1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 if (ret < 0) { 118 pm_runtime_put_noidle(core->dev); 119 return ret; 120 } 121 return 0; 122 } 123 124 static void clk_pm_runtime_put(struct clk_core *core) 125 { 126 if (!core->rpm_enabled) 127 return; 128 129 pm_runtime_put_sync(core->dev); 130 } 131 132 /*** locking ***/ 133 static void clk_prepare_lock(void) 134 { 135 if (!mutex_trylock(&prepare_lock)) { 136 if (prepare_owner == current) { 137 prepare_refcnt++; 138 return; 139 } 140 mutex_lock(&prepare_lock); 141 } 142 WARN_ON_ONCE(prepare_owner != NULL); 143 WARN_ON_ONCE(prepare_refcnt != 0); 144 prepare_owner = current; 145 prepare_refcnt = 1; 146 } 147 148 static void clk_prepare_unlock(void) 149 { 150 WARN_ON_ONCE(prepare_owner != current); 151 WARN_ON_ONCE(prepare_refcnt == 0); 152 153 if (--prepare_refcnt) 154 return; 155 prepare_owner = NULL; 156 mutex_unlock(&prepare_lock); 157 } 158 159 static unsigned long clk_enable_lock(void) 160 __acquires(enable_lock) 161 { 162 unsigned long flags; 163 164 /* 165 * On UP systems, spin_trylock_irqsave() always returns true, even if 166 * we already hold the lock. So, in that case, we rely only on 167 * reference counting. 168 */ 169 if (!IS_ENABLED(CONFIG_SMP) || 170 !spin_trylock_irqsave(&enable_lock, flags)) { 171 if (enable_owner == current) { 172 enable_refcnt++; 173 __acquire(enable_lock); 174 if (!IS_ENABLED(CONFIG_SMP)) 175 local_save_flags(flags); 176 return flags; 177 } 178 spin_lock_irqsave(&enable_lock, flags); 179 } 180 WARN_ON_ONCE(enable_owner != NULL); 181 WARN_ON_ONCE(enable_refcnt != 0); 182 enable_owner = current; 183 enable_refcnt = 1; 184 return flags; 185 } 186 187 static void clk_enable_unlock(unsigned long flags) 188 __releases(enable_lock) 189 { 190 WARN_ON_ONCE(enable_owner != current); 191 WARN_ON_ONCE(enable_refcnt == 0); 192 193 if (--enable_refcnt) { 194 __release(enable_lock); 195 return; 196 } 197 enable_owner = NULL; 198 spin_unlock_irqrestore(&enable_lock, flags); 199 } 200 201 static bool clk_core_rate_is_protected(struct clk_core *core) 202 { 203 return core->protect_count; 204 } 205 206 static bool clk_core_is_prepared(struct clk_core *core) 207 { 208 bool ret = false; 209 210 /* 211 * .is_prepared is optional for clocks that can prepare 212 * fall back to software usage counter if it is missing 213 */ 214 if (!core->ops->is_prepared) 215 return core->prepare_count; 216 217 if (!clk_pm_runtime_get(core)) { 218 ret = core->ops->is_prepared(core->hw); 219 clk_pm_runtime_put(core); 220 } 221 222 return ret; 223 } 224 225 static bool clk_core_is_enabled(struct clk_core *core) 226 { 227 bool ret = false; 228 229 /* 230 * .is_enabled is only mandatory for clocks that gate 231 * fall back to software usage counter if .is_enabled is missing 232 */ 233 if (!core->ops->is_enabled) 234 return core->enable_count; 235 236 /* 237 * Check if clock controller's device is runtime active before 238 * calling .is_enabled callback. If not, assume that clock is 239 * disabled, because we might be called from atomic context, from 240 * which pm_runtime_get() is not allowed. 241 * This function is called mainly from clk_disable_unused_subtree, 242 * which ensures proper runtime pm activation of controller before 243 * taking enable spinlock, but the below check is needed if one tries 244 * to call it from other places. 245 */ 246 if (core->rpm_enabled) { 247 pm_runtime_get_noresume(core->dev); 248 if (!pm_runtime_active(core->dev)) { 249 ret = false; 250 goto done; 251 } 252 } 253 254 ret = core->ops->is_enabled(core->hw); 255 done: 256 if (core->rpm_enabled) 257 pm_runtime_put(core->dev); 258 259 return ret; 260 } 261 262 /*** helper functions ***/ 263 264 const char *__clk_get_name(const struct clk *clk) 265 { 266 return !clk ? NULL : clk->core->name; 267 } 268 EXPORT_SYMBOL_GPL(__clk_get_name); 269 270 const char *clk_hw_get_name(const struct clk_hw *hw) 271 { 272 return hw->core->name; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_name); 275 276 struct clk_hw *__clk_get_hw(struct clk *clk) 277 { 278 return !clk ? NULL : clk->core->hw; 279 } 280 EXPORT_SYMBOL_GPL(__clk_get_hw); 281 282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 283 { 284 return hw->core->num_parents; 285 } 286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 287 288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 289 { 290 return hw->core->parent ? hw->core->parent->hw : NULL; 291 } 292 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 #ifdef CONFIG_OF 338 static int of_parse_clkspec(const struct device_node *np, int index, 339 const char *name, struct of_phandle_args *out_args); 340 static struct clk_hw * 341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 342 #else 343 static inline int of_parse_clkspec(const struct device_node *np, int index, 344 const char *name, 345 struct of_phandle_args *out_args) 346 { 347 return -ENOENT; 348 } 349 static inline struct clk_hw * 350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 351 { 352 return ERR_PTR(-ENOENT); 353 } 354 #endif 355 356 /** 357 * clk_core_get - Find the clk_core parent of a clk 358 * @core: clk to find parent of 359 * @p_index: parent index to search for 360 * 361 * This is the preferred method for clk providers to find the parent of a 362 * clk when that parent is external to the clk controller. The parent_names 363 * array is indexed and treated as a local name matching a string in the device 364 * node's 'clock-names' property or as the 'con_id' matching the device's 365 * dev_name() in a clk_lookup. This allows clk providers to use their own 366 * namespace instead of looking for a globally unique parent string. 367 * 368 * For example the following DT snippet would allow a clock registered by the 369 * clock-controller@c001 that has a clk_init_data::parent_data array 370 * with 'xtal' in the 'name' member to find the clock provided by the 371 * clock-controller@f00abcd without needing to get the globally unique name of 372 * the xtal clk. 373 * 374 * parent: clock-controller@f00abcd { 375 * reg = <0xf00abcd 0xabcd>; 376 * #clock-cells = <0>; 377 * }; 378 * 379 * clock-controller@c001 { 380 * reg = <0xc001 0xf00d>; 381 * clocks = <&parent>; 382 * clock-names = "xtal"; 383 * #clock-cells = <1>; 384 * }; 385 * 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't 387 * exist in the provider or the name can't be found in the DT node or 388 * in a clkdev lookup. NULL when the provider knows about the clk but it 389 * isn't provided on this system. 390 * A valid clk_core pointer when the clk can be found in the provider. 391 */ 392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 393 { 394 const char *name = core->parents[p_index].fw_name; 395 int index = core->parents[p_index].index; 396 struct clk_hw *hw = ERR_PTR(-ENOENT); 397 struct device *dev = core->dev; 398 const char *dev_id = dev ? dev_name(dev) : NULL; 399 struct device_node *np = core->of_node; 400 struct of_phandle_args clkspec; 401 402 if (np && (name || index >= 0) && 403 !of_parse_clkspec(np, index, name, &clkspec)) { 404 hw = of_clk_get_hw_from_clkspec(&clkspec); 405 of_node_put(clkspec.np); 406 } else if (name) { 407 /* 408 * If the DT search above couldn't find the provider fallback to 409 * looking up via clkdev based clk_lookups. 410 */ 411 hw = clk_find_hw(dev_id, name); 412 } 413 414 if (IS_ERR(hw)) 415 return ERR_CAST(hw); 416 417 return hw->core; 418 } 419 420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 421 { 422 struct clk_parent_map *entry = &core->parents[index]; 423 struct clk_core *parent; 424 425 if (entry->hw) { 426 parent = entry->hw->core; 427 } else { 428 parent = clk_core_get(core, index); 429 if (PTR_ERR(parent) == -ENOENT && entry->name) 430 parent = clk_core_lookup(entry->name); 431 } 432 433 /* 434 * We have a direct reference but it isn't registered yet? 435 * Orphan it and let clk_reparent() update the orphan status 436 * when the parent is registered. 437 */ 438 if (!parent) 439 parent = ERR_PTR(-EPROBE_DEFER); 440 441 /* Only cache it if it's not an error */ 442 if (!IS_ERR(parent)) 443 entry->core = parent; 444 } 445 446 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 447 u8 index) 448 { 449 if (!core || index >= core->num_parents || !core->parents) 450 return NULL; 451 452 if (!core->parents[index].core) 453 clk_core_fill_parent_index(core, index); 454 455 return core->parents[index].core; 456 } 457 458 struct clk_hw * 459 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 460 { 461 struct clk_core *parent; 462 463 parent = clk_core_get_parent_by_index(hw->core, index); 464 465 return !parent ? NULL : parent->hw; 466 } 467 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 468 469 unsigned int __clk_get_enable_count(struct clk *clk) 470 { 471 return !clk ? 0 : clk->core->enable_count; 472 } 473 474 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 475 { 476 if (!core) 477 return 0; 478 479 if (!core->num_parents || core->parent) 480 return core->rate; 481 482 /* 483 * Clk must have a parent because num_parents > 0 but the parent isn't 484 * known yet. Best to return 0 as the rate of this clk until we can 485 * properly recalc the rate based on the parent's rate. 486 */ 487 return 0; 488 } 489 490 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 491 { 492 return clk_core_get_rate_nolock(hw->core); 493 } 494 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 495 496 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 497 { 498 if (!core) 499 return 0; 500 501 return core->accuracy; 502 } 503 504 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 505 { 506 return hw->core->flags; 507 } 508 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 509 510 bool clk_hw_is_prepared(const struct clk_hw *hw) 511 { 512 return clk_core_is_prepared(hw->core); 513 } 514 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 515 516 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 517 { 518 return clk_core_rate_is_protected(hw->core); 519 } 520 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 521 522 bool clk_hw_is_enabled(const struct clk_hw *hw) 523 { 524 return clk_core_is_enabled(hw->core); 525 } 526 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 527 528 bool __clk_is_enabled(struct clk *clk) 529 { 530 if (!clk) 531 return false; 532 533 return clk_core_is_enabled(clk->core); 534 } 535 EXPORT_SYMBOL_GPL(__clk_is_enabled); 536 537 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 538 unsigned long best, unsigned long flags) 539 { 540 if (flags & CLK_MUX_ROUND_CLOSEST) 541 return abs(now - rate) < abs(best - rate); 542 543 return now <= rate && now > best; 544 } 545 546 int clk_mux_determine_rate_flags(struct clk_hw *hw, 547 struct clk_rate_request *req, 548 unsigned long flags) 549 { 550 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 551 int i, num_parents, ret; 552 unsigned long best = 0; 553 struct clk_rate_request parent_req = *req; 554 555 /* if NO_REPARENT flag set, pass through to current parent */ 556 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 557 parent = core->parent; 558 if (core->flags & CLK_SET_RATE_PARENT) { 559 ret = __clk_determine_rate(parent ? parent->hw : NULL, 560 &parent_req); 561 if (ret) 562 return ret; 563 564 best = parent_req.rate; 565 } else if (parent) { 566 best = clk_core_get_rate_nolock(parent); 567 } else { 568 best = clk_core_get_rate_nolock(core); 569 } 570 571 goto out; 572 } 573 574 /* find the parent that can provide the fastest rate <= rate */ 575 num_parents = core->num_parents; 576 for (i = 0; i < num_parents; i++) { 577 parent = clk_core_get_parent_by_index(core, i); 578 if (!parent) 579 continue; 580 581 if (core->flags & CLK_SET_RATE_PARENT) { 582 parent_req = *req; 583 ret = __clk_determine_rate(parent->hw, &parent_req); 584 if (ret) 585 continue; 586 } else { 587 parent_req.rate = clk_core_get_rate_nolock(parent); 588 } 589 590 if (mux_is_better_rate(req->rate, parent_req.rate, 591 best, flags)) { 592 best_parent = parent; 593 best = parent_req.rate; 594 } 595 } 596 597 if (!best_parent) 598 return -EINVAL; 599 600 out: 601 if (best_parent) 602 req->best_parent_hw = best_parent->hw; 603 req->best_parent_rate = best; 604 req->rate = best; 605 606 return 0; 607 } 608 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 609 610 struct clk *__clk_lookup(const char *name) 611 { 612 struct clk_core *core = clk_core_lookup(name); 613 614 return !core ? NULL : core->hw->clk; 615 } 616 617 static void clk_core_get_boundaries(struct clk_core *core, 618 unsigned long *min_rate, 619 unsigned long *max_rate) 620 { 621 struct clk *clk_user; 622 623 lockdep_assert_held(&prepare_lock); 624 625 *min_rate = core->min_rate; 626 *max_rate = core->max_rate; 627 628 hlist_for_each_entry(clk_user, &core->clks, clks_node) 629 *min_rate = max(*min_rate, clk_user->min_rate); 630 631 hlist_for_each_entry(clk_user, &core->clks, clks_node) 632 *max_rate = min(*max_rate, clk_user->max_rate); 633 } 634 635 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 636 unsigned long max_rate) 637 { 638 hw->core->min_rate = min_rate; 639 hw->core->max_rate = max_rate; 640 } 641 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 642 643 /* 644 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 645 * @hw: mux type clk to determine rate on 646 * @req: rate request, also used to return preferred parent and frequencies 647 * 648 * Helper for finding best parent to provide a given frequency. This can be used 649 * directly as a determine_rate callback (e.g. for a mux), or from a more 650 * complex clock that may combine a mux with other operations. 651 * 652 * Returns: 0 on success, -EERROR value on error 653 */ 654 int __clk_mux_determine_rate(struct clk_hw *hw, 655 struct clk_rate_request *req) 656 { 657 return clk_mux_determine_rate_flags(hw, req, 0); 658 } 659 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 660 661 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 662 struct clk_rate_request *req) 663 { 664 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 665 } 666 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 667 668 /*** clk api ***/ 669 670 static void clk_core_rate_unprotect(struct clk_core *core) 671 { 672 lockdep_assert_held(&prepare_lock); 673 674 if (!core) 675 return; 676 677 if (WARN(core->protect_count == 0, 678 "%s already unprotected\n", core->name)) 679 return; 680 681 if (--core->protect_count > 0) 682 return; 683 684 clk_core_rate_unprotect(core->parent); 685 } 686 687 static int clk_core_rate_nuke_protect(struct clk_core *core) 688 { 689 int ret; 690 691 lockdep_assert_held(&prepare_lock); 692 693 if (!core) 694 return -EINVAL; 695 696 if (core->protect_count == 0) 697 return 0; 698 699 ret = core->protect_count; 700 core->protect_count = 1; 701 clk_core_rate_unprotect(core); 702 703 return ret; 704 } 705 706 /** 707 * clk_rate_exclusive_put - release exclusivity over clock rate control 708 * @clk: the clk over which the exclusivity is released 709 * 710 * clk_rate_exclusive_put() completes a critical section during which a clock 711 * consumer cannot tolerate any other consumer making any operation on the 712 * clock which could result in a rate change or rate glitch. Exclusive clocks 713 * cannot have their rate changed, either directly or indirectly due to changes 714 * further up the parent chain of clocks. As a result, clocks up parent chain 715 * also get under exclusive control of the calling consumer. 716 * 717 * If exlusivity is claimed more than once on clock, even by the same consumer, 718 * the rate effectively gets locked as exclusivity can't be preempted. 719 * 720 * Calls to clk_rate_exclusive_put() must be balanced with calls to 721 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 722 * error status. 723 */ 724 void clk_rate_exclusive_put(struct clk *clk) 725 { 726 if (!clk) 727 return; 728 729 clk_prepare_lock(); 730 731 /* 732 * if there is something wrong with this consumer protect count, stop 733 * here before messing with the provider 734 */ 735 if (WARN_ON(clk->exclusive_count <= 0)) 736 goto out; 737 738 clk_core_rate_unprotect(clk->core); 739 clk->exclusive_count--; 740 out: 741 clk_prepare_unlock(); 742 } 743 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 744 745 static void clk_core_rate_protect(struct clk_core *core) 746 { 747 lockdep_assert_held(&prepare_lock); 748 749 if (!core) 750 return; 751 752 if (core->protect_count == 0) 753 clk_core_rate_protect(core->parent); 754 755 core->protect_count++; 756 } 757 758 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 759 { 760 lockdep_assert_held(&prepare_lock); 761 762 if (!core) 763 return; 764 765 if (count == 0) 766 return; 767 768 clk_core_rate_protect(core); 769 core->protect_count = count; 770 } 771 772 /** 773 * clk_rate_exclusive_get - get exclusivity over the clk rate control 774 * @clk: the clk over which the exclusity of rate control is requested 775 * 776 * clk_rate_exclusive_get() begins a critical section during which a clock 777 * consumer cannot tolerate any other consumer making any operation on the 778 * clock which could result in a rate change or rate glitch. Exclusive clocks 779 * cannot have their rate changed, either directly or indirectly due to changes 780 * further up the parent chain of clocks. As a result, clocks up parent chain 781 * also get under exclusive control of the calling consumer. 782 * 783 * If exlusivity is claimed more than once on clock, even by the same consumer, 784 * the rate effectively gets locked as exclusivity can't be preempted. 785 * 786 * Calls to clk_rate_exclusive_get() should be balanced with calls to 787 * clk_rate_exclusive_put(). Calls to this function may sleep. 