xref: /openbmc/linux/drivers/clk/clk.c (revision 81895a65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	ret = core->ops->is_enabled(core->hw);
248 done:
249 	if (core->rpm_enabled)
250 		pm_runtime_put(core->dev);
251 
252 	return ret;
253 }
254 
255 /***    helper functions   ***/
256 
257 const char *__clk_get_name(const struct clk *clk)
258 {
259 	return !clk ? NULL : clk->core->name;
260 }
261 EXPORT_SYMBOL_GPL(__clk_get_name);
262 
263 const char *clk_hw_get_name(const struct clk_hw *hw)
264 {
265 	return hw->core->name;
266 }
267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
268 
269 struct clk_hw *__clk_get_hw(struct clk *clk)
270 {
271 	return !clk ? NULL : clk->core->hw;
272 }
273 EXPORT_SYMBOL_GPL(__clk_get_hw);
274 
275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276 {
277 	return hw->core->num_parents;
278 }
279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280 
281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282 {
283 	return hw->core->parent ? hw->core->parent->hw : NULL;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286 
287 static struct clk_core *__clk_lookup_subtree(const char *name,
288 					     struct clk_core *core)
289 {
290 	struct clk_core *child;
291 	struct clk_core *ret;
292 
293 	if (!strcmp(core->name, name))
294 		return core;
295 
296 	hlist_for_each_entry(child, &core->children, child_node) {
297 		ret = __clk_lookup_subtree(name, child);
298 		if (ret)
299 			return ret;
300 	}
301 
302 	return NULL;
303 }
304 
305 static struct clk_core *clk_core_lookup(const char *name)
306 {
307 	struct clk_core *root_clk;
308 	struct clk_core *ret;
309 
310 	if (!name)
311 		return NULL;
312 
313 	/* search the 'proper' clk tree first */
314 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 		ret = __clk_lookup_subtree(name, root_clk);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	/* if not found, then search the orphan tree */
321 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_OF
331 static int of_parse_clkspec(const struct device_node *np, int index,
332 			    const char *name, struct of_phandle_args *out_args);
333 static struct clk_hw *
334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335 #else
336 static inline int of_parse_clkspec(const struct device_node *np, int index,
337 				   const char *name,
338 				   struct of_phandle_args *out_args)
339 {
340 	return -ENOENT;
341 }
342 static inline struct clk_hw *
343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344 {
345 	return ERR_PTR(-ENOENT);
346 }
347 #endif
348 
349 /**
350  * clk_core_get - Find the clk_core parent of a clk
351  * @core: clk to find parent of
352  * @p_index: parent index to search for
353  *
354  * This is the preferred method for clk providers to find the parent of a
355  * clk when that parent is external to the clk controller. The parent_names
356  * array is indexed and treated as a local name matching a string in the device
357  * node's 'clock-names' property or as the 'con_id' matching the device's
358  * dev_name() in a clk_lookup. This allows clk providers to use their own
359  * namespace instead of looking for a globally unique parent string.
360  *
361  * For example the following DT snippet would allow a clock registered by the
362  * clock-controller@c001 that has a clk_init_data::parent_data array
363  * with 'xtal' in the 'name' member to find the clock provided by the
364  * clock-controller@f00abcd without needing to get the globally unique name of
365  * the xtal clk.
366  *
367  *      parent: clock-controller@f00abcd {
368  *              reg = <0xf00abcd 0xabcd>;
369  *              #clock-cells = <0>;
370  *      };
371  *
372  *      clock-controller@c001 {
373  *              reg = <0xc001 0xf00d>;
374  *              clocks = <&parent>;
375  *              clock-names = "xtal";
376  *              #clock-cells = <1>;
377  *      };
378  *
379  * Returns: -ENOENT when the provider can't be found or the clk doesn't
380  * exist in the provider or the name can't be found in the DT node or
381  * in a clkdev lookup. NULL when the provider knows about the clk but it
382  * isn't provided on this system.
383  * A valid clk_core pointer when the clk can be found in the provider.
384  */
385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386 {
387 	const char *name = core->parents[p_index].fw_name;
388 	int index = core->parents[p_index].index;
389 	struct clk_hw *hw = ERR_PTR(-ENOENT);
390 	struct device *dev = core->dev;
391 	const char *dev_id = dev ? dev_name(dev) : NULL;
392 	struct device_node *np = core->of_node;
393 	struct of_phandle_args clkspec;
394 
395 	if (np && (name || index >= 0) &&
396 	    !of_parse_clkspec(np, index, name, &clkspec)) {
397 		hw = of_clk_get_hw_from_clkspec(&clkspec);
398 		of_node_put(clkspec.np);
399 	} else if (name) {
400 		/*
401 		 * If the DT search above couldn't find the provider fallback to
402 		 * looking up via clkdev based clk_lookups.
403 		 */
404 		hw = clk_find_hw(dev_id, name);
405 	}
406 
407 	if (IS_ERR(hw))
408 		return ERR_CAST(hw);
409 
410 	return hw->core;
411 }
412 
413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414 {
415 	struct clk_parent_map *entry = &core->parents[index];
416 	struct clk_core *parent;
417 
418 	if (entry->hw) {
419 		parent = entry->hw->core;
420 	} else {
421 		parent = clk_core_get(core, index);
422 		if (PTR_ERR(parent) == -ENOENT && entry->name)
423 			parent = clk_core_lookup(entry->name);
424 	}
425 
426 	/*
427 	 * We have a direct reference but it isn't registered yet?
428 	 * Orphan it and let clk_reparent() update the orphan status
429 	 * when the parent is registered.
430 	 */
431 	if (!parent)
432 		parent = ERR_PTR(-EPROBE_DEFER);
433 
434 	/* Only cache it if it's not an error */
435 	if (!IS_ERR(parent))
436 		entry->core = parent;
437 }
438 
439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 							 u8 index)
441 {
442 	if (!core || index >= core->num_parents || !core->parents)
443 		return NULL;
444 
445 	if (!core->parents[index].core)
446 		clk_core_fill_parent_index(core, index);
447 
448 	return core->parents[index].core;
449 }
450 
451 struct clk_hw *
452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453 {
454 	struct clk_core *parent;
455 
456 	parent = clk_core_get_parent_by_index(hw->core, index);
457 
458 	return !parent ? NULL : parent->hw;
459 }
460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461 
462 unsigned int __clk_get_enable_count(struct clk *clk)
463 {
464 	return !clk ? 0 : clk->core->enable_count;
465 }
466 
467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468 {
469 	if (!core)
470 		return 0;
471 
472 	if (!core->num_parents || core->parent)
473 		return core->rate;
474 
475 	/*
476 	 * Clk must have a parent because num_parents > 0 but the parent isn't
477 	 * known yet. Best to return 0 as the rate of this clk until we can
478 	 * properly recalc the rate based on the parent's rate.
479 	 */
480 	return 0;
481 }
482 
483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484 {
485 	return clk_core_get_rate_nolock(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488 
489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490 {
491 	if (!core)
492 		return 0;
493 
494 	return core->accuracy;
495 }
496 
497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498 {
499 	return hw->core->flags;
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502 
503 bool clk_hw_is_prepared(const struct clk_hw *hw)
504 {
505 	return clk_core_is_prepared(hw->core);
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508 
509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510 {
511 	return clk_core_rate_is_protected(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514 
515 bool clk_hw_is_enabled(const struct clk_hw *hw)
516 {
517 	return clk_core_is_enabled(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520 
521 bool __clk_is_enabled(struct clk *clk)
522 {
523 	if (!clk)
524 		return false;
525 
526 	return clk_core_is_enabled(clk->core);
527 }
528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
529 
530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 			   unsigned long best, unsigned long flags)
532 {
533 	if (flags & CLK_MUX_ROUND_CLOSEST)
534 		return abs(now - rate) < abs(best - rate);
535 
536 	return now <= rate && now > best;
537 }
538 
539 int clk_mux_determine_rate_flags(struct clk_hw *hw,
540 				 struct clk_rate_request *req,
541 				 unsigned long flags)
542 {
543 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
544 	int i, num_parents, ret;
545 	unsigned long best = 0;
546 	struct clk_rate_request parent_req = *req;
547 
548 	/* if NO_REPARENT flag set, pass through to current parent */
549 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
550 		parent = core->parent;
551 		if (core->flags & CLK_SET_RATE_PARENT) {
552 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
553 						   &parent_req);
554 			if (ret)
555 				return ret;
556 
557 			best = parent_req.rate;
558 		} else if (parent) {
559 			best = clk_core_get_rate_nolock(parent);
560 		} else {
561 			best = clk_core_get_rate_nolock(core);
562 		}
563 
564 		goto out;
565 	}
566 
567 	/* find the parent that can provide the fastest rate <= rate */
568 	num_parents = core->num_parents;
569 	for (i = 0; i < num_parents; i++) {
570 		parent = clk_core_get_parent_by_index(core, i);
571 		if (!parent)
572 			continue;
573 
574 		if (core->flags & CLK_SET_RATE_PARENT) {
575 			parent_req = *req;
576 			ret = __clk_determine_rate(parent->hw, &parent_req);
577 			if (ret)
578 				continue;
579 		} else {
580 			parent_req.rate = clk_core_get_rate_nolock(parent);
581 		}
582 
583 		if (mux_is_better_rate(req->rate, parent_req.rate,
584 				       best, flags)) {
585 			best_parent = parent;
586 			best = parent_req.rate;
587 		}
588 	}
589 
590 	if (!best_parent)
591 		return -EINVAL;
592 
593 out:
594 	if (best_parent)
595 		req->best_parent_hw = best_parent->hw;
596 	req->best_parent_rate = best;
597 	req->rate = best;
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
602 
603 struct clk *__clk_lookup(const char *name)
604 {
605 	struct clk_core *core = clk_core_lookup(name);
606 
607 	return !core ? NULL : core->hw->clk;
608 }
609 
610 static void clk_core_get_boundaries(struct clk_core *core,
611 				    unsigned long *min_rate,
612 				    unsigned long *max_rate)
613 {
614 	struct clk *clk_user;
615 
616 	lockdep_assert_held(&prepare_lock);
617 
618 	*min_rate = core->min_rate;
619 	*max_rate = core->max_rate;
620 
621 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
622 		*min_rate = max(*min_rate, clk_user->min_rate);
623 
624 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
625 		*max_rate = min(*max_rate, clk_user->max_rate);
626 }
627 
628 static bool clk_core_check_boundaries(struct clk_core *core,
629 				      unsigned long min_rate,
630 				      unsigned long max_rate)
631 {
632 	struct clk *user;
633 
634 	lockdep_assert_held(&prepare_lock);
635 
636 	if (min_rate > core->max_rate || max_rate < core->min_rate)
637 		return false;
638 
639 	hlist_for_each_entry(user, &core->clks, clks_node)
640 		if (min_rate > user->max_rate || max_rate < user->min_rate)
641 			return false;
642 
643 	return true;
644 }
645 
646 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
647 			   unsigned long max_rate)
648 {
649 	hw->core->min_rate = min_rate;
650 	hw->core->max_rate = max_rate;
651 }
652 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
653 
654 /*
655  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
656  * @hw: mux type clk to determine rate on
657  * @req: rate request, also used to return preferred parent and frequencies
658  *
659  * Helper for finding best parent to provide a given frequency. This can be used
660  * directly as a determine_rate callback (e.g. for a mux), or from a more
661  * complex clock that may combine a mux with other operations.
662  *
663  * Returns: 0 on success, -EERROR value on error
664  */
665 int __clk_mux_determine_rate(struct clk_hw *hw,
666 			     struct clk_rate_request *req)
667 {
668 	return clk_mux_determine_rate_flags(hw, req, 0);
669 }
670 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
671 
672 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
673 				     struct clk_rate_request *req)
674 {
675 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
676 }
677 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
678 
679 /***        clk api        ***/
680 
681 static void clk_core_rate_unprotect(struct clk_core *core)
682 {
683 	lockdep_assert_held(&prepare_lock);
684 
685 	if (!core)
686 		return;
687 
688 	if (WARN(core->protect_count == 0,
689 	    "%s already unprotected\n", core->name))
690 		return;
691 
692 	if (--core->protect_count > 0)
693 		return;
694 
695 	clk_core_rate_unprotect(core->parent);
696 }
697 
698 static int clk_core_rate_nuke_protect(struct clk_core *core)
699 {
700 	int ret;
701 
702 	lockdep_assert_held(&prepare_lock);
703 
704 	if (!core)
705 		return -EINVAL;
706 
707 	if (core->protect_count == 0)
708 		return 0;
709 
710 	ret = core->protect_count;
711 	core->protect_count = 1;
712 	clk_core_rate_unprotect(core);
713 
714 	return ret;
715 }
716 
717 /**
718  * clk_rate_exclusive_put - release exclusivity over clock rate control
719  * @clk: the clk over which the exclusivity is released
720  *
721  * clk_rate_exclusive_put() completes a critical section during which a clock
722  * consumer cannot tolerate any other consumer making any operation on the
723  * clock which could result in a rate change or rate glitch. Exclusive clocks
724  * cannot have their rate changed, either directly or indirectly due to changes
725  * further up the parent chain of clocks. As a result, clocks up parent chain
726  * also get under exclusive control of the calling consumer.
727  *
728  * If exlusivity is claimed more than once on clock, even by the same consumer,
729  * the rate effectively gets locked as exclusivity can't be preempted.
730  *
731  * Calls to clk_rate_exclusive_put() must be balanced with calls to
732  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
733  * error status.
734  */
735 void clk_rate_exclusive_put(struct clk *clk)
736 {
737 	if (!clk)
738 		return;
739 
740 	clk_prepare_lock();
741 
742 	/*
743 	 * if there is something wrong with this consumer protect count, stop
744 	 * here before messing with the provider
745 	 */
746 	if (WARN_ON(clk->exclusive_count <= 0))
747 		goto out;
748 
749 	clk_core_rate_unprotect(clk->core);
750 	clk->exclusive_count--;
751 out:
752 	clk_prepare_unlock();
753 }
754 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
755 
756 static void clk_core_rate_protect(struct clk_core *core)
757 {
758 	lockdep_assert_held(&prepare_lock);
759 
760 	if (!core)
761 		return;
762 
763 	if (core->protect_count == 0)
764 		clk_core_rate_protect(core->parent);
765 
766 	core->protect_count++;
767 }
768 
769 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
770 {
771 	lockdep_assert_held(&prepare_lock);
772 
773 	if (!core)
774 		return;
775 
776 	if (count == 0)
777 		return;
778 
779 	clk_core_rate_protect(core);
780 	core->protect_count = count;
781 }
782 
783 /**
784  * clk_rate_exclusive_get - get exclusivity over the clk rate control
785  * @clk: the clk over which the exclusity of rate control is requested
786  *
787  * clk_rate_exclusive_get() begins a critical section during which a clock
788  * consumer cannot tolerate any other consumer making any operation on the
789  * clock which could result in a rate change or rate glitch. Exclusive clocks
790  * cannot have their rate changed, either directly or indirectly due to changes
791  * further up the parent chain of clocks. As a result, clocks up parent chain
792  * also get under exclusive control of the calling consumer.
793  *
794  * If exlusivity is claimed more than once on clock, even by the same consumer,
795  * the rate effectively gets locked as exclusivity can't be preempted.
796  *
797  * Calls to clk_rate_exclusive_get() should be balanced with calls to
798  * clk_rate_exclusive_put(). Calls to this function may sleep.
799  * Returns 0 on success, -EERROR otherwise
800  */
801 int clk_rate_exclusive_get(struct clk *clk)
802 {
803 	if (!clk)
804 		return 0;
805 
806 	clk_prepare_lock();
807 	clk_core_rate_protect(clk->core);
808 	clk->exclusive_count++;
809 	clk_prepare_unlock();
810 
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
814 
815 static void clk_core_unprepare(struct clk_core *core)
816 {
817 	lockdep_assert_held(&prepare_lock);
818 
819 	if (!core)
820 		return;
821 
822 	if (WARN(core->prepare_count == 0,
823 	    "%s already unprepared\n", core->name))
824 		return;
825 
826 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
827 	    "Unpreparing critical %s\n", core->name))
828 		return;
829 
830 	if (core->flags & CLK_SET_RATE_GATE)
831 		clk_core_rate_unprotect(core);
832 
833 	if (--core->prepare_count > 0)
834 		return;
835 
836 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
837 
838 	trace_clk_unprepare(core);
839 
840 	if (core->ops->unprepare)
841 		core->ops->unprepare(core->hw);
842 
843 	trace_clk_unprepare_complete(core);
844 	clk_core_unprepare(core->parent);
845 	clk_pm_runtime_put(core);
846 }
847 
848 static void clk_core_unprepare_lock(struct clk_core *core)
849 {
850 	clk_prepare_lock();
851 	clk_core_unprepare(core);
852 	clk_prepare_unlock();
853 }
854 
855 /**
856  * clk_unprepare - undo preparation of a clock source
857  * @clk: the clk being unprepared
858  *
859  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
860  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
861  * if the operation may sleep.  One example is a clk which is accessed over
862  * I2c.  In the complex case a clk gate operation may require a fast and a slow
863  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
864  * exclusive.  In fact clk_disable must be called before clk_unprepare.
865  */
866 void clk_unprepare(struct clk *clk)
867 {
868 	if (IS_ERR_OR_NULL(clk))
869 		return;
870 
871 	clk_core_unprepare_lock(clk->core);
872 }
873 EXPORT_SYMBOL_GPL(clk_unprepare);
874 
875 static int clk_core_prepare(struct clk_core *core)
876 {
877 	int ret = 0;
878 
879 	lockdep_assert_held(&prepare_lock);
880 
881 	if (!core)
882 		return 0;
883 
884 	if (core->prepare_count == 0) {
885 		ret = clk_pm_runtime_get(core);
886 		if (ret)
887 			return ret;
888 
889 		ret = clk_core_prepare(core->parent);
890 		if (ret)
891 			goto runtime_put;
892 
893 		trace_clk_prepare(core);
894 
895 		if (core->ops->prepare)
896 			ret = core->ops->prepare(core->hw);
897 
898 		trace_clk_prepare_complete(core);
899 
900 		if (ret)
901 			goto unprepare;
902 	}
903 
904 	core->prepare_count++;
905 
906 	/*
907 	 * CLK_SET_RATE_GATE is a special case of clock protection
908 	 * Instead of a consumer claiming exclusive rate control, it is
909 	 * actually the provider which prevents any consumer from making any
910 	 * operation which could result in a rate change or rate glitch while
911 	 * the clock is prepared.
