1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-private.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/spinlock.h> 16 #include <linux/err.h> 17 #include <linux/list.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/device.h> 21 #include <linux/init.h> 22 23 static DEFINE_SPINLOCK(enable_lock); 24 static DEFINE_MUTEX(prepare_lock); 25 26 static HLIST_HEAD(clk_root_list); 27 static HLIST_HEAD(clk_orphan_list); 28 static LIST_HEAD(clk_notifier_list); 29 30 /*** debugfs support ***/ 31 32 #ifdef CONFIG_COMMON_CLK_DEBUG 33 #include <linux/debugfs.h> 34 35 static struct dentry *rootdir; 36 static struct dentry *orphandir; 37 static int inited = 0; 38 39 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level) 40 { 41 if (!c) 42 return; 43 44 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu", 45 level * 3 + 1, "", 46 30 - level * 3, c->name, 47 c->enable_count, c->prepare_count, c->rate); 48 seq_printf(s, "\n"); 49 } 50 51 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c, 52 int level) 53 { 54 struct clk *child; 55 56 if (!c) 57 return; 58 59 clk_summary_show_one(s, c, level); 60 61 hlist_for_each_entry(child, &c->children, child_node) 62 clk_summary_show_subtree(s, child, level + 1); 63 } 64 65 static int clk_summary_show(struct seq_file *s, void *data) 66 { 67 struct clk *c; 68 69 seq_printf(s, " clock enable_cnt prepare_cnt rate\n"); 70 seq_printf(s, "---------------------------------------------------------------------\n"); 71 72 mutex_lock(&prepare_lock); 73 74 hlist_for_each_entry(c, &clk_root_list, child_node) 75 clk_summary_show_subtree(s, c, 0); 76 77 hlist_for_each_entry(c, &clk_orphan_list, child_node) 78 clk_summary_show_subtree(s, c, 0); 79 80 mutex_unlock(&prepare_lock); 81 82 return 0; 83 } 84 85 86 static int clk_summary_open(struct inode *inode, struct file *file) 87 { 88 return single_open(file, clk_summary_show, inode->i_private); 89 } 90 91 static const struct file_operations clk_summary_fops = { 92 .open = clk_summary_open, 93 .read = seq_read, 94 .llseek = seq_lseek, 95 .release = single_release, 96 }; 97 98 static void clk_dump_one(struct seq_file *s, struct clk *c, int level) 99 { 100 if (!c) 101 return; 102 103 seq_printf(s, "\"%s\": { ", c->name); 104 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 105 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 106 seq_printf(s, "\"rate\": %lu", c->rate); 107 } 108 109 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level) 110 { 111 struct clk *child; 112 113 if (!c) 114 return; 115 116 clk_dump_one(s, c, level); 117 118 hlist_for_each_entry(child, &c->children, child_node) { 119 seq_printf(s, ","); 120 clk_dump_subtree(s, child, level + 1); 121 } 122 123 seq_printf(s, "}"); 124 } 125 126 static int clk_dump(struct seq_file *s, void *data) 127 { 128 struct clk *c; 129 bool first_node = true; 130 131 seq_printf(s, "{"); 132 133 mutex_lock(&prepare_lock); 134 135 hlist_for_each_entry(c, &clk_root_list, child_node) { 136 if (!first_node) 137 seq_printf(s, ","); 138 first_node = false; 139 clk_dump_subtree(s, c, 0); 140 } 141 142 hlist_for_each_entry(c, &clk_orphan_list, child_node) { 143 seq_printf(s, ","); 144 clk_dump_subtree(s, c, 0); 145 } 146 147 mutex_unlock(&prepare_lock); 148 149 seq_printf(s, "}"); 150 return 0; 151 } 152 153 154 static int clk_dump_open(struct inode *inode, struct file *file) 155 { 156 return single_open(file, clk_dump, inode->i_private); 157 } 158 159 static const struct file_operations clk_dump_fops = { 160 .open = clk_dump_open, 161 .read = seq_read, 162 .llseek = seq_lseek, 163 .release = single_release, 164 }; 165 166 /* caller must hold prepare_lock */ 167 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry) 168 { 169 struct dentry *d; 170 int ret = -ENOMEM; 171 172 if (!clk || !pdentry) { 173 ret = -EINVAL; 174 goto out; 175 } 176 177 d = debugfs_create_dir(clk->name, pdentry); 178 if (!d) 179 goto out; 180 181 clk->dentry = d; 182 183 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry, 184 (u32 *)&clk->rate); 185 if (!d) 186 goto err_out; 187 188 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry, 189 (u32 *)&clk->flags); 190 if (!d) 191 goto err_out; 192 193 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry, 194 (u32 *)&clk->prepare_count); 195 if (!d) 196 goto err_out; 197 198 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry, 199 (u32 *)&clk->enable_count); 200 if (!d) 201 goto err_out; 202 203 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry, 204 (u32 *)&clk->notifier_count); 205 if (!d) 206 goto err_out; 207 208 ret = 0; 209 goto out; 210 211 err_out: 212 debugfs_remove(clk->dentry); 213 out: 214 return ret; 215 } 216 217 /* caller must hold prepare_lock */ 218 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry) 219 { 220 struct clk *child; 221 int ret = -EINVAL;; 222 223 if (!clk || !pdentry) 224 goto out; 225 226 ret = clk_debug_create_one(clk, pdentry); 227 228 if (ret) 229 goto out; 230 231 hlist_for_each_entry(child, &clk->children, child_node) 232 clk_debug_create_subtree(child, clk->dentry); 233 234 ret = 0; 235 out: 236 return ret; 237 } 238 239 /** 240 * clk_debug_register - add a clk node to the debugfs clk tree 241 * @clk: the clk being added to the debugfs clk tree 242 * 243 * Dynamically adds a clk to the debugfs clk tree if debugfs has been 244 * initialized. Otherwise it bails out early since the debugfs clk tree 245 * will be created lazily by clk_debug_init as part of a late_initcall. 246 * 247 * Caller must hold prepare_lock. Only clk_init calls this function (so 248 * far) so this is taken care. 249 */ 250 static int clk_debug_register(struct clk *clk) 251 { 252 struct clk *parent; 253 struct dentry *pdentry; 254 int ret = 0; 255 256 if (!inited) 257 goto out; 258 259 parent = clk->parent; 260 261 /* 262 * Check to see if a clk is a root clk. Also check that it is 263 * safe to add this clk to debugfs 264 */ 265 if (!parent) 266 if (clk->flags & CLK_IS_ROOT) 267 pdentry = rootdir; 268 else 269 pdentry = orphandir; 270 else 271 if (parent->dentry) 272 pdentry = parent->dentry; 273 else 274 goto out; 275 276 ret = clk_debug_create_subtree(clk, pdentry); 277 278 out: 279 return ret; 280 } 281 282 /** 283 * clk_debug_init - lazily create the debugfs clk tree visualization 284 * 285 * clks are often initialized very early during boot before memory can 286 * be dynamically allocated and well before debugfs is setup. 