1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 return ret < 0 ? ret : 0; 118 } 119 120 static void clk_pm_runtime_put(struct clk_core *core) 121 { 122 if (!core->rpm_enabled) 123 return; 124 125 pm_runtime_put_sync(core->dev); 126 } 127 128 /*** locking ***/ 129 static void clk_prepare_lock(void) 130 { 131 if (!mutex_trylock(&prepare_lock)) { 132 if (prepare_owner == current) { 133 prepare_refcnt++; 134 return; 135 } 136 mutex_lock(&prepare_lock); 137 } 138 WARN_ON_ONCE(prepare_owner != NULL); 139 WARN_ON_ONCE(prepare_refcnt != 0); 140 prepare_owner = current; 141 prepare_refcnt = 1; 142 } 143 144 static void clk_prepare_unlock(void) 145 { 146 WARN_ON_ONCE(prepare_owner != current); 147 WARN_ON_ONCE(prepare_refcnt == 0); 148 149 if (--prepare_refcnt) 150 return; 151 prepare_owner = NULL; 152 mutex_unlock(&prepare_lock); 153 } 154 155 static unsigned long clk_enable_lock(void) 156 __acquires(enable_lock) 157 { 158 unsigned long flags; 159 160 /* 161 * On UP systems, spin_trylock_irqsave() always returns true, even if 162 * we already hold the lock. So, in that case, we rely only on 163 * reference counting. 164 */ 165 if (!IS_ENABLED(CONFIG_SMP) || 166 !spin_trylock_irqsave(&enable_lock, flags)) { 167 if (enable_owner == current) { 168 enable_refcnt++; 169 __acquire(enable_lock); 170 if (!IS_ENABLED(CONFIG_SMP)) 171 local_save_flags(flags); 172 return flags; 173 } 174 spin_lock_irqsave(&enable_lock, flags); 175 } 176 WARN_ON_ONCE(enable_owner != NULL); 177 WARN_ON_ONCE(enable_refcnt != 0); 178 enable_owner = current; 179 enable_refcnt = 1; 180 return flags; 181 } 182 183 static void clk_enable_unlock(unsigned long flags) 184 __releases(enable_lock) 185 { 186 WARN_ON_ONCE(enable_owner != current); 187 WARN_ON_ONCE(enable_refcnt == 0); 188 189 if (--enable_refcnt) { 190 __release(enable_lock); 191 return; 192 } 193 enable_owner = NULL; 194 spin_unlock_irqrestore(&enable_lock, flags); 195 } 196 197 static bool clk_core_rate_is_protected(struct clk_core *core) 198 { 199 return core->protect_count; 200 } 201 202 static bool clk_core_is_prepared(struct clk_core *core) 203 { 204 bool ret = false; 205 206 /* 207 * .is_prepared is optional for clocks that can prepare 208 * fall back to software usage counter if it is missing 209 */ 210 if (!core->ops->is_prepared) 211 return core->prepare_count; 212 213 if (!clk_pm_runtime_get(core)) { 214 ret = core->ops->is_prepared(core->hw); 215 clk_pm_runtime_put(core); 216 } 217 218 return ret; 219 } 220 221 static bool clk_core_is_enabled(struct clk_core *core) 222 { 223 bool ret = false; 224 225 /* 226 * .is_enabled is only mandatory for clocks that gate 227 * fall back to software usage counter if .is_enabled is missing 228 */ 229 if (!core->ops->is_enabled) 230 return core->enable_count; 231 232 /* 233 * Check if clock controller's device is runtime active before 234 * calling .is_enabled callback. If not, assume that clock is 235 * disabled, because we might be called from atomic context, from 236 * which pm_runtime_get() is not allowed. 237 * This function is called mainly from clk_disable_unused_subtree, 238 * which ensures proper runtime pm activation of controller before 239 * taking enable spinlock, but the below check is needed if one tries 240 * to call it from other places. 241 */ 242 if (core->rpm_enabled) { 243 pm_runtime_get_noresume(core->dev); 244 if (!pm_runtime_active(core->dev)) { 245 ret = false; 246 goto done; 247 } 248 } 249 250 ret = core->ops->is_enabled(core->hw); 251 done: 252 if (core->rpm_enabled) 253 pm_runtime_put(core->dev); 254 255 return ret; 256 } 257 258 /*** helper functions ***/ 259 260 const char *__clk_get_name(const struct clk *clk) 261 { 262 return !clk ? NULL : clk->core->name; 263 } 264 EXPORT_SYMBOL_GPL(__clk_get_name); 265 266 const char *clk_hw_get_name(const struct clk_hw *hw) 267 { 268 return hw->core->name; 269 } 270 EXPORT_SYMBOL_GPL(clk_hw_get_name); 271 272 struct clk_hw *__clk_get_hw(struct clk *clk) 273 { 274 return !clk ? NULL : clk->core->hw; 275 } 276 EXPORT_SYMBOL_GPL(__clk_get_hw); 277 278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 279 { 280 return hw->core->num_parents; 281 } 282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 283 284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 285 { 286 return hw->core->parent ? hw->core->parent->hw : NULL; 287 } 288 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 289 290 static struct clk_core *__clk_lookup_subtree(const char *name, 291 struct clk_core *core) 292 { 293 struct clk_core *child; 294 struct clk_core *ret; 295 296 if (!strcmp(core->name, name)) 297 return core; 298 299 hlist_for_each_entry(child, &core->children, child_node) { 300 ret = __clk_lookup_subtree(name, child); 301 if (ret) 302 return ret; 303 } 304 305 return NULL; 306 } 307 308 static struct clk_core *clk_core_lookup(const char *name) 309 { 310 struct clk_core *root_clk; 311 struct clk_core *ret; 312 313 if (!name) 314 return NULL; 315 316 /* search the 'proper' clk tree first */ 317 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 318 ret = __clk_lookup_subtree(name, root_clk); 319 if (ret) 320 return ret; 321 } 322 323 /* if not found, then search the orphan tree */ 324 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 325 ret = __clk_lookup_subtree(name, root_clk); 326 if (ret) 327 return ret; 328 } 329 330 return NULL; 331 } 332 333 #ifdef CONFIG_OF 334 static int of_parse_clkspec(const struct device_node *np, int index, 335 const char *name, struct of_phandle_args *out_args); 336 static struct clk_hw * 337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 338 #else 339 static inline int of_parse_clkspec(const struct device_node *np, int index, 340 const char *name, 341 struct of_phandle_args *out_args) 342 { 343 return -ENOENT; 344 } 345 static inline struct clk_hw * 346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 347 { 348 return ERR_PTR(-ENOENT); 349 } 350 #endif 351 352 /** 353 * clk_core_get - Find the clk_core parent of a clk 354 * @core: clk to find parent of 355 * @p_index: parent index to search for 356 * 357 * This is the preferred method for clk providers to find the parent of a 358 * clk when that parent is external to the clk controller. The parent_names 359 * array is indexed and treated as a local name matching a string in the device 360 * node's 'clock-names' property or as the 'con_id' matching the device's 361 * dev_name() in a clk_lookup. This allows clk providers to use their own 362 * namespace instead of looking for a globally unique parent string. 363 * 364 * For example the following DT snippet would allow a clock registered by the 365 * clock-controller@c001 that has a clk_init_data::parent_data array 366 * with 'xtal' in the 'name' member to find the clock provided by the 367 * clock-controller@f00abcd without needing to get the globally unique name of 368 * the xtal clk. 369 * 370 * parent: clock-controller@f00abcd { 371 * reg = <0xf00abcd 0xabcd>; 372 * #clock-cells = <0>; 373 * }; 374 * 375 * clock-controller@c001 { 376 * reg = <0xc001 0xf00d>; 377 * clocks = <&parent>; 378 * clock-names = "xtal"; 379 * #clock-cells = <1>; 380 * }; 381 * 382 * Returns: -ENOENT when the provider can't be found or the clk doesn't 383 * exist in the provider or the name can't be found in the DT node or 384 * in a clkdev lookup. NULL when the provider knows about the clk but it 385 * isn't provided on this system. 386 * A valid clk_core pointer when the clk can be found in the provider. 387 */ 388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 389 { 390 const char *name = core->parents[p_index].fw_name; 391 int index = core->parents[p_index].index; 392 struct clk_hw *hw = ERR_PTR(-ENOENT); 393 struct device *dev = core->dev; 394 const char *dev_id = dev ? dev_name(dev) : NULL; 395 struct device_node *np = core->of_node; 396 struct of_phandle_args clkspec; 397 398 if (np && (name || index >= 0) && 399 !of_parse_clkspec(np, index, name, &clkspec)) { 400 hw = of_clk_get_hw_from_clkspec(&clkspec); 401 of_node_put(clkspec.np); 402 } else if (name) { 403 /* 404 * If the DT search above couldn't find the provider fallback to 405 * looking up via clkdev based clk_lookups. 406 */ 407 hw = clk_find_hw(dev_id, name); 408 } 409 410 if (IS_ERR(hw)) 411 return ERR_CAST(hw); 412 413 return hw->core; 414 } 415 416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 417 { 418 struct clk_parent_map *entry = &core->parents[index]; 419 struct clk_core *parent = ERR_PTR(-ENOENT); 420 421 if (entry->hw) { 422 parent = entry->hw->core; 423 /* 424 * We have a direct reference but it isn't registered yet? 425 * Orphan it and let clk_reparent() update the orphan status 426 * when the parent is registered. 427 */ 428 if (!parent) 429 parent = ERR_PTR(-EPROBE_DEFER); 430 } else { 431 parent = clk_core_get(core, index); 432 if (PTR_ERR(parent) == -ENOENT && entry->name) 433 parent = clk_core_lookup(entry->name); 434 } 435 436 /* Only cache it if it's not an error */ 437 if (!IS_ERR(parent)) 438 entry->core = parent; 439 } 440 441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 442 u8 index) 443 { 444 if (!core || index >= core->num_parents || !core->parents) 445 return NULL; 446 447 if (!core->parents[index].core) 448 clk_core_fill_parent_index(core, index); 449 450 return core->parents[index].core; 451 } 452 453 struct clk_hw * 454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 455 { 456 struct clk_core *parent; 457 458 parent = clk_core_get_parent_by_index(hw->core, index); 459 460 return !parent ? NULL : parent->hw; 461 } 462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 463 464 unsigned int __clk_get_enable_count(struct clk *clk) 465 { 466 return !clk ? 0 : clk->core->enable_count; 467 } 468 469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 470 { 471 if (!core) 472 return 0; 473 474 if (!core->num_parents || core->parent) 475 return core->rate; 476 477 /* 478 * Clk must have a parent because num_parents > 0 but the parent isn't 479 * known yet. Best to return 0 as the rate of this clk until we can 480 * properly recalc the rate based on the parent's rate. 481 */ 482 return 0; 483 } 484 485 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 486 { 487 return clk_core_get_rate_nolock(hw->core); 488 } 489 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 490 491 static unsigned long __clk_get_accuracy(struct clk_core *core) 492 { 493 if (!core) 494 return 0; 495 496 return core->accuracy; 497 } 498 499 unsigned long __clk_get_flags(struct clk *clk) 500 { 501 return !clk ? 0 : clk->core->flags; 502 } 503 EXPORT_SYMBOL_GPL(__clk_get_flags); 504 505 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 506 { 507 return hw->core->flags; 508 } 509 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 510 511 bool clk_hw_is_prepared(const struct clk_hw *hw) 512 { 513 return clk_core_is_prepared(hw->core); 514 } 515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 516 517 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 518 { 519 return clk_core_rate_is_protected(hw->core); 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 522 523 bool clk_hw_is_enabled(const struct clk_hw *hw) 524 { 525 return clk_core_is_enabled(hw->core); 526 } 527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 528 529 bool __clk_is_enabled(struct clk *clk) 530 { 531 if (!clk) 532 return false; 533 534 return clk_core_is_enabled(clk->core); 535 } 536 EXPORT_SYMBOL_GPL(__clk_is_enabled); 537 538 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 539 unsigned long best, unsigned long flags) 540 { 541 if (flags & CLK_MUX_ROUND_CLOSEST) 542 return abs(now - rate) < abs(best - rate); 543 544 return now <= rate && now > best; 545 } 546 547 int clk_mux_determine_rate_flags(struct clk_hw *hw, 548 struct clk_rate_request *req, 549 unsigned long flags) 550 { 551 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 552 int i, num_parents, ret; 553 unsigned long best = 0; 554 struct clk_rate_request parent_req = *req; 555 556 /* if NO_REPARENT flag set, pass through to current parent */ 557 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 558 parent = core->parent; 559 if (core->flags & CLK_SET_RATE_PARENT) { 560 ret = __clk_determine_rate(parent ? parent->hw : NULL, 561 &parent_req); 562 if (ret) 563 return ret; 564 565 best = parent_req.rate; 566 } else if (parent) { 567 best = clk_core_get_rate_nolock(parent); 568 } else { 569 best = clk_core_get_rate_nolock(core); 570 } 571 572 goto out; 573 } 574 575 /* find the parent that can provide the fastest rate <= rate */ 576 num_parents = core->num_parents; 577 for (i = 0; i < num_parents; i++) { 578 parent = clk_core_get_parent_by_index(core, i); 579 if (!parent) 580 continue; 581 582 if (core->flags & CLK_SET_RATE_PARENT) { 583 parent_req = *req; 584 ret = __clk_determine_rate(parent->hw, &parent_req); 585 if (ret) 586 continue; 587 } else { 588 parent_req.rate = clk_core_get_rate_nolock(parent); 589 } 590 591 if (mux_is_better_rate(req->rate, parent_req.rate, 592 best, flags)) { 593 best_parent = parent; 594 best = parent_req.rate; 595 } 596 } 597 598 if (!best_parent) 599 return -EINVAL; 600 601 out: 602 if (best_parent) 603 req->best_parent_hw = best_parent->hw; 604 req->best_parent_rate = best; 605 req->rate = best; 606 607 return 0; 608 } 609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 610 611 struct clk *__clk_lookup(const char *name) 612 { 613 struct clk_core *core = clk_core_lookup(name); 614 615 return !core ? NULL : core->hw->clk; 616 } 617 618 static void clk_core_get_boundaries(struct clk_core *core, 619 unsigned long *min_rate, 620 unsigned long *max_rate) 621 { 622 struct clk *clk_user; 623 624 lockdep_assert_held(&prepare_lock); 625 626 *min_rate = core->min_rate; 627 *max_rate = core->max_rate; 628 629 hlist_for_each_entry(clk_user, &core->clks, clks_node) 630 *min_rate = max(*min_rate, clk_user->min_rate); 631 632 hlist_for_each_entry(clk_user, &core->clks, clks_node) 633 *max_rate = min(*max_rate, clk_user->max_rate); 634 } 635 636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 637 unsigned long max_rate) 638 { 639 hw->core->min_rate = min_rate; 640 hw->core->max_rate = max_rate; 641 } 642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 643 644 /* 645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 646 * @hw: mux type clk to determine rate on 647 * @req: rate request, also used to return preferred parent and frequencies 648 * 649 * Helper for finding best parent to provide a given frequency. This can be used 650 * directly as a determine_rate callback (e.g. for a mux), or from a more 651 * complex clock that may combine a mux with other operations. 652 * 653 * Returns: 0 on success, -EERROR value on error 654 */ 655 int __clk_mux_determine_rate(struct clk_hw *hw, 656 struct clk_rate_request *req) 657 { 658 return clk_mux_determine_rate_flags(hw, req, 0); 659 } 660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 661 662 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 663 struct clk_rate_request *req) 664 { 665 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 666 } 667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 668 669 /*** clk api ***/ 670 671 static void clk_core_rate_unprotect(struct clk_core *core) 672 { 673 lockdep_assert_held(&prepare_lock); 674 675 if (!core) 676 return; 677 678 if (WARN(core->protect_count == 0, 679 "%s already unprotected\n", core->name)) 680 return; 681 682 if (--core->protect_count > 0) 683 return; 684 685 clk_core_rate_unprotect(core->parent); 686 } 687 688 static int clk_core_rate_nuke_protect(struct clk_core *core) 689 { 690 int ret; 691 692 lockdep_assert_held(&prepare_lock); 693 694 if (!core) 695 return -EINVAL; 696 697 if (core->protect_count == 0) 698 return 0; 699 700 ret = core->protect_count; 701 core->protect_count = 1; 702 clk_core_rate_unprotect(core); 703 704 return ret; 705 } 706 707 /** 708 * clk_rate_exclusive_put - release exclusivity over clock rate control 709 * @clk: the clk over which the exclusivity is released 710 * 711 * clk_rate_exclusive_put() completes a critical section during which a clock 712 * consumer cannot tolerate any other consumer making any operation on the 713 * clock which could result in a rate change or rate glitch. Exclusive clocks 714 * cannot have their rate changed, either directly or indirectly due to changes 715 * further up the parent chain of clocks. As a result, clocks up parent chain 716 * also get under exclusive control of the calling consumer. 717 * 718 * If exlusivity is claimed more than once on clock, even by the same consumer, 719 * the rate effectively gets locked as exclusivity can't be preempted. 720 * 721 * Calls to clk_rate_exclusive_put() must be balanced with calls to 722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 723 * error status. 