788 * Returns 0 on success, -EERROR otherwise 789 */ 790 int clk_rate_exclusive_get(struct clk *clk) 791 { 792 if (!clk) 793 return 0; 794 795 clk_prepare_lock(); 796 clk_core_rate_protect(clk->core); 797 clk->exclusive_count++; 798 clk_prepare_unlock(); 799 800 return 0; 801 } 802 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 803 804 static void clk_core_unprepare(struct clk_core *core) 805 { 806 lockdep_assert_held(&prepare_lock); 807 808 if (!core) 809 return; 810 811 if (WARN(core->prepare_count == 0, 812 "%s already unprepared\n", core->name)) 813 return; 814 815 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 816 "Unpreparing critical %s\n", core->name)) 817 return; 818 819 if (core->flags & CLK_SET_RATE_GATE) 820 clk_core_rate_unprotect(core); 821 822 if (--core->prepare_count > 0) 823 return; 824 825 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 826 827 trace_clk_unprepare(core); 828 829 if (core->ops->unprepare) 830 core->ops->unprepare(core->hw); 831 832 clk_pm_runtime_put(core); 833 834 trace_clk_unprepare_complete(core); 835 clk_core_unprepare(core->parent); 836 } 837 838 static void clk_core_unprepare_lock(struct clk_core *core) 839 { 840 clk_prepare_lock(); 841 clk_core_unprepare(core); 842 clk_prepare_unlock(); 843 } 844 845 /** 846 * clk_unprepare - undo preparation of a clock source 847 * @clk: the clk being unprepared 848 * 849 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 850 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 851 * if the operation may sleep. One example is a clk which is accessed over 852 * I2c. In the complex case a clk gate operation may require a fast and a slow 853 * part. It is this reason that clk_unprepare and clk_disable are not mutually 854 * exclusive. In fact clk_disable must be called before clk_unprepare. 855 */ 856 void clk_unprepare(struct clk *clk) 857 { 858 if (IS_ERR_OR_NULL(clk)) 859 return; 860 861 clk_core_unprepare_lock(clk->core); 862 } 863 EXPORT_SYMBOL_GPL(clk_unprepare); 864 865 static int clk_core_prepare(struct clk_core *core) 866 { 867 int ret = 0; 868 869 lockdep_assert_held(&prepare_lock); 870 871 if (!core) 872 return 0; 873 874 if (core->prepare_count == 0) { 875 ret = clk_pm_runtime_get(core); 876 if (ret) 877 return ret; 878 879 ret = clk_core_prepare(core->parent); 880 if (ret) 881 goto runtime_put; 882 883 trace_clk_prepare(core); 884 885 if (core->ops->prepare) 886 ret = core->ops->prepare(core->hw); 887 888 trace_clk_prepare_complete(core); 889 890 if (ret) 891 goto unprepare; 892 } 893 894 core->prepare_count++; 895 896 /* 897 * CLK_SET_RATE_GATE is a special case of clock protection 898 * Instead of a consumer claiming exclusive rate control, it is 899 * actually the provider which prevents any consumer from making any 900 * operation which could result in a rate change or rate glitch while 901 * the clock is prepared. 902 */ 903 if (core->flags & CLK_SET_RATE_GATE) 904 clk_core_rate_protect(core); 905 906 return 0; 907 unprepare: 908 clk_core_unprepare(core->parent); 909 runtime_put: 910 clk_pm_runtime_put(core); 911 return ret; 912 } 913 914 static int clk_core_prepare_lock(struct clk_core *core) 915 { 916 int ret; 917 918 clk_prepare_lock(); 919 ret = clk_core_prepare(core); 920 clk_prepare_unlock(); 921 922 return ret; 923 } 924 925 /** 926 * clk_prepare - prepare a clock source 927 * @clk: the clk being prepared 928 * 929 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 930 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 931 * operation may sleep. One example is a clk which is accessed over I2c. In 932 * the complex case a clk ungate operation may require a fast and a slow part. 933 * It is this reason that clk_prepare and clk_enable are not mutually 934 * exclusive. In fact clk_prepare must be called before clk_enable. 935 * Returns 0 on success, -EERROR otherwise. 936 */ 937 int clk_prepare(struct clk *clk) 938 { 939 if (!clk) 940 return 0; 941 942 return clk_core_prepare_lock(clk->core); 943 } 944 EXPORT_SYMBOL_GPL(clk_prepare); 945 946 static void clk_core_disable(struct clk_core *core) 947 { 948 lockdep_assert_held(&enable_lock); 949 950 if (!core) 951 return; 952 953 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 954 return; 955 956 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 957 "Disabling critical %s\n", core->name)) 958 return; 959 960 if (--core->enable_count > 0) 961 return; 962 963 trace_clk_disable_rcuidle(core); 964 965 if (core->ops->disable) 966 core->ops->disable(core->hw); 967 968 trace_clk_disable_complete_rcuidle(core); 969 970 clk_core_disable(core->parent); 971 } 972 973 static void clk_core_disable_lock(struct clk_core *core) 974 { 975 unsigned long flags; 976 977 flags = clk_enable_lock(); 978 clk_core_disable(core); 979 clk_enable_unlock(flags); 980 } 981 982 /** 983 * clk_disable - gate a clock 984 * @clk: the clk being gated 985 * 986 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 987 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 988 * clk if the operation is fast and will never sleep. One example is a 989 * SoC-internal clk which is controlled via simple register writes. In the 990 * complex case a clk gate operation may require a fast and a slow part. It is 991 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 992 * In fact clk_disable must be called before clk_unprepare. 993 */ 994 void clk_disable(struct clk *clk) 995 { 996 if (IS_ERR_OR_NULL(clk)) 997 return; 998 999 clk_core_disable_lock(clk->core); 1000 } 1001 EXPORT_SYMBOL_GPL(clk_disable); 1002 1003 static int clk_core_enable(struct clk_core *core) 1004 { 1005 int ret = 0; 1006 1007 lockdep_assert_held(&enable_lock); 1008 1009 if (!core) 1010 return 0; 1011 1012 if (WARN(core->prepare_count == 0, 1013 "Enabling unprepared %s\n", core->name)) 1014 return -ESHUTDOWN; 1015 1016 if (core->enable_count == 0) { 1017 ret = clk_core_enable(core->parent); 1018 1019 if (ret) 1020 return ret; 1021 1022 trace_clk_enable_rcuidle(core); 1023 1024 if (core->ops->enable) 1025 ret = core->ops->enable(core->hw); 1026 1027 trace_clk_enable_complete_rcuidle(core); 1028 1029 if (ret) { 1030 clk_core_disable(core->parent); 1031 return ret; 1032 } 1033 } 1034 1035 core->enable_count++; 1036 return 0; 1037 } 1038 1039 static int clk_core_enable_lock(struct clk_core *core) 1040 { 1041 unsigned long flags; 1042 int ret; 1043 1044 flags = clk_enable_lock(); 1045 ret = clk_core_enable(core); 1046 clk_enable_unlock(flags); 1047 1048 return ret; 1049 } 1050 1051 /** 1052 * clk_gate_restore_context - restore context for poweroff 1053 * @hw: the clk_hw pointer of clock whose state is to be restored 1054 * 1055 * The clock gate restore context function enables or disables 1056 * the gate clocks based on the enable_count. This is done in cases 1057 * where the clock context is lost and based on the enable_count 1058 * the clock either needs to be enabled/disabled. This 1059 * helps restore the state of gate clocks. 1060 */ 1061 void clk_gate_restore_context(struct clk_hw *hw) 1062 { 1063 struct clk_core *core = hw->core; 1064 1065 if (core->enable_count) 1066 core->ops->enable(hw); 1067 else 1068 core->ops->disable(hw); 1069 } 1070 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1071 1072 static int clk_core_save_context(struct clk_core *core) 1073 { 1074 struct clk_core *child; 1075 int ret = 0; 1076 1077 hlist_for_each_entry(child, &core->children, child_node) { 1078 ret = clk_core_save_context(child); 1079 if (ret < 0) 1080 return ret; 1081 } 1082 1083 if (core->ops && core->ops->save_context) 1084 ret = core->ops->save_context(core->hw); 1085 1086 return ret; 1087 } 1088 1089 static void clk_core_restore_context(struct clk_core *core) 1090 { 1091 struct clk_core *child; 1092 1093 if (core->ops && core->ops->restore_context) 1094 core->ops->restore_context(core->hw); 1095 1096 hlist_for_each_entry(child, &core->children, child_node) 1097 clk_core_restore_context(child); 1098 } 1099 1100 /** 1101 * clk_save_context - save clock context for poweroff 1102 * 1103 * Saves the context of the clock register for powerstates in which the 1104 * contents of the registers will be lost. Occurs deep within the suspend 1105 * code. Returns 0 on success. 1106 */ 1107 int clk_save_context(void) 1108 { 1109 struct clk_core *clk; 1110 int ret; 1111 1112 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1113 ret = clk_core_save_context(clk); 1114 if (ret < 0) 1115 return ret; 1116 } 1117 1118 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1119 ret = clk_core_save_context(clk); 1120 if (ret < 0) 1121 return ret; 1122 } 1123 1124 return 0; 1125 } 1126 EXPORT_SYMBOL_GPL(clk_save_context); 1127 1128 /** 1129 * clk_restore_context - restore clock context after poweroff 1130 * 1131 * Restore the saved clock context upon resume. 1132 * 1133 */ 1134 void clk_restore_context(void) 1135 { 1136 struct clk_core *core; 1137 1138 hlist_for_each_entry(core, &clk_root_list, child_node) 1139 clk_core_restore_context(core); 1140 1141 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1142 clk_core_restore_context(core); 1143 } 1144 EXPORT_SYMBOL_GPL(clk_restore_context); 1145 1146 /** 1147 * clk_enable - ungate a clock 1148 * @clk: the clk being ungated 1149 * 1150 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1151 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1152 * if the operation will never sleep. One example is a SoC-internal clk which 1153 * is controlled via simple register writes. In the complex case a clk ungate 1154 * operation may require a fast and a slow part. It is this reason that 1155 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1156 * must be called before clk_enable. Returns 0 on success, -EERROR 1157 * otherwise. 1158 */ 1159 int clk_enable(struct clk *clk) 1160 { 1161 if (!clk) 1162 return 0; 1163 1164 return clk_core_enable_lock(clk->core); 1165 } 1166 EXPORT_SYMBOL_GPL(clk_enable); 1167 1168 /** 1169 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1170 * @clk: clock source 1171 * 1172 * Returns true if clk_prepare() implicitly enables the clock, effectively 1173 * making clk_enable()/clk_disable() no-ops, false otherwise. 1174 * 1175 * This is of interest mainly to power management code where actually 1176 * disabling the clock also requires unpreparing it to have any material 1177 * effect. 1178 * 1179 * Regardless of the value returned here, the caller must always invoke 1180 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1181 * to be right. 1182 */ 1183 bool clk_is_enabled_when_prepared(struct clk *clk) 1184 { 1185 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1186 } 1187 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1188 1189 static int clk_core_prepare_enable(struct clk_core *core) 1190 { 1191 int ret; 1192 1193 ret = clk_core_prepare_lock(core); 1194 if (ret) 1195 return ret; 1196 1197 ret = clk_core_enable_lock(core); 1198 if (ret) 1199 clk_core_unprepare_lock(core); 1200 1201 return ret; 1202 } 1203 1204 static void clk_core_disable_unprepare(struct clk_core *core) 1205 { 1206 clk_core_disable_lock(core); 1207 clk_core_unprepare_lock(core); 1208 } 1209 1210 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1211 { 1212 struct clk_core *child; 1213 1214 lockdep_assert_held(&prepare_lock); 1215 1216 hlist_for_each_entry(child, &core->children, child_node) 1217 clk_unprepare_unused_subtree(child); 1218 1219 if (core->prepare_count) 1220 return; 1221 1222 if (core->flags & CLK_IGNORE_UNUSED) 1223 return; 1224 1225 if (clk_pm_runtime_get(core)) 1226 return; 1227 1228 if (clk_core_is_prepared(core)) { 1229 trace_clk_unprepare(core); 1230 if (core->ops->unprepare_unused) 1231 core->ops->unprepare_unused(core->hw); 1232 else if (core->ops->unprepare) 1233 core->ops->unprepare(core->hw); 1234 trace_clk_unprepare_complete(core); 1235 } 1236 1237 clk_pm_runtime_put(core); 1238 } 1239 1240 static void __init clk_disable_unused_subtree(struct clk_core *core) 1241 { 1242 struct clk_core *child; 1243 unsigned long flags; 1244 1245 lockdep_assert_held(&prepare_lock); 1246 1247 hlist_for_each_entry(child, &core->children, child_node) 1248 clk_disable_unused_subtree(child); 1249 1250 if (core->flags & CLK_OPS_PARENT_ENABLE) 1251 clk_core_prepare_enable(core->parent); 1252 1253 if (clk_pm_runtime_get(core)) 1254 goto unprepare_out; 1255 1256 flags = clk_enable_lock(); 1257 1258 if (core->enable_count) 1259 goto unlock_out; 1260 1261 if (core->flags & CLK_IGNORE_UNUSED) 1262 goto unlock_out; 1263 1264 /* 1265 * some gate clocks have special needs during the disable-unused 1266 * sequence. call .disable_unused if available, otherwise fall 1267 * back to .disable 1268 */ 1269 if (clk_core_is_enabled(core)) { 1270 trace_clk_disable(core); 1271 if (core->ops->disable_unused) 1272 core->ops->disable_unused(core->hw); 1273 else if (core->ops->disable) 1274 core->ops->disable(core->hw); 1275 trace_clk_disable_complete(core); 1276 } 1277 1278 unlock_out: 1279 clk_enable_unlock(flags); 1280 clk_pm_runtime_put(core); 1281 unprepare_out: 1282 if (core->flags & CLK_OPS_PARENT_ENABLE) 1283 clk_core_disable_unprepare(core->parent); 1284 } 1285 1286 static bool clk_ignore_unused __initdata; 1287 static int __init clk_ignore_unused_setup(char *__unused) 1288 { 1289 clk_ignore_unused = true; 1290 return 1; 1291 } 1292 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1293 1294 static int __init clk_disable_unused(void) 1295 { 1296 struct clk_core *core; 1297 1298 if (clk_ignore_unused) { 1299 pr_warn("clk: Not disabling unused clocks\n"); 1300 return 0; 1301 } 1302 1303 clk_prepare_lock(); 1304 1305 hlist_for_each_entry(core, &clk_root_list, child_node) 1306 clk_disable_unused_subtree(core); 1307 1308 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1309 clk_disable_unused_subtree(core); 1310 1311 hlist_for_each_entry(core, &clk_root_list, child_node) 1312 clk_unprepare_unused_subtree(core); 1313 1314 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1315 clk_unprepare_unused_subtree(core); 1316 1317 clk_prepare_unlock(); 1318 1319 return 0; 1320 } 1321 late_initcall_sync(clk_disable_unused); 1322 1323 static int clk_core_determine_round_nolock(struct clk_core *core, 1324 struct clk_rate_request *req) 1325 { 1326 long rate; 1327 1328 lockdep_assert_held(&prepare_lock); 1329 1330 if (!core) 1331 return 0; 1332 1333 /* 1334 * At this point, core protection will be disabled 1335 * - if the provider is not protected at all 1336 * - if the calling consumer is the only one which has exclusivity 1337 * over the provider 1338 */ 1339 if (clk_core_rate_is_protected(core)) { 1340 req->rate = core->rate; 1341 } else if (core->ops->determine_rate) { 1342 return core->ops->determine_rate(core->hw, req); 1343 } else if (core->ops->round_rate) { 1344 rate = core->ops->round_rate(core->hw, req->rate, 1345 &req->best_parent_rate); 1346 if (rate < 0) 1347 return rate; 1348 1349 req->rate = rate; 1350 } else { 1351 return -EINVAL; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static void clk_core_init_rate_req(struct clk_core * const core, 1358 struct clk_rate_request *req) 1359 { 1360 struct clk_core *parent; 1361 1362 if (WARN_ON(!core || !req)) 1363 return; 1364 1365 parent = core->parent; 1366 if (parent) { 1367 req->best_parent_hw = parent->hw; 1368 req->best_parent_rate = parent->rate; 1369 } else { 1370 req->best_parent_hw = NULL; 1371 req->best_parent_rate = 0; 1372 } 1373 } 1374 1375 static bool clk_core_can_round(struct clk_core * const core) 1376 { 1377 return core->ops->determine_rate || core->ops->round_rate; 1378 } 1379 1380 static int clk_core_round_rate_nolock(struct clk_core *core, 1381 struct clk_rate_request *req) 1382 { 1383 lockdep_assert_held(&prepare_lock); 1384 1385 if (!core) { 1386 req->rate = 0; 1387 return 0; 1388 } 1389 1390 clk_core_init_rate_req(core, req); 1391 1392 if (clk_core_can_round(core)) 1393 return clk_core_determine_round_nolock(core, req); 1394 else if (core->flags & CLK_SET_RATE_PARENT) 1395 return clk_core_round_rate_nolock(core->parent, req); 1396 1397 req->rate = core->rate; 1398 return 0; 1399 } 1400 1401 /** 1402 * __clk_determine_rate - get the closest rate actually supported by a clock 1403 * @hw: determine the rate of this clock 1404 * @req: target rate request 1405 * 1406 * Useful for clk_ops such as .set_rate and .determine_rate. 1407 */ 1408 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1409 { 1410 if (!hw) { 1411 req->rate = 0; 1412 return 0; 1413 } 1414 1415 return clk_core_round_rate_nolock(hw->core, req); 1416 } 1417 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1418 1419 /** 1420 * clk_hw_round_rate() - round the given rate for a hw clk 1421 * @hw: the hw clk for which we are rounding a rate 1422 * @rate: the rate which is to be rounded 1423 * 1424 * Takes in a rate as input and rounds it to a rate that the clk can actually 1425 * use. 1426 * 1427 * Context: prepare_lock must be held. 1428 * For clk providers to call from within clk_ops such as .round_rate, 1429 * .determine_rate. 1430 * 1431 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1432 * else returns the parent rate. 1433 */ 1434 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1435 { 1436 int ret; 1437 struct clk_rate_request req; 1438 1439 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1440 req.rate = rate; 1441 1442 ret = clk_core_round_rate_nolock(hw->core, &req); 1443 if (ret) 1444 return 0; 1445 1446 return req.rate; 1447 } 1448 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1449 1450 /** 1451 * clk_round_rate - round the given rate for a clk 1452 * @clk: the clk for which we are rounding a rate 1453 * @rate: the rate which is to be rounded 1454 * 1455 * Takes in a rate as input and rounds it to a rate that the clk can actually 1456 * use which is then returned. If clk doesn't support round_rate operation 1457 * then the parent rate is returned. 