1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 int ret; 112 113 if (!core->rpm_enabled) 114 return 0; 115 116 ret = pm_runtime_get_sync(core->dev); 117 if (ret < 0) { 118 pm_runtime_put_noidle(core->dev); 119 return ret; 120 } 121 return 0; 122 } 123 124 static void clk_pm_runtime_put(struct clk_core *core) 125 { 126 if (!core->rpm_enabled) 127 return; 128 129 pm_runtime_put_sync(core->dev); 130 } 131 132 /*** locking ***/ 133 static void clk_prepare_lock(void) 134 { 135 if (!mutex_trylock(&prepare_lock)) { 136 if (prepare_owner == current) { 137 prepare_refcnt++; 138 return; 139 } 140 mutex_lock(&prepare_lock); 141 } 142 WARN_ON_ONCE(prepare_owner != NULL); 143 WARN_ON_ONCE(prepare_refcnt != 0); 144 prepare_owner = current; 145 prepare_refcnt = 1; 146 } 147 148 static void clk_prepare_unlock(void) 149 { 150 WARN_ON_ONCE(prepare_owner != current); 151 WARN_ON_ONCE(prepare_refcnt == 0); 152 153 if (--prepare_refcnt) 154 return; 155 prepare_owner = NULL; 156 mutex_unlock(&prepare_lock); 157 } 158 159 static unsigned long clk_enable_lock(void) 160 __acquires(enable_lock) 161 { 162 unsigned long flags; 163 164 /* 165 * On UP systems, spin_trylock_irqsave() always returns true, even if 166 * we already hold the lock. So, in that case, we rely only on 167 * reference counting. 168 */ 169 if (!IS_ENABLED(CONFIG_SMP) || 170 !spin_trylock_irqsave(&enable_lock, flags)) { 171 if (enable_owner == current) { 172 enable_refcnt++; 173 __acquire(enable_lock); 174 if (!IS_ENABLED(CONFIG_SMP)) 175 local_save_flags(flags); 176 return flags; 177 } 178 spin_lock_irqsave(&enable_lock, flags); 179 } 180 WARN_ON_ONCE(enable_owner != NULL); 181 WARN_ON_ONCE(enable_refcnt != 0); 182 enable_owner = current; 183 enable_refcnt = 1; 184 return flags; 185 } 186 187 static void clk_enable_unlock(unsigned long flags) 188 __releases(enable_lock) 189 { 190 WARN_ON_ONCE(enable_owner != current); 191 WARN_ON_ONCE(enable_refcnt == 0); 192 193 if (--enable_refcnt) { 194 __release(enable_lock); 195 return; 196 } 197 enable_owner = NULL; 198 spin_unlock_irqrestore(&enable_lock, flags); 199 } 200 201 static bool clk_core_rate_is_protected(struct clk_core *core) 202 { 203 return core->protect_count; 204 } 205 206 static bool clk_core_is_prepared(struct clk_core *core) 207 { 208 bool ret = false; 209 210 /* 211 * .is_prepared is optional for clocks that can prepare 212 * fall back to software usage counter if it is missing 213 */ 214 if (!core->ops->is_prepared) 215 return core->prepare_count; 216 217 if (!clk_pm_runtime_get(core)) { 218 ret = core->ops->is_prepared(core->hw); 219 clk_pm_runtime_put(core); 220 } 221 222 return ret; 223 } 224 225 static bool clk_core_is_enabled(struct clk_core *core) 226 { 227 bool ret = false; 228 229 /* 230 * .is_enabled is only mandatory for clocks that gate 231 * fall back to software usage counter if .is_enabled is missing 232 */ 233 if (!core->ops->is_enabled) 234 return core->enable_count; 235 236 /* 237 * Check if clock controller's device is runtime active before 238 * calling .is_enabled callback. If not, assume that clock is 239 * disabled, because we might be called from atomic context, from 240 * which pm_runtime_get() is not allowed. 241 * This function is called mainly from clk_disable_unused_subtree, 242 * which ensures proper runtime pm activation of controller before 243 * taking enable spinlock, but the below check is needed if one tries 244 * to call it from other places. 245 */ 246 if (core->rpm_enabled) { 247 pm_runtime_get_noresume(core->dev); 248 if (!pm_runtime_active(core->dev)) { 249 ret = false; 250 goto done; 251 } 252 } 253 254 ret = core->ops->is_enabled(core->hw); 255 done: 256 if (core->rpm_enabled) 257 pm_runtime_put(core->dev); 258 259 return ret; 260 } 261 262 /*** helper functions ***/ 263 264 const char *__clk_get_name(const struct clk *clk) 265 { 266 return !clk ? NULL : clk->core->name; 267 } 268 EXPORT_SYMBOL_GPL(__clk_get_name); 269 270 const char *clk_hw_get_name(const struct clk_hw *hw) 271 { 272 return hw->core->name; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_name); 275 276 struct clk_hw *__clk_get_hw(struct clk *clk) 277 { 278 return !clk ? NULL : clk->core->hw; 279 } 280 EXPORT_SYMBOL_GPL(__clk_get_hw); 281 282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 283 { 284 return hw->core->num_parents; 285 } 286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 287 288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 289 { 290 return hw->core->parent ? hw->core->parent->hw : NULL; 291 } 292 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 293 294 static struct clk_core *__clk_lookup_subtree(const char *name, 295 struct clk_core *core) 296 { 297 struct clk_core *child; 298 struct clk_core *ret; 299 300 if (!strcmp(core->name, name)) 301 return core; 302 303 hlist_for_each_entry(child, &core->children, child_node) { 304 ret = __clk_lookup_subtree(name, child); 305 if (ret) 306 return ret; 307 } 308 309 return NULL; 310 } 311 312 static struct clk_core *clk_core_lookup(const char *name) 313 { 314 struct clk_core *root_clk; 315 struct clk_core *ret; 316 317 if (!name) 318 return NULL; 319 320 /* search the 'proper' clk tree first */ 321 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 322 ret = __clk_lookup_subtree(name, root_clk); 323 if (ret) 324 return ret; 325 } 326 327 /* if not found, then search the orphan tree */ 328 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 329 ret = __clk_lookup_subtree(name, root_clk); 330 if (ret) 331 return ret; 332 } 333 334 return NULL; 335 } 336 337 #ifdef CONFIG_OF 338 static int of_parse_clkspec(const struct device_node *np, int index, 339 const char *name, struct of_phandle_args *out_args); 340 static struct clk_hw * 341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 342 #else 343 static inline int of_parse_clkspec(const struct device_node *np, int index, 344 const char *name, 345 struct of_phandle_args *out_args) 346 { 347 return -ENOENT; 348 } 349 static inline struct clk_hw * 350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 351 { 352 return ERR_PTR(-ENOENT); 353 } 354 #endif 355 356 /** 357 * clk_core_get - Find the clk_core parent of a clk 358 * @core: clk to find parent of 359 * @p_index: parent index to search for 360 * 361 * This is the preferred method for clk providers to find the parent of a 362 * clk when that parent is external to the clk controller. The parent_names 363 * array is indexed and treated as a local name matching a string in the device 364 * node's 'clock-names' property or as the 'con_id' matching the device's 365 * dev_name() in a clk_lookup. This allows clk providers to use their own 366 * namespace instead of looking for a globally unique parent string. 367 * 368 * For example the following DT snippet would allow a clock registered by the 369 * clock-controller@c001 that has a clk_init_data::parent_data array 370 * with 'xtal' in the 'name' member to find the clock provided by the 371 * clock-controller@f00abcd without needing to get the globally unique name of 372 * the xtal clk. 373 * 374 * parent: clock-controller@f00abcd { 375 * reg = <0xf00abcd 0xabcd>; 376 * #clock-cells = <0>; 377 * }; 378 * 379 * clock-controller@c001 { 380 * reg = <0xc001 0xf00d>; 381 * clocks = <&parent>; 382 * clock-names = "xtal"; 383 * #clock-cells = <1>; 384 * }; 385 * 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't 387 * exist in the provider or the name can't be found in the DT node or 388 * in a clkdev lookup. NULL when the provider knows about the clk but it 389 * isn't provided on this system. 390 * A valid clk_core pointer when the clk can be found in the provider. 391 */ 392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 393 { 394 const char *name = core->parents[p_index].fw_name; 395 int index = core->parents[p_index].index; 396 struct clk_hw *hw = ERR_PTR(-ENOENT); 397 struct device *dev = core->dev; 398 const char *dev_id = dev ? dev_name(dev) : NULL; 399 struct device_node *np = core->of_node; 400 struct of_phandle_args clkspec; 401 402 if (np && (name || index >= 0) && 403 !of_parse_clkspec(np, index, name, &clkspec)) { 404 hw = of_clk_get_hw_from_clkspec(&clkspec); 405 of_node_put(clkspec.np); 406 } else if (name) { 407 /* 408 * If the DT search above couldn't find the provider fallback to 409 * looking up via clkdev based clk_lookups. 410 */ 411 hw = clk_find_hw(dev_id, name); 412 } 413 414 if (IS_ERR(hw)) 415 return ERR_CAST(hw); 416 417 return hw->core; 418 } 419 420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 421 { 422 struct clk_parent_map *entry = &core->parents[index]; 423 struct clk_core *parent; 424 425 if (entry->hw) { 426 parent = entry->hw->core; 427 /* 428 * We have a direct reference but it isn't registered yet? 429 * Orphan it and let clk_reparent() update the orphan status 430 * when the parent is registered. 431 */ 432 if (!parent) 433 parent = ERR_PTR(-EPROBE_DEFER); 434 } else { 435 parent = clk_core_get(core, index); 436 if (PTR_ERR(parent) == -ENOENT && entry->name) 437 parent = clk_core_lookup(entry->name); 438 } 439 440 /* Only cache it if it's not an error */ 441 if (!IS_ERR(parent)) 442 entry->core = parent; 443 } 444 445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 446 u8 index) 447 { 448 if (!core || index >= core->num_parents || !core->parents) 449 return NULL; 450 451 if (!core->parents[index].core) 452 clk_core_fill_parent_index(core, index); 453 454 return core->parents[index].core; 455 } 456 457 struct clk_hw * 458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 459 { 460 struct clk_core *parent; 461 462 parent = clk_core_get_parent_by_index(hw->core, index); 463 464 return !parent ? NULL : parent->hw; 465 } 466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 467 468 unsigned int __clk_get_enable_count(struct clk *clk) 469 { 470 return !clk ? 