912 	 */
913 	if (core->flags & CLK_SET_RATE_GATE)
914 		clk_core_rate_protect(core);
915 
916 	return 0;
917 unprepare:
918 	clk_core_unprepare(core->parent);
919 runtime_put:
920 	clk_pm_runtime_put(core);
921 	return ret;
922 }
923 
924 static int clk_core_prepare_lock(struct clk_core *core)
925 {
926 	int ret;
927 
928 	clk_prepare_lock();
929 	ret = clk_core_prepare(core);
930 	clk_prepare_unlock();
931 
932 	return ret;
933 }
934 
935 /**
936  * clk_prepare - prepare a clock source
937  * @clk: the clk being prepared
938  *
939  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
940  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
941  * operation may sleep.  One example is a clk which is accessed over I2c.  In
942  * the complex case a clk ungate operation may require a fast and a slow part.
943  * It is this reason that clk_prepare and clk_enable are not mutually
944  * exclusive.  In fact clk_prepare must be called before clk_enable.
945  * Returns 0 on success, -EERROR otherwise.
946  */
947 int clk_prepare(struct clk *clk)
948 {
949 	if (!clk)
950 		return 0;
951 
952 	return clk_core_prepare_lock(clk->core);
953 }
954 EXPORT_SYMBOL_GPL(clk_prepare);
955 
956 static void clk_core_disable(struct clk_core *core)
957 {
958 	lockdep_assert_held(&enable_lock);
959 
960 	if (!core)
961 		return;
962 
963 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
964 		return;
965 
966 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
967 	    "Disabling critical %s\n", core->name))
968 		return;
969 
970 	if (--core->enable_count > 0)
971 		return;
972 
973 	trace_clk_disable_rcuidle(core);
974 
975 	if (core->ops->disable)
976 		core->ops->disable(core->hw);
977 
978 	trace_clk_disable_complete_rcuidle(core);
979 
980 	clk_core_disable(core->parent);
981 }
982 
983 static void clk_core_disable_lock(struct clk_core *core)
984 {
985 	unsigned long flags;
986 
987 	flags = clk_enable_lock();
988 	clk_core_disable(core);
989 	clk_enable_unlock(flags);
990 }
991 
992 /**
993  * clk_disable - gate a clock
994  * @clk: the clk being gated
995  *
996  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
997  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
998  * clk if the operation is fast and will never sleep.  One example is a
999  * SoC-internal clk which is controlled via simple register writes.  In the
1000  * complex case a clk gate operation may require a fast and a slow part.  It is
1001  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1002  * In fact clk_disable must be called before clk_unprepare.
1003  */
1004 void clk_disable(struct clk *clk)
1005 {
1006 	if (IS_ERR_OR_NULL(clk))
1007 		return;
1008 
1009 	clk_core_disable_lock(clk->core);
1010 }
1011 EXPORT_SYMBOL_GPL(clk_disable);
1012 
1013 static int clk_core_enable(struct clk_core *core)
1014 {
1015 	int ret = 0;
1016 
1017 	lockdep_assert_held(&enable_lock);
1018 
1019 	if (!core)
1020 		return 0;
1021 
1022 	if (WARN(core->prepare_count == 0,
1023 	    "Enabling unprepared %s\n", core->name))
1024 		return -ESHUTDOWN;
1025 
1026 	if (core->enable_count == 0) {
1027 		ret = clk_core_enable(core->parent);
1028 
1029 		if (ret)
1030 			return ret;
1031 
1032 		trace_clk_enable_rcuidle(core);
1033 
1034 		if (core->ops->enable)
1035 			ret = core->ops->enable(core->hw);
1036 
1037 		trace_clk_enable_complete_rcuidle(core);
1038 
1039 		if (ret) {
1040 			clk_core_disable(core->parent);
1041 			return ret;
1042 		}
1043 	}
1044 
1045 	core->enable_count++;
1046 	return 0;
1047 }
1048 
1049 static int clk_core_enable_lock(struct clk_core *core)
1050 {
1051 	unsigned long flags;
1052 	int ret;
1053 
1054 	flags = clk_enable_lock();
1055 	ret = clk_core_enable(core);
1056 	clk_enable_unlock(flags);
1057 
1058 	return ret;
1059 }
1060 
1061 /**
1062  * clk_gate_restore_context - restore context for poweroff
1063  * @hw: the clk_hw pointer of clock whose state is to be restored
1064  *
1065  * The clock gate restore context function enables or disables
1066  * the gate clocks based on the enable_count. This is done in cases
1067  * where the clock context is lost and based on the enable_count
1068  * the clock either needs to be enabled/disabled. This
1069  * helps restore the state of gate clocks.
1070  */
1071 void clk_gate_restore_context(struct clk_hw *hw)
1072 {
1073 	struct clk_core *core = hw->core;
1074 
1075 	if (core->enable_count)
1076 		core->ops->enable(hw);
1077 	else
1078 		core->ops->disable(hw);
1079 }
1080 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1081 
1082 static int clk_core_save_context(struct clk_core *core)
1083 {
1084 	struct clk_core *child;
1085 	int ret = 0;
1086 
1087 	hlist_for_each_entry(child, &core->children, child_node) {
1088 		ret = clk_core_save_context(child);
1089 		if (ret < 0)
1090 			return ret;
1091 	}
1092 
1093 	if (core->ops && core->ops->save_context)
1094 		ret = core->ops->save_context(core->hw);
1095 
1096 	return ret;
1097 }
1098 
1099 static void clk_core_restore_context(struct clk_core *core)
1100 {
1101 	struct clk_core *child;
1102 
1103 	if (core->ops && core->ops->restore_context)
1104 		core->ops->restore_context(core->hw);
1105 
1106 	hlist_for_each_entry(child, &core->children, child_node)
1107 		clk_core_restore_context(child);
1108 }
1109 
1110 /**
1111  * clk_save_context - save clock context for poweroff
1112  *
1113  * Saves the context of the clock register for powerstates in which the
1114  * contents of the registers will be lost. Occurs deep within the suspend
1115  * code.  Returns 0 on success.
1116  */
1117 int clk_save_context(void)
1118 {
1119 	struct clk_core *clk;
1120 	int ret;
1121 
1122 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1123 		ret = clk_core_save_context(clk);
1124 		if (ret < 0)
1125 			return ret;
1126 	}
1127 
1128 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1129 		ret = clk_core_save_context(clk);
1130 		if (ret < 0)
1131 			return ret;
1132 	}
1133 
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(clk_save_context);
1137 
1138 /**
1139  * clk_restore_context - restore clock context after poweroff
1140  *
1141  * Restore the saved clock context upon resume.
1142  *
1143  */
1144 void clk_restore_context(void)
1145 {
1146 	struct clk_core *core;
1147 
1148 	hlist_for_each_entry(core, &clk_root_list, child_node)
1149 		clk_core_restore_context(core);
1150 
1151 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1152 		clk_core_restore_context(core);
1153 }
1154 EXPORT_SYMBOL_GPL(clk_restore_context);
1155 
1156 /**
1157  * clk_enable - ungate a clock
1158  * @clk: the clk being ungated
1159  *
1160  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1161  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1162  * if the operation will never sleep.  One example is a SoC-internal clk which
1163  * is controlled via simple register writes.  In the complex case a clk ungate
1164  * operation may require a fast and a slow part.  It is this reason that
1165  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1166  * must be called before clk_enable.  Returns 0 on success, -EERROR
1167  * otherwise.
1168  */
1169 int clk_enable(struct clk *clk)
1170 {
1171 	if (!clk)
1172 		return 0;
1173 
1174 	return clk_core_enable_lock(clk->core);
1175 }
1176 EXPORT_SYMBOL_GPL(clk_enable);
1177 
1178 /**
1179  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1180  * @clk: clock source
1181  *
1182  * Returns true if clk_prepare() implicitly enables the clock, effectively
1183  * making clk_enable()/clk_disable() no-ops, false otherwise.
1184  *
1185  * This is of interest mainly to power management code where actually
1186  * disabling the clock also requires unpreparing it to have any material
1187  * effect.
1188  *
1189  * Regardless of the value returned here, the caller must always invoke
1190  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1191  * to be right.
1192  */
1193 bool clk_is_enabled_when_prepared(struct clk *clk)
1194 {
1195 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1196 }
1197 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1198 
1199 static int clk_core_prepare_enable(struct clk_core *core)
1200 {
1201 	int ret;
1202 
1203 	ret = clk_core_prepare_lock(core);
1204 	if (ret)
1205 		return ret;
1206 
1207 	ret = clk_core_enable_lock(core);
1208 	if (ret)
1209 		clk_core_unprepare_lock(core);
1210 
1211 	return ret;
1212 }
1213 
1214 static void clk_core_disable_unprepare(struct clk_core *core)
1215 {
1216 	clk_core_disable_lock(core);
1217 	clk_core_unprepare_lock(core);
1218 }
1219 
1220 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1221 {
1222 	struct clk_core *child;
1223 
1224 	lockdep_assert_held(&prepare_lock);
1225 
1226 	hlist_for_each_entry(child, &core->children, child_node)
1227 		clk_unprepare_unused_subtree(child);
1228 
1229 	if (core->prepare_count)
1230 		return;
1231 
1232 	if (core->flags & CLK_IGNORE_UNUSED)
1233 		return;
1234 
1235 	if (clk_pm_runtime_get(core))
1236 		return;
1237 
1238 	if (clk_core_is_prepared(core)) {
1239 		trace_clk_unprepare(core);
1240 		if (core->ops->unprepare_unused)
1241 			core->ops->unprepare_unused(core->hw);
1242 		else if (core->ops->unprepare)
1243 			core->ops->unprepare(core->hw);
1244 		trace_clk_unprepare_complete(core);
1245 	}
1246 
1247 	clk_pm_runtime_put(core);
1248 }
1249 
1250 static void __init clk_disable_unused_subtree(struct clk_core *core)
1251 {
1252 	struct clk_core *child;
1253 	unsigned long flags;
1254 
1255 	lockdep_assert_held(&prepare_lock);
1256 
1257 	hlist_for_each_entry(child, &core->children, child_node)
1258 		clk_disable_unused_subtree(child);
1259 
1260 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1261 		clk_core_prepare_enable(core->parent);
1262 
1263 	if (clk_pm_runtime_get(core))
1264 		goto unprepare_out;
1265 
1266 	flags = clk_enable_lock();
1267 
1268 	if (core->enable_count)
1269 		goto unlock_out;
1270 
1271 	if (core->flags & CLK_IGNORE_UNUSED)
1272 		goto unlock_out;
1273 
1274 	/*
1275 	 * some gate clocks have special needs during the disable-unused
1276 	 * sequence.  call .disable_unused if available, otherwise fall
1277 	 * back to .disable
1278 	 */
1279 	if (clk_core_is_enabled(core)) {
1280 		trace_clk_disable(core);
1281 		if (core->ops->disable_unused)
1282 			core->ops->disable_unused(core->hw);
1283 		else if (core->ops->disable)
1284 			core->ops->disable(core->hw);
1285 		trace_clk_disable_complete(core);
1286 	}
1287 
1288 unlock_out:
1289 	clk_enable_unlock(flags);
1290 	clk_pm_runtime_put(core);
1291 unprepare_out:
1292 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1293 		clk_core_disable_unprepare(core->parent);
1294 }
1295 
1296 static bool clk_ignore_unused __initdata;
1297 static int __init clk_ignore_unused_setup(char *__unused)
1298 {
1299 	clk_ignore_unused = true;
1300 	return 1;
1301 }
1302 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1303 
1304 static int __init clk_disable_unused(void)
1305 {
1306 	struct clk_core *core;
1307 
1308 	if (clk_ignore_unused) {
1309 		pr_warn("clk: Not disabling unused clocks\n");
1310 		return 0;
1311 	}
1312 
1313 	clk_prepare_lock();
1314 
1315 	hlist_for_each_entry(core, &clk_root_list, child_node)
1316 		clk_disable_unused_subtree(core);
1317 
1318 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1319 		clk_disable_unused_subtree(core);
1320 
1321 	hlist_for_each_entry(core, &clk_root_list, child_node)
1322 		clk_unprepare_unused_subtree(core);
1323 
1324 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1325 		clk_unprepare_unused_subtree(core);
1326 
1327 	clk_prepare_unlock();
1328 
1329 	return 0;
1330 }
1331 late_initcall_sync(clk_disable_unused);
1332 
1333 static int clk_core_determine_round_nolock(struct clk_core *core,
1334 					   struct clk_rate_request *req)
1335 {
1336 	long rate;
1337 
1338 	lockdep_assert_held(&prepare_lock);
1339 
1340 	if (!core)
1341 		return 0;
1342 
1343 	req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1344 
1345 	/*
1346 	 * At this point, core protection will be disabled
1347 	 * - if the provider is not protected at all
1348 	 * - if the calling consumer is the only one which has exclusivity
1349 	 *   over the provider
1350 	 */
1351 	if (clk_core_rate_is_protected(core)) {
1352 		req->rate = core->rate;
1353 	} else if (core->ops->determine_rate) {
1354 		return core->ops->determine_rate(core->hw, req);
1355 	} else if (core->ops->round_rate) {
1356 		rate = core->ops->round_rate(core->hw, req->rate,
1357 					     &req->best_parent_rate);
1358 		if (rate < 0)
1359 			return rate;
1360 
1361 		req->rate = rate;
1362 	} else {
1363 		return -EINVAL;
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 static void clk_core_init_rate_req(struct clk_core * const core,
1370 				   struct clk_rate_request *req)
1371 {
1372 	struct clk_core *parent;
1373 
1374 	if (WARN_ON(!core || !req))
1375 		return;
1376 
1377 	parent = core->parent;
1378 	if (parent) {
1379 		req->best_parent_hw = parent->hw;
1380 		req->best_parent_rate = parent->rate;
1381 	} else {
1382 		req->best_parent_hw = NULL;
1383 		req->best_parent_rate = 0;
1384 	}
1385 }
1386 
1387 static bool clk_core_can_round(struct clk_core * const core)
1388 {
1389 	return core->ops->determine_rate || core->ops->round_rate;
1390 }
1391 
1392 static int clk_core_round_rate_nolock(struct clk_core *core,
1393 				      struct clk_rate_request *req)
1394 {
1395 	lockdep_assert_held(&prepare_lock);
1396 
1397 	if (!core) {
1398 		req->rate = 0;
1399 		return 0;
1400 	}
1401 
1402 	clk_core_init_rate_req(core, req);
1403 
1404 	if (clk_core_can_round(core))
1405 		return clk_core_determine_round_nolock(core, req);
1406 	else if (core->flags & CLK_SET_RATE_PARENT)
1407 		return clk_core_round_rate_nolock(core->parent, req);
1408 
1409 	req->rate = core->rate;
1410 	return 0;
1411 }
1412 
1413 /**
1414  * __clk_determine_rate - get the closest rate actually supported by a clock
1415  * @hw: determine the rate of this clock
1416  * @req: target rate request
1417  *
1418  * Useful for clk_ops such as .set_rate and .determine_rate.
1419  */
1420 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1421 {
1422 	if (!hw) {
1423 		req->rate = 0;
1424 		return 0;
1425 	}
1426 
1427 	return clk_core_round_rate_nolock(hw->core, req);
1428 }
1429 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1430 
1431 /**
1432  * clk_hw_round_rate() - round the given rate for a hw clk
1433  * @hw: the hw clk for which we are rounding a rate
1434  * @rate: the rate which is to be rounded
1435  *
1436  * Takes in a rate as input and rounds it to a rate that the clk can actually
1437  * use.
1438  *
1439  * Context: prepare_lock must be held.
1440  *          For clk providers to call from within clk_ops such as .round_rate,
1441  *          .determine_rate.
1442  *
1443  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1444  *         else returns the parent rate.
1445  */
1446 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1447 {
1448 	int ret;
1449 	struct clk_rate_request req;
1450 
1451 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1452 	req.rate = rate;
1453 
1454 	ret = clk_core_round_rate_nolock(hw->core, &req);
1455 	if (ret)
1456 		return 0;
1457 
1458 	return req.rate;
1459 }
1460 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1461 
1462 /**
1463  * clk_round_rate - round the given rate for a clk
1464  * @clk: the clk for which we are rounding a rate
1465  * @rate: the rate which is to be rounded
1466  *
1467  * Takes in a rate as input and rounds it to a rate that the clk can actually
1468  * use which is then returned.  If clk doesn't support round_rate operation
1469  * then the parent rate is returned.
1470  */
1471 long clk_round_rate(struct clk *clk, unsigned long rate)
1472 {
1473 	struct clk_rate_request req;
1474 	int ret;
1475 
1476 	if (!clk)
1477 		return 0;
1478 
1479 	clk_prepare_lock();
1480 
1481 	if (clk->exclusive_count)
1482 		clk_core_rate_unprotect(clk->core);
1483 
1484 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1485 	req.rate = rate;
1486 
1487 	ret = clk_core_round_rate_nolock(clk->core, &req);
1488 
1489 	if (clk->exclusive_count)
1490 		clk_core_rate_protect(clk->core);
1491 
1492 	clk_prepare_unlock();
1493 
1494 	if (ret)
1495 		return ret;
1496 
1497 	return req.rate;
1498 }
1499 EXPORT_SYMBOL_GPL(clk_round_rate);
1500 
1501 /**
1502  * __clk_notify - call clk notifier chain
1503  * @core: clk that is changing rate
1504  * @msg: clk notifier type (see include/linux/clk.h)
1505  * @old_rate: old clk rate
1506  * @new_rate: new clk rate
1507  *
1508  * Triggers a notifier call chain on the clk rate-change notification
1509  * for 'clk'.  Passes a pointer to the struct clk and the previous
1510  * and current rates to the notifier callback.  Intended to be called by
1511  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1512  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1513  * a driver returns that.