724 */ 725 void clk_rate_exclusive_put(struct clk *clk) 726 { 727 if (!clk) 728 return; 729 730 clk_prepare_lock(); 731 732 /* 733 * if there is something wrong with this consumer protect count, stop 734 * here before messing with the provider 735 */ 736 if (WARN_ON(clk->exclusive_count <= 0)) 737 goto out; 738 739 clk_core_rate_unprotect(clk->core); 740 clk->exclusive_count--; 741 out: 742 clk_prepare_unlock(); 743 } 744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 745 746 static void clk_core_rate_protect(struct clk_core *core) 747 { 748 lockdep_assert_held(&prepare_lock); 749 750 if (!core) 751 return; 752 753 if (core->protect_count == 0) 754 clk_core_rate_protect(core->parent); 755 756 core->protect_count++; 757 } 758 759 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 760 { 761 lockdep_assert_held(&prepare_lock); 762 763 if (!core) 764 return; 765 766 if (count == 0) 767 return; 768 769 clk_core_rate_protect(core); 770 core->protect_count = count; 771 } 772 773 /** 774 * clk_rate_exclusive_get - get exclusivity over the clk rate control 775 * @clk: the clk over which the exclusity of rate control is requested 776 * 777 * clk_rate_exlusive_get() begins a critical section during which a clock 778 * consumer cannot tolerate any other consumer making any operation on the 779 * clock which could result in a rate change or rate glitch. Exclusive clocks 780 * cannot have their rate changed, either directly or indirectly due to changes 781 * further up the parent chain of clocks. As a result, clocks up parent chain 782 * also get under exclusive control of the calling consumer. 783 * 784 * If exlusivity is claimed more than once on clock, even by the same consumer, 785 * the rate effectively gets locked as exclusivity can't be preempted. 786 * 787 * Calls to clk_rate_exclusive_get() should be balanced with calls to 788 * clk_rate_exclusive_put(). Calls to this function may sleep. 789 * Returns 0 on success, -EERROR otherwise 790 */ 791 int clk_rate_exclusive_get(struct clk *clk) 792 { 793 if (!clk) 794 return 0; 795 796 clk_prepare_lock(); 797 clk_core_rate_protect(clk->core); 798 clk->exclusive_count++; 799 clk_prepare_unlock(); 800 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 804 805 static void clk_core_unprepare(struct clk_core *core) 806 { 807 lockdep_assert_held(&prepare_lock); 808 809 if (!core) 810 return; 811 812 if (WARN(core->prepare_count == 0, 813 "%s already unprepared\n", core->name)) 814 return; 815 816 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 817 "Unpreparing critical %s\n", core->name)) 818 return; 819 820 if (core->flags & CLK_SET_RATE_GATE) 821 clk_core_rate_unprotect(core); 822 823 if (--core->prepare_count > 0) 824 return; 825 826 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 827 828 trace_clk_unprepare(core); 829 830 if (core->ops->unprepare) 831 core->ops->unprepare(core->hw); 832 833 clk_pm_runtime_put(core); 834 835 trace_clk_unprepare_complete(core); 836 clk_core_unprepare(core->parent); 837 } 838 839 static void clk_core_unprepare_lock(struct clk_core *core) 840 { 841 clk_prepare_lock(); 842 clk_core_unprepare(core); 843 clk_prepare_unlock(); 844 } 845 846 /** 847 * clk_unprepare - undo preparation of a clock source 848 * @clk: the clk being unprepared 849 * 850 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 852 * if the operation may sleep. One example is a clk which is accessed over 853 * I2c. In the complex case a clk gate operation may require a fast and a slow 854 * part. It is this reason that clk_unprepare and clk_disable are not mutually 855 * exclusive. In fact clk_disable must be called before clk_unprepare. 856 */ 857 void clk_unprepare(struct clk *clk) 858 { 859 if (IS_ERR_OR_NULL(clk)) 860 return; 861 862 clk_core_unprepare_lock(clk->core); 863 } 864 EXPORT_SYMBOL_GPL(clk_unprepare); 865 866 static int clk_core_prepare(struct clk_core *core) 867 { 868 int ret = 0; 869 870 lockdep_assert_held(&prepare_lock); 871 872 if (!core) 873 return 0; 874 875 if (core->prepare_count == 0) { 876 ret = clk_pm_runtime_get(core); 877 if (ret) 878 return ret; 879 880 ret = clk_core_prepare(core->parent); 881 if (ret) 882 goto runtime_put; 883 884 trace_clk_prepare(core); 885 886 if (core->ops->prepare) 887 ret = core->ops->prepare(core->hw); 888 889 trace_clk_prepare_complete(core); 890 891 if (ret) 892 goto unprepare; 893 } 894 895 core->prepare_count++; 896 897 /* 898 * CLK_SET_RATE_GATE is a special case of clock protection 899 * Instead of a consumer claiming exclusive rate control, it is 900 * actually the provider which prevents any consumer from making any 901 * operation which could result in a rate change or rate glitch while 902 * the clock is prepared. 903 */ 904 if (core->flags & CLK_SET_RATE_GATE) 905 clk_core_rate_protect(core); 906 907 return 0; 908 unprepare: 909 clk_core_unprepare(core->parent); 910 runtime_put: 911 clk_pm_runtime_put(core); 912 return ret; 913 } 914 915 static int clk_core_prepare_lock(struct clk_core *core) 916 { 917 int ret; 918 919 clk_prepare_lock(); 920 ret = clk_core_prepare(core); 921 clk_prepare_unlock(); 922 923 return ret; 924 } 925 926 /** 927 * clk_prepare - prepare a clock source 928 * @clk: the clk being prepared 929 * 930 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 932 * operation may sleep. One example is a clk which is accessed over I2c. In 933 * the complex case a clk ungate operation may require a fast and a slow part. 934 * It is this reason that clk_prepare and clk_enable are not mutually 935 * exclusive. In fact clk_prepare must be called before clk_enable. 936 * Returns 0 on success, -EERROR otherwise. 937 */ 938 int clk_prepare(struct clk *clk) 939 { 940 if (!clk) 941 return 0; 942 943 return clk_core_prepare_lock(clk->core); 944 } 945 EXPORT_SYMBOL_GPL(clk_prepare); 946 947 static void clk_core_disable(struct clk_core *core) 948 { 949 lockdep_assert_held(&enable_lock); 950 951 if (!core) 952 return; 953 954 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 955 return; 956 957 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 958 "Disabling critical %s\n", core->name)) 959 return; 960 961 if (--core->enable_count > 0) 962 return; 963 964 trace_clk_disable_rcuidle(core); 965 966 if (core->ops->disable) 967 core->ops->disable(core->hw); 968 969 trace_clk_disable_complete_rcuidle(core); 970 971 clk_core_disable(core->parent); 972 } 973 974 static void clk_core_disable_lock(struct clk_core *core) 975 { 976 unsigned long flags; 977 978 flags = clk_enable_lock(); 979 clk_core_disable(core); 980 clk_enable_unlock(flags); 981 } 982 983 /** 984 * clk_disable - gate a clock 985 * @clk: the clk being gated 986 * 987 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 989 * clk if the operation is fast and will never sleep. One example is a 990 * SoC-internal clk which is controlled via simple register writes. In the 991 * complex case a clk gate operation may require a fast and a slow part. It is 992 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 993 * In fact clk_disable must be called before clk_unprepare. 994 */ 995 void clk_disable(struct clk *clk) 996 { 997 if (IS_ERR_OR_NULL(clk)) 998 return; 999 1000 clk_core_disable_lock(clk->core); 1001 } 1002 EXPORT_SYMBOL_GPL(clk_disable); 1003 1004 static int clk_core_enable(struct clk_core *core) 1005 { 1006 int ret = 0; 1007 1008 lockdep_assert_held(&enable_lock); 1009 1010 if (!core) 1011 return 0; 1012 1013 if (WARN(core->prepare_count == 0, 1014 "Enabling unprepared %s\n", core->name)) 1015 return -ESHUTDOWN; 1016 1017 if (core->enable_count == 0) { 1018 ret = clk_core_enable(core->parent); 1019 1020 if (ret) 1021 return ret; 1022 1023 trace_clk_enable_rcuidle(core); 1024 1025 if (core->ops->enable) 1026 ret = core->ops->enable(core->hw); 1027 1028 trace_clk_enable_complete_rcuidle(core); 1029 1030 if (ret) { 1031 clk_core_disable(core->parent); 1032 return ret; 1033 } 1034 } 1035 1036 core->enable_count++; 1037 return 0; 1038 } 1039 1040 static int clk_core_enable_lock(struct clk_core *core) 1041 { 1042 unsigned long flags; 1043 int ret; 1044 1045 flags = clk_enable_lock(); 1046 ret = clk_core_enable(core); 1047 clk_enable_unlock(flags); 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * clk_gate_restore_context - restore context for poweroff 1054 * @hw: the clk_hw pointer of clock whose state is to be restored 1055 * 1056 * The clock gate restore context function enables or disables 1057 * the gate clocks based on the enable_count. This is done in cases 1058 * where the clock context is lost and based on the enable_count 1059 * the clock either needs to be enabled/disabled. This 1060 * helps restore the state of gate clocks. 1061 */ 1062 void clk_gate_restore_context(struct clk_hw *hw) 1063 { 1064 struct clk_core *core = hw->core; 1065 1066 if (core->enable_count) 1067 core->ops->enable(hw); 1068 else 1069 core->ops->disable(hw); 1070 } 1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1072 1073 static int clk_core_save_context(struct clk_core *core) 1074 { 1075 struct clk_core *child; 1076 int ret = 0; 1077 1078 hlist_for_each_entry(child, &core->children, child_node) { 1079 ret = clk_core_save_context(child); 1080 if (ret < 0) 1081 return ret; 1082 } 1083 1084 if (core->ops && core->ops->save_context) 1085 ret = core->ops->save_context(core->hw); 1086 1087 return ret; 1088 } 1089 1090 static void clk_core_restore_context(struct clk_core *core) 1091 { 1092 struct clk_core *child; 1093 1094 if (core->ops && core->ops->restore_context) 1095 core->ops->restore_context(core->hw); 1096 1097 hlist_for_each_entry(child, &core->children, child_node) 1098 clk_core_restore_context(child); 1099 } 1100 1101 /** 1102 * clk_save_context - save clock context for poweroff 1103 * 1104 * Saves the context of the clock register for powerstates in which the 1105 * contents of the registers will be lost. Occurs deep within the suspend 1106 * code. Returns 0 on success. 1107 */ 1108 int clk_save_context(void) 1109 { 1110 struct clk_core *clk; 1111 int ret; 1112 1113 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1114 ret = clk_core_save_context(clk); 1115 if (ret < 0) 1116 return ret; 1117 } 1118 1119 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1120 ret = clk_core_save_context(clk); 1121 if (ret < 0) 1122 return ret; 1123 } 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(clk_save_context); 1128 1129 /** 1130 * clk_restore_context - restore clock context after poweroff 1131 * 1132 * Restore the saved clock context upon resume. 1133 * 1134 */ 1135 void clk_restore_context(void) 1136 { 1137 struct clk_core *core; 1138 1139 hlist_for_each_entry(core, &clk_root_list, child_node) 1140 clk_core_restore_context(core); 1141 1142 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1143 clk_core_restore_context(core); 1144 } 1145 EXPORT_SYMBOL_GPL(clk_restore_context); 1146 1147 /** 1148 * clk_enable - ungate a clock 1149 * @clk: the clk being ungated 1150 * 1151 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1153 * if the operation will never sleep. One example is a SoC-internal clk which 1154 * is controlled via simple register writes. In the complex case a clk ungate 1155 * operation may require a fast and a slow part. It is this reason that 1156 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1157 * must be called before clk_enable. Returns 0 on success, -EERROR 1158 * otherwise. 1159 */ 1160 int clk_enable(struct clk *clk) 1161 { 1162 if (!clk) 1163 return 0; 1164 1165 return clk_core_enable_lock(clk->core); 1166 } 1167 EXPORT_SYMBOL_GPL(clk_enable); 1168 1169 static int clk_core_prepare_enable(struct clk_core *core) 1170 { 1171 int ret; 1172 1173 ret = clk_core_prepare_lock(core); 1174 if (ret) 1175 return ret; 1176 1177 ret = clk_core_enable_lock(core); 1178 if (ret) 1179 clk_core_unprepare_lock(core); 1180 1181 return ret; 1182 } 1183 1184 static void clk_core_disable_unprepare(struct clk_core *core) 1185 { 1186 clk_core_disable_lock(core); 1187 clk_core_unprepare_lock(core); 1188 } 1189 1190 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1191 { 1192 struct clk_core *child; 1193 1194 lockdep_assert_held(&prepare_lock); 1195 1196 hlist_for_each_entry(child, &core->children, child_node) 1197 clk_unprepare_unused_subtree(child); 1198 1199 if (core->prepare_count) 1200 return; 1201 1202 if (core->flags & CLK_IGNORE_UNUSED) 1203 return; 1204 1205 if (clk_pm_runtime_get(core)) 1206 return; 1207 1208 if (clk_core_is_prepared(core)) { 1209 trace_clk_unprepare(core); 1210 if (core->ops->unprepare_unused) 1211 core->ops->unprepare_unused(core->hw); 1212 else if (core->ops->unprepare) 1213 core->ops->unprepare(core->hw); 1214 trace_clk_unprepare_complete(core); 1215 } 1216 1217 clk_pm_runtime_put(core); 1218 } 1219 1220 static void __init clk_disable_unused_subtree(struct clk_core *core) 1221 { 1222 struct clk_core *child; 1223 unsigned long flags; 1224 1225 lockdep_assert_held(&prepare_lock); 1226 1227 hlist_for_each_entry(child, &core->children, child_node) 1228 clk_disable_unused_subtree(child); 1229 1230 if (core->flags & CLK_OPS_PARENT_ENABLE) 1231 clk_core_prepare_enable(core->parent); 1232 1233 if (clk_pm_runtime_get(core)) 1234 goto unprepare_out; 1235 1236 flags = clk_enable_lock(); 1237 1238 if (core->enable_count) 1239 goto unlock_out; 1240 1241 if (core->flags & CLK_IGNORE_UNUSED) 1242 goto unlock_out; 1243 1244 /* 1245 * some gate clocks have special needs during the disable-unused 1246 * sequence. call .disable_unused if available, otherwise fall 1247 * back to .disable 1248 */ 1249 if (clk_core_is_enabled(core)) { 1250 trace_clk_disable(core); 1251 if (core->ops->disable_unused) 1252 core->ops->disable_unused(core->hw); 1253 else if (core->ops->disable) 1254 core->ops->disable(core->hw); 1255 trace_clk_disable_complete(core); 1256 } 1257 1258 unlock_out: 1259 clk_enable_unlock(flags); 1260 clk_pm_runtime_put(core); 1261 unprepare_out: 1262 if (core->flags & CLK_OPS_PARENT_ENABLE) 1263 clk_core_disable_unprepare(core->parent); 1264 } 1265 1266 static bool clk_ignore_unused __initdata; 1267 static int __init clk_ignore_unused_setup(char *__unused) 1268 { 1269 clk_ignore_unused = true; 1270 return 1; 1271 } 1272 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1273 1274 static int __init clk_disable_unused(void) 1275 { 1276 struct clk_core *core; 1277 1278 if (clk_ignore_unused) { 1279 pr_warn("clk: Not disabling unused clocks\n"); 1280 return 0; 1281 } 1282 1283 clk_prepare_lock(); 1284 1285 hlist_for_each_entry(core, &clk_root_list, child_node) 1286 clk_disable_unused_subtree(core); 1287 1288 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1289 clk_disable_unused_subtree(core); 1290 1291 hlist_for_each_entry(core, &clk_root_list, child_node) 1292 clk_unprepare_unused_subtree(core); 1293 1294 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1295 clk_unprepare_unused_subtree(core); 1296 1297 clk_prepare_unlock(); 1298 1299 return 0; 1300 } 1301 late_initcall_sync(clk_disable_unused); 1302 1303 static int clk_core_determine_round_nolock(struct clk_core *core, 1304 struct clk_rate_request *req) 1305 { 1306 long rate; 1307 1308 lockdep_assert_held(&prepare_lock); 1309 1310 if (!core) 1311 return 0; 1312 1313 /* 1314 * At this point, core protection will be disabled if 1315 * - if the provider is not protected at all 1316 * - if the calling consumer is the only one which has exclusivity 1317 * over the provider 1318 */ 1319 if (clk_core_rate_is_protected(core)) { 1320 req->rate = core->rate; 1321 } else if (core->ops->determine_rate) { 1322 return core->ops->determine_rate(core->hw, req); 1323 } else if (core->ops->round_rate) { 1324 rate = core->ops->round_rate(core->hw, req->rate, 1325 &req->best_parent_rate); 1326 if (rate < 0) 1327 return rate; 1328 1329 req->rate = rate; 1330 } else { 1331 return -EINVAL; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static void clk_core_init_rate_req(struct clk_core * const core, 1338 struct clk_rate_request *req) 1339 { 1340 struct clk_core *parent; 1341 1342 if (WARN_ON(!core || !req)) 1343 return; 1344 1345 parent = core->parent; 1346 if (parent) { 1347 req->best_parent_hw = parent->hw; 1348 req->best_parent_rate = parent->rate; 1349 } else { 1350 req->best_parent_hw = NULL; 1351 req->best_parent_rate = 0; 1352 } 1353 } 1354 1355 static bool clk_core_can_round(struct clk_core * const core) 1356 { 1357 return core->ops->determine_rate || core->ops->round_rate; 1358 } 1359 1360 static int clk_core_round_rate_nolock(struct clk_core *core, 1361 struct clk_rate_request *req) 1362 { 1363 lockdep_assert_held(&prepare_lock); 1364 1365 if (!core) { 1366 req->rate = 0; 1367 return 0; 1368 } 1369 1370 clk_core_init_rate_req(core, req); 1371 1372 if (clk_core_can_round(core)) 1373 return clk_core_determine_round_nolock(core, req); 1374 else if (core->flags & CLK_SET_RATE_PARENT) 1375 return clk_core_round_rate_nolock(core->parent, req); 1376 1377 req->rate = core->rate; 1378 return 0; 1379 } 1380 1381 /** 1382 * __clk_determine_rate - get the closest rate actually supported by a clock 1383 * @hw: determine the rate of this clock 1384 * @req: target rate request 1385 * 1386 * Useful for clk_ops such as .set_rate and .determine_rate. 1387 */ 1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1389 { 1390 if (!hw) { 1391 req->rate = 0; 1392 return 0; 1393 } 1394 1395 return clk_core_round_rate_nolock(hw->core, req); 1396 } 1397 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1398 1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1400 { 1401 int ret; 1402 struct clk_rate_request req; 1403 1404 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1405 req.rate = rate; 1406 1407 ret = clk_core_round_rate_nolock(hw->core, &req); 1408 if (ret) 1409 return 0; 1410 1411 return req.rate; 1412 } 1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1414 1415 /** 1416 * clk_round_rate - round the given rate for a clk 1417 * @clk: the clk for which we are rounding a rate 1418 * @rate: the rate which is to be rounded 1419 * 1420 * Takes in a rate as input and rounds it to a rate that the clk can actually 1421 * use which is then returned. If clk doesn't support round_rate operation 1422 * then the parent rate is returned. 