0 : clk->core->enable_count; 471 } 472 473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 474 { 475 if (!core) 476 return 0; 477 478 if (!core->num_parents || core->parent) 479 return core->rate; 480 481 /* 482 * Clk must have a parent because num_parents > 0 but the parent isn't 483 * known yet. Best to return 0 as the rate of this clk until we can 484 * properly recalc the rate based on the parent's rate. 485 */ 486 return 0; 487 } 488 489 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 490 { 491 return clk_core_get_rate_nolock(hw->core); 492 } 493 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 494 495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 496 { 497 if (!core) 498 return 0; 499 500 return core->accuracy; 501 } 502 503 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 504 { 505 return hw->core->flags; 506 } 507 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 508 509 bool clk_hw_is_prepared(const struct clk_hw *hw) 510 { 511 return clk_core_is_prepared(hw->core); 512 } 513 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 514 515 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 516 { 517 return clk_core_rate_is_protected(hw->core); 518 } 519 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 520 521 bool clk_hw_is_enabled(const struct clk_hw *hw) 522 { 523 return clk_core_is_enabled(hw->core); 524 } 525 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 526 527 bool __clk_is_enabled(struct clk *clk) 528 { 529 if (!clk) 530 return false; 531 532 return clk_core_is_enabled(clk->core); 533 } 534 EXPORT_SYMBOL_GPL(__clk_is_enabled); 535 536 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 537 unsigned long best, unsigned long flags) 538 { 539 if (flags & CLK_MUX_ROUND_CLOSEST) 540 return abs(now - rate) < abs(best - rate); 541 542 return now <= rate && now > best; 543 } 544 545 int clk_mux_determine_rate_flags(struct clk_hw *hw, 546 struct clk_rate_request *req, 547 unsigned long flags) 548 { 549 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 550 int i, num_parents, ret; 551 unsigned long best = 0; 552 struct clk_rate_request parent_req = *req; 553 554 /* if NO_REPARENT flag set, pass through to current parent */ 555 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 556 parent = core->parent; 557 if (core->flags & CLK_SET_RATE_PARENT) { 558 ret = __clk_determine_rate(parent ? parent->hw : NULL, 559 &parent_req); 560 if (ret) 561 return ret; 562 563 best = parent_req.rate; 564 } else if (parent) { 565 best = clk_core_get_rate_nolock(parent); 566 } else { 567 best = clk_core_get_rate_nolock(core); 568 } 569 570 goto out; 571 } 572 573 /* find the parent that can provide the fastest rate <= rate */ 574 num_parents = core->num_parents; 575 for (i = 0; i < num_parents; i++) { 576 parent = clk_core_get_parent_by_index(core, i); 577 if (!parent) 578 continue; 579 580 if (core->flags & CLK_SET_RATE_PARENT) { 581 parent_req = *req; 582 ret = __clk_determine_rate(parent->hw, &parent_req); 583 if (ret) 584 continue; 585 } else { 586 parent_req.rate = clk_core_get_rate_nolock(parent); 587 } 588 589 if (mux_is_better_rate(req->rate, parent_req.rate, 590 best, flags)) { 591 best_parent = parent; 592 best = parent_req.rate; 593 } 594 } 595 596 if (!best_parent) 597 return -EINVAL; 598 599 out: 600 if (best_parent) 601 req->best_parent_hw = best_parent->hw; 602 req->best_parent_rate = best; 603 req->rate = best; 604 605 return 0; 606 } 607 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 608 609 struct clk *__clk_lookup(const char *name) 610 { 611 struct clk_core *core = clk_core_lookup(name); 612 613 return !core ? NULL : core->hw->clk; 614 } 615 616 static void clk_core_get_boundaries(struct clk_core *core, 617 unsigned long *min_rate, 618 unsigned long *max_rate) 619 { 620 struct clk *clk_user; 621 622 lockdep_assert_held(&prepare_lock); 623 624 *min_rate = core->min_rate; 625 *max_rate = core->max_rate; 626 627 hlist_for_each_entry(clk_user, &core->clks, clks_node) 628 *min_rate = max(*min_rate, clk_user->min_rate); 629 630 hlist_for_each_entry(clk_user, &core->clks, clks_node) 631 *max_rate = min(*max_rate, clk_user->max_rate); 632 } 633 634 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 635 unsigned long max_rate) 636 { 637 hw->core->min_rate = min_rate; 638 hw->core->max_rate = max_rate; 639 } 640 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 641 642 /* 643 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 644 * @hw: mux type clk to determine rate on 645 * @req: rate request, also used to return preferred parent and frequencies 646 * 647 * Helper for finding best parent to provide a given frequency. This can be used 648 * directly as a determine_rate callback (e.g. for a mux), or from a more 649 * complex clock that may combine a mux with other operations. 650 * 651 * Returns: 0 on success, -EERROR value on error 652 */ 653 int __clk_mux_determine_rate(struct clk_hw *hw, 654 struct clk_rate_request *req) 655 { 656 return clk_mux_determine_rate_flags(hw, req, 0); 657 } 658 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 659 660 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 661 struct clk_rate_request *req) 662 { 663 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 664 } 665 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 666 667 /*** clk api ***/ 668 669 static void clk_core_rate_unprotect(struct clk_core *core) 670 { 671 lockdep_assert_held(&prepare_lock); 672 673 if (!core) 674 return; 675 676 if (WARN(core->protect_count == 0, 677 "%s already unprotected\n", core->name)) 678 return; 679 680 if (--core->protect_count > 0) 681 return; 682 683 clk_core_rate_unprotect(core->parent); 684 } 685 686 static int clk_core_rate_nuke_protect(struct clk_core *core) 687 { 688 int ret; 689 690 lockdep_assert_held(&prepare_lock); 691 692 if (!core) 693 return -EINVAL; 694 695 if (core->protect_count == 0) 696 return 0; 697 698 ret = core->protect_count; 699 core->protect_count = 1; 700 clk_core_rate_unprotect(core); 701 702 return ret; 703 } 704 705 /** 706 * clk_rate_exclusive_put - release exclusivity over clock rate control 707 * @clk: the clk over which the exclusivity is released 708 * 709 * clk_rate_exclusive_put() completes a critical section during which a clock 710 * consumer cannot tolerate any other consumer making any operation on the 711 * clock which could result in a rate change or rate glitch. Exclusive clocks 712 * cannot have their rate changed, either directly or indirectly due to changes 713 * further up the parent chain of clocks. As a result, clocks up parent chain 714 * also get under exclusive control of the calling consumer. 715 * 716 * If exlusivity is claimed more than once on clock, even by the same consumer, 717 * the rate effectively gets locked as exclusivity can't be preempted. 718 * 719 * Calls to clk_rate_exclusive_put() must be balanced with calls to 720 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 721 * error status. 722 */ 723 void clk_rate_exclusive_put(struct clk *clk) 724 { 725 if (!clk) 726 return; 727 728 clk_prepare_lock(); 729 730 /* 731 * if there is something wrong with this consumer protect count, stop 732 * here before messing with the provider 733 */ 734 if (WARN_ON(clk->exclusive_count <= 0)) 735 goto out; 736 737 clk_core_rate_unprotect(clk->core); 738 clk->exclusive_count--; 739 out: 740 clk_prepare_unlock(); 741 } 742 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 743 744 static void clk_core_rate_protect(struct clk_core *core) 745 { 746 lockdep_assert_held(&prepare_lock); 747 748 if (!core) 749 return; 750 751 if (core->protect_count == 0) 752 clk_core_rate_protect(core->parent); 753 754 core->protect_count++; 755 } 756 757 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 758 { 759 lockdep_assert_held(&prepare_lock); 760 761 if (!core) 762 return; 763 764 if (count == 0) 765 return; 766 767 clk_core_rate_protect(core); 768 core->protect_count = count; 769 } 770 771 /** 772 * clk_rate_exclusive_get - get exclusivity over the clk rate control 773 * @clk: the clk over which the exclusity of rate control is requested 774 * 775 * clk_rate_exclusive_get() begins a critical section during which a clock 776 * consumer cannot tolerate any other consumer making any operation on the 777 * clock which could result in a rate change or rate glitch. Exclusive clocks 778 * cannot have their rate changed, either directly or indirectly due to changes 779 * further up the parent chain of clocks. As a result, clocks up parent chain 780 * also get under exclusive control of the calling consumer. 781 * 782 * If exlusivity is claimed more than once on clock, even by the same consumer, 783 * the rate effectively gets locked as exclusivity can't be preempted. 784 * 785 * Calls to clk_rate_exclusive_get() should be balanced with calls to 786 * clk_rate_exclusive_put(). Calls to this function may sleep. 787 * Returns 0 on success, -EERROR otherwise 788 */ 789 int clk_rate_exclusive_get(struct clk *clk) 790 { 791 if (!clk) 792 return 0; 793 794 clk_prepare_lock(); 795 clk_core_rate_protect(clk->core); 796 clk->exclusive_count++; 797 clk_prepare_unlock(); 798 799 return 0; 800 } 801 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 802 803 static void clk_core_unprepare(struct clk_core *core) 804 { 805 lockdep_assert_held(&prepare_lock); 806 807 if (!core) 808 return; 809 810 if (WARN(core->prepare_count == 0, 811 "%s already unprepared\n", core->name)) 812 return; 813 814 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 815 "Unpreparing critical %s\n", core->name)) 816 return; 817 818 if (core->flags & CLK_SET_RATE_GATE) 819 clk_core_rate_unprotect(core); 820 821 if (--core->prepare_count > 0) 822 return; 823 824 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 825 826 trace_clk_unprepare(core); 827 828 if (core->ops->unprepare) 829 core->ops->unprepare(core->hw); 830 831 clk_pm_runtime_put(core); 832 833 trace_clk_unprepare_complete(core); 834 clk_core_unprepare(core->parent); 835 } 836 837 static void clk_core_unprepare_lock(struct clk_core *core) 838 { 839 clk_prepare_lock(); 840 clk_core_unprepare(core); 841 clk_prepare_unlock(); 842 } 843 844 /** 845 * clk_unprepare - undo preparation of a clock source 846 * @clk: the clk being unprepared 847 * 848 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 849 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 850 * if the operation may sleep. One example is a clk which is accessed over 851 * I2c. In the complex case a clk gate operation may require a fast and a slow 852 * part. It is this reason that clk_unprepare and clk_disable are not mutually 853 * exclusive. In fact clk_disable must be called before clk_unprepare. 