xref: /openbmc/linux/drivers/clk/clk.c (revision 7206fcc5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	ret = core->ops->is_enabled(core->hw);
248 done:
249 	if (core->rpm_enabled)
250 		pm_runtime_put(core->dev);
251 
252 	return ret;
253 }
254 
255 /***    helper functions   ***/
256 
257 const char *__clk_get_name(const struct clk *clk)
258 {
259 	return !clk ? NULL : clk->core->name;
260 }
261 EXPORT_SYMBOL_GPL(__clk_get_name);
262 
263 const char *clk_hw_get_name(const struct clk_hw *hw)
264 {
265 	return hw->core->name;
266 }
267 EXPORT_SYMBOL_GPL(clk_hw_get_name);
268 
269 struct clk_hw *__clk_get_hw(struct clk *clk)
270 {
271 	return !clk ? NULL : clk->core->hw;
272 }
273 EXPORT_SYMBOL_GPL(__clk_get_hw);
274 
275 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
276 {
277 	return hw->core->num_parents;
278 }
279 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
280 
281 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
282 {
283 	return hw->core->parent ? hw->core->parent->hw : NULL;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
286 
287 static struct clk_core *__clk_lookup_subtree(const char *name,
288 					     struct clk_core *core)
289 {
290 	struct clk_core *child;
291 	struct clk_core *ret;
292 
293 	if (!strcmp(core->name, name))
294 		return core;
295 
296 	hlist_for_each_entry(child, &core->children, child_node) {
297 		ret = __clk_lookup_subtree(name, child);
298 		if (ret)
299 			return ret;
300 	}
301 
302 	return NULL;
303 }
304 
305 static struct clk_core *clk_core_lookup(const char *name)
306 {
307 	struct clk_core *root_clk;
308 	struct clk_core *ret;
309 
310 	if (!name)
311 		return NULL;
312 
313 	/* search the 'proper' clk tree first */
314 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
315 		ret = __clk_lookup_subtree(name, root_clk);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	/* if not found, then search the orphan tree */
321 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_OF
331 static int of_parse_clkspec(const struct device_node *np, int index,
332 			    const char *name, struct of_phandle_args *out_args);
333 static struct clk_hw *
334 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
335 #else
336 static inline int of_parse_clkspec(const struct device_node *np, int index,
337 				   const char *name,
338 				   struct of_phandle_args *out_args)
339 {
340 	return -ENOENT;
341 }
342 static inline struct clk_hw *
343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
344 {
345 	return ERR_PTR(-ENOENT);
346 }
347 #endif
348 
349 /**
350  * clk_core_get - Find the clk_core parent of a clk
351  * @core: clk to find parent of
352  * @p_index: parent index to search for
353  *
354  * This is the preferred method for clk providers to find the parent of a
355  * clk when that parent is external to the clk controller. The parent_names
356  * array is indexed and treated as a local name matching a string in the device
357  * node's 'clock-names' property or as the 'con_id' matching the device's
358  * dev_name() in a clk_lookup. This allows clk providers to use their own
359  * namespace instead of looking for a globally unique parent string.
360  *
361  * For example the following DT snippet would allow a clock registered by the
362  * clock-controller@c001 that has a clk_init_data::parent_data array
363  * with 'xtal' in the 'name' member to find the clock provided by the
364  * clock-controller@f00abcd without needing to get the globally unique name of
365  * the xtal clk.
366  *
367  *      parent: clock-controller@f00abcd {
368  *              reg = <0xf00abcd 0xabcd>;
369  *              #clock-cells = <0>;
370  *      };
371  *
372  *      clock-controller@c001 {
373  *              reg = <0xc001 0xf00d>;
374  *              clocks = <&parent>;
375  *              clock-names = "xtal";
376  *              #clock-cells = <1>;
377  *      };
378  *
379  * Returns: -ENOENT when the provider can't be found or the clk doesn't
380  * exist in the provider or the name can't be found in the DT node or
381  * in a clkdev lookup. NULL when the provider knows about the clk but it
382  * isn't provided on this system.
383  * A valid clk_core pointer when the clk can be found in the provider.
384  */
385 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
386 {
387 	const char *name = core->parents[p_index].fw_name;
388 	int index = core->parents[p_index].index;
389 	struct clk_hw *hw = ERR_PTR(-ENOENT);
390 	struct device *dev = core->dev;
391 	const char *dev_id = dev ? dev_name(dev) : NULL;
392 	struct device_node *np = core->of_node;
393 	struct of_phandle_args clkspec;
394 
395 	if (np && (name || index >= 0) &&
396 	    !of_parse_clkspec(np, index, name, &clkspec)) {
397 		hw = of_clk_get_hw_from_clkspec(&clkspec);
398 		of_node_put(clkspec.np);
399 	} else if (name) {
400 		/*
401 		 * If the DT search above couldn't find the provider fallback to
402 		 * looking up via clkdev based clk_lookups.
403 		 */
404 		hw = clk_find_hw(dev_id, name);
405 	}
406 
407 	if (IS_ERR(hw))
408 		return ERR_CAST(hw);
409 
410 	return hw->core;
411 }
412 
413 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
414 {
415 	struct clk_parent_map *entry = &core->parents[index];
416 	struct clk_core *parent;
417 
418 	if (entry->hw) {
419 		parent = entry->hw->core;
420 	} else {
421 		parent = clk_core_get(core, index);
422 		if (PTR_ERR(parent) == -ENOENT && entry->name)
423 			parent = clk_core_lookup(entry->name);
424 	}
425 
426 	/*
427 	 * We have a direct reference but it isn't registered yet?
428 	 * Orphan it and let clk_reparent() update the orphan status
429 	 * when the parent is registered.
430 	 */
431 	if (!parent)
432 		parent = ERR_PTR(-EPROBE_DEFER);
433 
434 	/* Only cache it if it's not an error */
435 	if (!IS_ERR(parent))
436 		entry->core = parent;
437 }
438 
439 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
440 							 u8 index)
441 {
442 	if (!core || index >= core->num_parents || !core->parents)
443 		return NULL;
444 
445 	if (!core->parents[index].core)
446 		clk_core_fill_parent_index(core, index);
447 
448 	return core->parents[index].core;
449 }
450 
451 struct clk_hw *
452 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
453 {
454 	struct clk_core *parent;
455 
456 	parent = clk_core_get_parent_by_index(hw->core, index);
457 
458 	return !parent ? NULL : parent->hw;
459 }
460 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
461 
462 unsigned int __clk_get_enable_count(struct clk *clk)
463 {
464 	return !clk ? 0 : clk->core->enable_count;
465 }
466 
467 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
468 {
469 	if (!core)
470 		return 0;
471 
472 	if (!core->num_parents || core->parent)
473 		return core->rate;
474 
475 	/*
476 	 * Clk must have a parent because num_parents > 0 but the parent isn't
477 	 * known yet. Best to return 0 as the rate of this clk until we can
478 	 * properly recalc the rate based on the parent's rate.
479 	 */
480 	return 0;
481 }
482 
483 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
484 {
485 	return clk_core_get_rate_nolock(hw->core);
486 }
487 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
488 
489 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
490 {
491 	if (!core)
492 		return 0;
493 
494 	return core->accuracy;
495 }
496 
497 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
498 {
499 	return hw->core->flags;
500 }
501 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
502 
503 bool clk_hw_is_prepared(const struct clk_hw *hw)
504 {
505 	return clk_core_is_prepared(hw->core);
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
508 
509 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
510 {
511 	return clk_core_rate_is_protected(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
514 
515 bool clk_hw_is_enabled(const struct clk_hw *hw)
516 {
517 	return clk_core_is_enabled(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
520 
521 bool __clk_is_enabled(struct clk *clk)
522 {
523 	if (!clk)
524 		return false;
525 
526 	return clk_core_is_enabled(clk->core);
527 }
528 EXPORT_SYMBOL_GPL(__clk_is_enabled);
529 
530 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
531 			   unsigned long best, unsigned long flags)
532 {
533 	if (flags & CLK_MUX_ROUND_CLOSEST)
534 		return abs(now - rate) < abs(best - rate);
535 
536 	return now <= rate && now > best;
537 }
538 
539 static void clk_core_init_rate_req(struct clk_core * const core,
540 				   struct clk_rate_request *req,
541 				   unsigned long rate);
542 
543 static int clk_core_round_rate_nolock(struct clk_core *core,
544 				      struct clk_rate_request *req);
545 
546 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
547 {
548 	struct clk_core *tmp;
549 	unsigned int i;
550 
551 	/* Optimize for the case where the parent is already the parent. */
552 	if (core->parent == parent)
553 		return true;
554 
555 	for (i = 0; i < core->num_parents; i++) {
556 		tmp = clk_core_get_parent_by_index(core, i);
557 		if (!tmp)
558 			continue;
559 
560 		if (tmp == parent)
561 			return true;
562 	}
563 
564 	return false;
565 }
566 
567 static void
568 clk_core_forward_rate_req(struct clk_core *core,
569 			  const struct clk_rate_request *old_req,
570 			  struct clk_core *parent,
571 			  struct clk_rate_request *req,
572 			  unsigned long parent_rate)
573 {
574 	if (WARN_ON(!clk_core_has_parent(core, parent)))
575 		return;
576 
577 	clk_core_init_rate_req(parent, req, parent_rate);
578 
579 	if (req->min_rate < old_req->min_rate)
580 		req->min_rate = old_req->min_rate;
581 
582 	if (req->max_rate > old_req->max_rate)
583 		req->max_rate = old_req->max_rate;
584 }
585 
586 int clk_mux_determine_rate_flags(struct clk_hw *hw,
587 				 struct clk_rate_request *req,
588 				 unsigned long flags)
589 {
590 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
591 	int i, num_parents, ret;
592 	unsigned long best = 0;
593 
594 	/* if NO_REPARENT flag set, pass through to current parent */
595 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
596 		parent = core->parent;
597 		if (core->flags & CLK_SET_RATE_PARENT) {
598 			struct clk_rate_request parent_req;
599 
600 			if (!parent) {
601 				req->rate = 0;
602 				return 0;
603 			}
604 
605 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
606 
607 			trace_clk_rate_request_start(&parent_req);
608 
609 			ret = clk_core_round_rate_nolock(parent, &parent_req);
610 			if (ret)
611 				return ret;
612 
613 			trace_clk_rate_request_done(&parent_req);
614 
615 			best = parent_req.rate;
616 		} else if (parent) {
617 			best = clk_core_get_rate_nolock(parent);
618 		} else {
619 			best = clk_core_get_rate_nolock(core);
620 		}
621 
622 		goto out;
623 	}
624 
625 	/* find the parent that can provide the fastest rate <= rate */
626 	num_parents = core->num_parents;
627 	for (i = 0; i < num_parents; i++) {
628 		unsigned long parent_rate;
629 
630 		parent = clk_core_get_parent_by_index(core, i);
631 		if (!parent)
632 			continue;
633 
634 		if (core->flags & CLK_SET_RATE_PARENT) {
635 			struct clk_rate_request parent_req;
636 
637 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
638 
639 			trace_clk_rate_request_start(&parent_req);
640 
641 			ret = clk_core_round_rate_nolock(parent, &parent_req);
642 			if (ret)
643 				continue;
644 
645 			trace_clk_rate_request_done(&parent_req);
646 
647 			parent_rate = parent_req.rate;
648 		} else {
649 			parent_rate = clk_core_get_rate_nolock(parent);
650 		}
651 
652 		if (mux_is_better_rate(req->rate, parent_rate,
653 				       best, flags)) {
654 			best_parent = parent;
655 			best = parent_rate;
656 		}
657 	}
658 
659 	if (!best_parent)
660 		return -EINVAL;
661 
662 out:
663 	if (best_parent)
664 		req->best_parent_hw = best_parent->hw;
665 	req->best_parent_rate = best;
666 	req->rate = best;
667 
668 	return 0;
669 }
670 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
671 
672 struct clk *__clk_lookup(const char *name)
673 {
674 	struct clk_core *core = clk_core_lookup(name);
675 
676 	return !core ? NULL : core->hw->clk;
677 }
678 
679 static void clk_core_get_boundaries(struct clk_core *core,
680 				    unsigned long *min_rate,
681 				    unsigned long *max_rate)
682 {
683 	struct clk *clk_user;
684 
685 	lockdep_assert_held(&prepare_lock);
686 
687 	*min_rate = core->min_rate;
688 	*max_rate = core->max_rate;
689 
690 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
691 		*min_rate = max(*min_rate, clk_user->min_rate);
692 
693 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
694 		*max_rate = min(*max_rate, clk_user->max_rate);
695 }
696 
697 /*
698  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
699  * @hw: the hw clk we want to get the range from
700  * @min_rate: pointer to the variable that will hold the minimum
701  * @max_rate: pointer to the variable that will hold the maximum
702  *
703  * Fills the @min_rate and @max_rate variables with the minimum and
704  * maximum that clock can reach.
705  */
706 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
707 			   unsigned long *max_rate)
708 {
709 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
710 }
711 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
712 
713 static bool clk_core_check_boundaries(struct clk_core *core,
714 				      unsigned long min_rate,
715 				      unsigned long max_rate)
716 {
717 	struct clk *user;
718 
719 	lockdep_assert_held(&prepare_lock);
720 
721 	if (min_rate > core->max_rate || max_rate < core->min_rate)
722 		return false;
723 
724 	hlist_for_each_entry(user, &core->clks, clks_node)
725 		if (min_rate > user->max_rate || max_rate < user->min_rate)
726 			return false;
727 
728 	return true;
729 }
730 
731 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
732 			   unsigned long max_rate)
733 {
734 	hw->core->min_rate = min_rate;
735 	hw->core->max_rate = max_rate;
736 }
737 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
738 
739 /*
740  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
741  * @hw: mux type clk to determine rate on
742  * @req: rate request, also used to return preferred parent and frequencies
743  *
744  * Helper for finding best parent to provide a given frequency. This can be used
745  * directly as a determine_rate callback (e.g. for a mux), or from a more
746  * complex clock that may combine a mux with other operations.
747  *
748  * Returns: 0 on success, -EERROR value on error
749  */
750 int __clk_mux_determine_rate(struct clk_hw *hw,
751 			     struct clk_rate_request *req)
752 {
753 	return clk_mux_determine_rate_flags(hw, req, 0);
754 }
755 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
756 
757 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
758 				     struct clk_rate_request *req)
759 {
760 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
761 }
762 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
763 
764 /***        clk api        ***/
765 
766 static void clk_core_rate_unprotect(struct clk_core *core)
767 {
768 	lockdep_assert_held(&prepare_lock);
769 
770 	if (!core)
771 		return;
772 
773 	if (WARN(core->protect_count == 0,
774 	    "%s already unprotected\n", core->name))
775 		return;
776 
777 	if (--core->protect_count > 0)
778 		return;
779 
780 	clk_core_rate_unprotect(core->parent);
781 }
782 
783 static int clk_core_rate_nuke_protect(struct clk_core *core)
784 {
785 	int ret;
786 
787 	lockdep_assert_held(&prepare_lock);
788 
789 	if (!core)
790 		return -EINVAL;
791 
792 	if (core->protect_count == 0)
793 		return 0;
794 
795 	ret = core->protect_count;
796 	core->protect_count = 1;
797 	clk_core_rate_unprotect(core);
798 
799 	return ret;
800 }
801 
802 /**
803  * clk_rate_exclusive_put - release exclusivity over clock rate control
804  * @clk: the clk over which the exclusivity is released
805  *
806  * clk_rate_exclusive_put() completes a critical section during which a clock
807  * consumer cannot tolerate any other consumer making any operation on the
808  * clock which could result in a rate change or rate glitch. Exclusive clocks
809  * cannot have their rate changed, either directly or indirectly due to changes
810  * further up the parent chain of clocks. As a result, clocks up parent chain
811  * also get under exclusive control of the calling consumer.
812  *
813  * If exlusivity is claimed more than once on clock, even by the same consumer,
814  * the rate effectively gets locked as exclusivity can't be preempted.
815  *
816  * Calls to clk_rate_exclusive_put() must be balanced with calls to
817  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
818  * error status.
819  */
820 void clk_rate_exclusive_put(struct clk *clk)
821 {
822 	if (!clk)
823 		return;
824 
825 	clk_prepare_lock();
826 
827 	/*
828 	 * if there is something wrong with this consumer protect count, stop
829 	 * here before messing with the provider
830 	 */
831 	if (WARN_ON(clk->exclusive_count <= 0))
832 		goto out;
833 
834 	clk_core_rate_unprotect(clk->core);
835 	clk->exclusive_count--;
836 out:
837 	clk_prepare_unlock();
838 }
839 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
840 
841 static void clk_core_rate_protect(struct clk_core *core)
842 {
843 	lockdep_assert_held(&prepare_lock);
844 
845 	if (!core)
846 		return;
847 
848 	if (core->protect_count == 0)
849 		clk_core_rate_protect(core->parent);
850 
851 	core->protect_count++;
852 }
853 
854 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
855 {
856 	lockdep_assert_held(&prepare_lock);
857 
858 	if (!core)
859 		return;
860 
861 	if (count == 0)
862 		return;
863 
864 	clk_core_rate_protect(core);
865 	core->protect_count = count;
866 }
867 
868 /**
869  * clk_rate_exclusive_get - get exclusivity over the clk rate control
870  * @clk: the clk over which the exclusity of rate control is requested
871  *
872  * clk_rate_exclusive_get() begins a critical section during which a clock
873  * consumer cannot tolerate any other consumer making any operation on the
874  * clock which could result in a rate change or rate glitch. Exclusive clocks
875  * cannot have their rate changed, either directly or indirectly due to changes
876  * further up the parent chain of clocks. As a result, clocks up parent chain
877  * also get under exclusive control of the calling consumer.
878  *
879  * If exlusivity is claimed more than once on clock, even by the same consumer,
880  * the rate effectively gets locked as exclusivity can't be preempted.
881  *
882  * Calls to clk_rate_exclusive_get() should be balanced with calls to
883  * clk_rate_exclusive_put(). Calls to this function may sleep.
884  * Returns 0 on success, -EERROR otherwise
885  */
886 int clk_rate_exclusive_get(struct clk *clk)
887 {
888 	if (!clk)
889 		return 0;
890 
891 	clk_prepare_lock();
892 	clk_core_rate_protect(clk->core);
893 	clk->exclusive_count++;
894 	clk_prepare_unlock();
895 
896 	return 0;
897 }
898 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
899 
900 static void clk_core_unprepare(struct clk_core *core)
901 {
902 	lockdep_assert_held(&prepare_lock);
903 
904 	if (!core)
905 		return;
906 
907 	if (WARN(core->prepare_count == 0,
908 	    "%s already unprepared\n", core->name))
909 		return;
910 
911 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
912 	    "Unpreparing critical %s\n", core->name))
913 		return;
914 
915 	if (core->flags & CLK_SET_RATE_GATE)
916 		clk_core_rate_unprotect(core);
917 
918 	if (--core->prepare_count > 0)
919 		return;
920 
921 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
922 
923 	trace_clk_unprepare(core);
924 
925 	if (core->ops->unprepare)
926 		core->ops->unprepare(core->hw);
927 
928 	trace_clk_unprepare_complete(core);
929 	clk_core_unprepare(core->parent);
930 	clk_pm_runtime_put(core);
931 }
932 
933 static void clk_core_unprepare_lock(struct clk_core *core)
934 {
935 	clk_prepare_lock();
936 	clk_core_unprepare(core);
937 	clk_prepare_unlock();
938 }
939 
940 /**
941  * clk_unprepare - undo preparation of a clock source
942  * @clk: the clk being unprepared
943  *
944  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
945  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
946  * if the operation may sleep.  One example is a clk which is accessed over
947  * I2c.  In the complex case a clk gate operation may require a fast and a slow
948  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
949  * exclusive.  In fact clk_disable must be called before clk_unprepare.