1514  */
1515 static int __clk_notify(struct clk_core *core, unsigned long msg,
1516 		unsigned long old_rate, unsigned long new_rate)
1517 {
1518 	struct clk_notifier *cn;
1519 	struct clk_notifier_data cnd;
1520 	int ret = NOTIFY_DONE;
1521 
1522 	cnd.old_rate = old_rate;
1523 	cnd.new_rate = new_rate;
1524 
1525 	list_for_each_entry(cn, &clk_notifier_list, node) {
1526 		if (cn->clk->core == core) {
1527 			cnd.clk = cn->clk;
1528 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1529 					&cnd);
1530 			if (ret & NOTIFY_STOP_MASK)
1531 				return ret;
1532 		}
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 /**
1539  * __clk_recalc_accuracies
1540  * @core: first clk in the subtree
1541  *
1542  * Walks the subtree of clks starting with clk and recalculates accuracies as
1543  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1544  * callback then it is assumed that the clock will take on the accuracy of its
1545  * parent.
1546  */
1547 static void __clk_recalc_accuracies(struct clk_core *core)
1548 {
1549 	unsigned long parent_accuracy = 0;
1550 	struct clk_core *child;
1551 
1552 	lockdep_assert_held(&prepare_lock);
1553 
1554 	if (core->parent)
1555 		parent_accuracy = core->parent->accuracy;
1556 
1557 	if (core->ops->recalc_accuracy)
1558 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1559 							  parent_accuracy);
1560 	else
1561 		core->accuracy = parent_accuracy;
1562 
1563 	hlist_for_each_entry(child, &core->children, child_node)
1564 		__clk_recalc_accuracies(child);
1565 }
1566 
1567 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1568 {
1569 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1570 		__clk_recalc_accuracies(core);
1571 
1572 	return clk_core_get_accuracy_no_lock(core);
1573 }
1574 
1575 /**
1576  * clk_get_accuracy - return the accuracy of clk
1577  * @clk: the clk whose accuracy is being returned
1578  *
1579  * Simply returns the cached accuracy of the clk, unless
1580  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1581  * issued.
1582  * If clk is NULL then returns 0.
1583  */
1584 long clk_get_accuracy(struct clk *clk)
1585 {
1586 	long accuracy;
1587 
1588 	if (!clk)
1589 		return 0;
1590 
1591 	clk_prepare_lock();
1592 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1593 	clk_prepare_unlock();
1594 
1595 	return accuracy;
1596 }
1597 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1598 
1599 static unsigned long clk_recalc(struct clk_core *core,
1600 				unsigned long parent_rate)
1601 {
1602 	unsigned long rate = parent_rate;
1603 
1604 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1605 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1606 		clk_pm_runtime_put(core);
1607 	}
1608 	return rate;
1609 }
1610 
1611 /**
1612  * __clk_recalc_rates
1613  * @core: first clk in the subtree
1614  * @msg: notification type (see include/linux/clk.h)
1615  *
1616  * Walks the subtree of clks starting with clk and recalculates rates as it
1617  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1618  * it is assumed that the clock will take on the rate of its parent.
1619  *
1620  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1621  * if necessary.
1622  */
1623 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1624 {
1625 	unsigned long old_rate;
1626 	unsigned long parent_rate = 0;
1627 	struct clk_core *child;
1628 
1629 	lockdep_assert_held(&prepare_lock);
1630 
1631 	old_rate = core->rate;
1632 
1633 	if (core->parent)
1634 		parent_rate = core->parent->rate;
1635 
1636 	core->rate = clk_recalc(core, parent_rate);
1637 
1638 	/*
1639 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1640 	 * & ABORT_RATE_CHANGE notifiers
1641 	 */
1642 	if (core->notifier_count && msg)
1643 		__clk_notify(core, msg, old_rate, core->rate);
1644 
1645 	hlist_for_each_entry(child, &core->children, child_node)
1646 		__clk_recalc_rates(child, msg);
1647 }
1648 
1649 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1650 {
1651 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1652 		__clk_recalc_rates(core, 0);
1653 
1654 	return clk_core_get_rate_nolock(core);
1655 }
1656 
1657 /**
1658  * clk_get_rate - return the rate of clk
1659  * @clk: the clk whose rate is being returned
1660  *
1661  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1662  * is set, which means a recalc_rate will be issued.
1663  * If clk is NULL then returns 0.
1664  */
1665 unsigned long clk_get_rate(struct clk *clk)
1666 {
1667 	unsigned long rate;
1668 
1669 	if (!clk)
1670 		return 0;
1671 
1672 	clk_prepare_lock();
1673 	rate = clk_core_get_rate_recalc(clk->core);
1674 	clk_prepare_unlock();
1675 
1676 	return rate;
1677 }
1678 EXPORT_SYMBOL_GPL(clk_get_rate);
1679 
1680 static int clk_fetch_parent_index(struct clk_core *core,
1681 				  struct clk_core *parent)
1682 {
1683 	int i;
1684 
1685 	if (!parent)
1686 		return -EINVAL;
1687 
1688 	for (i = 0; i < core->num_parents; i++) {
1689 		/* Found it first try! */
1690 		if (core->parents[i].core == parent)
1691 			return i;
1692 
1693 		/* Something else is here, so keep looking */
1694 		if (core->parents[i].core)
1695 			continue;
1696 
1697 		/* Maybe core hasn't been cached but the hw is all we know? */
1698 		if (core->parents[i].hw) {
1699 			if (core->parents[i].hw == parent->hw)
1700 				break;
1701 
1702 			/* Didn't match, but we're expecting a clk_hw */
1703 			continue;
1704 		}
1705 
1706 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1707 		if (parent == clk_core_get(core, i))
1708 			break;
1709 
1710 		/* Fallback to comparing globally unique names */
1711 		if (core->parents[i].name &&
1712 		    !strcmp(parent->name, core->parents[i].name))
1713 			break;
1714 	}
1715 
1716 	if (i == core->num_parents)
1717 		return -EINVAL;
1718 
1719 	core->parents[i].core = parent;
1720 	return i;
1721 }
1722 
1723 /**
1724  * clk_hw_get_parent_index - return the index of the parent clock
1725  * @hw: clk_hw associated with the clk being consumed
1726  *
1727  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1728  * clock does not have a current parent.
1729  */
1730 int clk_hw_get_parent_index(struct clk_hw *hw)
1731 {
1732 	struct clk_hw *parent = clk_hw_get_parent(hw);
1733 
1734 	if (WARN_ON(parent == NULL))
1735 		return -EINVAL;
1736 
1737 	return clk_fetch_parent_index(hw->core, parent->core);
1738 }
1739 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1740 
1741 /*
1742  * Update the orphan status of @core and all its children.
1743  */
1744 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1745 {
1746 	struct clk_core *child;
1747 
1748 	core->orphan = is_orphan;
1749 
1750 	hlist_for_each_entry(child, &core->children, child_node)
1751 		clk_core_update_orphan_status(child, is_orphan);
1752 }
1753 
1754 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1755 {
1756 	bool was_orphan = core->orphan;
1757 
1758 	hlist_del(&core->child_node);
1759 
1760 	if (new_parent) {
1761 		bool becomes_orphan = new_parent->orphan;
1762 
1763 		/* avoid duplicate POST_RATE_CHANGE notifications */
1764 		if (new_parent->new_child == core)
1765 			new_parent->new_child = NULL;
1766 
1767 		hlist_add_head(&core->child_node, &new_parent->children);
1768 
1769 		if (was_orphan != becomes_orphan)
1770 			clk_core_update_orphan_status(core, becomes_orphan);
1771 	} else {
1772 		hlist_add_head(&core->child_node, &clk_orphan_list);
1773 		if (!was_orphan)
1774 			clk_core_update_orphan_status(core, true);
1775 	}
1776 
1777 	core->parent = new_parent;
1778 }
1779 
1780 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1781 					   struct clk_core *parent)
1782 {
1783 	unsigned long flags;
1784 	struct clk_core *old_parent = core->parent;
1785 
1786 	/*
1787 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1788 	 *
1789 	 * 2. Migrate prepare state between parents and prevent race with
1790 	 * clk_enable().
1791 	 *
1792 	 * If the clock is not prepared, then a race with
1793 	 * clk_enable/disable() is impossible since we already have the
1794 	 * prepare lock (future calls to clk_enable() need to be preceded by
1795 	 * a clk_prepare()).
1796 	 *
1797 	 * If the clock is prepared, migrate the prepared state to the new
1798 	 * parent and also protect against a race with clk_enable() by
1799 	 * forcing the clock and the new parent on.  This ensures that all
1800 	 * future calls to clk_enable() are practically NOPs with respect to
1801 	 * hardware and software states.
1802 	 *
1803 	 * See also: Comment for clk_set_parent() below.
1804 	 */
1805 
1806 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1807 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1808 		clk_core_prepare_enable(old_parent);
1809 		clk_core_prepare_enable(parent);
1810 	}
1811 
1812 	/* migrate prepare count if > 0 */
1813 	if (core->prepare_count) {
1814 		clk_core_prepare_enable(parent);
1815 		clk_core_enable_lock(core);
1816 	}
1817 
1818 	/* update the clk tree topology */
1819 	flags = clk_enable_lock();
1820 	clk_reparent(core, parent);
1821 	clk_enable_unlock(flags);
1822 
1823 	return old_parent;
1824 }
1825 
1826 static void __clk_set_parent_after(struct clk_core *core,
1827 				   struct clk_core *parent,
1828 				   struct clk_core *old_parent)
1829 {
1830 	/*
1831 	 * Finish the migration of prepare state and undo the changes done
1832 	 * for preventing a race with clk_enable().
1833 	 */
1834 	if (core->prepare_count) {
1835 		clk_core_disable_lock(core);
1836 		clk_core_disable_unprepare(old_parent);
1837 	}
1838 
1839 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1840 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1841 		clk_core_disable_unprepare(parent);
1842 		clk_core_disable_unprepare(old_parent);
1843 	}
1844 }
1845 
1846 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1847 			    u8 p_index)
1848 {
1849 	unsigned long flags;
1850 	int ret = 0;
1851 	struct clk_core *old_parent;
1852 
1853 	old_parent = __clk_set_parent_before(core, parent);
1854 
1855 	trace_clk_set_parent(core, parent);
1856 
1857 	/* change clock input source */
1858 	if (parent && core->ops->set_parent)
1859 		ret = core->ops->set_parent(core->hw, p_index);
1860 
1861 	trace_clk_set_parent_complete(core, parent);
1862 
1863 	if (ret) {
1864 		flags = clk_enable_lock();
1865 		clk_reparent(core, old_parent);
1866 		clk_enable_unlock(flags);
1867 		__clk_set_parent_after(core, old_parent, parent);
1868 
1869 		return ret;
1870 	}
1871 
1872 	__clk_set_parent_after(core, parent, old_parent);
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  * __clk_speculate_rates
1879  * @core: first clk in the subtree
1880  * @parent_rate: the "future" rate of clk's parent
1881  *
1882  * Walks the subtree of clks starting with clk, speculating rates as it
1883  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1884  *
1885  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1886  * pre-rate change notifications and returns early if no clks in the
1887  * subtree have subscribed to the notifications.  Note that if a clk does not
1888  * implement the .recalc_rate callback then it is assumed that the clock will
1889  * take on the rate of its parent.
1890  */
1891 static int __clk_speculate_rates(struct clk_core *core,
1892 				 unsigned long parent_rate)
1893 {
1894 	struct clk_core *child;
1895 	unsigned long new_rate;
1896 	int ret = NOTIFY_DONE;
1897 
1898 	lockdep_assert_held(&prepare_lock);
1899 
1900 	new_rate = clk_recalc(core, parent_rate);
1901 
1902 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1903 	if (core->notifier_count)
1904 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1905 
1906 	if (ret & NOTIFY_STOP_MASK) {
1907 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1908 				__func__, core->name, ret);
1909 		goto out;
1910 	}
1911 
1912 	hlist_for_each_entry(child, &core->children, child_node) {
1913 		ret = __clk_speculate_rates(child, new_rate);
1914 		if (ret & NOTIFY_STOP_MASK)
1915 			break;
1916 	}
1917 
1918 out:
1919 	return ret;
1920 }
1921 
1922 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1923 			     struct clk_core *new_parent, u8 p_index)
1924 {
1925 	struct clk_core *child;
1926 
1927 	core->new_rate = new_rate;
1928 	core->new_parent = new_parent;
1929 	core->new_parent_index = p_index;
1930 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1931 	core->new_child = NULL;
1932 	if (new_parent && new_parent != core->parent)
1933 		new_parent->new_child = core;
1934 
1935 	hlist_for_each_entry(child, &core->children, child_node) {
1936 		child->new_rate = clk_recalc(child, new_rate);
1937 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1938 	}
1939 }
1940 
1941 /*
1942  * calculate the new rates returning the topmost clock that has to be
1943  * changed.
1944  */
1945 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1946 					   unsigned long rate)
1947 {
1948 	struct clk_core *top = core;
1949 	struct clk_core *old_parent, *parent;
1950 	unsigned long best_parent_rate = 0;
1951 	unsigned long new_rate;
1952 	unsigned long min_rate;
1953 	unsigned long max_rate;
1954 	int p_index = 0;
1955 	long ret;
1956 
1957 	/* sanity */
1958 	if (IS_ERR_OR_NULL(core))
1959 		return NULL;
1960 
1961 	/* save parent rate, if it exists */
1962 	parent = old_parent = core->parent;
1963 	if (parent)
1964 		best_parent_rate = parent->rate;
1965 
1966 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1967 
1968 	/* find the closest rate and parent clk/rate */
1969 	if (clk_core_can_round(core)) {
1970 		struct clk_rate_request req;
1971 
1972 		req.rate = rate;
1973 		req.min_rate = min_rate;
1974 		req.max_rate = max_rate;
1975 
1976 		clk_core_init_rate_req(core, &req);
1977 
1978 		ret = clk_core_determine_round_nolock(core, &req);
1979 		if (ret < 0)
1980 			return NULL;
1981 
1982 		best_parent_rate = req.best_parent_rate;
1983 		new_rate = req.rate;
1984 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1985 
1986 		if (new_rate < min_rate || new_rate > max_rate)
1987 			return NULL;
1988 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1989 		/* pass-through clock without adjustable parent */
1990 		core->new_rate = core->rate;
1991 		return NULL;
1992 	} else {
1993 		/* pass-through clock with adjustable parent */
1994 		top = clk_calc_new_rates(parent, rate);
1995 		new_rate = parent->new_rate;
1996 		goto out;
1997 	}
1998 
1999 	/* some clocks must be gated to change parent */
2000 	if (parent != old_parent &&
2001 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2002 		pr_debug("%s: %s not gated but wants to reparent\n",
2003 			 __func__, core->name);
2004 		return NULL;
2005 	}
2006 
2007 	/* try finding the new parent index */
2008 	if (parent && core->num_parents > 1) {
2009 		p_index = clk_fetch_parent_index(core, parent);
2010 		if (p_index < 0) {
2011 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2012 				 __func__, parent->name, core->name);
2013 			return NULL;
2014 		}
2015 	}
2016 
2017 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2018 	    best_parent_rate != parent->rate)
2019 		top = clk_calc_new_rates(parent, best_parent_rate);
2020 
2021 out:
2022 	clk_calc_subtree(core, new_rate, parent, p_index);
2023 
2024 	return top;
2025 }
2026 
2027 /*
2028  * Notify about rate changes in a subtree. Always walk down the whole tree
2029  * so that in case of an error we can walk down the whole tree again and
2030  * abort the change.
2031  */
2032 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2033 						  unsigned long event)
2034 {
2035 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2036 	int ret = NOTIFY_DONE;
2037 
2038 	if (core->rate == core->new_rate)
2039 		return NULL;
2040 
2041 	if (core->notifier_count) {
2042 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2043 		if (ret & NOTIFY_STOP_MASK)
2044 			fail_clk = core;
2045 	}
2046 
2047 	hlist_for_each_entry(child, &core->children, child_node) {
2048 		/* Skip children who will be reparented to another clock */
2049 		if (child->new_parent && child->new_parent != core)
2050 			continue;
2051 		tmp_clk = clk_propagate_rate_change(child, event);
2052 		if (tmp_clk)
2053 			fail_clk = tmp_clk;
2054 	}
2055 
2056 	/* handle the new child who might not be in core->children yet */
2057 	if (core->new_child) {
2058 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2059 		if (tmp_clk)
2060 			fail_clk = tmp_clk;
2061 	}
2062 
2063 	return fail_clk;
2064 }
2065 
2066 /*
2067  * walk down a subtree and set the new rates notifying the rate
2068  * change on the way
2069  */
2070 static void clk_change_rate(struct clk_core *core)
2071 {
2072 	struct clk_core *child;
2073 	struct hlist_node *tmp;
2074 	unsigned long old_rate;
2075 	unsigned long best_parent_rate = 0;
2076 	bool skip_set_rate = false;
2077 	struct clk_core *old_parent;
2078 	struct clk_core *parent = NULL;
2079 
2080 	old_rate = core->rate;
2081 
2082 	if (core->new_parent) {
2083 		parent = core->new_parent;
2084 		best_parent_rate = core->new_parent->rate;
2085 	} else if (core->parent) {
2086 		parent = core->parent;
2087 		best_parent_rate = core->parent->rate;
2088 	}
2089 
2090 	if (clk_pm_runtime_get(core))
2091 		return;
2092 
2093 	if (core->flags & CLK_SET_RATE_UNGATE) {
2094 		clk_core_prepare(core);
2095 		clk_core_enable_lock(core);
2096 	}
2097 
2098 	if (core->new_parent && core->new_parent != core->parent) {
2099 		old_parent = __clk_set_parent_before(core, core->new_parent);
2100 		trace_clk_set_parent(core, core->new_parent);
2101 
2102 		if (core->ops->set_rate_and_parent) {
2103 			skip_set_rate = true;
2104 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2105 					best_parent_rate,
2106 					core->new_parent_index);
2107 		} else if (core->ops->set_parent) {
2108 			core->ops->set_parent(core->hw, core->new_parent_index);
2109 		}
2110 
2111 		trace_clk_set_parent_complete(core, core->new_parent);
2112 		__clk_set_parent_after(core, core->new_parent, old_parent);
2113 	}
2114 
2115 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2116 		clk_core_prepare_enable(parent);
2117 
2118 	trace_clk_set_rate(core, core->new_rate);
2119 
2120 	if (!skip_set_rate && core->ops->set_rate)
2121 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2122 
2123 	trace_clk_set_rate_complete(core, core->new_rate);
2124 
2125 	core->rate = clk_recalc(core, best_parent_rate);
2126 
2127 	if (core->flags & CLK_SET_RATE_UNGATE) {
2128 		clk_core_disable_lock(core);
2129 		clk_core_unprepare(core);
2130 	}
2131 
2132 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2133 		clk_core_disable_unprepare(parent);
2134 
2135 	if (core->notifier_count && old_rate != core->rate)
2136 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2137 
2138 	if (core->flags & CLK_RECALC_NEW_RATES)
2139 		(void)clk_calc_new_rates(core, core->new_rate);
2140 
2141 	/*
2142 	 * Use safe iteration, as change_rate can actually swap parents
2143 	 * for certain clock types.