854 */ 855 void clk_unprepare(struct clk *clk) 856 { 857 if (IS_ERR_OR_NULL(clk)) 858 return; 859 860 clk_core_unprepare_lock(clk->core); 861 } 862 EXPORT_SYMBOL_GPL(clk_unprepare); 863 864 static int clk_core_prepare(struct clk_core *core) 865 { 866 int ret = 0; 867 868 lockdep_assert_held(&prepare_lock); 869 870 if (!core) 871 return 0; 872 873 if (core->prepare_count == 0) { 874 ret = clk_pm_runtime_get(core); 875 if (ret) 876 return ret; 877 878 ret = clk_core_prepare(core->parent); 879 if (ret) 880 goto runtime_put; 881 882 trace_clk_prepare(core); 883 884 if (core->ops->prepare) 885 ret = core->ops->prepare(core->hw); 886 887 trace_clk_prepare_complete(core); 888 889 if (ret) 890 goto unprepare; 891 } 892 893 core->prepare_count++; 894 895 /* 896 * CLK_SET_RATE_GATE is a special case of clock protection 897 * Instead of a consumer claiming exclusive rate control, it is 898 * actually the provider which prevents any consumer from making any 899 * operation which could result in a rate change or rate glitch while 900 * the clock is prepared. 901 */ 902 if (core->flags & CLK_SET_RATE_GATE) 903 clk_core_rate_protect(core); 904 905 return 0; 906 unprepare: 907 clk_core_unprepare(core->parent); 908 runtime_put: 909 clk_pm_runtime_put(core); 910 return ret; 911 } 912 913 static int clk_core_prepare_lock(struct clk_core *core) 914 { 915 int ret; 916 917 clk_prepare_lock(); 918 ret = clk_core_prepare(core); 919 clk_prepare_unlock(); 920 921 return ret; 922 } 923 924 /** 925 * clk_prepare - prepare a clock source 926 * @clk: the clk being prepared 927 * 928 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 929 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 930 * operation may sleep. One example is a clk which is accessed over I2c. In 931 * the complex case a clk ungate operation may require a fast and a slow part. 932 * It is this reason that clk_prepare and clk_enable are not mutually 933 * exclusive. In fact clk_prepare must be called before clk_enable. 934 * Returns 0 on success, -EERROR otherwise. 935 */ 936 int clk_prepare(struct clk *clk) 937 { 938 if (!clk) 939 return 0; 940 941 return clk_core_prepare_lock(clk->core); 942 } 943 EXPORT_SYMBOL_GPL(clk_prepare); 944 945 static void clk_core_disable(struct clk_core *core) 946 { 947 lockdep_assert_held(&enable_lock); 948 949 if (!core) 950 return; 951 952 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 953 return; 954 955 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 956 "Disabling critical %s\n", core->name)) 957 return; 958 959 if (--core->enable_count > 0) 960 return; 961 962 trace_clk_disable_rcuidle(core); 963 964 if (core->ops->disable) 965 core->ops->disable(core->hw); 966 967 trace_clk_disable_complete_rcuidle(core); 968 969 clk_core_disable(core->parent); 970 } 971 972 static void clk_core_disable_lock(struct clk_core *core) 973 { 974 unsigned long flags; 975 976 flags = clk_enable_lock(); 977 clk_core_disable(core); 978 clk_enable_unlock(flags); 979 } 980 981 /** 982 * clk_disable - gate a clock 983 * @clk: the clk being gated 984 * 985 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 986 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 987 * clk if the operation is fast and will never sleep. One example is a 988 * SoC-internal clk which is controlled via simple register writes. In the 989 * complex case a clk gate operation may require a fast and a slow part. It is 990 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 991 * In fact clk_disable must be called before clk_unprepare. 992 */ 993 void clk_disable(struct clk *clk) 994 { 995 if (IS_ERR_OR_NULL(clk)) 996 return; 997 998 clk_core_disable_lock(clk->core); 999 } 1000 EXPORT_SYMBOL_GPL(clk_disable); 1001 1002 static int clk_core_enable(struct clk_core *core) 1003 { 1004 int ret = 0; 1005 1006 lockdep_assert_held(&enable_lock); 1007 1008 if (!core) 1009 return 0; 1010 1011 if (WARN(core->prepare_count == 0, 1012 "Enabling unprepared %s\n", core->name)) 1013 return -ESHUTDOWN; 1014 1015 if (core->enable_count == 0) { 1016 ret = clk_core_enable(core->parent); 1017 1018 if (ret) 1019 return ret; 1020 1021 trace_clk_enable_rcuidle(core); 1022 1023 if (core->ops->enable) 1024 ret = core->ops->enable(core->hw); 1025 1026 trace_clk_enable_complete_rcuidle(core); 1027 1028 if (ret) { 1029 clk_core_disable(core->parent); 1030 return ret; 1031 } 1032 } 1033 1034 core->enable_count++; 1035 return 0; 1036 } 1037 1038 static int clk_core_enable_lock(struct clk_core *core) 1039 { 1040 unsigned long flags; 1041 int ret; 1042 1043 flags = clk_enable_lock(); 1044 ret = clk_core_enable(core); 1045 clk_enable_unlock(flags); 1046 1047 return ret; 1048 } 1049 1050 /** 1051 * clk_gate_restore_context - restore context for poweroff 1052 * @hw: the clk_hw pointer of clock whose state is to be restored 1053 * 1054 * The clock gate restore context function enables or disables 1055 * the gate clocks based on the enable_count. This is done in cases 1056 * where the clock context is lost and based on the enable_count 1057 * the clock either needs to be enabled/disabled. This 1058 * helps restore the state of gate clocks. 1059 */ 1060 void clk_gate_restore_context(struct clk_hw *hw) 1061 { 1062 struct clk_core *core = hw->core; 1063 1064 if (core->enable_count) 1065 core->ops->enable(hw); 1066 else 1067 core->ops->disable(hw); 1068 } 1069 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1070 1071 static int clk_core_save_context(struct clk_core *core) 1072 { 1073 struct clk_core *child; 1074 int ret = 0; 1075 1076 hlist_for_each_entry(child, &core->children, child_node) { 1077 ret = clk_core_save_context(child); 1078 if (ret < 0) 1079 return ret; 1080 } 1081 1082 if (core->ops && core->ops->save_context) 1083 ret = core->ops->save_context(core->hw); 1084 1085 return ret; 1086 } 1087 1088 static void clk_core_restore_context(struct clk_core *core) 1089 { 1090 struct clk_core *child; 1091 1092 if (core->ops && core->ops->restore_context) 1093 core->ops->restore_context(core->hw); 1094 1095 hlist_for_each_entry(child, &core->children, child_node) 1096 clk_core_restore_context(child); 1097 } 1098 1099 /** 1100 * clk_save_context - save clock context for poweroff 1101 * 1102 * Saves the context of the clock register for powerstates in which the 1103 * contents of the registers will be lost. Occurs deep within the suspend 1104 * code. Returns 0 on success. 1105 */ 1106 int clk_save_context(void) 1107 { 1108 struct clk_core *clk; 1109 int ret; 1110 1111 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1112 ret = clk_core_save_context(clk); 1113 if (ret < 0) 1114 return ret; 1115 } 1116 1117 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1118 ret = clk_core_save_context(clk); 1119 if (ret < 0) 1120 return ret; 1121 } 1122 1123 return 0; 1124 } 1125 EXPORT_SYMBOL_GPL(clk_save_context); 1126 1127 /** 1128 * clk_restore_context - restore clock context after poweroff 1129 * 1130 * Restore the saved clock context upon resume. 1131 * 1132 */ 1133 void clk_restore_context(void) 1134 { 1135 struct clk_core *core; 1136 1137 hlist_for_each_entry(core, &clk_root_list, child_node) 1138 clk_core_restore_context(core); 1139 1140 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1141 clk_core_restore_context(core); 1142 } 1143 EXPORT_SYMBOL_GPL(clk_restore_context); 1144 1145 /** 1146 * clk_enable - ungate a clock 1147 * @clk: the clk being ungated 1148 * 1149 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1150 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1151 * if the operation will never sleep. One example is a SoC-internal clk which 1152 * is controlled via simple register writes. In the complex case a clk ungate 1153 * operation may require a fast and a slow part. It is this reason that 1154 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1155 * must be called before clk_enable. Returns 0 on success, -EERROR 1156 * otherwise. 