1423 */ 1424 long clk_round_rate(struct clk *clk, unsigned long rate) 1425 { 1426 struct clk_rate_request req; 1427 int ret; 1428 1429 if (!clk) 1430 return 0; 1431 1432 clk_prepare_lock(); 1433 1434 if (clk->exclusive_count) 1435 clk_core_rate_unprotect(clk->core); 1436 1437 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1438 req.rate = rate; 1439 1440 ret = clk_core_round_rate_nolock(clk->core, &req); 1441 1442 if (clk->exclusive_count) 1443 clk_core_rate_protect(clk->core); 1444 1445 clk_prepare_unlock(); 1446 1447 if (ret) 1448 return ret; 1449 1450 return req.rate; 1451 } 1452 EXPORT_SYMBOL_GPL(clk_round_rate); 1453 1454 /** 1455 * __clk_notify - call clk notifier chain 1456 * @core: clk that is changing rate 1457 * @msg: clk notifier type (see include/linux/clk.h) 1458 * @old_rate: old clk rate 1459 * @new_rate: new clk rate 1460 * 1461 * Triggers a notifier call chain on the clk rate-change notification 1462 * for 'clk'. Passes a pointer to the struct clk and the previous 1463 * and current rates to the notifier callback. Intended to be called by 1464 * internal clock code only. Returns NOTIFY_DONE from the last driver 1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1466 * a driver returns that. 1467 */ 1468 static int __clk_notify(struct clk_core *core, unsigned long msg, 1469 unsigned long old_rate, unsigned long new_rate) 1470 { 1471 struct clk_notifier *cn; 1472 struct clk_notifier_data cnd; 1473 int ret = NOTIFY_DONE; 1474 1475 cnd.old_rate = old_rate; 1476 cnd.new_rate = new_rate; 1477 1478 list_for_each_entry(cn, &clk_notifier_list, node) { 1479 if (cn->clk->core == core) { 1480 cnd.clk = cn->clk; 1481 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1482 &cnd); 1483 if (ret & NOTIFY_STOP_MASK) 1484 return ret; 1485 } 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * __clk_recalc_accuracies 1493 * @core: first clk in the subtree 1494 * 1495 * Walks the subtree of clks starting with clk and recalculates accuracies as 1496 * it goes. Note that if a clk does not implement the .recalc_accuracy 1497 * callback then it is assumed that the clock will take on the accuracy of its 1498 * parent. 1499 */ 1500 static void __clk_recalc_accuracies(struct clk_core *core) 1501 { 1502 unsigned long parent_accuracy = 0; 1503 struct clk_core *child; 1504 1505 lockdep_assert_held(&prepare_lock); 1506 1507 if (core->parent) 1508 parent_accuracy = core->parent->accuracy; 1509 1510 if (core->ops->recalc_accuracy) 1511 core->accuracy = core->ops->recalc_accuracy(core->hw, 1512 parent_accuracy); 1513 else 1514 core->accuracy = parent_accuracy; 1515 1516 hlist_for_each_entry(child, &core->children, child_node) 1517 __clk_recalc_accuracies(child); 1518 } 1519 1520 static long clk_core_get_accuracy(struct clk_core *core) 1521 { 1522 unsigned long accuracy; 1523 1524 clk_prepare_lock(); 1525 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1526 __clk_recalc_accuracies(core); 1527 1528 accuracy = __clk_get_accuracy(core); 1529 clk_prepare_unlock(); 1530 1531 return accuracy; 1532 } 1533 1534 /** 1535 * clk_get_accuracy - return the accuracy of clk 1536 * @clk: the clk whose accuracy is being returned 1537 * 1538 * Simply returns the cached accuracy of the clk, unless 1539 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1540 * issued. 1541 * If clk is NULL then returns 0. 1542 */ 1543 long clk_get_accuracy(struct clk *clk) 1544 { 1545 if (!clk) 1546 return 0; 1547 1548 return clk_core_get_accuracy(clk->core); 1549 } 1550 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1551 1552 static unsigned long clk_recalc(struct clk_core *core, 1553 unsigned long parent_rate) 1554 { 1555 unsigned long rate = parent_rate; 1556 1557 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1558 rate = core->ops->recalc_rate(core->hw, parent_rate); 1559 clk_pm_runtime_put(core); 1560 } 1561 return rate; 1562 } 1563 1564 /** 1565 * __clk_recalc_rates 1566 * @core: first clk in the subtree 1567 * @msg: notification type (see include/linux/clk.h) 1568 * 1569 * Walks the subtree of clks starting with clk and recalculates rates as it 1570 * goes. Note that if a clk does not implement the .recalc_rate callback then 1571 * it is assumed that the clock will take on the rate of its parent. 1572 * 1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1574 * if necessary. 1575 */ 1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1577 { 1578 unsigned long old_rate; 1579 unsigned long parent_rate = 0; 1580 struct clk_core *child; 1581 1582 lockdep_assert_held(&prepare_lock); 1583 1584 old_rate = core->rate; 1585 1586 if (core->parent) 1587 parent_rate = core->parent->rate; 1588 1589 core->rate = clk_recalc(core, parent_rate); 1590 1591 /* 1592 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1593 * & ABORT_RATE_CHANGE notifiers 1594 */ 1595 if (core->notifier_count && msg) 1596 __clk_notify(core, msg, old_rate, core->rate); 1597 1598 hlist_for_each_entry(child, &core->children, child_node) 1599 __clk_recalc_rates(child, msg); 1600 } 1601 1602 static unsigned long clk_core_get_rate(struct clk_core *core) 1603 { 1604 unsigned long rate; 1605 1606 clk_prepare_lock(); 1607 1608 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1609 __clk_recalc_rates(core, 0); 1610 1611 rate = clk_core_get_rate_nolock(core); 1612 clk_prepare_unlock(); 1613 1614 return rate; 1615 } 1616 1617 /** 1618 * clk_get_rate - return the rate of clk 1619 * @clk: the clk whose rate is being returned 1620 * 1621 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1622 * is set, which means a recalc_rate will be issued. 1623 * If clk is NULL then returns 0. 1624 */ 1625 unsigned long clk_get_rate(struct clk *clk) 1626 { 1627 if (!clk) 1628 return 0; 1629 1630 return clk_core_get_rate(clk->core); 1631 } 1632 EXPORT_SYMBOL_GPL(clk_get_rate); 1633 1634 static int clk_fetch_parent_index(struct clk_core *core, 1635 struct clk_core *parent) 1636 { 1637 int i; 1638 1639 if (!parent) 1640 return -EINVAL; 1641 1642 for (i = 0; i < core->num_parents; i++) { 1643 /* Found it first try! */ 1644 if (core->parents[i].core == parent) 1645 return i; 1646 1647 /* Something else is here, so keep looking */ 1648 if (core->parents[i].core) 1649 continue; 1650 1651 /* Maybe core hasn't been cached but the hw is all we know? */ 1652 if (core->parents[i].hw) { 1653 if (core->parents[i].hw == parent->hw) 1654 break; 1655 1656 /* Didn't match, but we're expecting a clk_hw */ 1657 continue; 1658 } 1659 1660 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1661 if (parent == clk_core_get(core, i)) 1662 break; 1663 1664 /* Fallback to comparing globally unique names */ 1665 if (core->parents[i].name && 1666 !strcmp(parent->name, core->parents[i].name)) 1667 break; 1668 } 1669 1670 if (i == core->num_parents) 1671 return -EINVAL; 1672 1673 core->parents[i].core = parent; 1674 return i; 1675 } 1676 1677 /** 1678 * clk_hw_get_parent_index - return the index of the parent clock 1679 * @hw: clk_hw associated with the clk being consumed 1680 * 1681 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1682 * clock does not have a current parent. 1683 */ 1684 int clk_hw_get_parent_index(struct clk_hw *hw) 1685 { 1686 struct clk_hw *parent = clk_hw_get_parent(hw); 1687 1688 if (WARN_ON(parent == NULL)) 1689 return -EINVAL; 1690 1691 return clk_fetch_parent_index(hw->core, parent->core); 1692 } 1693 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1694 1695 /* 1696 * Update the orphan status of @core and all its children. 1697 */ 1698 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1699 { 1700 struct clk_core *child; 1701 1702 core->orphan = is_orphan; 1703 1704 hlist_for_each_entry(child, &core->children, child_node) 1705 clk_core_update_orphan_status(child, is_orphan); 1706 } 1707 1708 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1709 { 1710 bool was_orphan = core->orphan; 1711 1712 hlist_del(&core->child_node); 1713 1714 if (new_parent) { 1715 bool becomes_orphan = new_parent->orphan; 1716 1717 /* avoid duplicate POST_RATE_CHANGE notifications */ 1718 if (new_parent->new_child == core) 1719 new_parent->new_child = NULL; 1720 1721 hlist_add_head(&core->child_node, &new_parent->children); 1722 1723 if (was_orphan != becomes_orphan) 1724 clk_core_update_orphan_status(core, becomes_orphan); 1725 } else { 1726 hlist_add_head(&core->child_node, &clk_orphan_list); 1727 if (!was_orphan) 1728 clk_core_update_orphan_status(core, true); 1729 } 1730 1731 core->parent = new_parent; 1732 } 1733 1734 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1735 struct clk_core *parent) 1736 { 1737 unsigned long flags; 1738 struct clk_core *old_parent = core->parent; 1739 1740 /* 1741 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1742 * 1743 * 2. Migrate prepare state between parents and prevent race with 1744 * clk_enable(). 1745 * 1746 * If the clock is not prepared, then a race with 1747 * clk_enable/disable() is impossible since we already have the 1748 * prepare lock (future calls to clk_enable() need to be preceded by 1749 * a clk_prepare()). 1750 * 1751 * If the clock is prepared, migrate the prepared state to the new 1752 * parent and also protect against a race with clk_enable() by 1753 * forcing the clock and the new parent on. This ensures that all 1754 * future calls to clk_enable() are practically NOPs with respect to 1755 * hardware and software states. 1756 * 1757 * See also: Comment for clk_set_parent() below. 1758 */ 1759 1760 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1761 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1762 clk_core_prepare_enable(old_parent); 1763 clk_core_prepare_enable(parent); 1764 } 1765 1766 /* migrate prepare count if > 0 */ 1767 if (core->prepare_count) { 1768 clk_core_prepare_enable(parent); 1769 clk_core_enable_lock(core); 1770 } 1771 1772 /* update the clk tree topology */ 1773 flags = clk_enable_lock(); 1774 clk_reparent(core, parent); 1775 clk_enable_unlock(flags); 1776 1777 return old_parent; 1778 } 1779 1780 static void __clk_set_parent_after(struct clk_core *core, 1781 struct clk_core *parent, 1782 struct clk_core *old_parent) 1783 { 1784 /* 1785 * Finish the migration of prepare state and undo the changes done 1786 * for preventing a race with clk_enable(). 1787 */ 1788 if (core->prepare_count) { 1789 clk_core_disable_lock(core); 1790 clk_core_disable_unprepare(old_parent); 1791 } 1792 1793 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1794 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1795 clk_core_disable_unprepare(parent); 1796 clk_core_disable_unprepare(old_parent); 1797 } 1798 } 1799 1800 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1801 u8 p_index) 1802 { 1803 unsigned long flags; 1804 int ret = 0; 1805 struct clk_core *old_parent; 1806 1807 old_parent = __clk_set_parent_before(core, parent); 1808 1809 trace_clk_set_parent(core, parent); 1810 1811 /* change clock input source */ 1812 if (parent && core->ops->set_parent) 1813 ret = core->ops->set_parent(core->hw, p_index); 1814 1815 trace_clk_set_parent_complete(core, parent); 1816 1817 if (ret) { 1818 flags = clk_enable_lock(); 1819 clk_reparent(core, old_parent); 1820 clk_enable_unlock(flags); 1821 __clk_set_parent_after(core, old_parent, parent); 1822 1823 return ret; 1824 } 1825 1826 __clk_set_parent_after(core, parent, old_parent); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * __clk_speculate_rates 1833 * @core: first clk in the subtree 1834 * @parent_rate: the "future" rate of clk's parent 1835 * 1836 * Walks the subtree of clks starting with clk, speculating rates as it 1837 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1838 * 1839 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1840 * pre-rate change notifications and returns early if no clks in the 1841 * subtree have subscribed to the notifications. Note that if a clk does not 1842 * implement the .recalc_rate callback then it is assumed that the clock will 1843 * take on the rate of its parent. 1844 */ 1845 static int __clk_speculate_rates(struct clk_core *core, 1846 unsigned long parent_rate) 1847 { 1848 struct clk_core *child; 1849 unsigned long new_rate; 1850 int ret = NOTIFY_DONE; 1851 1852 lockdep_assert_held(&prepare_lock); 1853 1854 new_rate = clk_recalc(core, parent_rate); 1855 1856 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1857 if (core->notifier_count) 1858 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1859 1860 if (ret & NOTIFY_STOP_MASK) { 1861 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1862 __func__, core->name, ret); 1863 goto out; 1864 } 1865 1866 hlist_for_each_entry(child, &core->children, child_node) { 1867 ret = __clk_speculate_rates(child, new_rate); 1868 if (ret & NOTIFY_STOP_MASK) 1869 break; 1870 } 1871 1872 out: 1873 return ret; 1874 } 1875 1876 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1877 struct clk_core *new_parent, u8 p_index) 1878 { 1879 struct clk_core *child; 1880 1881 core->new_rate = new_rate; 1882 core->new_parent = new_parent; 1883 core->new_parent_index = p_index; 1884 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1885 core->new_child = NULL; 1886 if (new_parent && new_parent != core->parent) 1887 new_parent->new_child = core; 1888 1889 hlist_for_each_entry(child, &core->children, child_node) { 1890 child->new_rate = clk_recalc(child, new_rate); 1891 clk_calc_subtree(child, child->new_rate, NULL, 0); 1892 } 1893 } 1894 1895 /* 1896 * calculate the new rates returning the topmost clock that has to be 1897 * changed. 1898 */ 1899 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1900 unsigned long rate) 1901 { 1902 struct clk_core *top = core; 1903 struct clk_core *old_parent, *parent; 1904 unsigned long best_parent_rate = 0; 1905 unsigned long new_rate; 1906 unsigned long min_rate; 1907 unsigned long max_rate; 1908 int p_index = 0; 1909 long ret; 1910 1911 /* sanity */ 1912 if (IS_ERR_OR_NULL(core)) 1913 return NULL; 1914 1915 /* save parent rate, if it exists */ 1916 parent = old_parent = core->parent; 1917 if (parent) 1918 best_parent_rate = parent->rate; 1919 1920 clk_core_get_boundaries(core, &min_rate, &max_rate); 1921 1922 /* find the closest rate and parent clk/rate */ 1923 if (clk_core_can_round(core)) { 1924 struct clk_rate_request req; 1925 1926 req.rate = rate; 1927 req.min_rate = min_rate; 1928 req.max_rate = max_rate; 1929 1930 clk_core_init_rate_req(core, &req); 1931 1932 ret = clk_core_determine_round_nolock(core, &req); 1933 if (ret < 0) 1934 return NULL; 1935 1936 best_parent_rate = req.best_parent_rate; 1937 new_rate = req.rate; 1938 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1939 1940 if (new_rate < min_rate || new_rate > max_rate) 1941 return NULL; 1942 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1943 /* pass-through clock without adjustable parent */ 1944 core->new_rate = core->rate; 1945 return NULL; 1946 } else { 1947 /* pass-through clock with adjustable parent */ 1948 top = clk_calc_new_rates(parent, rate); 1949 new_rate = parent->new_rate; 1950 goto out; 1951 } 1952 1953 /* some clocks must be gated to change parent */ 1954 if (parent != old_parent && 1955 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1956 pr_debug("%s: %s not gated but wants to reparent\n", 1957 __func__, core->name); 1958 return NULL; 1959 } 1960 1961 /* try finding the new parent index */ 1962 if (parent && core->num_parents > 1) { 1963 p_index = clk_fetch_parent_index(core, parent); 1964 if (p_index < 0) { 1965 pr_debug("%s: clk %s can not be parent of clk %s\n", 1966 __func__, parent->name, core->name); 1967 return NULL; 1968 } 1969 } 1970 1971 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1972 best_parent_rate != parent->rate) 1973 top = clk_calc_new_rates(parent, best_parent_rate); 1974 1975 out: 1976 clk_calc_subtree(core, new_rate, parent, p_index); 1977 1978 return top; 1979 } 1980 1981 /* 1982 * Notify about rate changes in a subtree. Always walk down the whole tree 1983 * so that in case of an error we can walk down the whole tree again and 1984 * abort the change. 