1458 */ 1459 long clk_round_rate(struct clk *clk, unsigned long rate) 1460 { 1461 struct clk_rate_request req; 1462 int ret; 1463 1464 if (!clk) 1465 return 0; 1466 1467 clk_prepare_lock(); 1468 1469 if (clk->exclusive_count) 1470 clk_core_rate_unprotect(clk->core); 1471 1472 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1473 req.rate = rate; 1474 1475 ret = clk_core_round_rate_nolock(clk->core, &req); 1476 1477 if (clk->exclusive_count) 1478 clk_core_rate_protect(clk->core); 1479 1480 clk_prepare_unlock(); 1481 1482 if (ret) 1483 return ret; 1484 1485 return req.rate; 1486 } 1487 EXPORT_SYMBOL_GPL(clk_round_rate); 1488 1489 /** 1490 * __clk_notify - call clk notifier chain 1491 * @core: clk that is changing rate 1492 * @msg: clk notifier type (see include/linux/clk.h) 1493 * @old_rate: old clk rate 1494 * @new_rate: new clk rate 1495 * 1496 * Triggers a notifier call chain on the clk rate-change notification 1497 * for 'clk'. Passes a pointer to the struct clk and the previous 1498 * and current rates to the notifier callback. Intended to be called by 1499 * internal clock code only. Returns NOTIFY_DONE from the last driver 1500 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1501 * a driver returns that. 1502 */ 1503 static int __clk_notify(struct clk_core *core, unsigned long msg, 1504 unsigned long old_rate, unsigned long new_rate) 1505 { 1506 struct clk_notifier *cn; 1507 struct clk_notifier_data cnd; 1508 int ret = NOTIFY_DONE; 1509 1510 cnd.old_rate = old_rate; 1511 cnd.new_rate = new_rate; 1512 1513 list_for_each_entry(cn, &clk_notifier_list, node) { 1514 if (cn->clk->core == core) { 1515 cnd.clk = cn->clk; 1516 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1517 &cnd); 1518 if (ret & NOTIFY_STOP_MASK) 1519 return ret; 1520 } 1521 } 1522 1523 return ret; 1524 } 1525 1526 /** 1527 * __clk_recalc_accuracies 1528 * @core: first clk in the subtree 1529 * 1530 * Walks the subtree of clks starting with clk and recalculates accuracies as 1531 * it goes. Note that if a clk does not implement the .recalc_accuracy 1532 * callback then it is assumed that the clock will take on the accuracy of its 1533 * parent. 1534 */ 1535 static void __clk_recalc_accuracies(struct clk_core *core) 1536 { 1537 unsigned long parent_accuracy = 0; 1538 struct clk_core *child; 1539 1540 lockdep_assert_held(&prepare_lock); 1541 1542 if (core->parent) 1543 parent_accuracy = core->parent->accuracy; 1544 1545 if (core->ops->recalc_accuracy) 1546 core->accuracy = core->ops->recalc_accuracy(core->hw, 1547 parent_accuracy); 1548 else 1549 core->accuracy = parent_accuracy; 1550 1551 hlist_for_each_entry(child, &core->children, child_node) 1552 __clk_recalc_accuracies(child); 1553 } 1554 1555 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1556 { 1557 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1558 __clk_recalc_accuracies(core); 1559 1560 return clk_core_get_accuracy_no_lock(core); 1561 } 1562 1563 /** 1564 * clk_get_accuracy - return the accuracy of clk 1565 * @clk: the clk whose accuracy is being returned 1566 * 1567 * Simply returns the cached accuracy of the clk, unless 1568 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1569 * issued. 1570 * If clk is NULL then returns 0. 1571 */ 1572 long clk_get_accuracy(struct clk *clk) 1573 { 1574 long accuracy; 1575 1576 if (!clk) 1577 return 0; 1578 1579 clk_prepare_lock(); 1580 accuracy = clk_core_get_accuracy_recalc(clk->core); 1581 clk_prepare_unlock(); 1582 1583 return accuracy; 1584 } 1585 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1586 1587 static unsigned long clk_recalc(struct clk_core *core, 1588 unsigned long parent_rate) 1589 { 1590 unsigned long rate = parent_rate; 1591 1592 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1593 rate = core->ops->recalc_rate(core->hw, parent_rate); 1594 clk_pm_runtime_put(core); 1595 } 1596 return rate; 1597 } 1598 1599 /** 1600 * __clk_recalc_rates 1601 * @core: first clk in the subtree 1602 * @msg: notification type (see include/linux/clk.h) 1603 * 1604 * Walks the subtree of clks starting with clk and recalculates rates as it 1605 * goes. Note that if a clk does not implement the .recalc_rate callback then 1606 * it is assumed that the clock will take on the rate of its parent. 1607 * 1608 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1609 * if necessary. 1610 */ 1611 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1612 { 1613 unsigned long old_rate; 1614 unsigned long parent_rate = 0; 1615 struct clk_core *child; 1616 1617 lockdep_assert_held(&prepare_lock); 1618 1619 old_rate = core->rate; 1620 1621 if (core->parent) 1622 parent_rate = core->parent->rate; 1623 1624 core->rate = clk_recalc(core, parent_rate); 1625 1626 /* 1627 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1628 * & ABORT_RATE_CHANGE notifiers 1629 */ 1630 if (core->notifier_count && msg) 1631 __clk_notify(core, msg, old_rate, core->rate); 1632 1633 hlist_for_each_entry(child, &core->children, child_node) 1634 __clk_recalc_rates(child, msg); 1635 } 1636 1637 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1638 { 1639 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1640 __clk_recalc_rates(core, 0); 1641 1642 return clk_core_get_rate_nolock(core); 1643 } 1644 1645 /** 1646 * clk_get_rate - return the rate of clk 1647 * @clk: the clk whose rate is being returned 1648 * 1649 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1650 * is set, which means a recalc_rate will be issued. 1651 * If clk is NULL then returns 0. 1652 */ 1653 unsigned long clk_get_rate(struct clk *clk) 1654 { 1655 unsigned long rate; 1656 1657 if (!clk) 1658 return 0; 1659 1660 clk_prepare_lock(); 1661 rate = clk_core_get_rate_recalc(clk->core); 1662 clk_prepare_unlock(); 1663 1664 return rate; 1665 } 1666 EXPORT_SYMBOL_GPL(clk_get_rate); 1667 1668 static int clk_fetch_parent_index(struct clk_core *core, 1669 struct clk_core *parent) 1670 { 1671 int i; 1672 1673 if (!parent) 1674 return -EINVAL; 1675 1676 for (i = 0; i < core->num_parents; i++) { 1677 /* Found it first try! */ 1678 if (core->parents[i].core == parent) 1679 return i; 1680 1681 /* Something else is here, so keep looking */ 1682 if (core->parents[i].core) 1683 continue; 1684 1685 /* Maybe core hasn't been cached but the hw is all we know? */ 1686 if (core->parents[i].hw) { 1687 if (core->parents[i].hw == parent->hw) 1688 break; 1689 1690 /* Didn't match, but we're expecting a clk_hw */ 1691 continue; 1692 } 1693 1694 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1695 if (parent == clk_core_get(core, i)) 1696 break; 1697 1698 /* Fallback to comparing globally unique names */ 1699 if (core->parents[i].name && 1700 !strcmp(parent->name, core->parents[i].name)) 1701 break; 1702 } 1703 1704 if (i == core->num_parents) 1705 return -EINVAL; 1706 1707 core->parents[i].core = parent; 1708 return i; 1709 } 1710 1711 /** 1712 * clk_hw_get_parent_index - return the index of the parent clock 1713 * @hw: clk_hw associated with the clk being consumed 1714 * 1715 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1716 * clock does not have a current parent. 1717 */ 1718 int clk_hw_get_parent_index(struct clk_hw *hw) 1719 { 1720 struct clk_hw *parent = clk_hw_get_parent(hw); 1721 1722 if (WARN_ON(parent == NULL)) 1723 return -EINVAL; 1724 1725 return clk_fetch_parent_index(hw->core, parent->core); 1726 } 1727 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1728 1729 /* 1730 * Update the orphan status of @core and all its children. 1731 */ 1732 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1733 { 1734 struct clk_core *child; 1735 1736 core->orphan = is_orphan; 1737 1738 hlist_for_each_entry(child, &core->children, child_node) 1739 clk_core_update_orphan_status(child, is_orphan); 1740 } 1741 1742 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1743 { 1744 bool was_orphan = core->orphan; 1745 1746 hlist_del(&core->child_node); 1747 1748 if (new_parent) { 1749 bool becomes_orphan = new_parent->orphan; 1750 1751 /* avoid duplicate POST_RATE_CHANGE notifications */ 1752 if (new_parent->new_child == core) 1753 new_parent->new_child = NULL; 1754 1755 hlist_add_head(&core->child_node, &new_parent->children); 1756 1757 if (was_orphan != becomes_orphan) 1758 clk_core_update_orphan_status(core, becomes_orphan); 1759 } else { 1760 hlist_add_head(&core->child_node, &clk_orphan_list); 1761 if (!was_orphan) 1762 clk_core_update_orphan_status(core, true); 1763 } 1764 1765 core->parent = new_parent; 1766 } 1767 1768 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1769 struct clk_core *parent) 1770 { 1771 unsigned long flags; 1772 struct clk_core *old_parent = core->parent; 1773 1774 /* 1775 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1776 * 1777 * 2. Migrate prepare state between parents and prevent race with 1778 * clk_enable(). 1779 * 1780 * If the clock is not prepared, then a race with 1781 * clk_enable/disable() is impossible since we already have the 1782 * prepare lock (future calls to clk_enable() need to be preceded by 1783 * a clk_prepare()). 1784 * 1785 * If the clock is prepared, migrate the prepared state to the new 1786 * parent and also protect against a race with clk_enable() by 1787 * forcing the clock and the new parent on. This ensures that all 1788 * future calls to clk_enable() are practically NOPs with respect to 1789 * hardware and software states. 1790 * 1791 * See also: Comment for clk_set_parent() below. 1792 */ 1793 1794 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1795 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1796 clk_core_prepare_enable(old_parent); 1797 clk_core_prepare_enable(parent); 1798 } 1799 1800 /* migrate prepare count if > 0 */ 1801 if (core->prepare_count) { 1802 clk_core_prepare_enable(parent); 1803 clk_core_enable_lock(core); 1804 } 1805 1806 /* update the clk tree topology */ 1807 flags = clk_enable_lock(); 1808 clk_reparent(core, parent); 1809 clk_enable_unlock(flags); 1810 1811 return old_parent; 1812 } 1813 1814 static void __clk_set_parent_after(struct clk_core *core, 1815 struct clk_core *parent, 1816 struct clk_core *old_parent) 1817 { 1818 /* 1819 * Finish the migration of prepare state and undo the changes done 1820 * for preventing a race with clk_enable(). 1821 */ 1822 if (core->prepare_count) { 1823 clk_core_disable_lock(core); 1824 clk_core_disable_unprepare(old_parent); 1825 } 1826 1827 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1828 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1829 clk_core_disable_unprepare(parent); 1830 clk_core_disable_unprepare(old_parent); 1831 } 1832 } 1833 1834 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1835 u8 p_index) 1836 { 1837 unsigned long flags; 1838 int ret = 0; 1839 struct clk_core *old_parent; 1840 1841 old_parent = __clk_set_parent_before(core, parent); 1842 1843 trace_clk_set_parent(core, parent); 1844 1845 /* change clock input source */ 1846 if (parent && core->ops->set_parent) 1847 ret = core->ops->set_parent(core->hw, p_index); 1848 1849 trace_clk_set_parent_complete(core, parent); 1850 1851 if (ret) { 1852 flags = clk_enable_lock(); 1853 clk_reparent(core, old_parent); 1854 clk_enable_unlock(flags); 1855 __clk_set_parent_after(core, old_parent, parent); 1856 1857 return ret; 1858 } 1859 1860 __clk_set_parent_after(core, parent, old_parent); 1861 1862 return 0; 1863 } 1864 1865 /** 1866 * __clk_speculate_rates 1867 * @core: first clk in the subtree 1868 * @parent_rate: the "future" rate of clk's parent 1869 * 1870 * Walks the subtree of clks starting with clk, speculating rates as it 1871 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1872 * 1873 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1874 * pre-rate change notifications and returns early if no clks in the 1875 * subtree have subscribed to the notifications. Note that if a clk does not 1876 * implement the .recalc_rate callback then it is assumed that the clock will 1877 * take on the rate of its parent. 1878 */ 1879 static int __clk_speculate_rates(struct clk_core *core, 1880 unsigned long parent_rate) 1881 { 1882 struct clk_core *child; 1883 unsigned long new_rate; 1884 int ret = NOTIFY_DONE; 1885 1886 lockdep_assert_held(&prepare_lock); 1887 1888 new_rate = clk_recalc(core, parent_rate); 1889 1890 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1891 if (core->notifier_count) 1892 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1893 1894 if (ret & NOTIFY_STOP_MASK) { 1895 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1896 __func__, core->name, ret); 1897 goto out; 1898 } 1899 1900 hlist_for_each_entry(child, &core->children, child_node) { 1901 ret = __clk_speculate_rates(child, new_rate); 1902 if (ret & NOTIFY_STOP_MASK) 1903 break; 1904 } 1905 1906 out: 1907 return ret; 1908 } 1909 1910 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1911 struct clk_core *new_parent, u8 p_index) 1912 { 1913 struct clk_core *child; 1914 1915 core->new_rate = new_rate; 1916 core->new_parent = new_parent; 1917 core->new_parent_index = p_index; 1918 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1919 core->new_child = NULL; 1920 if (new_parent && new_parent != core->parent) 1921 new_parent->new_child = core; 1922 1923 hlist_for_each_entry(child, &core->children, child_node) { 1924 child->new_rate = clk_recalc(child, new_rate); 1925 clk_calc_subtree(child, child->new_rate, NULL, 0); 1926 } 1927 } 1928 1929 /* 1930 * calculate the new rates returning the topmost clock that has to be 1931 * changed. 1932 */ 1933 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1934 unsigned long rate) 1935 { 1936 struct clk_core *top = core; 1937 struct clk_core *old_parent, *parent; 1938 unsigned long best_parent_rate = 0; 1939 unsigned long new_rate; 1940 unsigned long min_rate; 1941 unsigned long max_rate; 1942 int p_index = 0; 1943 long ret; 1944 1945 /* sanity */ 1946 if (IS_ERR_OR_NULL(core)) 1947 return NULL; 1948 1949 /* save parent rate, if it exists */ 1950 parent = old_parent = core->parent; 1951 if (parent) 1952 best_parent_rate = parent->rate; 1953 1954 clk_core_get_boundaries(core, &min_rate, &max_rate); 1955 1956 /* find the closest rate and parent clk/rate */ 1957 if (clk_core_can_round(core)) { 1958 struct clk_rate_request req; 1959 1960 req.rate = rate; 1961 req.min_rate = min_rate; 1962 req.max_rate = max_rate; 1963 1964 clk_core_init_rate_req(core, &req); 1965 1966 ret = clk_core_determine_round_nolock(core, &req); 1967 if (ret < 0) 1968 return NULL; 1969 1970 best_parent_rate = req.best_parent_rate; 1971 new_rate = req.rate; 1972 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1973 1974 if (new_rate < min_rate || new_rate > max_rate) 1975 return NULL; 1976 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1977 /* pass-through clock without adjustable parent */ 1978 core->new_rate = core->rate; 1979 return NULL; 1980 } else { 1981 /* pass-through clock with adjustable parent */ 1982 top = clk_calc_new_rates(parent, rate); 1983 new_rate = parent->new_rate; 1984 goto out; 1985 } 1986 1987 /* some clocks must be gated to change parent */ 1988 if (parent != old_parent && 1989 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1990 pr_debug("%s: %s not gated but wants to reparent\n", 1991 __func__, core->name); 1992 return NULL; 1993 } 1994 1995 /* try finding the new parent index */ 1996 if (parent && core->num_parents > 1) { 1997 p_index = clk_fetch_parent_index(core, parent); 1998 if (p_index < 0) { 1999 pr_debug("%s: clk %s can not be parent of clk %s\n", 2000 __func__, parent->name, core->name); 2001 return NULL; 2002 } 2003 } 2004 2005 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2006 best_parent_rate != parent->rate) 2007 top = clk_calc_new_rates(parent, best_parent_rate); 2008 2009 out: 2010 clk_calc_subtree(core, new_rate, parent, p_index); 2011 2012 return top; 2013 } 2014 2015 /* 2016 * Notify about rate changes in a subtree. Always walk down the whole tree 2017 * so that in case of an error we can walk down the whole tree again and 2018 * abort the change. 2019 */ 2020 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2021 unsigned long event) 2022 { 2023 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2024 int ret = NOTIFY_DONE; 2025 2026 if (core->rate == core->new_rate) 2027 return NULL; 2028 2029 if (core->notifier_count) { 2030 ret = __clk_notify(core, event, core->rate, core->new_rate); 2031 if (ret & NOTIFY_STOP_MASK) 2032 fail_clk = core; 2033 } 2034 2035 hlist_for_each_entry(child, &core->children, child_node) { 2036 /* Skip children who will be reparented to another clock */ 2037 if (child->new_parent && child->new_parent != core) 2038 continue; 2039 tmp_clk = clk_propagate_rate_change(child, event); 2040 if (tmp_clk) 2041 fail_clk = tmp_clk; 2042 } 2043 2044 /* handle the new child who might not be in core->children yet */ 2045 if (core->new_child) { 2046 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2047 if (tmp_clk) 2048 fail_clk = tmp_clk; 2049 } 2050 2051 return fail_clk; 2052 } 2053 2054 /* 2055 * walk down a subtree and set the new rates notifying the rate 2056 * change on the way 2057 */ 2058 static void clk_change_rate(struct clk_core *core) 2059 { 2060 struct clk_core *child; 2061 struct hlist_node *tmp; 2062 unsigned long old_rate; 2063 unsigned long best_parent_rate = 0; 2064 bool skip_set_rate = false; 2065 struct clk_core *old_parent; 2066 struct clk_core *parent = NULL; 2067 2068 old_rate = core->rate; 2069 2070 if (core->new_parent) { 2071 parent = core->new_parent; 2072 best_parent_rate = core->new_parent->rate; 2073 } else if (core->parent) { 2074 parent = core->parent; 2075 best_parent_rate = core->parent->rate; 2076 } 2077 2078 if (clk_pm_runtime_get(core)) 2079 return; 2080 2081 if (core->flags & CLK_SET_RATE_UNGATE) { 2082 clk_core_prepare(core); 2083 clk_core_enable_lock(core); 2084 } 2085 2086 if (core->new_parent && core->new_parent != core->parent) { 2087 old_parent = __clk_set_parent_before(core, core->new_parent); 2088 trace_clk_set_parent(core, core->new_parent); 2089 2090 if (core->ops->set_rate_and_parent) { 2091 skip_set_rate = true; 2092 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2093 best_parent_rate, 2094 core->new_parent_index); 2095 } else if (core->ops->set_parent) { 2096 core->ops->set_parent(core->hw, core->new_parent_index); 2097 } 2098 2099 trace_clk_set_parent_complete(core, core->new_parent); 2100 __clk_set_parent_after(core, core->new_parent, old_parent); 2101 } 2102 2103 if (core->flags & CLK_OPS_PARENT_ENABLE) 2104 clk_core_prepare_enable(parent); 2105 2106 trace_clk_set_rate(core, core->new_rate); 2107 2108 if (!skip_set_rate && core->ops->set_rate) 2109 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2110 2111 trace_clk_set_rate_complete(core, core->new_rate); 2112 2113 core->rate = clk_recalc(core, best_parent_rate); 2114 2115 if (core->flags & CLK_SET_RATE_UNGATE) { 2116 clk_core_disable_lock(core); 2117 clk_core_unprepare(core); 2118 } 2119 2120 if (core->flags & CLK_OPS_PARENT_ENABLE) 2121 clk_core_disable_unprepare(parent); 2122 2123 if (core->notifier_count && old_rate != core->rate) 2124 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2125 2126 if (core->flags & CLK_RECALC_NEW_RATES) 2127 (void)clk_calc_new_rates(core, core->new_rate); 2128 2129 /* 2130 * Use safe iteration, as change_rate can actually swap parents 2131 * for certain clock types. 