287 * clk_debug_init walks the clk tree hierarchy while holding 288 * prepare_lock and creates the topology as part of a late_initcall, 289 * thus insuring that clks initialized very early will still be 290 * represented in the debugfs clk tree. This function should only be 291 * called once at boot-time, and all other clks added dynamically will 292 * be done so with clk_debug_register. 293 */ 294 static int __init clk_debug_init(void) 295 { 296 struct clk *clk; 297 struct dentry *d; 298 299 rootdir = debugfs_create_dir("clk", NULL); 300 301 if (!rootdir) 302 return -ENOMEM; 303 304 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL, 305 &clk_summary_fops); 306 if (!d) 307 return -ENOMEM; 308 309 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL, 310 &clk_dump_fops); 311 if (!d) 312 return -ENOMEM; 313 314 orphandir = debugfs_create_dir("orphans", rootdir); 315 316 if (!orphandir) 317 return -ENOMEM; 318 319 mutex_lock(&prepare_lock); 320 321 hlist_for_each_entry(clk, &clk_root_list, child_node) 322 clk_debug_create_subtree(clk, rootdir); 323 324 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 325 clk_debug_create_subtree(clk, orphandir); 326 327 inited = 1; 328 329 mutex_unlock(&prepare_lock); 330 331 return 0; 332 } 333 late_initcall(clk_debug_init); 334 #else 335 static inline int clk_debug_register(struct clk *clk) { return 0; } 336 #endif 337 338 /* caller must hold prepare_lock */ 339 static void clk_disable_unused_subtree(struct clk *clk) 340 { 341 struct clk *child; 342 unsigned long flags; 343 344 if (!clk) 345 goto out; 346 347 hlist_for_each_entry(child, &clk->children, child_node) 348 clk_disable_unused_subtree(child); 349 350 spin_lock_irqsave(&enable_lock, flags); 351 352 if (clk->enable_count) 353 goto unlock_out; 354 355 if (clk->flags & CLK_IGNORE_UNUSED) 356 goto unlock_out; 357 358 /* 359 * some gate clocks have special needs during the disable-unused 360 * sequence. call .disable_unused if available, otherwise fall 361 * back to .disable 362 */ 363 if (__clk_is_enabled(clk)) { 364 if (clk->ops->disable_unused) 365 clk->ops->disable_unused(clk->hw); 366 else if (clk->ops->disable) 367 clk->ops->disable(clk->hw); 368 } 369 370 unlock_out: 371 spin_unlock_irqrestore(&enable_lock, flags); 372 373 out: 374 return; 375 } 376 377 static int clk_disable_unused(void) 378 { 379 struct clk *clk; 380 381 mutex_lock(&prepare_lock); 382 383 hlist_for_each_entry(clk, &clk_root_list, child_node) 384 clk_disable_unused_subtree(clk); 385 386 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 387 clk_disable_unused_subtree(clk); 388 389 mutex_unlock(&prepare_lock); 390 391 return 0; 392 } 393 late_initcall(clk_disable_unused); 394 395 /*** helper functions ***/ 396 397 const char *__clk_get_name(struct clk *clk) 398 { 399 return !clk ? NULL : clk->name; 400 } 401 EXPORT_SYMBOL_GPL(__clk_get_name); 402 403 struct clk_hw *__clk_get_hw(struct clk *clk) 404 { 405 return !clk ? NULL : clk->hw; 406 } 407 408 u8 __clk_get_num_parents(struct clk *clk) 409 { 410 return !clk ? 0 : clk->num_parents; 411 } 412 413 struct clk *__clk_get_parent(struct clk *clk) 414 { 415 return !clk ? NULL : clk->parent; 416 } 417 418 unsigned int __clk_get_enable_count(struct clk *clk) 419 { 420 return !clk ? 0 : clk->enable_count; 421 } 422 423 unsigned int __clk_get_prepare_count(struct clk *clk) 424 { 425 return !clk ? 0 : clk->prepare_count; 426 } 427 428 unsigned long __clk_get_rate(struct clk *clk) 429 { 430 unsigned long ret; 431 432 if (!clk) { 433 ret = 0; 434 goto out; 435 } 436 437 ret = clk->rate; 438 439 if (clk->flags & CLK_IS_ROOT) 440 goto out; 441 442 if (!clk->parent) 443 ret = 0; 444 445 out: 446 return ret; 447 } 448 449 unsigned long __clk_get_flags(struct clk *clk) 450 { 451 return !clk ? 0 : clk->flags; 452 } 453 454 bool __clk_is_enabled(struct clk *clk) 455 { 456 int ret; 457 458 if (!clk) 459 return false; 460 461 /* 462 * .is_enabled is only mandatory for clocks that gate 463 * fall back to software usage counter if .is_enabled is missing 464 */ 465 if (!clk->ops->is_enabled) { 466 ret = clk->enable_count ? 1 : 0; 467 goto out; 468 } 469 470 ret = clk->ops->is_enabled(clk->hw); 471 out: 472 return !!ret; 473 } 474 475 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk) 476 { 477 struct clk *child; 478 struct clk *ret; 479 480 if (!strcmp(clk->name, name)) 481 return clk; 482 483 hlist_for_each_entry(child, &clk->children, child_node) { 484 ret = __clk_lookup_subtree(name, child); 485 if (ret) 486 return ret; 487 } 488 489 return NULL; 490 } 491 492 struct clk *__clk_lookup(const char *name) 493 { 494 struct clk *root_clk; 495 struct clk *ret; 496 497 if (!name) 498 return NULL; 499 500 /* search the 'proper' clk tree first */ 501 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 502 ret = __clk_lookup_subtree(name, root_clk); 503 if (ret) 504 return ret; 505 } 506 507 /* if not found, then search the orphan tree */ 508 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 509 ret = __clk_lookup_subtree(name, root_clk); 510 if (ret) 511 return ret; 512 } 513 514 return NULL; 515 } 516 517 /*** clk api ***/ 518 519 void __clk_unprepare(struct clk *clk) 520 { 521 if (!clk) 522 return; 523 524 if (WARN_ON(clk->prepare_count == 0)) 525 return; 526 527 if (--clk->prepare_count > 0) 528 return; 529 530 WARN_ON(clk->enable_count > 0); 531 532 if (clk->ops->unprepare) 533 clk->ops->unprepare(clk->hw); 534 535 __clk_unprepare(clk->parent); 536 } 537 538 /** 539 * clk_unprepare - undo preparation of a clock source 540 * @clk: the clk being unprepare 541 * 542 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 543 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 544 * if the operation may sleep. One example is a clk which is accessed over 545 * I2c. In the complex case a clk gate operation may require a fast and a slow 546 * part. It is this reason that clk_unprepare and clk_disable are not mutually 547 * exclusive. In fact clk_disable must be called before clk_unprepare. 548 */ 549 void clk_unprepare(struct clk *clk) 550 { 551 mutex_lock(&prepare_lock); 552 __clk_unprepare(clk); 553 mutex_unlock(&prepare_lock); 554 } 555 EXPORT_SYMBOL_GPL(clk_unprepare); 556 557 int __clk_prepare(struct clk *clk) 558 { 559 int ret = 0; 560 561 if (!clk) 562 return 0; 563 564 if (clk->prepare_count == 0) { 565 ret = __clk_prepare(clk->parent); 566 if (ret) 567 return ret; 568 569 if (clk->ops->prepare) { 570 ret = clk->ops->prepare(clk->hw); 571 if (ret) { 572 __clk_unprepare(clk->parent); 573 return ret; 574 } 575 } 576 } 577 578 clk->prepare_count++; 579 580 return 0; 581 } 582 583 /** 584 * clk_prepare - prepare a clock source 585 * @clk: the clk being prepared 586 * 587 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 588 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 589 * operation may sleep. One example is a clk which is accessed over I2c. In 590 * the complex case a clk ungate operation may require a fast and a slow part. 591 * It is this reason that clk_prepare and clk_enable are not mutually 592 * exclusive. In fact clk_prepare must be called before clk_enable. 