ret < 0) 4120 of_clk_del_provider(np); 4121 4122 return ret; 4123 } 4124 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4125 4126 /** 4127 * of_clk_add_hw_provider() - Register a clock provider for a node 4128 * @np: Device node pointer associated with clock provider 4129 * @get: callback for decoding clk_hw 4130 * @data: context pointer for @get callback. 4131 */ 4132 int of_clk_add_hw_provider(struct device_node *np, 4133 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4134 void *data), 4135 void *data) 4136 { 4137 struct of_clk_provider *cp; 4138 int ret; 4139 4140 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4141 if (!cp) 4142 return -ENOMEM; 4143 4144 cp->node = of_node_get(np); 4145 cp->data = data; 4146 cp->get_hw = get; 4147 4148 mutex_lock(&of_clk_mutex); 4149 list_add(&cp->link, &of_clk_providers); 4150 mutex_unlock(&of_clk_mutex); 4151 pr_debug("Added clk_hw provider from %pOF\n", np); 4152 4153 ret = of_clk_set_defaults(np, true); 4154 if (ret < 0) 4155 of_clk_del_provider(np); 4156 4157 return ret; 4158 } 4159 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4160 4161 static void devm_of_clk_release_provider(struct device *dev, void *res) 4162 { 4163 of_clk_del_provider(*(struct device_node **)res); 4164 } 4165 4166 /* 4167 * We allow a child device to use its parent device as the clock provider node 4168 * for cases like MFD sub-devices where the child device driver wants to use 4169 * devm_*() APIs but not list the device in DT as a sub-node. 4170 */ 4171 static struct device_node *get_clk_provider_node(struct device *dev) 4172 { 4173 struct device_node *np, *parent_np; 4174 4175 np = dev->of_node; 4176 parent_np = dev->parent ? dev->parent->of_node : NULL; 4177 4178 if (!of_find_property(np, "#clock-cells", NULL)) 4179 if (of_find_property(parent_np, "#clock-cells", NULL)) 4180 np = parent_np; 4181 4182 return np; 4183 } 4184 4185 /** 4186 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4187 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4188 * @get: callback for decoding clk_hw 4189 * @data: context pointer for @get callback 4190 * 4191 * Registers clock provider for given device's node. If the device has no DT 4192 * node or if the device node lacks of clock provider information (#clock-cells) 4193 * then the parent device's node is scanned for this information. If parent node 4194 * has the #clock-cells then it is used in registration. Provider is 4195 * automatically released at device exit. 4196 * 4197 * Return: 0 on success or an errno on failure. 4198 */ 4199 int devm_of_clk_add_hw_provider(struct device *dev, 4200 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4201 void *data), 4202 void *data) 4203 { 4204 struct device_node **ptr, *np; 4205 int ret; 4206 4207 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4208 GFP_KERNEL); 4209 if (!ptr) 4210 return -ENOMEM; 4211 4212 np = get_clk_provider_node(dev); 4213 ret = of_clk_add_hw_provider(np, get, data); 4214 if (!ret) { 4215 *ptr = np; 4216 devres_add(dev, ptr); 4217 } else { 4218 devres_free(ptr); 4219 } 4220 4221 return ret; 4222 } 4223 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4224 4225 /** 4226 * of_clk_del_provider() - Remove a previously registered clock provider 4227 * @np: Device node pointer associated with clock provider 4228 */ 4229 void of_clk_del_provider(struct device_node *np) 4230 { 4231 struct of_clk_provider *cp; 4232 4233 mutex_lock(&of_clk_mutex); 4234 list_for_each_entry(cp, &of_clk_providers, link) { 4235 if (cp->node == np) { 4236 list_del(&cp->link); 4237 of_node_put(cp->node); 4238 kfree(cp); 4239 break; 4240 } 4241 } 4242 mutex_unlock(&of_clk_mutex); 4243 } 4244 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4245 4246 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4247 { 4248 struct device_node **np = res; 4249 4250 if (WARN_ON(!np || !