2132 */ 2133 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2134 /* Skip children who will be reparented to another clock */ 2135 if (child->new_parent && child->new_parent != core) 2136 continue; 2137 clk_change_rate(child); 2138 } 2139 2140 /* handle the new child who might not be in core->children yet */ 2141 if (core->new_child) 2142 clk_change_rate(core->new_child); 2143 2144 clk_pm_runtime_put(core); 2145 } 2146 2147 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2148 unsigned long req_rate) 2149 { 2150 int ret, cnt; 2151 struct clk_rate_request req; 2152 2153 lockdep_assert_held(&prepare_lock); 2154 2155 if (!core) 2156 return 0; 2157 2158 /* simulate what the rate would be if it could be freely set */ 2159 cnt = clk_core_rate_nuke_protect(core); 2160 if (cnt < 0) 2161 return cnt; 2162 2163 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2164 req.rate = req_rate; 2165 2166 ret = clk_core_round_rate_nolock(core, &req); 2167 2168 /* restore the protection */ 2169 clk_core_rate_restore_protect(core, cnt); 2170 2171 return ret ? 0 : req.rate; 2172 } 2173 2174 static int clk_core_set_rate_nolock(struct clk_core *core, 2175 unsigned long req_rate) 2176 { 2177 struct clk_core *top, *fail_clk; 2178 unsigned long rate; 2179 int ret = 0; 2180 2181 if (!core) 2182 return 0; 2183 2184 rate = clk_core_req_round_rate_nolock(core, req_rate); 2185 2186 /* bail early if nothing to do */ 2187 if (rate == clk_core_get_rate_nolock(core)) 2188 return 0; 2189 2190 /* fail on a direct rate set of a protected provider */ 2191 if (clk_core_rate_is_protected(core)) 2192 return -EBUSY; 2193 2194 /* calculate new rates and get the topmost changed clock */ 2195 top = clk_calc_new_rates(core, req_rate); 2196 if (!top) 2197 return -EINVAL; 2198 2199 ret = clk_pm_runtime_get(core); 2200 if (ret) 2201 return ret; 2202 2203 /* notify that we are about to change rates */ 2204 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2205 if (fail_clk) { 2206 pr_debug("%s: failed to set %s rate\n", __func__, 2207 fail_clk->name); 2208 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2209 ret = -EBUSY; 2210 goto err; 2211 } 2212 2213 /* change the rates */ 2214 clk_change_rate(top); 2215 2216 core->req_rate = req_rate; 2217 err: 2218 clk_pm_runtime_put(core); 2219 2220 return ret; 2221 } 2222 2223 /** 2224 * clk_set_rate - specify a new rate for clk 2225 * @clk: the clk whose rate is being changed 2226 * @rate: the new rate for clk 2227 * 2228 * In the simplest case clk_set_rate will only adjust the rate of clk. 2229 * 2230 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2231 * propagate up to clk's parent; whether or not this happens depends on the 2232 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2233 * after calling .round_rate then upstream parent propagation is ignored. If 2234 * *parent_rate comes back with a new rate for clk's parent then we propagate 2235 * up to clk's parent and set its rate. Upward propagation will continue 2236 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2237 * .round_rate stops requesting changes to clk's parent_rate. 2238 * 2239 * Rate changes are accomplished via tree traversal that also recalculates the 2240 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2241 * 2242 * Returns 0 on success, -EERROR otherwise. 2243 */ 2244 int clk_set_rate(struct clk *clk, unsigned long rate) 2245 { 2246 int ret; 2247 2248 if (!clk) 2249 return 0; 2250 2251 /* prevent racing with updates to the clock topology */ 2252 clk_prepare_lock(); 2253 2254 if (clk->exclusive_count) 2255 clk_core_rate_unprotect(clk->core); 2256 2257 ret = clk_core_set_rate_nolock(clk->core, rate); 2258 2259 if (clk->exclusive_count) 2260 clk_core_rate_protect(clk->core); 2261 2262 clk_prepare_unlock(); 2263 2264 return ret; 2265 } 2266 EXPORT_SYMBOL_GPL(clk_set_rate); 2267 2268 /** 2269 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2270 * @clk: the clk whose rate is being changed 2271 * @rate: the new rate for clk 2272 * 2273 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2274 * within a critical section 2275 * 2276 * This can be used initially to ensure that at least 1 consumer is 2277 * satisfied when several consumers are competing for exclusivity over the 2278 * same clock provider. 2279 * 2280 * The exclusivity is not applied if setting the rate failed. 2281 * 2282 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2283 * clk_rate_exclusive_put(). 2284 * 2285 * Returns 0 on success, -EERROR otherwise. 2286 */ 2287 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2288 { 2289 int ret; 2290 2291 if (!clk) 2292 return 0; 2293 2294 /* prevent racing with updates to the clock topology */ 2295 clk_prepare_lock(); 2296 2297 /* 2298 * The temporary protection removal is not here, on purpose 2299 * This function is meant to be used instead of clk_rate_protect, 2300 * so before the consumer code path protect the clock provider 2301 */ 2302 2303 ret = clk_core_set_rate_nolock(clk->core, rate); 2304 if (!ret) { 2305 clk_core_rate_protect(clk->core); 2306 clk->exclusive_count++; 2307 } 2308 2309 clk_prepare_unlock(); 2310 2311 return ret; 2312 } 2313 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2314 2315 /** 2316 * clk_set_rate_range - set a rate range for a clock source 2317 * @clk: clock source 2318 * @min: desired minimum clock rate in Hz, inclusive 2319 * @max: desired maximum clock rate in Hz, inclusive 2320 * 2321 * Returns success (0) or negative errno. 2322 */ 2323 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2324 { 2325 int ret = 0; 2326 unsigned long old_min, old_max, rate; 2327 2328 if (!clk) 2329 return 0; 2330 2331 trace_clk_set_rate_range(clk->core, min, max); 2332 2333 if (min > max) { 2334 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2335 __func__, clk->core->name, clk->dev_id, clk->con_id, 2336 min, max); 2337 return -EINVAL; 2338 } 2339 2340 clk_prepare_lock(); 2341 2342 if (clk->exclusive_count) 2343 clk_core_rate_unprotect(clk->core); 2344 2345 /* Save the current values in case we need to rollback the change */ 2346 old_min = clk->min_rate; 2347 old_max = clk->max_rate; 2348 clk->min_rate = min; 2349 clk->max_rate = max; 2350 2351 rate = clk_core_get_rate_nolock(clk->core); 2352 if (rate < min || rate > max) { 2353 /* 2354 * FIXME: 2355 * We are in bit of trouble here, current rate is outside the 2356 * the requested range. We are going try to request appropriate 2357 * range boundary but there is a catch. It may fail for the 2358 * usual reason (clock broken, clock protected, etc) but also 2359 * because: 2360 * - round_rate() was not favorable and fell on the wrong 2361 * side of the boundary 2362 * - the determine_rate() callback does not really check for 2363 * this corner case when determining the rate 2364 */ 2365 2366 if (rate < min) 2367 rate = min; 2368 else 2369 rate = max; 2370 2371 ret = clk_core_set_rate_nolock(clk->core, rate); 2372 if (ret) { 2373 /* rollback the changes */ 2374 clk->min_rate = old_min; 2375 clk->max_rate = old_max; 2376 } 2377 } 2378 2379 if (clk->exclusive_count) 2380 clk_core_rate_protect(clk->core); 2381 2382 clk_prepare_unlock(); 2383 2384 return ret; 2385 } 2386 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2387 2388 /** 2389 * clk_set_min_rate - set a minimum clock rate for a clock source 2390 * @clk: clock source 2391 * @rate: desired minimum clock rate in Hz, inclusive 2392 * 2393 * Returns success (0) or negative errno. 2394 */ 2395 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2396 { 2397 if (!clk) 2398 return 0; 2399 2400 trace_clk_set_min_rate(clk->core, rate); 2401 2402 return clk_set_rate_range(clk, rate, clk->max_rate); 2403 } 2404 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2405 2406 /** 2407 * clk_set_max_rate - set a maximum clock rate for a clock source 2408 * @clk: clock source 2409 * @rate: desired maximum clock rate in Hz, inclusive 2410 * 2411 * Returns success (0) or negative errno. 2412 */ 2413 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2414 { 2415 if (!clk) 2416 return 0; 2417 2418 trace_clk_set_max_rate(clk->core, rate); 2419 2420 return clk_set_rate_range(clk, clk->min_rate, rate); 2421 } 2422 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2423 2424 /** 2425 * clk_get_parent - return the parent of a clk 2426 * @clk: the clk whose parent gets returned 2427 * 2428 * Simply returns clk->parent. Returns NULL if clk is NULL. 2429 */ 2430 struct clk *clk_get_parent(struct clk *clk) 2431 { 2432 struct clk *parent; 2433 2434 if (!clk) 2435 return NULL; 2436 2437 clk_prepare_lock(); 2438 /* TODO: Create a per-user clk and change callers to call clk_put */ 2439 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2440 clk_prepare_unlock(); 2441 2442 return parent; 2443 } 2444 EXPORT_SYMBOL_GPL(clk_get_parent); 2445 2446 static struct clk_core *__clk_init_parent(struct clk_core *core) 2447 { 2448 u8 index = 0; 2449 2450 if (core->num_parents > 1 && core->ops->get_parent) 2451 index = core->ops->get_parent(core->hw); 2452 2453 return clk_core_get_parent_by_index(core, index); 2454 } 2455 2456 static void clk_core_reparent(struct clk_core *core, 2457 struct clk_core *new_parent) 2458 { 2459 clk_reparent(core, new_parent); 2460 __clk_recalc_accuracies(core); 2461 __clk_recalc_rates(core, POST_RATE_CHANGE); 2462 } 2463 2464 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2465 { 2466 if (!hw) 2467 return; 2468 2469 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2470 } 2471 2472 /** 2473 * clk_has_parent - check if a clock is a possible parent for another 2474 * @clk: clock source 2475 * @parent: parent clock source 2476 * 2477 * This function can be used in drivers that need to check that a clock can be 2478 * the parent of another without actually changing the parent. 2479 * 2480 * Returns true if @parent is a possible parent for @clk, false otherwise. 2481 */ 2482 bool clk_has_parent(struct clk *clk, struct clk *parent) 2483 { 2484 struct clk_core *core, *parent_core; 2485 int i; 2486 2487 /* NULL clocks should be nops, so return success if either is NULL. */ 2488 if (!clk || !parent) 2489 return true; 2490 2491 core = clk->core; 2492 parent_core = parent->core; 2493 2494 /* Optimize for the case where the parent is already the parent. */ 2495 if (core->parent == parent_core) 2496 return true; 2497 2498 for (i = 0; i < core->num_parents; i++) 2499 if (!strcmp(core->parents[i].name, parent_core->name)) 2500 return true; 2501 2502 return false; 2503 } 2504 EXPORT_SYMBOL_GPL(clk_has_parent); 2505 2506 static int clk_core_set_parent_nolock(struct clk_core *core, 2507 struct clk_core *parent) 2508 { 2509 int ret = 0; 2510 int p_index = 0; 2511 unsigned long p_rate = 0; 2512 2513 lockdep_assert_held(&prepare_lock); 2514 2515 if (!core) 2516 return 0; 2517 2518 if (core->parent == parent) 2519 return 0; 2520 2521 /* verify ops for multi-parent clks */ 2522 if (core->num_parents > 1 && !core->ops->set_parent) 2523 return -EPERM; 2524 2525 /* check that we are allowed to re-parent if the clock is in use */ 2526 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2527 return -EBUSY; 2528 2529 if (clk_core_rate_is_protected(core)) 2530 return -EBUSY; 2531 2532 /* try finding the new parent index */ 2533 if (parent) { 2534 p_index = clk_fetch_parent_index(core, parent); 2535 if (p_index < 0) { 2536 pr_debug("%s: clk %s can not be parent of clk %s\n", 2537 __func__, parent->name, core->name); 2538 return p_index; 2539 } 2540 p_rate = parent->rate; 2541 } 2542 2543 ret = clk_pm_runtime_get(core); 2544 if (ret) 2545 return ret; 2546 2547 /* propagate PRE_RATE_CHANGE notifications */ 2548 ret = __clk_speculate_rates(core, p_rate); 2549 2550 /* abort if a driver objects */ 2551 if (ret & NOTIFY_STOP_MASK) 2552 goto runtime_put; 2553 2554 /* do the re-parent */ 2555 ret = __clk_set_parent(core, parent, p_index); 2556 2557 /* propagate rate an accuracy recalculation accordingly */ 2558 if (ret) { 2559 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2560 } else { 2561 __clk_recalc_rates(core, POST_RATE_CHANGE); 2562 __clk_recalc_accuracies(core); 2563 } 2564 2565 runtime_put: 2566 clk_pm_runtime_put(core); 2567 2568 return ret; 2569 } 2570 2571 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2572 { 2573 return clk_core_set_parent_nolock(hw->core, parent->core); 2574 } 2575 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2576 2577 /** 2578 * clk_set_parent - switch the parent of a mux clk 2579 * @clk: the mux clk whose input we are switching 2580 * @parent: the new input to clk 2581 * 2582 * Re-parent clk to use parent as its new input source. If clk is in 2583 * prepared state, the clk will get enabled for the duration of this call. If 2584 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2585 * that, the reparenting is glitchy in hardware, etc), use the 2586 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2587 * 2588 * After successfully changing clk's parent clk_set_parent will update the 2589 * clk topology, sysfs topology and propagate rate recalculation via 2590 * __clk_recalc_rates. 2591 * 2592 * Returns 0 on success, -EERROR otherwise. 2593 */ 2594 int clk_set_parent(struct clk *clk, struct clk *parent) 2595 { 2596 int ret; 2597 2598 if (!clk) 2599 return 0; 2600 2601 clk_prepare_lock(); 2602 2603 if (clk->exclusive_count) 2604 clk_core_rate_unprotect(clk->core); 2605 2606 ret = clk_core_set_parent_nolock(clk->core, 2607 parent ? parent->core : NULL); 2608 2609 if (clk->exclusive_count) 2610 clk_core_rate_protect(clk->core); 2611 2612 clk_prepare_unlock(); 2613 2614 return ret; 2615 } 2616 EXPORT_SYMBOL_GPL(clk_set_parent); 2617 2618 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2619 { 2620 int ret = -EINVAL; 2621 2622 lockdep_assert_held(&prepare_lock); 2623 2624 if (!core) 2625 return 0; 2626 2627 if (clk_core_rate_is_protected(core)) 2628 return -EBUSY; 2629 2630 trace_clk_set_phase(core, degrees); 2631 2632 if (core->ops->set_phase) { 2633 ret = core->ops->set_phase(core->hw, degrees); 2634 if (!ret) 2635 core->phase = degrees; 2636 } 2637 2638 trace_clk_set_phase_complete(core, degrees); 2639 2640 return ret; 2641 } 2642 2643 /** 2644 * clk_set_phase - adjust the phase shift of a clock signal 2645 * @clk: clock signal source 2646 * @degrees: number of degrees the signal is shifted 2647 * 2648 * Shifts the phase of a clock signal by the specified 2649 * degrees. Returns 0 on success, -EERROR otherwise. 2650 * 2651 * This function makes no distinction about the input or reference 2652 * signal that we adjust the clock signal phase against. For example 2653 * phase locked-loop clock signal generators we may shift phase with 2654 * respect to feedback clock signal input, but for other cases the 2655 * clock phase may be shifted with respect to some other, unspecified 2656 * signal. 2657 * 2658 * Additionally the concept of phase shift does not propagate through 2659 * the clock tree hierarchy, which sets it apart from clock rates and 2660 * clock accuracy. A parent clock phase attribute does not have an 2661 * impact on the phase attribute of a child clock. 2662 */ 2663 int clk_set_phase(struct clk *clk, int degrees) 2664 { 2665 int ret; 2666 2667 if (!clk) 2668 return 0; 2669 2670 /* sanity check degrees */ 2671 degrees %= 360; 2672 if (degrees < 0) 2673 degrees += 360; 2674 2675 clk_prepare_lock(); 2676 2677 if (clk->exclusive_count) 2678 clk_core_rate_unprotect(clk->core); 2679 2680 ret = clk_core_set_phase_nolock(clk->core, degrees); 2681 2682 if (clk->exclusive_count) 2683 clk_core_rate_protect(clk->core); 2684 2685 clk_prepare_unlock(); 2686 2687 return ret; 2688 } 2689 EXPORT_SYMBOL_GPL(clk_set_phase); 2690 2691 static int clk_core_get_phase(struct clk_core *core) 2692 { 2693 int ret; 2694 2695 lockdep_assert_held(&prepare_lock); 2696 if (!core->ops->get_phase) 2697 return 0; 2698 2699 /* Always try to update cached phase if possible */ 2700 ret = core->ops->get_phase(core->hw); 2701 if (ret >= 0) 2702 core->phase = ret; 2703 2704 return ret; 2705 } 2706 2707 /** 2708 * clk_get_phase - return the phase shift of a clock signal 2709 * @clk: clock signal source 2710 * 2711 * Returns the phase shift of a clock node in degrees, otherwise returns 2712 * -EERROR. 