593 * Returns 0 on success, -EERROR otherwise. 594 */ 595 int clk_prepare(struct clk *clk) 596 { 597 int ret; 598 599 mutex_lock(&prepare_lock); 600 ret = __clk_prepare(clk); 601 mutex_unlock(&prepare_lock); 602 603 return ret; 604 } 605 EXPORT_SYMBOL_GPL(clk_prepare); 606 607 static void __clk_disable(struct clk *clk) 608 { 609 if (!clk) 610 return; 611 612 if (WARN_ON(IS_ERR(clk))) 613 return; 614 615 if (WARN_ON(clk->enable_count == 0)) 616 return; 617 618 if (--clk->enable_count > 0) 619 return; 620 621 if (clk->ops->disable) 622 clk->ops->disable(clk->hw); 623 624 __clk_disable(clk->parent); 625 } 626 627 /** 628 * clk_disable - gate a clock 629 * @clk: the clk being gated 630 * 631 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 632 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 633 * clk if the operation is fast and will never sleep. One example is a 634 * SoC-internal clk which is controlled via simple register writes. In the 635 * complex case a clk gate operation may require a fast and a slow part. It is 636 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 637 * In fact clk_disable must be called before clk_unprepare. 638 */ 639 void clk_disable(struct clk *clk) 640 { 641 unsigned long flags; 642 643 spin_lock_irqsave(&enable_lock, flags); 644 __clk_disable(clk); 645 spin_unlock_irqrestore(&enable_lock, flags); 646 } 647 EXPORT_SYMBOL_GPL(clk_disable); 648 649 static int __clk_enable(struct clk *clk) 650 { 651 int ret = 0; 652 653 if (!clk) 654 return 0; 655 656 if (WARN_ON(clk->prepare_count == 0)) 657 return -ESHUTDOWN; 658 659 if (clk->enable_count == 0) { 660 ret = __clk_enable(clk->parent); 661 662 if (ret) 663 return ret; 664 665 if (clk->ops->enable) { 666 ret = clk->ops->enable(clk->hw); 667 if (ret) { 668 __clk_disable(clk->parent); 669 return ret; 670 } 671 } 672 } 673 674 clk->enable_count++; 675 return 0; 676 } 677 678 /** 679 * clk_enable - ungate a clock 680 * @clk: the clk being ungated 681 * 682 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 683 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 684 * if the operation will never sleep. One example is a SoC-internal clk which 685 * is controlled via simple register writes. In the complex case a clk ungate 686 * operation may require a fast and a slow part. It is this reason that 687 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 688 * must be called before clk_enable. Returns 0 on success, -EERROR 689 * otherwise. 690 */ 691 int clk_enable(struct clk *clk) 692 { 693 unsigned long flags; 694 int ret; 695 696 spin_lock_irqsave(&enable_lock, flags); 697 ret = __clk_enable(clk); 698 spin_unlock_irqrestore(&enable_lock, flags); 699 700 return ret; 701 } 702 EXPORT_SYMBOL_GPL(clk_enable); 703 704 /** 705 * __clk_round_rate - round the given rate for a clk 706 * @clk: round the rate of this clock 707 * 708 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate 709 */ 710 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 711 { 712 unsigned long parent_rate = 0; 713 714 if (!clk) 715 return 0; 716 717 if (!clk->ops->round_rate) { 718 if (clk->flags & CLK_SET_RATE_PARENT) 719 return __clk_round_rate(clk->parent, rate); 720 else 721 return clk->rate; 722 } 723 724 if (clk->parent) 725 parent_rate = clk->parent->rate; 726 727 return clk->ops->round_rate(clk->hw, rate, &parent_rate); 728 } 729 730 /** 731 * clk_round_rate - round the given rate for a clk 732 * @clk: the clk for which we are rounding a rate 733 * @rate: the rate which is to be rounded 734 * 735 * Takes in a rate as input and rounds it to a rate that the clk can actually 736 * use which is then returned. If clk doesn't support round_rate operation 737 * then the parent rate is returned. 738 */ 739 long clk_round_rate(struct clk *clk, unsigned long rate) 740 { 741 unsigned long ret; 742 743 mutex_lock(&prepare_lock); 744 ret = __clk_round_rate(clk, rate); 745 mutex_unlock(&prepare_lock); 746 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(clk_round_rate); 750 751 /** 752 * __clk_notify - call clk notifier chain 753 * @clk: struct clk * that is changing rate 754 * @msg: clk notifier type (see include/linux/clk.h) 755 * @old_rate: old clk rate 756 * @new_rate: new clk rate 757 * 758 * Triggers a notifier call chain on the clk rate-change notification 759 * for 'clk'. Passes a pointer to the struct clk and the previous 760 * and current rates to the notifier callback. Intended to be called by 761 * internal clock code only. Returns NOTIFY_DONE from the last driver 762 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 763 * a driver returns that. 764 */ 765 static int __clk_notify(struct clk *clk, unsigned long msg, 766 unsigned long old_rate, unsigned long new_rate) 767 { 768 struct clk_notifier *cn; 769 struct clk_notifier_data cnd; 770 int ret = NOTIFY_DONE; 771 772 cnd.clk = clk; 773 cnd.old_rate = old_rate; 774 cnd.new_rate = new_rate; 775 776 list_for_each_entry(cn, &clk_notifier_list, node) { 777 if (cn->clk == clk) { 778 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 779 &cnd); 780 break; 781 } 782 } 783 784 return ret; 785 } 786 787 /** 788 * __clk_recalc_rates 789 * @clk: first clk in the subtree 790 * @msg: notification type (see include/linux/clk.h) 791 * 792 * Walks the subtree of clks starting with clk and recalculates rates as it 793 * goes. Note that if a clk does not implement the .recalc_rate callback then 794 * it is assumed that the clock will take on the rate of it's parent. 795 * 796 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 797 * if necessary. 798 * 799 * Caller must hold prepare_lock. 800 */ 801 static void __clk_recalc_rates(struct clk *clk, unsigned long msg) 802 { 803 unsigned long old_rate; 804 unsigned long parent_rate = 0; 805 struct clk *child; 806 807 old_rate = clk->rate; 808 809 if (clk->parent) 810 parent_rate = clk->parent->rate; 811 812 if (clk->ops->recalc_rate) 813 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate); 814 else 815 clk->rate = parent_rate; 816 817 /* 818 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 819 * & ABORT_RATE_CHANGE notifiers 820 */ 821 if (clk->notifier_count && msg) 822 __clk_notify(clk, msg, old_rate, clk->rate); 823 824 hlist_for_each_entry(child, &clk->children, child_node) 825 __clk_recalc_rates(child, msg); 826 } 827 828 /** 829 * clk_get_rate - return the rate of clk 830 * @clk: the clk whose rate is being returned 831 * 832 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 833 * is set, which means a recalc_rate will be issued. 