950  */
951 void clk_unprepare(struct clk *clk)
952 {
953 	if (IS_ERR_OR_NULL(clk))
954 		return;
955 
956 	clk_core_unprepare_lock(clk->core);
957 }
958 EXPORT_SYMBOL_GPL(clk_unprepare);
959 
960 static int clk_core_prepare(struct clk_core *core)
961 {
962 	int ret = 0;
963 
964 	lockdep_assert_held(&prepare_lock);
965 
966 	if (!core)
967 		return 0;
968 
969 	if (core->prepare_count == 0) {
970 		ret = clk_pm_runtime_get(core);
971 		if (ret)
972 			return ret;
973 
974 		ret = clk_core_prepare(core->parent);
975 		if (ret)
976 			goto runtime_put;
977 
978 		trace_clk_prepare(core);
979 
980 		if (core->ops->prepare)
981 			ret = core->ops->prepare(core->hw);
982 
983 		trace_clk_prepare_complete(core);
984 
985 		if (ret)
986 			goto unprepare;
987 	}
988 
989 	core->prepare_count++;
990 
991 	/*
992 	 * CLK_SET_RATE_GATE is a special case of clock protection
993 	 * Instead of a consumer claiming exclusive rate control, it is
994 	 * actually the provider which prevents any consumer from making any
995 	 * operation which could result in a rate change or rate glitch while
996 	 * the clock is prepared.
997 	 */
998 	if (core->flags & CLK_SET_RATE_GATE)
999 		clk_core_rate_protect(core);
1000 
1001 	return 0;
1002 unprepare:
1003 	clk_core_unprepare(core->parent);
1004 runtime_put:
1005 	clk_pm_runtime_put(core);
1006 	return ret;
1007 }
1008 
1009 static int clk_core_prepare_lock(struct clk_core *core)
1010 {
1011 	int ret;
1012 
1013 	clk_prepare_lock();
1014 	ret = clk_core_prepare(core);
1015 	clk_prepare_unlock();
1016 
1017 	return ret;
1018 }
1019 
1020 /**
1021  * clk_prepare - prepare a clock source
1022  * @clk: the clk being prepared
1023  *
1024  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1025  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1026  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1027  * the complex case a clk ungate operation may require a fast and a slow part.
1028  * It is this reason that clk_prepare and clk_enable are not mutually
1029  * exclusive.  In fact clk_prepare must be called before clk_enable.
1030  * Returns 0 on success, -EERROR otherwise.
1031  */
1032 int clk_prepare(struct clk *clk)
1033 {
1034 	if (!clk)
1035 		return 0;
1036 
1037 	return clk_core_prepare_lock(clk->core);
1038 }
1039 EXPORT_SYMBOL_GPL(clk_prepare);
1040 
1041 static void clk_core_disable(struct clk_core *core)
1042 {
1043 	lockdep_assert_held(&enable_lock);
1044 
1045 	if (!core)
1046 		return;
1047 
1048 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1049 		return;
1050 
1051 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1052 	    "Disabling critical %s\n", core->name))
1053 		return;
1054 
1055 	if (--core->enable_count > 0)
1056 		return;
1057 
1058 	trace_clk_disable_rcuidle(core);
1059 
1060 	if (core->ops->disable)
1061 		core->ops->disable(core->hw);
1062 
1063 	trace_clk_disable_complete_rcuidle(core);
1064 
1065 	clk_core_disable(core->parent);
1066 }
1067 
1068 static void clk_core_disable_lock(struct clk_core *core)
1069 {
1070 	unsigned long flags;
1071 
1072 	flags = clk_enable_lock();
1073 	clk_core_disable(core);
1074 	clk_enable_unlock(flags);
1075 }
1076 
1077 /**
1078  * clk_disable - gate a clock
1079  * @clk: the clk being gated
1080  *
1081  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1082  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1083  * clk if the operation is fast and will never sleep.  One example is a
1084  * SoC-internal clk which is controlled via simple register writes.  In the
1085  * complex case a clk gate operation may require a fast and a slow part.  It is
1086  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1087  * In fact clk_disable must be called before clk_unprepare.
1088  */
1089 void clk_disable(struct clk *clk)
1090 {
1091 	if (IS_ERR_OR_NULL(clk))
1092 		return;
1093 
1094 	clk_core_disable_lock(clk->core);
1095 }
1096 EXPORT_SYMBOL_GPL(clk_disable);
1097 
1098 static int clk_core_enable(struct clk_core *core)
1099 {
1100 	int ret = 0;
1101 
1102 	lockdep_assert_held(&enable_lock);
1103 
1104 	if (!core)
1105 		return 0;
1106 
1107 	if (WARN(core->prepare_count == 0,
1108 	    "Enabling unprepared %s\n", core->name))
1109 		return -ESHUTDOWN;
1110 
1111 	if (core->enable_count == 0) {
1112 		ret = clk_core_enable(core->parent);
1113 
1114 		if (ret)
1115 			return ret;
1116 
1117 		trace_clk_enable_rcuidle(core);
1118 
1119 		if (core->ops->enable)
1120 			ret = core->ops->enable(core->hw);
1121 
1122 		trace_clk_enable_complete_rcuidle(core);
1123 
1124 		if (ret) {
1125 			clk_core_disable(core->parent);
1126 			return ret;
1127 		}
1128 	}
1129 
1130 	core->enable_count++;
1131 	return 0;
1132 }
1133 
1134 static int clk_core_enable_lock(struct clk_core *core)
1135 {
1136 	unsigned long flags;
1137 	int ret;
1138 
1139 	flags = clk_enable_lock();
1140 	ret = clk_core_enable(core);
1141 	clk_enable_unlock(flags);
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * clk_gate_restore_context - restore context for poweroff
1148  * @hw: the clk_hw pointer of clock whose state is to be restored
1149  *
1150  * The clock gate restore context function enables or disables
1151  * the gate clocks based on the enable_count. This is done in cases
1152  * where the clock context is lost and based on the enable_count
1153  * the clock either needs to be enabled/disabled. This
1154  * helps restore the state of gate clocks.
1155  */
1156 void clk_gate_restore_context(struct clk_hw *hw)
1157 {
1158 	struct clk_core *core = hw->core;
1159 
1160 	if (core->enable_count)
1161 		core->ops->enable(hw);
1162 	else
1163 		core->ops->disable(hw);
1164 }
1165 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1166 
1167 static int clk_core_save_context(struct clk_core *core)
1168 {
1169 	struct clk_core *child;
1170 	int ret = 0;
1171 
1172 	hlist_for_each_entry(child, &core->children, child_node) {
1173 		ret = clk_core_save_context(child);
1174 		if (ret < 0)
1175 			return ret;
1176 	}
1177 
1178 	if (core->ops && core->ops->save_context)
1179 		ret = core->ops->save_context(core->hw);
1180 
1181 	return ret;
1182 }
1183 
1184 static void clk_core_restore_context(struct clk_core *core)
1185 {
1186 	struct clk_core *child;
1187 
1188 	if (core->ops && core->ops->restore_context)
1189 		core->ops->restore_context(core->hw);
1190 
1191 	hlist_for_each_entry(child, &core->children, child_node)
1192 		clk_core_restore_context(child);
1193 }
1194 
1195 /**
1196  * clk_save_context - save clock context for poweroff
1197  *
1198  * Saves the context of the clock register for powerstates in which the
1199  * contents of the registers will be lost. Occurs deep within the suspend
1200  * code.  Returns 0 on success.
1201  */
1202 int clk_save_context(void)
1203 {
1204 	struct clk_core *clk;
1205 	int ret;
1206 
1207 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1208 		ret = clk_core_save_context(clk);
1209 		if (ret < 0)
1210 			return ret;
1211 	}
1212 
1213 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1214 		ret = clk_core_save_context(clk);
1215 		if (ret < 0)
1216 			return ret;
1217 	}
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(clk_save_context);
1222 
1223 /**
1224  * clk_restore_context - restore clock context after poweroff
1225  *
1226  * Restore the saved clock context upon resume.
1227  *
1228  */
1229 void clk_restore_context(void)
1230 {
1231 	struct clk_core *core;
1232 
1233 	hlist_for_each_entry(core, &clk_root_list, child_node)
1234 		clk_core_restore_context(core);
1235 
1236 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1237 		clk_core_restore_context(core);
1238 }
1239 EXPORT_SYMBOL_GPL(clk_restore_context);
1240 
1241 /**
1242  * clk_enable - ungate a clock
1243  * @clk: the clk being ungated
1244  *
1245  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1246  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1247  * if the operation will never sleep.  One example is a SoC-internal clk which
1248  * is controlled via simple register writes.  In the complex case a clk ungate
1249  * operation may require a fast and a slow part.  It is this reason that
1250  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1251  * must be called before clk_enable.  Returns 0 on success, -EERROR
1252  * otherwise.
1253  */
1254 int clk_enable(struct clk *clk)
1255 {
1256 	if (!clk)
1257 		return 0;
1258 
1259 	return clk_core_enable_lock(clk->core);
1260 }
1261 EXPORT_SYMBOL_GPL(clk_enable);
1262 
1263 /**
1264  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1265  * @clk: clock source
1266  *
1267  * Returns true if clk_prepare() implicitly enables the clock, effectively
1268  * making clk_enable()/clk_disable() no-ops, false otherwise.
1269  *
1270  * This is of interest mainly to power management code where actually
1271  * disabling the clock also requires unpreparing it to have any material
1272  * effect.
1273  *
1274  * Regardless of the value returned here, the caller must always invoke
1275  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1276  * to be right.
1277  */
1278 bool clk_is_enabled_when_prepared(struct clk *clk)
1279 {
1280 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1281 }
1282 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1283 
1284 static int clk_core_prepare_enable(struct clk_core *core)
1285 {
1286 	int ret;
1287 
1288 	ret = clk_core_prepare_lock(core);
1289 	if (ret)
1290 		return ret;
1291 
1292 	ret = clk_core_enable_lock(core);
1293 	if (ret)
1294 		clk_core_unprepare_lock(core);
1295 
1296 	return ret;
1297 }
1298 
1299 static void clk_core_disable_unprepare(struct clk_core *core)
1300 {
1301 	clk_core_disable_lock(core);
1302 	clk_core_unprepare_lock(core);
1303 }
1304 
1305 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1306 {
1307 	struct clk_core *child;
1308 
1309 	lockdep_assert_held(&prepare_lock);
1310 
1311 	hlist_for_each_entry(child, &core->children, child_node)
1312 		clk_unprepare_unused_subtree(child);
1313 
1314 	if (core->prepare_count)
1315 		return;
1316 
1317 	if (core->flags & CLK_IGNORE_UNUSED)
1318 		return;
1319 
1320 	if (clk_pm_runtime_get(core))
1321 		return;
1322 
1323 	if (clk_core_is_prepared(core)) {
1324 		trace_clk_unprepare(core);
1325 		if (core->ops->unprepare_unused)
1326 			core->ops->unprepare_unused(core->hw);
1327 		else if (core->ops->unprepare)
1328 			core->ops->unprepare(core->hw);
1329 		trace_clk_unprepare_complete(core);
1330 	}
1331 
1332 	clk_pm_runtime_put(core);
1333 }
1334 
1335 static void __init clk_disable_unused_subtree(struct clk_core *core)
1336 {
1337 	struct clk_core *child;
1338 	unsigned long flags;
1339 
1340 	lockdep_assert_held(&prepare_lock);
1341 
1342 	hlist_for_each_entry(child, &core->children, child_node)
1343 		clk_disable_unused_subtree(child);
1344 
1345 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1346 		clk_core_prepare_enable(core->parent);
1347 
1348 	if (clk_pm_runtime_get(core))
1349 		goto unprepare_out;
1350 
1351 	flags = clk_enable_lock();
1352 
1353 	if (core->enable_count)
1354 		goto unlock_out;
1355 
1356 	if (core->flags & CLK_IGNORE_UNUSED)
1357 		goto unlock_out;
1358 
1359 	/*
1360 	 * some gate clocks have special needs during the disable-unused
1361 	 * sequence.  call .disable_unused if available, otherwise fall
1362 	 * back to .disable
1363 	 */
1364 	if (clk_core_is_enabled(core)) {
1365 		trace_clk_disable(core);
1366 		if (core->ops->disable_unused)
1367 			core->ops->disable_unused(core->hw);
1368 		else if (core->ops->disable)
1369 			core->ops->disable(core->hw);
1370 		trace_clk_disable_complete(core);
1371 	}
1372 
1373 unlock_out:
1374 	clk_enable_unlock(flags);
1375 	clk_pm_runtime_put(core);
1376 unprepare_out:
1377 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1378 		clk_core_disable_unprepare(core->parent);
1379 }
1380 
1381 static bool clk_ignore_unused __initdata;
1382 static int __init clk_ignore_unused_setup(char *__unused)
1383 {
1384 	clk_ignore_unused = true;
1385 	return 1;
1386 }
1387 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1388 
1389 static int __init clk_disable_unused(void)
1390 {
1391 	struct clk_core *core;
1392 
1393 	if (clk_ignore_unused) {
1394 		pr_warn("clk: Not disabling unused clocks\n");
1395 		return 0;
1396 	}
1397 
1398 	clk_prepare_lock();
1399 
1400 	hlist_for_each_entry(core, &clk_root_list, child_node)
1401 		clk_disable_unused_subtree(core);
1402 
1403 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1404 		clk_disable_unused_subtree(core);
1405 
1406 	hlist_for_each_entry(core, &clk_root_list, child_node)
1407 		clk_unprepare_unused_subtree(core);
1408 
1409 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1410 		clk_unprepare_unused_subtree(core);
1411 
1412 	clk_prepare_unlock();
1413 
1414 	return 0;
1415 }
1416 late_initcall_sync(clk_disable_unused);
1417 
1418 static int clk_core_determine_round_nolock(struct clk_core *core,
1419 					   struct clk_rate_request *req)
1420 {
1421 	long rate;
1422 
1423 	lockdep_assert_held(&prepare_lock);
1424 
1425 	if (!core)
1426 		return 0;
1427 
1428 	/*
1429 	 * Some clock providers hand-craft their clk_rate_requests and
1430 	 * might not fill min_rate and max_rate.
1431 	 *
1432 	 * If it's the case, clamping the rate is equivalent to setting
1433 	 * the rate to 0 which is bad. Skip the clamping but complain so
1434 	 * that it gets fixed, hopefully.
1435 	 */
1436 	if (!req->min_rate && !req->max_rate)
1437 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1438 			__func__, core->name);
1439 	else
1440 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1441 
1442 	/*
1443 	 * At this point, core protection will be disabled
1444 	 * - if the provider is not protected at all
1445 	 * - if the calling consumer is the only one which has exclusivity
1446 	 *   over the provider
1447 	 */
1448 	if (clk_core_rate_is_protected(core)) {
1449 		req->rate = core->rate;
1450 	} else if (core->ops->determine_rate) {
1451 		return core->ops->determine_rate(core->hw, req);
1452 	} else if (core->ops->round_rate) {
1453 		rate = core->ops->round_rate(core->hw, req->rate,
1454 					     &req->best_parent_rate);
1455 		if (rate < 0)
1456 			return rate;
1457 
1458 		req->rate = rate;
1459 	} else {
1460 		return -EINVAL;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static void clk_core_init_rate_req(struct clk_core * const core,
1467 				   struct clk_rate_request *req,
1468 				   unsigned long rate)
1469 {
1470 	struct clk_core *parent;
1471 
1472 	if (WARN_ON(!req))
1473 		return;
1474 
1475 	memset(req, 0, sizeof(*req));
1476 	req->max_rate = ULONG_MAX;
1477 
1478 	if (!core)
1479 		return;
1480 
1481 	req->core = core;
1482 	req->rate = rate;
1483 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1484 
1485 	parent = core->parent;
1486 	if (parent) {
1487 		req->best_parent_hw = parent->hw;
1488 		req->best_parent_rate = parent->rate;
1489 	} else {
1490 		req->best_parent_hw = NULL;
1491 		req->best_parent_rate = 0;
1492 	}
1493 }
1494 
1495 /**
1496  * clk_hw_init_rate_request - Initializes a clk_rate_request
1497  * @hw: the clk for which we want to submit a rate request
1498  * @req: the clk_rate_request structure we want to initialise
1499  * @rate: the rate which is to be requested
1500  *
1501  * Initializes a clk_rate_request structure to submit to
1502  * __clk_determine_rate() or similar functions.
1503  */
1504 void clk_hw_init_rate_request(const struct clk_hw *hw,
1505 			      struct clk_rate_request *req,
1506 			      unsigned long rate)
1507 {
1508 	if (WARN_ON(!hw || !req))
1509 		return;
1510 
1511 	clk_core_init_rate_req(hw->core, req, rate);
1512 }
1513 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1514 
1515 /**
1516  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1517  * @hw: the original clock that got the rate request
1518  * @old_req: the original clk_rate_request structure we want to forward
1519  * @parent: the clk we want to forward @old_req to
1520  * @req: the clk_rate_request structure we want to initialise
1521  * @parent_rate: The rate which is to be requested to @parent
1522  *
1523  * Initializes a clk_rate_request structure to submit to a clock parent
1524  * in __clk_determine_rate() or similar functions.