2713 */ 2714 int clk_get_phase(struct clk *clk) 2715 { 2716 int ret; 2717 2718 if (!clk) 2719 return 0; 2720 2721 clk_prepare_lock(); 2722 ret = clk_core_get_phase(clk->core); 2723 clk_prepare_unlock(); 2724 2725 return ret; 2726 } 2727 EXPORT_SYMBOL_GPL(clk_get_phase); 2728 2729 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2730 { 2731 /* Assume a default value of 50% */ 2732 core->duty.num = 1; 2733 core->duty.den = 2; 2734 } 2735 2736 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2737 2738 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2739 { 2740 struct clk_duty *duty = &core->duty; 2741 int ret = 0; 2742 2743 if (!core->ops->get_duty_cycle) 2744 return clk_core_update_duty_cycle_parent_nolock(core); 2745 2746 ret = core->ops->get_duty_cycle(core->hw, duty); 2747 if (ret) 2748 goto reset; 2749 2750 /* Don't trust the clock provider too much */ 2751 if (duty->den == 0 || duty->num > duty->den) { 2752 ret = -EINVAL; 2753 goto reset; 2754 } 2755 2756 return 0; 2757 2758 reset: 2759 clk_core_reset_duty_cycle_nolock(core); 2760 return ret; 2761 } 2762 2763 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2764 { 2765 int ret = 0; 2766 2767 if (core->parent && 2768 core->flags & CLK_DUTY_CYCLE_PARENT) { 2769 ret = clk_core_update_duty_cycle_nolock(core->parent); 2770 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2771 } else { 2772 clk_core_reset_duty_cycle_nolock(core); 2773 } 2774 2775 return ret; 2776 } 2777 2778 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2779 struct clk_duty *duty); 2780 2781 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2782 struct clk_duty *duty) 2783 { 2784 int ret; 2785 2786 lockdep_assert_held(&prepare_lock); 2787 2788 if (clk_core_rate_is_protected(core)) 2789 return -EBUSY; 2790 2791 trace_clk_set_duty_cycle(core, duty); 2792 2793 if (!core->ops->set_duty_cycle) 2794 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2795 2796 ret = core->ops->set_duty_cycle(core->hw, duty); 2797 if (!ret) 2798 memcpy(&core->duty, duty, sizeof(*duty)); 2799 2800 trace_clk_set_duty_cycle_complete(core, duty); 2801 2802 return ret; 2803 } 2804 2805 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2806 struct clk_duty *duty) 2807 { 2808 int ret = 0; 2809 2810 if (core->parent && 2811 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2812 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2813 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2814 } 2815 2816 return ret; 2817 } 2818 2819 /** 2820 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2821 * @clk: clock signal source 2822 * @num: numerator of the duty cycle ratio to be applied 2823 * @den: denominator of the duty cycle ratio to be applied 2824 * 2825 * Apply the duty cycle ratio if the ratio is valid and the clock can 2826 * perform this operation 2827 * 2828 * Returns (0) on success, a negative errno otherwise. 2829 */ 2830 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2831 { 2832 int ret; 2833 struct clk_duty duty; 2834 2835 if (!clk) 2836 return 0; 2837 2838 /* sanity check the ratio */ 2839 if (den == 0 || num > den) 2840 return -EINVAL; 2841 2842 duty.num = num; 2843 duty.den = den; 2844 2845 clk_prepare_lock(); 2846 2847 if (clk->exclusive_count) 2848 clk_core_rate_unprotect(clk->core); 2849 2850 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2851 2852 if (clk->exclusive_count) 2853 clk_core_rate_protect(clk->core); 2854 2855 clk_prepare_unlock(); 2856 2857 return ret; 2858 } 2859 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2860 2861 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2862 unsigned int scale) 2863 { 2864 struct clk_duty *duty = &core->duty; 2865 int ret; 2866 2867 clk_prepare_lock(); 2868 2869 ret = clk_core_update_duty_cycle_nolock(core); 2870 if (!ret) 2871 ret = mult_frac(scale, duty->num, duty->den); 2872 2873 clk_prepare_unlock(); 2874 2875 return ret; 2876 } 2877 2878 /** 2879 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2880 * @clk: clock signal source 2881 * @scale: scaling factor to be applied to represent the ratio as an integer 2882 * 2883 * Returns the duty cycle ratio of a clock node multiplied by the provided 2884 * scaling factor, or negative errno on error. 2885 */ 2886 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2887 { 2888 if (!clk) 2889 return 0; 2890 2891 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2892 } 2893 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2894 2895 /** 2896 * clk_is_match - check if two clk's point to the same hardware clock 2897 * @p: clk compared against q 2898 * @q: clk compared against p 2899 * 2900 * Returns true if the two struct clk pointers both point to the same hardware 2901 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2902 * share the same struct clk_core object. 2903 * 2904 * Returns false otherwise. Note that two NULL clks are treated as matching. 2905 */ 2906 bool clk_is_match(const struct clk *p, const struct clk *q) 2907 { 2908 /* trivial case: identical struct clk's or both NULL */ 2909 if (p == q) 2910 return true; 2911 2912 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2913 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2914 if (p->core == q->core) 2915 return true; 2916 2917 return false; 2918 } 2919 EXPORT_SYMBOL_GPL(clk_is_match); 2920 2921 /*** debugfs support ***/ 2922 2923 #ifdef CONFIG_DEBUG_FS 2924 #include <linux/debugfs.h> 2925 2926 static struct dentry *rootdir; 2927 static int inited = 0; 2928 static DEFINE_MUTEX(clk_debug_lock); 2929 static HLIST_HEAD(clk_debug_list); 2930 2931 static struct hlist_head *orphan_list[] = { 2932 &clk_orphan_list, 2933 NULL, 2934 }; 2935 2936 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2937 int level) 2938 { 2939 int phase; 2940 2941 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2942 level * 3 + 1, "", 2943 30 - level * 3, c->name, 2944 c->enable_count, c->prepare_count, c->protect_count, 2945 clk_core_get_rate_recalc(c), 2946 clk_core_get_accuracy_recalc(c)); 2947 2948 phase = clk_core_get_phase(c); 2949 if (phase >= 0) 2950 seq_printf(s, "%5d", phase); 2951 else 2952 seq_puts(s, "-----"); 2953 2954 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2955 2956 if (c->ops->is_enabled) 2957 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2958 else if (!c->ops->enable) 2959 seq_printf(s, " %9c\n", 'Y'); 2960 else 2961 seq_printf(s, " %9c\n", '?'); 2962 } 2963 2964 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2965 int level) 2966 { 2967 struct clk_core *child; 2968 2969 clk_pm_runtime_get(c); 2970 clk_summary_show_one(s, c, level); 2971 clk_pm_runtime_put(c); 2972 2973 hlist_for_each_entry(child, &c->children, child_node) 2974 clk_summary_show_subtree(s, child, level + 1); 2975 } 2976 2977 static int clk_summary_show(struct seq_file *s, void *data) 2978 { 2979 struct clk_core *c; 2980 struct hlist_head **lists = (struct hlist_head **)s->private; 2981 2982 seq_puts(s, " enable prepare protect duty hardware\n"); 2983 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 2984 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 2985 2986 clk_prepare_lock(); 2987 2988 for (; *lists; lists++) 2989 hlist_for_each_entry(c, *lists, child_node) 2990 clk_summary_show_subtree(s, c, 0); 2991 2992 clk_prepare_unlock(); 2993 2994 return 0; 2995 } 2996 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2997 2998 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2999 { 3000 int phase; 3001 unsigned long min_rate, max_rate; 3002 3003 clk_core_get_boundaries(c, &min_rate, &max_rate); 3004 3005 /* This should be JSON format, i.e. elements separated with a comma */ 3006 seq_printf(s, "\"%s\": { ", c->name); 3007 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3008 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3009 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3010 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3011 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3012 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3013 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3014 phase = clk_core_get_phase(c); 3015 if (phase >= 0) 3016 seq_printf(s, "\"phase\": %d,", phase); 3017 seq_printf(s, "\"duty_cycle\": %u", 3018 clk_core_get_scaled_duty_cycle(c, 100000)); 3019 } 3020 3021 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3022 { 3023 struct clk_core *child; 3024 3025 clk_dump_one(s, c, level); 3026 3027 hlist_for_each_entry(child, &c->children, child_node) { 3028 seq_putc(s, ','); 3029 clk_dump_subtree(s, child, level + 1); 3030 } 3031 3032 seq_putc(s, '}'); 3033 } 3034 3035 static int clk_dump_show(struct seq_file *s, void *data) 3036 { 3037 struct clk_core *c; 3038 bool first_node = true; 3039 struct hlist_head **lists = (struct hlist_head **)s->private; 3040 3041 seq_putc(s, '{'); 3042 clk_prepare_lock(); 3043 3044 for (; *lists; lists++) { 3045 hlist_for_each_entry(c, *lists, child_node) { 3046 if (!first_node) 3047 seq_putc(s, ','); 3048 first_node = false; 3049 clk_dump_subtree(s, c, 0); 3050 } 3051 } 3052 3053 clk_prepare_unlock(); 3054 3055 seq_puts(s, "}\n"); 3056 return 0; 3057 } 3058 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3059 3060 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3061 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3062 /* 3063 * This can be dangerous, therefore don't provide any real compile time 3064 * configuration option for this feature. 3065 * People who want to use this will need to modify the source code directly. 3066 */ 3067 static int clk_rate_set(void *data, u64 val) 3068 { 3069 struct clk_core *core = data; 3070 int ret; 3071 3072 clk_prepare_lock(); 3073 ret = clk_core_set_rate_nolock(core, val); 3074 clk_prepare_unlock(); 3075 3076 return ret; 3077 } 3078 3079 #define clk_rate_mode 0644 3080 3081 static int clk_prepare_enable_set(void *data, u64 val) 3082 { 3083 struct clk_core *core = data; 3084 int ret = 0; 3085 3086 if (val) 3087 ret = clk_prepare_enable(core->hw->clk); 3088 else 3089 clk_disable_unprepare(core->hw->clk); 3090 3091 return ret; 3092 } 3093 3094 static int clk_prepare_enable_get(void *data, u64 *val) 3095 { 3096 struct clk_core *core = data; 3097 3098 *val = core->enable_count && core->prepare_count; 3099 return 0; 3100 } 3101 3102 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3103 clk_prepare_enable_set, "%llu\n"); 3104 3105 #else 3106 #define clk_rate_set NULL 3107 #define clk_rate_mode 0444 3108 #endif 3109 3110 static int clk_rate_get(void *data, u64 *val) 3111 { 3112 struct clk_core *core = data; 3113 3114 clk_prepare_lock(); 3115 *val = clk_core_get_rate_recalc(core); 3116 clk_prepare_unlock(); 3117 3118 return 0; 3119 } 3120 3121 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3122 3123 static const struct { 3124 unsigned long flag; 3125 const char *name; 3126 } clk_flags[] = { 3127 #define ENTRY(f) { f, #f } 3128 ENTRY(CLK_SET_RATE_GATE), 3129 ENTRY(CLK_SET_PARENT_GATE), 3130 ENTRY(CLK_SET_RATE_PARENT), 3131 ENTRY(CLK_IGNORE_UNUSED), 3132 ENTRY(CLK_GET_RATE_NOCACHE), 3133 ENTRY(CLK_SET_RATE_NO_REPARENT), 3134 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3135 ENTRY(CLK_RECALC_NEW_RATES), 3136 ENTRY(CLK_SET_RATE_UNGATE), 3137 ENTRY(CLK_IS_CRITICAL), 3138 ENTRY(CLK_OPS_PARENT_ENABLE), 3139 ENTRY(CLK_DUTY_CYCLE_PARENT), 3140 #undef ENTRY 3141 }; 3142 3143 static int clk_flags_show(struct seq_file *s, void *data) 3144 { 3145 struct clk_core *core = s->private; 3146 unsigned long flags = core->flags; 3147 unsigned int i; 3148 3149 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3150 if (flags & clk_flags[i].flag) { 3151 seq_printf(s, "%s\n", clk_flags[i].name); 3152 flags &= ~clk_flags[i].flag; 3153 } 3154 } 3155 if (flags) { 3156 /* Unknown flags */ 3157 seq_printf(s, "0x%lx\n", flags); 3158 } 3159 3160 return 0; 3161 } 3162 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3163 3164 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3165 unsigned int i, char terminator) 3166 { 3167 struct clk_core *parent; 3168 3169 /* 3170 * Go through the following options to fetch a parent's name. 3171 * 3172 * 1. Fetch the registered parent clock and use its name 3173 * 2. Use the global (fallback) name if specified 3174 * 3. Use the local fw_name if provided 3175 * 4. Fetch parent clock's clock-output-name if DT index was set 3176 * 3177 * This may still fail in some cases, such as when the parent is 3178 * specified directly via a struct clk_hw pointer, but it isn't 3179 * registered (yet). 3180 */ 3181 parent = clk_core_get_parent_by_index(core, i); 3182 if (parent) 3183 seq_puts(s, parent->name); 3184 else if (core->parents[i].name) 3185 seq_puts(s, core->parents[i].name); 3186 else if (core->parents[i].fw_name) 3187 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3188 else if (core->parents[i].index >= 0) 3189 seq_puts(s, 3190 of_clk_get_parent_name(core->of_node, 3191 core->parents[i].index)); 3192 else 3193 seq_puts(s, "(missing)"); 3194 3195 seq_putc(s, terminator); 3196 } 3197 3198 static int possible_parents_show(struct seq_file *s, void *data) 3199 { 3200 struct clk_core *core = s->private; 3201 int i; 3202 3203 for (i = 0; i < core->num_parents - 1; i++) 3204 possible_parent_show(s, core, i, ' '); 3205 3206 possible_parent_show(s, core, i, '\n'); 3207 3208 return 0; 3209 } 3210 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3211 3212 static int current_parent_show(struct seq_file *s, void *data) 3213 { 3214 struct clk_core *core = s->private; 3215 3216 if (core->parent) 3217 seq_printf(s, "%s\n", core->parent->name); 3218 3219 return 0; 3220 } 3221 DEFINE_SHOW_ATTRIBUTE(current_parent); 3222 3223 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3224 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3225 size_t count, loff_t *ppos) 3226 { 3227 struct seq_file *s = file->private_data; 3228 struct clk_core *core = s->private; 3229 struct clk_core *parent; 3230 u8 idx; 3231 int err; 3232 3233 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3234 if (err < 0) 3235 return err; 3236 3237 parent = clk_core_get_parent_by_index(core, idx); 3238 if (!parent) 3239 return -ENOENT; 3240 3241 clk_prepare_lock(); 3242 err = clk_core_set_parent_nolock(core, parent); 3243 clk_prepare_unlock(); 3244 if (err) 3245 return err; 3246 3247 return count; 3248 } 3249 3250 static const struct file_operations current_parent_rw_fops = { 3251 .open = current_parent_open, 3252 .write = current_parent_write, 3253 .read = seq_read, 3254 .llseek = seq_lseek, 3255 .release = single_release, 3256 }; 3257 #endif 3258 3259 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3260 { 3261 struct clk_core *core = s->private; 3262 struct clk_duty *duty = &core->duty; 3263 3264 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3265 3266 return 0; 3267 } 3268 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3269 3270 static int clk_min_rate_show(struct seq_file *s, void *data) 3271 { 3272 struct clk_core *core = s->private; 3273 unsigned long min_rate, max_rate; 3274 3275 clk_prepare_lock(); 3276 clk_core_get_boundaries(core, &min_rate, &max_rate); 3277 clk_prepare_unlock(); 3278 seq_printf(s, "%lu\n", min_rate); 3279 3280 return 0; 3281 } 3282 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3283 3284 static int clk_max_rate_show(struct seq_file *s, void *data) 3285 { 3286 struct clk_core *core = s->private; 3287 unsigned long min_rate, max_rate; 3288 3289 clk_prepare_lock(); 3290 clk_core_get_boundaries(core, &min_rate, &max_rate); 3291 clk_prepare_unlock(); 3292 seq_printf(s, "%lu\n", max_rate); 3293 3294 return 0; 3295 } 3296 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3297 3298 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3299 { 3300 struct dentry *root; 3301 3302 if (!core || !pdentry) 3303 return; 3304 3305 root = debugfs_create_dir(core->name, pdentry); 3306 core->dentry = root; 3307 3308 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3309 &clk_rate_fops); 3310 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3311 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3312 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3313 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3314 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3315 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3316 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3317 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3318 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3319 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3320 &clk_duty_cycle_fops); 3321 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3322 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3323 &clk_prepare_enable_fops); 3324 3325 if (core->num_parents > 1) 3326 debugfs_create_file("clk_parent", 0644, root, core, 3327 ¤t_parent_rw_fops); 3328 else 3329 #endif 3330 if (core->num_parents > 0) 3331 debugfs_create_file("clk_parent", 0444, root, core, 3332 ¤t_parent_fops); 3333 3334 if (core->num_parents > 1) 3335 debugfs_create_file("clk_possible_parents", 0444, root, core, 3336 &possible_parents_fops); 3337 3338 if (core->ops->debug_init) 3339 core->ops->debug_init(core->hw, core->dentry); 3340 } 3341 3342 /** 3343 * clk_debug_register - add a clk node to the debugfs clk directory 3344 * @core: the clk being added to the debugfs clk directory 3345 * 3346 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3347 * initialized. Otherwise it bails out early since the debugfs clk directory 3348 * will be created lazily by clk_debug_init as part of a late_initcall. 3349 */ 3350 static void clk_debug_register(struct clk_core *core) 3351 { 3352 mutex_lock(&clk_debug_lock); 3353 hlist_add_head(&core->debug_node, &clk_debug_list); 3354 if (inited) 3355 clk_debug_create_one(core, rootdir); 3356 mutex_unlock(&clk_debug_lock); 3357 } 3358 3359 /** 3360 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3361 * @core: the clk being removed from the debugfs clk directory 3362 * 3363 * Dynamically removes a clk and all its child nodes from the 3364 * debugfs clk directory if clk->dentry points to debugfs created by 3365 * clk_debug_register in __clk_core_init. 3366 */ 3367 static void clk_debug_unregister(struct clk_core *core) 3368 { 3369 mutex_lock(&clk_debug_lock); 3370 hlist_del_init(&core->debug_node); 3371 debugfs_remove_recursive(core->dentry); 3372 core->dentry = NULL; 3373 mutex_unlock(&clk_debug_lock); 3374 } 3375 3376 /** 3377 * clk_debug_init - lazily populate the debugfs clk directory 3378 * 3379 * clks are often initialized very early during boot before memory can be 3380 * dynamically allocated and well before debugfs is setup. This function 3381 * populates the debugfs clk directory once at boot-time when we know that 3382 * debugfs is setup. It should only be called once at boot-time, all other clks 3383 * added dynamically will be done so with clk_debug_register. 