834 * If clk is NULL then returns 0. 835 */ 836 unsigned long clk_get_rate(struct clk *clk) 837 { 838 unsigned long rate; 839 840 mutex_lock(&prepare_lock); 841 842 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE)) 843 __clk_recalc_rates(clk, 0); 844 845 rate = __clk_get_rate(clk); 846 mutex_unlock(&prepare_lock); 847 848 return rate; 849 } 850 EXPORT_SYMBOL_GPL(clk_get_rate); 851 852 /** 853 * __clk_speculate_rates 854 * @clk: first clk in the subtree 855 * @parent_rate: the "future" rate of clk's parent 856 * 857 * Walks the subtree of clks starting with clk, speculating rates as it 858 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 859 * 860 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 861 * pre-rate change notifications and returns early if no clks in the 862 * subtree have subscribed to the notifications. Note that if a clk does not 863 * implement the .recalc_rate callback then it is assumed that the clock will 864 * take on the rate of it's parent. 865 * 866 * Caller must hold prepare_lock. 867 */ 868 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate) 869 { 870 struct clk *child; 871 unsigned long new_rate; 872 int ret = NOTIFY_DONE; 873 874 if (clk->ops->recalc_rate) 875 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate); 876 else 877 new_rate = parent_rate; 878 879 /* abort the rate change if a driver returns NOTIFY_BAD */ 880 if (clk->notifier_count) 881 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate); 882 883 if (ret == NOTIFY_BAD) 884 goto out; 885 886 hlist_for_each_entry(child, &clk->children, child_node) { 887 ret = __clk_speculate_rates(child, new_rate); 888 if (ret == NOTIFY_BAD) 889 break; 890 } 891 892 out: 893 return ret; 894 } 895 896 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate) 897 { 898 struct clk *child; 899 900 clk->new_rate = new_rate; 901 902 hlist_for_each_entry(child, &clk->children, child_node) { 903 if (child->ops->recalc_rate) 904 child->new_rate = child->ops->recalc_rate(child->hw, new_rate); 905 else 906 child->new_rate = new_rate; 907 clk_calc_subtree(child, child->new_rate); 908 } 909 } 910 911 /* 912 * calculate the new rates returning the topmost clock that has to be 913 * changed. 914 */ 915 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate) 916 { 917 struct clk *top = clk; 918 unsigned long best_parent_rate = 0; 919 unsigned long new_rate; 920 921 /* sanity */ 922 if (IS_ERR_OR_NULL(clk)) 923 return NULL; 924 925 /* save parent rate, if it exists */ 926 if (clk->parent) 927 best_parent_rate = clk->parent->rate; 928 929 /* never propagate up to the parent */ 930 if (!(clk->flags & CLK_SET_RATE_PARENT)) { 931 if (!clk->ops->round_rate) { 932 clk->new_rate = clk->rate; 933 return NULL; 934 } 935 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate); 936 goto out; 937 } 938 939 /* need clk->parent from here on out */ 940 if (!clk->parent) { 941 pr_debug("%s: %s has NULL parent\n", __func__, clk->name); 942 return NULL; 943 } 944 945 if (!clk->ops->round_rate) { 946 top = clk_calc_new_rates(clk->parent, rate); 947 new_rate = clk->parent->new_rate; 948 949 goto out; 950 } 951 952 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate); 953 954 if (best_parent_rate != clk->parent->rate) { 955 top = clk_calc_new_rates(clk->parent, best_parent_rate); 956 957 goto out; 958 } 959 960 out: 961 clk_calc_subtree(clk, new_rate); 962 963 return top; 964 } 965 966 /* 967 * Notify about rate changes in a subtree. Always walk down the whole tree 968 * so that in case of an error we can walk down the whole tree again and 969 * abort the change. 970 */ 971 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event) 972 { 973 struct clk *child, *fail_clk = NULL; 974 int ret = NOTIFY_DONE; 975 976 if (clk->rate == clk->new_rate) 977 return 0; 978 979 if (clk->notifier_count) { 980 ret = __clk_notify(clk, event, clk->rate, clk->new_rate); 981 if (ret == NOTIFY_BAD) 982 fail_clk = clk; 983 } 984 985 hlist_for_each_entry(child, &clk->children, child_node) { 986 clk = clk_propagate_rate_change(child, event); 987 if (clk) 988 fail_clk = clk; 989 } 990 991 return fail_clk; 992 } 993 994 /* 995 * walk down a subtree and set the new rates notifying the rate 996 * change on the way 997 */ 998 static void clk_change_rate(struct clk *clk) 999 { 1000 struct clk *child; 1001 unsigned long old_rate; 1002 unsigned long best_parent_rate = 0; 1003 1004 old_rate = clk->rate; 1005 1006 if (clk->parent) 1007 best_parent_rate = clk->parent->rate; 1008 1009 if (clk->ops->set_rate) 1010 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate); 1011 1012 if (clk->ops->recalc_rate) 1013 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate); 1014 else 1015 clk->rate = best_parent_rate; 1016 1017 if (clk->notifier_count && old_rate != clk->rate) 1018 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate); 1019 1020 hlist_for_each_entry(child, &clk->children, child_node) 1021 clk_change_rate(child); 1022 } 1023 1024 /** 1025 * clk_set_rate - specify a new rate for clk 1026 * @clk: the clk whose rate is being changed 1027 * @rate: the new rate for clk 1028 * 1029 * In the simplest case clk_set_rate will only adjust the rate of clk. 1030 * 1031 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1032 * propagate up to clk's parent; whether or not this happens depends on the 1033 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1034 * after calling .round_rate then upstream parent propagation is ignored. If 1035 * *parent_rate comes back with a new rate for clk's parent then we propagate 1036 * up to clk's parent and set it's rate. Upward propagation will continue 1037 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1038 * .round_rate stops requesting changes to clk's parent_rate. 1039 * 1040 * Rate changes are accomplished via tree traversal that also recalculates the 1041 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1042 * 1043 * Returns 0 on success, -EERROR otherwise. 