1525  */
1526 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1527 				 const struct clk_rate_request *old_req,
1528 				 const struct clk_hw *parent,
1529 				 struct clk_rate_request *req,
1530 				 unsigned long parent_rate)
1531 {
1532 	if (WARN_ON(!hw || !old_req || !parent || !req))
1533 		return;
1534 
1535 	clk_core_forward_rate_req(hw->core, old_req,
1536 				  parent->core, req,
1537 				  parent_rate);
1538 }
1539 
1540 static bool clk_core_can_round(struct clk_core * const core)
1541 {
1542 	return core->ops->determine_rate || core->ops->round_rate;
1543 }
1544 
1545 static int clk_core_round_rate_nolock(struct clk_core *core,
1546 				      struct clk_rate_request *req)
1547 {
1548 	int ret;
1549 
1550 	lockdep_assert_held(&prepare_lock);
1551 
1552 	if (!core) {
1553 		req->rate = 0;
1554 		return 0;
1555 	}
1556 
1557 	if (clk_core_can_round(core))
1558 		return clk_core_determine_round_nolock(core, req);
1559 
1560 	if (core->flags & CLK_SET_RATE_PARENT) {
1561 		struct clk_rate_request parent_req;
1562 
1563 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1564 
1565 		trace_clk_rate_request_start(&parent_req);
1566 
1567 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1568 		if (ret)
1569 			return ret;
1570 
1571 		trace_clk_rate_request_done(&parent_req);
1572 
1573 		req->best_parent_rate = parent_req.rate;
1574 		req->rate = parent_req.rate;
1575 
1576 		return 0;
1577 	}
1578 
1579 	req->rate = core->rate;
1580 	return 0;
1581 }
1582 
1583 /**
1584  * __clk_determine_rate - get the closest rate actually supported by a clock
1585  * @hw: determine the rate of this clock
1586  * @req: target rate request
1587  *
1588  * Useful for clk_ops such as .set_rate and .determine_rate.
1589  */
1590 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1591 {
1592 	if (!hw) {
1593 		req->rate = 0;
1594 		return 0;
1595 	}
1596 
1597 	return clk_core_round_rate_nolock(hw->core, req);
1598 }
1599 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1600 
1601 /**
1602  * clk_hw_round_rate() - round the given rate for a hw clk
1603  * @hw: the hw clk for which we are rounding a rate
1604  * @rate: the rate which is to be rounded
1605  *
1606  * Takes in a rate as input and rounds it to a rate that the clk can actually
1607  * use.
1608  *
1609  * Context: prepare_lock must be held.
1610  *          For clk providers to call from within clk_ops such as .round_rate,
1611  *          .determine_rate.
1612  *
1613  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1614  *         else returns the parent rate.
1615  */
1616 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1617 {
1618 	int ret;
1619 	struct clk_rate_request req;
1620 
1621 	clk_core_init_rate_req(hw->core, &req, rate);
1622 
1623 	trace_clk_rate_request_start(&req);
1624 
1625 	ret = clk_core_round_rate_nolock(hw->core, &req);
1626 	if (ret)
1627 		return 0;
1628 
1629 	trace_clk_rate_request_done(&req);
1630 
1631 	return req.rate;
1632 }
1633 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1634 
1635 /**
1636  * clk_round_rate - round the given rate for a clk
1637  * @clk: the clk for which we are rounding a rate
1638  * @rate: the rate which is to be rounded
1639  *
1640  * Takes in a rate as input and rounds it to a rate that the clk can actually
1641  * use which is then returned.  If clk doesn't support round_rate operation
1642  * then the parent rate is returned.
1643  */
1644 long clk_round_rate(struct clk *clk, unsigned long rate)
1645 {
1646 	struct clk_rate_request req;
1647 	int ret;
1648 
1649 	if (!clk)
1650 		return 0;
1651 
1652 	clk_prepare_lock();
1653 
1654 	if (clk->exclusive_count)
1655 		clk_core_rate_unprotect(clk->core);
1656 
1657 	clk_core_init_rate_req(clk->core, &req, rate);
1658 
1659 	trace_clk_rate_request_start(&req);
1660 
1661 	ret = clk_core_round_rate_nolock(clk->core, &req);
1662 
1663 	trace_clk_rate_request_done(&req);
1664 
1665 	if (clk->exclusive_count)
1666 		clk_core_rate_protect(clk->core);
1667 
1668 	clk_prepare_unlock();
1669 
1670 	if (ret)
1671 		return ret;
1672 
1673 	return req.rate;
1674 }
1675 EXPORT_SYMBOL_GPL(clk_round_rate);
1676 
1677 /**
1678  * __clk_notify - call clk notifier chain
1679  * @core: clk that is changing rate
1680  * @msg: clk notifier type (see include/linux/clk.h)
1681  * @old_rate: old clk rate
1682  * @new_rate: new clk rate
1683  *
1684  * Triggers a notifier call chain on the clk rate-change notification
1685  * for 'clk'.  Passes a pointer to the struct clk and the previous
1686  * and current rates to the notifier callback.  Intended to be called by
1687  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1688  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1689  * a driver returns that.
1690  */
1691 static int __clk_notify(struct clk_core *core, unsigned long msg,
1692 		unsigned long old_rate, unsigned long new_rate)
1693 {
1694 	struct clk_notifier *cn;
1695 	struct clk_notifier_data cnd;
1696 	int ret = NOTIFY_DONE;
1697 
1698 	cnd.old_rate = old_rate;
1699 	cnd.new_rate = new_rate;
1700 
1701 	list_for_each_entry(cn, &clk_notifier_list, node) {
1702 		if (cn->clk->core == core) {
1703 			cnd.clk = cn->clk;
1704 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1705 					&cnd);
1706 			if (ret & NOTIFY_STOP_MASK)
1707 				return ret;
1708 		}
1709 	}
1710 
1711 	return ret;
1712 }
1713 
1714 /**
1715  * __clk_recalc_accuracies
1716  * @core: first clk in the subtree
1717  *
1718  * Walks the subtree of clks starting with clk and recalculates accuracies as
1719  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1720  * callback then it is assumed that the clock will take on the accuracy of its
1721  * parent.
1722  */
1723 static void __clk_recalc_accuracies(struct clk_core *core)
1724 {
1725 	unsigned long parent_accuracy = 0;
1726 	struct clk_core *child;
1727 
1728 	lockdep_assert_held(&prepare_lock);
1729 
1730 	if (core->parent)
1731 		parent_accuracy = core->parent->accuracy;
1732 
1733 	if (core->ops->recalc_accuracy)
1734 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1735 							  parent_accuracy);
1736 	else
1737 		core->accuracy = parent_accuracy;
1738 
1739 	hlist_for_each_entry(child, &core->children, child_node)
1740 		__clk_recalc_accuracies(child);
1741 }
1742 
1743 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1744 {
1745 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1746 		__clk_recalc_accuracies(core);
1747 
1748 	return clk_core_get_accuracy_no_lock(core);
1749 }
1750 
1751 /**
1752  * clk_get_accuracy - return the accuracy of clk
1753  * @clk: the clk whose accuracy is being returned
1754  *
1755  * Simply returns the cached accuracy of the clk, unless
1756  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1757  * issued.
1758  * If clk is NULL then returns 0.
1759  */
1760 long clk_get_accuracy(struct clk *clk)
1761 {
1762 	long accuracy;
1763 
1764 	if (!clk)
1765 		return 0;
1766 
1767 	clk_prepare_lock();
1768 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1769 	clk_prepare_unlock();
1770 
1771 	return accuracy;
1772 }
1773 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1774 
1775 static unsigned long clk_recalc(struct clk_core *core,
1776 				unsigned long parent_rate)
1777 {
1778 	unsigned long rate = parent_rate;
1779 
1780 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1781 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1782 		clk_pm_runtime_put(core);
1783 	}
1784 	return rate;
1785 }
1786 
1787 /**
1788  * __clk_recalc_rates
1789  * @core: first clk in the subtree
1790  * @update_req: Whether req_rate should be updated with the new rate
1791  * @msg: notification type (see include/linux/clk.h)
1792  *
1793  * Walks the subtree of clks starting with clk and recalculates rates as it
1794  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1795  * it is assumed that the clock will take on the rate of its parent.
1796  *
1797  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1798  * if necessary.
1799  */
1800 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1801 			       unsigned long msg)
1802 {
1803 	unsigned long old_rate;
1804 	unsigned long parent_rate = 0;
1805 	struct clk_core *child;
1806 
1807 	lockdep_assert_held(&prepare_lock);
1808 
1809 	old_rate = core->rate;
1810 
1811 	if (core->parent)
1812 		parent_rate = core->parent->rate;
1813 
1814 	core->rate = clk_recalc(core, parent_rate);
1815 	if (update_req)
1816 		core->req_rate = core->rate;
1817 
1818 	/*
1819 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1820 	 * & ABORT_RATE_CHANGE notifiers
1821 	 */
1822 	if (core->notifier_count && msg)
1823 		__clk_notify(core, msg, old_rate, core->rate);
1824 
1825 	hlist_for_each_entry(child, &core->children, child_node)
1826 		__clk_recalc_rates(child, update_req, msg);
1827 }
1828 
1829 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1830 {
1831 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1832 		__clk_recalc_rates(core, false, 0);
1833 
1834 	return clk_core_get_rate_nolock(core);
1835 }
1836 
1837 /**
1838  * clk_get_rate - return the rate of clk
1839  * @clk: the clk whose rate is being returned
1840  *
1841  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1842  * is set, which means a recalc_rate will be issued. Can be called regardless of
1843  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1844  * 0.
1845  */
1846 unsigned long clk_get_rate(struct clk *clk)
1847 {
1848 	unsigned long rate;
1849 
1850 	if (!clk)
1851 		return 0;
1852 
1853 	clk_prepare_lock();
1854 	rate = clk_core_get_rate_recalc(clk->core);
1855 	clk_prepare_unlock();
1856 
1857 	return rate;
1858 }
1859 EXPORT_SYMBOL_GPL(clk_get_rate);
1860 
1861 static int clk_fetch_parent_index(struct clk_core *core,
1862 				  struct clk_core *parent)
1863 {
1864 	int i;
1865 
1866 	if (!parent)
1867 		return -EINVAL;
1868 
1869 	for (i = 0; i < core->num_parents; i++) {
1870 		/* Found it first try! */
1871 		if (core->parents[i].core == parent)
1872 			return i;
1873 
1874 		/* Something else is here, so keep looking */
1875 		if (core->parents[i].core)
1876 			continue;
1877 
1878 		/* Maybe core hasn't been cached but the hw is all we know? */
1879 		if (core->parents[i].hw) {
1880 			if (core->parents[i].hw == parent->hw)
1881 				break;
1882 
1883 			/* Didn't match, but we're expecting a clk_hw */
1884 			continue;
1885 		}
1886 
1887 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1888 		if (parent == clk_core_get(core, i))
1889 			break;
1890 
1891 		/* Fallback to comparing globally unique names */
1892 		if (core->parents[i].name &&
1893 		    !strcmp(parent->name, core->parents[i].name))
1894 			break;
1895 	}
1896 
1897 	if (i == core->num_parents)
1898 		return -EINVAL;
1899 
1900 	core->parents[i].core = parent;
1901 	return i;
1902 }
1903 
1904 /**
1905  * clk_hw_get_parent_index - return the index of the parent clock
1906  * @hw: clk_hw associated with the clk being consumed
1907  *
1908  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1909  * clock does not have a current parent.
1910  */
1911 int clk_hw_get_parent_index(struct clk_hw *hw)
1912 {
1913 	struct clk_hw *parent = clk_hw_get_parent(hw);
1914 
1915 	if (WARN_ON(parent == NULL))
1916 		return -EINVAL;
1917 
1918 	return clk_fetch_parent_index(hw->core, parent->core);
1919 }
1920 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1921 
1922 /*
1923  * Update the orphan status of @core and all its children.
1924  */
1925 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1926 {
1927 	struct clk_core *child;
1928 
1929 	core->orphan = is_orphan;
1930 
1931 	hlist_for_each_entry(child, &core->children, child_node)
1932 		clk_core_update_orphan_status(child, is_orphan);
1933 }
1934 
1935 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1936 {
1937 	bool was_orphan = core->orphan;
1938 
1939 	hlist_del(&core->child_node);
1940 
1941 	if (new_parent) {
1942 		bool becomes_orphan = new_parent->orphan;
1943 
1944 		/* avoid duplicate POST_RATE_CHANGE notifications */
1945 		if (new_parent->new_child == core)
1946 			new_parent->new_child = NULL;
1947 
1948 		hlist_add_head(&core->child_node, &new_parent->children);
1949 
1950 		if (was_orphan != becomes_orphan)
1951 			clk_core_update_orphan_status(core, becomes_orphan);
1952 	} else {
1953 		hlist_add_head(&core->child_node, &clk_orphan_list);
1954 		if (!was_orphan)
1955 			clk_core_update_orphan_status(core, true);
1956 	}
1957 
1958 	core->parent = new_parent;
1959 }
1960 
1961 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1962 					   struct clk_core *parent)
1963 {
1964 	unsigned long flags;
1965 	struct clk_core *old_parent = core->parent;
1966 
1967 	/*
1968 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1969 	 *
1970 	 * 2. Migrate prepare state between parents and prevent race with
1971 	 * clk_enable().
1972 	 *
1973 	 * If the clock is not prepared, then a race with
1974 	 * clk_enable/disable() is impossible since we already have the
1975 	 * prepare lock (future calls to clk_enable() need to be preceded by
1976 	 * a clk_prepare()).
1977 	 *
1978 	 * If the clock is prepared, migrate the prepared state to the new
1979 	 * parent and also protect against a race with clk_enable() by
1980 	 * forcing the clock and the new parent on.  This ensures that all
1981 	 * future calls to clk_enable() are practically NOPs with respect to
1982 	 * hardware and software states.
1983 	 *
1984 	 * See also: Comment for clk_set_parent() below.
1985 	 */
1986 
1987 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1988 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1989 		clk_core_prepare_enable(old_parent);
1990 		clk_core_prepare_enable(parent);
1991 	}
1992 
1993 	/* migrate prepare count if > 0 */
1994 	if (core->prepare_count) {
1995 		clk_core_prepare_enable(parent);
1996 		clk_core_enable_lock(core);
1997 	}
1998 
1999 	/* update the clk tree topology */
2000 	flags = clk_enable_lock();
2001 	clk_reparent(core, parent);
2002 	clk_enable_unlock(flags);
2003 
2004 	return old_parent;
2005 }
2006 
2007 static void __clk_set_parent_after(struct clk_core *core,
2008 				   struct clk_core *parent,
2009 				   struct clk_core *old_parent)
2010 {
2011 	/*
2012 	 * Finish the migration of prepare state and undo the changes done
2013 	 * for preventing a race with clk_enable().
2014 	 */
2015 	if (core->prepare_count) {
2016 		clk_core_disable_lock(core);
2017 		clk_core_disable_unprepare(old_parent);
2018 	}
2019 
2020 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2021 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2022 		clk_core_disable_unprepare(parent);
2023 		clk_core_disable_unprepare(old_parent);
2024 	}
2025 }
2026 
2027 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2028 			    u8 p_index)
2029 {
2030 	unsigned long flags;
2031 	int ret = 0;
2032 	struct clk_core *old_parent;
2033 
2034 	old_parent = __clk_set_parent_before(core, parent);
2035 
2036 	trace_clk_set_parent(core, parent);
2037 
2038 	/* change clock input source */
2039 	if (parent && core->ops->set_parent)
2040 		ret = core->ops->set_parent(core->hw, p_index);
2041 
2042 	trace_clk_set_parent_complete(core, parent);
2043 
2044 	if (ret) {
2045 		flags = clk_enable_lock();
2046 		clk_reparent(core, old_parent);
2047 		clk_enable_unlock(flags);
2048 
2049 		__clk_set_parent_after(core, old_parent, parent);
2050 
2051 		return ret;
2052 	}
2053 
2054 	__clk_set_parent_after(core, parent, old_parent);
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * __clk_speculate_rates
2061  * @core: first clk in the subtree
2062  * @parent_rate: the "future" rate of clk's parent
2063  *
2064  * Walks the subtree of clks starting with clk, speculating rates as it
2065  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2066  *
2067  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2068  * pre-rate change notifications and returns early if no clks in the
2069  * subtree have subscribed to the notifications.  Note that if a clk does not
2070  * implement the .recalc_rate callback then it is assumed that the clock will
2071  * take on the rate of its parent.
2072  */
2073 static int __clk_speculate_rates(struct clk_core *core,
2074 				 unsigned long parent_rate)
2075 {
2076 	struct clk_core *child;
2077 	unsigned long new_rate;
2078 	int ret = NOTIFY_DONE;
2079 
2080 	lockdep_assert_held(&prepare_lock);
2081 
2082 	new_rate = clk_recalc(core, parent_rate);
2083 
2084 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2085 	if (core->notifier_count)
2086 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2087 
2088 	if (ret & NOTIFY_STOP_MASK) {
2089 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2090 				__func__, core->name, ret);
2091 		goto out;
2092 	}
2093 
2094 	hlist_for_each_entry(child, &core->children, child_node) {
2095 		ret = __clk_speculate_rates(child, new_rate);
2096 		if (ret & NOTIFY_STOP_MASK)
2097 			break;
2098 	}
2099 
2100 out:
2101 	return ret;
2102 }
2103 
2104 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2105 			     struct clk_core *new_parent, u8 p_index)
2106 {
2107 	struct clk_core *child;
2108 
2109 	core->new_rate = new_rate;
2110 	core->new_parent = new_parent;
2111 	core->new_parent_index = p_index;
2112 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2113 	core->new_child = NULL;
2114 	if (new_parent && new_parent != core->parent)
2115 		new_parent->new_child = core;
2116 
2117 	hlist_for_each_entry(child, &core->children, child_node) {
2118 		child->new_rate = clk_recalc(child, new_rate);
2119 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2120 	}
2121 }
2122 
2123 /*
2124  * calculate the new rates returning the topmost clock that has to be
2125  * changed.
2126  */
2127 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2128 					   unsigned long rate)
2129 {
2130 	struct clk_core *top = core;
2131 	struct clk_core *old_parent, *parent;
2132 	unsigned long best_parent_rate = 0;
2133 	unsigned long new_rate;
2134 	unsigned long min_rate;
2135 	unsigned long max_rate;
2136 	int p_index = 0;
2137 	long ret;
2138 
2139 	/* sanity */
2140 	if (IS_ERR_OR_NULL(core))
2141 		return NULL;
2142 
2143 	/* save parent rate, if it exists */
2144 	parent = old_parent = core->parent;
2145 	if (parent)
2146 		best_parent_rate = parent->rate;
2147 
2148 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2149 
2150 	/* find the closest rate and parent clk/rate */
2151 	if (clk_core_can_round(core)) {
2152 		struct clk_rate_request req;
2153 
2154 		clk_core_init_rate_req(core, &req, rate);
2155 
2156 		trace_clk_rate_request_start(&req);
2157 
2158 		ret = clk_core_determine_round_nolock(core, &req);
2159 		if (ret < 0)
2160 			return NULL;
2161 
2162 		trace_clk_rate_request_done(&req);
2163 
2164 		best_parent_rate = req.best_parent_rate;
2165 		new_rate = req.rate;
2166 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2167 
2168 		if (new_rate < min_rate || new_rate > max_rate)
2169 			return NULL;
2170 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2171 		/* pass-through clock without adjustable parent */
2172 		core->new_rate = core->rate;
2173 		return NULL;
2174 	} else {
2175 		/* pass-through clock with adjustable parent */
2176 		top = clk_calc_new_rates(parent, rate);
2177 		new_rate = parent->new_rate;
2178 		goto out;
2179 	}
2180 
2181 	/* some clocks must be gated to change parent */
2182 	if (parent != old_parent &&
2183 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2184 		pr_debug("%s: %s not gated but wants to reparent\n",
2185 			 __func__, core->name);
2186 		return NULL;
2187 	}
2188 
2189 	/* try finding the new parent index */
2190 	if (parent && core->num_parents > 1) {
2191 		p_index = clk_fetch_parent_index(core, parent);
2192 		if (p_index < 0) {
2193 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2194 				 __func__, parent->name, core->name);
2195 			return NULL;
2196 		}
2197 	}
2198 
2199 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2200 	    best_parent_rate != parent->rate)
2201 		top = clk_calc_new_rates(parent, best_parent_rate);
2202 
2203 out:
2204 	clk_calc_subtree(core, new_rate, parent, p_index);
2205 
2206 	return top;
2207 }
2208 
2209 /*
2210  * Notify about rate changes in a subtree. Always walk down the whole tree
2211  * so that in case of an error we can walk down the whole tree again and
2212  * abort the change.