*np)) 4251 return 0; 4252 4253 return *np == data; 4254 } 4255 4256 /** 4257 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4258 * @dev: Device to whose lifetime the clock provider was bound 4259 */ 4260 void devm_of_clk_del_provider(struct device *dev) 4261 { 4262 int ret; 4263 struct device_node *np = get_clk_provider_node(dev); 4264 4265 ret = devres_release(dev, devm_of_clk_release_provider, 4266 devm_clk_provider_match, np); 4267 4268 WARN_ON(ret); 4269 } 4270 EXPORT_SYMBOL(devm_of_clk_del_provider); 4271 4272 /* 4273 * Beware the return values when np is valid, but no clock provider is found. 4274 * If name == NULL, the function returns -ENOENT. 4275 * If name != NULL, the function returns -EINVAL. This is because 4276 * of_parse_phandle_with_args() is called even if of_property_match_string() 4277 * returns an error. 4278 */ 4279 static int of_parse_clkspec(const struct device_node *np, int index, 4280 const char *name, struct of_phandle_args *out_args) 4281 { 4282 int ret = -ENOENT; 4283 4284 /* Walk up the tree of devices looking for a clock property that matches */ 4285 while (np) { 4286 /* 4287 * For named clocks, first look up the name in the 4288 * "clock-names" property. If it cannot be found, then index 4289 * will be an error code and of_parse_phandle_with_args() will 4290 * return -EINVAL. 4291 */ 4292 if (name) 4293 index = of_property_match_string(np, "clock-names", name); 4294 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4295 index, out_args); 4296 if (!ret) 4297 break; 4298 if (name && index >= 0) 4299 break; 4300 4301 /* 4302 * No matching clock found on this node. If the parent node 4303 * has a "clock-ranges" property, then we can try one of its 4304 * clocks. 4305 */ 4306 np = np->parent; 4307 if (np && !of_get_property(np, "clock-ranges", NULL)) 4308 break; 4309 index = 0; 4310 } 4311 4312 return ret; 4313 } 4314 4315 static struct clk_hw * 4316 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4317 struct of_phandle_args *clkspec) 4318 { 4319 struct clk *clk; 4320 4321 if (provider->get_hw) 4322 return provider->get_hw(clkspec, provider->data); 4323 4324 clk = provider->get(clkspec, provider->data); 4325 if (IS_ERR(clk)) 4326 return ERR_CAST(clk); 4327 return __clk_get_hw(clk); 4328 } 4329 4330 static struct clk_hw * 4331 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4332 { 4333 struct of_clk_provider *provider; 4334 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4335 4336 if (!clkspec) 4337 return ERR_PTR(-EINVAL); 4338 4339 mutex_lock(&of_clk_mutex); 4340 list_for_each_entry(provider, &of_clk_providers, link) { 4341 if (provider->node == clkspec->np) { 4342 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4343 if (!IS_ERR(hw)) 4344 break; 4345 } 4346 } 4347 mutex_unlock(&of_clk_mutex); 4348 4349 return hw; 4350 } 4351 4352 /** 4353 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4354 * @clkspec: pointer to a clock specifier data structure 4355 * 4356 * This function looks up a struct clk from the registered list of clock 4357 * providers, an input is a clock specifier data structure as returned 4358 * from the of_parse_phandle_with_args() function call. 4359 */ 4360 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4361 { 4362 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4363 4364 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4365 } 4366 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4367 4368 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4369 const char *con_id) 4370 { 4371 int ret; 4372 struct clk_hw *hw; 4373 struct of_phandle_args clkspec; 4374 4375 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4376 if (ret) 4377 return ERR_PTR(ret); 4378 4379 hw = of_clk_get_hw_from_clkspec(&clkspec); 4380 of_node_put(clkspec.np); 4381 4382 return hw; 4383 } 4384 4385 static struct clk *__of_clk_get(struct device_node *np, 4386 int index, const char *dev_id, 4387 const char *con_id) 4388 { 4389 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4390 4391 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4392 } 4393 4394 struct clk *of_clk_get(struct device_node *np, int index) 4395 { 4396 return __of_clk_get(np, index, np->full_name, NULL); 4397 } 4398 EXPORT_SYMBOL(of_clk_get); 4399 4400 /** 4401 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4402 * @np: pointer to clock consumer node 4403 * @name: name of consumer's clock input, or NULL for the first clock reference 4404 * 4405 * This function parses the clocks and clock-names properties, 4406 * and uses them to look up the struct clk from the registered list of clock 4407 * providers. 