1044 */ 1045 int clk_set_rate(struct clk *clk, unsigned long rate) 1046 { 1047 struct clk *top, *fail_clk; 1048 int ret = 0; 1049 1050 /* prevent racing with updates to the clock topology */ 1051 mutex_lock(&prepare_lock); 1052 1053 /* bail early if nothing to do */ 1054 if (rate == clk->rate) 1055 goto out; 1056 1057 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) { 1058 ret = -EBUSY; 1059 goto out; 1060 } 1061 1062 /* calculate new rates and get the topmost changed clock */ 1063 top = clk_calc_new_rates(clk, rate); 1064 if (!top) { 1065 ret = -EINVAL; 1066 goto out; 1067 } 1068 1069 /* notify that we are about to change rates */ 1070 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1071 if (fail_clk) { 1072 pr_warn("%s: failed to set %s rate\n", __func__, 1073 fail_clk->name); 1074 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1075 ret = -EBUSY; 1076 goto out; 1077 } 1078 1079 /* change the rates */ 1080 clk_change_rate(top); 1081 1082 out: 1083 mutex_unlock(&prepare_lock); 1084 1085 return ret; 1086 } 1087 EXPORT_SYMBOL_GPL(clk_set_rate); 1088 1089 /** 1090 * clk_get_parent - return the parent of a clk 1091 * @clk: the clk whose parent gets returned 1092 * 1093 * Simply returns clk->parent. Returns NULL if clk is NULL. 1094 */ 1095 struct clk *clk_get_parent(struct clk *clk) 1096 { 1097 struct clk *parent; 1098 1099 mutex_lock(&prepare_lock); 1100 parent = __clk_get_parent(clk); 1101 mutex_unlock(&prepare_lock); 1102 1103 return parent; 1104 } 1105 EXPORT_SYMBOL_GPL(clk_get_parent); 1106 1107 /* 1108 * .get_parent is mandatory for clocks with multiple possible parents. It is 1109 * optional for single-parent clocks. Always call .get_parent if it is 1110 * available and WARN if it is missing for multi-parent clocks. 1111 * 1112 * For single-parent clocks without .get_parent, first check to see if the 1113 * .parents array exists, and if so use it to avoid an expensive tree 1114 * traversal. If .parents does not exist then walk the tree with __clk_lookup. 1115 */ 1116 static struct clk *__clk_init_parent(struct clk *clk) 1117 { 1118 struct clk *ret = NULL; 1119 u8 index; 1120 1121 /* handle the trivial cases */ 1122 1123 if (!clk->num_parents) 1124 goto out; 1125 1126 if (clk->num_parents == 1) { 1127 if (IS_ERR_OR_NULL(clk->parent)) 1128 ret = clk->parent = __clk_lookup(clk->parent_names[0]); 1129 ret = clk->parent; 1130 goto out; 1131 } 1132 1133 if (!clk->ops->get_parent) { 1134 WARN(!clk->ops->get_parent, 1135 "%s: multi-parent clocks must implement .get_parent\n", 1136 __func__); 1137 goto out; 1138 }; 1139 1140 /* 1141 * Do our best to cache parent clocks in clk->parents. This prevents 1142 * unnecessary and expensive calls to __clk_lookup. We don't set 1143 * clk->parent here; that is done by the calling function 1144 */ 1145 1146 index = clk->ops->get_parent(clk->hw); 1147 1148 if (!clk->parents) 1149 clk->parents = 1150 kzalloc((sizeof(struct clk*) * clk->num_parents), 1151 GFP_KERNEL); 1152 1153 if (!clk->parents) 1154 ret = __clk_lookup(clk->parent_names[index]); 1155 else if (!clk->parents[index]) 1156 ret = clk->parents[index] = 1157 __clk_lookup(clk->parent_names[index]); 1158 else 1159 ret = clk->parents[index]; 1160 1161 out: 1162 return ret; 1163 } 1164 1165 void __clk_reparent(struct clk *clk, struct clk *new_parent) 1166 { 1167 #ifdef CONFIG_COMMON_CLK_DEBUG 1168 struct dentry *d; 1169 struct dentry *new_parent_d; 1170 #endif 1171 1172 if (!clk || !new_parent) 1173 return; 1174 1175 hlist_del(&clk->child_node); 1176 1177 if (new_parent) 1178 hlist_add_head(&clk->child_node, &new_parent->children); 1179 else 1180 hlist_add_head(&clk->child_node, &clk_orphan_list); 1181 1182 #ifdef CONFIG_COMMON_CLK_DEBUG 1183 if (!inited) 1184 goto out; 1185 1186 if (new_parent) 1187 new_parent_d = new_parent->dentry; 1188 else 1189 new_parent_d = orphandir; 1190 1191 d = debugfs_rename(clk->dentry->d_parent, clk->dentry, 1192 new_parent_d, clk->name); 1193 if (d) 1194 clk->dentry = d; 1195 else 1196 pr_debug("%s: failed to rename debugfs entry for %s\n", 1197 __func__, clk->name); 1198 out: 1199 #endif 1200 1201 clk->parent = new_parent; 1202 1203 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1204 } 1205 1206 static int __clk_set_parent(struct clk *clk, struct clk *parent) 1207 { 1208 struct clk *old_parent; 1209 unsigned long flags; 1210 int ret = -EINVAL; 1211 u8 i; 1212 1213 old_parent = clk->parent; 1214 1215 if (!clk->parents) 1216 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents), 1217 GFP_KERNEL); 1218 1219 /* 1220 * find index of new parent clock using cached parent ptrs, 1221 * or if not yet cached, use string name comparison and cache 1222 * them now to avoid future calls to __clk_lookup. 1223 */ 1224 for (i = 0; i < clk->num_parents; i++) { 1225 if (clk->parents && clk->parents[i] == parent) 1226 break; 1227 else if (!strcmp(clk->parent_names[i], parent->name)) { 1228 if (clk->parents) 1229 clk->parents[i] = __clk_lookup(parent->name); 1230 break; 1231 } 1232 } 1233 1234 if (i == clk->num_parents) { 1235 pr_debug("%s: clock %s is not a possible parent of clock %s\n", 1236 __func__, parent->name, clk->name); 1237 goto out; 1238 } 1239 1240 /* migrate prepare and enable */ 1241 if (clk->prepare_count) 1242 __clk_prepare(parent); 1243 1244 /* FIXME replace with clk_is_enabled(clk) someday */ 1245 spin_lock_irqsave(&enable_lock, flags); 1246 if (clk->enable_count) 1247 __clk_enable(parent); 1248 spin_unlock_irqrestore(&enable_lock, flags); 1249 1250 /* change clock input source */ 1251 ret = clk->ops->set_parent(clk->hw, i); 1252 1253 /* clean up old prepare and enable */ 1254 spin_lock_irqsave(&enable_lock, flags); 1255 if (clk->enable_count) 1256 __clk_disable(old_parent); 1257 spin_unlock_irqrestore(&enable_lock, flags); 1258 1259 if (clk->prepare_count) 1260 __clk_unprepare(old_parent); 1261 1262 out: 1263 return ret; 1264 } 1265 1266 /** 1267 * clk_set_parent - switch the parent of a mux clk 1268 * @clk: the mux clk whose input we are switching 1269 * @parent: the new input to clk 1270 * 1271 * Re-parent clk to use parent as it's new input source. If clk has the 1272 * CLK_SET_PARENT_GATE flag set then clk must be gated for this 1273 * operation to succeed. After successfully changing clk's parent 1274 * clk_set_parent will update the clk topology, sysfs topology and 1275 * propagate rate recalculation via __clk_recalc_rates. Returns 0 on 1276 * success, -EERROR otherwise. 