2213  */
2214 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2215 						  unsigned long event)
2216 {
2217 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2218 	int ret = NOTIFY_DONE;
2219 
2220 	if (core->rate == core->new_rate)
2221 		return NULL;
2222 
2223 	if (core->notifier_count) {
2224 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2225 		if (ret & NOTIFY_STOP_MASK)
2226 			fail_clk = core;
2227 	}
2228 
2229 	hlist_for_each_entry(child, &core->children, child_node) {
2230 		/* Skip children who will be reparented to another clock */
2231 		if (child->new_parent && child->new_parent != core)
2232 			continue;
2233 		tmp_clk = clk_propagate_rate_change(child, event);
2234 		if (tmp_clk)
2235 			fail_clk = tmp_clk;
2236 	}
2237 
2238 	/* handle the new child who might not be in core->children yet */
2239 	if (core->new_child) {
2240 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2241 		if (tmp_clk)
2242 			fail_clk = tmp_clk;
2243 	}
2244 
2245 	return fail_clk;
2246 }
2247 
2248 /*
2249  * walk down a subtree and set the new rates notifying the rate
2250  * change on the way
2251  */
2252 static void clk_change_rate(struct clk_core *core)
2253 {
2254 	struct clk_core *child;
2255 	struct hlist_node *tmp;
2256 	unsigned long old_rate;
2257 	unsigned long best_parent_rate = 0;
2258 	bool skip_set_rate = false;
2259 	struct clk_core *old_parent;
2260 	struct clk_core *parent = NULL;
2261 
2262 	old_rate = core->rate;
2263 
2264 	if (core->new_parent) {
2265 		parent = core->new_parent;
2266 		best_parent_rate = core->new_parent->rate;
2267 	} else if (core->parent) {
2268 		parent = core->parent;
2269 		best_parent_rate = core->parent->rate;
2270 	}
2271 
2272 	if (clk_pm_runtime_get(core))
2273 		return;
2274 
2275 	if (core->flags & CLK_SET_RATE_UNGATE) {
2276 		clk_core_prepare(core);
2277 		clk_core_enable_lock(core);
2278 	}
2279 
2280 	if (core->new_parent && core->new_parent != core->parent) {
2281 		old_parent = __clk_set_parent_before(core, core->new_parent);
2282 		trace_clk_set_parent(core, core->new_parent);
2283 
2284 		if (core->ops->set_rate_and_parent) {
2285 			skip_set_rate = true;
2286 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2287 					best_parent_rate,
2288 					core->new_parent_index);
2289 		} else if (core->ops->set_parent) {
2290 			core->ops->set_parent(core->hw, core->new_parent_index);
2291 		}
2292 
2293 		trace_clk_set_parent_complete(core, core->new_parent);
2294 		__clk_set_parent_after(core, core->new_parent, old_parent);
2295 	}
2296 
2297 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2298 		clk_core_prepare_enable(parent);
2299 
2300 	trace_clk_set_rate(core, core->new_rate);
2301 
2302 	if (!skip_set_rate && core->ops->set_rate)
2303 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2304 
2305 	trace_clk_set_rate_complete(core, core->new_rate);
2306 
2307 	core->rate = clk_recalc(core, best_parent_rate);
2308 
2309 	if (core->flags & CLK_SET_RATE_UNGATE) {
2310 		clk_core_disable_lock(core);
2311 		clk_core_unprepare(core);
2312 	}
2313 
2314 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2315 		clk_core_disable_unprepare(parent);
2316 
2317 	if (core->notifier_count && old_rate != core->rate)
2318 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2319 
2320 	if (core->flags & CLK_RECALC_NEW_RATES)
2321 		(void)clk_calc_new_rates(core, core->new_rate);
2322 
2323 	/*
2324 	 * Use safe iteration, as change_rate can actually swap parents
2325 	 * for certain clock types.
2326 	 */
2327 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2328 		/* Skip children who will be reparented to another clock */
2329 		if (child->new_parent && child->new_parent != core)
2330 			continue;
2331 		clk_change_rate(child);
2332 	}
2333 
2334 	/* handle the new child who might not be in core->children yet */
2335 	if (core->new_child)
2336 		clk_change_rate(core->new_child);
2337 
2338 	clk_pm_runtime_put(core);
2339 }
2340 
2341 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2342 						     unsigned long req_rate)
2343 {
2344 	int ret, cnt;
2345 	struct clk_rate_request req;
2346 
2347 	lockdep_assert_held(&prepare_lock);
2348 
2349 	if (!core)
2350 		return 0;
2351 
2352 	/* simulate what the rate would be if it could be freely set */
2353 	cnt = clk_core_rate_nuke_protect(core);
2354 	if (cnt < 0)
2355 		return cnt;
2356 
2357 	clk_core_init_rate_req(core, &req, req_rate);
2358 
2359 	trace_clk_rate_request_start(&req);
2360 
2361 	ret = clk_core_round_rate_nolock(core, &req);
2362 
2363 	trace_clk_rate_request_done(&req);
2364 
2365 	/* restore the protection */
2366 	clk_core_rate_restore_protect(core, cnt);
2367 
2368 	return ret ? 0 : req.rate;
2369 }
2370 
2371 static int clk_core_set_rate_nolock(struct clk_core *core,
2372 				    unsigned long req_rate)
2373 {
2374 	struct clk_core *top, *fail_clk;
2375 	unsigned long rate;
2376 	int ret;
2377 
2378 	if (!core)
2379 		return 0;
2380 
2381 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2382 
2383 	/* bail early if nothing to do */
2384 	if (rate == clk_core_get_rate_nolock(core))
2385 		return 0;
2386 
2387 	/* fail on a direct rate set of a protected provider */
2388 	if (clk_core_rate_is_protected(core))
2389 		return -EBUSY;
2390 
2391 	/* calculate new rates and get the topmost changed clock */
2392 	top = clk_calc_new_rates(core, req_rate);
2393 	if (!top)
2394 		return -EINVAL;
2395 
2396 	ret = clk_pm_runtime_get(core);
2397 	if (ret)
2398 		return ret;
2399 
2400 	/* notify that we are about to change rates */
2401 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2402 	if (fail_clk) {
2403 		pr_debug("%s: failed to set %s rate\n", __func__,
2404 				fail_clk->name);
2405 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2406 		ret = -EBUSY;
2407 		goto err;
2408 	}
2409 
2410 	/* change the rates */
2411 	clk_change_rate(top);
2412 
2413 	core->req_rate = req_rate;
2414 err:
2415 	clk_pm_runtime_put(core);
2416 
2417 	return ret;
2418 }
2419 
2420 /**
2421  * clk_set_rate - specify a new rate for clk
2422  * @clk: the clk whose rate is being changed
2423  * @rate: the new rate for clk
2424  *
2425  * In the simplest case clk_set_rate will only adjust the rate of clk.
2426  *
2427  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2428  * propagate up to clk's parent; whether or not this happens depends on the
2429  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2430  * after calling .round_rate then upstream parent propagation is ignored.  If
2431  * *parent_rate comes back with a new rate for clk's parent then we propagate
2432  * up to clk's parent and set its rate.  Upward propagation will continue
2433  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2434  * .round_rate stops requesting changes to clk's parent_rate.
2435  *
2436  * Rate changes are accomplished via tree traversal that also recalculates the
2437  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2438  *
2439  * Returns 0 on success, -EERROR otherwise.
2440  */
2441 int clk_set_rate(struct clk *clk, unsigned long rate)
2442 {
2443 	int ret;
2444 
2445 	if (!clk)
2446 		return 0;
2447 
2448 	/* prevent racing with updates to the clock topology */
2449 	clk_prepare_lock();
2450 
2451 	if (clk->exclusive_count)
2452 		clk_core_rate_unprotect(clk->core);
2453 
2454 	ret = clk_core_set_rate_nolock(clk->core, rate);
2455 
2456 	if (clk->exclusive_count)
2457 		clk_core_rate_protect(clk->core);
2458 
2459 	clk_prepare_unlock();
2460 
2461 	return ret;
2462 }
2463 EXPORT_SYMBOL_GPL(clk_set_rate);
2464 
2465 /**
2466  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2467  * @clk: the clk whose rate is being changed
2468  * @rate: the new rate for clk
2469  *
2470  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2471  * within a critical section
2472  *
2473  * This can be used initially to ensure that at least 1 consumer is
2474  * satisfied when several consumers are competing for exclusivity over the
2475  * same clock provider.
2476  *
2477  * The exclusivity is not applied if setting the rate failed.
2478  *
2479  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2480  * clk_rate_exclusive_put().
2481  *
2482  * Returns 0 on success, -EERROR otherwise.
2483  */
2484 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2485 {
2486 	int ret;
2487 
2488 	if (!clk)
2489 		return 0;
2490 
2491 	/* prevent racing with updates to the clock topology */
2492 	clk_prepare_lock();
2493 
2494 	/*
2495 	 * The temporary protection removal is not here, on purpose
2496 	 * This function is meant to be used instead of clk_rate_protect,
2497 	 * so before the consumer code path protect the clock provider
2498 	 */
2499 
2500 	ret = clk_core_set_rate_nolock(clk->core, rate);
2501 	if (!ret) {
2502 		clk_core_rate_protect(clk->core);
2503 		clk->exclusive_count++;
2504 	}
2505 
2506 	clk_prepare_unlock();
2507 
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2511 
2512 static int clk_set_rate_range_nolock(struct clk *clk,
2513 				     unsigned long min,
2514 				     unsigned long max)
2515 {
2516 	int ret = 0;
2517 	unsigned long old_min, old_max, rate;
2518 
2519 	lockdep_assert_held(&prepare_lock);
2520 
2521 	if (!clk)
2522 		return 0;
2523 
2524 	trace_clk_set_rate_range(clk->core, min, max);
2525 
2526 	if (min > max) {
2527 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2528 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2529 		       min, max);
2530 		return -EINVAL;
2531 	}
2532 
2533 	if (clk->exclusive_count)
2534 		clk_core_rate_unprotect(clk->core);
2535 
2536 	/* Save the current values in case we need to rollback the change */
2537 	old_min = clk->min_rate;
2538 	old_max = clk->max_rate;
2539 	clk->min_rate = min;
2540 	clk->max_rate = max;
2541 
2542 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2543 		ret = -EINVAL;
2544 		goto out;
2545 	}
2546 
2547 	rate = clk->core->req_rate;
2548 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2549 		rate = clk_core_get_rate_recalc(clk->core);
2550 
2551 	/*
2552 	 * Since the boundaries have been changed, let's give the
2553 	 * opportunity to the provider to adjust the clock rate based on
2554 	 * the new boundaries.
2555 	 *
2556 	 * We also need to handle the case where the clock is currently
2557 	 * outside of the boundaries. Clamping the last requested rate
2558 	 * to the current minimum and maximum will also handle this.
2559 	 *
2560 	 * FIXME:
2561 	 * There is a catch. It may fail for the usual reason (clock
2562 	 * broken, clock protected, etc) but also because:
2563 	 * - round_rate() was not favorable and fell on the wrong
2564 	 *   side of the boundary
2565 	 * - the determine_rate() callback does not really check for
2566 	 *   this corner case when determining the rate
2567 	 */
2568 	rate = clamp(rate, min, max);
2569 	ret = clk_core_set_rate_nolock(clk->core, rate);
2570 	if (ret) {
2571 		/* rollback the changes */
2572 		clk->min_rate = old_min;
2573 		clk->max_rate = old_max;
2574 	}
2575 
2576 out:
2577 	if (clk->exclusive_count)
2578 		clk_core_rate_protect(clk->core);
2579 
2580 	return ret;
2581 }
2582 
2583 /**
2584  * clk_set_rate_range - set a rate range for a clock source
2585  * @clk: clock source
2586  * @min: desired minimum clock rate in Hz, inclusive
2587  * @max: desired maximum clock rate in Hz, inclusive
2588  *
2589  * Return: 0 for success or negative errno on failure.
2590  */
2591 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2592 {
2593 	int ret;
2594 
2595 	if (!clk)
2596 		return 0;
2597 
2598 	clk_prepare_lock();
2599 
2600 	ret = clk_set_rate_range_nolock(clk, min, max);
2601 
2602 	clk_prepare_unlock();
2603 
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2607 
2608 /**
2609  * clk_set_min_rate - set a minimum clock rate for a clock source
2610  * @clk: clock source
2611  * @rate: desired minimum clock rate in Hz, inclusive
2612  *
2613  * Returns success (0) or negative errno.
2614  */
2615 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2616 {
2617 	if (!clk)
2618 		return 0;
2619 
2620 	trace_clk_set_min_rate(clk->core, rate);
2621 
2622 	return clk_set_rate_range(clk, rate, clk->max_rate);
2623 }
2624 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2625 
2626 /**
2627  * clk_set_max_rate - set a maximum clock rate for a clock source
2628  * @clk: clock source
2629  * @rate: desired maximum clock rate in Hz, inclusive
2630  *
2631  * Returns success (0) or negative errno.
2632  */
2633 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2634 {
2635 	if (!clk)
2636 		return 0;
2637 
2638 	trace_clk_set_max_rate(clk->core, rate);
2639 
2640 	return clk_set_rate_range(clk, clk->min_rate, rate);
2641 }
2642 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2643 
2644 /**
2645  * clk_get_parent - return the parent of a clk
2646  * @clk: the clk whose parent gets returned
2647  *
2648  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2649  */
2650 struct clk *clk_get_parent(struct clk *clk)
2651 {
2652 	struct clk *parent;
2653 
2654 	if (!clk)
2655 		return NULL;
2656 
2657 	clk_prepare_lock();
2658 	/* TODO: Create a per-user clk and change callers to call clk_put */
2659 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2660 	clk_prepare_unlock();
2661 
2662 	return parent;
2663 }
2664 EXPORT_SYMBOL_GPL(clk_get_parent);
2665 
2666 static struct clk_core *__clk_init_parent(struct clk_core *core)
2667 {
2668 	u8 index = 0;
2669 
2670 	if (core->num_parents > 1 && core->ops->get_parent)
2671 		index = core->ops->get_parent(core->hw);
2672 
2673 	return clk_core_get_parent_by_index(core, index);
2674 }
2675 
2676 static void clk_core_reparent(struct clk_core *core,
2677 				  struct clk_core *new_parent)
2678 {
2679 	clk_reparent(core, new_parent);
2680 	__clk_recalc_accuracies(core);
2681 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2682 }
2683 
2684 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2685 {
2686 	if (!hw)
2687 		return;
2688 
2689 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2690 }
2691 
2692 /**
2693  * clk_has_parent - check if a clock is a possible parent for another
2694  * @clk: clock source
2695  * @parent: parent clock source
2696  *
2697  * This function can be used in drivers that need to check that a clock can be
2698  * the parent of another without actually changing the parent.
2699  *
2700  * Returns true if @parent is a possible parent for @clk, false otherwise.
2701  */
2702 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2703 {
2704 	/* NULL clocks should be nops, so return success if either is NULL. */
2705 	if (!clk || !parent)
2706 		return true;
2707 
2708 	return clk_core_has_parent(clk->core, parent->core);
2709 }
2710 EXPORT_SYMBOL_GPL(clk_has_parent);
2711 
2712 static int clk_core_set_parent_nolock(struct clk_core *core,
2713 				      struct clk_core *parent)
2714 {
2715 	int ret = 0;
2716 	int p_index = 0;
2717 	unsigned long p_rate = 0;
2718 
2719 	lockdep_assert_held(&prepare_lock);
2720 
2721 	if (!core)
2722 		return 0;
2723 
2724 	if (core->parent == parent)
2725 		return 0;
2726 
2727 	/* verify ops for multi-parent clks */
2728 	if (core->num_parents > 1 && !core->ops->set_parent)
2729 		return -EPERM;
2730 
2731 	/* check that we are allowed to re-parent if the clock is in use */
2732 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2733 		return -EBUSY;
2734 
2735 	if (clk_core_rate_is_protected(core))
2736 		return -EBUSY;
2737 
2738 	/* try finding the new parent index */
2739 	if (parent) {
2740 		p_index = clk_fetch_parent_index(core, parent);
2741 		if (p_index < 0) {
2742 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2743 					__func__, parent->name, core->name);
2744 			return p_index;
2745 		}
2746 		p_rate = parent->rate;
2747 	}
2748 
2749 	ret = clk_pm_runtime_get(core);
2750 	if (ret)
2751 		return ret;
2752 
2753 	/* propagate PRE_RATE_CHANGE notifications */
2754 	ret = __clk_speculate_rates(core, p_rate);
2755 
2756 	/* abort if a driver objects */
2757 	if (ret & NOTIFY_STOP_MASK)
2758 		goto runtime_put;
2759 
2760 	/* do the re-parent */
2761 	ret = __clk_set_parent(core, parent, p_index);
2762 
2763 	/* propagate rate an accuracy recalculation accordingly */
2764 	if (ret) {
2765 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2766 	} else {
2767 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2768 		__clk_recalc_accuracies(core);
2769 	}
2770 
2771 runtime_put:
2772 	clk_pm_runtime_put(core);
2773 
2774 	return ret;
2775 }
2776 
2777 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2778 {
2779 	return clk_core_set_parent_nolock(hw->core, parent->core);
2780 }
2781 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2782 
2783 /**
2784  * clk_set_parent - switch the parent of a mux clk
2785  * @clk: the mux clk whose input we are switching
2786  * @parent: the new input to clk
2787  *
2788  * Re-parent clk to use parent as its new input source.  If clk is in
2789  * prepared state, the clk will get enabled for the duration of this call. If
2790  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2791  * that, the reparenting is glitchy in hardware, etc), use the
2792  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2793  *
2794  * After successfully changing clk's parent clk_set_parent will update the
2795  * clk topology, sysfs topology and propagate rate recalculation via
2796  * __clk_recalc_rates.
2797  *
2798  * Returns 0 on success, -EERROR otherwise.