2144 	 */
2145 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2146 		/* Skip children who will be reparented to another clock */
2147 		if (child->new_parent && child->new_parent != core)
2148 			continue;
2149 		clk_change_rate(child);
2150 	}
2151 
2152 	/* handle the new child who might not be in core->children yet */
2153 	if (core->new_child)
2154 		clk_change_rate(core->new_child);
2155 
2156 	clk_pm_runtime_put(core);
2157 }
2158 
2159 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2160 						     unsigned long req_rate)
2161 {
2162 	int ret, cnt;
2163 	struct clk_rate_request req;
2164 
2165 	lockdep_assert_held(&prepare_lock);
2166 
2167 	if (!core)
2168 		return 0;
2169 
2170 	/* simulate what the rate would be if it could be freely set */
2171 	cnt = clk_core_rate_nuke_protect(core);
2172 	if (cnt < 0)
2173 		return cnt;
2174 
2175 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2176 	req.rate = req_rate;
2177 
2178 	ret = clk_core_round_rate_nolock(core, &req);
2179 
2180 	/* restore the protection */
2181 	clk_core_rate_restore_protect(core, cnt);
2182 
2183 	return ret ? 0 : req.rate;
2184 }
2185 
2186 static int clk_core_set_rate_nolock(struct clk_core *core,
2187 				    unsigned long req_rate)
2188 {
2189 	struct clk_core *top, *fail_clk;
2190 	unsigned long rate;
2191 	int ret;
2192 
2193 	if (!core)
2194 		return 0;
2195 
2196 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2197 
2198 	/* bail early if nothing to do */
2199 	if (rate == clk_core_get_rate_nolock(core))
2200 		return 0;
2201 
2202 	/* fail on a direct rate set of a protected provider */
2203 	if (clk_core_rate_is_protected(core))
2204 		return -EBUSY;
2205 
2206 	/* calculate new rates and get the topmost changed clock */
2207 	top = clk_calc_new_rates(core, req_rate);
2208 	if (!top)
2209 		return -EINVAL;
2210 
2211 	ret = clk_pm_runtime_get(core);
2212 	if (ret)
2213 		return ret;
2214 
2215 	/* notify that we are about to change rates */
2216 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2217 	if (fail_clk) {
2218 		pr_debug("%s: failed to set %s rate\n", __func__,
2219 				fail_clk->name);
2220 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2221 		ret = -EBUSY;
2222 		goto err;
2223 	}
2224 
2225 	/* change the rates */
2226 	clk_change_rate(top);
2227 
2228 	core->req_rate = req_rate;
2229 err:
2230 	clk_pm_runtime_put(core);
2231 
2232 	return ret;
2233 }
2234 
2235 /**
2236  * clk_set_rate - specify a new rate for clk
2237  * @clk: the clk whose rate is being changed
2238  * @rate: the new rate for clk
2239  *
2240  * In the simplest case clk_set_rate will only adjust the rate of clk.
2241  *
2242  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2243  * propagate up to clk's parent; whether or not this happens depends on the
2244  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2245  * after calling .round_rate then upstream parent propagation is ignored.  If
2246  * *parent_rate comes back with a new rate for clk's parent then we propagate
2247  * up to clk's parent and set its rate.  Upward propagation will continue
2248  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2249  * .round_rate stops requesting changes to clk's parent_rate.
2250  *
2251  * Rate changes are accomplished via tree traversal that also recalculates the
2252  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2253  *
2254  * Returns 0 on success, -EERROR otherwise.
2255  */
2256 int clk_set_rate(struct clk *clk, unsigned long rate)
2257 {
2258 	int ret;
2259 
2260 	if (!clk)
2261 		return 0;
2262 
2263 	/* prevent racing with updates to the clock topology */
2264 	clk_prepare_lock();
2265 
2266 	if (clk->exclusive_count)
2267 		clk_core_rate_unprotect(clk->core);
2268 
2269 	ret = clk_core_set_rate_nolock(clk->core, rate);
2270 
2271 	if (clk->exclusive_count)
2272 		clk_core_rate_protect(clk->core);
2273 
2274 	clk_prepare_unlock();
2275 
2276 	return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(clk_set_rate);
2279 
2280 /**
2281  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2282  * @clk: the clk whose rate is being changed
2283  * @rate: the new rate for clk
2284  *
2285  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2286  * within a critical section
2287  *
2288  * This can be used initially to ensure that at least 1 consumer is
2289  * satisfied when several consumers are competing for exclusivity over the
2290  * same clock provider.
2291  *
2292  * The exclusivity is not applied if setting the rate failed.
2293  *
2294  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2295  * clk_rate_exclusive_put().
2296  *
2297  * Returns 0 on success, -EERROR otherwise.
2298  */
2299 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2300 {
2301 	int ret;
2302 
2303 	if (!clk)
2304 		return 0;
2305 
2306 	/* prevent racing with updates to the clock topology */
2307 	clk_prepare_lock();
2308 
2309 	/*
2310 	 * The temporary protection removal is not here, on purpose
2311 	 * This function is meant to be used instead of clk_rate_protect,
2312 	 * so before the consumer code path protect the clock provider
2313 	 */
2314 
2315 	ret = clk_core_set_rate_nolock(clk->core, rate);
2316 	if (!ret) {
2317 		clk_core_rate_protect(clk->core);
2318 		clk->exclusive_count++;
2319 	}
2320 
2321 	clk_prepare_unlock();
2322 
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2326 
2327 /**
2328  * clk_set_rate_range - set a rate range for a clock source
2329  * @clk: clock source
2330  * @min: desired minimum clock rate in Hz, inclusive
2331  * @max: desired maximum clock rate in Hz, inclusive
2332  *
2333  * Returns success (0) or negative errno.
2334  */
2335 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2336 {
2337 	int ret = 0;
2338 	unsigned long old_min, old_max, rate;
2339 
2340 	if (!clk)
2341 		return 0;
2342 
2343 	trace_clk_set_rate_range(clk->core, min, max);
2344 
2345 	if (min > max) {
2346 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2347 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2348 		       min, max);
2349 		return -EINVAL;
2350 	}
2351 
2352 	clk_prepare_lock();
2353 
2354 	if (clk->exclusive_count)
2355 		clk_core_rate_unprotect(clk->core);
2356 
2357 	/* Save the current values in case we need to rollback the change */
2358 	old_min = clk->min_rate;
2359 	old_max = clk->max_rate;
2360 	clk->min_rate = min;
2361 	clk->max_rate = max;
2362 
2363 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2364 		ret = -EINVAL;
2365 		goto out;
2366 	}
2367 
2368 	/*
2369 	 * Since the boundaries have been changed, let's give the
2370 	 * opportunity to the provider to adjust the clock rate based on
2371 	 * the new boundaries.
2372 	 *
2373 	 * We also need to handle the case where the clock is currently
2374 	 * outside of the boundaries. Clamping the last requested rate
2375 	 * to the current minimum and maximum will also handle this.
2376 	 *
2377 	 * FIXME:
2378 	 * There is a catch. It may fail for the usual reason (clock
2379 	 * broken, clock protected, etc) but also because:
2380 	 * - round_rate() was not favorable and fell on the wrong
2381 	 *   side of the boundary
2382 	 * - the determine_rate() callback does not really check for
2383 	 *   this corner case when determining the rate
2384 	 */
2385 	rate = clamp(clk->core->req_rate, min, max);
2386 	ret = clk_core_set_rate_nolock(clk->core, rate);
2387 	if (ret) {
2388 		/* rollback the changes */
2389 		clk->min_rate = old_min;
2390 		clk->max_rate = old_max;
2391 	}
2392 
2393 out:
2394 	if (clk->exclusive_count)
2395 		clk_core_rate_protect(clk->core);
2396 
2397 	clk_prepare_unlock();
2398 
2399 	return ret;
2400 }
2401 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2402 
2403 /**
2404  * clk_set_min_rate - set a minimum clock rate for a clock source
2405  * @clk: clock source
2406  * @rate: desired minimum clock rate in Hz, inclusive
2407  *
2408  * Returns success (0) or negative errno.
2409  */
2410 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2411 {
2412 	if (!clk)
2413 		return 0;
2414 
2415 	trace_clk_set_min_rate(clk->core, rate);
2416 
2417 	return clk_set_rate_range(clk, rate, clk->max_rate);
2418 }
2419 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2420 
2421 /**
2422  * clk_set_max_rate - set a maximum clock rate for a clock source
2423  * @clk: clock source
2424  * @rate: desired maximum clock rate in Hz, inclusive
2425  *
2426  * Returns success (0) or negative errno.
2427  */
2428 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2429 {
2430 	if (!clk)
2431 		return 0;
2432 
2433 	trace_clk_set_max_rate(clk->core, rate);
2434 
2435 	return clk_set_rate_range(clk, clk->min_rate, rate);
2436 }
2437 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2438 
2439 /**
2440  * clk_get_parent - return the parent of a clk
2441  * @clk: the clk whose parent gets returned
2442  *
2443  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2444  */
2445 struct clk *clk_get_parent(struct clk *clk)
2446 {
2447 	struct clk *parent;
2448 
2449 	if (!clk)
2450 		return NULL;
2451 
2452 	clk_prepare_lock();
2453 	/* TODO: Create a per-user clk and change callers to call clk_put */
2454 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2455 	clk_prepare_unlock();
2456 
2457 	return parent;
2458 }
2459 EXPORT_SYMBOL_GPL(clk_get_parent);
2460 
2461 static struct clk_core *__clk_init_parent(struct clk_core *core)
2462 {
2463 	u8 index = 0;
2464 
2465 	if (core->num_parents > 1 && core->ops->get_parent)
2466 		index = core->ops->get_parent(core->hw);
2467 
2468 	return clk_core_get_parent_by_index(core, index);
2469 }
2470 
2471 static void clk_core_reparent(struct clk_core *core,
2472 				  struct clk_core *new_parent)
2473 {
2474 	clk_reparent(core, new_parent);
2475 	__clk_recalc_accuracies(core);
2476 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2477 }
2478 
2479 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2480 {
2481 	if (!hw)
2482 		return;
2483 
2484 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2485 }
2486 
2487 /**
2488  * clk_has_parent - check if a clock is a possible parent for another
2489  * @clk: clock source
2490  * @parent: parent clock source
2491  *
2492  * This function can be used in drivers that need to check that a clock can be
2493  * the parent of another without actually changing the parent.
2494  *
2495  * Returns true if @parent is a possible parent for @clk, false otherwise.
2496  */
2497 bool clk_has_parent(struct clk *clk, struct clk *parent)
2498 {
2499 	struct clk_core *core, *parent_core;
2500 	int i;
2501 
2502 	/* NULL clocks should be nops, so return success if either is NULL. */
2503 	if (!clk || !parent)
2504 		return true;
2505 
2506 	core = clk->core;
2507 	parent_core = parent->core;
2508 
2509 	/* Optimize for the case where the parent is already the parent. */
2510 	if (core->parent == parent_core)
2511 		return true;
2512 
2513 	for (i = 0; i < core->num_parents; i++)
2514 		if (!strcmp(core->parents[i].name, parent_core->name))
2515 			return true;
2516 
2517 	return false;
2518 }
2519 EXPORT_SYMBOL_GPL(clk_has_parent);
2520 
2521 static int clk_core_set_parent_nolock(struct clk_core *core,
2522 				      struct clk_core *parent)
2523 {
2524 	int ret = 0;
2525 	int p_index = 0;
2526 	unsigned long p_rate = 0;
2527 
2528 	lockdep_assert_held(&prepare_lock);
2529 
2530 	if (!core)
2531 		return 0;
2532 
2533 	if (core->parent == parent)
2534 		return 0;
2535 
2536 	/* verify ops for multi-parent clks */
2537 	if (core->num_parents > 1 && !core->ops->set_parent)
2538 		return -EPERM;
2539 
2540 	/* check that we are allowed to re-parent if the clock is in use */
2541 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2542 		return -EBUSY;
2543 
2544 	if (clk_core_rate_is_protected(core))
2545 		return -EBUSY;
2546 
2547 	/* try finding the new parent index */
2548 	if (parent) {
2549 		p_index = clk_fetch_parent_index(core, parent);
2550 		if (p_index < 0) {
2551 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2552 					__func__, parent->name, core->name);
2553 			return p_index;
2554 		}
2555 		p_rate = parent->rate;
2556 	}
2557 
2558 	ret = clk_pm_runtime_get(core);
2559 	if (ret)
2560 		return ret;
2561 
2562 	/* propagate PRE_RATE_CHANGE notifications */
2563 	ret = __clk_speculate_rates(core, p_rate);
2564 
2565 	/* abort if a driver objects */
2566 	if (ret & NOTIFY_STOP_MASK)
2567 		goto runtime_put;
2568 
2569 	/* do the re-parent */
2570 	ret = __clk_set_parent(core, parent, p_index);
2571 
2572 	/* propagate rate an accuracy recalculation accordingly */
2573 	if (ret) {
2574 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2575 	} else {
2576 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2577 		__clk_recalc_accuracies(core);
2578 	}
2579 
2580 runtime_put:
2581 	clk_pm_runtime_put(core);
2582 
2583 	return ret;
2584 }
2585 
2586 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2587 {
2588 	return clk_core_set_parent_nolock(hw->core, parent->core);
2589 }
2590 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2591 
2592 /**
2593  * clk_set_parent - switch the parent of a mux clk
2594  * @clk: the mux clk whose input we are switching
2595  * @parent: the new input to clk
2596  *
2597  * Re-parent clk to use parent as its new input source.  If clk is in
2598  * prepared state, the clk will get enabled for the duration of this call. If
2599  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2600  * that, the reparenting is glitchy in hardware, etc), use the
2601  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2602  *
2603  * After successfully changing clk's parent clk_set_parent will update the
2604  * clk topology, sysfs topology and propagate rate recalculation via
2605  * __clk_recalc_rates.
2606  *
2607  * Returns 0 on success, -EERROR otherwise.
2608  */
2609 int clk_set_parent(struct clk *clk, struct clk *parent)
2610 {
2611 	int ret;
2612 
2613 	if (!clk)
2614 		return 0;
2615 
2616 	clk_prepare_lock();
2617 
2618 	if (clk->exclusive_count)
2619 		clk_core_rate_unprotect(clk->core);
2620 
2621 	ret = clk_core_set_parent_nolock(clk->core,
2622 					 parent ? parent->core : NULL);
2623 
2624 	if (clk->exclusive_count)
2625 		clk_core_rate_protect(clk->core);
2626 
2627 	clk_prepare_unlock();
2628 
2629 	return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(clk_set_parent);
2632 
2633 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2634 {
2635 	int ret = -EINVAL;
2636 
2637 	lockdep_assert_held(&prepare_lock);
2638 
2639 	if (!core)
2640 		return 0;
2641 
2642 	if (clk_core_rate_is_protected(core))
2643 		return -EBUSY;
2644 
2645 	trace_clk_set_phase(core, degrees);
2646 
2647 	if (core->ops->set_phase) {
2648 		ret = core->ops->set_phase(core->hw, degrees);
2649 		if (!ret)
2650 			core->phase = degrees;
2651 	}
2652 
2653 	trace_clk_set_phase_complete(core, degrees);
2654 
2655 	return ret;
2656 }
2657 
2658 /**
2659  * clk_set_phase - adjust the phase shift of a clock signal
2660  * @clk: clock signal source
2661  * @degrees: number of degrees the signal is shifted
2662  *
2663  * Shifts the phase of a clock signal by the specified
2664  * degrees. Returns 0 on success, -EERROR otherwise.
2665  *
2666  * This function makes no distinction about the input or reference
2667  * signal that we adjust the clock signal phase against. For example
2668  * phase locked-loop clock signal generators we may shift phase with
2669  * respect to feedback clock signal input, but for other cases the
2670  * clock phase may be shifted with respect to some other, unspecified
2671  * signal.
2672  *
2673  * Additionally the concept of phase shift does not propagate through
2674  * the clock tree hierarchy, which sets it apart from clock rates and
2675  * clock accuracy. A parent clock phase attribute does not have an
2676  * impact on the phase attribute of a child clock.
2677  */
2678 int clk_set_phase(struct clk *clk, int degrees)
2679 {
2680 	int ret;
2681 
2682 	if (!clk)
2683 		return 0;
2684 
2685 	/* sanity check degrees */
2686 	degrees %= 360;
2687 	if (degrees < 0)
2688 		degrees += 360;
2689 
2690 	clk_prepare_lock();
2691 
2692 	if (clk->exclusive_count)
2693 		clk_core_rate_unprotect(clk->core);
2694 
2695 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2696 
2697 	if (clk->exclusive_count)
2698 		clk_core_rate_protect(clk->core);
2699 
2700 	clk_prepare_unlock();
2701 
2702 	return ret;
2703 }
2704 EXPORT_SYMBOL_GPL(clk_set_phase);
2705 
2706 static int clk_core_get_phase(struct clk_core *core)
2707 {
2708 	int ret;
2709 
2710 	lockdep_assert_held(&prepare_lock);
2711 	if (!core->ops->get_phase)
2712 		return 0;
2713 
2714 	/* Always try to update cached phase if possible */
2715 	ret = core->ops->get_phase(core->hw);
2716 	if (ret >= 0)
2717 		core->phase = ret;
2718 
2719 	return ret;
2720 }
2721 
2722 /**
2723  * clk_get_phase - return the phase shift of a clock signal
2724  * @clk: clock signal source
2725  *
2726  * Returns the phase shift of a clock node in degrees, otherwise returns
2727  * -EERROR.