4408 */ 4409 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4410 { 4411 if (!np) 4412 return ERR_PTR(-ENOENT); 4413 4414 return __of_clk_get(np, 0, np->full_name, name); 4415 } 4416 EXPORT_SYMBOL(of_clk_get_by_name); 4417 4418 /** 4419 * of_clk_get_parent_count() - Count the number of clocks a device node has 4420 * @np: device node to count 4421 * 4422 * Returns: The number of clocks that are possible parents of this node 4423 */ 4424 unsigned int of_clk_get_parent_count(struct device_node *np) 4425 { 4426 int count; 4427 4428 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4429 if (count < 0) 4430 return 0; 4431 4432 return count; 4433 } 4434 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4435 4436 const char *of_clk_get_parent_name(struct device_node *np, int index) 4437 { 4438 struct of_phandle_args clkspec; 4439 struct property *prop; 4440 const char *clk_name; 4441 const __be32 *vp; 4442 u32 pv; 4443 int rc; 4444 int count; 4445 struct clk *clk; 4446 4447 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4448 &clkspec); 4449 if (rc) 4450 return NULL; 4451 4452 index = clkspec.args_count ? clkspec.args[0] : 0; 4453 count = 0; 4454 4455 /* if there is an indices property, use it to transfer the index 4456 * specified into an array offset for the clock-output-names property. 4457 */ 4458 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4459 if (index == pv) { 4460 index = count; 4461 break; 4462 } 4463 count++; 4464 } 4465 /* We went off the end of 'clock-indices' without finding it */ 4466 if (prop && !vp) 4467 return NULL; 4468 4469 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4470 index, 4471 &clk_name) < 0) { 4472 /* 4473 * Best effort to get the name if the clock has been 4474 * registered with the framework. If the clock isn't 4475 * registered, we return the node name as the name of 4476 * the clock as long as #clock-cells = 0. 4477 */ 4478 clk = of_clk_get_from_provider(&clkspec); 4479 if (IS_ERR(clk)) { 4480 if (clkspec.args_count == 0) 4481 clk_name = clkspec.np->name; 4482 else 4483 clk_name = NULL; 4484 } else { 4485 clk_name = __clk_get_name(clk); 4486 clk_put(clk); 4487 } 4488 } 4489 4490 4491 of_node_put(clkspec.np); 4492 return clk_name; 4493 } 4494 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4495 4496 /** 4497 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4498 * number of parents 4499 * @np: Device node pointer associated with clock provider 4500 * @parents: pointer to char array that hold the parents' names 4501 * @size: size of the @parents array 4502 * 4503 * Return: number of parents for the clock node. 4504 */ 4505 int of_clk_parent_fill(struct device_node *np, const char **parents, 4506 unsigned int size) 4507 { 4508 unsigned int i = 0; 4509 4510 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4511 i++; 4512 4513 return i; 4514 } 4515 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4516 4517 struct clock_provider { 4518 void (*clk_init_cb)(struct device_node *); 4519 struct device_node *np; 4520 struct list_head node; 4521 }; 4522 4523 /* 4524 * This function looks for a parent clock. If there is one, then it 4525 * checks that the provider for this parent clock was initialized, in 4526 * this case the parent clock will be ready. 