2799  */
2800 int clk_set_parent(struct clk *clk, struct clk *parent)
2801 {
2802 	int ret;
2803 
2804 	if (!clk)
2805 		return 0;
2806 
2807 	clk_prepare_lock();
2808 
2809 	if (clk->exclusive_count)
2810 		clk_core_rate_unprotect(clk->core);
2811 
2812 	ret = clk_core_set_parent_nolock(clk->core,
2813 					 parent ? parent->core : NULL);
2814 
2815 	if (clk->exclusive_count)
2816 		clk_core_rate_protect(clk->core);
2817 
2818 	clk_prepare_unlock();
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(clk_set_parent);
2823 
2824 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2825 {
2826 	int ret = -EINVAL;
2827 
2828 	lockdep_assert_held(&prepare_lock);
2829 
2830 	if (!core)
2831 		return 0;
2832 
2833 	if (clk_core_rate_is_protected(core))
2834 		return -EBUSY;
2835 
2836 	trace_clk_set_phase(core, degrees);
2837 
2838 	if (core->ops->set_phase) {
2839 		ret = core->ops->set_phase(core->hw, degrees);
2840 		if (!ret)
2841 			core->phase = degrees;
2842 	}
2843 
2844 	trace_clk_set_phase_complete(core, degrees);
2845 
2846 	return ret;
2847 }
2848 
2849 /**
2850  * clk_set_phase - adjust the phase shift of a clock signal
2851  * @clk: clock signal source
2852  * @degrees: number of degrees the signal is shifted
2853  *
2854  * Shifts the phase of a clock signal by the specified
2855  * degrees. Returns 0 on success, -EERROR otherwise.
2856  *
2857  * This function makes no distinction about the input or reference
2858  * signal that we adjust the clock signal phase against. For example
2859  * phase locked-loop clock signal generators we may shift phase with
2860  * respect to feedback clock signal input, but for other cases the
2861  * clock phase may be shifted with respect to some other, unspecified
2862  * signal.
2863  *
2864  * Additionally the concept of phase shift does not propagate through
2865  * the clock tree hierarchy, which sets it apart from clock rates and
2866  * clock accuracy. A parent clock phase attribute does not have an
2867  * impact on the phase attribute of a child clock.
2868  */
2869 int clk_set_phase(struct clk *clk, int degrees)
2870 {
2871 	int ret;
2872 
2873 	if (!clk)
2874 		return 0;
2875 
2876 	/* sanity check degrees */
2877 	degrees %= 360;
2878 	if (degrees < 0)
2879 		degrees += 360;
2880 
2881 	clk_prepare_lock();
2882 
2883 	if (clk->exclusive_count)
2884 		clk_core_rate_unprotect(clk->core);
2885 
2886 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2887 
2888 	if (clk->exclusive_count)
2889 		clk_core_rate_protect(clk->core);
2890 
2891 	clk_prepare_unlock();
2892 
2893 	return ret;
2894 }
2895 EXPORT_SYMBOL_GPL(clk_set_phase);
2896 
2897 static int clk_core_get_phase(struct clk_core *core)
2898 {
2899 	int ret;
2900 
2901 	lockdep_assert_held(&prepare_lock);
2902 	if (!core->ops->get_phase)
2903 		return 0;
2904 
2905 	/* Always try to update cached phase if possible */
2906 	ret = core->ops->get_phase(core->hw);
2907 	if (ret >= 0)
2908 		core->phase = ret;
2909 
2910 	return ret;
2911 }
2912 
2913 /**
2914  * clk_get_phase - return the phase shift of a clock signal
2915  * @clk: clock signal source
2916  *
2917  * Returns the phase shift of a clock node in degrees, otherwise returns
2918  * -EERROR.
2919  */
2920 int clk_get_phase(struct clk *clk)
2921 {
2922 	int ret;
2923 
2924 	if (!clk)
2925 		return 0;
2926 
2927 	clk_prepare_lock();
2928 	ret = clk_core_get_phase(clk->core);
2929 	clk_prepare_unlock();
2930 
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL_GPL(clk_get_phase);
2934 
2935 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2936 {
2937 	/* Assume a default value of 50% */
2938 	core->duty.num = 1;
2939 	core->duty.den = 2;
2940 }
2941 
2942 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2943 
2944 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2945 {
2946 	struct clk_duty *duty = &core->duty;
2947 	int ret = 0;
2948 
2949 	if (!core->ops->get_duty_cycle)
2950 		return clk_core_update_duty_cycle_parent_nolock(core);
2951 
2952 	ret = core->ops->get_duty_cycle(core->hw, duty);
2953 	if (ret)
2954 		goto reset;
2955 
2956 	/* Don't trust the clock provider too much */
2957 	if (duty->den == 0 || duty->num > duty->den) {
2958 		ret = -EINVAL;
2959 		goto reset;
2960 	}
2961 
2962 	return 0;
2963 
2964 reset:
2965 	clk_core_reset_duty_cycle_nolock(core);
2966 	return ret;
2967 }
2968 
2969 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2970 {
2971 	int ret = 0;
2972 
2973 	if (core->parent &&
2974 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2975 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2976 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2977 	} else {
2978 		clk_core_reset_duty_cycle_nolock(core);
2979 	}
2980 
2981 	return ret;
2982 }
2983 
2984 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2985 						 struct clk_duty *duty);
2986 
2987 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2988 					  struct clk_duty *duty)
2989 {
2990 	int ret;
2991 
2992 	lockdep_assert_held(&prepare_lock);
2993 
2994 	if (clk_core_rate_is_protected(core))
2995 		return -EBUSY;
2996 
2997 	trace_clk_set_duty_cycle(core, duty);
2998 
2999 	if (!core->ops->set_duty_cycle)
3000 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3001 
3002 	ret = core->ops->set_duty_cycle(core->hw, duty);
3003 	if (!ret)
3004 		memcpy(&core->duty, duty, sizeof(*duty));
3005 
3006 	trace_clk_set_duty_cycle_complete(core, duty);
3007 
3008 	return ret;
3009 }
3010 
3011 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3012 						 struct clk_duty *duty)
3013 {
3014 	int ret = 0;
3015 
3016 	if (core->parent &&
3017 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3018 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3019 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3020 	}
3021 
3022 	return ret;
3023 }
3024 
3025 /**
3026  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3027  * @clk: clock signal source
3028  * @num: numerator of the duty cycle ratio to be applied
3029  * @den: denominator of the duty cycle ratio to be applied
3030  *
3031  * Apply the duty cycle ratio if the ratio is valid and the clock can
3032  * perform this operation
3033  *
3034  * Returns (0) on success, a negative errno otherwise.
3035  */
3036 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3037 {
3038 	int ret;
3039 	struct clk_duty duty;
3040 
3041 	if (!clk)
3042 		return 0;
3043 
3044 	/* sanity check the ratio */
3045 	if (den == 0 || num > den)
3046 		return -EINVAL;
3047 
3048 	duty.num = num;
3049 	duty.den = den;
3050 
3051 	clk_prepare_lock();
3052 
3053 	if (clk->exclusive_count)
3054 		clk_core_rate_unprotect(clk->core);
3055 
3056 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3057 
3058 	if (clk->exclusive_count)
3059 		clk_core_rate_protect(clk->core);
3060 
3061 	clk_prepare_unlock();
3062 
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3066 
3067 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3068 					  unsigned int scale)
3069 {
3070 	struct clk_duty *duty = &core->duty;
3071 	int ret;
3072 
3073 	clk_prepare_lock();
3074 
3075 	ret = clk_core_update_duty_cycle_nolock(core);
3076 	if (!ret)
3077 		ret = mult_frac(scale, duty->num, duty->den);
3078 
3079 	clk_prepare_unlock();
3080 
3081 	return ret;
3082 }
3083 
3084 /**
3085  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3086  * @clk: clock signal source
3087  * @scale: scaling factor to be applied to represent the ratio as an integer
3088  *
3089  * Returns the duty cycle ratio of a clock node multiplied by the provided
3090  * scaling factor, or negative errno on error.
3091  */
3092 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3093 {
3094 	if (!clk)
3095 		return 0;
3096 
3097 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3098 }
3099 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3100 
3101 /**
3102  * clk_is_match - check if two clk's point to the same hardware clock
3103  * @p: clk compared against q
3104  * @q: clk compared against p
3105  *
3106  * Returns true if the two struct clk pointers both point to the same hardware
3107  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3108  * share the same struct clk_core object.
3109  *
3110  * Returns false otherwise. Note that two NULL clks are treated as matching.
3111  */
3112 bool clk_is_match(const struct clk *p, const struct clk *q)
3113 {
3114 	/* trivial case: identical struct clk's or both NULL */
3115 	if (p == q)
3116 		return true;
3117 
3118 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3119 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3120 		if (p->core == q->core)
3121 			return true;
3122 
3123 	return false;
3124 }
3125 EXPORT_SYMBOL_GPL(clk_is_match);
3126 
3127 /***        debugfs support        ***/
3128 
3129 #ifdef CONFIG_DEBUG_FS
3130 #include <linux/debugfs.h>
3131 
3132 static struct dentry *rootdir;
3133 static int inited = 0;
3134 static DEFINE_MUTEX(clk_debug_lock);
3135 static HLIST_HEAD(clk_debug_list);
3136 
3137 static struct hlist_head *orphan_list[] = {
3138 	&clk_orphan_list,
3139 	NULL,
3140 };
3141 
3142 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3143 				 int level)
3144 {
3145 	int phase;
3146 
3147 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3148 		   level * 3 + 1, "",
3149 		   30 - level * 3, c->name,
3150 		   c->enable_count, c->prepare_count, c->protect_count,
3151 		   clk_core_get_rate_recalc(c),
3152 		   clk_core_get_accuracy_recalc(c));
3153 
3154 	phase = clk_core_get_phase(c);
3155 	if (phase >= 0)
3156 		seq_printf(s, "%5d", phase);
3157 	else
3158 		seq_puts(s, "-----");
3159 
3160 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3161 
3162 	if (c->ops->is_enabled)
3163 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3164 	else if (!c->ops->enable)
3165 		seq_printf(s, " %9c\n", 'Y');
3166 	else
3167 		seq_printf(s, " %9c\n", '?');
3168 }
3169 
3170 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3171 				     int level)
3172 {
3173 	struct clk_core *child;
3174 
3175 	clk_pm_runtime_get(c);
3176 	clk_summary_show_one(s, c, level);
3177 	clk_pm_runtime_put(c);
3178 
3179 	hlist_for_each_entry(child, &c->children, child_node)
3180 		clk_summary_show_subtree(s, child, level + 1);
3181 }
3182 
3183 static int clk_summary_show(struct seq_file *s, void *data)
3184 {
3185 	struct clk_core *c;
3186 	struct hlist_head **lists = (struct hlist_head **)s->private;
3187 
3188 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3189 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3190 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3191 
3192 	clk_prepare_lock();
3193 
3194 	for (; *lists; lists++)
3195 		hlist_for_each_entry(c, *lists, child_node)
3196 			clk_summary_show_subtree(s, c, 0);
3197 
3198 	clk_prepare_unlock();
3199 
3200 	return 0;
3201 }
3202 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3203 
3204 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3205 {
3206 	int phase;
3207 	unsigned long min_rate, max_rate;
3208 
3209 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3210 
3211 	/* This should be JSON format, i.e. elements separated with a comma */
3212 	seq_printf(s, "\"%s\": { ", c->name);
3213 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3214 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3215 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3216 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3217 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3218 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3219 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3220 	phase = clk_core_get_phase(c);
3221 	if (phase >= 0)
3222 		seq_printf(s, "\"phase\": %d,", phase);
3223 	seq_printf(s, "\"duty_cycle\": %u",
3224 		   clk_core_get_scaled_duty_cycle(c, 100000));
3225 }
3226 
3227 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3228 {
3229 	struct clk_core *child;
3230 
3231 	clk_dump_one(s, c, level);
3232 
3233 	hlist_for_each_entry(child, &c->children, child_node) {
3234 		seq_putc(s, ',');
3235 		clk_dump_subtree(s, child, level + 1);
3236 	}
3237 
3238 	seq_putc(s, '}');
3239 }
3240 
3241 static int clk_dump_show(struct seq_file *s, void *data)
3242 {
3243 	struct clk_core *c;
3244 	bool first_node = true;
3245 	struct hlist_head **lists = (struct hlist_head **)s->private;
3246 
3247 	seq_putc(s, '{');
3248 	clk_prepare_lock();
3249 
3250 	for (; *lists; lists++) {
3251 		hlist_for_each_entry(c, *lists, child_node) {
3252 			if (!first_node)
3253 				seq_putc(s, ',');
3254 			first_node = false;
3255 			clk_dump_subtree(s, c, 0);
3256 		}
3257 	}
3258 
3259 	clk_prepare_unlock();
3260 
3261 	seq_puts(s, "}\n");
3262 	return 0;
3263 }
3264 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3265 
3266 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3267 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3268 /*
3269  * This can be dangerous, therefore don't provide any real compile time
3270  * configuration option for this feature.
3271  * People who want to use this will need to modify the source code directly.
3272  */
3273 static int clk_rate_set(void *data, u64 val)
3274 {
3275 	struct clk_core *core = data;
3276 	int ret;
3277 
3278 	clk_prepare_lock();
3279 	ret = clk_core_set_rate_nolock(core, val);
3280 	clk_prepare_unlock();
3281 
3282 	return ret;
3283 }
3284 
3285 #define clk_rate_mode	0644
3286 
3287 static int clk_prepare_enable_set(void *data, u64 val)
3288 {
3289 	struct clk_core *core = data;
3290 	int ret = 0;
3291 
3292 	if (val)
3293 		ret = clk_prepare_enable(core->hw->clk);
3294 	else
3295 		clk_disable_unprepare(core->hw->clk);
3296 
3297 	return ret;
3298 }
3299 
3300 static int clk_prepare_enable_get(void *data, u64 *val)
3301 {
3302 	struct clk_core *core = data;
3303 
3304 	*val = core->enable_count && core->prepare_count;
3305 	return 0;
3306 }
3307 
3308 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3309 			 clk_prepare_enable_set, "%llu\n");
3310 
3311 #else
3312 #define clk_rate_set	NULL
3313 #define clk_rate_mode	0444
3314 #endif
3315 
3316 static int clk_rate_get(void *data, u64 *val)
3317 {
3318 	struct clk_core *core = data;
3319 
3320 	clk_prepare_lock();
3321 	*val = clk_core_get_rate_recalc(core);
3322 	clk_prepare_unlock();
3323 
3324 	return 0;
3325 }
3326 
3327 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3328 
3329 static const struct {
3330 	unsigned long flag;
3331 	const char *name;
3332 } clk_flags[] = {
3333 #define ENTRY(f) { f, #f }
3334 	ENTRY(CLK_SET_RATE_GATE),
3335 	ENTRY(CLK_SET_PARENT_GATE),
3336 	ENTRY(CLK_SET_RATE_PARENT),
3337 	ENTRY(CLK_IGNORE_UNUSED),
3338 	ENTRY(CLK_GET_RATE_NOCACHE),
3339 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3340 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3341 	ENTRY(CLK_RECALC_NEW_RATES),
3342 	ENTRY(CLK_SET_RATE_UNGATE),
3343 	ENTRY(CLK_IS_CRITICAL),
3344 	ENTRY(CLK_OPS_PARENT_ENABLE),
3345 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3346 #undef ENTRY
3347 };
3348 
3349 static int clk_flags_show(struct seq_file *s, void *data)
3350 {
3351 	struct clk_core *core = s->private;
3352 	unsigned long flags = core->flags;
3353 	unsigned int i;
3354 
3355 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3356 		if (flags & clk_flags[i].flag) {
3357 			seq_printf(s, "%s\n", clk_flags[i].name);
3358 			flags &= ~clk_flags[i].flag;
3359 		}
3360 	}
3361 	if (flags) {
3362 		/* Unknown flags */
3363 		seq_printf(s, "0x%lx\n", flags);
3364 	}
3365 
3366 	return 0;
3367 }
3368 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3369 
3370 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3371 				 unsigned int i, char terminator)
3372 {
3373 	struct clk_core *parent;
3374 
3375 	/*
3376 	 * Go through the following options to fetch a parent's name.
3377 	 *
3378 	 * 1. Fetch the registered parent clock and use its name
3379 	 * 2. Use the global (fallback) name if specified
3380 	 * 3. Use the local fw_name if provided
3381 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3382 	 *
3383 	 * This may still fail in some cases, such as when the parent is
3384 	 * specified directly via a struct clk_hw pointer, but it isn't
3385 	 * registered (yet).
3386 	 */
3387 	parent = clk_core_get_parent_by_index(core, i);
3388 	if (parent)
3389 		seq_puts(s, parent->name);
3390 	else if (core->parents[i].name)
3391 		seq_puts(s, core->parents[i].name);
3392 	else if (core->parents[i].fw_name)
3393 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3394 	else if (core->parents[i].index >= 0)
3395 		seq_puts(s,
3396 			 of_clk_get_parent_name(core->of_node,
3397 						core->parents[i].index));
3398 	else
3399 		seq_puts(s, "(missing)");
3400 
3401 	seq_putc(s, terminator);
3402 }
3403 
3404 static int possible_parents_show(struct seq_file *s, void *data)
3405 {
3406 	struct clk_core *core = s->private;
3407 	int i;
3408 
3409 	for (i = 0; i < core->num_parents - 1; i++)
3410 		possible_parent_show(s, core, i, ' ');
3411 
3412 	possible_parent_show(s, core, i, '\n');
3413 
3414 	return 0;
3415 }
3416 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3417 
3418 static int current_parent_show(struct seq_file *s, void *data)
3419 {
3420 	struct clk_core *core = s->private;
3421 
3422 	if (core->parent)
3423 		seq_printf(s, "%s\n", core->parent->name);
3424 
3425 	return 0;
3426 }
3427 DEFINE_SHOW_ATTRIBUTE(current_parent);
3428 
3429 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3430 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3431 				    size_t count, loff_t *ppos)
3432 {
3433 	struct seq_file *s = file->private_data;
3434 	struct clk_core *core = s->private;
3435 	struct clk_core *parent;
3436 	u8 idx;
3437 	int err;
3438 
3439 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3440 	if (err < 0)
3441 		return err;
3442 
3443 	parent = clk_core_get_parent_by_index(core, idx);
3444 	if (!parent)
3445 		return -ENOENT;
3446 
3447 	clk_prepare_lock();
3448 	err = clk_core_set_parent_nolock(core, parent);
3449 	clk_prepare_unlock();
3450 	if (err)
3451 		return err;
3452 
3453 	return count;
3454 }
3455 
3456 static const struct file_operations current_parent_rw_fops = {
3457 	.open		= current_parent_open,
3458 	.write		= current_parent_write,
3459 	.read		= seq_read,
3460 	.llseek		= seq_lseek,
3461 	.release	= single_release,
3462 };
3463 #endif
3464 
3465 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3466 {
3467 	struct clk_core *core = s->private;
3468 	struct clk_duty *duty = &core->duty;
3469 
3470 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3471 
3472 	return 0;
3473 }
3474 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3475 
3476 static int clk_min_rate_show(struct seq_file *s, void *data)
3477 {
3478 	struct clk_core *core = s->private;
3479 	unsigned long min_rate, max_rate;
3480 
3481 	clk_prepare_lock();
3482 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3483 	clk_prepare_unlock();
3484 	seq_printf(s, "%lu\n", min_rate);
3485 
3486 	return 0;
3487 }
3488 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3489 
3490 static int clk_max_rate_show(struct seq_file *s, void *data)
3491 {
3492 	struct clk_core *core = s->private;
3493 	unsigned long min_rate, max_rate;
3494 
3495 	clk_prepare_lock();
3496 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3497 	clk_prepare_unlock();
3498 	seq_printf(s, "%lu\n", max_rate);
3499 
3500 	return 0;
3501 }
3502 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3503 
3504 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3505 {
3506 	struct dentry *root;
3507 
3508 	if (!core || !pdentry)
3509 		return;
3510 
3511 	root = debugfs_create_dir(core->name, pdentry);
3512 	core->dentry = root;
3513 
3514 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3515 			    &clk_rate_fops);
3516 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3517 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3518 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3519 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3520 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3521 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3522 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3523 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3524 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3525 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3526 			    &clk_duty_cycle_fops);
3527 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3528 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3529 			    &clk_prepare_enable_fops);
3530 
3531 	if (core->num_parents > 1)
3532 		debugfs_create_file("clk_parent", 0644, root, core,
3533 				    &current_parent_rw_fops);
3534 	else
3535 #endif
3536 	if (core->num_parents > 0)
3537 		debugfs_create_file("clk_parent", 0444, root, core,
3538 				    &current_parent_fops);
3539 
3540 	if (core->num_parents > 1)
3541 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3542 				    &possible_parents_fops);
3543 
3544 	if (core->ops->debug_init)
3545 		core->ops->debug_init(core->hw, core->dentry);
3546 }
3547 
3548 /**
3549  * clk_debug_register - add a clk node to the debugfs clk directory
3550  * @core: the clk being added to the debugfs clk directory
3551  *
3552  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3553  * initialized.  Otherwise it bails out early since the debugfs clk directory
3554  * will be created lazily by clk_debug_init as part of a late_initcall.