2728  */
2729 int clk_get_phase(struct clk *clk)
2730 {
2731 	int ret;
2732 
2733 	if (!clk)
2734 		return 0;
2735 
2736 	clk_prepare_lock();
2737 	ret = clk_core_get_phase(clk->core);
2738 	clk_prepare_unlock();
2739 
2740 	return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(clk_get_phase);
2743 
2744 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2745 {
2746 	/* Assume a default value of 50% */
2747 	core->duty.num = 1;
2748 	core->duty.den = 2;
2749 }
2750 
2751 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2752 
2753 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2754 {
2755 	struct clk_duty *duty = &core->duty;
2756 	int ret = 0;
2757 
2758 	if (!core->ops->get_duty_cycle)
2759 		return clk_core_update_duty_cycle_parent_nolock(core);
2760 
2761 	ret = core->ops->get_duty_cycle(core->hw, duty);
2762 	if (ret)
2763 		goto reset;
2764 
2765 	/* Don't trust the clock provider too much */
2766 	if (duty->den == 0 || duty->num > duty->den) {
2767 		ret = -EINVAL;
2768 		goto reset;
2769 	}
2770 
2771 	return 0;
2772 
2773 reset:
2774 	clk_core_reset_duty_cycle_nolock(core);
2775 	return ret;
2776 }
2777 
2778 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2779 {
2780 	int ret = 0;
2781 
2782 	if (core->parent &&
2783 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2784 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2785 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2786 	} else {
2787 		clk_core_reset_duty_cycle_nolock(core);
2788 	}
2789 
2790 	return ret;
2791 }
2792 
2793 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2794 						 struct clk_duty *duty);
2795 
2796 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2797 					  struct clk_duty *duty)
2798 {
2799 	int ret;
2800 
2801 	lockdep_assert_held(&prepare_lock);
2802 
2803 	if (clk_core_rate_is_protected(core))
2804 		return -EBUSY;
2805 
2806 	trace_clk_set_duty_cycle(core, duty);
2807 
2808 	if (!core->ops->set_duty_cycle)
2809 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2810 
2811 	ret = core->ops->set_duty_cycle(core->hw, duty);
2812 	if (!ret)
2813 		memcpy(&core->duty, duty, sizeof(*duty));
2814 
2815 	trace_clk_set_duty_cycle_complete(core, duty);
2816 
2817 	return ret;
2818 }
2819 
2820 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2821 						 struct clk_duty *duty)
2822 {
2823 	int ret = 0;
2824 
2825 	if (core->parent &&
2826 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2827 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2828 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2829 	}
2830 
2831 	return ret;
2832 }
2833 
2834 /**
2835  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2836  * @clk: clock signal source
2837  * @num: numerator of the duty cycle ratio to be applied
2838  * @den: denominator of the duty cycle ratio to be applied
2839  *
2840  * Apply the duty cycle ratio if the ratio is valid and the clock can
2841  * perform this operation
2842  *
2843  * Returns (0) on success, a negative errno otherwise.
2844  */
2845 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2846 {
2847 	int ret;
2848 	struct clk_duty duty;
2849 
2850 	if (!clk)
2851 		return 0;
2852 
2853 	/* sanity check the ratio */
2854 	if (den == 0 || num > den)
2855 		return -EINVAL;
2856 
2857 	duty.num = num;
2858 	duty.den = den;
2859 
2860 	clk_prepare_lock();
2861 
2862 	if (clk->exclusive_count)
2863 		clk_core_rate_unprotect(clk->core);
2864 
2865 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2866 
2867 	if (clk->exclusive_count)
2868 		clk_core_rate_protect(clk->core);
2869 
2870 	clk_prepare_unlock();
2871 
2872 	return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2875 
2876 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2877 					  unsigned int scale)
2878 {
2879 	struct clk_duty *duty = &core->duty;
2880 	int ret;
2881 
2882 	clk_prepare_lock();
2883 
2884 	ret = clk_core_update_duty_cycle_nolock(core);
2885 	if (!ret)
2886 		ret = mult_frac(scale, duty->num, duty->den);
2887 
2888 	clk_prepare_unlock();
2889 
2890 	return ret;
2891 }
2892 
2893 /**
2894  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2895  * @clk: clock signal source
2896  * @scale: scaling factor to be applied to represent the ratio as an integer
2897  *
2898  * Returns the duty cycle ratio of a clock node multiplied by the provided
2899  * scaling factor, or negative errno on error.
2900  */
2901 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2902 {
2903 	if (!clk)
2904 		return 0;
2905 
2906 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2907 }
2908 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2909 
2910 /**
2911  * clk_is_match - check if two clk's point to the same hardware clock
2912  * @p: clk compared against q
2913  * @q: clk compared against p
2914  *
2915  * Returns true if the two struct clk pointers both point to the same hardware
2916  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2917  * share the same struct clk_core object.
2918  *
2919  * Returns false otherwise. Note that two NULL clks are treated as matching.
2920  */
2921 bool clk_is_match(const struct clk *p, const struct clk *q)
2922 {
2923 	/* trivial case: identical struct clk's or both NULL */
2924 	if (p == q)
2925 		return true;
2926 
2927 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2928 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2929 		if (p->core == q->core)
2930 			return true;
2931 
2932 	return false;
2933 }
2934 EXPORT_SYMBOL_GPL(clk_is_match);
2935 
2936 /***        debugfs support        ***/
2937 
2938 #ifdef CONFIG_DEBUG_FS
2939 #include <linux/debugfs.h>
2940 
2941 static struct dentry *rootdir;
2942 static int inited = 0;
2943 static DEFINE_MUTEX(clk_debug_lock);
2944 static HLIST_HEAD(clk_debug_list);
2945 
2946 static struct hlist_head *orphan_list[] = {
2947 	&clk_orphan_list,
2948 	NULL,
2949 };
2950 
2951 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2952 				 int level)
2953 {
2954 	int phase;
2955 
2956 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2957 		   level * 3 + 1, "",
2958 		   30 - level * 3, c->name,
2959 		   c->enable_count, c->prepare_count, c->protect_count,
2960 		   clk_core_get_rate_recalc(c),
2961 		   clk_core_get_accuracy_recalc(c));
2962 
2963 	phase = clk_core_get_phase(c);
2964 	if (phase >= 0)
2965 		seq_printf(s, "%5d", phase);
2966 	else
2967 		seq_puts(s, "-----");
2968 
2969 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2970 
2971 	if (c->ops->is_enabled)
2972 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2973 	else if (!c->ops->enable)
2974 		seq_printf(s, " %9c\n", 'Y');
2975 	else
2976 		seq_printf(s, " %9c\n", '?');
2977 }
2978 
2979 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2980 				     int level)
2981 {
2982 	struct clk_core *child;
2983 
2984 	clk_pm_runtime_get(c);
2985 	clk_summary_show_one(s, c, level);
2986 	clk_pm_runtime_put(c);
2987 
2988 	hlist_for_each_entry(child, &c->children, child_node)
2989 		clk_summary_show_subtree(s, child, level + 1);
2990 }
2991 
2992 static int clk_summary_show(struct seq_file *s, void *data)
2993 {
2994 	struct clk_core *c;
2995 	struct hlist_head **lists = (struct hlist_head **)s->private;
2996 
2997 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
2998 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
2999 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3000 
3001 	clk_prepare_lock();
3002 
3003 	for (; *lists; lists++)
3004 		hlist_for_each_entry(c, *lists, child_node)
3005 			clk_summary_show_subtree(s, c, 0);
3006 
3007 	clk_prepare_unlock();
3008 
3009 	return 0;
3010 }
3011 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3012 
3013 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3014 {
3015 	int phase;
3016 	unsigned long min_rate, max_rate;
3017 
3018 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3019 
3020 	/* This should be JSON format, i.e. elements separated with a comma */
3021 	seq_printf(s, "\"%s\": { ", c->name);
3022 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3023 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3024 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3025 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3026 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3027 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3028 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3029 	phase = clk_core_get_phase(c);
3030 	if (phase >= 0)
3031 		seq_printf(s, "\"phase\": %d,", phase);
3032 	seq_printf(s, "\"duty_cycle\": %u",
3033 		   clk_core_get_scaled_duty_cycle(c, 100000));
3034 }
3035 
3036 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3037 {
3038 	struct clk_core *child;
3039 
3040 	clk_dump_one(s, c, level);
3041 
3042 	hlist_for_each_entry(child, &c->children, child_node) {
3043 		seq_putc(s, ',');
3044 		clk_dump_subtree(s, child, level + 1);
3045 	}
3046 
3047 	seq_putc(s, '}');
3048 }
3049 
3050 static int clk_dump_show(struct seq_file *s, void *data)
3051 {
3052 	struct clk_core *c;
3053 	bool first_node = true;
3054 	struct hlist_head **lists = (struct hlist_head **)s->private;
3055 
3056 	seq_putc(s, '{');
3057 	clk_prepare_lock();
3058 
3059 	for (; *lists; lists++) {
3060 		hlist_for_each_entry(c, *lists, child_node) {
3061 			if (!first_node)
3062 				seq_putc(s, ',');
3063 			first_node = false;
3064 			clk_dump_subtree(s, c, 0);
3065 		}
3066 	}
3067 
3068 	clk_prepare_unlock();
3069 
3070 	seq_puts(s, "}\n");
3071 	return 0;
3072 }
3073 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3074 
3075 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3076 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3077 /*
3078  * This can be dangerous, therefore don't provide any real compile time
3079  * configuration option for this feature.
3080  * People who want to use this will need to modify the source code directly.
3081  */
3082 static int clk_rate_set(void *data, u64 val)
3083 {
3084 	struct clk_core *core = data;
3085 	int ret;
3086 
3087 	clk_prepare_lock();
3088 	ret = clk_core_set_rate_nolock(core, val);
3089 	clk_prepare_unlock();
3090 
3091 	return ret;
3092 }
3093 
3094 #define clk_rate_mode	0644
3095 
3096 static int clk_prepare_enable_set(void *data, u64 val)
3097 {
3098 	struct clk_core *core = data;
3099 	int ret = 0;
3100 
3101 	if (val)
3102 		ret = clk_prepare_enable(core->hw->clk);
3103 	else
3104 		clk_disable_unprepare(core->hw->clk);
3105 
3106 	return ret;
3107 }
3108 
3109 static int clk_prepare_enable_get(void *data, u64 *val)
3110 {
3111 	struct clk_core *core = data;
3112 
3113 	*val = core->enable_count && core->prepare_count;
3114 	return 0;
3115 }
3116 
3117 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3118 			 clk_prepare_enable_set, "%llu\n");
3119 
3120 #else
3121 #define clk_rate_set	NULL
3122 #define clk_rate_mode	0444
3123 #endif
3124 
3125 static int clk_rate_get(void *data, u64 *val)
3126 {
3127 	struct clk_core *core = data;
3128 
3129 	clk_prepare_lock();
3130 	*val = clk_core_get_rate_recalc(core);
3131 	clk_prepare_unlock();
3132 
3133 	return 0;
3134 }
3135 
3136 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3137 
3138 static const struct {
3139 	unsigned long flag;
3140 	const char *name;
3141 } clk_flags[] = {
3142 #define ENTRY(f) { f, #f }
3143 	ENTRY(CLK_SET_RATE_GATE),
3144 	ENTRY(CLK_SET_PARENT_GATE),
3145 	ENTRY(CLK_SET_RATE_PARENT),
3146 	ENTRY(CLK_IGNORE_UNUSED),
3147 	ENTRY(CLK_GET_RATE_NOCACHE),
3148 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3149 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3150 	ENTRY(CLK_RECALC_NEW_RATES),
3151 	ENTRY(CLK_SET_RATE_UNGATE),
3152 	ENTRY(CLK_IS_CRITICAL),
3153 	ENTRY(CLK_OPS_PARENT_ENABLE),
3154 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3155 #undef ENTRY
3156 };
3157 
3158 static int clk_flags_show(struct seq_file *s, void *data)
3159 {
3160 	struct clk_core *core = s->private;
3161 	unsigned long flags = core->flags;
3162 	unsigned int i;
3163 
3164 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3165 		if (flags & clk_flags[i].flag) {
3166 			seq_printf(s, "%s\n", clk_flags[i].name);
3167 			flags &= ~clk_flags[i].flag;
3168 		}
3169 	}
3170 	if (flags) {
3171 		/* Unknown flags */
3172 		seq_printf(s, "0x%lx\n", flags);
3173 	}
3174 
3175 	return 0;
3176 }
3177 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3178 
3179 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3180 				 unsigned int i, char terminator)
3181 {
3182 	struct clk_core *parent;
3183 
3184 	/*
3185 	 * Go through the following options to fetch a parent's name.
3186 	 *
3187 	 * 1. Fetch the registered parent clock and use its name
3188 	 * 2. Use the global (fallback) name if specified
3189 	 * 3. Use the local fw_name if provided
3190 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3191 	 *
3192 	 * This may still fail in some cases, such as when the parent is
3193 	 * specified directly via a struct clk_hw pointer, but it isn't
3194 	 * registered (yet).
3195 	 */
3196 	parent = clk_core_get_parent_by_index(core, i);
3197 	if (parent)
3198 		seq_puts(s, parent->name);
3199 	else if (core->parents[i].name)
3200 		seq_puts(s, core->parents[i].name);
3201 	else if (core->parents[i].fw_name)
3202 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3203 	else if (core->parents[i].index >= 0)
3204 		seq_puts(s,
3205 			 of_clk_get_parent_name(core->of_node,
3206 						core->parents[i].index));
3207 	else
3208 		seq_puts(s, "(missing)");
3209 
3210 	seq_putc(s, terminator);
3211 }
3212 
3213 static int possible_parents_show(struct seq_file *s, void *data)
3214 {
3215 	struct clk_core *core = s->private;
3216 	int i;
3217 
3218 	for (i = 0; i < core->num_parents - 1; i++)
3219 		possible_parent_show(s, core, i, ' ');
3220 
3221 	possible_parent_show(s, core, i, '\n');
3222 
3223 	return 0;
3224 }
3225 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3226 
3227 static int current_parent_show(struct seq_file *s, void *data)
3228 {
3229 	struct clk_core *core = s->private;
3230 
3231 	if (core->parent)
3232 		seq_printf(s, "%s\n", core->parent->name);
3233 
3234 	return 0;
3235 }
3236 DEFINE_SHOW_ATTRIBUTE(current_parent);
3237 
3238 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3239 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3240 				    size_t count, loff_t *ppos)
3241 {
3242 	struct seq_file *s = file->private_data;
3243 	struct clk_core *core = s->private;
3244 	struct clk_core *parent;
3245 	u8 idx;
3246 	int err;
3247 
3248 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3249 	if (err < 0)
3250 		return err;
3251 
3252 	parent = clk_core_get_parent_by_index(core, idx);
3253 	if (!parent)
3254 		return -ENOENT;
3255 
3256 	clk_prepare_lock();
3257 	err = clk_core_set_parent_nolock(core, parent);
3258 	clk_prepare_unlock();
3259 	if (err)
3260 		return err;
3261 
3262 	return count;
3263 }
3264 
3265 static const struct file_operations current_parent_rw_fops = {
3266 	.open		= current_parent_open,
3267 	.write		= current_parent_write,
3268 	.read		= seq_read,
3269 	.llseek		= seq_lseek,
3270 	.release	= single_release,
3271 };
3272 #endif
3273 
3274 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3275 {
3276 	struct clk_core *core = s->private;
3277 	struct clk_duty *duty = &core->duty;
3278 
3279 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3280 
3281 	return 0;
3282 }
3283 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3284 
3285 static int clk_min_rate_show(struct seq_file *s, void *data)
3286 {
3287 	struct clk_core *core = s->private;
3288 	unsigned long min_rate, max_rate;
3289 
3290 	clk_prepare_lock();
3291 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3292 	clk_prepare_unlock();
3293 	seq_printf(s, "%lu\n", min_rate);
3294 
3295 	return 0;
3296 }
3297 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3298 
3299 static int clk_max_rate_show(struct seq_file *s, void *data)
3300 {
3301 	struct clk_core *core = s->private;
3302 	unsigned long min_rate, max_rate;
3303 
3304 	clk_prepare_lock();
3305 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3306 	clk_prepare_unlock();
3307 	seq_printf(s, "%lu\n", max_rate);
3308 
3309 	return 0;
3310 }
3311 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3312 
3313 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3314 {
3315 	struct dentry *root;
3316 
3317 	if (!core || !pdentry)
3318 		return;
3319 
3320 	root = debugfs_create_dir(core->name, pdentry);
3321 	core->dentry = root;
3322 
3323 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3324 			    &clk_rate_fops);
3325 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3326 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3327 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3328 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3329 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3330 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3331 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3332 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3333 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3334 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3335 			    &clk_duty_cycle_fops);
3336 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3337 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3338 			    &clk_prepare_enable_fops);
3339 
3340 	if (core->num_parents > 1)
3341 		debugfs_create_file("clk_parent", 0644, root, core,
3342 				    &current_parent_rw_fops);
3343 	else
3344 #endif
3345 	if (core->num_parents > 0)
3346 		debugfs_create_file("clk_parent", 0444, root, core,
3347 				    &current_parent_fops);
3348 
3349 	if (core->num_parents > 1)
3350 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3351 				    &possible_parents_fops);
3352 
3353 	if (core->ops->debug_init)
3354 		core->ops->debug_init(core->hw, core->dentry);
3355 }
3356 
3357 /**
3358  * clk_debug_register - add a clk node to the debugfs clk directory
3359  * @core: the clk being added to the debugfs clk directory
3360  *
3361  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3362  * initialized.  Otherwise it bails out early since the debugfs clk directory
3363  * will be created lazily by clk_debug_init as part of a late_initcall.