4527 */ 4528 static int parent_ready(struct device_node *np) 4529 { 4530 int i = 0; 4531 4532 while (true) { 4533 struct clk *clk = of_clk_get(np, i); 4534 4535 /* this parent is ready we can check the next one */ 4536 if (!IS_ERR(clk)) { 4537 clk_put(clk); 4538 i++; 4539 continue; 4540 } 4541 4542 /* at least one parent is not ready, we exit now */ 4543 if (PTR_ERR(clk) == -EPROBE_DEFER) 4544 return 0; 4545 4546 /* 4547 * Here we make assumption that the device tree is 4548 * written correctly. So an error means that there is 4549 * no more parent. As we didn't exit yet, then the 4550 * previous parent are ready. If there is no clock 4551 * parent, no need to wait for them, then we can 4552 * consider their absence as being ready 4553 */ 4554 return 1; 4555 } 4556 } 4557 4558 /** 4559 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4560 * @np: Device node pointer associated with clock provider 4561 * @index: clock index 4562 * @flags: pointer to top-level framework flags 4563 * 4564 * Detects if the clock-critical property exists and, if so, sets the 4565 * corresponding CLK_IS_CRITICAL flag. 4566 * 4567 * Do not use this function. It exists only for legacy Device Tree 4568 * bindings, such as the one-clock-per-node style that are outdated. 4569 * Those bindings typically put all clock data into .dts and the Linux 4570 * driver has no clock data, thus making it impossible to set this flag 4571 * correctly from the driver. Only those drivers may call 4572 * of_clk_detect_critical from their setup functions. 4573 * 4574 * Return: error code or zero on success 4575 */ 4576 int of_clk_detect_critical(struct device_node *np, 4577 int index, unsigned long *flags) 4578 { 4579 struct property *prop; 4580 const __be32 *cur; 4581 uint32_t idx; 4582 4583 if (!np || !flags) 4584 return -EINVAL; 4585 4586 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4587 if (index == idx) 4588 *flags |= CLK_IS_CRITICAL; 4589 4590 return 0; 4591 } 4592 4593 /** 4594 * of_clk_init() - Scan and init clock providers from the DT 4595 * @matches: array of compatible values and init functions for providers. 4596 * 4597 * This function scans the device tree for matching clock providers 4598 * and calls their initialization functions. It also does it by trying 4599 * to follow the dependencies. 4600 */ 4601 void __init of_clk_init(const struct of_device_id *matches) 4602 { 4603 const struct of_device_id *match; 4604 struct device_node *np; 4605 struct clock_provider *clk_provider, *next; 4606 bool is_init_done; 4607 bool force = false; 4608 LIST_HEAD(clk_provider_list); 4609 4610 if (!matches) 4611 matches = &__clk_of_table; 4612 4613 /* First prepare the list of the clocks providers */ 4614 for_each_matching_node_and_match(np, matches, &match) { 4615 struct clock_provider *parent; 4616 4617 if (!of_device_is_available(np)) 4618 continue; 4619 4620 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4621 if (!parent) { 4622 list_for_each_entry_safe(clk_provider, next, 4623 &clk_provider_list, node) { 4624 list_del(&clk_provider->node); 4625 of_node_put(clk_provider->np); 4626 kfree(clk_provider); 4627 } 4628 of_node_put(np); 4629 return; 4630 } 4631 4632 parent->clk_init_cb = match->data; 4633 parent->np = of_node_get(np); 4634 list_add_tail(&parent->node, &clk_provider_list); 4635 } 4636 4637 while (!list_empty(&clk_provider_list)) { 4638 is_init_done = false; 4639 list_for_each_entry_safe(clk_provider, next, 4640 &clk_provider_list, node) { 4641 if (force || parent_ready(clk_provider->np)) { 4642 4643 /* Don't populate platform devices */ 4644 of_node_set_flag(clk_provider->np, 4645 OF_POPULATED); 4646 4647 clk_provider->clk_init_cb(clk_provider->np); 4648 of_clk_set_defaults(clk_provider->np, true); 4649 4650 list_del(&clk_provider->node); 4651 of_node_put(clk_provider->np); 4652 kfree(clk_provider); 4653 is_init_done = true; 4654 } 4655 } 4656 4657 /* 4658 * We didn't manage to initialize any of the 4659 * remaining providers during the last loop, so now we 4660 * initialize all the remaining ones unconditionally 4661 * in case the clock parent was not mandatory 4662 */ 4663 if (!is_init_done) 4664 force = true; 4665 } 4666 } 4667 #endif 4668