1157 */ 1158 int clk_enable(struct clk *clk) 1159 { 1160 if (!clk) 1161 return 0; 1162 1163 return clk_core_enable_lock(clk->core); 1164 } 1165 EXPORT_SYMBOL_GPL(clk_enable); 1166 1167 static int clk_core_prepare_enable(struct clk_core *core) 1168 { 1169 int ret; 1170 1171 ret = clk_core_prepare_lock(core); 1172 if (ret) 1173 return ret; 1174 1175 ret = clk_core_enable_lock(core); 1176 if (ret) 1177 clk_core_unprepare_lock(core); 1178 1179 return ret; 1180 } 1181 1182 static void clk_core_disable_unprepare(struct clk_core *core) 1183 { 1184 clk_core_disable_lock(core); 1185 clk_core_unprepare_lock(core); 1186 } 1187 1188 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1189 { 1190 struct clk_core *child; 1191 1192 lockdep_assert_held(&prepare_lock); 1193 1194 hlist_for_each_entry(child, &core->children, child_node) 1195 clk_unprepare_unused_subtree(child); 1196 1197 if (core->prepare_count) 1198 return; 1199 1200 if (core->flags & CLK_IGNORE_UNUSED) 1201 return; 1202 1203 if (clk_pm_runtime_get(core)) 1204 return; 1205 1206 if (clk_core_is_prepared(core)) { 1207 trace_clk_unprepare(core); 1208 if (core->ops->unprepare_unused) 1209 core->ops->unprepare_unused(core->hw); 1210 else if (core->ops->unprepare) 1211 core->ops->unprepare(core->hw); 1212 trace_clk_unprepare_complete(core); 1213 } 1214 1215 clk_pm_runtime_put(core); 1216 } 1217 1218 static void __init clk_disable_unused_subtree(struct clk_core *core) 1219 { 1220 struct clk_core *child; 1221 unsigned long flags; 1222 1223 lockdep_assert_held(&prepare_lock); 1224 1225 hlist_for_each_entry(child, &core->children, child_node) 1226 clk_disable_unused_subtree(child); 1227 1228 if (core->flags & CLK_OPS_PARENT_ENABLE) 1229 clk_core_prepare_enable(core->parent); 1230 1231 if (clk_pm_runtime_get(core)) 1232 goto unprepare_out; 1233 1234 flags = clk_enable_lock(); 1235 1236 if (core->enable_count) 1237 goto unlock_out; 1238 1239 if (core->flags & CLK_IGNORE_UNUSED) 1240 goto unlock_out; 1241 1242 /* 1243 * some gate clocks have special needs during the disable-unused 1244 * sequence. call .disable_unused if available, otherwise fall 1245 * back to .disable 1246 */ 1247 if (clk_core_is_enabled(core)) { 1248 trace_clk_disable(core); 1249 if (core->ops->disable_unused) 1250 core->ops->disable_unused(core->hw); 1251 else if (core->ops->disable) 1252 core->ops->disable(core->hw); 1253 trace_clk_disable_complete(core); 1254 } 1255 1256 unlock_out: 1257 clk_enable_unlock(flags); 1258 clk_pm_runtime_put(core); 1259 unprepare_out: 1260 if (core->flags & CLK_OPS_PARENT_ENABLE) 1261 clk_core_disable_unprepare(core->parent); 1262 } 1263 1264 static bool clk_ignore_unused __initdata; 1265 static int __init clk_ignore_unused_setup(char *__unused) 1266 { 1267 clk_ignore_unused = true; 1268 return 1; 1269 } 1270 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1271 1272 static int __init clk_disable_unused(void) 1273 { 1274 struct clk_core *core; 1275 1276 if (clk_ignore_unused) { 1277 pr_warn("clk: Not disabling unused clocks\n"); 1278 return 0; 1279 } 1280 1281 clk_prepare_lock(); 1282 1283 hlist_for_each_entry(core, &clk_root_list, child_node) 1284 clk_disable_unused_subtree(core); 1285 1286 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1287 clk_disable_unused_subtree(core); 1288 1289 hlist_for_each_entry(core, &clk_root_list, child_node) 1290 clk_unprepare_unused_subtree(core); 1291 1292 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1293 clk_unprepare_unused_subtree(core); 1294 1295 clk_prepare_unlock(); 1296 1297 return 0; 1298 } 1299 late_initcall_sync(clk_disable_unused); 1300 1301 static int clk_core_determine_round_nolock(struct clk_core *core, 1302 struct clk_rate_request *req) 1303 { 1304 long rate; 1305 1306 lockdep_assert_held(&prepare_lock); 1307 1308 if (!core) 1309 return 0; 1310 1311 /* 1312 * At this point, core protection will be disabled if 1313 * - if the provider is not protected at all 1314 * - if the calling consumer is the only one which has exclusivity 1315 * over the provider 1316 */ 1317 if (clk_core_rate_is_protected(core)) { 1318 req->rate = core->rate; 1319 } else if (core->ops->determine_rate) { 1320 return core->ops->determine_rate(core->hw, req); 1321 } else if (core->ops->round_rate) { 1322 rate = core->ops->round_rate(core->hw, req->rate, 1323 &req->best_parent_rate); 1324 if (rate < 0) 1325 return rate; 1326 1327 req->rate = rate; 1328 } else { 1329 return -EINVAL; 1330 } 1331 1332 return 0; 1333 } 1334 1335 static void clk_core_init_rate_req(struct clk_core * const core, 1336 struct clk_rate_request *req) 1337 { 1338 struct clk_core *parent; 1339 1340 if (WARN_ON(!core || !req)) 1341 return; 1342 1343 parent = core->parent; 1344 if (parent) { 1345 req->best_parent_hw = parent->hw; 1346 req->best_parent_rate = parent->rate; 1347 } else { 1348 req->best_parent_hw = NULL; 1349 req->best_parent_rate = 0; 1350 } 1351 } 1352 1353 static bool clk_core_can_round(struct clk_core * const core) 1354 { 1355 return core->ops->determine_rate || core->ops->round_rate; 1356 } 1357 1358 static int clk_core_round_rate_nolock(struct clk_core *core, 1359 struct clk_rate_request *req) 1360 { 1361 lockdep_assert_held(&prepare_lock); 1362 1363 if (!core) { 1364 req->rate = 0; 1365 return 0; 1366 } 1367 1368 clk_core_init_rate_req(core, req); 1369 1370 if (clk_core_can_round(core)) 1371 return clk_core_determine_round_nolock(core, req); 1372 else if (core->flags & CLK_SET_RATE_PARENT) 1373 return clk_core_round_rate_nolock(core->parent, req); 1374 1375 req->rate = core->rate; 1376 return 0; 1377 } 1378 1379 /** 1380 * __clk_determine_rate - get the closest rate actually supported by a clock 1381 * @hw: determine the rate of this clock 1382 * @req: target rate request 1383 * 1384 * Useful for clk_ops such as .set_rate and .determine_rate. 1385 */ 1386 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1387 { 1388 if (!hw) { 1389 req->rate = 0; 1390 return 0; 1391 } 1392 1393 return clk_core_round_rate_nolock(hw->core, req); 1394 } 1395 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1396 1397 /** 1398 * clk_hw_round_rate() - round the given rate for a hw clk 1399 * @hw: the hw clk for which we are rounding a rate 1400 * @rate: the rate which is to be rounded 1401 * 1402 * Takes in a rate as input and rounds it to a rate that the clk can actually 1403 * use. 1404 * 1405 * Context: prepare_lock must be held. 1406 * For clk providers to call from within clk_ops such as .round_rate, 1407 * .determine_rate. 1408 * 1409 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1410 * else returns the parent rate. 1411 */ 1412 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1413 { 1414 int ret; 1415 struct clk_rate_request req; 1416 1417 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1418 req.rate = rate; 1419 1420 ret = clk_core_round_rate_nolock(hw->core, &req); 1421 if (ret) 1422 return 0; 1423 1424 return req.rate; 1425 } 1426 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1427 1428 /** 1429 * clk_round_rate - round the given rate for a clk 1430 * @clk: the clk for which we are rounding a rate 1431 * @rate: the rate which is to be rounded 1432 * 1433 * Takes in a rate as input and rounds it to a rate that the clk can actually 1434 * use which is then returned. If clk doesn't support round_rate operation 1435 * then the parent rate is returned. 1436 */ 1437 long clk_round_rate(struct clk *clk, unsigned long rate) 1438 { 1439 struct clk_rate_request req; 1440 int ret; 1441 1442 if (!clk) 1443 return 0; 1444 1445 clk_prepare_lock(); 1446 1447 if (clk->exclusive_count) 1448 clk_core_rate_unprotect(clk->core); 1449 1450 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1451 req.rate = rate; 1452 1453 ret = clk_core_round_rate_nolock(clk->core, &req); 1454 1455 if (clk->exclusive_count) 1456 clk_core_rate_protect(clk->core); 1457 1458 clk_prepare_unlock(); 1459 1460 if (ret) 1461 return ret; 1462 1463 return req.rate; 1464 } 1465 EXPORT_SYMBOL_GPL(clk_round_rate); 1466 1467 /** 1468 * __clk_notify - call clk notifier chain 1469 * @core: clk that is changing rate 1470 * @msg: clk notifier type (see include/linux/clk.h) 1471 * @old_rate: old clk rate 1472 * @new_rate: new clk rate 1473 * 1474 * Triggers a notifier call chain on the clk rate-change notification 1475 * for 'clk'. Passes a pointer to the struct clk and the previous 1476 * and current rates to the notifier callback. Intended to be called by 1477 * internal clock code only. Returns NOTIFY_DONE from the last driver 1478 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1479 * a driver returns that. 1480 */ 1481 static int __clk_notify(struct clk_core *core, unsigned long msg, 1482 unsigned long old_rate, unsigned long new_rate) 1483 { 1484 struct clk_notifier *cn; 1485 struct clk_notifier_data cnd; 1486 int ret = NOTIFY_DONE; 1487 1488 cnd.old_rate = old_rate; 1489 cnd.new_rate = new_rate; 1490 1491 list_for_each_entry(cn, &clk_notifier_list, node) { 1492 if (cn->clk->core == core) { 1493 cnd.clk = cn->clk; 1494 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1495 &cnd); 1496 if (ret & NOTIFY_STOP_MASK) 1497 return ret; 1498 } 1499 } 1500 1501 return ret; 1502 } 1503 1504 /** 1505 * __clk_recalc_accuracies 1506 * @core: first clk in the subtree 1507 * 1508 * Walks the subtree of clks starting with clk and recalculates accuracies as 1509 * it goes. Note that if a clk does not implement the .recalc_accuracy 1510 * callback then it is assumed that the clock will take on the accuracy of its 1511 * parent. 1512 */ 1513 static void __clk_recalc_accuracies(struct clk_core *core) 1514 { 1515 unsigned long parent_accuracy = 0; 1516 struct clk_core *child; 1517 1518 lockdep_assert_held(&prepare_lock); 1519 1520 if (core->parent) 1521 parent_accuracy = core->parent->accuracy; 1522 1523 if (core->ops->recalc_accuracy) 1524 core->accuracy = core->ops->recalc_accuracy(core->hw, 1525 parent_accuracy); 1526 else 1527 core->accuracy = parent_accuracy; 1528 1529 hlist_for_each_entry(child, &core->children, child_node) 1530 __clk_recalc_accuracies(child); 1531 } 1532 1533 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1534 { 1535 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1536 __clk_recalc_accuracies(core); 1537 1538 return clk_core_get_accuracy_no_lock(core); 1539 } 1540 1541 /** 1542 * clk_get_accuracy - return the accuracy of clk 1543 * @clk: the clk whose accuracy is being returned 1544 * 1545 * Simply returns the cached accuracy of the clk, unless 1546 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1547 * issued. 1548 * If clk is NULL then returns 0. 