1277 */ 1278 int clk_set_parent(struct clk *clk, struct clk *parent) 1279 { 1280 int ret = 0; 1281 1282 if (!clk || !clk->ops) 1283 return -EINVAL; 1284 1285 if (!clk->ops->set_parent) 1286 return -ENOSYS; 1287 1288 /* prevent racing with updates to the clock topology */ 1289 mutex_lock(&prepare_lock); 1290 1291 if (clk->parent == parent) 1292 goto out; 1293 1294 /* propagate PRE_RATE_CHANGE notifications */ 1295 if (clk->notifier_count) 1296 ret = __clk_speculate_rates(clk, parent->rate); 1297 1298 /* abort if a driver objects */ 1299 if (ret == NOTIFY_STOP) 1300 goto out; 1301 1302 /* only re-parent if the clock is not in use */ 1303 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) 1304 ret = -EBUSY; 1305 else 1306 ret = __clk_set_parent(clk, parent); 1307 1308 /* propagate ABORT_RATE_CHANGE if .set_parent failed */ 1309 if (ret) { 1310 __clk_recalc_rates(clk, ABORT_RATE_CHANGE); 1311 goto out; 1312 } 1313 1314 /* propagate rate recalculation downstream */ 1315 __clk_reparent(clk, parent); 1316 1317 out: 1318 mutex_unlock(&prepare_lock); 1319 1320 return ret; 1321 } 1322 EXPORT_SYMBOL_GPL(clk_set_parent); 1323 1324 /** 1325 * __clk_init - initialize the data structures in a struct clk 1326 * @dev: device initializing this clk, placeholder for now 1327 * @clk: clk being initialized 1328 * 1329 * Initializes the lists in struct clk, queries the hardware for the 1330 * parent and rate and sets them both. 1331 */ 1332 int __clk_init(struct device *dev, struct clk *clk) 1333 { 1334 int i, ret = 0; 1335 struct clk *orphan; 1336 struct hlist_node *tmp2; 1337 1338 if (!clk) 1339 return -EINVAL; 1340 1341 mutex_lock(&prepare_lock); 1342 1343 /* check to see if a clock with this name is already registered */ 1344 if (__clk_lookup(clk->name)) { 1345 pr_debug("%s: clk %s already initialized\n", 1346 __func__, clk->name); 1347 ret = -EEXIST; 1348 goto out; 1349 } 1350 1351 /* check that clk_ops are sane. See Documentation/clk.txt */ 1352 if (clk->ops->set_rate && 1353 !(clk->ops->round_rate && clk->ops->recalc_rate)) { 1354 pr_warning("%s: %s must implement .round_rate & .recalc_rate\n", 1355 __func__, clk->name); 1356 ret = -EINVAL; 1357 goto out; 1358 } 1359 1360 if (clk->ops->set_parent && !clk->ops->get_parent) { 1361 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 1362 __func__, clk->name); 1363 ret = -EINVAL; 1364 goto out; 1365 } 1366 1367 /* throw a WARN if any entries in parent_names are NULL */ 1368 for (i = 0; i < clk->num_parents; i++) 1369 WARN(!clk->parent_names[i], 1370 "%s: invalid NULL in %s's .parent_names\n", 1371 __func__, clk->name); 1372 1373 /* 1374 * Allocate an array of struct clk *'s to avoid unnecessary string 1375 * look-ups of clk's possible parents. This can fail for clocks passed 1376 * in to clk_init during early boot; thus any access to clk->parents[] 1377 * must always check for a NULL pointer and try to populate it if 1378 * necessary. 1379 * 1380 * If clk->parents is not NULL we skip this entire block. This allows 1381 * for clock drivers to statically initialize clk->parents. 1382 */ 1383 if (clk->num_parents > 1 && !clk->parents) { 1384 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents), 1385 GFP_KERNEL); 1386 /* 1387 * __clk_lookup returns NULL for parents that have not been 1388 * clk_init'd; thus any access to clk->parents[] must check 1389 * for a NULL pointer. We can always perform lazy lookups for 1390 * missing parents later on. 1391 */ 1392 if (clk->parents) 1393 for (i = 0; i < clk->num_parents; i++) 1394 clk->parents[i] = 1395 __clk_lookup(clk->parent_names[i]); 1396 } 1397 1398 clk->parent = __clk_init_parent(clk); 1399 1400 /* 1401 * Populate clk->parent if parent has already been __clk_init'd. If 1402 * parent has not yet been __clk_init'd then place clk in the orphan 1403 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 1404 * clk list. 1405 * 1406 * Every time a new clk is clk_init'd then we walk the list of orphan 1407 * clocks and re-parent any that are children of the clock currently 1408 * being clk_init'd. 1409 */ 1410 if (clk->parent) 1411 hlist_add_head(&clk->child_node, 1412 &clk->parent->children); 1413 else if (clk->flags & CLK_IS_ROOT) 1414 hlist_add_head(&clk->child_node, &clk_root_list); 1415 else 1416 hlist_add_head(&clk->child_node, &clk_orphan_list); 1417 1418 /* 1419 * Set clk's rate. The preferred method is to use .recalc_rate. For 1420 * simple clocks and lazy developers the default fallback is to use the 1421 * parent's rate. If a clock doesn't have a parent (or is orphaned) 1422 * then rate is set to zero. 1423 */ 1424 if (clk->ops->recalc_rate) 1425 clk->rate = clk->ops->recalc_rate(clk->hw, 1426 __clk_get_rate(clk->parent)); 1427 else if (clk->parent) 1428 clk->rate = clk->parent->rate; 1429 else 1430 clk->rate = 0; 1431 1432 /* 1433 * walk the list of orphan clocks and reparent any that are children of 1434 * this clock 1435 */ 1436 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 1437 if (orphan->ops->get_parent) { 1438 i = orphan->ops->get_parent(orphan->hw); 1439 if (!strcmp(clk->name, orphan->parent_names[i])) 1440 __clk_reparent(orphan, clk); 1441 continue; 1442 } 1443 1444 for (i = 0; i < orphan->num_parents; i++) 1445 if (!strcmp(clk->name, orphan->parent_names[i])) { 1446 __clk_reparent(orphan, clk); 1447 break; 1448 } 1449 } 1450 1451 /* 1452 * optional platform-specific magic 1453 * 1454 * The .init callback is not used by any of the basic clock types, but 1455 * exists for weird hardware that must perform initialization magic. 1456 * Please consider other ways of solving initialization problems before 1457 * using this callback, as it's use is discouraged. 1458 */ 1459 if (clk->ops->init) 1460 clk->ops->init(clk->hw); 1461 1462 clk_debug_register(clk); 1463 1464 out: 1465 mutex_unlock(&prepare_lock); 1466 1467 return ret; 1468 } 1469 1470 /** 1471 * __clk_register - register a clock and return a cookie. 1472 * 1473 * Same as clk_register, except that the .clk field inside hw shall point to a 1474 * preallocated (generally statically allocated) struct clk. None of the fields 1475 * of the struct clk need to be initialized. 