3384 */ 3385 static int __init clk_debug_init(void) 3386 { 3387 struct clk_core *core; 3388 3389 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3390 pr_warn("\n"); 3391 pr_warn("********************************************************************\n"); 3392 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3393 pr_warn("** **\n"); 3394 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3395 pr_warn("** **\n"); 3396 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3397 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3398 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3399 pr_warn("** **\n"); 3400 pr_warn("** If you see this message and you are not debugging the **\n"); 3401 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3402 pr_warn("** **\n"); 3403 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3404 pr_warn("********************************************************************\n"); 3405 #endif 3406 3407 rootdir = debugfs_create_dir("clk", NULL); 3408 3409 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3410 &clk_summary_fops); 3411 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3412 &clk_dump_fops); 3413 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3414 &clk_summary_fops); 3415 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3416 &clk_dump_fops); 3417 3418 mutex_lock(&clk_debug_lock); 3419 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3420 clk_debug_create_one(core, rootdir); 3421 3422 inited = 1; 3423 mutex_unlock(&clk_debug_lock); 3424 3425 return 0; 3426 } 3427 late_initcall(clk_debug_init); 3428 #else 3429 static inline void clk_debug_register(struct clk_core *core) { } 3430 static inline void clk_debug_unregister(struct clk_core *core) 3431 { 3432 } 3433 #endif 3434 3435 static void clk_core_reparent_orphans_nolock(void) 3436 { 3437 struct clk_core *orphan; 3438 struct hlist_node *tmp2; 3439 3440 /* 3441 * walk the list of orphan clocks and reparent any that newly finds a 3442 * parent. 3443 */ 3444 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3445 struct clk_core *parent = __clk_init_parent(orphan); 3446 3447 /* 3448 * We need to use __clk_set_parent_before() and _after() to 3449 * to properly migrate any prepare/enable count of the orphan 3450 * clock. This is important for CLK_IS_CRITICAL clocks, which 3451 * are enabled during init but might not have a parent yet. 3452 */ 3453 if (parent) { 3454 /* update the clk tree topology */ 3455 __clk_set_parent_before(orphan, parent); 3456 __clk_set_parent_after(orphan, parent, NULL); 3457 __clk_recalc_accuracies(orphan); 3458 __clk_recalc_rates(orphan, 0); 3459 } 3460 } 3461 } 3462 3463 /** 3464 * __clk_core_init - initialize the data structures in a struct clk_core 3465 * @core: clk_core being initialized 3466 * 3467 * Initializes the lists in struct clk_core, queries the hardware for the 3468 * parent and rate and sets them both. 3469 */ 3470 static int __clk_core_init(struct clk_core *core) 3471 { 3472 int ret; 3473 struct clk_core *parent; 3474 unsigned long rate; 3475 int phase; 3476 3477 clk_prepare_lock(); 3478 3479 /* 3480 * Set hw->core after grabbing the prepare_lock to synchronize with 3481 * callers of clk_core_fill_parent_index() where we treat hw->core 3482 * being NULL as the clk not being registered yet. This is crucial so 3483 * that clks aren't parented until their parent is fully registered. 3484 */ 3485 core->hw->core = core; 3486 3487 ret = clk_pm_runtime_get(core); 3488 if (ret) 3489 goto unlock; 3490 3491 /* check to see if a clock with this name is already registered */ 3492 if (clk_core_lookup(core->name)) { 3493 pr_debug("%s: clk %s already initialized\n", 3494 __func__, core->name); 3495 ret = -EEXIST; 3496 goto out; 3497 } 3498 3499 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3500 if (core->ops->set_rate && 3501 !((core->ops->round_rate || core->ops->determine_rate) && 3502 core->ops->recalc_rate)) { 3503 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3504 __func__, core->name); 3505 ret = -EINVAL; 3506 goto out; 3507 } 3508 3509 if (core->ops->set_parent && !core->ops->get_parent) { 3510 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3511 __func__, core->name); 3512 ret = -EINVAL; 3513 goto out; 3514 } 3515 3516 if (core->num_parents > 1 && !core->ops->get_parent) { 3517 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3518 __func__, core->name); 3519 ret = -EINVAL; 3520 goto out; 3521 } 3522 3523 if (core->ops->set_rate_and_parent && 3524 !(core->ops->set_parent && core->ops->set_rate)) { 3525 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3526 __func__, core->name); 3527 ret = -EINVAL; 3528 goto out; 3529 } 3530 3531 /* 3532 * optional platform-specific magic 3533 * 3534 * The .init callback is not used by any of the basic clock types, but 3535 * exists for weird hardware that must perform initialization magic for 3536 * CCF to get an accurate view of clock for any other callbacks. It may 3537 * also be used needs to perform dynamic allocations. Such allocation 3538 * must be freed in the terminate() callback. 3539 * This callback shall not be used to initialize the parameters state, 3540 * such as rate, parent, etc ... 3541 * 3542 * If it exist, this callback should called before any other callback of 3543 * the clock 3544 */ 3545 if (core->ops->init) { 3546 ret = core->ops->init(core->hw); 3547 if (ret) 3548 goto out; 3549 } 3550 3551 parent = core->parent = __clk_init_parent(core); 3552 3553 /* 3554 * Populate core->parent if parent has already been clk_core_init'd. If 3555 * parent has not yet been clk_core_init'd then place clk in the orphan 3556 * list. If clk doesn't have any parents then place it in the root 3557 * clk list. 3558 * 3559 * Every time a new clk is clk_init'd then we walk the list of orphan 3560 * clocks and re-parent any that are children of the clock currently 3561 * being clk_init'd. 3562 */ 3563 if (parent) { 3564 hlist_add_head(&core->child_node, &parent->children); 3565 core->orphan = parent->orphan; 3566 } else if (!core->num_parents) { 3567 hlist_add_head(&core->child_node, &clk_root_list); 3568 core->orphan = false; 3569 } else { 3570 hlist_add_head(&core->child_node, &clk_orphan_list); 3571 core->orphan = true; 3572 } 3573 3574 /* 3575 * Set clk's accuracy. The preferred method is to use 3576 * .recalc_accuracy. For simple clocks and lazy developers the default 3577 * fallback is to use the parent's accuracy. If a clock doesn't have a 3578 * parent (or is orphaned) then accuracy is set to zero (perfect 3579 * clock). 3580 */ 3581 if (core->ops->recalc_accuracy) 3582 core->accuracy = core->ops->recalc_accuracy(core->hw, 3583 clk_core_get_accuracy_no_lock(parent)); 3584 else if (parent) 3585 core->accuracy = parent->accuracy; 3586 else 3587 core->accuracy = 0; 3588 3589 /* 3590 * Set clk's phase by clk_core_get_phase() caching the phase. 3591 * Since a phase is by definition relative to its parent, just 3592 * query the current clock phase, or just assume it's in phase. 3593 */ 3594 phase = clk_core_get_phase(core); 3595 if (phase < 0) { 3596 ret = phase; 3597 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3598 core->name); 3599 goto out; 3600 } 3601 3602 /* 3603 * Set clk's duty cycle. 3604 */ 3605 clk_core_update_duty_cycle_nolock(core); 3606 3607 /* 3608 * Set clk's rate. The preferred method is to use .recalc_rate. For 3609 * simple clocks and lazy developers the default fallback is to use the 3610 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3611 * then rate is set to zero. 3612 */ 3613 if (core->ops->recalc_rate) 3614 rate = core->ops->recalc_rate(core->hw, 3615 clk_core_get_rate_nolock(parent)); 3616 else if (parent) 3617 rate = parent->rate; 3618 else 3619 rate = 0; 3620 core->rate = core->req_rate = rate; 3621 3622 /* 3623 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3624 * don't get accidentally disabled when walking the orphan tree and 3625 * reparenting clocks 3626 */ 3627 if (core->flags & CLK_IS_CRITICAL) { 3628 ret = clk_core_prepare(core); 3629 if (ret) { 3630 pr_warn("%s: critical clk '%s' failed to prepare\n", 3631 __func__, core->name); 3632 goto out; 3633 } 3634 3635 ret = clk_core_enable_lock(core); 3636 if (ret) { 3637 pr_warn("%s: critical clk '%s' failed to enable\n", 3638 __func__, core->name); 3639 clk_core_unprepare(core); 3640 goto out; 3641 } 3642 } 3643 3644 clk_core_reparent_orphans_nolock(); 3645 3646 3647 kref_init(&core->ref); 3648 out: 3649 clk_pm_runtime_put(core); 3650 unlock: 3651 if (ret) { 3652 hlist_del_init(&core->child_node); 3653 core->hw->core = NULL; 3654 } 3655 3656 clk_prepare_unlock(); 3657 3658 if (!ret) 3659 clk_debug_register(core); 3660 3661 return ret; 3662 } 3663 3664 /** 3665 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3666 * @core: clk to add consumer to 3667 * @clk: consumer to link to a clk 3668 */ 3669 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3670 { 3671 clk_prepare_lock(); 3672 hlist_add_head(&clk->clks_node, &core->clks); 3673 clk_prepare_unlock(); 3674 } 3675 3676 /** 3677 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3678 * @clk: consumer to unlink 3679 */ 3680 static void clk_core_unlink_consumer(struct clk *clk) 3681 { 3682 lockdep_assert_held(&prepare_lock); 3683 hlist_del(&clk->clks_node); 3684 } 3685 3686 /** 3687 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3688 * @core: clk to allocate a consumer for 3689 * @dev_id: string describing device name 3690 * @con_id: connection ID string on device 3691 * 3692 * Returns: clk consumer left unlinked from the consumer list 3693 */ 3694 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3695 const char *con_id) 3696 { 3697 struct clk *clk; 3698 3699 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3700 if (!clk) 3701 return ERR_PTR(-ENOMEM); 3702 3703 clk->core = core; 3704 clk->dev_id = dev_id; 3705 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3706 clk->max_rate = ULONG_MAX; 3707 3708 return clk; 3709 } 3710 3711 /** 3712 * free_clk - Free a clk consumer 3713 * @clk: clk consumer to free 3714 * 3715 * Note, this assumes the clk has been unlinked from the clk_core consumer 3716 * list. 3717 */ 3718 static void free_clk(struct clk *clk) 3719 { 3720 kfree_const(clk->con_id); 3721 kfree(clk); 3722 } 3723 3724 /** 3725 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3726 * a clk_hw 3727 * @dev: clk consumer device 3728 * @hw: clk_hw associated with the clk being consumed 3729 * @dev_id: string describing device name 3730 * @con_id: connection ID string on device 3731 * 3732 * This is the main function used to create a clk pointer for use by clk 3733 * consumers. It connects a consumer to the clk_core and clk_hw structures 3734 * used by the framework and clk provider respectively. 3735 */ 3736 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3737 const char *dev_id, const char *con_id) 3738 { 3739 struct clk *clk; 3740 struct clk_core *core; 3741 3742 /* This is to allow this function to be chained to others */ 3743 if (IS_ERR_OR_NULL(hw)) 3744 return ERR_CAST(hw); 3745 3746 core = hw->core; 3747 clk = alloc_clk(core, dev_id, con_id); 3748 if (IS_ERR(clk)) 3749 return clk; 3750 clk->dev = dev; 3751 3752 if (!try_module_get(core->owner)) { 3753 free_clk(clk); 3754 return ERR_PTR(-ENOENT); 3755 } 3756 3757 kref_get(&core->ref); 3758 clk_core_link_consumer(core, clk); 3759 3760 return clk; 3761 } 3762 3763 /** 3764 * clk_hw_get_clk - get clk consumer given an clk_hw 3765 * @hw: clk_hw associated with the clk being consumed 3766 * @con_id: connection ID string on device 3767 * 3768 * Returns: new clk consumer 3769 * This is the function to be used by providers which need 3770 * to get a consumer clk and act on the clock element 3771 * Calls to this function must be balanced with calls clk_put() 3772 */ 3773 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3774 { 3775 struct device *dev = hw->core->dev; 3776 3777 return clk_hw_create_clk(dev, hw, dev_name(dev), con_id); 3778 } 3779 EXPORT_SYMBOL(clk_hw_get_clk); 3780 3781 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3782 { 3783 const char *dst; 3784 3785 if (!src) { 3786 if (must_exist) 3787 return -EINVAL; 3788 return 0; 3789 } 3790 3791 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3792 if (!dst) 3793 return -ENOMEM; 3794 3795 return 0; 3796 } 3797 3798 static int clk_core_populate_parent_map(struct clk_core *core, 3799 const struct clk_init_data *init) 3800 { 3801 u8 num_parents = init->num_parents; 3802 const char * const *parent_names = init->parent_names; 3803 const struct clk_hw **parent_hws = init->parent_hws; 3804 const struct clk_parent_data *parent_data = init->parent_data; 3805 int i, ret = 0; 3806 struct clk_parent_map *parents, *parent; 3807 3808 if (!num_parents) 3809 return 0; 3810 3811 /* 3812 * Avoid unnecessary string look-ups of clk_core's possible parents by 3813 * having a cache of names/clk_hw pointers to clk_core pointers. 3814 */ 3815 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3816 core->parents = parents; 3817 if (!parents) 3818 return -ENOMEM; 3819 3820 /* Copy everything over because it might be __initdata */ 3821 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3822 parent->index = -1; 3823 if (parent_names) { 3824 /* throw a WARN if any entries are NULL */ 3825 WARN(!parent_names[i], 3826 "%s: invalid NULL in %s's .parent_names\n", 3827 __func__, core->name); 3828 ret = clk_cpy_name(&parent->name, parent_names[i], 3829 true); 3830 } else if (parent_data) { 3831 parent->hw = parent_data[i].hw; 3832 parent->index = parent_data[i].index; 3833 ret = clk_cpy_name(&parent->fw_name, 3834 parent_data[i].fw_name, false); 3835 if (!ret) 3836 ret = clk_cpy_name(&parent->name, 3837 parent_data[i].name, 3838 false); 3839 } else if (parent_hws) { 3840 parent->hw = parent_hws[i]; 3841 } else { 3842 ret = -EINVAL; 3843 WARN(1, "Must specify parents if num_parents > 0\n"); 3844 } 3845 3846 if (ret) { 3847 do { 3848 kfree_const(parents[i].name); 3849 kfree_const(parents[i].fw_name); 3850 } while (--i >= 0); 3851 kfree(parents); 3852 3853 return ret; 3854 } 3855 } 3856 3857 return 0; 3858 } 3859 3860 static void clk_core_free_parent_map(struct clk_core *core) 3861 { 3862 int i = core->num_parents; 3863 3864 if (!core->num_parents) 3865 return; 3866 3867 while (--i >= 0) { 3868 kfree_const(core->parents[i].name); 3869 kfree_const(core->parents[i].fw_name); 3870 } 3871 3872 kfree(core->parents); 3873 } 3874 3875 static struct clk * 3876 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3877 { 3878 int ret; 3879 struct clk_core *core; 3880 const struct clk_init_data *init = hw->init; 3881 3882 /* 3883 * The init data is not supposed to be used outside of registration path. 3884 * Set it to NULL so that provider drivers can't use it either and so that 3885 * we catch use of hw->init early on in the core. 3886 */ 3887 hw->init = NULL; 3888 3889 core = kzalloc(sizeof(*core), GFP_KERNEL); 3890 if (!core) { 3891 ret = -ENOMEM; 3892 goto fail_out; 3893 } 3894 3895 core->name = kstrdup_const(init->name, GFP_KERNEL); 3896 if (!core->name) { 3897 ret = -ENOMEM; 3898 goto fail_name; 3899 } 3900 3901 if (WARN_ON(!init->ops)) { 3902 ret = -EINVAL; 3903 goto fail_ops; 3904 } 3905 core->ops = init->ops; 3906 3907 if (dev && pm_runtime_enabled(dev)) 3908 core->rpm_enabled = true; 3909 core->dev = dev; 3910 core->of_node = np; 3911 if (dev && dev->driver) 3912 core->owner = dev->driver->owner; 3913 core->hw = hw; 3914 core->flags = init->flags; 3915 core->num_parents = init->num_parents; 3916 core->min_rate = 0; 3917 core->max_rate = ULONG_MAX; 3918 3919 ret = clk_core_populate_parent_map(core, init); 3920 if (ret) 3921 goto fail_parents; 3922 3923 INIT_HLIST_HEAD(&core->clks); 3924 3925 /* 3926 * Don't call clk_hw_create_clk() here because that would pin the 3927 * provider module to itself and prevent it from ever being removed. 3928 */ 3929 hw->clk = alloc_clk(core, NULL, NULL); 3930 if (IS_ERR(hw->clk)) { 3931 ret = PTR_ERR(hw->clk); 3932 goto fail_create_clk; 3933 } 3934 3935 clk_core_link_consumer(core, hw->clk); 3936 3937 ret = __clk_core_init(core); 3938 if (!ret) 3939 return hw->clk; 3940 3941 clk_prepare_lock(); 3942 clk_core_unlink_consumer(hw->clk); 3943 clk_prepare_unlock(); 3944 3945 free_clk(hw->clk); 3946 hw->clk = NULL; 3947 3948 fail_create_clk: 3949 clk_core_free_parent_map(core); 3950 fail_parents: 3951 fail_ops: 3952 kfree_const(core->name); 3953 fail_name: 3954 kfree(core); 3955 fail_out: 3956 return ERR_PTR(ret); 3957 } 3958 3959 /** 3960 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3961 * @dev: Device to get device node of 3962 * 3963 * Return: device node pointer of @dev, or the device node pointer of 3964 * @dev->parent if dev doesn't have a device node, or NULL if neither 3965 * @dev or @dev->parent have a device node. 3966 */ 3967 static struct device_node *dev_or_parent_of_node(struct device *dev) 3968 { 3969 struct device_node *np; 3970 3971 if (!dev) 3972 return NULL; 3973 3974 np = dev_of_node(dev); 3975 if (!np) 3976 np = dev_of_node(dev->parent); 3977 3978 return np; 3979 } 3980 3981 /** 3982 * clk_register - allocate a new clock, register it and return an opaque cookie 3983 * @dev: device that is registering this clock 3984 * @hw: link to hardware-specific clock data 3985 * 3986 * clk_register is the *deprecated* interface for populating the clock tree with 3987 * new clock nodes. Use clk_hw_register() instead. 3988 * 3989 * Returns: a pointer to the newly allocated struct clk which 3990 * cannot be dereferenced by driver code but may be used in conjunction with the 3991 * rest of the clock API. In the event of an error clk_register will return an 3992 * error code; drivers must test for an error code after calling clk_register. 