1985 */ 1986 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1987 unsigned long event) 1988 { 1989 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1990 int ret = NOTIFY_DONE; 1991 1992 if (core->rate == core->new_rate) 1993 return NULL; 1994 1995 if (core->notifier_count) { 1996 ret = __clk_notify(core, event, core->rate, core->new_rate); 1997 if (ret & NOTIFY_STOP_MASK) 1998 fail_clk = core; 1999 } 2000 2001 hlist_for_each_entry(child, &core->children, child_node) { 2002 /* Skip children who will be reparented to another clock */ 2003 if (child->new_parent && child->new_parent != core) 2004 continue; 2005 tmp_clk = clk_propagate_rate_change(child, event); 2006 if (tmp_clk) 2007 fail_clk = tmp_clk; 2008 } 2009 2010 /* handle the new child who might not be in core->children yet */ 2011 if (core->new_child) { 2012 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2013 if (tmp_clk) 2014 fail_clk = tmp_clk; 2015 } 2016 2017 return fail_clk; 2018 } 2019 2020 /* 2021 * walk down a subtree and set the new rates notifying the rate 2022 * change on the way 2023 */ 2024 static void clk_change_rate(struct clk_core *core) 2025 { 2026 struct clk_core *child; 2027 struct hlist_node *tmp; 2028 unsigned long old_rate; 2029 unsigned long best_parent_rate = 0; 2030 bool skip_set_rate = false; 2031 struct clk_core *old_parent; 2032 struct clk_core *parent = NULL; 2033 2034 old_rate = core->rate; 2035 2036 if (core->new_parent) { 2037 parent = core->new_parent; 2038 best_parent_rate = core->new_parent->rate; 2039 } else if (core->parent) { 2040 parent = core->parent; 2041 best_parent_rate = core->parent->rate; 2042 } 2043 2044 if (clk_pm_runtime_get(core)) 2045 return; 2046 2047 if (core->flags & CLK_SET_RATE_UNGATE) { 2048 unsigned long flags; 2049 2050 clk_core_prepare(core); 2051 flags = clk_enable_lock(); 2052 clk_core_enable(core); 2053 clk_enable_unlock(flags); 2054 } 2055 2056 if (core->new_parent && core->new_parent != core->parent) { 2057 old_parent = __clk_set_parent_before(core, core->new_parent); 2058 trace_clk_set_parent(core, core->new_parent); 2059 2060 if (core->ops->set_rate_and_parent) { 2061 skip_set_rate = true; 2062 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2063 best_parent_rate, 2064 core->new_parent_index); 2065 } else if (core->ops->set_parent) { 2066 core->ops->set_parent(core->hw, core->new_parent_index); 2067 } 2068 2069 trace_clk_set_parent_complete(core, core->new_parent); 2070 __clk_set_parent_after(core, core->new_parent, old_parent); 2071 } 2072 2073 if (core->flags & CLK_OPS_PARENT_ENABLE) 2074 clk_core_prepare_enable(parent); 2075 2076 trace_clk_set_rate(core, core->new_rate); 2077 2078 if (!skip_set_rate && core->ops->set_rate) 2079 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2080 2081 trace_clk_set_rate_complete(core, core->new_rate); 2082 2083 core->rate = clk_recalc(core, best_parent_rate); 2084 2085 if (core->flags & CLK_SET_RATE_UNGATE) { 2086 unsigned long flags; 2087 2088 flags = clk_enable_lock(); 2089 clk_core_disable(core); 2090 clk_enable_unlock(flags); 2091 clk_core_unprepare(core); 2092 } 2093 2094 if (core->flags & CLK_OPS_PARENT_ENABLE) 2095 clk_core_disable_unprepare(parent); 2096 2097 if (core->notifier_count && old_rate != core->rate) 2098 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2099 2100 if (core->flags & CLK_RECALC_NEW_RATES) 2101 (void)clk_calc_new_rates(core, core->new_rate); 2102 2103 /* 2104 * Use safe iteration, as change_rate can actually swap parents 2105 * for certain clock types. 2106 */ 2107 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2108 /* Skip children who will be reparented to another clock */ 2109 if (child->new_parent && child->new_parent != core) 2110 continue; 2111 clk_change_rate(child); 2112 } 2113 2114 /* handle the new child who might not be in core->children yet */ 2115 if (core->new_child) 2116 clk_change_rate(core->new_child); 2117 2118 clk_pm_runtime_put(core); 2119 } 2120 2121 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2122 unsigned long req_rate) 2123 { 2124 int ret, cnt; 2125 struct clk_rate_request req; 2126 2127 lockdep_assert_held(&prepare_lock); 2128 2129 if (!core) 2130 return 0; 2131 2132 /* simulate what the rate would be if it could be freely set */ 2133 cnt = clk_core_rate_nuke_protect(core); 2134 if (cnt < 0) 2135 return cnt; 2136 2137 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2138 req.rate = req_rate; 2139 2140 ret = clk_core_round_rate_nolock(core, &req); 2141 2142 /* restore the protection */ 2143 clk_core_rate_restore_protect(core, cnt); 2144 2145 return ret ? 0 : req.rate; 2146 } 2147 2148 static int clk_core_set_rate_nolock(struct clk_core *core, 2149 unsigned long req_rate) 2150 { 2151 struct clk_core *top, *fail_clk; 2152 unsigned long rate; 2153 int ret = 0; 2154 2155 if (!core) 2156 return 0; 2157 2158 rate = clk_core_req_round_rate_nolock(core, req_rate); 2159 2160 /* bail early if nothing to do */ 2161 if (rate == clk_core_get_rate_nolock(core)) 2162 return 0; 2163 2164 /* fail on a direct rate set of a protected provider */ 2165 if (clk_core_rate_is_protected(core)) 2166 return -EBUSY; 2167 2168 /* calculate new rates and get the topmost changed clock */ 2169 top = clk_calc_new_rates(core, req_rate); 2170 if (!top) 2171 return -EINVAL; 2172 2173 ret = clk_pm_runtime_get(core); 2174 if (ret) 2175 return ret; 2176 2177 /* notify that we are about to change rates */ 2178 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2179 if (fail_clk) { 2180 pr_debug("%s: failed to set %s rate\n", __func__, 2181 fail_clk->name); 2182 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2183 ret = -EBUSY; 2184 goto err; 2185 } 2186 2187 /* change the rates */ 2188 clk_change_rate(top); 2189 2190 core->req_rate = req_rate; 2191 err: 2192 clk_pm_runtime_put(core); 2193 2194 return ret; 2195 } 2196 2197 /** 2198 * clk_set_rate - specify a new rate for clk 2199 * @clk: the clk whose rate is being changed 2200 * @rate: the new rate for clk 2201 * 2202 * In the simplest case clk_set_rate will only adjust the rate of clk. 2203 * 2204 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2205 * propagate up to clk's parent; whether or not this happens depends on the 2206 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2207 * after calling .round_rate then upstream parent propagation is ignored. If 2208 * *parent_rate comes back with a new rate for clk's parent then we propagate 2209 * up to clk's parent and set its rate. Upward propagation will continue 2210 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2211 * .round_rate stops requesting changes to clk's parent_rate. 2212 * 2213 * Rate changes are accomplished via tree traversal that also recalculates the 2214 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2215 * 2216 * Returns 0 on success, -EERROR otherwise. 2217 */ 2218 int clk_set_rate(struct clk *clk, unsigned long rate) 2219 { 2220 int ret; 2221 2222 if (!clk) 2223 return 0; 2224 2225 /* prevent racing with updates to the clock topology */ 2226 clk_prepare_lock(); 2227 2228 if (clk->exclusive_count) 2229 clk_core_rate_unprotect(clk->core); 2230 2231 ret = clk_core_set_rate_nolock(clk->core, rate); 2232 2233 if (clk->exclusive_count) 2234 clk_core_rate_protect(clk->core); 2235 2236 clk_prepare_unlock(); 2237 2238 return ret; 2239 } 2240 EXPORT_SYMBOL_GPL(clk_set_rate); 2241 2242 /** 2243 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2244 * @clk: the clk whose rate is being changed 2245 * @rate: the new rate for clk 2246 * 2247 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2248 * within a critical section 2249 * 2250 * This can be used initially to ensure that at least 1 consumer is 2251 * satisfied when several consumers are competing for exclusivity over the 2252 * same clock provider. 2253 * 2254 * The exclusivity is not applied if setting the rate failed. 2255 * 2256 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2257 * clk_rate_exclusive_put(). 2258 * 2259 * Returns 0 on success, -EERROR otherwise. 2260 */ 2261 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2262 { 2263 int ret; 2264 2265 if (!clk) 2266 return 0; 2267 2268 /* prevent racing with updates to the clock topology */ 2269 clk_prepare_lock(); 2270 2271 /* 2272 * The temporary protection removal is not here, on purpose 2273 * This function is meant to be used instead of clk_rate_protect, 2274 * so before the consumer code path protect the clock provider 2275 */ 2276 2277 ret = clk_core_set_rate_nolock(clk->core, rate); 2278 if (!ret) { 2279 clk_core_rate_protect(clk->core); 2280 clk->exclusive_count++; 2281 } 2282 2283 clk_prepare_unlock(); 2284 2285 return ret; 2286 } 2287 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2288 2289 /** 2290 * clk_set_rate_range - set a rate range for a clock source 2291 * @clk: clock source 2292 * @min: desired minimum clock rate in Hz, inclusive 2293 * @max: desired maximum clock rate in Hz, inclusive 2294 * 2295 * Returns success (0) or negative errno. 2296 */ 2297 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2298 { 2299 int ret = 0; 2300 unsigned long old_min, old_max, rate; 2301 2302 if (!clk) 2303 return 0; 2304 2305 if (min > max) { 2306 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2307 __func__, clk->core->name, clk->dev_id, clk->con_id, 2308 min, max); 2309 return -EINVAL; 2310 } 2311 2312 clk_prepare_lock(); 2313 2314 if (clk->exclusive_count) 2315 clk_core_rate_unprotect(clk->core); 2316 2317 /* Save the current values in case we need to rollback the change */ 2318 old_min = clk->min_rate; 2319 old_max = clk->max_rate; 2320 clk->min_rate = min; 2321 clk->max_rate = max; 2322 2323 rate = clk_core_get_rate_nolock(clk->core); 2324 if (rate < min || rate > max) { 2325 /* 2326 * FIXME: 2327 * We are in bit of trouble here, current rate is outside the 2328 * the requested range. We are going try to request appropriate 2329 * range boundary but there is a catch. It may fail for the 2330 * usual reason (clock broken, clock protected, etc) but also 2331 * because: 2332 * - round_rate() was not favorable and fell on the wrong 2333 * side of the boundary 2334 * - the determine_rate() callback does not really check for 2335 * this corner case when determining the rate 2336 */ 2337 2338 if (rate < min) 2339 rate = min; 2340 else 2341 rate = max; 2342 2343 ret = clk_core_set_rate_nolock(clk->core, rate); 2344 if (ret) { 2345 /* rollback the changes */ 2346 clk->min_rate = old_min; 2347 clk->max_rate = old_max; 2348 } 2349 } 2350 2351 if (clk->exclusive_count) 2352 clk_core_rate_protect(clk->core); 2353 2354 clk_prepare_unlock(); 2355 2356 return ret; 2357 } 2358 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2359 2360 /** 2361 * clk_set_min_rate - set a minimum clock rate for a clock source 2362 * @clk: clock source 2363 * @rate: desired minimum clock rate in Hz, inclusive 2364 * 2365 * Returns success (0) or negative errno. 2366 */ 2367 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2368 { 2369 if (!clk) 2370 return 0; 2371 2372 return clk_set_rate_range(clk, rate, clk->max_rate); 2373 } 2374 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2375 2376 /** 2377 * clk_set_max_rate - set a maximum clock rate for a clock source 2378 * @clk: clock source 2379 * @rate: desired maximum clock rate in Hz, inclusive 2380 * 2381 * Returns success (0) or negative errno. 2382 */ 2383 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2384 { 2385 if (!clk) 2386 return 0; 2387 2388 return clk_set_rate_range(clk, clk->min_rate, rate); 2389 } 2390 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2391 2392 /** 2393 * clk_get_parent - return the parent of a clk 2394 * @clk: the clk whose parent gets returned 2395 * 2396 * Simply returns clk->parent. Returns NULL if clk is NULL. 2397 */ 2398 struct clk *clk_get_parent(struct clk *clk) 2399 { 2400 struct clk *parent; 2401 2402 if (!clk) 2403 return NULL; 2404 2405 clk_prepare_lock(); 2406 /* TODO: Create a per-user clk and change callers to call clk_put */ 2407 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2408 clk_prepare_unlock(); 2409 2410 return parent; 2411 } 2412 EXPORT_SYMBOL_GPL(clk_get_parent); 2413 2414 static struct clk_core *__clk_init_parent(struct clk_core *core) 2415 { 2416 u8 index = 0; 2417 2418 if (core->num_parents > 1 && core->ops->get_parent) 2419 index = core->ops->get_parent(core->hw); 2420 2421 return clk_core_get_parent_by_index(core, index); 2422 } 2423 2424 static void clk_core_reparent(struct clk_core *core, 2425 struct clk_core *new_parent) 2426 { 2427 clk_reparent(core, new_parent); 2428 __clk_recalc_accuracies(core); 2429 __clk_recalc_rates(core, POST_RATE_CHANGE); 2430 } 2431 2432 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2433 { 2434 if (!hw) 2435 return; 2436 2437 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2438 } 2439 2440 /** 2441 * clk_has_parent - check if a clock is a possible parent for another 2442 * @clk: clock source 2443 * @parent: parent clock source 2444 * 2445 * This function can be used in drivers that need to check that a clock can be 2446 * the parent of another without actually changing the parent. 2447 * 2448 * Returns true if @parent is a possible parent for @clk, false otherwise. 2449 */ 2450 bool clk_has_parent(struct clk *clk, struct clk *parent) 2451 { 2452 struct clk_core *core, *parent_core; 2453 int i; 2454 2455 /* NULL clocks should be nops, so return success if either is NULL. */ 2456 if (!clk || !parent) 2457 return true; 2458 2459 core = clk->core; 2460 parent_core = parent->core; 2461 2462 /* Optimize for the case where the parent is already the parent. */ 2463 if (core->parent == parent_core) 2464 return true; 2465 2466 for (i = 0; i < core->num_parents; i++) 2467 if (!strcmp(core->parents[i].name, parent_core->name)) 2468 return true; 2469 2470 return false; 2471 } 2472 EXPORT_SYMBOL_GPL(clk_has_parent); 2473 2474 static int clk_core_set_parent_nolock(struct clk_core *core, 2475 struct clk_core *parent) 2476 { 2477 int ret = 0; 2478 int p_index = 0; 2479 unsigned long p_rate = 0; 2480 2481 lockdep_assert_held(&prepare_lock); 2482 2483 if (!core) 2484 return 0; 2485 2486 if (core->parent == parent) 2487 return 0; 2488 2489 /* verify ops for multi-parent clks */ 2490 if (core->num_parents > 1 && !core->ops->set_parent) 2491 return -EPERM; 2492 2493 /* check that we are allowed to re-parent if the clock is in use */ 2494 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2495 return -EBUSY; 2496 2497 if (clk_core_rate_is_protected(core)) 2498 return -EBUSY; 2499 2500 /* try finding the new parent index */ 2501 if (parent) { 2502 p_index = clk_fetch_parent_index(core, parent); 2503 if (p_index < 0) { 2504 pr_debug("%s: clk %s can not be parent of clk %s\n", 2505 __func__, parent->name, core->name); 2506 return p_index; 2507 } 2508 p_rate = parent->rate; 2509 } 2510 2511 ret = clk_pm_runtime_get(core); 2512 if (ret) 2513 return ret; 2514 2515 /* propagate PRE_RATE_CHANGE notifications */ 2516 ret = __clk_speculate_rates(core, p_rate); 2517 2518 /* abort if a driver objects */ 2519 if (ret & NOTIFY_STOP_MASK) 2520 goto runtime_put; 2521 2522 /* do the re-parent */ 2523 ret = __clk_set_parent(core, parent, p_index); 2524 2525 /* propagate rate an accuracy recalculation accordingly */ 2526 if (ret) { 2527 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2528 } else { 2529 __clk_recalc_rates(core, POST_RATE_CHANGE); 2530 __clk_recalc_accuracies(core); 2531 } 2532 2533 runtime_put: 2534 clk_pm_runtime_put(core); 2535 2536 return ret; 2537 } 2538 2539 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2540 { 2541 return clk_core_set_parent_nolock(hw->core, parent->core); 2542 } 2543 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2544 2545 /** 2546 * clk_set_parent - switch the parent of a mux clk 2547 * @clk: the mux clk whose input we are switching 2548 * @parent: the new input to clk 2549 * 2550 * Re-parent clk to use parent as its new input source. If clk is in 2551 * prepared state, the clk will get enabled for the duration of this call. If 2552 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2553 * that, the reparenting is glitchy in hardware, etc), use the 2554 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2555 * 2556 * After successfully changing clk's parent clk_set_parent will update the 2557 * clk topology, sysfs topology and propagate rate recalculation via 2558 * __clk_recalc_rates. 2559 * 2560 * Returns 0 on success, -EERROR otherwise. 2561 */ 2562 int clk_set_parent(struct clk *clk, struct clk *parent) 2563 { 2564 int ret; 2565 2566 if (!clk) 2567 return 0; 2568 2569 clk_prepare_lock(); 2570 2571 if (clk->exclusive_count) 2572 clk_core_rate_unprotect(clk->core); 2573 2574 ret = clk_core_set_parent_nolock(clk->core, 2575 parent ? parent->core : NULL); 2576 2577 if (clk->exclusive_count) 2578 clk_core_rate_protect(clk->core); 2579 2580 clk_prepare_unlock(); 2581 2582 return ret; 2583 } 2584 EXPORT_SYMBOL_GPL(clk_set_parent); 2585 2586 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2587 { 2588 int ret = -EINVAL; 2589 2590 lockdep_assert_held(&prepare_lock); 2591 2592 if (!core) 2593 return 0; 2594 2595 if (clk_core_rate_is_protected(core)) 2596 return -EBUSY; 2597 2598 trace_clk_set_phase(core, degrees); 2599 2600 if (core->ops->set_phase) { 2601 ret = core->ops->set_phase(core->hw, degrees); 2602 if (!ret) 2603 core->phase = degrees; 2604 } 2605 2606 trace_clk_set_phase_complete(core, degrees); 2607 2608 return ret; 2609 } 2610 2611 /** 2612 * clk_set_phase - adjust the phase shift of a clock signal 2613 * @clk: clock signal source 2614 * @degrees: number of degrees the signal is shifted 2615 * 2616 * Shifts the phase of a clock signal by the specified 2617 * degrees. Returns 0 on success, -EERROR otherwise. 