3555  */
3556 static void clk_debug_register(struct clk_core *core)
3557 {
3558 	mutex_lock(&clk_debug_lock);
3559 	hlist_add_head(&core->debug_node, &clk_debug_list);
3560 	if (inited)
3561 		clk_debug_create_one(core, rootdir);
3562 	mutex_unlock(&clk_debug_lock);
3563 }
3564 
3565  /**
3566  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3567  * @core: the clk being removed from the debugfs clk directory
3568  *
3569  * Dynamically removes a clk and all its child nodes from the
3570  * debugfs clk directory if clk->dentry points to debugfs created by
3571  * clk_debug_register in __clk_core_init.
3572  */
3573 static void clk_debug_unregister(struct clk_core *core)
3574 {
3575 	mutex_lock(&clk_debug_lock);
3576 	hlist_del_init(&core->debug_node);
3577 	debugfs_remove_recursive(core->dentry);
3578 	core->dentry = NULL;
3579 	mutex_unlock(&clk_debug_lock);
3580 }
3581 
3582 /**
3583  * clk_debug_init - lazily populate the debugfs clk directory
3584  *
3585  * clks are often initialized very early during boot before memory can be
3586  * dynamically allocated and well before debugfs is setup. This function
3587  * populates the debugfs clk directory once at boot-time when we know that
3588  * debugfs is setup. It should only be called once at boot-time, all other clks
3589  * added dynamically will be done so with clk_debug_register.
3590  */
3591 static int __init clk_debug_init(void)
3592 {
3593 	struct clk_core *core;
3594 
3595 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3596 	pr_warn("\n");
3597 	pr_warn("********************************************************************\n");
3598 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3599 	pr_warn("**                                                                **\n");
3600 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3601 	pr_warn("**                                                                **\n");
3602 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3603 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3604 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3605 	pr_warn("**                                                                **\n");
3606 	pr_warn("** If you see this message and you are not debugging the          **\n");
3607 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3608 	pr_warn("**                                                                **\n");
3609 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3610 	pr_warn("********************************************************************\n");
3611 #endif
3612 
3613 	rootdir = debugfs_create_dir("clk", NULL);
3614 
3615 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3616 			    &clk_summary_fops);
3617 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3618 			    &clk_dump_fops);
3619 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3620 			    &clk_summary_fops);
3621 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3622 			    &clk_dump_fops);
3623 
3624 	mutex_lock(&clk_debug_lock);
3625 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3626 		clk_debug_create_one(core, rootdir);
3627 
3628 	inited = 1;
3629 	mutex_unlock(&clk_debug_lock);
3630 
3631 	return 0;
3632 }
3633 late_initcall(clk_debug_init);
3634 #else
3635 static inline void clk_debug_register(struct clk_core *core) { }
3636 static inline void clk_debug_unregister(struct clk_core *core)
3637 {
3638 }
3639 #endif
3640 
3641 static void clk_core_reparent_orphans_nolock(void)
3642 {
3643 	struct clk_core *orphan;
3644 	struct hlist_node *tmp2;
3645 
3646 	/*
3647 	 * walk the list of orphan clocks and reparent any that newly finds a
3648 	 * parent.
3649 	 */
3650 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3651 		struct clk_core *parent = __clk_init_parent(orphan);
3652 
3653 		/*
3654 		 * We need to use __clk_set_parent_before() and _after() to
3655 		 * properly migrate any prepare/enable count of the orphan
3656 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3657 		 * are enabled during init but might not have a parent yet.
3658 		 */
3659 		if (parent) {
3660 			/* update the clk tree topology */
3661 			__clk_set_parent_before(orphan, parent);
3662 			__clk_set_parent_after(orphan, parent, NULL);
3663 			__clk_recalc_accuracies(orphan);
3664 			__clk_recalc_rates(orphan, true, 0);
3665 
3666 			/*
3667 			 * __clk_init_parent() will set the initial req_rate to
3668 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3669 			 * is an orphan when it's registered.
3670 			 *
3671 			 * 'req_rate' is used by clk_set_rate_range() and
3672 			 * clk_put() to trigger a clk_set_rate() call whenever
3673 			 * the boundaries are modified. Let's make sure
3674 			 * 'req_rate' is set to something non-zero so that
3675 			 * clk_set_rate_range() doesn't drop the frequency.
3676 			 */
3677 			orphan->req_rate = orphan->rate;
3678 		}
3679 	}
3680 }
3681 
3682 /**
3683  * __clk_core_init - initialize the data structures in a struct clk_core
3684  * @core:	clk_core being initialized
3685  *
3686  * Initializes the lists in struct clk_core, queries the hardware for the
3687  * parent and rate and sets them both.
3688  */
3689 static int __clk_core_init(struct clk_core *core)
3690 {
3691 	int ret;
3692 	struct clk_core *parent;
3693 	unsigned long rate;
3694 	int phase;
3695 
3696 	clk_prepare_lock();
3697 
3698 	/*
3699 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3700 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3701 	 * being NULL as the clk not being registered yet. This is crucial so
3702 	 * that clks aren't parented until their parent is fully registered.
3703 	 */
3704 	core->hw->core = core;
3705 
3706 	ret = clk_pm_runtime_get(core);
3707 	if (ret)
3708 		goto unlock;
3709 
3710 	/* check to see if a clock with this name is already registered */
3711 	if (clk_core_lookup(core->name)) {
3712 		pr_debug("%s: clk %s already initialized\n",
3713 				__func__, core->name);
3714 		ret = -EEXIST;
3715 		goto out;
3716 	}
3717 
3718 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3719 	if (core->ops->set_rate &&
3720 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3721 	      core->ops->recalc_rate)) {
3722 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3723 		       __func__, core->name);
3724 		ret = -EINVAL;
3725 		goto out;
3726 	}
3727 
3728 	if (core->ops->set_parent && !core->ops->get_parent) {
3729 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3730 		       __func__, core->name);
3731 		ret = -EINVAL;
3732 		goto out;
3733 	}
3734 
3735 	if (core->num_parents > 1 && !core->ops->get_parent) {
3736 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3737 		       __func__, core->name);
3738 		ret = -EINVAL;
3739 		goto out;
3740 	}
3741 
3742 	if (core->ops->set_rate_and_parent &&
3743 			!(core->ops->set_parent && core->ops->set_rate)) {
3744 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3745 				__func__, core->name);
3746 		ret = -EINVAL;
3747 		goto out;
3748 	}
3749 
3750 	/*
3751 	 * optional platform-specific magic
3752 	 *
3753 	 * The .init callback is not used by any of the basic clock types, but
3754 	 * exists for weird hardware that must perform initialization magic for
3755 	 * CCF to get an accurate view of clock for any other callbacks. It may
3756 	 * also be used needs to perform dynamic allocations. Such allocation
3757 	 * must be freed in the terminate() callback.
3758 	 * This callback shall not be used to initialize the parameters state,
3759 	 * such as rate, parent, etc ...
3760 	 *
3761 	 * If it exist, this callback should called before any other callback of
3762 	 * the clock
3763 	 */
3764 	if (core->ops->init) {
3765 		ret = core->ops->init(core->hw);
3766 		if (ret)
3767 			goto out;
3768 	}
3769 
3770 	parent = core->parent = __clk_init_parent(core);
3771 
3772 	/*
3773 	 * Populate core->parent if parent has already been clk_core_init'd. If
3774 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3775 	 * list.  If clk doesn't have any parents then place it in the root
3776 	 * clk list.
3777 	 *
3778 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3779 	 * clocks and re-parent any that are children of the clock currently
3780 	 * being clk_init'd.
3781 	 */
3782 	if (parent) {
3783 		hlist_add_head(&core->child_node, &parent->children);
3784 		core->orphan = parent->orphan;
3785 	} else if (!core->num_parents) {
3786 		hlist_add_head(&core->child_node, &clk_root_list);
3787 		core->orphan = false;
3788 	} else {
3789 		hlist_add_head(&core->child_node, &clk_orphan_list);
3790 		core->orphan = true;
3791 	}
3792 
3793 	/*
3794 	 * Set clk's accuracy.  The preferred method is to use
3795 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3796 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3797 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3798 	 * clock).
3799 	 */
3800 	if (core->ops->recalc_accuracy)
3801 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3802 					clk_core_get_accuracy_no_lock(parent));
3803 	else if (parent)
3804 		core->accuracy = parent->accuracy;
3805 	else
3806 		core->accuracy = 0;
3807 
3808 	/*
3809 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3810 	 * Since a phase is by definition relative to its parent, just
3811 	 * query the current clock phase, or just assume it's in phase.
3812 	 */
3813 	phase = clk_core_get_phase(core);
3814 	if (phase < 0) {
3815 		ret = phase;
3816 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3817 			core->name);
3818 		goto out;
3819 	}
3820 
3821 	/*
3822 	 * Set clk's duty cycle.
3823 	 */
3824 	clk_core_update_duty_cycle_nolock(core);
3825 
3826 	/*
3827 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3828 	 * simple clocks and lazy developers the default fallback is to use the
3829 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3830 	 * then rate is set to zero.
3831 	 */
3832 	if (core->ops->recalc_rate)
3833 		rate = core->ops->recalc_rate(core->hw,
3834 				clk_core_get_rate_nolock(parent));
3835 	else if (parent)
3836 		rate = parent->rate;
3837 	else
3838 		rate = 0;
3839 	core->rate = core->req_rate = rate;
3840 
3841 	/*
3842 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3843 	 * don't get accidentally disabled when walking the orphan tree and
3844 	 * reparenting clocks
3845 	 */
3846 	if (core->flags & CLK_IS_CRITICAL) {
3847 		ret = clk_core_prepare(core);
3848 		if (ret) {
3849 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3850 			       __func__, core->name);
3851 			goto out;
3852 		}
3853 
3854 		ret = clk_core_enable_lock(core);
3855 		if (ret) {
3856 			pr_warn("%s: critical clk '%s' failed to enable\n",
3857 			       __func__, core->name);
3858 			clk_core_unprepare(core);
3859 			goto out;
3860 		}
3861 	}
3862 
3863 	clk_core_reparent_orphans_nolock();
3864 
3865 	kref_init(&core->ref);
3866 out:
3867 	clk_pm_runtime_put(core);
3868 unlock:
3869 	if (ret) {
3870 		hlist_del_init(&core->child_node);
3871 		core->hw->core = NULL;
3872 	}
3873 
3874 	clk_prepare_unlock();
3875 
3876 	if (!ret)
3877 		clk_debug_register(core);
3878 
3879 	return ret;
3880 }
3881 
3882 /**
3883  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3884  * @core: clk to add consumer to
3885  * @clk: consumer to link to a clk
3886  */
3887 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3888 {
3889 	clk_prepare_lock();
3890 	hlist_add_head(&clk->clks_node, &core->clks);
3891 	clk_prepare_unlock();
3892 }
3893 
3894 /**
3895  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3896  * @clk: consumer to unlink
3897  */
3898 static void clk_core_unlink_consumer(struct clk *clk)
3899 {
3900 	lockdep_assert_held(&prepare_lock);
3901 	hlist_del(&clk->clks_node);
3902 }
3903 
3904 /**
3905  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3906  * @core: clk to allocate a consumer for
3907  * @dev_id: string describing device name
3908  * @con_id: connection ID string on device
3909  *
3910  * Returns: clk consumer left unlinked from the consumer list
3911  */
3912 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3913 			     const char *con_id)
3914 {
3915 	struct clk *clk;
3916 
3917 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3918 	if (!clk)
3919 		return ERR_PTR(-ENOMEM);
3920 
3921 	clk->core = core;
3922 	clk->dev_id = dev_id;
3923 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3924 	clk->max_rate = ULONG_MAX;
3925 
3926 	return clk;
3927 }
3928 
3929 /**
3930  * free_clk - Free a clk consumer
3931  * @clk: clk consumer to free
3932  *
3933  * Note, this assumes the clk has been unlinked from the clk_core consumer
3934  * list.
3935  */
3936 static void free_clk(struct clk *clk)
3937 {
3938 	kfree_const(clk->con_id);
3939 	kfree(clk);
3940 }
3941 
3942 /**
3943  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3944  * a clk_hw
3945  * @dev: clk consumer device
3946  * @hw: clk_hw associated with the clk being consumed
3947  * @dev_id: string describing device name
3948  * @con_id: connection ID string on device
3949  *
3950  * This is the main function used to create a clk pointer for use by clk
3951  * consumers. It connects a consumer to the clk_core and clk_hw structures
3952  * used by the framework and clk provider respectively.
3953  */
3954 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3955 			      const char *dev_id, const char *con_id)
3956 {
3957 	struct clk *clk;
3958 	struct clk_core *core;
3959 
3960 	/* This is to allow this function to be chained to others */
3961 	if (IS_ERR_OR_NULL(hw))
3962 		return ERR_CAST(hw);
3963 
3964 	core = hw->core;
3965 	clk = alloc_clk(core, dev_id, con_id);
3966 	if (IS_ERR(clk))
3967 		return clk;
3968 	clk->dev = dev;
3969 
3970 	if (!try_module_get(core->owner)) {
3971 		free_clk(clk);
3972 		return ERR_PTR(-ENOENT);
3973 	}
3974 
3975 	kref_get(&core->ref);
3976 	clk_core_link_consumer(core, clk);
3977 
3978 	return clk;
3979 }
3980 
3981 /**
3982  * clk_hw_get_clk - get clk consumer given an clk_hw
3983  * @hw: clk_hw associated with the clk being consumed
3984  * @con_id: connection ID string on device
3985  *
3986  * Returns: new clk consumer
3987  * This is the function to be used by providers which need
3988  * to get a consumer clk and act on the clock element
3989  * Calls to this function must be balanced with calls clk_put()
3990  */
3991 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3992 {
3993 	struct device *dev = hw->core->dev;
3994 	const char *name = dev ? dev_name(dev) : NULL;
3995 
3996 	return clk_hw_create_clk(dev, hw, name, con_id);
3997 }
3998 EXPORT_SYMBOL(clk_hw_get_clk);
3999 
4000 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4001 {
4002 	const char *dst;
4003 
4004 	if (!src) {
4005 		if (must_exist)
4006 			return -EINVAL;
4007 		return 0;
4008 	}
4009 
4010 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4011 	if (!dst)
4012 		return -ENOMEM;
4013 
4014 	return 0;
4015 }
4016 
4017 static int clk_core_populate_parent_map(struct clk_core *core,
4018 					const struct clk_init_data *init)
4019 {
4020 	u8 num_parents = init->num_parents;
4021 	const char * const *parent_names = init->parent_names;
4022 	const struct clk_hw **parent_hws = init->parent_hws;
4023 	const struct clk_parent_data *parent_data = init->parent_data;
4024 	int i, ret = 0;
4025 	struct clk_parent_map *parents, *parent;
4026 
4027 	if (!num_parents)
4028 		return 0;
4029 
4030 	/*
4031 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4032 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4033 	 */
4034 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4035 	core->parents = parents;
4036 	if (!parents)
4037 		return -ENOMEM;
4038 
4039 	/* Copy everything over because it might be __initdata */
4040 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4041 		parent->index = -1;
4042 		if (parent_names) {
4043 			/* throw a WARN if any entries are NULL */
4044 			WARN(!parent_names[i],
4045 				"%s: invalid NULL in %s's .parent_names\n",
4046 				__func__, core->name);
4047 			ret = clk_cpy_name(&parent->name, parent_names[i],
4048 					   true);
4049 		} else if (parent_data) {
4050 			parent->hw = parent_data[i].hw;
4051 			parent->index = parent_data[i].index;
4052 			ret = clk_cpy_name(&parent->fw_name,
4053 					   parent_data[i].fw_name, false);
4054 			if (!ret)
4055 				ret = clk_cpy_name(&parent->name,
4056 						   parent_data[i].name,
4057 						   false);
4058 		} else if (parent_hws) {
4059 			parent->hw = parent_hws[i];
4060 		} else {
4061 			ret = -EINVAL;
4062 			WARN(1, "Must specify parents if num_parents > 0\n");
4063 		}
4064 
4065 		if (ret) {
4066 			do {
4067 				kfree_const(parents[i].name);
4068 				kfree_const(parents[i].fw_name);
4069 			} while (--i >= 0);
4070 			kfree(parents);
4071 
4072 			return ret;
4073 		}
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 static void clk_core_free_parent_map(struct clk_core *core)
4080 {
4081 	int i = core->num_parents;
4082 
4083 	if (!core->num_parents)
4084 		return;
4085 
4086 	while (--i >= 0) {
4087 		kfree_const(core->parents[i].name);
4088 		kfree_const(core->parents[i].fw_name);
4089 	}
4090 
4091 	kfree(core->parents);
4092 }
4093 
4094 static struct clk *
4095 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4096 {
4097 	int ret;
4098 	struct clk_core *core;
4099 	const struct clk_init_data *init = hw->init;
4100 
4101 	/*
4102 	 * The init data is not supposed to be used outside of registration path.