1549 */ 1550 long clk_get_accuracy(struct clk *clk) 1551 { 1552 long accuracy; 1553 1554 if (!clk) 1555 return 0; 1556 1557 clk_prepare_lock(); 1558 accuracy = clk_core_get_accuracy_recalc(clk->core); 1559 clk_prepare_unlock(); 1560 1561 return accuracy; 1562 } 1563 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1564 1565 static unsigned long clk_recalc(struct clk_core *core, 1566 unsigned long parent_rate) 1567 { 1568 unsigned long rate = parent_rate; 1569 1570 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1571 rate = core->ops->recalc_rate(core->hw, parent_rate); 1572 clk_pm_runtime_put(core); 1573 } 1574 return rate; 1575 } 1576 1577 /** 1578 * __clk_recalc_rates 1579 * @core: first clk in the subtree 1580 * @msg: notification type (see include/linux/clk.h) 1581 * 1582 * Walks the subtree of clks starting with clk and recalculates rates as it 1583 * goes. Note that if a clk does not implement the .recalc_rate callback then 1584 * it is assumed that the clock will take on the rate of its parent. 1585 * 1586 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1587 * if necessary. 1588 */ 1589 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1590 { 1591 unsigned long old_rate; 1592 unsigned long parent_rate = 0; 1593 struct clk_core *child; 1594 1595 lockdep_assert_held(&prepare_lock); 1596 1597 old_rate = core->rate; 1598 1599 if (core->parent) 1600 parent_rate = core->parent->rate; 1601 1602 core->rate = clk_recalc(core, parent_rate); 1603 1604 /* 1605 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1606 * & ABORT_RATE_CHANGE notifiers 1607 */ 1608 if (core->notifier_count && msg) 1609 __clk_notify(core, msg, old_rate, core->rate); 1610 1611 hlist_for_each_entry(child, &core->children, child_node) 1612 __clk_recalc_rates(child, msg); 1613 } 1614 1615 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1616 { 1617 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1618 __clk_recalc_rates(core, 0); 1619 1620 return clk_core_get_rate_nolock(core); 1621 } 1622 1623 /** 1624 * clk_get_rate - return the rate of clk 1625 * @clk: the clk whose rate is being returned 1626 * 1627 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1628 * is set, which means a recalc_rate will be issued. 1629 * If clk is NULL then returns 0. 1630 */ 1631 unsigned long clk_get_rate(struct clk *clk) 1632 { 1633 unsigned long rate; 1634 1635 if (!clk) 1636 return 0; 1637 1638 clk_prepare_lock(); 1639 rate = clk_core_get_rate_recalc(clk->core); 1640 clk_prepare_unlock(); 1641 1642 return rate; 1643 } 1644 EXPORT_SYMBOL_GPL(clk_get_rate); 1645 1646 static int clk_fetch_parent_index(struct clk_core *core, 1647 struct clk_core *parent) 1648 { 1649 int i; 1650 1651 if (!parent) 1652 return -EINVAL; 1653 1654 for (i = 0; i < core->num_parents; i++) { 1655 /* Found it first try! */ 1656 if (core->parents[i].core == parent) 1657 return i; 1658 1659 /* Something else is here, so keep looking */ 1660 if (core->parents[i].core) 1661 continue; 1662 1663 /* Maybe core hasn't been cached but the hw is all we know? */ 1664 if (core->parents[i].hw) { 1665 if (core->parents[i].hw == parent->hw) 1666 break; 1667 1668 /* Didn't match, but we're expecting a clk_hw */ 1669 continue; 1670 } 1671 1672 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1673 if (parent == clk_core_get(core, i)) 1674 break; 1675 1676 /* Fallback to comparing globally unique names */ 1677 if (core->parents[i].name && 1678 !strcmp(parent->name, core->parents[i].name)) 1679 break; 1680 } 1681 1682 if (i == core->num_parents) 1683 return -EINVAL; 1684 1685 core->parents[i].core = parent; 1686 return i; 1687 } 1688 1689 /** 1690 * clk_hw_get_parent_index - return the index of the parent clock 1691 * @hw: clk_hw associated with the clk being consumed 1692 * 1693 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1694 * clock does not have a current parent. 1695 */ 1696 int clk_hw_get_parent_index(struct clk_hw *hw) 1697 { 1698 struct clk_hw *parent = clk_hw_get_parent(hw); 1699 1700 if (WARN_ON(parent == NULL)) 1701 return -EINVAL; 1702 1703 return clk_fetch_parent_index(hw->core, parent->core); 1704 } 1705 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1706 1707 /* 1708 * Update the orphan status of @core and all its children. 1709 */ 1710 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1711 { 1712 struct clk_core *child; 1713 1714 core->orphan = is_orphan; 1715 1716 hlist_for_each_entry(child, &core->children, child_node) 1717 clk_core_update_orphan_status(child, is_orphan); 1718 } 1719 1720 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1721 { 1722 bool was_orphan = core->orphan; 1723 1724 hlist_del(&core->child_node); 1725 1726 if (new_parent) { 1727 bool becomes_orphan = new_parent->orphan; 1728 1729 /* avoid duplicate POST_RATE_CHANGE notifications */ 1730 if (new_parent->new_child == core) 1731 new_parent->new_child = NULL; 1732 1733 hlist_add_head(&core->child_node, &new_parent->children); 1734 1735 if (was_orphan != becomes_orphan) 1736 clk_core_update_orphan_status(core, becomes_orphan); 1737 } else { 1738 hlist_add_head(&core->child_node, &clk_orphan_list); 1739 if (!was_orphan) 1740 clk_core_update_orphan_status(core, true); 1741 } 1742 1743 core->parent = new_parent; 1744 } 1745 1746 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1747 struct clk_core *parent) 1748 { 1749 unsigned long flags; 1750 struct clk_core *old_parent = core->parent; 1751 1752 /* 1753 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1754 * 1755 * 2. Migrate prepare state between parents and prevent race with 1756 * clk_enable(). 1757 * 1758 * If the clock is not prepared, then a race with 1759 * clk_enable/disable() is impossible since we already have the 1760 * prepare lock (future calls to clk_enable() need to be preceded by 1761 * a clk_prepare()). 1762 * 1763 * If the clock is prepared, migrate the prepared state to the new 1764 * parent and also protect against a race with clk_enable() by 1765 * forcing the clock and the new parent on. This ensures that all 1766 * future calls to clk_enable() are practically NOPs with respect to 1767 * hardware and software states. 1768 * 1769 * See also: Comment for clk_set_parent() below. 1770 */ 1771 1772 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1773 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1774 clk_core_prepare_enable(old_parent); 1775 clk_core_prepare_enable(parent); 1776 } 1777 1778 /* migrate prepare count if > 0 */ 1779 if (core->prepare_count) { 1780 clk_core_prepare_enable(parent); 1781 clk_core_enable_lock(core); 1782 } 1783 1784 /* update the clk tree topology */ 1785 flags = clk_enable_lock(); 1786 clk_reparent(core, parent); 1787 clk_enable_unlock(flags); 1788 1789 return old_parent; 1790 } 1791 1792 static void __clk_set_parent_after(struct clk_core *core, 1793 struct clk_core *parent, 1794 struct clk_core *old_parent) 1795 { 1796 /* 1797 * Finish the migration of prepare state and undo the changes done 1798 * for preventing a race with clk_enable(). 1799 */ 1800 if (core->prepare_count) { 1801 clk_core_disable_lock(core); 1802 clk_core_disable_unprepare(old_parent); 1803 } 1804 1805 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1806 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1807 clk_core_disable_unprepare(parent); 1808 clk_core_disable_unprepare(old_parent); 1809 } 1810 } 1811 1812 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1813 u8 p_index) 1814 { 1815 unsigned long flags; 1816 int ret = 0; 1817 struct clk_core *old_parent; 1818 1819 old_parent = __clk_set_parent_before(core, parent); 1820 1821 trace_clk_set_parent(core, parent); 1822 1823 /* change clock input source */ 1824 if (parent && core->ops->set_parent) 1825 ret = core->ops->set_parent(core->hw, p_index); 1826 1827 trace_clk_set_parent_complete(core, parent); 1828 1829 if (ret) { 1830 flags = clk_enable_lock(); 1831 clk_reparent(core, old_parent); 1832 clk_enable_unlock(flags); 1833 __clk_set_parent_after(core, old_parent, parent); 1834 1835 return ret; 1836 } 1837 1838 __clk_set_parent_after(core, parent, old_parent); 1839 1840 return 0; 1841 } 1842 1843 /** 1844 * __clk_speculate_rates 1845 * @core: first clk in the subtree 1846 * @parent_rate: the "future" rate of clk's parent 1847 * 1848 * Walks the subtree of clks starting with clk, speculating rates as it 1849 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1850 * 1851 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1852 * pre-rate change notifications and returns early if no clks in the 1853 * subtree have subscribed to the notifications. Note that if a clk does not 1854 * implement the .recalc_rate callback then it is assumed that the clock will 1855 * take on the rate of its parent. 1856 */ 1857 static int __clk_speculate_rates(struct clk_core *core, 1858 unsigned long parent_rate) 1859 { 1860 struct clk_core *child; 1861 unsigned long new_rate; 1862 int ret = NOTIFY_DONE; 1863 1864 lockdep_assert_held(&prepare_lock); 1865 1866 new_rate = clk_recalc(core, parent_rate); 1867 1868 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1869 if (core->notifier_count) 1870 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1871 1872 if (ret & NOTIFY_STOP_MASK) { 1873 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1874 __func__, core->name, ret); 1875 goto out; 1876 } 1877 1878 hlist_for_each_entry(child, &core->children, child_node) { 1879 ret = __clk_speculate_rates(child, new_rate); 1880 if (ret & NOTIFY_STOP_MASK) 1881 break; 1882 } 1883 1884 out: 1885 return ret; 1886 } 1887 1888 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1889 struct clk_core *new_parent, u8 p_index) 1890 { 1891 struct clk_core *child; 1892 1893 core->new_rate = new_rate; 1894 core->new_parent = new_parent; 1895 core->new_parent_index = p_index; 1896 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1897 core->new_child = NULL; 1898 if (new_parent && new_parent != core->parent) 1899 new_parent->new_child = core; 1900 1901 hlist_for_each_entry(child, &core->children, child_node) { 1902 child->new_rate = clk_recalc(child, new_rate); 1903 clk_calc_subtree(child, child->new_rate, NULL, 0); 1904 } 1905 } 1906 1907 /* 1908 * calculate the new rates returning the topmost clock that has to be 1909 * changed. 