2618 * 2619 * This function makes no distinction about the input or reference 2620 * signal that we adjust the clock signal phase against. For example 2621 * phase locked-loop clock signal generators we may shift phase with 2622 * respect to feedback clock signal input, but for other cases the 2623 * clock phase may be shifted with respect to some other, unspecified 2624 * signal. 2625 * 2626 * Additionally the concept of phase shift does not propagate through 2627 * the clock tree hierarchy, which sets it apart from clock rates and 2628 * clock accuracy. A parent clock phase attribute does not have an 2629 * impact on the phase attribute of a child clock. 2630 */ 2631 int clk_set_phase(struct clk *clk, int degrees) 2632 { 2633 int ret; 2634 2635 if (!clk) 2636 return 0; 2637 2638 /* sanity check degrees */ 2639 degrees %= 360; 2640 if (degrees < 0) 2641 degrees += 360; 2642 2643 clk_prepare_lock(); 2644 2645 if (clk->exclusive_count) 2646 clk_core_rate_unprotect(clk->core); 2647 2648 ret = clk_core_set_phase_nolock(clk->core, degrees); 2649 2650 if (clk->exclusive_count) 2651 clk_core_rate_protect(clk->core); 2652 2653 clk_prepare_unlock(); 2654 2655 return ret; 2656 } 2657 EXPORT_SYMBOL_GPL(clk_set_phase); 2658 2659 static int clk_core_get_phase(struct clk_core *core) 2660 { 2661 int ret; 2662 2663 clk_prepare_lock(); 2664 /* Always try to update cached phase if possible */ 2665 if (core->ops->get_phase) 2666 core->phase = core->ops->get_phase(core->hw); 2667 ret = core->phase; 2668 clk_prepare_unlock(); 2669 2670 return ret; 2671 } 2672 2673 /** 2674 * clk_get_phase - return the phase shift of a clock signal 2675 * @clk: clock signal source 2676 * 2677 * Returns the phase shift of a clock node in degrees, otherwise returns 2678 * -EERROR. 2679 */ 2680 int clk_get_phase(struct clk *clk) 2681 { 2682 if (!clk) 2683 return 0; 2684 2685 return clk_core_get_phase(clk->core); 2686 } 2687 EXPORT_SYMBOL_GPL(clk_get_phase); 2688 2689 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2690 { 2691 /* Assume a default value of 50% */ 2692 core->duty.num = 1; 2693 core->duty.den = 2; 2694 } 2695 2696 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2697 2698 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2699 { 2700 struct clk_duty *duty = &core->duty; 2701 int ret = 0; 2702 2703 if (!core->ops->get_duty_cycle) 2704 return clk_core_update_duty_cycle_parent_nolock(core); 2705 2706 ret = core->ops->get_duty_cycle(core->hw, duty); 2707 if (ret) 2708 goto reset; 2709 2710 /* Don't trust the clock provider too much */ 2711 if (duty->den == 0 || duty->num > duty->den) { 2712 ret = -EINVAL; 2713 goto reset; 2714 } 2715 2716 return 0; 2717 2718 reset: 2719 clk_core_reset_duty_cycle_nolock(core); 2720 return ret; 2721 } 2722 2723 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2724 { 2725 int ret = 0; 2726 2727 if (core->parent && 2728 core->flags & CLK_DUTY_CYCLE_PARENT) { 2729 ret = clk_core_update_duty_cycle_nolock(core->parent); 2730 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2731 } else { 2732 clk_core_reset_duty_cycle_nolock(core); 2733 } 2734 2735 return ret; 2736 } 2737 2738 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2739 struct clk_duty *duty); 2740 2741 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2742 struct clk_duty *duty) 2743 { 2744 int ret; 2745 2746 lockdep_assert_held(&prepare_lock); 2747 2748 if (clk_core_rate_is_protected(core)) 2749 return -EBUSY; 2750 2751 trace_clk_set_duty_cycle(core, duty); 2752 2753 if (!core->ops->set_duty_cycle) 2754 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2755 2756 ret = core->ops->set_duty_cycle(core->hw, duty); 2757 if (!ret) 2758 memcpy(&core->duty, duty, sizeof(*duty)); 2759 2760 trace_clk_set_duty_cycle_complete(core, duty); 2761 2762 return ret; 2763 } 2764 2765 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2766 struct clk_duty *duty) 2767 { 2768 int ret = 0; 2769 2770 if (core->parent && 2771 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2772 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2773 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2774 } 2775 2776 return ret; 2777 } 2778 2779 /** 2780 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2781 * @clk: clock signal source 2782 * @num: numerator of the duty cycle ratio to be applied 2783 * @den: denominator of the duty cycle ratio to be applied 2784 * 2785 * Apply the duty cycle ratio if the ratio is valid and the clock can 2786 * perform this operation 2787 * 2788 * Returns (0) on success, a negative errno otherwise. 2789 */ 2790 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2791 { 2792 int ret; 2793 struct clk_duty duty; 2794 2795 if (!clk) 2796 return 0; 2797 2798 /* sanity check the ratio */ 2799 if (den == 0 || num > den) 2800 return -EINVAL; 2801 2802 duty.num = num; 2803 duty.den = den; 2804 2805 clk_prepare_lock(); 2806 2807 if (clk->exclusive_count) 2808 clk_core_rate_unprotect(clk->core); 2809 2810 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2811 2812 if (clk->exclusive_count) 2813 clk_core_rate_protect(clk->core); 2814 2815 clk_prepare_unlock(); 2816 2817 return ret; 2818 } 2819 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2820 2821 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2822 unsigned int scale) 2823 { 2824 struct clk_duty *duty = &core->duty; 2825 int ret; 2826 2827 clk_prepare_lock(); 2828 2829 ret = clk_core_update_duty_cycle_nolock(core); 2830 if (!ret) 2831 ret = mult_frac(scale, duty->num, duty->den); 2832 2833 clk_prepare_unlock(); 2834 2835 return ret; 2836 } 2837 2838 /** 2839 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2840 * @clk: clock signal source 2841 * @scale: scaling factor to be applied to represent the ratio as an integer 2842 * 2843 * Returns the duty cycle ratio of a clock node multiplied by the provided 2844 * scaling factor, or negative errno on error. 2845 */ 2846 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2847 { 2848 if (!clk) 2849 return 0; 2850 2851 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2852 } 2853 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2854 2855 /** 2856 * clk_is_match - check if two clk's point to the same hardware clock 2857 * @p: clk compared against q 2858 * @q: clk compared against p 2859 * 2860 * Returns true if the two struct clk pointers both point to the same hardware 2861 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2862 * share the same struct clk_core object. 2863 * 2864 * Returns false otherwise. Note that two NULL clks are treated as matching. 2865 */ 2866 bool clk_is_match(const struct clk *p, const struct clk *q) 2867 { 2868 /* trivial case: identical struct clk's or both NULL */ 2869 if (p == q) 2870 return true; 2871 2872 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2873 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2874 if (p->core == q->core) 2875 return true; 2876 2877 return false; 2878 } 2879 EXPORT_SYMBOL_GPL(clk_is_match); 2880 2881 /*** debugfs support ***/ 2882 2883 #ifdef CONFIG_DEBUG_FS 2884 #include <linux/debugfs.h> 2885 2886 static struct dentry *rootdir; 2887 static int inited = 0; 2888 static DEFINE_MUTEX(clk_debug_lock); 2889 static HLIST_HEAD(clk_debug_list); 2890 2891 static struct hlist_head *orphan_list[] = { 2892 &clk_orphan_list, 2893 NULL, 2894 }; 2895 2896 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2897 int level) 2898 { 2899 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2900 level * 3 + 1, "", 2901 30 - level * 3, c->name, 2902 c->enable_count, c->prepare_count, c->protect_count, 2903 clk_core_get_rate(c), clk_core_get_accuracy(c), 2904 clk_core_get_phase(c), 2905 clk_core_get_scaled_duty_cycle(c, 100000)); 2906 } 2907 2908 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2909 int level) 2910 { 2911 struct clk_core *child; 2912 2913 clk_summary_show_one(s, c, level); 2914 2915 hlist_for_each_entry(child, &c->children, child_node) 2916 clk_summary_show_subtree(s, child, level + 1); 2917 } 2918 2919 static int clk_summary_show(struct seq_file *s, void *data) 2920 { 2921 struct clk_core *c; 2922 struct hlist_head **lists = (struct hlist_head **)s->private; 2923 2924 seq_puts(s, " enable prepare protect duty\n"); 2925 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2926 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2927 2928 clk_prepare_lock(); 2929 2930 for (; *lists; lists++) 2931 hlist_for_each_entry(c, *lists, child_node) 2932 clk_summary_show_subtree(s, c, 0); 2933 2934 clk_prepare_unlock(); 2935 2936 return 0; 2937 } 2938 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2939 2940 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2941 { 2942 unsigned long min_rate, max_rate; 2943 2944 clk_core_get_boundaries(c, &min_rate, &max_rate); 2945 2946 /* This should be JSON format, i.e. elements separated with a comma */ 2947 seq_printf(s, "\"%s\": { ", c->name); 2948 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2949 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2950 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2951 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2952 seq_printf(s, "\"min_rate\": %lu,", min_rate); 2953 seq_printf(s, "\"max_rate\": %lu,", max_rate); 2954 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2955 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2956 seq_printf(s, "\"duty_cycle\": %u", 2957 clk_core_get_scaled_duty_cycle(c, 100000)); 2958 } 2959 2960 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2961 { 2962 struct clk_core *child; 2963 2964 clk_dump_one(s, c, level); 2965 2966 hlist_for_each_entry(child, &c->children, child_node) { 2967 seq_putc(s, ','); 2968 clk_dump_subtree(s, child, level + 1); 2969 } 2970 2971 seq_putc(s, '}'); 2972 } 2973 2974 static int clk_dump_show(struct seq_file *s, void *data) 2975 { 2976 struct clk_core *c; 2977 bool first_node = true; 2978 struct hlist_head **lists = (struct hlist_head **)s->private; 2979 2980 seq_putc(s, '{'); 2981 clk_prepare_lock(); 2982 2983 for (; *lists; lists++) { 2984 hlist_for_each_entry(c, *lists, child_node) { 2985 if (!first_node) 2986 seq_putc(s, ','); 2987 first_node = false; 2988 clk_dump_subtree(s, c, 0); 2989 } 2990 } 2991 2992 clk_prepare_unlock(); 2993 2994 seq_puts(s, "}\n"); 2995 return 0; 2996 } 2997 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2998 2999 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3000 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3001 /* 3002 * This can be dangerous, therefore don't provide any real compile time 3003 * configuration option for this feature. 3004 * People who want to use this will need to modify the source code directly. 3005 */ 3006 static int clk_rate_set(void *data, u64 val) 3007 { 3008 struct clk_core *core = data; 3009 int ret; 3010 3011 clk_prepare_lock(); 3012 ret = clk_core_set_rate_nolock(core, val); 3013 clk_prepare_unlock(); 3014 3015 return ret; 3016 } 3017 3018 #define clk_rate_mode 0644 3019 #else 3020 #define clk_rate_set NULL 3021 #define clk_rate_mode 0444 3022 #endif 3023 3024 static int clk_rate_get(void *data, u64 *val) 3025 { 3026 struct clk_core *core = data; 3027 3028 *val = core->rate; 3029 return 0; 3030 } 3031 3032 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3033 3034 static const struct { 3035 unsigned long flag; 3036 const char *name; 3037 } clk_flags[] = { 3038 #define ENTRY(f) { f, #f } 3039 ENTRY(CLK_SET_RATE_GATE), 3040 ENTRY(CLK_SET_PARENT_GATE), 3041 ENTRY(CLK_SET_RATE_PARENT), 3042 ENTRY(CLK_IGNORE_UNUSED), 3043 ENTRY(CLK_GET_RATE_NOCACHE), 3044 ENTRY(CLK_SET_RATE_NO_REPARENT), 3045 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3046 ENTRY(CLK_RECALC_NEW_RATES), 3047 ENTRY(CLK_SET_RATE_UNGATE), 3048 ENTRY(CLK_IS_CRITICAL), 3049 ENTRY(CLK_OPS_PARENT_ENABLE), 3050 ENTRY(CLK_DUTY_CYCLE_PARENT), 3051 #undef ENTRY 3052 }; 3053 3054 static int clk_flags_show(struct seq_file *s, void *data) 3055 { 3056 struct clk_core *core = s->private; 3057 unsigned long flags = core->flags; 3058 unsigned int i; 3059 3060 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3061 if (flags & clk_flags[i].flag) { 3062 seq_printf(s, "%s\n", clk_flags[i].name); 3063 flags &= ~clk_flags[i].flag; 3064 } 3065 } 3066 if (flags) { 3067 /* Unknown flags */ 3068 seq_printf(s, "0x%lx\n", flags); 3069 } 3070 3071 return 0; 3072 } 3073 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3074 3075 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3076 unsigned int i, char terminator) 3077 { 3078 struct clk_core *parent; 3079 3080 /* 3081 * Go through the following options to fetch a parent's name. 3082 * 3083 * 1. Fetch the registered parent clock and use its name 3084 * 2. Use the global (fallback) name if specified 3085 * 3. Use the local fw_name if provided 3086 * 4. Fetch parent clock's clock-output-name if DT index was set 3087 * 3088 * This may still fail in some cases, such as when the parent is 3089 * specified directly via a struct clk_hw pointer, but it isn't 3090 * registered (yet). 3091 */ 3092 parent = clk_core_get_parent_by_index(core, i); 3093 if (parent) 3094 seq_puts(s, parent->name); 3095 else if (core->parents[i].name) 3096 seq_puts(s, core->parents[i].name); 3097 else if (core->parents[i].fw_name) 3098 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3099 else if (core->parents[i].index >= 0) 3100 seq_puts(s, 3101 of_clk_get_parent_name(core->of_node, 3102 core->parents[i].index)); 3103 else 3104 seq_puts(s, "(missing)"); 3105 3106 seq_putc(s, terminator); 3107 } 3108 3109 static int possible_parents_show(struct seq_file *s, void *data) 3110 { 3111 struct clk_core *core = s->private; 3112 int i; 3113 3114 for (i = 0; i < core->num_parents - 1; i++) 3115 possible_parent_show(s, core, i, ' '); 3116 3117 possible_parent_show(s, core, i, '\n'); 3118 3119 return 0; 3120 } 3121 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3122 3123 static int current_parent_show(struct seq_file *s, void *data) 3124 { 3125 struct clk_core *core = s->private; 3126 3127 if (core->parent) 3128 seq_printf(s, "%s\n", core->parent->name); 3129 3130 return 0; 3131 } 3132 DEFINE_SHOW_ATTRIBUTE(current_parent); 3133 3134 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3135 { 3136 struct clk_core *core = s->private; 3137 struct clk_duty *duty = &core->duty; 3138 3139 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3140 3141 return 0; 3142 } 3143 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3144 3145 static int clk_min_rate_show(struct seq_file *s, void *data) 3146 { 3147 struct clk_core *core = s->private; 3148 unsigned long min_rate, max_rate; 3149 3150 clk_prepare_lock(); 3151 clk_core_get_boundaries(core, &min_rate, &max_rate); 3152 clk_prepare_unlock(); 3153 seq_printf(s, "%lu\n", min_rate); 3154 3155 return 0; 3156 } 3157 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3158 3159 static int clk_max_rate_show(struct seq_file *s, void *data) 3160 { 3161 struct clk_core *core = s->private; 3162 unsigned long min_rate, max_rate; 3163 3164 clk_prepare_lock(); 3165 clk_core_get_boundaries(core, &min_rate, &max_rate); 3166 clk_prepare_unlock(); 3167 seq_printf(s, "%lu\n", max_rate); 3168 3169 return 0; 3170 } 3171 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3172 3173 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3174 { 3175 struct dentry *root; 3176 3177 if (!core || !pdentry) 3178 return; 3179 3180 root = debugfs_create_dir(core->name, pdentry); 3181 core->dentry = root; 3182 3183 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3184 &clk_rate_fops); 3185 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3186 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3187 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3188 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3189 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3190 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3191 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3192 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3193 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3194 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3195 &clk_duty_cycle_fops); 3196 3197 if (core->num_parents > 0) 3198 debugfs_create_file("clk_parent", 0444, root, core, 3199 ¤t_parent_fops); 3200 3201 if (core->num_parents > 1) 3202 debugfs_create_file("clk_possible_parents", 0444, root, core, 3203 &possible_parents_fops); 3204 3205 if (core->ops->debug_init) 3206 core->ops->debug_init(core->hw, core->dentry); 3207 } 3208 3209 /** 3210 * clk_debug_register - add a clk node to the debugfs clk directory 3211 * @core: the clk being added to the debugfs clk directory 3212 * 3213 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3214 * initialized. Otherwise it bails out early since the debugfs clk directory 3215 * will be created lazily by clk_debug_init as part of a late_initcall. 