4103 	 * Set it to NULL so that provider drivers can't use it either and so that
4104 	 * we catch use of hw->init early on in the core.
4105 	 */
4106 	hw->init = NULL;
4107 
4108 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4109 	if (!core) {
4110 		ret = -ENOMEM;
4111 		goto fail_out;
4112 	}
4113 
4114 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4115 	if (!core->name) {
4116 		ret = -ENOMEM;
4117 		goto fail_name;
4118 	}
4119 
4120 	if (WARN_ON(!init->ops)) {
4121 		ret = -EINVAL;
4122 		goto fail_ops;
4123 	}
4124 	core->ops = init->ops;
4125 
4126 	if (dev && pm_runtime_enabled(dev))
4127 		core->rpm_enabled = true;
4128 	core->dev = dev;
4129 	core->of_node = np;
4130 	if (dev && dev->driver)
4131 		core->owner = dev->driver->owner;
4132 	core->hw = hw;
4133 	core->flags = init->flags;
4134 	core->num_parents = init->num_parents;
4135 	core->min_rate = 0;
4136 	core->max_rate = ULONG_MAX;
4137 
4138 	ret = clk_core_populate_parent_map(core, init);
4139 	if (ret)
4140 		goto fail_parents;
4141 
4142 	INIT_HLIST_HEAD(&core->clks);
4143 
4144 	/*
4145 	 * Don't call clk_hw_create_clk() here because that would pin the
4146 	 * provider module to itself and prevent it from ever being removed.
4147 	 */
4148 	hw->clk = alloc_clk(core, NULL, NULL);
4149 	if (IS_ERR(hw->clk)) {
4150 		ret = PTR_ERR(hw->clk);
4151 		goto fail_create_clk;
4152 	}
4153 
4154 	clk_core_link_consumer(core, hw->clk);
4155 
4156 	ret = __clk_core_init(core);
4157 	if (!ret)
4158 		return hw->clk;
4159 
4160 	clk_prepare_lock();
4161 	clk_core_unlink_consumer(hw->clk);
4162 	clk_prepare_unlock();
4163 
4164 	free_clk(hw->clk);
4165 	hw->clk = NULL;
4166 
4167 fail_create_clk:
4168 	clk_core_free_parent_map(core);
4169 fail_parents:
4170 fail_ops:
4171 	kfree_const(core->name);
4172 fail_name:
4173 	kfree(core);
4174 fail_out:
4175 	return ERR_PTR(ret);
4176 }
4177 
4178 /**
4179  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4180  * @dev: Device to get device node of
4181  *
4182  * Return: device node pointer of @dev, or the device node pointer of
4183  * @dev->parent if dev doesn't have a device node, or NULL if neither
4184  * @dev or @dev->parent have a device node.
4185  */
4186 static struct device_node *dev_or_parent_of_node(struct device *dev)
4187 {
4188 	struct device_node *np;
4189 
4190 	if (!dev)
4191 		return NULL;
4192 
4193 	np = dev_of_node(dev);
4194 	if (!np)
4195 		np = dev_of_node(dev->parent);
4196 
4197 	return np;
4198 }
4199 
4200 /**
4201  * clk_register - allocate a new clock, register it and return an opaque cookie
4202  * @dev: device that is registering this clock
4203  * @hw: link to hardware-specific clock data
4204  *
4205  * clk_register is the *deprecated* interface for populating the clock tree with
4206  * new clock nodes. Use clk_hw_register() instead.
4207  *
4208  * Returns: a pointer to the newly allocated struct clk which
4209  * cannot be dereferenced by driver code but may be used in conjunction with the
4210  * rest of the clock API.  In the event of an error clk_register will return an
4211  * error code; drivers must test for an error code after calling clk_register.
4212  */
4213 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4214 {
4215 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4216 }
4217 EXPORT_SYMBOL_GPL(clk_register);
4218 
4219 /**
4220  * clk_hw_register - register a clk_hw and return an error code
4221  * @dev: device that is registering this clock
4222  * @hw: link to hardware-specific clock data
4223  *
4224  * clk_hw_register is the primary interface for populating the clock tree with
4225  * new clock nodes. It returns an integer equal to zero indicating success or
4226  * less than zero indicating failure. Drivers must test for an error code after
4227  * calling clk_hw_register().
4228  */
4229 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4230 {
4231 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4232 			       hw));
4233 }
4234 EXPORT_SYMBOL_GPL(clk_hw_register);
4235 
4236 /*
4237  * of_clk_hw_register - register a clk_hw and return an error code
4238  * @node: device_node of device that is registering this clock
4239  * @hw: link to hardware-specific clock data
4240  *
4241  * of_clk_hw_register() is the primary interface for populating the clock tree
4242  * with new clock nodes when a struct device is not available, but a struct
4243  * device_node is. It returns an integer equal to zero indicating success or
4244  * less than zero indicating failure. Drivers must test for an error code after
4245  * calling of_clk_hw_register().
4246  */
4247 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4248 {
4249 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4250 }
4251 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4252 
4253 /* Free memory allocated for a clock. */
4254 static void __clk_release(struct kref *ref)
4255 {
4256 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4257 
4258 	lockdep_assert_held(&prepare_lock);
4259 
4260 	clk_core_free_parent_map(core);
4261 	kfree_const(core->name);
4262 	kfree(core);
4263 }
4264 
4265 /*
4266  * Empty clk_ops for unregistered clocks. These are used temporarily
4267  * after clk_unregister() was called on a clock and until last clock
4268  * consumer calls clk_put() and the struct clk object is freed.
4269  */
4270 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4271 {
4272 	return -ENXIO;
4273 }
4274 
4275 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4276 {
4277 	WARN_ON_ONCE(1);
4278 }
4279 
4280 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4281 					unsigned long parent_rate)
4282 {
4283 	return -ENXIO;
4284 }
4285 
4286 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4287 {
4288 	return -ENXIO;
4289 }
4290 
4291 static const struct clk_ops clk_nodrv_ops = {
4292 	.enable		= clk_nodrv_prepare_enable,
4293 	.disable	= clk_nodrv_disable_unprepare,
4294 	.prepare	= clk_nodrv_prepare_enable,
4295 	.unprepare	= clk_nodrv_disable_unprepare,
4296 	.set_rate	= clk_nodrv_set_rate,
4297 	.set_parent	= clk_nodrv_set_parent,
4298 };
4299 
4300 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4301 						const struct clk_core *target)
4302 {
4303 	int i;
4304 	struct clk_core *child;
4305 
4306 	for (i = 0; i < root->num_parents; i++)
4307 		if (root->parents[i].core == target)
4308 			root->parents[i].core = NULL;
4309 
4310 	hlist_for_each_entry(child, &root->children, child_node)
4311 		clk_core_evict_parent_cache_subtree(child, target);
4312 }
4313 
4314 /* Remove this clk from all parent caches */
4315 static void clk_core_evict_parent_cache(struct clk_core *core)
4316 {
4317 	const struct hlist_head **lists;
4318 	struct clk_core *root;
4319 
4320 	lockdep_assert_held(&prepare_lock);
4321 
4322 	for (lists = all_lists; *lists; lists++)
4323 		hlist_for_each_entry(root, *lists, child_node)
4324 			clk_core_evict_parent_cache_subtree(root, core);
4325 
4326 }
4327 
4328 /**
4329  * clk_unregister - unregister a currently registered clock
4330  * @clk: clock to unregister
4331  */
4332 void clk_unregister(struct clk *clk)
4333 {
4334 	unsigned long flags;
4335 	const struct clk_ops *ops;
4336 
4337 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4338 		return;
4339 
4340 	clk_debug_unregister(clk->core);
4341 
4342 	clk_prepare_lock();
4343 
4344 	ops = clk->core->ops;
4345 	if (ops == &clk_nodrv_ops) {
4346 		pr_err("%s: unregistered clock: %s\n", __func__,
4347 		       clk->core->name);
4348 		goto unlock;
4349 	}
4350 	/*
4351 	 * Assign empty clock ops for consumers that might still hold
4352 	 * a reference to this clock.
4353 	 */
4354 	flags = clk_enable_lock();
4355 	clk->core->ops = &clk_nodrv_ops;
4356 	clk_enable_unlock(flags);
4357 
4358 	if (ops->terminate)
4359 		ops->terminate(clk->core->hw);
4360 
4361 	if (!hlist_empty(&clk->core->children)) {
4362 		struct clk_core *child;
4363 		struct hlist_node *t;
4364 
4365 		/* Reparent all children to the orphan list. */
4366 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4367 					  child_node)
4368 			clk_core_set_parent_nolock(child, NULL);
4369 	}
4370 
4371 	clk_core_evict_parent_cache(clk->core);
4372 
4373 	hlist_del_init(&clk->core->child_node);
4374 
4375 	if (clk->core->prepare_count)
4376 		pr_warn("%s: unregistering prepared clock: %s\n",
4377 					__func__, clk->core->name);
4378 
4379 	if (clk->core->protect_count)
4380 		pr_warn("%s: unregistering protected clock: %s\n",
4381 					__func__, clk->core->name);
4382 
4383 	kref_put(&clk->core->ref, __clk_release);
4384 	free_clk(clk);
4385 unlock:
4386 	clk_prepare_unlock();
4387 }
4388 EXPORT_SYMBOL_GPL(clk_unregister);
4389 
4390 /**
4391  * clk_hw_unregister - unregister a currently registered clk_hw
4392  * @hw: hardware-specific clock data to unregister
4393  */
4394 void clk_hw_unregister(struct clk_hw *hw)
4395 {
4396 	clk_unregister(hw->clk);
4397 }
4398 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4399 
4400 static void devm_clk_unregister_cb(struct device *dev, void *res)
4401 {
4402 	clk_unregister(*(struct clk **)res);
4403 }
4404 
4405 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4406 {
4407 	clk_hw_unregister(*(struct clk_hw **)res);
4408 }
4409 
4410 /**
4411  * devm_clk_register - resource managed clk_register()
4412  * @dev: device that is registering this clock
4413  * @hw: link to hardware-specific clock data
4414  *
4415  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4416  *
4417  * Clocks returned from this function are automatically clk_unregister()ed on
4418  * driver detach. See clk_register() for more information.
4419  */
4420 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4421 {
4422 	struct clk *clk;
4423 	struct clk **clkp;
4424 
4425 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4426 	if (!clkp)
4427 		return ERR_PTR(-ENOMEM);
4428 
4429 	clk = clk_register(dev, hw);
4430 	if (!IS_ERR(clk)) {
4431 		*clkp = clk;
4432 		devres_add(dev, clkp);
4433 	} else {
4434 		devres_free(clkp);
4435 	}
4436 
4437 	return clk;
4438 }
4439 EXPORT_SYMBOL_GPL(devm_clk_register);
4440 
4441 /**
4442  * devm_clk_hw_register - resource managed clk_hw_register()
4443  * @dev: device that is registering this clock
4444  * @hw: link to hardware-specific clock data
4445  *
4446  * Managed clk_hw_register(). Clocks registered by this function are
4447  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4448  * for more information.
4449  */
4450 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4451 {
4452 	struct clk_hw **hwp;
4453 	int ret;
4454 
4455 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4456 	if (!hwp)
4457 		return -ENOMEM;
4458 
4459 	ret = clk_hw_register(dev, hw);
4460 	if (!ret) {
4461 		*hwp = hw;
4462 		devres_add(dev, hwp);
4463 	} else {
4464 		devres_free(hwp);
4465 	}
4466 
4467 	return ret;
4468 }
4469 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4470 
4471 static void devm_clk_release(struct device *dev, void *res)
4472 {
4473 	clk_put(*(struct clk **)res);
4474 }
4475 
4476 /**
4477  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4478  * @dev: device that is registering this clock
4479  * @hw: clk_hw associated with the clk being consumed
4480  * @con_id: connection ID string on device
4481  *
4482  * Managed clk_hw_get_clk(). Clocks got with this function are
4483  * automatically clk_put() on driver detach. See clk_put()
4484  * for more information.
4485  */
4486 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4487 				const char *con_id)
4488 {
4489 	struct clk *clk;
4490 	struct clk **clkp;
4491 
4492 	/* This should not happen because it would mean we have drivers
4493 	 * passing around clk_hw pointers instead of having the caller use
4494 	 * proper clk_get() style APIs
4495 	 */
4496 	WARN_ON_ONCE(dev != hw->core->dev);
4497 
4498 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4499 	if (!clkp)
4500 		return ERR_PTR(-ENOMEM);
4501 
4502 	clk = clk_hw_get_clk(hw, con_id);
4503 	if (!IS_ERR(clk)) {
4504 		*clkp = clk;
4505 		devres_add(dev, clkp);
4506 	} else {
4507 		devres_free(clkp);
4508 	}
4509 
4510 	return clk;
4511 }
4512 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4513 
4514 /*
4515  * clkdev helpers
4516  */
4517 
4518 void __clk_put(struct clk *clk)
4519 {
4520 	struct module *owner;
4521 
4522 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4523 		return;
4524 
4525 	clk_prepare_lock();
4526 
4527 	/*
4528 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4529 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4530 	 * and by that same consumer
4531 	 */
4532 	if (WARN_ON(clk->exclusive_count)) {
4533 		/* We voiced our concern, let's sanitize the situation */
4534 		clk->core->protect_count -= (clk->exclusive_count - 1);
4535 		clk_core_rate_unprotect(clk->core);
4536 		clk->exclusive_count = 0;
4537 	}
4538 
4539 	hlist_del(&clk->clks_node);
4540 
4541 	/* If we had any boundaries on that clock, let's drop them. */
4542 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4543 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4544 
4545 	owner = clk->core->owner;
4546 	kref_put(&clk->core->ref, __clk_release);
4547 
4548 	clk_prepare_unlock();
4549 
4550 	module_put(owner);
4551 
4552 	free_clk(clk);
4553 }
4554 
4555 /***        clk rate change notifiers        ***/
4556 
4557 /**
4558  * clk_notifier_register - add a clk rate change notifier
4559  * @clk: struct clk * to watch
4560  * @nb: struct notifier_block * with callback info
4561  *
4562  * Request notification when clk's rate changes.  This uses an SRCU
4563  * notifier because we want it to block and notifier unregistrations are
4564  * uncommon.  The callbacks associated with the notifier must not
4565  * re-enter into the clk framework by calling any top-level clk APIs;
4566  * this will cause a nested prepare_lock mutex.
4567  *
4568  * In all notification cases (pre, post and abort rate change) the original
4569  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4570  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4571  *
4572  * clk_notifier_register() must be called from non-atomic context.
4573  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4574  * allocation failure; otherwise, passes along the return value of
4575  * srcu_notifier_chain_register().
4576  */
4577 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4578 {
4579 	struct clk_notifier *cn;
4580 	int ret = -ENOMEM;
4581 
4582 	if (!clk || !nb)
4583 		return -EINVAL;
4584 
4585 	clk_prepare_lock();
4586 
4587 	/* search the list of notifiers for this clk */
4588 	list_for_each_entry(cn, &clk_notifier_list, node)
4589 		if (cn->clk == clk)
4590 			goto found;
4591 
4592 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4593 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4594 	if (!cn)
4595 		goto out;
4596 
4597 	cn->clk = clk;
4598 	srcu_init_notifier_head(&cn->notifier_head);
4599 
4600 	list_add(&cn->node, &clk_notifier_list);
4601 
4602 found:
4603 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4604 
4605 	clk->core->notifier_count++;
4606 
4607 out:
4608 	clk_prepare_unlock();
4609 
4610 	return ret;
4611 }
4612 EXPORT_SYMBOL_GPL(clk_notifier_register);
4613 
4614 /**
4615  * clk_notifier_unregister - remove a clk rate change notifier
4616  * @clk: struct clk *
4617  * @nb: struct notifier_block * with callback info
4618  *
4619  * Request no further notification for changes to 'clk' and frees memory
4620  * allocated in clk_notifier_register.
4621  *
4622  * Returns -EINVAL if called with null arguments; otherwise, passes
4623  * along the return value of srcu_notifier_chain_unregister().
4624  */
4625 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4626 {
4627 	struct clk_notifier *cn;
4628 	int ret = -ENOENT;
4629 
4630 	if (!clk || !nb)
4631 		return -EINVAL;
4632 
4633 	clk_prepare_lock();
4634 
4635 	list_for_each_entry(cn, &clk_notifier_list, node) {
4636 		if (cn->clk == clk) {
4637 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4638 
4639 			clk->core->notifier_count--;
4640 
4641 			/* XXX the notifier code should handle this better */
4642 			if (!cn->notifier_head.head) {
4643 				srcu_cleanup_notifier_head(&cn->notifier_head);
4644 				list_del(&cn->node);
4645 				kfree(cn);
4646 			}
4647 			break;
4648 		}
4649 	}
4650 
4651 	clk_prepare_unlock();
4652 
4653 	return ret;
4654 }
4655 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4656 
4657 struct clk_notifier_devres {
4658 	struct clk *clk;
4659 	struct notifier_block *nb;
4660 };
4661 
4662 static void devm_clk_notifier_release(struct device *dev, void *res)
4663 {
4664 	struct clk_notifier_devres *devres = res;
4665 
4666 	clk_notifier_unregister(devres->clk, devres->nb);
4667 }
4668 
4669 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4670 			       struct notifier_block *nb)
4671 {
4672 	struct clk_notifier_devres *devres;
4673 	int ret;
4674 
4675 	devres = devres_alloc(devm_clk_notifier_release,
4676 			      sizeof(*devres), GFP_KERNEL);
4677 
4678 	if (!devres)
4679 		return -ENOMEM;
4680 
4681 	ret = clk_notifier_register(clk, nb);
4682 	if (!ret) {
4683 		devres->clk = clk;
4684 		devres->nb = nb;
4685 	} else {
4686 		devres_free(devres);
4687 	}
4688 
4689 	return ret;
4690 }
4691 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4692 
4693 #ifdef CONFIG_OF
4694 static void clk_core_reparent_orphans(void)
4695 {
4696 	clk_prepare_lock();
4697 	clk_core_reparent_orphans_nolock();
4698 	clk_prepare_unlock();
4699 }
4700 
4701 /**
4702  * struct of_clk_provider - Clock provider registration structure
4703  * @link: Entry in global list of clock providers
4704  * @node: Pointer to device tree node of clock provider
4705  * @get: Get clock callback.  Returns NULL or a struct clk for the
4706  *       given clock specifier
4707  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4708  *       struct clk_hw for the given clock specifier
4709  * @data: context pointer to be passed into @get callback
4710  */
4711 struct of_clk_provider {
4712 	struct list_head link;
4713 
4714 	struct device_node *node;
4715 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4716 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4717 	void *data;
4718 };
4719 
4720 extern struct of_device_id __clk_of_table;
4721 static const struct of_device_id __clk_of_table_sentinel
4722 	__used __section("__clk_of_table_end");
4723 
4724 static LIST_HEAD(of_clk_providers);
4725 static DEFINE_MUTEX(of_clk_mutex);
4726 
4727 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4728 				     void *data)
4729 {
4730 	return data;
4731 }
4732 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4733 
4734 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4735 {
4736 	return data;
4737 }
4738 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4739 
4740 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4741 {
4742 	struct clk_onecell_data *clk_data = data;
4743 	unsigned int idx = clkspec->args[0];
4744 
4745 	if (idx >= clk_data->clk_num) {
4746 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4747 		return ERR_PTR(-EINVAL);
4748 	}
4749 
4750 	return clk_data->clks[idx];
4751 }
4752 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4753 
4754 struct clk_hw *
4755 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4756 {
4757 	struct clk_hw_onecell_data *hw_data = data;
4758 	unsigned int idx = clkspec->args[0];
4759 
4760 	if (idx >= hw_data->num) {
4761 		pr_err("%s: invalid index %u\n", __func__, idx);
4762 		return ERR_PTR(-EINVAL);
4763 	}
4764 
4765 	return hw_data->hws[idx];
4766 }
4767 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4768 
4769 /**
4770  * of_clk_add_provider() - Register a clock provider for a node
4771  * @np: Device node pointer associated with clock provider
4772  * @clk_src_get: callback for decoding clock
4773  * @data: context pointer for @clk_src_get callback.