1476 * 1477 * The data pointed to by .init and .clk field shall NOT be marked as init 1478 * data. 1479 * 1480 * __clk_register is only exposed via clk-private.h and is intended for use with 1481 * very large numbers of clocks that need to be statically initialized. It is 1482 * a layering violation to include clk-private.h from any code which implements 1483 * a clock's .ops; as such any statically initialized clock data MUST be in a 1484 * separate C file from the logic that implements it's operations. Returns 0 1485 * on success, otherwise an error code. 1486 */ 1487 struct clk *__clk_register(struct device *dev, struct clk_hw *hw) 1488 { 1489 int ret; 1490 struct clk *clk; 1491 1492 clk = hw->clk; 1493 clk->name = hw->init->name; 1494 clk->ops = hw->init->ops; 1495 clk->hw = hw; 1496 clk->flags = hw->init->flags; 1497 clk->parent_names = hw->init->parent_names; 1498 clk->num_parents = hw->init->num_parents; 1499 1500 ret = __clk_init(dev, clk); 1501 if (ret) 1502 return ERR_PTR(ret); 1503 1504 return clk; 1505 } 1506 EXPORT_SYMBOL_GPL(__clk_register); 1507 1508 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk) 1509 { 1510 int i, ret; 1511 1512 clk->name = kstrdup(hw->init->name, GFP_KERNEL); 1513 if (!clk->name) { 1514 pr_err("%s: could not allocate clk->name\n", __func__); 1515 ret = -ENOMEM; 1516 goto fail_name; 1517 } 1518 clk->ops = hw->init->ops; 1519 clk->hw = hw; 1520 clk->flags = hw->init->flags; 1521 clk->num_parents = hw->init->num_parents; 1522 hw->clk = clk; 1523 1524 /* allocate local copy in case parent_names is __initdata */ 1525 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents), 1526 GFP_KERNEL); 1527 1528 if (!clk->parent_names) { 1529 pr_err("%s: could not allocate clk->parent_names\n", __func__); 1530 ret = -ENOMEM; 1531 goto fail_parent_names; 1532 } 1533 1534 1535 /* copy each string name in case parent_names is __initdata */ 1536 for (i = 0; i < clk->num_parents; i++) { 1537 clk->parent_names[i] = kstrdup(hw->init->parent_names[i], 1538 GFP_KERNEL); 1539 if (!clk->parent_names[i]) { 1540 pr_err("%s: could not copy parent_names\n", __func__); 1541 ret = -ENOMEM; 1542 goto fail_parent_names_copy; 1543 } 1544 } 1545 1546 ret = __clk_init(dev, clk); 1547 if (!ret) 1548 return 0; 1549 1550 fail_parent_names_copy: 1551 while (--i >= 0) 1552 kfree(clk->parent_names[i]); 1553 kfree(clk->parent_names); 1554 fail_parent_names: 1555 kfree(clk->name); 1556 fail_name: 1557 return ret; 1558 } 1559 1560 /** 1561 * clk_register - allocate a new clock, register it and return an opaque cookie 1562 * @dev: device that is registering this clock 1563 * @hw: link to hardware-specific clock data 1564 * 1565 * clk_register is the primary interface for populating the clock tree with new 1566 * clock nodes. It returns a pointer to the newly allocated struct clk which 1567 * cannot be dereferenced by driver code but may be used in conjuction with the 1568 * rest of the clock API. In the event of an error clk_register will return an 1569 * error code; drivers must test for an error code after calling clk_register. 1570 */ 1571 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 1572 { 1573 int ret; 1574 struct clk *clk; 1575 1576 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 1577 if (!clk) { 1578 pr_err("%s: could not allocate clk\n", __func__); 1579 ret = -ENOMEM; 1580 goto fail_out; 1581 } 1582 1583 ret = _clk_register(dev, hw, clk); 1584 if (!ret) 1585 return clk; 1586 1587 kfree(clk); 1588 fail_out: 1589 return ERR_PTR(ret); 1590 } 1591 EXPORT_SYMBOL_GPL(clk_register); 1592 1593 /** 1594 * clk_unregister - unregister a currently registered clock 1595 * @clk: clock to unregister 1596 * 1597 * Currently unimplemented. 1598 */ 1599 void clk_unregister(struct clk *clk) {} 1600 EXPORT_SYMBOL_GPL(clk_unregister); 1601 1602 static void devm_clk_release(struct device *dev, void *res) 1603 { 1604 clk_unregister(res); 1605 } 1606 1607 /** 1608 * devm_clk_register - resource managed clk_register() 1609 * @dev: device that is registering this clock 1610 * @hw: link to hardware-specific clock data 1611 * 1612 * Managed clk_register(). Clocks returned from this function are 1613 * automatically clk_unregister()ed on driver detach. See clk_register() for 1614 * more information. 1615 */ 1616 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 1617 { 1618 struct clk *clk; 1619 int ret; 1620 1621 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL); 1622 if (!clk) 1623 return ERR_PTR(-ENOMEM); 1624 1625 ret = _clk_register(dev, hw, clk); 1626 if (!ret) { 1627 devres_add(dev, clk); 1628 } else { 1629 devres_free(clk); 1630 clk = ERR_PTR(ret); 1631 } 1632 1633 return clk; 1634 } 1635 EXPORT_SYMBOL_GPL(devm_clk_register); 1636 1637 static int devm_clk_match(struct device *dev, void *res, void *data) 1638 { 1639 struct clk *c = res; 1640 if (WARN_ON(!c)) 1641 return 0; 1642 return c == data; 1643 } 1644 1645 /** 1646 * devm_clk_unregister - resource managed clk_unregister() 1647 * @clk: clock to unregister 1648 * 1649 * Deallocate a clock allocated with devm_clk_register(). Normally 1650 * this function will not need to be called and the resource management 1651 * code will ensure that the resource is freed. 1652 */ 1653 void devm_clk_unregister(struct device *dev, struct clk *clk) 1654 { 1655 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 1656 } 1657 EXPORT_SYMBOL_GPL(devm_clk_unregister); 1658 1659 /*** clk rate change notifiers ***/ 1660 1661 /** 1662 * clk_notifier_register - add a clk rate change notifier 1663 * @clk: struct clk * to watch 1664 * @nb: struct notifier_block * with callback info 1665 * 1666 * Request notification when clk's rate changes. This uses an SRCU 1667 * notifier because we want it to block and notifier unregistrations are 1668 * uncommon. The callbacks associated with the notifier must not 1669 * re-enter into the clk framework by calling any top-level clk APIs; 1670 * this will cause a nested prepare_lock mutex. 1671 * 1672 * Pre-change notifier callbacks will be passed the current, pre-change 1673 * rate of the clk via struct clk_notifier_data.old_rate. The new, 1674 * post-change rate of the clk is passed via struct 1675 * clk_notifier_data.new_rate. 1676 * 1677 * Post-change notifiers will pass the now-current, post-change rate of 1678 * the clk in both struct clk_notifier_data.old_rate and struct 1679 * clk_notifier_data.new_rate. 1680 * 1681 * Abort-change notifiers are effectively the opposite of pre-change 1682 * notifiers: the original pre-change clk rate is passed in via struct 1683 * clk_notifier_data.new_rate and the failed post-change rate is passed 1684 * in via struct clk_notifier_data.old_rate. 1685 * 1686 * clk_notifier_register() must be called from non-atomic context. 1687 * Returns -EINVAL if called with null arguments, -ENOMEM upon 1688 * allocation failure; otherwise, passes along the return value of 1689 * srcu_notifier_chain_register(). 