3216 */ 3217 static void clk_debug_register(struct clk_core *core) 3218 { 3219 mutex_lock(&clk_debug_lock); 3220 hlist_add_head(&core->debug_node, &clk_debug_list); 3221 if (inited) 3222 clk_debug_create_one(core, rootdir); 3223 mutex_unlock(&clk_debug_lock); 3224 } 3225 3226 /** 3227 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3228 * @core: the clk being removed from the debugfs clk directory 3229 * 3230 * Dynamically removes a clk and all its child nodes from the 3231 * debugfs clk directory if clk->dentry points to debugfs created by 3232 * clk_debug_register in __clk_core_init. 3233 */ 3234 static void clk_debug_unregister(struct clk_core *core) 3235 { 3236 mutex_lock(&clk_debug_lock); 3237 hlist_del_init(&core->debug_node); 3238 debugfs_remove_recursive(core->dentry); 3239 core->dentry = NULL; 3240 mutex_unlock(&clk_debug_lock); 3241 } 3242 3243 /** 3244 * clk_debug_init - lazily populate the debugfs clk directory 3245 * 3246 * clks are often initialized very early during boot before memory can be 3247 * dynamically allocated and well before debugfs is setup. This function 3248 * populates the debugfs clk directory once at boot-time when we know that 3249 * debugfs is setup. It should only be called once at boot-time, all other clks 3250 * added dynamically will be done so with clk_debug_register. 3251 */ 3252 static int __init clk_debug_init(void) 3253 { 3254 struct clk_core *core; 3255 3256 rootdir = debugfs_create_dir("clk", NULL); 3257 3258 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3259 &clk_summary_fops); 3260 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3261 &clk_dump_fops); 3262 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3263 &clk_summary_fops); 3264 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3265 &clk_dump_fops); 3266 3267 mutex_lock(&clk_debug_lock); 3268 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3269 clk_debug_create_one(core, rootdir); 3270 3271 inited = 1; 3272 mutex_unlock(&clk_debug_lock); 3273 3274 return 0; 3275 } 3276 late_initcall(clk_debug_init); 3277 #else 3278 static inline void clk_debug_register(struct clk_core *core) { } 3279 static inline void clk_debug_reparent(struct clk_core *core, 3280 struct clk_core *new_parent) 3281 { 3282 } 3283 static inline void clk_debug_unregister(struct clk_core *core) 3284 { 3285 } 3286 #endif 3287 3288 static void clk_core_reparent_orphans_nolock(void) 3289 { 3290 struct clk_core *orphan; 3291 struct hlist_node *tmp2; 3292 3293 /* 3294 * walk the list of orphan clocks and reparent any that newly finds a 3295 * parent. 3296 */ 3297 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3298 struct clk_core *parent = __clk_init_parent(orphan); 3299 3300 /* 3301 * We need to use __clk_set_parent_before() and _after() to 3302 * to properly migrate any prepare/enable count of the orphan 3303 * clock. This is important for CLK_IS_CRITICAL clocks, which 3304 * are enabled during init but might not have a parent yet. 3305 */ 3306 if (parent) { 3307 /* update the clk tree topology */ 3308 __clk_set_parent_before(orphan, parent); 3309 __clk_set_parent_after(orphan, parent, NULL); 3310 __clk_recalc_accuracies(orphan); 3311 __clk_recalc_rates(orphan, 0); 3312 } 3313 } 3314 } 3315 3316 /** 3317 * __clk_core_init - initialize the data structures in a struct clk_core 3318 * @core: clk_core being initialized 3319 * 3320 * Initializes the lists in struct clk_core, queries the hardware for the 3321 * parent and rate and sets them both. 3322 */ 3323 static int __clk_core_init(struct clk_core *core) 3324 { 3325 int ret; 3326 unsigned long rate; 3327 3328 if (!core) 3329 return -EINVAL; 3330 3331 clk_prepare_lock(); 3332 3333 ret = clk_pm_runtime_get(core); 3334 if (ret) 3335 goto unlock; 3336 3337 /* check to see if a clock with this name is already registered */ 3338 if (clk_core_lookup(core->name)) { 3339 pr_debug("%s: clk %s already initialized\n", 3340 __func__, core->name); 3341 ret = -EEXIST; 3342 goto out; 3343 } 3344 3345 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3346 if (core->ops->set_rate && 3347 !((core->ops->round_rate || core->ops->determine_rate) && 3348 core->ops->recalc_rate)) { 3349 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3350 __func__, core->name); 3351 ret = -EINVAL; 3352 goto out; 3353 } 3354 3355 if (core->ops->set_parent && !core->ops->get_parent) { 3356 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3357 __func__, core->name); 3358 ret = -EINVAL; 3359 goto out; 3360 } 3361 3362 if (core->num_parents > 1 && !core->ops->get_parent) { 3363 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3364 __func__, core->name); 3365 ret = -EINVAL; 3366 goto out; 3367 } 3368 3369 if (core->ops->set_rate_and_parent && 3370 !(core->ops->set_parent && core->ops->set_rate)) { 3371 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3372 __func__, core->name); 3373 ret = -EINVAL; 3374 goto out; 3375 } 3376 3377 /* 3378 * optional platform-specific magic 3379 * 3380 * The .init callback is not used by any of the basic clock types, but 3381 * exists for weird hardware that must perform initialization magic for 3382 * CCF to get an accurate view of clock for any other callbacks. It may 3383 * also be used needs to perform dynamic allocations. Such allocation 3384 * must be freed in the terminate() callback. 3385 * This callback shall not be used to initialize the parameters state, 3386 * such as rate, parent, etc ... 3387 * 3388 * If it exist, this callback should called before any other callback of 3389 * the clock 3390 */ 3391 if (core->ops->init) { 3392 ret = core->ops->init(core->hw); 3393 if (ret) 3394 goto out; 3395 } 3396 3397 core->parent = __clk_init_parent(core); 3398 3399 /* 3400 * Populate core->parent if parent has already been clk_core_init'd. If 3401 * parent has not yet been clk_core_init'd then place clk in the orphan 3402 * list. If clk doesn't have any parents then place it in the root 3403 * clk list. 3404 * 3405 * Every time a new clk is clk_init'd then we walk the list of orphan 3406 * clocks and re-parent any that are children of the clock currently 3407 * being clk_init'd. 3408 */ 3409 if (core->parent) { 3410 hlist_add_head(&core->child_node, 3411 &core->parent->children); 3412 core->orphan = core->parent->orphan; 3413 } else if (!core->num_parents) { 3414 hlist_add_head(&core->child_node, &clk_root_list); 3415 core->orphan = false; 3416 } else { 3417 hlist_add_head(&core->child_node, &clk_orphan_list); 3418 core->orphan = true; 3419 } 3420 3421 /* 3422 * Set clk's accuracy. The preferred method is to use 3423 * .recalc_accuracy. For simple clocks and lazy developers the default 3424 * fallback is to use the parent's accuracy. If a clock doesn't have a 3425 * parent (or is orphaned) then accuracy is set to zero (perfect 3426 * clock). 3427 */ 3428 if (core->ops->recalc_accuracy) 3429 core->accuracy = core->ops->recalc_accuracy(core->hw, 3430 __clk_get_accuracy(core->parent)); 3431 else if (core->parent) 3432 core->accuracy = core->parent->accuracy; 3433 else 3434 core->accuracy = 0; 3435 3436 /* 3437 * Set clk's phase. 3438 * Since a phase is by definition relative to its parent, just 3439 * query the current clock phase, or just assume it's in phase. 3440 */ 3441 if (core->ops->get_phase) 3442 core->phase = core->ops->get_phase(core->hw); 3443 else 3444 core->phase = 0; 3445 3446 /* 3447 * Set clk's duty cycle. 3448 */ 3449 clk_core_update_duty_cycle_nolock(core); 3450 3451 /* 3452 * Set clk's rate. The preferred method is to use .recalc_rate. For 3453 * simple clocks and lazy developers the default fallback is to use the 3454 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3455 * then rate is set to zero. 3456 */ 3457 if (core->ops->recalc_rate) 3458 rate = core->ops->recalc_rate(core->hw, 3459 clk_core_get_rate_nolock(core->parent)); 3460 else if (core->parent) 3461 rate = core->parent->rate; 3462 else 3463 rate = 0; 3464 core->rate = core->req_rate = rate; 3465 3466 /* 3467 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3468 * don't get accidentally disabled when walking the orphan tree and 3469 * reparenting clocks 3470 */ 3471 if (core->flags & CLK_IS_CRITICAL) { 3472 unsigned long flags; 3473 3474 ret = clk_core_prepare(core); 3475 if (ret) { 3476 pr_warn("%s: critical clk '%s' failed to prepare\n", 3477 __func__, core->name); 3478 goto out; 3479 } 3480 3481 flags = clk_enable_lock(); 3482 ret = clk_core_enable(core); 3483 clk_enable_unlock(flags); 3484 if (ret) { 3485 pr_warn("%s: critical clk '%s' failed to enable\n", 3486 __func__, core->name); 3487 clk_core_unprepare(core); 3488 goto out; 3489 } 3490 } 3491 3492 clk_core_reparent_orphans_nolock(); 3493 3494 3495 kref_init(&core->ref); 3496 out: 3497 clk_pm_runtime_put(core); 3498 unlock: 3499 clk_prepare_unlock(); 3500 3501 if (!ret) 3502 clk_debug_register(core); 3503 3504 return ret; 3505 } 3506 3507 /** 3508 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3509 * @core: clk to add consumer to 3510 * @clk: consumer to link to a clk 3511 */ 3512 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3513 { 3514 clk_prepare_lock(); 3515 hlist_add_head(&clk->clks_node, &core->clks); 3516 clk_prepare_unlock(); 3517 } 3518 3519 /** 3520 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3521 * @clk: consumer to unlink 3522 */ 3523 static void clk_core_unlink_consumer(struct clk *clk) 3524 { 3525 lockdep_assert_held(&prepare_lock); 3526 hlist_del(&clk->clks_node); 3527 } 3528 3529 /** 3530 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3531 * @core: clk to allocate a consumer for 3532 * @dev_id: string describing device name 3533 * @con_id: connection ID string on device 3534 * 3535 * Returns: clk consumer left unlinked from the consumer list 3536 */ 3537 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3538 const char *con_id) 3539 { 3540 struct clk *clk; 3541 3542 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3543 if (!clk) 3544 return ERR_PTR(-ENOMEM); 3545 3546 clk->core = core; 3547 clk->dev_id = dev_id; 3548 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3549 clk->max_rate = ULONG_MAX; 3550 3551 return clk; 3552 } 3553 3554 /** 3555 * free_clk - Free a clk consumer 3556 * @clk: clk consumer to free 3557 * 3558 * Note, this assumes the clk has been unlinked from the clk_core consumer 3559 * list. 3560 */ 3561 static void free_clk(struct clk *clk) 3562 { 3563 kfree_const(clk->con_id); 3564 kfree(clk); 3565 } 3566 3567 /** 3568 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3569 * a clk_hw 3570 * @dev: clk consumer device 3571 * @hw: clk_hw associated with the clk being consumed 3572 * @dev_id: string describing device name 3573 * @con_id: connection ID string on device 3574 * 3575 * This is the main function used to create a clk pointer for use by clk 3576 * consumers. It connects a consumer to the clk_core and clk_hw structures 3577 * used by the framework and clk provider respectively. 3578 */ 3579 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3580 const char *dev_id, const char *con_id) 3581 { 3582 struct clk *clk; 3583 struct clk_core *core; 3584 3585 /* This is to allow this function to be chained to others */ 3586 if (IS_ERR_OR_NULL(hw)) 3587 return ERR_CAST(hw); 3588 3589 core = hw->core; 3590 clk = alloc_clk(core, dev_id, con_id); 3591 if (IS_ERR(clk)) 3592 return clk; 3593 clk->dev = dev; 3594 3595 if (!try_module_get(core->owner)) { 3596 free_clk(clk); 3597 return ERR_PTR(-ENOENT); 3598 } 3599 3600 kref_get(&core->ref); 3601 clk_core_link_consumer(core, clk); 3602 3603 return clk; 3604 } 3605 3606 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3607 { 3608 const char *dst; 3609 3610 if (!src) { 3611 if (must_exist) 3612 return -EINVAL; 3613 return 0; 3614 } 3615 3616 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3617 if (!dst) 3618 return -ENOMEM; 3619 3620 return 0; 3621 } 3622 3623 static int clk_core_populate_parent_map(struct clk_core *core, 3624 const struct clk_init_data *init) 3625 { 3626 u8 num_parents = init->num_parents; 3627 const char * const *parent_names = init->parent_names; 3628 const struct clk_hw **parent_hws = init->parent_hws; 3629 const struct clk_parent_data *parent_data = init->parent_data; 3630 int i, ret = 0; 3631 struct clk_parent_map *parents, *parent; 3632 3633 if (!num_parents) 3634 return 0; 3635 3636 /* 3637 * Avoid unnecessary string look-ups of clk_core's possible parents by 3638 * having a cache of names/clk_hw pointers to clk_core pointers. 3639 */ 3640 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3641 core->parents = parents; 3642 if (!parents) 3643 return -ENOMEM; 3644 3645 /* Copy everything over because it might be __initdata */ 3646 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3647 parent->index = -1; 3648 if (parent_names) { 3649 /* throw a WARN if any entries are NULL */ 3650 WARN(!parent_names[i], 3651 "%s: invalid NULL in %s's .parent_names\n", 3652 __func__, core->name); 3653 ret = clk_cpy_name(&parent->name, parent_names[i], 3654 true); 3655 } else if (parent_data) { 3656 parent->hw = parent_data[i].hw; 3657 parent->index = parent_data[i].index; 3658 ret = clk_cpy_name(&parent->fw_name, 3659 parent_data[i].fw_name, false); 3660 if (!ret) 3661 ret = clk_cpy_name(&parent->name, 3662 parent_data[i].name, 3663 false); 3664 } else if (parent_hws) { 3665 parent->hw = parent_hws[i]; 3666 } else { 3667 ret = -EINVAL; 3668 WARN(1, "Must specify parents if num_parents > 0\n"); 3669 } 3670 3671 if (ret) { 3672 do { 3673 kfree_const(parents[i].name); 3674 kfree_const(parents[i].fw_name); 3675 } while (--i >= 0); 3676 kfree(parents); 3677 3678 return ret; 3679 } 3680 } 3681 3682 return 0; 3683 } 3684 3685 static void clk_core_free_parent_map(struct clk_core *core) 3686 { 3687 int i = core->num_parents; 3688 3689 if (!core->num_parents) 3690 return; 3691 3692 while (--i >= 0) { 3693 kfree_const(core->parents[i].name); 3694 kfree_const(core->parents[i].fw_name); 3695 } 3696 3697 kfree(core->parents); 3698 } 3699 3700 static struct clk * 3701 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3702 { 3703 int ret; 3704 struct clk_core *core; 3705 const struct clk_init_data *init = hw->init; 3706 3707 /* 3708 * The init data is not supposed to be used outside of registration path. 3709 * Set it to NULL so that provider drivers can't use it either and so that 3710 * we catch use of hw->init early on in the core. 3711 */ 3712 hw->init = NULL; 3713 3714 core = kzalloc(sizeof(*core), GFP_KERNEL); 3715 if (!core) { 3716 ret = -ENOMEM; 3717 goto fail_out; 3718 } 3719 3720 core->name = kstrdup_const(init->name, GFP_KERNEL); 3721 if (!core->name) { 3722 ret = -ENOMEM; 3723 goto fail_name; 3724 } 3725 3726 if (WARN_ON(!init->ops)) { 3727 ret = -EINVAL; 3728 goto fail_ops; 3729 } 3730 core->ops = init->ops; 3731 3732 if (dev && pm_runtime_enabled(dev)) 3733 core->rpm_enabled = true; 3734 core->dev = dev; 3735 core->of_node = np; 3736 if (dev && dev->driver) 3737 core->owner = dev->driver->owner; 3738 core->hw = hw; 3739 core->flags = init->flags; 3740 core->num_parents = init->num_parents; 3741 core->min_rate = 0; 3742 core->max_rate = ULONG_MAX; 3743 hw->core = core; 3744 3745 ret = clk_core_populate_parent_map(core, init); 3746 if (ret) 3747 goto fail_parents; 3748 3749 INIT_HLIST_HEAD(&core->clks); 3750 3751 /* 3752 * Don't call clk_hw_create_clk() here because that would pin the 3753 * provider module to itself and prevent it from ever being removed. 3754 */ 3755 hw->clk = alloc_clk(core, NULL, NULL); 3756 if (IS_ERR(hw->clk)) { 3757 ret = PTR_ERR(hw->clk); 3758 goto fail_create_clk; 3759 } 3760 3761 clk_core_link_consumer(hw->core, hw->clk); 3762 3763 ret = __clk_core_init(core); 3764 if (!ret) 3765 return hw->clk; 3766 3767 clk_prepare_lock(); 3768 clk_core_unlink_consumer(hw->clk); 3769 clk_prepare_unlock(); 3770 3771 free_clk(hw->clk); 3772 hw->clk = NULL; 3773 3774 fail_create_clk: 3775 clk_core_free_parent_map(core); 3776 fail_parents: 3777 fail_ops: 3778 kfree_const(core->name); 3779 fail_name: 3780 kfree(core); 3781 fail_out: 3782 return ERR_PTR(ret); 3783 } 3784 3785 /** 3786 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3787 * @dev: Device to get device node of 3788 * 3789 * Return: device node pointer of @dev, or the device node pointer of 3790 * @dev->parent if dev doesn't have a device node, or NULL if neither 3791 * @dev or @dev->parent have a device node. 3792 */ 3793 static struct device_node *dev_or_parent_of_node(struct device *dev) 3794 { 3795 struct device_node *np; 3796 3797 if (!dev) 3798 return NULL; 3799 3800 np = dev_of_node(dev); 3801 if (!np) 3802 np = dev_of_node(dev->parent); 3803 3804 return np; 3805 } 3806 3807 /** 3808 * clk_register - allocate a new clock, register it and return an opaque cookie 3809 * @dev: device that is registering this clock 3810 * @hw: link to hardware-specific clock data 3811 * 3812 * clk_register is the *deprecated* interface for populating the clock tree with 3813 * new clock nodes. Use clk_hw_register() instead. 