1910 */ 1911 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1912 unsigned long rate) 1913 { 1914 struct clk_core *top = core; 1915 struct clk_core *old_parent, *parent; 1916 unsigned long best_parent_rate = 0; 1917 unsigned long new_rate; 1918 unsigned long min_rate; 1919 unsigned long max_rate; 1920 int p_index = 0; 1921 long ret; 1922 1923 /* sanity */ 1924 if (IS_ERR_OR_NULL(core)) 1925 return NULL; 1926 1927 /* save parent rate, if it exists */ 1928 parent = old_parent = core->parent; 1929 if (parent) 1930 best_parent_rate = parent->rate; 1931 1932 clk_core_get_boundaries(core, &min_rate, &max_rate); 1933 1934 /* find the closest rate and parent clk/rate */ 1935 if (clk_core_can_round(core)) { 1936 struct clk_rate_request req; 1937 1938 req.rate = rate; 1939 req.min_rate = min_rate; 1940 req.max_rate = max_rate; 1941 1942 clk_core_init_rate_req(core, &req); 1943 1944 ret = clk_core_determine_round_nolock(core, &req); 1945 if (ret < 0) 1946 return NULL; 1947 1948 best_parent_rate = req.best_parent_rate; 1949 new_rate = req.rate; 1950 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1951 1952 if (new_rate < min_rate || new_rate > max_rate) 1953 return NULL; 1954 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1955 /* pass-through clock without adjustable parent */ 1956 core->new_rate = core->rate; 1957 return NULL; 1958 } else { 1959 /* pass-through clock with adjustable parent */ 1960 top = clk_calc_new_rates(parent, rate); 1961 new_rate = parent->new_rate; 1962 goto out; 1963 } 1964 1965 /* some clocks must be gated to change parent */ 1966 if (parent != old_parent && 1967 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1968 pr_debug("%s: %s not gated but wants to reparent\n", 1969 __func__, core->name); 1970 return NULL; 1971 } 1972 1973 /* try finding the new parent index */ 1974 if (parent && core->num_parents > 1) { 1975 p_index = clk_fetch_parent_index(core, parent); 1976 if (p_index < 0) { 1977 pr_debug("%s: clk %s can not be parent of clk %s\n", 1978 __func__, parent->name, core->name); 1979 return NULL; 1980 } 1981 } 1982 1983 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1984 best_parent_rate != parent->rate) 1985 top = clk_calc_new_rates(parent, best_parent_rate); 1986 1987 out: 1988 clk_calc_subtree(core, new_rate, parent, p_index); 1989 1990 return top; 1991 } 1992 1993 /* 1994 * Notify about rate changes in a subtree. Always walk down the whole tree 1995 * so that in case of an error we can walk down the whole tree again and 1996 * abort the change. 1997 */ 1998 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1999 unsigned long event) 2000 { 2001 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2002 int ret = NOTIFY_DONE; 2003 2004 if (core->rate == core->new_rate) 2005 return NULL; 2006 2007 if (core->notifier_count) { 2008 ret = __clk_notify(core, event, core->rate, core->new_rate); 2009 if (ret & NOTIFY_STOP_MASK) 2010 fail_clk = core; 2011 } 2012 2013 hlist_for_each_entry(child, &core->children, child_node) { 2014 /* Skip children who will be reparented to another clock */ 2015 if (child->new_parent && child->new_parent != core) 2016 continue; 2017 tmp_clk = clk_propagate_rate_change(child, event); 2018 if (tmp_clk) 2019 fail_clk = tmp_clk; 2020 } 2021 2022 /* handle the new child who might not be in core->children yet */ 2023 if (core->new_child) { 2024 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2025 if (tmp_clk) 2026 fail_clk = tmp_clk; 2027 } 2028 2029 return fail_clk; 2030 } 2031 2032 /* 2033 * walk down a subtree and set the new rates notifying the rate 2034 * change on the way 2035 */ 2036 static void clk_change_rate(struct clk_core *core) 2037 { 2038 struct clk_core *child; 2039 struct hlist_node *tmp; 2040 unsigned long old_rate; 2041 unsigned long best_parent_rate = 0; 2042 bool skip_set_rate = false; 2043 struct clk_core *old_parent; 2044 struct clk_core *parent = NULL; 2045 2046 old_rate = core->rate; 2047 2048 if (core->new_parent) { 2049 parent = core->new_parent; 2050 best_parent_rate = core->new_parent->rate; 2051 } else if (core->parent) { 2052 parent = core->parent; 2053 best_parent_rate = core->parent->rate; 2054 } 2055 2056 if (clk_pm_runtime_get(core)) 2057 return; 2058 2059 if (core->flags & CLK_SET_RATE_UNGATE) { 2060 unsigned long flags; 2061 2062 clk_core_prepare(core); 2063 flags = clk_enable_lock(); 2064 clk_core_enable(core); 2065 clk_enable_unlock(flags); 2066 } 2067 2068 if (core->new_parent && core->new_parent != core->parent) { 2069 old_parent = __clk_set_parent_before(core, core->new_parent); 2070 trace_clk_set_parent(core, core->new_parent); 2071 2072 if (core->ops->set_rate_and_parent) { 2073 skip_set_rate = true; 2074 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2075 best_parent_rate, 2076 core->new_parent_index); 2077 } else if (core->ops->set_parent) { 2078 core->ops->set_parent(core->hw, core->new_parent_index); 2079 } 2080 2081 trace_clk_set_parent_complete(core, core->new_parent); 2082 __clk_set_parent_after(core, core->new_parent, old_parent); 2083 } 2084 2085 if (core->flags & CLK_OPS_PARENT_ENABLE) 2086 clk_core_prepare_enable(parent); 2087 2088 trace_clk_set_rate(core, core->new_rate); 2089 2090 if (!skip_set_rate && core->ops->set_rate) 2091 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2092 2093 trace_clk_set_rate_complete(core, core->new_rate); 2094 2095 core->rate = clk_recalc(core, best_parent_rate); 2096 2097 if (core->flags & CLK_SET_RATE_UNGATE) { 2098 unsigned long flags; 2099 2100 flags = clk_enable_lock(); 2101 clk_core_disable(core); 2102 clk_enable_unlock(flags); 2103 clk_core_unprepare(core); 2104 } 2105 2106 if (core->flags & CLK_OPS_PARENT_ENABLE) 2107 clk_core_disable_unprepare(parent); 2108 2109 if (core->notifier_count && old_rate != core->rate) 2110 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2111 2112 if (core->flags & CLK_RECALC_NEW_RATES) 2113 (void)clk_calc_new_rates(core, core->new_rate); 2114 2115 /* 2116 * Use safe iteration, as change_rate can actually swap parents 2117 * for certain clock types. 2118 */ 2119 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2120 /* Skip children who will be reparented to another clock */ 2121 if (child->new_parent && child->new_parent != core) 2122 continue; 2123 clk_change_rate(child); 2124 } 2125 2126 /* handle the new child who might not be in core->children yet */ 2127 if (core->new_child) 2128 clk_change_rate(core->new_child); 2129 2130 clk_pm_runtime_put(core); 2131 } 2132 2133 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2134 unsigned long req_rate) 2135 { 2136 int ret, cnt; 2137 struct clk_rate_request req; 2138 2139 lockdep_assert_held(&prepare_lock); 2140 2141 if (!core) 2142 return 0; 2143 2144 /* simulate what the rate would be if it could be freely set */ 2145 cnt = clk_core_rate_nuke_protect(core); 2146 if (cnt < 0) 2147 return cnt; 2148 2149 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 2150 req.rate = req_rate; 2151 2152 ret = clk_core_round_rate_nolock(core, &req); 2153 2154 /* restore the protection */ 2155 clk_core_rate_restore_protect(core, cnt); 2156 2157 return ret ? 0 : req.rate; 2158 } 2159 2160 static int clk_core_set_rate_nolock(struct clk_core *core, 2161 unsigned long req_rate) 2162 { 2163 struct clk_core *top, *fail_clk; 2164 unsigned long rate; 2165 int ret = 0; 2166 2167 if (!core) 2168 return 0; 2169 2170 rate = clk_core_req_round_rate_nolock(core, req_rate); 2171 2172 /* bail early if nothing to do */ 2173 if (rate == clk_core_get_rate_nolock(core)) 2174 return 0; 2175 2176 /* fail on a direct rate set of a protected provider */ 2177 if (clk_core_rate_is_protected(core)) 2178 return -EBUSY; 2179 2180 /* calculate new rates and get the topmost changed clock */ 2181 top = clk_calc_new_rates(core, req_rate); 2182 if (!top) 2183 return -EINVAL; 2184 2185 ret = clk_pm_runtime_get(core); 2186 if (ret) 2187 return ret; 2188 2189 /* notify that we are about to change rates */ 2190 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2191 if (fail_clk) { 2192 pr_debug("%s: failed to set %s rate\n", __func__, 2193 fail_clk->name); 2194 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2195 ret = -EBUSY; 2196 goto err; 2197 } 2198 2199 /* change the rates */ 2200 clk_change_rate(top); 2201 2202 core->req_rate = req_rate; 2203 err: 2204 clk_pm_runtime_put(core); 2205 2206 return ret; 2207 } 2208 2209 /** 2210 * clk_set_rate - specify a new rate for clk 2211 * @clk: the clk whose rate is being changed 2212 * @rate: the new rate for clk 2213 * 2214 * In the simplest case clk_set_rate will only adjust the rate of clk. 2215 * 2216 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2217 * propagate up to clk's parent; whether or not this happens depends on the 2218 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2219 * after calling .round_rate then upstream parent propagation is ignored. If 2220 * *parent_rate comes back with a new rate for clk's parent then we propagate 2221 * up to clk's parent and set its rate. Upward propagation will continue 2222 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2223 * .round_rate stops requesting changes to clk's parent_rate. 2224 * 2225 * Rate changes are accomplished via tree traversal that also recalculates the 2226 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2227 * 2228 * Returns 0 on success, -EERROR otherwise. 2229 */ 2230 int clk_set_rate(struct clk *clk, unsigned long rate) 2231 { 2232 int ret; 2233 2234 if (!clk) 2235 return 0; 2236 2237 /* prevent racing with updates to the clock topology */ 2238 clk_prepare_lock(); 2239 2240 if (clk->exclusive_count) 2241 clk_core_rate_unprotect(clk->core); 2242 2243 ret = clk_core_set_rate_nolock(clk->core, rate); 2244 2245 if (clk->exclusive_count) 2246 clk_core_rate_protect(clk->core); 2247 2248 clk_prepare_unlock(); 2249 2250 return ret; 2251 } 2252 EXPORT_SYMBOL_GPL(clk_set_rate); 2253 2254 /** 2255 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2256 * @clk: the clk whose rate is being changed 2257 * @rate: the new rate for clk 2258 * 2259 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2260 * within a critical section 2261 * 2262 * This can be used initially to ensure that at least 1 consumer is 2263 * satisfied when several consumers are competing for exclusivity over the 2264 * same clock provider. 