3364  */
3365 static void clk_debug_register(struct clk_core *core)
3366 {
3367 	mutex_lock(&clk_debug_lock);
3368 	hlist_add_head(&core->debug_node, &clk_debug_list);
3369 	if (inited)
3370 		clk_debug_create_one(core, rootdir);
3371 	mutex_unlock(&clk_debug_lock);
3372 }
3373 
3374  /**
3375  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3376  * @core: the clk being removed from the debugfs clk directory
3377  *
3378  * Dynamically removes a clk and all its child nodes from the
3379  * debugfs clk directory if clk->dentry points to debugfs created by
3380  * clk_debug_register in __clk_core_init.
3381  */
3382 static void clk_debug_unregister(struct clk_core *core)
3383 {
3384 	mutex_lock(&clk_debug_lock);
3385 	hlist_del_init(&core->debug_node);
3386 	debugfs_remove_recursive(core->dentry);
3387 	core->dentry = NULL;
3388 	mutex_unlock(&clk_debug_lock);
3389 }
3390 
3391 /**
3392  * clk_debug_init - lazily populate the debugfs clk directory
3393  *
3394  * clks are often initialized very early during boot before memory can be
3395  * dynamically allocated and well before debugfs is setup. This function
3396  * populates the debugfs clk directory once at boot-time when we know that
3397  * debugfs is setup. It should only be called once at boot-time, all other clks
3398  * added dynamically will be done so with clk_debug_register.
3399  */
3400 static int __init clk_debug_init(void)
3401 {
3402 	struct clk_core *core;
3403 
3404 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3405 	pr_warn("\n");
3406 	pr_warn("********************************************************************\n");
3407 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3408 	pr_warn("**                                                                **\n");
3409 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3410 	pr_warn("**                                                                **\n");
3411 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3412 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3413 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3414 	pr_warn("**                                                                **\n");
3415 	pr_warn("** If you see this message and you are not debugging the          **\n");
3416 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3417 	pr_warn("**                                                                **\n");
3418 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3419 	pr_warn("********************************************************************\n");
3420 #endif
3421 
3422 	rootdir = debugfs_create_dir("clk", NULL);
3423 
3424 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3425 			    &clk_summary_fops);
3426 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3427 			    &clk_dump_fops);
3428 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3429 			    &clk_summary_fops);
3430 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3431 			    &clk_dump_fops);
3432 
3433 	mutex_lock(&clk_debug_lock);
3434 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3435 		clk_debug_create_one(core, rootdir);
3436 
3437 	inited = 1;
3438 	mutex_unlock(&clk_debug_lock);
3439 
3440 	return 0;
3441 }
3442 late_initcall(clk_debug_init);
3443 #else
3444 static inline void clk_debug_register(struct clk_core *core) { }
3445 static inline void clk_debug_unregister(struct clk_core *core)
3446 {
3447 }
3448 #endif
3449 
3450 static void clk_core_reparent_orphans_nolock(void)
3451 {
3452 	struct clk_core *orphan;
3453 	struct hlist_node *tmp2;
3454 
3455 	/*
3456 	 * walk the list of orphan clocks and reparent any that newly finds a
3457 	 * parent.
3458 	 */
3459 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3460 		struct clk_core *parent = __clk_init_parent(orphan);
3461 
3462 		/*
3463 		 * We need to use __clk_set_parent_before() and _after() to
3464 		 * properly migrate any prepare/enable count of the orphan
3465 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3466 		 * are enabled during init but might not have a parent yet.
3467 		 */
3468 		if (parent) {
3469 			/* update the clk tree topology */
3470 			__clk_set_parent_before(orphan, parent);
3471 			__clk_set_parent_after(orphan, parent, NULL);
3472 			__clk_recalc_accuracies(orphan);
3473 			__clk_recalc_rates(orphan, 0);
3474 
3475 			/*
3476 			 * __clk_init_parent() will set the initial req_rate to
3477 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3478 			 * is an orphan when it's registered.
3479 			 *
3480 			 * 'req_rate' is used by clk_set_rate_range() and
3481 			 * clk_put() to trigger a clk_set_rate() call whenever
3482 			 * the boundaries are modified. Let's make sure
3483 			 * 'req_rate' is set to something non-zero so that
3484 			 * clk_set_rate_range() doesn't drop the frequency.
3485 			 */
3486 			orphan->req_rate = orphan->rate;
3487 		}
3488 	}
3489 }
3490 
3491 /**
3492  * __clk_core_init - initialize the data structures in a struct clk_core
3493  * @core:	clk_core being initialized
3494  *
3495  * Initializes the lists in struct clk_core, queries the hardware for the
3496  * parent and rate and sets them both.
3497  */
3498 static int __clk_core_init(struct clk_core *core)
3499 {
3500 	int ret;
3501 	struct clk_core *parent;
3502 	unsigned long rate;
3503 	int phase;
3504 
3505 	clk_prepare_lock();
3506 
3507 	/*
3508 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3509 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3510 	 * being NULL as the clk not being registered yet. This is crucial so
3511 	 * that clks aren't parented until their parent is fully registered.
3512 	 */
3513 	core->hw->core = core;
3514 
3515 	ret = clk_pm_runtime_get(core);
3516 	if (ret)
3517 		goto unlock;
3518 
3519 	/* check to see if a clock with this name is already registered */
3520 	if (clk_core_lookup(core->name)) {
3521 		pr_debug("%s: clk %s already initialized\n",
3522 				__func__, core->name);
3523 		ret = -EEXIST;
3524 		goto out;
3525 	}
3526 
3527 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3528 	if (core->ops->set_rate &&
3529 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3530 	      core->ops->recalc_rate)) {
3531 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3532 		       __func__, core->name);
3533 		ret = -EINVAL;
3534 		goto out;
3535 	}
3536 
3537 	if (core->ops->set_parent && !core->ops->get_parent) {
3538 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3539 		       __func__, core->name);
3540 		ret = -EINVAL;
3541 		goto out;
3542 	}
3543 
3544 	if (core->num_parents > 1 && !core->ops->get_parent) {
3545 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3546 		       __func__, core->name);
3547 		ret = -EINVAL;
3548 		goto out;
3549 	}
3550 
3551 	if (core->ops->set_rate_and_parent &&
3552 			!(core->ops->set_parent && core->ops->set_rate)) {
3553 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3554 				__func__, core->name);
3555 		ret = -EINVAL;
3556 		goto out;
3557 	}
3558 
3559 	/*
3560 	 * optional platform-specific magic
3561 	 *
3562 	 * The .init callback is not used by any of the basic clock types, but
3563 	 * exists for weird hardware that must perform initialization magic for
3564 	 * CCF to get an accurate view of clock for any other callbacks. It may
3565 	 * also be used needs to perform dynamic allocations. Such allocation
3566 	 * must be freed in the terminate() callback.
3567 	 * This callback shall not be used to initialize the parameters state,
3568 	 * such as rate, parent, etc ...
3569 	 *
3570 	 * If it exist, this callback should called before any other callback of
3571 	 * the clock
3572 	 */
3573 	if (core->ops->init) {
3574 		ret = core->ops->init(core->hw);
3575 		if (ret)
3576 			goto out;
3577 	}
3578 
3579 	parent = core->parent = __clk_init_parent(core);
3580 
3581 	/*
3582 	 * Populate core->parent if parent has already been clk_core_init'd. If
3583 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3584 	 * list.  If clk doesn't have any parents then place it in the root
3585 	 * clk list.
3586 	 *
3587 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3588 	 * clocks and re-parent any that are children of the clock currently
3589 	 * being clk_init'd.
3590 	 */
3591 	if (parent) {
3592 		hlist_add_head(&core->child_node, &parent->children);
3593 		core->orphan = parent->orphan;
3594 	} else if (!core->num_parents) {
3595 		hlist_add_head(&core->child_node, &clk_root_list);
3596 		core->orphan = false;
3597 	} else {
3598 		hlist_add_head(&core->child_node, &clk_orphan_list);
3599 		core->orphan = true;
3600 	}
3601 
3602 	/*
3603 	 * Set clk's accuracy.  The preferred method is to use
3604 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3605 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3606 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3607 	 * clock).
3608 	 */
3609 	if (core->ops->recalc_accuracy)
3610 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3611 					clk_core_get_accuracy_no_lock(parent));
3612 	else if (parent)
3613 		core->accuracy = parent->accuracy;
3614 	else
3615 		core->accuracy = 0;
3616 
3617 	/*
3618 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3619 	 * Since a phase is by definition relative to its parent, just
3620 	 * query the current clock phase, or just assume it's in phase.
3621 	 */
3622 	phase = clk_core_get_phase(core);
3623 	if (phase < 0) {
3624 		ret = phase;
3625 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3626 			core->name);
3627 		goto out;
3628 	}
3629 
3630 	/*
3631 	 * Set clk's duty cycle.
3632 	 */
3633 	clk_core_update_duty_cycle_nolock(core);
3634 
3635 	/*
3636 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3637 	 * simple clocks and lazy developers the default fallback is to use the
3638 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3639 	 * then rate is set to zero.
3640 	 */
3641 	if (core->ops->recalc_rate)
3642 		rate = core->ops->recalc_rate(core->hw,
3643 				clk_core_get_rate_nolock(parent));
3644 	else if (parent)
3645 		rate = parent->rate;
3646 	else
3647 		rate = 0;
3648 	core->rate = core->req_rate = rate;
3649 
3650 	/*
3651 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3652 	 * don't get accidentally disabled when walking the orphan tree and
3653 	 * reparenting clocks
3654 	 */
3655 	if (core->flags & CLK_IS_CRITICAL) {
3656 		ret = clk_core_prepare(core);
3657 		if (ret) {
3658 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3659 			       __func__, core->name);
3660 			goto out;
3661 		}
3662 
3663 		ret = clk_core_enable_lock(core);
3664 		if (ret) {
3665 			pr_warn("%s: critical clk '%s' failed to enable\n",
3666 			       __func__, core->name);
3667 			clk_core_unprepare(core);
3668 			goto out;
3669 		}
3670 	}
3671 
3672 	clk_core_reparent_orphans_nolock();
3673 
3674 	kref_init(&core->ref);
3675 out:
3676 	clk_pm_runtime_put(core);
3677 unlock:
3678 	if (ret) {
3679 		hlist_del_init(&core->child_node);
3680 		core->hw->core = NULL;
3681 	}
3682 
3683 	clk_prepare_unlock();
3684 
3685 	if (!ret)
3686 		clk_debug_register(core);
3687 
3688 	return ret;
3689 }
3690 
3691 /**
3692  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3693  * @core: clk to add consumer to
3694  * @clk: consumer to link to a clk
3695  */
3696 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3697 {
3698 	clk_prepare_lock();
3699 	hlist_add_head(&clk->clks_node, &core->clks);
3700 	clk_prepare_unlock();
3701 }
3702 
3703 /**
3704  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3705  * @clk: consumer to unlink
3706  */
3707 static void clk_core_unlink_consumer(struct clk *clk)
3708 {
3709 	lockdep_assert_held(&prepare_lock);
3710 	hlist_del(&clk->clks_node);
3711 }
3712 
3713 /**
3714  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3715  * @core: clk to allocate a consumer for
3716  * @dev_id: string describing device name
3717  * @con_id: connection ID string on device
3718  *
3719  * Returns: clk consumer left unlinked from the consumer list
3720  */
3721 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3722 			     const char *con_id)
3723 {
3724 	struct clk *clk;
3725 
3726 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3727 	if (!clk)
3728 		return ERR_PTR(-ENOMEM);
3729 
3730 	clk->core = core;
3731 	clk->dev_id = dev_id;
3732 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3733 	clk->max_rate = ULONG_MAX;
3734 
3735 	return clk;
3736 }
3737 
3738 /**
3739  * free_clk - Free a clk consumer
3740  * @clk: clk consumer to free
3741  *
3742  * Note, this assumes the clk has been unlinked from the clk_core consumer
3743  * list.
3744  */
3745 static void free_clk(struct clk *clk)
3746 {
3747 	kfree_const(clk->con_id);
3748 	kfree(clk);
3749 }
3750 
3751 /**
3752  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3753  * a clk_hw
3754  * @dev: clk consumer device
3755  * @hw: clk_hw associated with the clk being consumed
3756  * @dev_id: string describing device name
3757  * @con_id: connection ID string on device
3758  *
3759  * This is the main function used to create a clk pointer for use by clk
3760  * consumers. It connects a consumer to the clk_core and clk_hw structures
3761  * used by the framework and clk provider respectively.
3762  */
3763 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3764 			      const char *dev_id, const char *con_id)
3765 {
3766 	struct clk *clk;
3767 	struct clk_core *core;
3768 
3769 	/* This is to allow this function to be chained to others */
3770 	if (IS_ERR_OR_NULL(hw))
3771 		return ERR_CAST(hw);
3772 
3773 	core = hw->core;
3774 	clk = alloc_clk(core, dev_id, con_id);
3775 	if (IS_ERR(clk))
3776 		return clk;
3777 	clk->dev = dev;
3778 
3779 	if (!try_module_get(core->owner)) {
3780 		free_clk(clk);
3781 		return ERR_PTR(-ENOENT);
3782 	}
3783 
3784 	kref_get(&core->ref);
3785 	clk_core_link_consumer(core, clk);
3786 
3787 	return clk;
3788 }
3789 
3790 /**
3791  * clk_hw_get_clk - get clk consumer given an clk_hw
3792  * @hw: clk_hw associated with the clk being consumed
3793  * @con_id: connection ID string on device
3794  *
3795  * Returns: new clk consumer
3796  * This is the function to be used by providers which need
3797  * to get a consumer clk and act on the clock element
3798  * Calls to this function must be balanced with calls clk_put()
3799  */
3800 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3801 {
3802 	struct device *dev = hw->core->dev;
3803 	const char *name = dev ? dev_name(dev) : NULL;
3804 
3805 	return clk_hw_create_clk(dev, hw, name, con_id);
3806 }
3807 EXPORT_SYMBOL(clk_hw_get_clk);
3808 
3809 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3810 {
3811 	const char *dst;
3812 
3813 	if (!src) {
3814 		if (must_exist)
3815 			return -EINVAL;
3816 		return 0;
3817 	}
3818 
3819 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3820 	if (!dst)
3821 		return -ENOMEM;
3822 
3823 	return 0;
3824 }
3825 
3826 static int clk_core_populate_parent_map(struct clk_core *core,
3827 					const struct clk_init_data *init)
3828 {
3829 	u8 num_parents = init->num_parents;
3830 	const char * const *parent_names = init->parent_names;
3831 	const struct clk_hw **parent_hws = init->parent_hws;
3832 	const struct clk_parent_data *parent_data = init->parent_data;
3833 	int i, ret = 0;
3834 	struct clk_parent_map *parents, *parent;
3835 
3836 	if (!num_parents)
3837 		return 0;
3838 
3839 	/*
3840 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3841 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3842 	 */
3843 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3844 	core->parents = parents;
3845 	if (!parents)
3846 		return -ENOMEM;
3847 
3848 	/* Copy everything over because it might be __initdata */
3849 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3850 		parent->index = -1;
3851 		if (parent_names) {
3852 			/* throw a WARN if any entries are NULL */
3853 			WARN(!parent_names[i],
3854 				"%s: invalid NULL in %s's .parent_names\n",
3855 				__func__, core->name);
3856 			ret = clk_cpy_name(&parent->name, parent_names[i],
3857 					   true);
3858 		} else if (parent_data) {
3859 			parent->hw = parent_data[i].hw;
3860 			parent->index = parent_data[i].index;
3861 			ret = clk_cpy_name(&parent->fw_name,
3862 					   parent_data[i].fw_name, false);
3863 			if (!ret)
3864 				ret = clk_cpy_name(&parent->name,
3865 						   parent_data[i].name,
3866 						   false);
3867 		} else if (parent_hws) {
3868 			parent->hw = parent_hws[i];
3869 		} else {
3870 			ret = -EINVAL;
3871 			WARN(1, "Must specify parents if num_parents > 0\n");
3872 		}
3873 
3874 		if (ret) {
3875 			do {
3876 				kfree_const(parents[i].name);
3877 				kfree_const(parents[i].fw_name);
3878 			} while (--i >= 0);
3879 			kfree(parents);
3880 
3881 			return ret;
3882 		}
3883 	}
3884 
3885 	return 0;
3886 }
3887 
3888 static void clk_core_free_parent_map(struct clk_core *core)
3889 {
3890 	int i = core->num_parents;
3891 
3892 	if (!core->num_parents)
3893 		return;
3894 
3895 	while (--i >= 0) {
3896 		kfree_const(core->parents[i].name);
3897 		kfree_const(core->parents[i].fw_name);
3898 	}
3899 
3900 	kfree(core->parents);
3901 }
3902 
3903 static struct clk *
3904 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3905 {
3906 	int ret;
3907 	struct clk_core *core;
3908 	const struct clk_init_data *init = hw->init;
3909 
3910 	/*
3911 	 * The init data is not supposed to be used outside of registration path.
3912 	 * Set it to NULL so that provider drivers can't use it either and so that
3913 	 * we catch use of hw->init early on in the core.
3914 	 */
3915 	hw->init = NULL;
3916 
3917 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3918 	if (!core) {
3919 		ret = -ENOMEM;
3920 		goto fail_out;
3921 	}
3922 
3923 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3924 	if (!core->name) {
3925 		ret = -ENOMEM;
3926 		goto fail_name;
3927 	}
3928 
3929 	if (WARN_ON(!init->ops)) {
3930 		ret = -EINVAL;
3931 		goto fail_ops;
3932 	}
3933 	core->ops = init->ops;
3934 
3935 	if (dev && pm_runtime_enabled(dev))
3936 		core->rpm_enabled = true;
3937 	core->dev = dev;
3938 	core->of_node = np;
3939 	if (dev && dev->driver)
3940 		core->owner = dev->driver->owner;
3941 	core->hw = hw;
3942 	core->flags = init->flags;
3943 	core->num_parents = init->num_parents;
3944 	core->min_rate = 0;
3945 	core->max_rate = ULONG_MAX;
3946 
3947 	ret = clk_core_populate_parent_map(core, init);
3948 	if (ret)
3949 		goto fail_parents;
3950 
3951 	INIT_HLIST_HEAD(&core->clks);
3952 
3953 	/*
3954 	 * Don't call clk_hw_create_clk() here because that would pin the
3955 	 * provider module to itself and prevent it from ever being removed.