3814 * 3815 * Returns: a pointer to the newly allocated struct clk which 3816 * cannot be dereferenced by driver code but may be used in conjunction with the 3817 * rest of the clock API. In the event of an error clk_register will return an 3818 * error code; drivers must test for an error code after calling clk_register. 3819 */ 3820 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3821 { 3822 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 3823 } 3824 EXPORT_SYMBOL_GPL(clk_register); 3825 3826 /** 3827 * clk_hw_register - register a clk_hw and return an error code 3828 * @dev: device that is registering this clock 3829 * @hw: link to hardware-specific clock data 3830 * 3831 * clk_hw_register is the primary interface for populating the clock tree with 3832 * new clock nodes. It returns an integer equal to zero indicating success or 3833 * less than zero indicating failure. Drivers must test for an error code after 3834 * calling clk_hw_register(). 3835 */ 3836 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3837 { 3838 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 3839 hw)); 3840 } 3841 EXPORT_SYMBOL_GPL(clk_hw_register); 3842 3843 /* 3844 * of_clk_hw_register - register a clk_hw and return an error code 3845 * @node: device_node of device that is registering this clock 3846 * @hw: link to hardware-specific clock data 3847 * 3848 * of_clk_hw_register() is the primary interface for populating the clock tree 3849 * with new clock nodes when a struct device is not available, but a struct 3850 * device_node is. It returns an integer equal to zero indicating success or 3851 * less than zero indicating failure. Drivers must test for an error code after 3852 * calling of_clk_hw_register(). 3853 */ 3854 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3855 { 3856 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3857 } 3858 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3859 3860 /* Free memory allocated for a clock. */ 3861 static void __clk_release(struct kref *ref) 3862 { 3863 struct clk_core *core = container_of(ref, struct clk_core, ref); 3864 3865 lockdep_assert_held(&prepare_lock); 3866 3867 clk_core_free_parent_map(core); 3868 kfree_const(core->name); 3869 kfree(core); 3870 } 3871 3872 /* 3873 * Empty clk_ops for unregistered clocks. These are used temporarily 3874 * after clk_unregister() was called on a clock and until last clock 3875 * consumer calls clk_put() and the struct clk object is freed. 3876 */ 3877 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3878 { 3879 return -ENXIO; 3880 } 3881 3882 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3883 { 3884 WARN_ON_ONCE(1); 3885 } 3886 3887 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3888 unsigned long parent_rate) 3889 { 3890 return -ENXIO; 3891 } 3892 3893 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3894 { 3895 return -ENXIO; 3896 } 3897 3898 static const struct clk_ops clk_nodrv_ops = { 3899 .enable = clk_nodrv_prepare_enable, 3900 .disable = clk_nodrv_disable_unprepare, 3901 .prepare = clk_nodrv_prepare_enable, 3902 .unprepare = clk_nodrv_disable_unprepare, 3903 .set_rate = clk_nodrv_set_rate, 3904 .set_parent = clk_nodrv_set_parent, 3905 }; 3906 3907 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 3908 struct clk_core *target) 3909 { 3910 int i; 3911 struct clk_core *child; 3912 3913 for (i = 0; i < root->num_parents; i++) 3914 if (root->parents[i].core == target) 3915 root->parents[i].core = NULL; 3916 3917 hlist_for_each_entry(child, &root->children, child_node) 3918 clk_core_evict_parent_cache_subtree(child, target); 3919 } 3920 3921 /* Remove this clk from all parent caches */ 3922 static void clk_core_evict_parent_cache(struct clk_core *core) 3923 { 3924 struct hlist_head **lists; 3925 struct clk_core *root; 3926 3927 lockdep_assert_held(&prepare_lock); 3928 3929 for (lists = all_lists; *lists; lists++) 3930 hlist_for_each_entry(root, *lists, child_node) 3931 clk_core_evict_parent_cache_subtree(root, core); 3932 3933 } 3934 3935 /** 3936 * clk_unregister - unregister a currently registered clock 3937 * @clk: clock to unregister 3938 */ 3939 void clk_unregister(struct clk *clk) 3940 { 3941 unsigned long flags; 3942 const struct clk_ops *ops; 3943 3944 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3945 return; 3946 3947 clk_debug_unregister(clk->core); 3948 3949 clk_prepare_lock(); 3950 3951 ops = clk->core->ops; 3952 if (ops == &clk_nodrv_ops) { 3953 pr_err("%s: unregistered clock: %s\n", __func__, 3954 clk->core->name); 3955 goto unlock; 3956 } 3957 /* 3958 * Assign empty clock ops for consumers that might still hold 3959 * a reference to this clock. 3960 */ 3961 flags = clk_enable_lock(); 3962 clk->core->ops = &clk_nodrv_ops; 3963 clk_enable_unlock(flags); 3964 3965 if (ops->terminate) 3966 ops->terminate(clk->core->hw); 3967 3968 if (!hlist_empty(&clk->core->children)) { 3969 struct clk_core *child; 3970 struct hlist_node *t; 3971 3972 /* Reparent all children to the orphan list. */ 3973 hlist_for_each_entry_safe(child, t, &clk->core->children, 3974 child_node) 3975 clk_core_set_parent_nolock(child, NULL); 3976 } 3977 3978 clk_core_evict_parent_cache(clk->core); 3979 3980 hlist_del_init(&clk->core->child_node); 3981 3982 if (clk->core->prepare_count) 3983 pr_warn("%s: unregistering prepared clock: %s\n", 3984 __func__, clk->core->name); 3985 3986 if (clk->core->protect_count) 3987 pr_warn("%s: unregistering protected clock: %s\n", 3988 __func__, clk->core->name); 3989 3990 kref_put(&clk->core->ref, __clk_release); 3991 free_clk(clk); 3992 unlock: 3993 clk_prepare_unlock(); 3994 } 3995 EXPORT_SYMBOL_GPL(clk_unregister); 3996 3997 /** 3998 * clk_hw_unregister - unregister a currently registered clk_hw 3999 * @hw: hardware-specific clock data to unregister 4000 */ 4001 void clk_hw_unregister(struct clk_hw *hw) 4002 { 4003 clk_unregister(hw->clk); 4004 } 4005 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4006 4007 static void devm_clk_release(struct device *dev, void *res) 4008 { 4009 clk_unregister(*(struct clk **)res); 4010 } 4011 4012 static void devm_clk_hw_release(struct device *dev, void *res) 4013 { 4014 clk_hw_unregister(*(struct clk_hw **)res); 4015 } 4016 4017 /** 4018 * devm_clk_register - resource managed clk_register() 4019 * @dev: device that is registering this clock 4020 * @hw: link to hardware-specific clock data 4021 * 4022 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4023 * 4024 * Clocks returned from this function are automatically clk_unregister()ed on 4025 * driver detach. See clk_register() for more information. 4026 */ 4027 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4028 { 4029 struct clk *clk; 4030 struct clk **clkp; 4031 4032 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4033 if (!clkp) 4034 return ERR_PTR(-ENOMEM); 4035 4036 clk = clk_register(dev, hw); 4037 if (!IS_ERR(clk)) { 4038 *clkp = clk; 4039 devres_add(dev, clkp); 4040 } else { 4041 devres_free(clkp); 4042 } 4043 4044 return clk; 4045 } 4046 EXPORT_SYMBOL_GPL(devm_clk_register); 4047 4048 /** 4049 * devm_clk_hw_register - resource managed clk_hw_register() 4050 * @dev: device that is registering this clock 4051 * @hw: link to hardware-specific clock data 4052 * 4053 * Managed clk_hw_register(). Clocks registered by this function are 4054 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4055 * for more information. 4056 */ 4057 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4058 { 4059 struct clk_hw **hwp; 4060 int ret; 4061 4062 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 4063 if (!hwp) 4064 return -ENOMEM; 4065 4066 ret = clk_hw_register(dev, hw); 4067 if (!ret) { 4068 *hwp = hw; 4069 devres_add(dev, hwp); 4070 } else { 4071 devres_free(hwp); 4072 } 4073 4074 return ret; 4075 } 4076 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4077 4078 static int devm_clk_match(struct device *dev, void *res, void *data) 4079 { 4080 struct clk *c = res; 4081 if (WARN_ON(!c)) 4082 return 0; 4083 return c == data; 4084 } 4085 4086 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4087 { 4088 struct clk_hw *hw = res; 4089 4090 if (WARN_ON(!hw)) 4091 return 0; 4092 return hw == data; 4093 } 4094 4095 /** 4096 * devm_clk_unregister - resource managed clk_unregister() 4097 * @clk: clock to unregister 4098 * 4099 * Deallocate a clock allocated with devm_clk_register(). Normally 4100 * this function will not need to be called and the resource management 4101 * code will ensure that the resource is freed. 4102 */ 4103 void devm_clk_unregister(struct device *dev, struct clk *clk) 4104 { 4105 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 4106 } 4107 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4108 4109 /** 4110 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4111 * @dev: device that is unregistering the hardware-specific clock data 4112 * @hw: link to hardware-specific clock data 4113 * 4114 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4115 * this function will not need to be called and the resource management 4116 * code will ensure that the resource is freed. 4117 */ 4118 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4119 { 4120 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 4121 hw)); 4122 } 4123 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4124 4125 /* 4126 * clkdev helpers 4127 */ 4128 4129 void __clk_put(struct clk *clk) 4130 { 4131 struct module *owner; 4132 4133 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4134 return; 4135 4136 clk_prepare_lock(); 4137 4138 /* 4139 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4140 * given user should be balanced with calls to clk_rate_exclusive_put() 4141 * and by that same consumer 4142 */ 4143 if (WARN_ON(clk->exclusive_count)) { 4144 /* We voiced our concern, let's sanitize the situation */ 4145 clk->core->protect_count -= (clk->exclusive_count - 1); 4146 clk_core_rate_unprotect(clk->core); 4147 clk->exclusive_count = 0; 4148 } 4149 4150 hlist_del(&clk->clks_node); 4151 if (clk->min_rate > clk->core->req_rate || 4152 clk->max_rate < clk->core->req_rate) 4153 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4154 4155 owner = clk->core->owner; 4156 kref_put(&clk->core->ref, __clk_release); 4157 4158 clk_prepare_unlock(); 4159 4160 module_put(owner); 4161 4162 free_clk(clk); 4163 } 4164 4165 /*** clk rate change notifiers ***/ 4166 4167 /** 4168 * clk_notifier_register - add a clk rate change notifier 4169 * @clk: struct clk * to watch 4170 * @nb: struct notifier_block * with callback info 4171 * 4172 * Request notification when clk's rate changes. This uses an SRCU 4173 * notifier because we want it to block and notifier unregistrations are 4174 * uncommon. The callbacks associated with the notifier must not 4175 * re-enter into the clk framework by calling any top-level clk APIs; 4176 * this will cause a nested prepare_lock mutex. 4177 * 4178 * In all notification cases (pre, post and abort rate change) the original 4179 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4180 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4181 * 4182 * clk_notifier_register() must be called from non-atomic context. 4183 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4184 * allocation failure; otherwise, passes along the return value of 4185 * srcu_notifier_chain_register(). 4186 */ 4187 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4188 { 4189 struct clk_notifier *cn; 4190 int ret = -ENOMEM; 4191 4192 if (!clk || !nb) 4193 return -EINVAL; 4194 4195 clk_prepare_lock(); 4196 4197 /* search the list of notifiers for this clk */ 4198 list_for_each_entry(cn, &clk_notifier_list, node) 4199 if (cn->clk == clk) 4200 break; 4201 4202 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4203 if (cn->clk != clk) { 4204 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4205 if (!cn) 4206 goto out; 4207 4208 cn->clk = clk; 4209 srcu_init_notifier_head(&cn->notifier_head); 4210 4211 list_add(&cn->node, &clk_notifier_list); 4212 } 4213 4214 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4215 4216 clk->core->notifier_count++; 4217 4218 out: 4219 clk_prepare_unlock(); 4220 4221 return ret; 4222 } 4223 EXPORT_SYMBOL_GPL(clk_notifier_register); 4224 4225 /** 4226 * clk_notifier_unregister - remove a clk rate change notifier 4227 * @clk: struct clk * 4228 * @nb: struct notifier_block * with callback info 4229 * 4230 * Request no further notification for changes to 'clk' and frees memory 4231 * allocated in clk_notifier_register. 4232 * 4233 * Returns -EINVAL if called with null arguments; otherwise, passes 4234 * along the return value of srcu_notifier_chain_unregister(). 4235 */ 4236 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4237 { 4238 struct clk_notifier *cn = NULL; 4239 int ret = -EINVAL; 4240 4241 if (!clk || !nb) 4242 return -EINVAL; 4243 4244 clk_prepare_lock(); 4245 4246 list_for_each_entry(cn, &clk_notifier_list, node) 4247 if (cn->clk == clk) 4248 break; 4249 4250 if (cn->clk == clk) { 4251 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4252 4253 clk->core->notifier_count--; 4254 4255 /* XXX the notifier code should handle this better */ 4256 if (!cn->notifier_head.head) { 4257 srcu_cleanup_notifier_head(&cn->notifier_head); 4258 list_del(&cn->node); 4259 kfree(cn); 4260 } 4261 4262 } else { 4263 ret = -ENOENT; 4264 } 4265 4266 clk_prepare_unlock(); 4267 4268 return ret; 4269 } 4270 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4271 4272 #ifdef CONFIG_OF 4273 static void clk_core_reparent_orphans(void) 4274 { 4275 clk_prepare_lock(); 4276 clk_core_reparent_orphans_nolock(); 4277 clk_prepare_unlock(); 4278 } 4279 4280 /** 4281 * struct of_clk_provider - Clock provider registration structure 4282 * @link: Entry in global list of clock providers 4283 * @node: Pointer to device tree node of clock provider 4284 * @get: Get clock callback. Returns NULL or a struct clk for the 4285 * given clock specifier 4286 * @data: context pointer to be passed into @get callback 4287 */ 4288 struct of_clk_provider { 4289 struct list_head link; 4290 4291 struct device_node *node; 4292 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4293 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4294 void *data; 4295 }; 4296 4297 extern struct of_device_id __clk_of_table; 4298 static const struct of_device_id __clk_of_table_sentinel 4299 __used __section(__clk_of_table_end); 4300 4301 static LIST_HEAD(of_clk_providers); 4302 static DEFINE_MUTEX(of_clk_mutex); 4303 4304 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4305 void *data) 4306 { 4307 return data; 4308 } 4309 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4310 4311 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4312 { 4313 return data; 4314 } 4315 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4316 4317 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4318 { 4319 struct clk_onecell_data *clk_data = data; 4320 unsigned int idx = clkspec->args[0]; 4321 4322 if (idx >= clk_data->clk_num) { 4323 pr_err("%s: invalid clock index %u\n", __func__, idx); 4324 return ERR_PTR(-EINVAL); 4325 } 4326 4327 return clk_data->clks[idx]; 4328 } 4329 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4330 4331 struct clk_hw * 4332 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4333 { 4334 struct clk_hw_onecell_data *hw_data = data; 4335 unsigned int idx = clkspec->args[0]; 4336 4337 if (idx >= hw_data->num) { 4338 pr_err("%s: invalid index %u\n", __func__, idx); 4339 return ERR_PTR(-EINVAL); 4340 } 4341 4342 return hw_data->hws[idx]; 4343 } 4344 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4345 4346 /** 4347 * of_clk_add_provider() - Register a clock provider for a node 4348 * @np: Device node pointer associated with clock provider 4349 * @clk_src_get: callback for decoding clock 4350 * @data: context pointer for @clk_src_get callback. 4351 * 4352 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4353 */ 4354 int of_clk_add_provider(struct device_node *np, 4355 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4356 void *data), 4357 void *data) 4358 { 4359 struct of_clk_provider *cp; 4360 int ret; 4361 4362 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4363 if (!cp) 4364 return -ENOMEM; 4365 4366 cp->node = of_node_get(np); 4367 cp->data = data; 4368 cp->get = clk_src_get; 4369 4370 mutex_lock(&of_clk_mutex); 4371 list_add(&cp->link, &of_clk_providers); 4372 mutex_unlock(&of_clk_mutex); 4373 pr_debug("Added clock from %pOF\n", np); 4374 4375 clk_core_reparent_orphans(); 4376 4377 ret = of_clk_set_defaults(np, true); 4378 if (ret < 0) 4379 of_clk_del_provider(np); 4380 4381 return ret; 4382 } 4383 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4384 4385 /** 4386 * of_clk_add_hw_provider() - Register a clock provider for a node 4387 * @np: Device node pointer associated with clock provider 4388 * @get: callback for decoding clk_hw 4389 * @data: context pointer for @get callback. 