2265 * 2266 * The exclusivity is not applied if setting the rate failed. 2267 * 2268 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2269 * clk_rate_exclusive_put(). 2270 * 2271 * Returns 0 on success, -EERROR otherwise. 2272 */ 2273 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2274 { 2275 int ret; 2276 2277 if (!clk) 2278 return 0; 2279 2280 /* prevent racing with updates to the clock topology */ 2281 clk_prepare_lock(); 2282 2283 /* 2284 * The temporary protection removal is not here, on purpose 2285 * This function is meant to be used instead of clk_rate_protect, 2286 * so before the consumer code path protect the clock provider 2287 */ 2288 2289 ret = clk_core_set_rate_nolock(clk->core, rate); 2290 if (!ret) { 2291 clk_core_rate_protect(clk->core); 2292 clk->exclusive_count++; 2293 } 2294 2295 clk_prepare_unlock(); 2296 2297 return ret; 2298 } 2299 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2300 2301 /** 2302 * clk_set_rate_range - set a rate range for a clock source 2303 * @clk: clock source 2304 * @min: desired minimum clock rate in Hz, inclusive 2305 * @max: desired maximum clock rate in Hz, inclusive 2306 * 2307 * Returns success (0) or negative errno. 2308 */ 2309 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2310 { 2311 int ret = 0; 2312 unsigned long old_min, old_max, rate; 2313 2314 if (!clk) 2315 return 0; 2316 2317 trace_clk_set_rate_range(clk->core, min, max); 2318 2319 if (min > max) { 2320 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2321 __func__, clk->core->name, clk->dev_id, clk->con_id, 2322 min, max); 2323 return -EINVAL; 2324 } 2325 2326 clk_prepare_lock(); 2327 2328 if (clk->exclusive_count) 2329 clk_core_rate_unprotect(clk->core); 2330 2331 /* Save the current values in case we need to rollback the change */ 2332 old_min = clk->min_rate; 2333 old_max = clk->max_rate; 2334 clk->min_rate = min; 2335 clk->max_rate = max; 2336 2337 rate = clk_core_get_rate_nolock(clk->core); 2338 if (rate < min || rate > max) { 2339 /* 2340 * FIXME: 2341 * We are in bit of trouble here, current rate is outside the 2342 * the requested range. We are going try to request appropriate 2343 * range boundary but there is a catch. It may fail for the 2344 * usual reason (clock broken, clock protected, etc) but also 2345 * because: 2346 * - round_rate() was not favorable and fell on the wrong 2347 * side of the boundary 2348 * - the determine_rate() callback does not really check for 2349 * this corner case when determining the rate 2350 */ 2351 2352 if (rate < min) 2353 rate = min; 2354 else 2355 rate = max; 2356 2357 ret = clk_core_set_rate_nolock(clk->core, rate); 2358 if (ret) { 2359 /* rollback the changes */ 2360 clk->min_rate = old_min; 2361 clk->max_rate = old_max; 2362 } 2363 } 2364 2365 if (clk->exclusive_count) 2366 clk_core_rate_protect(clk->core); 2367 2368 clk_prepare_unlock(); 2369 2370 return ret; 2371 } 2372 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2373 2374 /** 2375 * clk_set_min_rate - set a minimum clock rate for a clock source 2376 * @clk: clock source 2377 * @rate: desired minimum clock rate in Hz, inclusive 2378 * 2379 * Returns success (0) or negative errno. 2380 */ 2381 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2382 { 2383 if (!clk) 2384 return 0; 2385 2386 trace_clk_set_min_rate(clk->core, rate); 2387 2388 return clk_set_rate_range(clk, rate, clk->max_rate); 2389 } 2390 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2391 2392 /** 2393 * clk_set_max_rate - set a maximum clock rate for a clock source 2394 * @clk: clock source 2395 * @rate: desired maximum clock rate in Hz, inclusive 2396 * 2397 * Returns success (0) or negative errno. 2398 */ 2399 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2400 { 2401 if (!clk) 2402 return 0; 2403 2404 trace_clk_set_max_rate(clk->core, rate); 2405 2406 return clk_set_rate_range(clk, clk->min_rate, rate); 2407 } 2408 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2409 2410 /** 2411 * clk_get_parent - return the parent of a clk 2412 * @clk: the clk whose parent gets returned 2413 * 2414 * Simply returns clk->parent. Returns NULL if clk is NULL. 2415 */ 2416 struct clk *clk_get_parent(struct clk *clk) 2417 { 2418 struct clk *parent; 2419 2420 if (!clk) 2421 return NULL; 2422 2423 clk_prepare_lock(); 2424 /* TODO: Create a per-user clk and change callers to call clk_put */ 2425 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2426 clk_prepare_unlock(); 2427 2428 return parent; 2429 } 2430 EXPORT_SYMBOL_GPL(clk_get_parent); 2431 2432 static struct clk_core *__clk_init_parent(struct clk_core *core) 2433 { 2434 u8 index = 0; 2435 2436 if (core->num_parents > 1 && core->ops->get_parent) 2437 index = core->ops->get_parent(core->hw); 2438 2439 return clk_core_get_parent_by_index(core, index); 2440 } 2441 2442 static void clk_core_reparent(struct clk_core *core, 2443 struct clk_core *new_parent) 2444 { 2445 clk_reparent(core, new_parent); 2446 __clk_recalc_accuracies(core); 2447 __clk_recalc_rates(core, POST_RATE_CHANGE); 2448 } 2449 2450 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2451 { 2452 if (!hw) 2453 return; 2454 2455 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2456 } 2457 2458 /** 2459 * clk_has_parent - check if a clock is a possible parent for another 2460 * @clk: clock source 2461 * @parent: parent clock source 2462 * 2463 * This function can be used in drivers that need to check that a clock can be 2464 * the parent of another without actually changing the parent. 2465 * 2466 * Returns true if @parent is a possible parent for @clk, false otherwise. 2467 */ 2468 bool clk_has_parent(struct clk *clk, struct clk *parent) 2469 { 2470 struct clk_core *core, *parent_core; 2471 int i; 2472 2473 /* NULL clocks should be nops, so return success if either is NULL. */ 2474 if (!clk || !parent) 2475 return true; 2476 2477 core = clk->core; 2478 parent_core = parent->core; 2479 2480 /* Optimize for the case where the parent is already the parent. */ 2481 if (core->parent == parent_core) 2482 return true; 2483 2484 for (i = 0; i < core->num_parents; i++) 2485 if (!strcmp(core->parents[i].name, parent_core->name)) 2486 return true; 2487 2488 return false; 2489 } 2490 EXPORT_SYMBOL_GPL(clk_has_parent); 2491 2492 static int clk_core_set_parent_nolock(struct clk_core *core, 2493 struct clk_core *parent) 2494 { 2495 int ret = 0; 2496 int p_index = 0; 2497 unsigned long p_rate = 0; 2498 2499 lockdep_assert_held(&prepare_lock); 2500 2501 if (!core) 2502 return 0; 2503 2504 if (core->parent == parent) 2505 return 0; 2506 2507 /* verify ops for multi-parent clks */ 2508 if (core->num_parents > 1 && !core->ops->set_parent) 2509 return -EPERM; 2510 2511 /* check that we are allowed to re-parent if the clock is in use */ 2512 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2513 return -EBUSY; 2514 2515 if (clk_core_rate_is_protected(core)) 2516 return -EBUSY; 2517 2518 /* try finding the new parent index */ 2519 if (parent) { 2520 p_index = clk_fetch_parent_index(core, parent); 2521 if (p_index < 0) { 2522 pr_debug("%s: clk %s can not be parent of clk %s\n", 2523 __func__, parent->name, core->name); 2524 return p_index; 2525 } 2526 p_rate = parent->rate; 2527 } 2528 2529 ret = clk_pm_runtime_get(core); 2530 if (ret) 2531 return ret; 2532 2533 /* propagate PRE_RATE_CHANGE notifications */ 2534 ret = __clk_speculate_rates(core, p_rate); 2535 2536 /* abort if a driver objects */ 2537 if (ret & NOTIFY_STOP_MASK) 2538 goto runtime_put; 2539 2540 /* do the re-parent */ 2541 ret = __clk_set_parent(core, parent, p_index); 2542 2543 /* propagate rate an accuracy recalculation accordingly */ 2544 if (ret) { 2545 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2546 } else { 2547 __clk_recalc_rates(core, POST_RATE_CHANGE); 2548 __clk_recalc_accuracies(core); 2549 } 2550 2551 runtime_put: 2552 clk_pm_runtime_put(core); 2553 2554 return ret; 2555 } 2556 2557 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2558 { 2559 return clk_core_set_parent_nolock(hw->core, parent->core); 2560 } 2561 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2562 2563 /** 2564 * clk_set_parent - switch the parent of a mux clk 2565 * @clk: the mux clk whose input we are switching 2566 * @parent: the new input to clk 2567 * 2568 * Re-parent clk to use parent as its new input source. If clk is in 2569 * prepared state, the clk will get enabled for the duration of this call. If 2570 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2571 * that, the reparenting is glitchy in hardware, etc), use the 2572 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2573 * 2574 * After successfully changing clk's parent clk_set_parent will update the 2575 * clk topology, sysfs topology and propagate rate recalculation via 2576 * __clk_recalc_rates. 2577 * 2578 * Returns 0 on success, -EERROR otherwise. 