3956 	 */
3957 	hw->clk = alloc_clk(core, NULL, NULL);
3958 	if (IS_ERR(hw->clk)) {
3959 		ret = PTR_ERR(hw->clk);
3960 		goto fail_create_clk;
3961 	}
3962 
3963 	clk_core_link_consumer(core, hw->clk);
3964 
3965 	ret = __clk_core_init(core);
3966 	if (!ret)
3967 		return hw->clk;
3968 
3969 	clk_prepare_lock();
3970 	clk_core_unlink_consumer(hw->clk);
3971 	clk_prepare_unlock();
3972 
3973 	free_clk(hw->clk);
3974 	hw->clk = NULL;
3975 
3976 fail_create_clk:
3977 	clk_core_free_parent_map(core);
3978 fail_parents:
3979 fail_ops:
3980 	kfree_const(core->name);
3981 fail_name:
3982 	kfree(core);
3983 fail_out:
3984 	return ERR_PTR(ret);
3985 }
3986 
3987 /**
3988  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3989  * @dev: Device to get device node of
3990  *
3991  * Return: device node pointer of @dev, or the device node pointer of
3992  * @dev->parent if dev doesn't have a device node, or NULL if neither
3993  * @dev or @dev->parent have a device node.
3994  */
3995 static struct device_node *dev_or_parent_of_node(struct device *dev)
3996 {
3997 	struct device_node *np;
3998 
3999 	if (!dev)
4000 		return NULL;
4001 
4002 	np = dev_of_node(dev);
4003 	if (!np)
4004 		np = dev_of_node(dev->parent);
4005 
4006 	return np;
4007 }
4008 
4009 /**
4010  * clk_register - allocate a new clock, register it and return an opaque cookie
4011  * @dev: device that is registering this clock
4012  * @hw: link to hardware-specific clock data
4013  *
4014  * clk_register is the *deprecated* interface for populating the clock tree with
4015  * new clock nodes. Use clk_hw_register() instead.
4016  *
4017  * Returns: a pointer to the newly allocated struct clk which
4018  * cannot be dereferenced by driver code but may be used in conjunction with the
4019  * rest of the clock API.  In the event of an error clk_register will return an
4020  * error code; drivers must test for an error code after calling clk_register.
4021  */
4022 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4023 {
4024 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4025 }
4026 EXPORT_SYMBOL_GPL(clk_register);
4027 
4028 /**
4029  * clk_hw_register - register a clk_hw and return an error code
4030  * @dev: device that is registering this clock
4031  * @hw: link to hardware-specific clock data
4032  *
4033  * clk_hw_register is the primary interface for populating the clock tree with
4034  * new clock nodes. It returns an integer equal to zero indicating success or
4035  * less than zero indicating failure. Drivers must test for an error code after
4036  * calling clk_hw_register().
4037  */
4038 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4039 {
4040 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4041 			       hw));
4042 }
4043 EXPORT_SYMBOL_GPL(clk_hw_register);
4044 
4045 /*
4046  * of_clk_hw_register - register a clk_hw and return an error code
4047  * @node: device_node of device that is registering this clock
4048  * @hw: link to hardware-specific clock data
4049  *
4050  * of_clk_hw_register() is the primary interface for populating the clock tree
4051  * with new clock nodes when a struct device is not available, but a struct
4052  * device_node is. It returns an integer equal to zero indicating success or
4053  * less than zero indicating failure. Drivers must test for an error code after
4054  * calling of_clk_hw_register().
4055  */
4056 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4057 {
4058 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4059 }
4060 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4061 
4062 /* Free memory allocated for a clock. */
4063 static void __clk_release(struct kref *ref)
4064 {
4065 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4066 
4067 	lockdep_assert_held(&prepare_lock);
4068 
4069 	clk_core_free_parent_map(core);
4070 	kfree_const(core->name);
4071 	kfree(core);
4072 }
4073 
4074 /*
4075  * Empty clk_ops for unregistered clocks. These are used temporarily
4076  * after clk_unregister() was called on a clock and until last clock
4077  * consumer calls clk_put() and the struct clk object is freed.
4078  */
4079 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4080 {
4081 	return -ENXIO;
4082 }
4083 
4084 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4085 {
4086 	WARN_ON_ONCE(1);
4087 }
4088 
4089 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4090 					unsigned long parent_rate)
4091 {
4092 	return -ENXIO;
4093 }
4094 
4095 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4096 {
4097 	return -ENXIO;
4098 }
4099 
4100 static const struct clk_ops clk_nodrv_ops = {
4101 	.enable		= clk_nodrv_prepare_enable,
4102 	.disable	= clk_nodrv_disable_unprepare,
4103 	.prepare	= clk_nodrv_prepare_enable,
4104 	.unprepare	= clk_nodrv_disable_unprepare,
4105 	.set_rate	= clk_nodrv_set_rate,
4106 	.set_parent	= clk_nodrv_set_parent,
4107 };
4108 
4109 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4110 						const struct clk_core *target)
4111 {
4112 	int i;
4113 	struct clk_core *child;
4114 
4115 	for (i = 0; i < root->num_parents; i++)
4116 		if (root->parents[i].core == target)
4117 			root->parents[i].core = NULL;
4118 
4119 	hlist_for_each_entry(child, &root->children, child_node)
4120 		clk_core_evict_parent_cache_subtree(child, target);
4121 }
4122 
4123 /* Remove this clk from all parent caches */
4124 static void clk_core_evict_parent_cache(struct clk_core *core)
4125 {
4126 	const struct hlist_head **lists;
4127 	struct clk_core *root;
4128 
4129 	lockdep_assert_held(&prepare_lock);
4130 
4131 	for (lists = all_lists; *lists; lists++)
4132 		hlist_for_each_entry(root, *lists, child_node)
4133 			clk_core_evict_parent_cache_subtree(root, core);
4134 
4135 }
4136 
4137 /**
4138  * clk_unregister - unregister a currently registered clock
4139  * @clk: clock to unregister
4140  */
4141 void clk_unregister(struct clk *clk)
4142 {
4143 	unsigned long flags;
4144 	const struct clk_ops *ops;
4145 
4146 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4147 		return;
4148 
4149 	clk_debug_unregister(clk->core);
4150 
4151 	clk_prepare_lock();
4152 
4153 	ops = clk->core->ops;
4154 	if (ops == &clk_nodrv_ops) {
4155 		pr_err("%s: unregistered clock: %s\n", __func__,
4156 		       clk->core->name);
4157 		goto unlock;
4158 	}
4159 	/*
4160 	 * Assign empty clock ops for consumers that might still hold
4161 	 * a reference to this clock.
4162 	 */
4163 	flags = clk_enable_lock();
4164 	clk->core->ops = &clk_nodrv_ops;
4165 	clk_enable_unlock(flags);
4166 
4167 	if (ops->terminate)
4168 		ops->terminate(clk->core->hw);
4169 
4170 	if (!hlist_empty(&clk->core->children)) {
4171 		struct clk_core *child;
4172 		struct hlist_node *t;
4173 
4174 		/* Reparent all children to the orphan list. */
4175 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4176 					  child_node)
4177 			clk_core_set_parent_nolock(child, NULL);
4178 	}
4179 
4180 	clk_core_evict_parent_cache(clk->core);
4181 
4182 	hlist_del_init(&clk->core->child_node);
4183 
4184 	if (clk->core->prepare_count)
4185 		pr_warn("%s: unregistering prepared clock: %s\n",
4186 					__func__, clk->core->name);
4187 
4188 	if (clk->core->protect_count)
4189 		pr_warn("%s: unregistering protected clock: %s\n",
4190 					__func__, clk->core->name);
4191 
4192 	kref_put(&clk->core->ref, __clk_release);
4193 	free_clk(clk);
4194 unlock:
4195 	clk_prepare_unlock();
4196 }
4197 EXPORT_SYMBOL_GPL(clk_unregister);
4198 
4199 /**
4200  * clk_hw_unregister - unregister a currently registered clk_hw
4201  * @hw: hardware-specific clock data to unregister
4202  */
4203 void clk_hw_unregister(struct clk_hw *hw)
4204 {
4205 	clk_unregister(hw->clk);
4206 }
4207 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4208 
4209 static void devm_clk_unregister_cb(struct device *dev, void *res)
4210 {
4211 	clk_unregister(*(struct clk **)res);
4212 }
4213 
4214 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4215 {
4216 	clk_hw_unregister(*(struct clk_hw **)res);
4217 }
4218 
4219 /**
4220  * devm_clk_register - resource managed clk_register()
4221  * @dev: device that is registering this clock
4222  * @hw: link to hardware-specific clock data
4223  *
4224  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4225  *
4226  * Clocks returned from this function are automatically clk_unregister()ed on
4227  * driver detach. See clk_register() for more information.
4228  */
4229 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4230 {
4231 	struct clk *clk;
4232 	struct clk **clkp;
4233 
4234 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4235 	if (!clkp)
4236 		return ERR_PTR(-ENOMEM);
4237 
4238 	clk = clk_register(dev, hw);
4239 	if (!IS_ERR(clk)) {
4240 		*clkp = clk;
4241 		devres_add(dev, clkp);
4242 	} else {
4243 		devres_free(clkp);
4244 	}
4245 
4246 	return clk;
4247 }
4248 EXPORT_SYMBOL_GPL(devm_clk_register);
4249 
4250 /**
4251  * devm_clk_hw_register - resource managed clk_hw_register()
4252  * @dev: device that is registering this clock
4253  * @hw: link to hardware-specific clock data
4254  *
4255  * Managed clk_hw_register(). Clocks registered by this function are
4256  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4257  * for more information.
4258  */
4259 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4260 {
4261 	struct clk_hw **hwp;
4262 	int ret;
4263 
4264 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4265 	if (!hwp)
4266 		return -ENOMEM;
4267 
4268 	ret = clk_hw_register(dev, hw);
4269 	if (!ret) {
4270 		*hwp = hw;
4271 		devres_add(dev, hwp);
4272 	} else {
4273 		devres_free(hwp);
4274 	}
4275 
4276 	return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4279 
4280 static void devm_clk_release(struct device *dev, void *res)
4281 {
4282 	clk_put(*(struct clk **)res);
4283 }
4284 
4285 /**
4286  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4287  * @dev: device that is registering this clock
4288  * @hw: clk_hw associated with the clk being consumed
4289  * @con_id: connection ID string on device
4290  *
4291  * Managed clk_hw_get_clk(). Clocks got with this function are
4292  * automatically clk_put() on driver detach. See clk_put()
4293  * for more information.
4294  */
4295 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4296 				const char *con_id)
4297 {
4298 	struct clk *clk;
4299 	struct clk **clkp;
4300 
4301 	/* This should not happen because it would mean we have drivers
4302 	 * passing around clk_hw pointers instead of having the caller use
4303 	 * proper clk_get() style APIs
4304 	 */
4305 	WARN_ON_ONCE(dev != hw->core->dev);
4306 
4307 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4308 	if (!clkp)
4309 		return ERR_PTR(-ENOMEM);
4310 
4311 	clk = clk_hw_get_clk(hw, con_id);
4312 	if (!IS_ERR(clk)) {
4313 		*clkp = clk;
4314 		devres_add(dev, clkp);
4315 	} else {
4316 		devres_free(clkp);
4317 	}
4318 
4319 	return clk;
4320 }
4321 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4322 
4323 /*
4324  * clkdev helpers
4325  */
4326 
4327 void __clk_put(struct clk *clk)
4328 {
4329 	struct module *owner;
4330 
4331 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4332 		return;
4333 
4334 	clk_prepare_lock();
4335 
4336 	/*
4337 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4338 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4339 	 * and by that same consumer
4340 	 */
4341 	if (WARN_ON(clk->exclusive_count)) {
4342 		/* We voiced our concern, let's sanitize the situation */
4343 		clk->core->protect_count -= (clk->exclusive_count - 1);
4344 		clk_core_rate_unprotect(clk->core);
4345 		clk->exclusive_count = 0;
4346 	}
4347 
4348 	hlist_del(&clk->clks_node);
4349 	if (clk->min_rate > clk->core->req_rate ||
4350 	    clk->max_rate < clk->core->req_rate)
4351 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4352 
4353 	owner = clk->core->owner;
4354 	kref_put(&clk->core->ref, __clk_release);
4355 
4356 	clk_prepare_unlock();
4357 
4358 	module_put(owner);
4359 
4360 	free_clk(clk);
4361 }
4362 
4363 /***        clk rate change notifiers        ***/
4364 
4365 /**
4366  * clk_notifier_register - add a clk rate change notifier
4367  * @clk: struct clk * to watch
4368  * @nb: struct notifier_block * with callback info
4369  *
4370  * Request notification when clk's rate changes.  This uses an SRCU
4371  * notifier because we want it to block and notifier unregistrations are
4372  * uncommon.  The callbacks associated with the notifier must not
4373  * re-enter into the clk framework by calling any top-level clk APIs;
4374  * this will cause a nested prepare_lock mutex.
4375  *
4376  * In all notification cases (pre, post and abort rate change) the original
4377  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4378  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4379  *
4380  * clk_notifier_register() must be called from non-atomic context.
4381  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4382  * allocation failure; otherwise, passes along the return value of
4383  * srcu_notifier_chain_register().
4384  */
4385 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4386 {
4387 	struct clk_notifier *cn;
4388 	int ret = -ENOMEM;
4389 
4390 	if (!clk || !nb)
4391 		return -EINVAL;
4392 
4393 	clk_prepare_lock();
4394 
4395 	/* search the list of notifiers for this clk */
4396 	list_for_each_entry(cn, &clk_notifier_list, node)
4397 		if (cn->clk == clk)
4398 			goto found;
4399 
4400 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4401 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4402 	if (!cn)
4403 		goto out;
4404 
4405 	cn->clk = clk;
4406 	srcu_init_notifier_head(&cn->notifier_head);
4407 
4408 	list_add(&cn->node, &clk_notifier_list);
4409 
4410 found:
4411 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4412 
4413 	clk->core->notifier_count++;
4414 
4415 out:
4416 	clk_prepare_unlock();
4417 
4418 	return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(clk_notifier_register);
4421 
4422 /**
4423  * clk_notifier_unregister - remove a clk rate change notifier
4424  * @clk: struct clk *
4425  * @nb: struct notifier_block * with callback info
4426  *
4427  * Request no further notification for changes to 'clk' and frees memory
4428  * allocated in clk_notifier_register.
4429  *
4430  * Returns -EINVAL if called with null arguments; otherwise, passes
4431  * along the return value of srcu_notifier_chain_unregister().
4432  */
4433 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4434 {
4435 	struct clk_notifier *cn;
4436 	int ret = -ENOENT;
4437 
4438 	if (!clk || !nb)
4439 		return -EINVAL;
4440 
4441 	clk_prepare_lock();
4442 
4443 	list_for_each_entry(cn, &clk_notifier_list, node) {
4444 		if (cn->clk == clk) {
4445 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4446 
4447 			clk->core->notifier_count--;
4448 
4449 			/* XXX the notifier code should handle this better */
4450 			if (!cn->notifier_head.head) {
4451 				srcu_cleanup_notifier_head(&cn->notifier_head);
4452 				list_del(&cn->node);
4453 				kfree(cn);
4454 			}
4455 			break;
4456 		}
4457 	}
4458 
4459 	clk_prepare_unlock();
4460 
4461 	return ret;
4462 }
4463 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4464 
4465 struct clk_notifier_devres {
4466 	struct clk *clk;
4467 	struct notifier_block *nb;
4468 };
4469 
4470 static void devm_clk_notifier_release(struct device *dev, void *res)
4471 {
4472 	struct clk_notifier_devres *devres = res;
4473 
4474 	clk_notifier_unregister(devres->clk, devres->nb);
4475 }
4476 
4477 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4478 			       struct notifier_block *nb)
4479 {
4480 	struct clk_notifier_devres *devres;
4481 	int ret;
4482 
4483 	devres = devres_alloc(devm_clk_notifier_release,
4484 			      sizeof(*devres), GFP_KERNEL);
4485 
4486 	if (!devres)
4487 		return -ENOMEM;
4488 
4489 	ret = clk_notifier_register(clk, nb);
4490 	if (!ret) {
4491 		devres->clk = clk;
4492 		devres->nb = nb;
4493 	} else {
4494 		devres_free(devres);
4495 	}
4496 
4497 	return ret;
4498 }
4499 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4500 
4501 #ifdef CONFIG_OF
4502 static void clk_core_reparent_orphans(void)
4503 {
4504 	clk_prepare_lock();
4505 	clk_core_reparent_orphans_nolock();
4506 	clk_prepare_unlock();
4507 }
4508 
4509 /**
4510  * struct of_clk_provider - Clock provider registration structure
4511  * @link: Entry in global list of clock providers
4512  * @node: Pointer to device tree node of clock provider
4513  * @get: Get clock callback.  Returns NULL or a struct clk for the
4514  *       given clock specifier
4515  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4516  *       struct clk_hw for the given clock specifier
4517  * @data: context pointer to be passed into @get callback
4518  */
4519 struct of_clk_provider {
4520 	struct list_head link;
4521 
4522 	struct device_node *node;
4523 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4524 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4525 	void *data;
4526 };
4527 
4528 extern struct of_device_id __clk_of_table;
4529 static const struct of_device_id __clk_of_table_sentinel
4530 	__used __section("__clk_of_table_end");
4531 
4532 static LIST_HEAD(of_clk_providers);
4533 static DEFINE_MUTEX(of_clk_mutex);
4534 
4535 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4536 				     void *data)
4537 {
4538 	return data;
4539 }
4540 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4541 
4542 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4543 {
4544 	return data;
4545 }
4546 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4547 
4548 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4549 {
4550 	struct clk_onecell_data *clk_data = data;
4551 	unsigned int idx = clkspec->args[0];
4552 
4553 	if (idx >= clk_data->clk_num) {
4554 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4555 		return ERR_PTR(-EINVAL);
4556 	}
4557 
4558 	return clk_data->clks[idx];
4559 }
4560 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4561 
4562 struct clk_hw *
4563 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4564 {
4565 	struct clk_hw_onecell_data *hw_data = data;
4566 	unsigned int idx = clkspec->args[0];
4567 
4568 	if (idx >= hw_data->num) {
4569 		pr_err("%s: invalid index %u\n", __func__, idx);
4570 		return ERR_PTR(-EINVAL);
4571 	}
4572 
4573 	return hw_data->hws[idx];
4574 }
4575 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4576 
4577 /**
4578  * of_clk_add_provider() - Register a clock provider for a node
4579  * @np: Device node pointer associated with clock provider
4580  * @clk_src_get: callback for decoding clock
4581  * @data: context pointer for @clk_src_get callback.