4390 */ 4391 int of_clk_add_hw_provider(struct device_node *np, 4392 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4393 void *data), 4394 void *data) 4395 { 4396 struct of_clk_provider *cp; 4397 int ret; 4398 4399 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4400 if (!cp) 4401 return -ENOMEM; 4402 4403 cp->node = of_node_get(np); 4404 cp->data = data; 4405 cp->get_hw = get; 4406 4407 mutex_lock(&of_clk_mutex); 4408 list_add(&cp->link, &of_clk_providers); 4409 mutex_unlock(&of_clk_mutex); 4410 pr_debug("Added clk_hw provider from %pOF\n", np); 4411 4412 clk_core_reparent_orphans(); 4413 4414 ret = of_clk_set_defaults(np, true); 4415 if (ret < 0) 4416 of_clk_del_provider(np); 4417 4418 return ret; 4419 } 4420 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4421 4422 static void devm_of_clk_release_provider(struct device *dev, void *res) 4423 { 4424 of_clk_del_provider(*(struct device_node **)res); 4425 } 4426 4427 /* 4428 * We allow a child device to use its parent device as the clock provider node 4429 * for cases like MFD sub-devices where the child device driver wants to use 4430 * devm_*() APIs but not list the device in DT as a sub-node. 4431 */ 4432 static struct device_node *get_clk_provider_node(struct device *dev) 4433 { 4434 struct device_node *np, *parent_np; 4435 4436 np = dev->of_node; 4437 parent_np = dev->parent ? dev->parent->of_node : NULL; 4438 4439 if (!of_find_property(np, "#clock-cells", NULL)) 4440 if (of_find_property(parent_np, "#clock-cells", NULL)) 4441 np = parent_np; 4442 4443 return np; 4444 } 4445 4446 /** 4447 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4448 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4449 * @get: callback for decoding clk_hw 4450 * @data: context pointer for @get callback 4451 * 4452 * Registers clock provider for given device's node. If the device has no DT 4453 * node or if the device node lacks of clock provider information (#clock-cells) 4454 * then the parent device's node is scanned for this information. If parent node 4455 * has the #clock-cells then it is used in registration. Provider is 4456 * automatically released at device exit. 4457 * 4458 * Return: 0 on success or an errno on failure. 4459 */ 4460 int devm_of_clk_add_hw_provider(struct device *dev, 4461 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4462 void *data), 4463 void *data) 4464 { 4465 struct device_node **ptr, *np; 4466 int ret; 4467 4468 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4469 GFP_KERNEL); 4470 if (!ptr) 4471 return -ENOMEM; 4472 4473 np = get_clk_provider_node(dev); 4474 ret = of_clk_add_hw_provider(np, get, data); 4475 if (!ret) { 4476 *ptr = np; 4477 devres_add(dev, ptr); 4478 } else { 4479 devres_free(ptr); 4480 } 4481 4482 return ret; 4483 } 4484 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4485 4486 /** 4487 * of_clk_del_provider() - Remove a previously registered clock provider 4488 * @np: Device node pointer associated with clock provider 4489 */ 4490 void of_clk_del_provider(struct device_node *np) 4491 { 4492 struct of_clk_provider *cp; 4493 4494 mutex_lock(&of_clk_mutex); 4495 list_for_each_entry(cp, &of_clk_providers, link) { 4496 if (cp->node == np) { 4497 list_del(&cp->link); 4498 of_node_put(cp->node); 4499 kfree(cp); 4500 break; 4501 } 4502 } 4503 mutex_unlock(&of_clk_mutex); 4504 } 4505 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4506 4507 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4508 { 4509 struct device_node **np = res; 4510 4511 if (WARN_ON(!np || !*np)) 4512 return 0; 4513 4514 return *np == data; 4515 } 4516 4517 /** 4518 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4519 * @dev: Device to whose lifetime the clock provider was bound 4520 */ 4521 void devm_of_clk_del_provider(struct device *dev) 4522 { 4523 int ret; 4524 struct device_node *np = get_clk_provider_node(dev); 4525 4526 ret = devres_release(dev, devm_of_clk_release_provider, 4527 devm_clk_provider_match, np); 4528 4529 WARN_ON(ret); 4530 } 4531 EXPORT_SYMBOL(devm_of_clk_del_provider); 4532 4533 /** 4534 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4535 * @np: device node to parse clock specifier from 4536 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4537 * @name: clock name to find and parse. If name is NULL, the index is used 4538 * @out_args: Result of parsing the clock specifier 4539 * 4540 * Parses a device node's "clocks" and "clock-names" properties to find the 4541 * phandle and cells for the index or name that is desired. The resulting clock 4542 * specifier is placed into @out_args, or an errno is returned when there's a 4543 * parsing error. The @index argument is ignored if @name is non-NULL. 4544 * 4545 * Example: 4546 * 4547 * phandle1: clock-controller@1 { 4548 * #clock-cells = <2>; 4549 * } 4550 * 4551 * phandle2: clock-controller@2 { 4552 * #clock-cells = <1>; 4553 * } 4554 * 4555 * clock-consumer@3 { 4556 * clocks = <&phandle1 1 2 &phandle2 3>; 4557 * clock-names = "name1", "name2"; 4558 * } 4559 * 4560 * To get a device_node for `clock-controller@2' node you may call this 4561 * function a few different ways: 4562 * 4563 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4564 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4565 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4566 * 4567 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4568 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4569 * the "clock-names" property of @np. 4570 */ 4571 static int of_parse_clkspec(const struct device_node *np, int index, 4572 const char *name, struct of_phandle_args *out_args) 4573 { 4574 int ret = -ENOENT; 4575 4576 /* Walk up the tree of devices looking for a clock property that matches */ 4577 while (np) { 4578 /* 4579 * For named clocks, first look up the name in the 4580 * "clock-names" property. If it cannot be found, then index 4581 * will be an error code and of_parse_phandle_with_args() will 4582 * return -EINVAL. 4583 */ 4584 if (name) 4585 index = of_property_match_string(np, "clock-names", name); 4586 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4587 index, out_args); 4588 if (!ret) 4589 break; 4590 if (name && index >= 0) 4591 break; 4592 4593 /* 4594 * No matching clock found on this node. If the parent node 4595 * has a "clock-ranges" property, then we can try one of its 4596 * clocks. 4597 */ 4598 np = np->parent; 4599 if (np && !of_get_property(np, "clock-ranges", NULL)) 4600 break; 4601 index = 0; 4602 } 4603 4604 return ret; 4605 } 4606 4607 static struct clk_hw * 4608 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4609 struct of_phandle_args *clkspec) 4610 { 4611 struct clk *clk; 4612 4613 if (provider->get_hw) 4614 return provider->get_hw(clkspec, provider->data); 4615 4616 clk = provider->get(clkspec, provider->data); 4617 if (IS_ERR(clk)) 4618 return ERR_CAST(clk); 4619 return __clk_get_hw(clk); 4620 } 4621 4622 static struct clk_hw * 4623 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4624 { 4625 struct of_clk_provider *provider; 4626 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4627 4628 if (!clkspec) 4629 return ERR_PTR(-EINVAL); 4630 4631 mutex_lock(&of_clk_mutex); 4632 list_for_each_entry(provider, &of_clk_providers, link) { 4633 if (provider->node == clkspec->np) { 4634 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4635 if (!IS_ERR(hw)) 4636 break; 4637 } 4638 } 4639 mutex_unlock(&of_clk_mutex); 4640 4641 return hw; 4642 } 4643 4644 /** 4645 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4646 * @clkspec: pointer to a clock specifier data structure 4647 * 4648 * This function looks up a struct clk from the registered list of clock 4649 * providers, an input is a clock specifier data structure as returned 4650 * from the of_parse_phandle_with_args() function call. 4651 */ 4652 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4653 { 4654 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4655 4656 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4657 } 4658 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4659 4660 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4661 const char *con_id) 4662 { 4663 int ret; 4664 struct clk_hw *hw; 4665 struct of_phandle_args clkspec; 4666 4667 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4668 if (ret) 4669 return ERR_PTR(ret); 4670 4671 hw = of_clk_get_hw_from_clkspec(&clkspec); 4672 of_node_put(clkspec.np); 4673 4674 return hw; 4675 } 4676 4677 static struct clk *__of_clk_get(struct device_node *np, 4678 int index, const char *dev_id, 4679 const char *con_id) 4680 { 4681 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4682 4683 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4684 } 4685 4686 struct clk *of_clk_get(struct device_node *np, int index) 4687 { 4688 return __of_clk_get(np, index, np->full_name, NULL); 4689 } 4690 EXPORT_SYMBOL(of_clk_get); 4691 4692 /** 4693 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4694 * @np: pointer to clock consumer node 4695 * @name: name of consumer's clock input, or NULL for the first clock reference 4696 * 4697 * This function parses the clocks and clock-names properties, 4698 * and uses them to look up the struct clk from the registered list of clock 4699 * providers. 4700 */ 4701 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4702 { 4703 if (!np) 4704 return ERR_PTR(-ENOENT); 4705 4706 return __of_clk_get(np, 0, np->full_name, name); 4707 } 4708 EXPORT_SYMBOL(of_clk_get_by_name); 4709 4710 /** 4711 * of_clk_get_parent_count() - Count the number of clocks a device node has 4712 * @np: device node to count 4713 * 4714 * Returns: The number of clocks that are possible parents of this node 4715 */ 4716 unsigned int of_clk_get_parent_count(const struct device_node *np) 4717 { 4718 int count; 4719 4720 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4721 if (count < 0) 4722 return 0; 4723 4724 return count; 4725 } 4726 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4727 4728 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4729 { 4730 struct of_phandle_args clkspec; 4731 struct property *prop; 4732 const char *clk_name; 4733 const __be32 *vp; 4734 u32 pv; 4735 int rc; 4736 int count; 4737 struct clk *clk; 4738 4739 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4740 &clkspec); 4741 if (rc) 4742 return NULL; 4743 4744 index = clkspec.args_count ? clkspec.args[0] : 0; 4745 count = 0; 4746 4747 /* if there is an indices property, use it to transfer the index 4748 * specified into an array offset for the clock-output-names property. 4749 */ 4750 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4751 if (index == pv) { 4752 index = count; 4753 break; 4754 } 4755 count++; 4756 } 4757 /* We went off the end of 'clock-indices' without finding it */ 4758 if (prop && !vp) 4759 return NULL; 4760 4761 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4762 index, 4763 &clk_name) < 0) { 4764 /* 4765 * Best effort to get the name if the clock has been 4766 * registered with the framework. If the clock isn't 4767 * registered, we return the node name as the name of 4768 * the clock as long as #clock-cells = 0. 4769 */ 4770 clk = of_clk_get_from_provider(&clkspec); 4771 if (IS_ERR(clk)) { 4772 if (clkspec.args_count == 0) 4773 clk_name = clkspec.np->name; 4774 else 4775 clk_name = NULL; 4776 } else { 4777 clk_name = __clk_get_name(clk); 4778 clk_put(clk); 4779 } 4780 } 4781 4782 4783 of_node_put(clkspec.np); 4784 return clk_name; 4785 } 4786 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4787 4788 /** 4789 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4790 * number of parents 4791 * @np: Device node pointer associated with clock provider 4792 * @parents: pointer to char array that hold the parents' names 4793 * @size: size of the @parents array 4794 * 4795 * Return: number of parents for the clock node. 4796 */ 4797 int of_clk_parent_fill(struct device_node *np, const char **parents, 4798 unsigned int size) 4799 { 4800 unsigned int i = 0; 4801 4802 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4803 i++; 4804 4805 return i; 4806 } 4807 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4808 4809 struct clock_provider { 4810 void (*clk_init_cb)(struct device_node *); 4811 struct device_node *np; 4812 struct list_head node; 4813 }; 4814 4815 /* 4816 * This function looks for a parent clock. If there is one, then it 4817 * checks that the provider for this parent clock was initialized, in 4818 * this case the parent clock will be ready. 4819 */ 4820 static int parent_ready(struct device_node *np) 4821 { 4822 int i = 0; 4823 4824 while (true) { 4825 struct clk *clk = of_clk_get(np, i); 4826 4827 /* this parent is ready we can check the next one */ 4828 if (!IS_ERR(clk)) { 4829 clk_put(clk); 4830 i++; 4831 continue; 4832 } 4833 4834 /* at least one parent is not ready, we exit now */ 4835 if (PTR_ERR(clk) == -EPROBE_DEFER) 4836 return 0; 4837 4838 /* 4839 * Here we make assumption that the device tree is 4840 * written correctly. So an error means that there is 4841 * no more parent. As we didn't exit yet, then the 4842 * previous parent are ready. If there is no clock 4843 * parent, no need to wait for them, then we can 4844 * consider their absence as being ready 4845 */ 4846 return 1; 4847 } 4848 } 4849 4850 /** 4851 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4852 * @np: Device node pointer associated with clock provider 4853 * @index: clock index 4854 * @flags: pointer to top-level framework flags 4855 * 4856 * Detects if the clock-critical property exists and, if so, sets the 4857 * corresponding CLK_IS_CRITICAL flag. 4858 * 4859 * Do not use this function. It exists only for legacy Device Tree 4860 * bindings, such as the one-clock-per-node style that are outdated. 4861 * Those bindings typically put all clock data into .dts and the Linux 4862 * driver has no clock data, thus making it impossible to set this flag 4863 * correctly from the driver. Only those drivers may call 4864 * of_clk_detect_critical from their setup functions. 4865 * 4866 * Return: error code or zero on success 4867 */ 4868 int of_clk_detect_critical(struct device_node *np, 4869 int index, unsigned long *flags) 4870 { 4871 struct property *prop; 4872 const __be32 *cur; 4873 uint32_t idx; 4874 4875 if (!np || !flags) 4876 return -EINVAL; 4877 4878 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4879 if (index == idx) 4880 *flags |= CLK_IS_CRITICAL; 4881 4882 return 0; 4883 } 4884 4885 /** 4886 * of_clk_init() - Scan and init clock providers from the DT 4887 * @matches: array of compatible values and init functions for providers. 4888 * 4889 * This function scans the device tree for matching clock providers 4890 * and calls their initialization functions. It also does it by trying 4891 * to follow the dependencies. 4892 */ 4893 void __init of_clk_init(const struct of_device_id *matches) 4894 { 4895 const struct of_device_id *match; 4896 struct device_node *np; 4897 struct clock_provider *clk_provider, *next; 4898 bool is_init_done; 4899 bool force = false; 4900 LIST_HEAD(clk_provider_list); 4901 4902 if (!matches) 4903 matches = &__clk_of_table; 4904 4905 /* First prepare the list of the clocks providers */ 4906 for_each_matching_node_and_match(np, matches, &match) { 4907 struct clock_provider *parent; 4908 4909 if (!of_device_is_available(np)) 4910 continue; 4911 4912 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4913 if (!parent) { 4914 list_for_each_entry_safe(clk_provider, next, 4915 &clk_provider_list, node) { 4916 list_del(&clk_provider->node); 4917 of_node_put(clk_provider->np); 4918 kfree(clk_provider); 4919 } 4920 of_node_put(np); 4921 return; 4922 } 4923 4924 parent->clk_init_cb = match->data; 4925 parent->np = of_node_get(np); 4926 list_add_tail(&parent->node, &clk_provider_list); 4927 } 4928 4929 while (!list_empty(&clk_provider_list)) { 4930 is_init_done = false; 4931 list_for_each_entry_safe(clk_provider, next, 4932 &clk_provider_list, node) { 4933 if (force || parent_ready(clk_provider->np)) { 4934 4935 /* Don't populate platform devices */ 4936 of_node_set_flag(clk_provider->np, 4937 OF_POPULATED); 4938 4939 clk_provider->clk_init_cb(clk_provider->np); 4940 of_clk_set_defaults(clk_provider->np, true); 4941 4942 list_del(&clk_provider->node); 4943 of_node_put(clk_provider->np); 4944 kfree(clk_provider); 4945 is_init_done = true; 4946 } 4947 } 4948 4949 /* 4950 * We didn't manage to initialize any of the 4951 * remaining providers during the last loop, so now we 4952 * initialize all the remaining ones unconditionally 4953 * in case the clock parent was not mandatory 4954 */ 4955 if (!is_init_done) 4956 force = true; 4957 } 4958 } 4959 #endif 4960