3993 */ 3994 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3995 { 3996 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 3997 } 3998 EXPORT_SYMBOL_GPL(clk_register); 3999 4000 /** 4001 * clk_hw_register - register a clk_hw and return an error code 4002 * @dev: device that is registering this clock 4003 * @hw: link to hardware-specific clock data 4004 * 4005 * clk_hw_register is the primary interface for populating the clock tree with 4006 * new clock nodes. It returns an integer equal to zero indicating success or 4007 * less than zero indicating failure. Drivers must test for an error code after 4008 * calling clk_hw_register(). 4009 */ 4010 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4011 { 4012 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4013 hw)); 4014 } 4015 EXPORT_SYMBOL_GPL(clk_hw_register); 4016 4017 /* 4018 * of_clk_hw_register - register a clk_hw and return an error code 4019 * @node: device_node of device that is registering this clock 4020 * @hw: link to hardware-specific clock data 4021 * 4022 * of_clk_hw_register() is the primary interface for populating the clock tree 4023 * with new clock nodes when a struct device is not available, but a struct 4024 * device_node is. It returns an integer equal to zero indicating success or 4025 * less than zero indicating failure. Drivers must test for an error code after 4026 * calling of_clk_hw_register(). 4027 */ 4028 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4029 { 4030 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4031 } 4032 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4033 4034 /* Free memory allocated for a clock. */ 4035 static void __clk_release(struct kref *ref) 4036 { 4037 struct clk_core *core = container_of(ref, struct clk_core, ref); 4038 4039 lockdep_assert_held(&prepare_lock); 4040 4041 clk_core_free_parent_map(core); 4042 kfree_const(core->name); 4043 kfree(core); 4044 } 4045 4046 /* 4047 * Empty clk_ops for unregistered clocks. These are used temporarily 4048 * after clk_unregister() was called on a clock and until last clock 4049 * consumer calls clk_put() and the struct clk object is freed. 4050 */ 4051 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4052 { 4053 return -ENXIO; 4054 } 4055 4056 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4057 { 4058 WARN_ON_ONCE(1); 4059 } 4060 4061 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4062 unsigned long parent_rate) 4063 { 4064 return -ENXIO; 4065 } 4066 4067 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4068 { 4069 return -ENXIO; 4070 } 4071 4072 static const struct clk_ops clk_nodrv_ops = { 4073 .enable = clk_nodrv_prepare_enable, 4074 .disable = clk_nodrv_disable_unprepare, 4075 .prepare = clk_nodrv_prepare_enable, 4076 .unprepare = clk_nodrv_disable_unprepare, 4077 .set_rate = clk_nodrv_set_rate, 4078 .set_parent = clk_nodrv_set_parent, 4079 }; 4080 4081 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4082 struct clk_core *target) 4083 { 4084 int i; 4085 struct clk_core *child; 4086 4087 for (i = 0; i < root->num_parents; i++) 4088 if (root->parents[i].core == target) 4089 root->parents[i].core = NULL; 4090 4091 hlist_for_each_entry(child, &root->children, child_node) 4092 clk_core_evict_parent_cache_subtree(child, target); 4093 } 4094 4095 /* Remove this clk from all parent caches */ 4096 static void clk_core_evict_parent_cache(struct clk_core *core) 4097 { 4098 struct hlist_head **lists; 4099 struct clk_core *root; 4100 4101 lockdep_assert_held(&prepare_lock); 4102 4103 for (lists = all_lists; *lists; lists++) 4104 hlist_for_each_entry(root, *lists, child_node) 4105 clk_core_evict_parent_cache_subtree(root, core); 4106 4107 } 4108 4109 /** 4110 * clk_unregister - unregister a currently registered clock 4111 * @clk: clock to unregister 4112 */ 4113 void clk_unregister(struct clk *clk) 4114 { 4115 unsigned long flags; 4116 const struct clk_ops *ops; 4117 4118 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4119 return; 4120 4121 clk_debug_unregister(clk->core); 4122 4123 clk_prepare_lock(); 4124 4125 ops = clk->core->ops; 4126 if (ops == &clk_nodrv_ops) { 4127 pr_err("%s: unregistered clock: %s\n", __func__, 4128 clk->core->name); 4129 goto unlock; 4130 } 4131 /* 4132 * Assign empty clock ops for consumers that might still hold 4133 * a reference to this clock. 4134 */ 4135 flags = clk_enable_lock(); 4136 clk->core->ops = &clk_nodrv_ops; 4137 clk_enable_unlock(flags); 4138 4139 if (ops->terminate) 4140 ops->terminate(clk->core->hw); 4141 4142 if (!hlist_empty(&clk->core->children)) { 4143 struct clk_core *child; 4144 struct hlist_node *t; 4145 4146 /* Reparent all children to the orphan list. */ 4147 hlist_for_each_entry_safe(child, t, &clk->core->children, 4148 child_node) 4149 clk_core_set_parent_nolock(child, NULL); 4150 } 4151 4152 clk_core_evict_parent_cache(clk->core); 4153 4154 hlist_del_init(&clk->core->child_node); 4155 4156 if (clk->core->prepare_count) 4157 pr_warn("%s: unregistering prepared clock: %s\n", 4158 __func__, clk->core->name); 4159 4160 if (clk->core->protect_count) 4161 pr_warn("%s: unregistering protected clock: %s\n", 4162 __func__, clk->core->name); 4163 4164 kref_put(&clk->core->ref, __clk_release); 4165 free_clk(clk); 4166 unlock: 4167 clk_prepare_unlock(); 4168 } 4169 EXPORT_SYMBOL_GPL(clk_unregister); 4170 4171 /** 4172 * clk_hw_unregister - unregister a currently registered clk_hw 4173 * @hw: hardware-specific clock data to unregister 4174 */ 4175 void clk_hw_unregister(struct clk_hw *hw) 4176 { 4177 clk_unregister(hw->clk); 4178 } 4179 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4180 4181 static void devm_clk_unregister_cb(struct device *dev, void *res) 4182 { 4183 clk_unregister(*(struct clk **)res); 4184 } 4185 4186 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4187 { 4188 clk_hw_unregister(*(struct clk_hw **)res); 4189 } 4190 4191 /** 4192 * devm_clk_register - resource managed clk_register() 4193 * @dev: device that is registering this clock 4194 * @hw: link to hardware-specific clock data 4195 * 4196 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4197 * 4198 * Clocks returned from this function are automatically clk_unregister()ed on 4199 * driver detach. See clk_register() for more information. 4200 */ 4201 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4202 { 4203 struct clk *clk; 4204 struct clk **clkp; 4205 4206 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4207 if (!clkp) 4208 return ERR_PTR(-ENOMEM); 4209 4210 clk = clk_register(dev, hw); 4211 if (!IS_ERR(clk)) { 4212 *clkp = clk; 4213 devres_add(dev, clkp); 4214 } else { 4215 devres_free(clkp); 4216 } 4217 4218 return clk; 4219 } 4220 EXPORT_SYMBOL_GPL(devm_clk_register); 4221 4222 /** 4223 * devm_clk_hw_register - resource managed clk_hw_register() 4224 * @dev: device that is registering this clock 4225 * @hw: link to hardware-specific clock data 4226 * 4227 * Managed clk_hw_register(). Clocks registered by this function are 4228 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4229 * for more information. 4230 */ 4231 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4232 { 4233 struct clk_hw **hwp; 4234 int ret; 4235 4236 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4237 if (!hwp) 4238 return -ENOMEM; 4239 4240 ret = clk_hw_register(dev, hw); 4241 if (!ret) { 4242 *hwp = hw; 4243 devres_add(dev, hwp); 4244 } else { 4245 devres_free(hwp); 4246 } 4247 4248 return ret; 4249 } 4250 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4251 4252 static int devm_clk_match(struct device *dev, void *res, void *data) 4253 { 4254 struct clk *c = res; 4255 if (WARN_ON(!c)) 4256 return 0; 4257 return c == data; 4258 } 4259 4260 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4261 { 4262 struct clk_hw *hw = res; 4263 4264 if (WARN_ON(!hw)) 4265 return 0; 4266 return hw == data; 4267 } 4268 4269 /** 4270 * devm_clk_unregister - resource managed clk_unregister() 4271 * @dev: device that is unregistering the clock data 4272 * @clk: clock to unregister 4273 * 4274 * Deallocate a clock allocated with devm_clk_register(). Normally 4275 * this function will not need to be called and the resource management 4276 * code will ensure that the resource is freed. 4277 */ 4278 void devm_clk_unregister(struct device *dev, struct clk *clk) 4279 { 4280 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk)); 4281 } 4282 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4283 4284 /** 4285 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4286 * @dev: device that is unregistering the hardware-specific clock data 4287 * @hw: link to hardware-specific clock data 4288 * 4289 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4290 * this function will not need to be called and the resource management 4291 * code will ensure that the resource is freed. 4292 */ 4293 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4294 { 4295 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match, 4296 hw)); 4297 } 4298 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4299 4300 static void devm_clk_release(struct device *dev, void *res) 4301 { 4302 clk_put(*(struct clk **)res); 4303 } 4304 4305 /** 4306 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4307 * @dev: device that is registering this clock 4308 * @hw: clk_hw associated with the clk being consumed 4309 * @con_id: connection ID string on device 4310 * 4311 * Managed clk_hw_get_clk(). Clocks got with this function are 4312 * automatically clk_put() on driver detach. See clk_put() 4313 * for more information. 4314 */ 4315 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4316 const char *con_id) 4317 { 4318 struct clk *clk; 4319 struct clk **clkp; 4320 4321 /* This should not happen because it would mean we have drivers 4322 * passing around clk_hw pointers instead of having the caller use 4323 * proper clk_get() style APIs 4324 */ 4325 WARN_ON_ONCE(dev != hw->core->dev); 4326 4327 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4328 if (!clkp) 4329 return ERR_PTR(-ENOMEM); 4330 4331 clk = clk_hw_get_clk(hw, con_id); 4332 if (!IS_ERR(clk)) { 4333 *clkp = clk; 4334 devres_add(dev, clkp); 4335 } else { 4336 devres_free(clkp); 4337 } 4338 4339 return clk; 4340 } 4341 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4342 4343 /* 4344 * clkdev helpers 4345 */ 4346 4347 void __clk_put(struct clk *clk) 4348 { 4349 struct module *owner; 4350 4351 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4352 return; 4353 4354 clk_prepare_lock(); 4355 4356 /* 4357 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4358 * given user should be balanced with calls to clk_rate_exclusive_put() 4359 * and by that same consumer 4360 */ 4361 if (WARN_ON(clk->exclusive_count)) { 4362 /* We voiced our concern, let's sanitize the situation */ 4363 clk->core->protect_count -= (clk->exclusive_count - 1); 4364 clk_core_rate_unprotect(clk->core); 4365 clk->exclusive_count = 0; 4366 } 4367 4368 hlist_del(&clk->clks_node); 4369 if (clk->min_rate > clk->core->req_rate || 4370 clk->max_rate < clk->core->req_rate) 4371 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4372 4373 owner = clk->core->owner; 4374 kref_put(&clk->core->ref, __clk_release); 4375 4376 clk_prepare_unlock(); 4377 4378 module_put(owner); 4379 4380 free_clk(clk); 4381 } 4382 4383 /*** clk rate change notifiers ***/ 4384 4385 /** 4386 * clk_notifier_register - add a clk rate change notifier 4387 * @clk: struct clk * to watch 4388 * @nb: struct notifier_block * with callback info 4389 * 4390 * Request notification when clk's rate changes. This uses an SRCU 4391 * notifier because we want it to block and notifier unregistrations are 4392 * uncommon. The callbacks associated with the notifier must not 4393 * re-enter into the clk framework by calling any top-level clk APIs; 4394 * this will cause a nested prepare_lock mutex. 4395 * 4396 * In all notification cases (pre, post and abort rate change) the original 4397 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4398 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4399 * 4400 * clk_notifier_register() must be called from non-atomic context. 4401 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4402 * allocation failure; otherwise, passes along the return value of 4403 * srcu_notifier_chain_register(). 4404 */ 4405 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4406 { 4407 struct clk_notifier *cn; 4408 int ret = -ENOMEM; 4409 4410 if (!clk || !nb) 4411 return -EINVAL; 4412 4413 clk_prepare_lock(); 4414 4415 /* search the list of notifiers for this clk */ 4416 list_for_each_entry(cn, &clk_notifier_list, node) 4417 if (cn->clk == clk) 4418 goto found; 4419 4420 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4421 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4422 if (!cn) 4423 goto out; 4424 4425 cn->clk = clk; 4426 srcu_init_notifier_head(&cn->notifier_head); 4427 4428 list_add(&cn->node, &clk_notifier_list); 4429 4430 found: 4431 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4432 4433 clk->core->notifier_count++; 4434 4435 out: 4436 clk_prepare_unlock(); 4437 4438 return ret; 4439 } 4440 EXPORT_SYMBOL_GPL(clk_notifier_register); 4441 4442 /** 4443 * clk_notifier_unregister - remove a clk rate change notifier 4444 * @clk: struct clk * 4445 * @nb: struct notifier_block * with callback info 4446 * 4447 * Request no further notification for changes to 'clk' and frees memory 4448 * allocated in clk_notifier_register. 4449 * 4450 * Returns -EINVAL if called with null arguments; otherwise, passes 4451 * along the return value of srcu_notifier_chain_unregister(). 4452 */ 4453 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4454 { 4455 struct clk_notifier *cn; 4456 int ret = -ENOENT; 4457 4458 if (!clk || !nb) 4459 return -EINVAL; 4460 4461 clk_prepare_lock(); 4462 4463 list_for_each_entry(cn, &clk_notifier_list, node) { 4464 if (cn->clk == clk) { 4465 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4466 4467 clk->core->notifier_count--; 4468 4469 /* XXX the notifier code should handle this better */ 4470 if (!cn->notifier_head.head) { 4471 srcu_cleanup_notifier_head(&cn->notifier_head); 4472 list_del(&cn->node); 4473 kfree(cn); 4474 } 4475 break; 4476 } 4477 } 4478 4479 clk_prepare_unlock(); 4480 4481 return ret; 4482 } 4483 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4484 4485 struct clk_notifier_devres { 4486 struct clk *clk; 4487 struct notifier_block *nb; 4488 }; 4489 4490 static void devm_clk_notifier_release(struct device *dev, void *res) 4491 { 4492 struct clk_notifier_devres *devres = res; 4493 4494 clk_notifier_unregister(devres->clk, devres->nb); 4495 } 4496 4497 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4498 struct notifier_block *nb) 4499 { 4500 struct clk_notifier_devres *devres; 4501 int ret; 4502 4503 devres = devres_alloc(devm_clk_notifier_release, 4504 sizeof(*devres), GFP_KERNEL); 4505 4506 if (!devres) 4507 return -ENOMEM; 4508 4509 ret = clk_notifier_register(clk, nb); 4510 if (!ret) { 4511 devres->clk = clk; 4512 devres->nb = nb; 4513 } else { 4514 devres_free(devres); 4515 } 4516 4517 return ret; 4518 } 4519 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4520 4521 #ifdef CONFIG_OF 4522 static void clk_core_reparent_orphans(void) 4523 { 4524 clk_prepare_lock(); 4525 clk_core_reparent_orphans_nolock(); 4526 clk_prepare_unlock(); 4527 } 4528 4529 /** 4530 * struct of_clk_provider - Clock provider registration structure 4531 * @link: Entry in global list of clock providers 4532 * @node: Pointer to device tree node of clock provider 4533 * @get: Get clock callback. Returns NULL or a struct clk for the 4534 * given clock specifier 4535 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4536 * struct clk_hw for the given clock specifier 4537 * @data: context pointer to be passed into @get callback 4538 */ 4539 struct of_clk_provider { 4540 struct list_head link; 4541 4542 struct device_node *node; 4543 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4544 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4545 void *data; 4546 }; 4547 4548 extern struct of_device_id __clk_of_table; 4549 static const struct of_device_id __clk_of_table_sentinel 4550 __used __section("__clk_of_table_end"); 4551 4552 static LIST_HEAD(of_clk_providers); 4553 static DEFINE_MUTEX(of_clk_mutex); 4554 4555 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4556 void *data) 4557 { 4558 return data; 4559 } 4560 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4561 4562 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4563 { 4564 return data; 4565 } 4566 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4567 4568 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4569 { 4570 struct clk_onecell_data *clk_data = data; 4571 unsigned int idx = clkspec->args[0]; 4572 4573 if (idx >= clk_data->clk_num) { 4574 pr_err("%s: invalid clock index %u\n", __func__, idx); 4575 return ERR_PTR(-EINVAL); 4576 } 4577 4578 return clk_data->clks[idx]; 4579 } 4580 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4581 4582 struct clk_hw * 4583 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4584 { 4585 struct clk_hw_onecell_data *hw_data = data; 4586 unsigned int idx = clkspec->args[0]; 4587 4588 if (idx >= hw_data->num) { 4589 pr_err("%s: invalid index %u\n", __func__, idx); 4590 return ERR_PTR(-EINVAL); 4591 } 4592 4593 return hw_data->hws[idx]; 4594 } 4595 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4596 4597 /** 4598 * of_clk_add_provider() - Register a clock provider for a node 4599 * @np: Device node pointer associated with clock provider 4600 * @clk_src_get: callback for decoding clock 4601 * @data: context pointer for @clk_src_get callback. 