4582  *
4583  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4584  */
4585 int of_clk_add_provider(struct device_node *np,
4586 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4587 						   void *data),
4588 			void *data)
4589 {
4590 	struct of_clk_provider *cp;
4591 	int ret;
4592 
4593 	if (!np)
4594 		return 0;
4595 
4596 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4597 	if (!cp)
4598 		return -ENOMEM;
4599 
4600 	cp->node = of_node_get(np);
4601 	cp->data = data;
4602 	cp->get = clk_src_get;
4603 
4604 	mutex_lock(&of_clk_mutex);
4605 	list_add(&cp->link, &of_clk_providers);
4606 	mutex_unlock(&of_clk_mutex);
4607 	pr_debug("Added clock from %pOF\n", np);
4608 
4609 	clk_core_reparent_orphans();
4610 
4611 	ret = of_clk_set_defaults(np, true);
4612 	if (ret < 0)
4613 		of_clk_del_provider(np);
4614 
4615 	fwnode_dev_initialized(&np->fwnode, true);
4616 
4617 	return ret;
4618 }
4619 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4620 
4621 /**
4622  * of_clk_add_hw_provider() - Register a clock provider for a node
4623  * @np: Device node pointer associated with clock provider
4624  * @get: callback for decoding clk_hw
4625  * @data: context pointer for @get callback.
4626  */
4627 int of_clk_add_hw_provider(struct device_node *np,
4628 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4629 						 void *data),
4630 			   void *data)
4631 {
4632 	struct of_clk_provider *cp;
4633 	int ret;
4634 
4635 	if (!np)
4636 		return 0;
4637 
4638 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4639 	if (!cp)
4640 		return -ENOMEM;
4641 
4642 	cp->node = of_node_get(np);
4643 	cp->data = data;
4644 	cp->get_hw = get;
4645 
4646 	mutex_lock(&of_clk_mutex);
4647 	list_add(&cp->link, &of_clk_providers);
4648 	mutex_unlock(&of_clk_mutex);
4649 	pr_debug("Added clk_hw provider from %pOF\n", np);
4650 
4651 	clk_core_reparent_orphans();
4652 
4653 	ret = of_clk_set_defaults(np, true);
4654 	if (ret < 0)
4655 		of_clk_del_provider(np);
4656 
4657 	fwnode_dev_initialized(&np->fwnode, true);
4658 
4659 	return ret;
4660 }
4661 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4662 
4663 static void devm_of_clk_release_provider(struct device *dev, void *res)
4664 {
4665 	of_clk_del_provider(*(struct device_node **)res);
4666 }
4667 
4668 /*
4669  * We allow a child device to use its parent device as the clock provider node
4670  * for cases like MFD sub-devices where the child device driver wants to use
4671  * devm_*() APIs but not list the device in DT as a sub-node.
4672  */
4673 static struct device_node *get_clk_provider_node(struct device *dev)
4674 {
4675 	struct device_node *np, *parent_np;
4676 
4677 	np = dev->of_node;
4678 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4679 
4680 	if (!of_find_property(np, "#clock-cells", NULL))
4681 		if (of_find_property(parent_np, "#clock-cells", NULL))
4682 			np = parent_np;
4683 
4684 	return np;
4685 }
4686 
4687 /**
4688  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4689  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4690  * @get: callback for decoding clk_hw
4691  * @data: context pointer for @get callback
4692  *
4693  * Registers clock provider for given device's node. If the device has no DT
4694  * node or if the device node lacks of clock provider information (#clock-cells)
4695  * then the parent device's node is scanned for this information. If parent node
4696  * has the #clock-cells then it is used in registration. Provider is
4697  * automatically released at device exit.
4698  *
4699  * Return: 0 on success or an errno on failure.
4700  */
4701 int devm_of_clk_add_hw_provider(struct device *dev,
4702 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4703 					      void *data),
4704 			void *data)
4705 {
4706 	struct device_node **ptr, *np;
4707 	int ret;
4708 
4709 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4710 			   GFP_KERNEL);
4711 	if (!ptr)
4712 		return -ENOMEM;
4713 
4714 	np = get_clk_provider_node(dev);
4715 	ret = of_clk_add_hw_provider(np, get, data);
4716 	if (!ret) {
4717 		*ptr = np;
4718 		devres_add(dev, ptr);
4719 	} else {
4720 		devres_free(ptr);
4721 	}
4722 
4723 	return ret;
4724 }
4725 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4726 
4727 /**
4728  * of_clk_del_provider() - Remove a previously registered clock provider
4729  * @np: Device node pointer associated with clock provider
4730  */
4731 void of_clk_del_provider(struct device_node *np)
4732 {
4733 	struct of_clk_provider *cp;
4734 
4735 	if (!np)
4736 		return;
4737 
4738 	mutex_lock(&of_clk_mutex);
4739 	list_for_each_entry(cp, &of_clk_providers, link) {
4740 		if (cp->node == np) {
4741 			list_del(&cp->link);
4742 			fwnode_dev_initialized(&np->fwnode, false);
4743 			of_node_put(cp->node);
4744 			kfree(cp);
4745 			break;
4746 		}
4747 	}
4748 	mutex_unlock(&of_clk_mutex);
4749 }
4750 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4751 
4752 /**
4753  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4754  * @np: device node to parse clock specifier from
4755  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4756  * @name: clock name to find and parse. If name is NULL, the index is used
4757  * @out_args: Result of parsing the clock specifier
4758  *
4759  * Parses a device node's "clocks" and "clock-names" properties to find the
4760  * phandle and cells for the index or name that is desired. The resulting clock
4761  * specifier is placed into @out_args, or an errno is returned when there's a
4762  * parsing error. The @index argument is ignored if @name is non-NULL.
4763  *
4764  * Example:
4765  *
4766  * phandle1: clock-controller@1 {
4767  *	#clock-cells = <2>;
4768  * }
4769  *
4770  * phandle2: clock-controller@2 {
4771  *	#clock-cells = <1>;
4772  * }
4773  *
4774  * clock-consumer@3 {
4775  *	clocks = <&phandle1 1 2 &phandle2 3>;
4776  *	clock-names = "name1", "name2";
4777  * }
4778  *
4779  * To get a device_node for `clock-controller@2' node you may call this
4780  * function a few different ways:
4781  *
4782  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4783  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4784  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4785  *
4786  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4787  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4788  * the "clock-names" property of @np.
4789  */
4790 static int of_parse_clkspec(const struct device_node *np, int index,
4791 			    const char *name, struct of_phandle_args *out_args)
4792 {
4793 	int ret = -ENOENT;
4794 
4795 	/* Walk up the tree of devices looking for a clock property that matches */
4796 	while (np) {
4797 		/*
4798 		 * For named clocks, first look up the name in the
4799 		 * "clock-names" property.  If it cannot be found, then index
4800 		 * will be an error code and of_parse_phandle_with_args() will
4801 		 * return -EINVAL.
4802 		 */
4803 		if (name)
4804 			index = of_property_match_string(np, "clock-names", name);
4805 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4806 						 index, out_args);
4807 		if (!ret)
4808 			break;
4809 		if (name && index >= 0)
4810 			break;
4811 
4812 		/*
4813 		 * No matching clock found on this node.  If the parent node
4814 		 * has a "clock-ranges" property, then we can try one of its
4815 		 * clocks.
4816 		 */
4817 		np = np->parent;
4818 		if (np && !of_get_property(np, "clock-ranges", NULL))
4819 			break;
4820 		index = 0;
4821 	}
4822 
4823 	return ret;
4824 }
4825 
4826 static struct clk_hw *
4827 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4828 			      struct of_phandle_args *clkspec)
4829 {
4830 	struct clk *clk;
4831 
4832 	if (provider->get_hw)
4833 		return provider->get_hw(clkspec, provider->data);
4834 
4835 	clk = provider->get(clkspec, provider->data);
4836 	if (IS_ERR(clk))
4837 		return ERR_CAST(clk);
4838 	return __clk_get_hw(clk);
4839 }
4840 
4841 static struct clk_hw *
4842 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4843 {
4844 	struct of_clk_provider *provider;
4845 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4846 
4847 	if (!clkspec)
4848 		return ERR_PTR(-EINVAL);
4849 
4850 	mutex_lock(&of_clk_mutex);
4851 	list_for_each_entry(provider, &of_clk_providers, link) {
4852 		if (provider->node == clkspec->np) {
4853 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4854 			if (!IS_ERR(hw))
4855 				break;
4856 		}
4857 	}
4858 	mutex_unlock(&of_clk_mutex);
4859 
4860 	return hw;
4861 }
4862 
4863 /**
4864  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4865  * @clkspec: pointer to a clock specifier data structure
4866  *
4867  * This function looks up a struct clk from the registered list of clock
4868  * providers, an input is a clock specifier data structure as returned
4869  * from the of_parse_phandle_with_args() function call.
4870  */
4871 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4872 {
4873 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4874 
4875 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4876 }
4877 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4878 
4879 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4880 			     const char *con_id)
4881 {
4882 	int ret;
4883 	struct clk_hw *hw;
4884 	struct of_phandle_args clkspec;
4885 
4886 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4887 	if (ret)
4888 		return ERR_PTR(ret);
4889 
4890 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4891 	of_node_put(clkspec.np);
4892 
4893 	return hw;
4894 }
4895 
4896 static struct clk *__of_clk_get(struct device_node *np,
4897 				int index, const char *dev_id,
4898 				const char *con_id)
4899 {
4900 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4901 
4902 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4903 }
4904 
4905 struct clk *of_clk_get(struct device_node *np, int index)
4906 {
4907 	return __of_clk_get(np, index, np->full_name, NULL);
4908 }
4909 EXPORT_SYMBOL(of_clk_get);
4910 
4911 /**
4912  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4913  * @np: pointer to clock consumer node
4914  * @name: name of consumer's clock input, or NULL for the first clock reference
4915  *
4916  * This function parses the clocks and clock-names properties,
4917  * and uses them to look up the struct clk from the registered list of clock
4918  * providers.
4919  */
4920 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4921 {
4922 	if (!np)
4923 		return ERR_PTR(-ENOENT);
4924 
4925 	return __of_clk_get(np, 0, np->full_name, name);
4926 }
4927 EXPORT_SYMBOL(of_clk_get_by_name);
4928 
4929 /**
4930  * of_clk_get_parent_count() - Count the number of clocks a device node has
4931  * @np: device node to count
4932  *
4933  * Returns: The number of clocks that are possible parents of this node
4934  */
4935 unsigned int of_clk_get_parent_count(const struct device_node *np)
4936 {
4937 	int count;
4938 
4939 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4940 	if (count < 0)
4941 		return 0;
4942 
4943 	return count;
4944 }
4945 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4946 
4947 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4948 {
4949 	struct of_phandle_args clkspec;
4950 	struct property *prop;
4951 	const char *clk_name;
4952 	const __be32 *vp;
4953 	u32 pv;
4954 	int rc;
4955 	int count;
4956 	struct clk *clk;
4957 
4958 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4959 					&clkspec);
4960 	if (rc)
4961 		return NULL;
4962 
4963 	index = clkspec.args_count ? clkspec.args[0] : 0;
4964 	count = 0;
4965 
4966 	/* if there is an indices property, use it to transfer the index
4967 	 * specified into an array offset for the clock-output-names property.
4968 	 */
4969 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4970 		if (index == pv) {
4971 			index = count;
4972 			break;
4973 		}
4974 		count++;
4975 	}
4976 	/* We went off the end of 'clock-indices' without finding it */
4977 	if (prop && !vp)
4978 		return NULL;
4979 
4980 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4981 					  index,
4982 					  &clk_name) < 0) {
4983 		/*
4984 		 * Best effort to get the name if the clock has been
4985 		 * registered with the framework. If the clock isn't
4986 		 * registered, we return the node name as the name of
4987 		 * the clock as long as #clock-cells = 0.
4988 		 */
4989 		clk = of_clk_get_from_provider(&clkspec);
4990 		if (IS_ERR(clk)) {
4991 			if (clkspec.args_count == 0)
4992 				clk_name = clkspec.np->name;
4993 			else
4994 				clk_name = NULL;
4995 		} else {
4996 			clk_name = __clk_get_name(clk);
4997 			clk_put(clk);
4998 		}
4999 	}
5000 
5001 
5002 	of_node_put(clkspec.np);
5003 	return clk_name;
5004 }
5005 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5006 
5007 /**
5008  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5009  * number of parents
5010  * @np: Device node pointer associated with clock provider
5011  * @parents: pointer to char array that hold the parents' names
5012  * @size: size of the @parents array
5013  *
5014  * Return: number of parents for the clock node.
5015  */
5016 int of_clk_parent_fill(struct device_node *np, const char **parents,
5017 		       unsigned int size)
5018 {
5019 	unsigned int i = 0;
5020 
5021 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5022 		i++;
5023 
5024 	return i;
5025 }
5026 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5027 
5028 struct clock_provider {
5029 	void (*clk_init_cb)(struct device_node *);
5030 	struct device_node *np;
5031 	struct list_head node;
5032 };
5033 
5034 /*
5035  * This function looks for a parent clock. If there is one, then it
5036  * checks that the provider for this parent clock was initialized, in
5037  * this case the parent clock will be ready.
5038  */
5039 static int parent_ready(struct device_node *np)
5040 {
5041 	int i = 0;
5042 
5043 	while (true) {
5044 		struct clk *clk = of_clk_get(np, i);
5045 
5046 		/* this parent is ready we can check the next one */
5047 		if (!IS_ERR(clk)) {
5048 			clk_put(clk);
5049 			i++;
5050 			continue;
5051 		}
5052 
5053 		/* at least one parent is not ready, we exit now */
5054 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5055 			return 0;
5056 
5057 		/*
5058 		 * Here we make assumption that the device tree is
5059 		 * written correctly. So an error means that there is
5060 		 * no more parent. As we didn't exit yet, then the
5061 		 * previous parent are ready. If there is no clock
5062 		 * parent, no need to wait for them, then we can
5063 		 * consider their absence as being ready
5064 		 */
5065 		return 1;
5066 	}
5067 }
5068 
5069 /**
5070  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5071  * @np: Device node pointer associated with clock provider
5072  * @index: clock index
5073  * @flags: pointer to top-level framework flags
5074  *
5075  * Detects if the clock-critical property exists and, if so, sets the
5076  * corresponding CLK_IS_CRITICAL flag.
5077  *
5078  * Do not use this function. It exists only for legacy Device Tree
5079  * bindings, such as the one-clock-per-node style that are outdated.
5080  * Those bindings typically put all clock data into .dts and the Linux
5081  * driver has no clock data, thus making it impossible to set this flag
5082  * correctly from the driver. Only those drivers may call
5083  * of_clk_detect_critical from their setup functions.
5084  *
5085  * Return: error code or zero on success
5086  */
5087 int of_clk_detect_critical(struct device_node *np, int index,
5088 			   unsigned long *flags)
5089 {
5090 	struct property *prop;
5091 	const __be32 *cur;
5092 	uint32_t idx;
5093 
5094 	if (!np || !flags)
5095 		return -EINVAL;
5096 
5097 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5098 		if (index == idx)
5099 			*flags |= CLK_IS_CRITICAL;
5100 
5101 	return 0;
5102 }
5103 
5104 /**
5105  * of_clk_init() - Scan and init clock providers from the DT
5106  * @matches: array of compatible values and init functions for providers.
5107  *
5108  * This function scans the device tree for matching clock providers
5109  * and calls their initialization functions. It also does it by trying
5110  * to follow the dependencies.
5111  */
5112 void __init of_clk_init(const struct of_device_id *matches)
5113 {
5114 	const struct of_device_id *match;
5115 	struct device_node *np;
5116 	struct clock_provider *clk_provider, *next;
5117 	bool is_init_done;
5118 	bool force = false;
5119 	LIST_HEAD(clk_provider_list);
5120 
5121 	if (!matches)
5122 		matches = &__clk_of_table;
5123 
5124 	/* First prepare the list of the clocks providers */
5125 	for_each_matching_node_and_match(np, matches, &match) {
5126 		struct clock_provider *parent;
5127 
5128 		if (!of_device_is_available(np))
5129 			continue;
5130 
5131 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5132 		if (!parent) {
5133 			list_for_each_entry_safe(clk_provider, next,
5134 						 &clk_provider_list, node) {
5135 				list_del(&clk_provider->node);
5136 				of_node_put(clk_provider->np);
5137 				kfree(clk_provider);
5138 			}
5139 			of_node_put(np);
5140 			return;
5141 		}
5142 
5143 		parent->clk_init_cb = match->data;
5144 		parent->np = of_node_get(np);
5145 		list_add_tail(&parent->node, &clk_provider_list);
5146 	}
5147 
5148 	while (!list_empty(&clk_provider_list)) {
5149 		is_init_done = false;
5150 		list_for_each_entry_safe(clk_provider, next,
5151 					&clk_provider_list, node) {
5152 			if (force || parent_ready(clk_provider->np)) {
5153 
5154 				/* Don't populate platform devices */
5155 				of_node_set_flag(clk_provider->np,
5156 						 OF_POPULATED);
5157 
5158 				clk_provider->clk_init_cb(clk_provider->np);
5159 				of_clk_set_defaults(clk_provider->np, true);
5160 
5161 				list_del(&clk_provider->node);
5162 				of_node_put(clk_provider->np);
5163 				kfree(clk_provider);
5164 				is_init_done = true;
5165 			}
5166 		}
5167 
5168 		/*
5169 		 * We didn't manage to initialize any of the
5170 		 * remaining providers during the last loop, so now we
5171 		 * initialize all the remaining ones unconditionally
5172 		 * in case the clock parent was not mandatory
5173 		 */
5174 		if (!is_init_done)
5175 			force = true;
5176 	}
5177 }
5178 #endif
5179