1690 */ 1691 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 1692 { 1693 struct clk_notifier *cn; 1694 int ret = -ENOMEM; 1695 1696 if (!clk || !nb) 1697 return -EINVAL; 1698 1699 mutex_lock(&prepare_lock); 1700 1701 /* search the list of notifiers for this clk */ 1702 list_for_each_entry(cn, &clk_notifier_list, node) 1703 if (cn->clk == clk) 1704 break; 1705 1706 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 1707 if (cn->clk != clk) { 1708 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 1709 if (!cn) 1710 goto out; 1711 1712 cn->clk = clk; 1713 srcu_init_notifier_head(&cn->notifier_head); 1714 1715 list_add(&cn->node, &clk_notifier_list); 1716 } 1717 1718 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 1719 1720 clk->notifier_count++; 1721 1722 out: 1723 mutex_unlock(&prepare_lock); 1724 1725 return ret; 1726 } 1727 EXPORT_SYMBOL_GPL(clk_notifier_register); 1728 1729 /** 1730 * clk_notifier_unregister - remove a clk rate change notifier 1731 * @clk: struct clk * 1732 * @nb: struct notifier_block * with callback info 1733 * 1734 * Request no further notification for changes to 'clk' and frees memory 1735 * allocated in clk_notifier_register. 1736 * 1737 * Returns -EINVAL if called with null arguments; otherwise, passes 1738 * along the return value of srcu_notifier_chain_unregister(). 1739 */ 1740 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 1741 { 1742 struct clk_notifier *cn = NULL; 1743 int ret = -EINVAL; 1744 1745 if (!clk || !nb) 1746 return -EINVAL; 1747 1748 mutex_lock(&prepare_lock); 1749 1750 list_for_each_entry(cn, &clk_notifier_list, node) 1751 if (cn->clk == clk) 1752 break; 1753 1754 if (cn->clk == clk) { 1755 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 1756 1757 clk->notifier_count--; 1758 1759 /* XXX the notifier code should handle this better */ 1760 if (!cn->notifier_head.head) { 1761 srcu_cleanup_notifier_head(&cn->notifier_head); 1762 kfree(cn); 1763 } 1764 1765 } else { 1766 ret = -ENOENT; 1767 } 1768 1769 mutex_unlock(&prepare_lock); 1770 1771 return ret; 1772 } 1773 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 1774 1775 #ifdef CONFIG_OF 1776 /** 1777 * struct of_clk_provider - Clock provider registration structure 1778 * @link: Entry in global list of clock providers 1779 * @node: Pointer to device tree node of clock provider 1780 * @get: Get clock callback. Returns NULL or a struct clk for the 1781 * given clock specifier 1782 * @data: context pointer to be passed into @get callback 1783 */ 1784 struct of_clk_provider { 1785 struct list_head link; 1786 1787 struct device_node *node; 1788 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 1789 void *data; 1790 }; 1791 1792 extern struct of_device_id __clk_of_table[]; 1793 1794 static const struct of_device_id __clk_of_table_sentinel 1795 __used __section(__clk_of_table_end); 1796 1797 static LIST_HEAD(of_clk_providers); 1798 static DEFINE_MUTEX(of_clk_lock); 1799 1800 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 1801 void *data) 1802 { 1803 return data; 1804 } 1805 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 1806 1807 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 1808 { 1809 struct clk_onecell_data *clk_data = data; 1810 unsigned int idx = clkspec->args[0]; 1811 1812 if (idx >= clk_data->clk_num) { 1813 pr_err("%s: invalid clock index %d\n", __func__, idx); 1814 return ERR_PTR(-EINVAL); 1815 } 1816 1817 return clk_data->clks[idx]; 1818 } 1819 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 1820 1821 /** 1822 * of_clk_add_provider() - Register a clock provider for a node 1823 * @np: Device node pointer associated with clock provider 1824 * @clk_src_get: callback for decoding clock 1825 * @data: context pointer for @clk_src_get callback. 1826 */ 1827 int of_clk_add_provider(struct device_node *np, 1828 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 1829 void *data), 1830 void *data) 1831 { 1832 struct of_clk_provider *cp; 1833 1834 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 1835 if (!cp) 1836 return -ENOMEM; 1837 1838 cp->node = of_node_get(np); 1839 cp->data = data; 1840 cp->get = clk_src_get; 1841 1842 mutex_lock(&of_clk_lock); 1843 list_add(&cp->link, &of_clk_providers); 1844 mutex_unlock(&of_clk_lock); 1845 pr_debug("Added clock from %s\n", np->full_name); 1846 1847 return 0; 1848 } 1849 EXPORT_SYMBOL_GPL(of_clk_add_provider); 1850 1851 /** 1852 * of_clk_del_provider() - Remove a previously registered clock provider 1853 * @np: Device node pointer associated with clock provider 1854 */ 1855 void of_clk_del_provider(struct device_node *np) 1856 { 1857 struct of_clk_provider *cp; 1858 1859 mutex_lock(&of_clk_lock); 1860 list_for_each_entry(cp, &of_clk_providers, link) { 1861 if (cp->node == np) { 1862 list_del(&cp->link); 1863 of_node_put(cp->node); 1864 kfree(cp); 1865 break; 1866 } 1867 } 1868 mutex_unlock(&of_clk_lock); 1869 } 1870 EXPORT_SYMBOL_GPL(of_clk_del_provider); 1871 1872 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 1873 { 1874 struct of_clk_provider *provider; 1875 struct clk *clk = ERR_PTR(-ENOENT); 1876 1877 /* Check if we have such a provider in our array */ 1878 mutex_lock(&of_clk_lock); 1879 list_for_each_entry(provider, &of_clk_providers, link) { 1880 if (provider->node == clkspec->np) 1881 clk = provider->get(clkspec, provider->data); 1882 if (!IS_ERR(clk)) 1883 break; 1884 } 1885 mutex_unlock(&of_clk_lock); 1886 1887 return clk; 1888 } 1889 1890 const char *of_clk_get_parent_name(struct device_node *np, int index) 1891 { 1892 struct of_phandle_args clkspec; 1893 const char *clk_name; 1894 int rc; 1895 1896 if (index < 0) 1897 return NULL; 1898 1899 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 1900 &clkspec); 1901 if (rc) 1902 return NULL; 1903 1904 if (of_property_read_string_index(clkspec.np, "clock-output-names", 1905 clkspec.args_count ? clkspec.args[0] : 0, 1906 &clk_name) < 0) 1907 clk_name = clkspec.np->name; 1908 1909 of_node_put(clkspec.np); 1910 return clk_name; 1911 } 1912 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 1913 1914 /** 1915 * of_clk_init() - Scan and init clock providers from the DT 1916 * @matches: array of compatible values and init functions for providers. 1917 * 1918 * This function scans the device tree for matching clock providers and 1919 * calls their initialization functions 1920 */ 1921 void __init of_clk_init(const struct of_device_id *matches) 1922 { 1923 struct device_node *np; 1924 1925 if (!matches) 1926 matches = __clk_of_table; 1927 1928 for_each_matching_node(np, matches) { 1929 const struct of_device_id *match = of_match_node(matches, np); 1930 of_clk_init_cb_t clk_init_cb = match->data; 1931 clk_init_cb(np); 1932 } 1933 } 1934 #endif 1935