4602 * 4603 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4604 */ 4605 int of_clk_add_provider(struct device_node *np, 4606 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4607 void *data), 4608 void *data) 4609 { 4610 struct of_clk_provider *cp; 4611 int ret; 4612 4613 if (!np) 4614 return 0; 4615 4616 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4617 if (!cp) 4618 return -ENOMEM; 4619 4620 cp->node = of_node_get(np); 4621 cp->data = data; 4622 cp->get = clk_src_get; 4623 4624 mutex_lock(&of_clk_mutex); 4625 list_add(&cp->link, &of_clk_providers); 4626 mutex_unlock(&of_clk_mutex); 4627 pr_debug("Added clock from %pOF\n", np); 4628 4629 clk_core_reparent_orphans(); 4630 4631 ret = of_clk_set_defaults(np, true); 4632 if (ret < 0) 4633 of_clk_del_provider(np); 4634 4635 fwnode_dev_initialized(&np->fwnode, true); 4636 4637 return ret; 4638 } 4639 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4640 4641 /** 4642 * of_clk_add_hw_provider() - Register a clock provider for a node 4643 * @np: Device node pointer associated with clock provider 4644 * @get: callback for decoding clk_hw 4645 * @data: context pointer for @get callback. 4646 */ 4647 int of_clk_add_hw_provider(struct device_node *np, 4648 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4649 void *data), 4650 void *data) 4651 { 4652 struct of_clk_provider *cp; 4653 int ret; 4654 4655 if (!np) 4656 return 0; 4657 4658 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4659 if (!cp) 4660 return -ENOMEM; 4661 4662 cp->node = of_node_get(np); 4663 cp->data = data; 4664 cp->get_hw = get; 4665 4666 mutex_lock(&of_clk_mutex); 4667 list_add(&cp->link, &of_clk_providers); 4668 mutex_unlock(&of_clk_mutex); 4669 pr_debug("Added clk_hw provider from %pOF\n", np); 4670 4671 clk_core_reparent_orphans(); 4672 4673 ret = of_clk_set_defaults(np, true); 4674 if (ret < 0) 4675 of_clk_del_provider(np); 4676 4677 fwnode_dev_initialized(&np->fwnode, true); 4678 4679 return ret; 4680 } 4681 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4682 4683 static void devm_of_clk_release_provider(struct device *dev, void *res) 4684 { 4685 of_clk_del_provider(*(struct device_node **)res); 4686 } 4687 4688 /* 4689 * We allow a child device to use its parent device as the clock provider node 4690 * for cases like MFD sub-devices where the child device driver wants to use 4691 * devm_*() APIs but not list the device in DT as a sub-node. 4692 */ 4693 static struct device_node *get_clk_provider_node(struct device *dev) 4694 { 4695 struct device_node *np, *parent_np; 4696 4697 np = dev->of_node; 4698 parent_np = dev->parent ? dev->parent->of_node : NULL; 4699 4700 if (!of_find_property(np, "#clock-cells", NULL)) 4701 if (of_find_property(parent_np, "#clock-cells", NULL)) 4702 np = parent_np; 4703 4704 return np; 4705 } 4706 4707 /** 4708 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4709 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4710 * @get: callback for decoding clk_hw 4711 * @data: context pointer for @get callback 4712 * 4713 * Registers clock provider for given device's node. If the device has no DT 4714 * node or if the device node lacks of clock provider information (#clock-cells) 4715 * then the parent device's node is scanned for this information. If parent node 4716 * has the #clock-cells then it is used in registration. Provider is 4717 * automatically released at device exit. 4718 * 4719 * Return: 0 on success or an errno on failure. 4720 */ 4721 int devm_of_clk_add_hw_provider(struct device *dev, 4722 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4723 void *data), 4724 void *data) 4725 { 4726 struct device_node **ptr, *np; 4727 int ret; 4728 4729 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4730 GFP_KERNEL); 4731 if (!ptr) 4732 return -ENOMEM; 4733 4734 np = get_clk_provider_node(dev); 4735 ret = of_clk_add_hw_provider(np, get, data); 4736 if (!ret) { 4737 *ptr = np; 4738 devres_add(dev, ptr); 4739 } else { 4740 devres_free(ptr); 4741 } 4742 4743 return ret; 4744 } 4745 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4746 4747 /** 4748 * of_clk_del_provider() - Remove a previously registered clock provider 4749 * @np: Device node pointer associated with clock provider 4750 */ 4751 void of_clk_del_provider(struct device_node *np) 4752 { 4753 struct of_clk_provider *cp; 4754 4755 if (!np) 4756 return; 4757 4758 mutex_lock(&of_clk_mutex); 4759 list_for_each_entry(cp, &of_clk_providers, link) { 4760 if (cp->node == np) { 4761 list_del(&cp->link); 4762 fwnode_dev_initialized(&np->fwnode, false); 4763 of_node_put(cp->node); 4764 kfree(cp); 4765 break; 4766 } 4767 } 4768 mutex_unlock(&of_clk_mutex); 4769 } 4770 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4771 4772 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4773 { 4774 struct device_node **np = res; 4775 4776 if (WARN_ON(!np || !*np)) 4777 return 0; 4778 4779 return *np == data; 4780 } 4781 4782 /** 4783 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4784 * @dev: Device to whose lifetime the clock provider was bound 4785 */ 4786 void devm_of_clk_del_provider(struct device *dev) 4787 { 4788 int ret; 4789 struct device_node *np = get_clk_provider_node(dev); 4790 4791 ret = devres_release(dev, devm_of_clk_release_provider, 4792 devm_clk_provider_match, np); 4793 4794 WARN_ON(ret); 4795 } 4796 EXPORT_SYMBOL(devm_of_clk_del_provider); 4797 4798 /** 4799 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4800 * @np: device node to parse clock specifier from 4801 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4802 * @name: clock name to find and parse. If name is NULL, the index is used 4803 * @out_args: Result of parsing the clock specifier 4804 * 4805 * Parses a device node's "clocks" and "clock-names" properties to find the 4806 * phandle and cells for the index or name that is desired. The resulting clock 4807 * specifier is placed into @out_args, or an errno is returned when there's a 4808 * parsing error. The @index argument is ignored if @name is non-NULL. 4809 * 4810 * Example: 4811 * 4812 * phandle1: clock-controller@1 { 4813 * #clock-cells = <2>; 4814 * } 4815 * 4816 * phandle2: clock-controller@2 { 4817 * #clock-cells = <1>; 4818 * } 4819 * 4820 * clock-consumer@3 { 4821 * clocks = <&phandle1 1 2 &phandle2 3>; 4822 * clock-names = "name1", "name2"; 4823 * } 4824 * 4825 * To get a device_node for `clock-controller@2' node you may call this 4826 * function a few different ways: 4827 * 4828 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4829 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4830 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4831 * 4832 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4833 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4834 * the "clock-names" property of @np. 4835 */ 4836 static int of_parse_clkspec(const struct device_node *np, int index, 4837 const char *name, struct of_phandle_args *out_args) 4838 { 4839 int ret = -ENOENT; 4840 4841 /* Walk up the tree of devices looking for a clock property that matches */ 4842 while (np) { 4843 /* 4844 * For named clocks, first look up the name in the 4845 * "clock-names" property. If it cannot be found, then index 4846 * will be an error code and of_parse_phandle_with_args() will 4847 * return -EINVAL. 4848 */ 4849 if (name) 4850 index = of_property_match_string(np, "clock-names", name); 4851 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4852 index, out_args); 4853 if (!ret) 4854 break; 4855 if (name && index >= 0) 4856 break; 4857 4858 /* 4859 * No matching clock found on this node. If the parent node 4860 * has a "clock-ranges" property, then we can try one of its 4861 * clocks. 4862 */ 4863 np = np->parent; 4864 if (np && !of_get_property(np, "clock-ranges", NULL)) 4865 break; 4866 index = 0; 4867 } 4868 4869 return ret; 4870 } 4871 4872 static struct clk_hw * 4873 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4874 struct of_phandle_args *clkspec) 4875 { 4876 struct clk *clk; 4877 4878 if (provider->get_hw) 4879 return provider->get_hw(clkspec, provider->data); 4880 4881 clk = provider->get(clkspec, provider->data); 4882 if (IS_ERR(clk)) 4883 return ERR_CAST(clk); 4884 return __clk_get_hw(clk); 4885 } 4886 4887 static struct clk_hw * 4888 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4889 { 4890 struct of_clk_provider *provider; 4891 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4892 4893 if (!clkspec) 4894 return ERR_PTR(-EINVAL); 4895 4896 mutex_lock(&of_clk_mutex); 4897 list_for_each_entry(provider, &of_clk_providers, link) { 4898 if (provider->node == clkspec->np) { 4899 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4900 if (!IS_ERR(hw)) 4901 break; 4902 } 4903 } 4904 mutex_unlock(&of_clk_mutex); 4905 4906 return hw; 4907 } 4908 4909 /** 4910 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4911 * @clkspec: pointer to a clock specifier data structure 4912 * 4913 * This function looks up a struct clk from the registered list of clock 4914 * providers, an input is a clock specifier data structure as returned 4915 * from the of_parse_phandle_with_args() function call. 4916 */ 4917 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4918 { 4919 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4920 4921 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4922 } 4923 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4924 4925 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4926 const char *con_id) 4927 { 4928 int ret; 4929 struct clk_hw *hw; 4930 struct of_phandle_args clkspec; 4931 4932 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4933 if (ret) 4934 return ERR_PTR(ret); 4935 4936 hw = of_clk_get_hw_from_clkspec(&clkspec); 4937 of_node_put(clkspec.np); 4938 4939 return hw; 4940 } 4941 4942 static struct clk *__of_clk_get(struct device_node *np, 4943 int index, const char *dev_id, 4944 const char *con_id) 4945 { 4946 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4947 4948 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4949 } 4950 4951 struct clk *of_clk_get(struct device_node *np, int index) 4952 { 4953 return __of_clk_get(np, index, np->full_name, NULL); 4954 } 4955 EXPORT_SYMBOL(of_clk_get); 4956 4957 /** 4958 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4959 * @np: pointer to clock consumer node 4960 * @name: name of consumer's clock input, or NULL for the first clock reference 4961 * 4962 * This function parses the clocks and clock-names properties, 4963 * and uses them to look up the struct clk from the registered list of clock 4964 * providers. 4965 */ 4966 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4967 { 4968 if (!np) 4969 return ERR_PTR(-ENOENT); 4970 4971 return __of_clk_get(np, 0, np->full_name, name); 4972 } 4973 EXPORT_SYMBOL(of_clk_get_by_name); 4974 4975 /** 4976 * of_clk_get_parent_count() - Count the number of clocks a device node has 4977 * @np: device node to count 4978 * 4979 * Returns: The number of clocks that are possible parents of this node 4980 */ 4981 unsigned int of_clk_get_parent_count(const struct device_node *np) 4982 { 4983 int count; 4984 4985 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4986 if (count < 0) 4987 return 0; 4988 4989 return count; 4990 } 4991 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4992 4993 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4994 { 4995 struct of_phandle_args clkspec; 4996 struct property *prop; 4997 const char *clk_name; 4998 const __be32 *vp; 4999 u32 pv; 5000 int rc; 5001 int count; 5002 struct clk *clk; 5003 5004 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5005 &clkspec); 5006 if (rc) 5007 return NULL; 5008 5009 index = clkspec.args_count ? clkspec.args[0] : 0; 5010 count = 0; 5011 5012 /* if there is an indices property, use it to transfer the index 5013 * specified into an array offset for the clock-output-names property. 5014 */ 5015 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5016 if (index == pv) { 5017 index = count; 5018 break; 5019 } 5020 count++; 5021 } 5022 /* We went off the end of 'clock-indices' without finding it */ 5023 if (prop && !vp) 5024 return NULL; 5025 5026 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5027 index, 5028 &clk_name) < 0) { 5029 /* 5030 * Best effort to get the name if the clock has been 5031 * registered with the framework. If the clock isn't 5032 * registered, we return the node name as the name of 5033 * the clock as long as #clock-cells = 0. 5034 */ 5035 clk = of_clk_get_from_provider(&clkspec); 5036 if (IS_ERR(clk)) { 5037 if (clkspec.args_count == 0) 5038 clk_name = clkspec.np->name; 5039 else 5040 clk_name = NULL; 5041 } else { 5042 clk_name = __clk_get_name(clk); 5043 clk_put(clk); 5044 } 5045 } 5046 5047 5048 of_node_put(clkspec.np); 5049 return clk_name; 5050 } 5051 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5052 5053 /** 5054 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5055 * number of parents 5056 * @np: Device node pointer associated with clock provider 5057 * @parents: pointer to char array that hold the parents' names 5058 * @size: size of the @parents array 5059 * 5060 * Return: number of parents for the clock node. 5061 */ 5062 int of_clk_parent_fill(struct device_node *np, const char **parents, 5063 unsigned int size) 5064 { 5065 unsigned int i = 0; 5066 5067 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5068 i++; 5069 5070 return i; 5071 } 5072 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5073 5074 struct clock_provider { 5075 void (*clk_init_cb)(struct device_node *); 5076 struct device_node *np; 5077 struct list_head node; 5078 }; 5079 5080 /* 5081 * This function looks for a parent clock. If there is one, then it 5082 * checks that the provider for this parent clock was initialized, in 5083 * this case the parent clock will be ready. 5084 */ 5085 static int parent_ready(struct device_node *np) 5086 { 5087 int i = 0; 5088 5089 while (true) { 5090 struct clk *clk = of_clk_get(np, i); 5091 5092 /* this parent is ready we can check the next one */ 5093 if (!IS_ERR(clk)) { 5094 clk_put(clk); 5095 i++; 5096 continue; 5097 } 5098 5099 /* at least one parent is not ready, we exit now */ 5100 if (PTR_ERR(clk) == -EPROBE_DEFER) 5101 return 0; 5102 5103 /* 5104 * Here we make assumption that the device tree is 5105 * written correctly. So an error means that there is 5106 * no more parent. As we didn't exit yet, then the 5107 * previous parent are ready. If there is no clock 5108 * parent, no need to wait for them, then we can 5109 * consider their absence as being ready 5110 */ 5111 return 1; 5112 } 5113 } 5114 5115 /** 5116 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5117 * @np: Device node pointer associated with clock provider 5118 * @index: clock index 5119 * @flags: pointer to top-level framework flags 5120 * 5121 * Detects if the clock-critical property exists and, if so, sets the 5122 * corresponding CLK_IS_CRITICAL flag. 5123 * 5124 * Do not use this function. It exists only for legacy Device Tree 5125 * bindings, such as the one-clock-per-node style that are outdated. 5126 * Those bindings typically put all clock data into .dts and the Linux 5127 * driver has no clock data, thus making it impossible to set this flag 5128 * correctly from the driver. Only those drivers may call 5129 * of_clk_detect_critical from their setup functions. 5130 * 5131 * Return: error code or zero on success 5132 */ 5133 int of_clk_detect_critical(struct device_node *np, int index, 5134 unsigned long *flags) 5135 { 5136 struct property *prop; 5137 const __be32 *cur; 5138 uint32_t idx; 5139 5140 if (!np || !flags) 5141 return -EINVAL; 5142 5143 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5144 if (index == idx) 5145 *flags |= CLK_IS_CRITICAL; 5146 5147 return 0; 5148 } 5149 5150 /** 5151 * of_clk_init() - Scan and init clock providers from the DT 5152 * @matches: array of compatible values and init functions for providers. 5153 * 5154 * This function scans the device tree for matching clock providers 5155 * and calls their initialization functions. It also does it by trying 5156 * to follow the dependencies. 5157 */ 5158 void __init of_clk_init(const struct of_device_id *matches) 5159 { 5160 const struct of_device_id *match; 5161 struct device_node *np; 5162 struct clock_provider *clk_provider, *next; 5163 bool is_init_done; 5164 bool force = false; 5165 LIST_HEAD(clk_provider_list); 5166 5167 if (!matches) 5168 matches = &__clk_of_table; 5169 5170 /* First prepare the list of the clocks providers */ 5171 for_each_matching_node_and_match(np, matches, &match) { 5172 struct clock_provider *parent; 5173 5174 if (!of_device_is_available(np)) 5175 continue; 5176 5177 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5178 if (!parent) { 5179 list_for_each_entry_safe(clk_provider, next, 5180 &clk_provider_list, node) { 5181 list_del(&clk_provider->node); 5182 of_node_put(clk_provider->np); 5183 kfree(clk_provider); 5184 } 5185 of_node_put(np); 5186 return; 5187 } 5188 5189 parent->clk_init_cb = match->data; 5190 parent->np = of_node_get(np); 5191 list_add_tail(&parent->node, &clk_provider_list); 5192 } 5193 5194 while (!list_empty(&clk_provider_list)) { 5195 is_init_done = false; 5196 list_for_each_entry_safe(clk_provider, next, 5197 &clk_provider_list, node) { 5198 if (force || parent_ready(clk_provider->np)) { 5199 5200 /* Don't populate platform devices */ 5201 of_node_set_flag(clk_provider->np, 5202 OF_POPULATED); 5203 5204 clk_provider->clk_init_cb(clk_provider->np); 5205 of_clk_set_defaults(clk_provider->np, true); 5206 5207 list_del(&clk_provider->node); 5208 of_node_put(clk_provider->np); 5209 kfree(clk_provider); 5210 is_init_done = true; 5211 } 5212 } 5213 5214 /* 5215 * We didn't manage to initialize any of the 5216 * remaining providers during the last loop, so now we 5217 * initialize all the remaining ones unconditionally 5218 * in case the clock parent was not mandatory 5219 */ 5220 if (!is_init_done) 5221 force = true; 5222 } 5223 } 5224 #endif 5225