4774  *
4775  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4776  */
4777 int of_clk_add_provider(struct device_node *np,
4778 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4779 						   void *data),
4780 			void *data)
4781 {
4782 	struct of_clk_provider *cp;
4783 	int ret;
4784 
4785 	if (!np)
4786 		return 0;
4787 
4788 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4789 	if (!cp)
4790 		return -ENOMEM;
4791 
4792 	cp->node = of_node_get(np);
4793 	cp->data = data;
4794 	cp->get = clk_src_get;
4795 
4796 	mutex_lock(&of_clk_mutex);
4797 	list_add(&cp->link, &of_clk_providers);
4798 	mutex_unlock(&of_clk_mutex);
4799 	pr_debug("Added clock from %pOF\n", np);
4800 
4801 	clk_core_reparent_orphans();
4802 
4803 	ret = of_clk_set_defaults(np, true);
4804 	if (ret < 0)
4805 		of_clk_del_provider(np);
4806 
4807 	fwnode_dev_initialized(&np->fwnode, true);
4808 
4809 	return ret;
4810 }
4811 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4812 
4813 /**
4814  * of_clk_add_hw_provider() - Register a clock provider for a node
4815  * @np: Device node pointer associated with clock provider
4816  * @get: callback for decoding clk_hw
4817  * @data: context pointer for @get callback.
4818  */
4819 int of_clk_add_hw_provider(struct device_node *np,
4820 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4821 						 void *data),
4822 			   void *data)
4823 {
4824 	struct of_clk_provider *cp;
4825 	int ret;
4826 
4827 	if (!np)
4828 		return 0;
4829 
4830 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4831 	if (!cp)
4832 		return -ENOMEM;
4833 
4834 	cp->node = of_node_get(np);
4835 	cp->data = data;
4836 	cp->get_hw = get;
4837 
4838 	mutex_lock(&of_clk_mutex);
4839 	list_add(&cp->link, &of_clk_providers);
4840 	mutex_unlock(&of_clk_mutex);
4841 	pr_debug("Added clk_hw provider from %pOF\n", np);
4842 
4843 	clk_core_reparent_orphans();
4844 
4845 	ret = of_clk_set_defaults(np, true);
4846 	if (ret < 0)
4847 		of_clk_del_provider(np);
4848 
4849 	fwnode_dev_initialized(&np->fwnode, true);
4850 
4851 	return ret;
4852 }
4853 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4854 
4855 static void devm_of_clk_release_provider(struct device *dev, void *res)
4856 {
4857 	of_clk_del_provider(*(struct device_node **)res);
4858 }
4859 
4860 /*
4861  * We allow a child device to use its parent device as the clock provider node
4862  * for cases like MFD sub-devices where the child device driver wants to use
4863  * devm_*() APIs but not list the device in DT as a sub-node.
4864  */
4865 static struct device_node *get_clk_provider_node(struct device *dev)
4866 {
4867 	struct device_node *np, *parent_np;
4868 
4869 	np = dev->of_node;
4870 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4871 
4872 	if (!of_find_property(np, "#clock-cells", NULL))
4873 		if (of_find_property(parent_np, "#clock-cells", NULL))
4874 			np = parent_np;
4875 
4876 	return np;
4877 }
4878 
4879 /**
4880  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4881  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4882  * @get: callback for decoding clk_hw
4883  * @data: context pointer for @get callback
4884  *
4885  * Registers clock provider for given device's node. If the device has no DT
4886  * node or if the device node lacks of clock provider information (#clock-cells)
4887  * then the parent device's node is scanned for this information. If parent node
4888  * has the #clock-cells then it is used in registration. Provider is
4889  * automatically released at device exit.
4890  *
4891  * Return: 0 on success or an errno on failure.
4892  */
4893 int devm_of_clk_add_hw_provider(struct device *dev,
4894 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4895 					      void *data),
4896 			void *data)
4897 {
4898 	struct device_node **ptr, *np;
4899 	int ret;
4900 
4901 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4902 			   GFP_KERNEL);
4903 	if (!ptr)
4904 		return -ENOMEM;
4905 
4906 	np = get_clk_provider_node(dev);
4907 	ret = of_clk_add_hw_provider(np, get, data);
4908 	if (!ret) {
4909 		*ptr = np;
4910 		devres_add(dev, ptr);
4911 	} else {
4912 		devres_free(ptr);
4913 	}
4914 
4915 	return ret;
4916 }
4917 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4918 
4919 /**
4920  * of_clk_del_provider() - Remove a previously registered clock provider
4921  * @np: Device node pointer associated with clock provider
4922  */
4923 void of_clk_del_provider(struct device_node *np)
4924 {
4925 	struct of_clk_provider *cp;
4926 
4927 	if (!np)
4928 		return;
4929 
4930 	mutex_lock(&of_clk_mutex);
4931 	list_for_each_entry(cp, &of_clk_providers, link) {
4932 		if (cp->node == np) {
4933 			list_del(&cp->link);
4934 			fwnode_dev_initialized(&np->fwnode, false);
4935 			of_node_put(cp->node);
4936 			kfree(cp);
4937 			break;
4938 		}
4939 	}
4940 	mutex_unlock(&of_clk_mutex);
4941 }
4942 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4943 
4944 /**
4945  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4946  * @np: device node to parse clock specifier from
4947  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4948  * @name: clock name to find and parse. If name is NULL, the index is used
4949  * @out_args: Result of parsing the clock specifier
4950  *
4951  * Parses a device node's "clocks" and "clock-names" properties to find the
4952  * phandle and cells for the index or name that is desired. The resulting clock
4953  * specifier is placed into @out_args, or an errno is returned when there's a
4954  * parsing error. The @index argument is ignored if @name is non-NULL.
4955  *
4956  * Example:
4957  *
4958  * phandle1: clock-controller@1 {
4959  *	#clock-cells = <2>;
4960  * }
4961  *
4962  * phandle2: clock-controller@2 {
4963  *	#clock-cells = <1>;
4964  * }
4965  *
4966  * clock-consumer@3 {
4967  *	clocks = <&phandle1 1 2 &phandle2 3>;
4968  *	clock-names = "name1", "name2";
4969  * }
4970  *
4971  * To get a device_node for `clock-controller@2' node you may call this
4972  * function a few different ways:
4973  *
4974  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4975  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4976  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4977  *
4978  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4979  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4980  * the "clock-names" property of @np.
4981  */
4982 static int of_parse_clkspec(const struct device_node *np, int index,
4983 			    const char *name, struct of_phandle_args *out_args)
4984 {
4985 	int ret = -ENOENT;
4986 
4987 	/* Walk up the tree of devices looking for a clock property that matches */
4988 	while (np) {
4989 		/*
4990 		 * For named clocks, first look up the name in the
4991 		 * "clock-names" property.  If it cannot be found, then index
4992 		 * will be an error code and of_parse_phandle_with_args() will
4993 		 * return -EINVAL.
4994 		 */
4995 		if (name)
4996 			index = of_property_match_string(np, "clock-names", name);
4997 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4998 						 index, out_args);
4999 		if (!ret)
5000 			break;
5001 		if (name && index >= 0)
5002 			break;
5003 
5004 		/*
5005 		 * No matching clock found on this node.  If the parent node
5006 		 * has a "clock-ranges" property, then we can try one of its
5007 		 * clocks.
5008 		 */
5009 		np = np->parent;
5010 		if (np && !of_get_property(np, "clock-ranges", NULL))
5011 			break;
5012 		index = 0;
5013 	}
5014 
5015 	return ret;
5016 }
5017 
5018 static struct clk_hw *
5019 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5020 			      struct of_phandle_args *clkspec)
5021 {
5022 	struct clk *clk;
5023 
5024 	if (provider->get_hw)
5025 		return provider->get_hw(clkspec, provider->data);
5026 
5027 	clk = provider->get(clkspec, provider->data);
5028 	if (IS_ERR(clk))
5029 		return ERR_CAST(clk);
5030 	return __clk_get_hw(clk);
5031 }
5032 
5033 static struct clk_hw *
5034 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5035 {
5036 	struct of_clk_provider *provider;
5037 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5038 
5039 	if (!clkspec)
5040 		return ERR_PTR(-EINVAL);
5041 
5042 	mutex_lock(&of_clk_mutex);
5043 	list_for_each_entry(provider, &of_clk_providers, link) {
5044 		if (provider->node == clkspec->np) {
5045 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5046 			if (!IS_ERR(hw))
5047 				break;
5048 		}
5049 	}
5050 	mutex_unlock(&of_clk_mutex);
5051 
5052 	return hw;
5053 }
5054 
5055 /**
5056  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5057  * @clkspec: pointer to a clock specifier data structure
5058  *
5059  * This function looks up a struct clk from the registered list of clock
5060  * providers, an input is a clock specifier data structure as returned
5061  * from the of_parse_phandle_with_args() function call.
5062  */
5063 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5064 {
5065 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5066 
5067 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5068 }
5069 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5070 
5071 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5072 			     const char *con_id)
5073 {
5074 	int ret;
5075 	struct clk_hw *hw;
5076 	struct of_phandle_args clkspec;
5077 
5078 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5079 	if (ret)
5080 		return ERR_PTR(ret);
5081 
5082 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5083 	of_node_put(clkspec.np);
5084 
5085 	return hw;
5086 }
5087 
5088 static struct clk *__of_clk_get(struct device_node *np,
5089 				int index, const char *dev_id,
5090 				const char *con_id)
5091 {
5092 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5093 
5094 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5095 }
5096 
5097 struct clk *of_clk_get(struct device_node *np, int index)
5098 {
5099 	return __of_clk_get(np, index, np->full_name, NULL);
5100 }
5101 EXPORT_SYMBOL(of_clk_get);
5102 
5103 /**
5104  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5105  * @np: pointer to clock consumer node
5106  * @name: name of consumer's clock input, or NULL for the first clock reference
5107  *
5108  * This function parses the clocks and clock-names properties,
5109  * and uses them to look up the struct clk from the registered list of clock
5110  * providers.
5111  */
5112 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5113 {
5114 	if (!np)
5115 		return ERR_PTR(-ENOENT);
5116 
5117 	return __of_clk_get(np, 0, np->full_name, name);
5118 }
5119 EXPORT_SYMBOL(of_clk_get_by_name);
5120 
5121 /**
5122  * of_clk_get_parent_count() - Count the number of clocks a device node has
5123  * @np: device node to count
5124  *
5125  * Returns: The number of clocks that are possible parents of this node
5126  */
5127 unsigned int of_clk_get_parent_count(const struct device_node *np)
5128 {
5129 	int count;
5130 
5131 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5132 	if (count < 0)
5133 		return 0;
5134 
5135 	return count;
5136 }
5137 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5138 
5139 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5140 {
5141 	struct of_phandle_args clkspec;
5142 	struct property *prop;
5143 	const char *clk_name;
5144 	const __be32 *vp;
5145 	u32 pv;
5146 	int rc;
5147 	int count;
5148 	struct clk *clk;
5149 
5150 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5151 					&clkspec);
5152 	if (rc)
5153 		return NULL;
5154 
5155 	index = clkspec.args_count ? clkspec.args[0] : 0;
5156 	count = 0;
5157 
5158 	/* if there is an indices property, use it to transfer the index
5159 	 * specified into an array offset for the clock-output-names property.
5160 	 */
5161 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5162 		if (index == pv) {
5163 			index = count;
5164 			break;
5165 		}
5166 		count++;
5167 	}
5168 	/* We went off the end of 'clock-indices' without finding it */
5169 	if (prop && !vp)
5170 		return NULL;
5171 
5172 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5173 					  index,
5174 					  &clk_name) < 0) {
5175 		/*
5176 		 * Best effort to get the name if the clock has been
5177 		 * registered with the framework. If the clock isn't
5178 		 * registered, we return the node name as the name of
5179 		 * the clock as long as #clock-cells = 0.
5180 		 */
5181 		clk = of_clk_get_from_provider(&clkspec);
5182 		if (IS_ERR(clk)) {
5183 			if (clkspec.args_count == 0)
5184 				clk_name = clkspec.np->name;
5185 			else
5186 				clk_name = NULL;
5187 		} else {
5188 			clk_name = __clk_get_name(clk);
5189 			clk_put(clk);
5190 		}
5191 	}
5192 
5193 
5194 	of_node_put(clkspec.np);
5195 	return clk_name;
5196 }
5197 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5198 
5199 /**
5200  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5201  * number of parents
5202  * @np: Device node pointer associated with clock provider
5203  * @parents: pointer to char array that hold the parents' names
5204  * @size: size of the @parents array
5205  *
5206  * Return: number of parents for the clock node.
5207  */
5208 int of_clk_parent_fill(struct device_node *np, const char **parents,
5209 		       unsigned int size)
5210 {
5211 	unsigned int i = 0;
5212 
5213 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5214 		i++;
5215 
5216 	return i;
5217 }
5218 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5219 
5220 struct clock_provider {
5221 	void (*clk_init_cb)(struct device_node *);
5222 	struct device_node *np;
5223 	struct list_head node;
5224 };
5225 
5226 /*
5227  * This function looks for a parent clock. If there is one, then it
5228  * checks that the provider for this parent clock was initialized, in
5229  * this case the parent clock will be ready.
5230  */
5231 static int parent_ready(struct device_node *np)
5232 {
5233 	int i = 0;
5234 
5235 	while (true) {
5236 		struct clk *clk = of_clk_get(np, i);
5237 
5238 		/* this parent is ready we can check the next one */
5239 		if (!IS_ERR(clk)) {
5240 			clk_put(clk);
5241 			i++;
5242 			continue;
5243 		}
5244 
5245 		/* at least one parent is not ready, we exit now */
5246 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5247 			return 0;
5248 
5249 		/*
5250 		 * Here we make assumption that the device tree is
5251 		 * written correctly. So an error means that there is
5252 		 * no more parent. As we didn't exit yet, then the
5253 		 * previous parent are ready. If there is no clock
5254 		 * parent, no need to wait for them, then we can
5255 		 * consider their absence as being ready
5256 		 */
5257 		return 1;
5258 	}
5259 }
5260 
5261 /**
5262  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5263  * @np: Device node pointer associated with clock provider
5264  * @index: clock index
5265  * @flags: pointer to top-level framework flags
5266  *
5267  * Detects if the clock-critical property exists and, if so, sets the
5268  * corresponding CLK_IS_CRITICAL flag.
5269  *
5270  * Do not use this function. It exists only for legacy Device Tree
5271  * bindings, such as the one-clock-per-node style that are outdated.
5272  * Those bindings typically put all clock data into .dts and the Linux
5273  * driver has no clock data, thus making it impossible to set this flag
5274  * correctly from the driver. Only those drivers may call
5275  * of_clk_detect_critical from their setup functions.
5276  *
5277  * Return: error code or zero on success
5278  */
5279 int of_clk_detect_critical(struct device_node *np, int index,
5280 			   unsigned long *flags)
5281 {
5282 	struct property *prop;
5283 	const __be32 *cur;
5284 	uint32_t idx;
5285 
5286 	if (!np || !flags)
5287 		return -EINVAL;
5288 
5289 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5290 		if (index == idx)
5291 			*flags |= CLK_IS_CRITICAL;
5292 
5293 	return 0;
5294 }
5295 
5296 /**
5297  * of_clk_init() - Scan and init clock providers from the DT
5298  * @matches: array of compatible values and init functions for providers.
5299  *
5300  * This function scans the device tree for matching clock providers
5301  * and calls their initialization functions. It also does it by trying
5302  * to follow the dependencies.
5303  */
5304 void __init of_clk_init(const struct of_device_id *matches)
5305 {
5306 	const struct of_device_id *match;
5307 	struct device_node *np;
5308 	struct clock_provider *clk_provider, *next;
5309 	bool is_init_done;
5310 	bool force = false;
5311 	LIST_HEAD(clk_provider_list);
5312 
5313 	if (!matches)
5314 		matches = &__clk_of_table;
5315 
5316 	/* First prepare the list of the clocks providers */
5317 	for_each_matching_node_and_match(np, matches, &match) {
5318 		struct clock_provider *parent;
5319 
5320 		if (!of_device_is_available(np))
5321 			continue;
5322 
5323 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5324 		if (!parent) {
5325 			list_for_each_entry_safe(clk_provider, next,
5326 						 &clk_provider_list, node) {
5327 				list_del(&clk_provider->node);
5328 				of_node_put(clk_provider->np);
5329 				kfree(clk_provider);
5330 			}
5331 			of_node_put(np);
5332 			return;
5333 		}
5334 
5335 		parent->clk_init_cb = match->data;
5336 		parent->np = of_node_get(np);
5337 		list_add_tail(&parent->node, &clk_provider_list);
5338 	}
5339 
5340 	while (!list_empty(&clk_provider_list)) {
5341 		is_init_done = false;
5342 		list_for_each_entry_safe(clk_provider, next,
5343 					&clk_provider_list, node) {
5344 			if (force || parent_ready(clk_provider->np)) {
5345 
5346 				/* Don't populate platform devices */
5347 				of_node_set_flag(clk_provider->np,
5348 						 OF_POPULATED);
5349 
5350 				clk_provider->clk_init_cb(clk_provider->np);
5351 				of_clk_set_defaults(clk_provider->np, true);
5352 
5353 				list_del(&clk_provider->node);
5354 				of_node_put(clk_provider->np);
5355 				kfree(clk_provider);
5356 				is_init_done = true;
5357 			}
5358 		}
5359 
5360 		/*
5361 		 * We didn't manage to initialize any of the
5362 		 * remaining providers during the last loop, so now we
5363 		 * initialize all the remaining ones unconditionally
5364 		 * in case the clock parent was not mandatory
5365 		 */
5366 		if (!is_init_done)
5367 			force = true;
5368 	}
5369 }
5370 #endif
5371