2579 */ 2580 int clk_set_parent(struct clk *clk, struct clk *parent) 2581 { 2582 int ret; 2583 2584 if (!clk) 2585 return 0; 2586 2587 clk_prepare_lock(); 2588 2589 if (clk->exclusive_count) 2590 clk_core_rate_unprotect(clk->core); 2591 2592 ret = clk_core_set_parent_nolock(clk->core, 2593 parent ? parent->core : NULL); 2594 2595 if (clk->exclusive_count) 2596 clk_core_rate_protect(clk->core); 2597 2598 clk_prepare_unlock(); 2599 2600 return ret; 2601 } 2602 EXPORT_SYMBOL_GPL(clk_set_parent); 2603 2604 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2605 { 2606 int ret = -EINVAL; 2607 2608 lockdep_assert_held(&prepare_lock); 2609 2610 if (!core) 2611 return 0; 2612 2613 if (clk_core_rate_is_protected(core)) 2614 return -EBUSY; 2615 2616 trace_clk_set_phase(core, degrees); 2617 2618 if (core->ops->set_phase) { 2619 ret = core->ops->set_phase(core->hw, degrees); 2620 if (!ret) 2621 core->phase = degrees; 2622 } 2623 2624 trace_clk_set_phase_complete(core, degrees); 2625 2626 return ret; 2627 } 2628 2629 /** 2630 * clk_set_phase - adjust the phase shift of a clock signal 2631 * @clk: clock signal source 2632 * @degrees: number of degrees the signal is shifted 2633 * 2634 * Shifts the phase of a clock signal by the specified 2635 * degrees. Returns 0 on success, -EERROR otherwise. 2636 * 2637 * This function makes no distinction about the input or reference 2638 * signal that we adjust the clock signal phase against. For example 2639 * phase locked-loop clock signal generators we may shift phase with 2640 * respect to feedback clock signal input, but for other cases the 2641 * clock phase may be shifted with respect to some other, unspecified 2642 * signal. 2643 * 2644 * Additionally the concept of phase shift does not propagate through 2645 * the clock tree hierarchy, which sets it apart from clock rates and 2646 * clock accuracy. A parent clock phase attribute does not have an 2647 * impact on the phase attribute of a child clock. 2648 */ 2649 int clk_set_phase(struct clk *clk, int degrees) 2650 { 2651 int ret; 2652 2653 if (!clk) 2654 return 0; 2655 2656 /* sanity check degrees */ 2657 degrees %= 360; 2658 if (degrees < 0) 2659 degrees += 360; 2660 2661 clk_prepare_lock(); 2662 2663 if (clk->exclusive_count) 2664 clk_core_rate_unprotect(clk->core); 2665 2666 ret = clk_core_set_phase_nolock(clk->core, degrees); 2667 2668 if (clk->exclusive_count) 2669 clk_core_rate_protect(clk->core); 2670 2671 clk_prepare_unlock(); 2672 2673 return ret; 2674 } 2675 EXPORT_SYMBOL_GPL(clk_set_phase); 2676 2677 static int clk_core_get_phase(struct clk_core *core) 2678 { 2679 int ret; 2680 2681 lockdep_assert_held(&prepare_lock); 2682 if (!core->ops->get_phase) 2683 return 0; 2684 2685 /* Always try to update cached phase if possible */ 2686 ret = core->ops->get_phase(core->hw); 2687 if (ret >= 0) 2688 core->phase = ret; 2689 2690 return ret; 2691 } 2692 2693 /** 2694 * clk_get_phase - return the phase shift of a clock signal 2695 * @clk: clock signal source 2696 * 2697 * Returns the phase shift of a clock node in degrees, otherwise returns 2698 * -EERROR. 2699 */ 2700 int clk_get_phase(struct clk *clk) 2701 { 2702 int ret; 2703 2704 if (!clk) 2705 return 0; 2706 2707 clk_prepare_lock(); 2708 ret = clk_core_get_phase(clk->core); 2709 clk_prepare_unlock(); 2710 2711 return ret; 2712 } 2713 EXPORT_SYMBOL_GPL(clk_get_phase); 2714 2715 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2716 { 2717 /* Assume a default value of 50% */ 2718 core->duty.num = 1; 2719 core->duty.den = 2; 2720 } 2721 2722 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2723 2724 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2725 { 2726 struct clk_duty *duty = &core->duty; 2727 int ret = 0; 2728 2729 if (!core->ops->get_duty_cycle) 2730 return clk_core_update_duty_cycle_parent_nolock(core); 2731 2732 ret = core->ops->get_duty_cycle(core->hw, duty); 2733 if (ret) 2734 goto reset; 2735 2736 /* Don't trust the clock provider too much */ 2737 if (duty->den == 0 || duty->num > duty->den) { 2738 ret = -EINVAL; 2739 goto reset; 2740 } 2741 2742 return 0; 2743 2744 reset: 2745 clk_core_reset_duty_cycle_nolock(core); 2746 return ret; 2747 } 2748 2749 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2750 { 2751 int ret = 0; 2752 2753 if (core->parent && 2754 core->flags & CLK_DUTY_CYCLE_PARENT) { 2755 ret = clk_core_update_duty_cycle_nolock(core->parent); 2756 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2757 } else { 2758 clk_core_reset_duty_cycle_nolock(core); 2759 } 2760 2761 return ret; 2762 } 2763 2764 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2765 struct clk_duty *duty); 2766 2767 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2768 struct clk_duty *duty) 2769 { 2770 int ret; 2771 2772 lockdep_assert_held(&prepare_lock); 2773 2774 if (clk_core_rate_is_protected(core)) 2775 return -EBUSY; 2776 2777 trace_clk_set_duty_cycle(core, duty); 2778 2779 if (!core->ops->set_duty_cycle) 2780 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2781 2782 ret = core->ops->set_duty_cycle(core->hw, duty); 2783 if (!ret) 2784 memcpy(&core->duty, duty, sizeof(*duty)); 2785 2786 trace_clk_set_duty_cycle_complete(core, duty); 2787 2788 return ret; 2789 } 2790 2791 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2792 struct clk_duty *duty) 2793 { 2794 int ret = 0; 2795 2796 if (core->parent && 2797 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2798 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2799 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2800 } 2801 2802 return ret; 2803 } 2804 2805 /** 2806 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2807 * @clk: clock signal source 2808 * @num: numerator of the duty cycle ratio to be applied 2809 * @den: denominator of the duty cycle ratio to be applied 2810 * 2811 * Apply the duty cycle ratio if the ratio is valid and the clock can 2812 * perform this operation 2813 * 2814 * Returns (0) on success, a negative errno otherwise. 2815 */ 2816 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2817 { 2818 int ret; 2819 struct clk_duty duty; 2820 2821 if (!clk) 2822 return 0; 2823 2824 /* sanity check the ratio */ 2825 if (den == 0 || num > den) 2826 return -EINVAL; 2827 2828 duty.num = num; 2829 duty.den = den; 2830 2831 clk_prepare_lock(); 2832 2833 if (clk->exclusive_count) 2834 clk_core_rate_unprotect(clk->core); 2835 2836 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2837 2838 if (clk->exclusive_count) 2839 clk_core_rate_protect(clk->core); 2840 2841 clk_prepare_unlock(); 2842 2843 return ret; 2844 } 2845 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2846 2847 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2848 unsigned int scale) 2849 { 2850 struct clk_duty *duty = &core->duty; 2851 int ret; 2852 2853 clk_prepare_lock(); 2854 2855 ret = clk_core_update_duty_cycle_nolock(core); 2856 if (!ret) 2857 ret = mult_frac(scale, duty->num, duty->den); 2858 2859 clk_prepare_unlock(); 2860 2861 return ret; 2862 } 2863 2864 /** 2865 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2866 * @clk: clock signal source 2867 * @scale: scaling factor to be applied to represent the ratio as an integer 2868 * 2869 * Returns the duty cycle ratio of a clock node multiplied by the provided 2870 * scaling factor, or negative errno on error. 2871 */ 2872 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2873 { 2874 if (!clk) 2875 return 0; 2876 2877 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2878 } 2879 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2880 2881 /** 2882 * clk_is_match - check if two clk's point to the same hardware clock 2883 * @p: clk compared against q 2884 * @q: clk compared against p 2885 * 2886 * Returns true if the two struct clk pointers both point to the same hardware 2887 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2888 * share the same struct clk_core object. 2889 * 2890 * Returns false otherwise. Note that two NULL clks are treated as matching. 2891 */ 2892 bool clk_is_match(const struct clk *p, const struct clk *q) 2893 { 2894 /* trivial case: identical struct clk's or both NULL */ 2895 if (p == q) 2896 return true; 2897 2898 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2899 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2900 if (p->core == q->core) 2901 return true; 2902 2903 return false; 2904 } 2905 EXPORT_SYMBOL_GPL(clk_is_match); 2906 2907 /*** debugfs support ***/ 2908 2909 #ifdef CONFIG_DEBUG_FS 2910 #include <linux/debugfs.h> 2911 2912 static struct dentry *rootdir; 2913 static int inited = 0; 2914 static DEFINE_MUTEX(clk_debug_lock); 2915 static HLIST_HEAD(clk_debug_list); 2916 2917 static struct hlist_head *orphan_list[] = { 2918 &clk_orphan_list, 2919 NULL, 2920 }; 2921 2922 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2923 int level) 2924 { 2925 int phase; 2926 2927 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 2928 level * 3 + 1, "", 2929 30 - level * 3, c->name, 2930 c->enable_count, c->prepare_count, c->protect_count, 2931 clk_core_get_rate_recalc(c), 2932 clk_core_get_accuracy_recalc(c)); 2933 2934 phase = clk_core_get_phase(c); 2935 if (phase >= 0) 2936 seq_printf(s, "%5d", phase); 2937 else 2938 seq_puts(s, "-----"); 2939 2940 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 2941 2942 if (c->ops->is_enabled) 2943 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 2944 else if (!c->ops->enable) 2945 seq_printf(s, " %9c\n", 'Y'); 2946 else 2947 seq_printf(s, " %9c\n", '?'); 2948 } 2949 2950 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2951 int level) 2952 { 2953 struct clk_core *child; 2954 2955 clk_summary_show_one(s, c, level); 2956 2957 hlist_for_each_entry(child, &c->children, child_node) 2958 clk_summary_show_subtree(s, child, level + 1); 2959 } 2960 2961 static int clk_summary_show(struct seq_file *s, void *data) 2962 { 2963 struct clk_core *c; 2964 struct hlist_head **lists = (struct hlist_head **)s->private; 2965 2966 seq_puts(s, " enable prepare protect duty hardware\n"); 2967 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 2968 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 2969 2970 clk_prepare_lock(); 2971 2972 for (; *lists; lists++) 2973 hlist_for_each_entry(c, *lists, child_node) 2974 clk_summary_show_subtree(s, c, 0); 2975 2976 clk_prepare_unlock(); 2977 2978 return 0; 2979 } 2980 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2981 2982 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2983 { 2984 int phase; 2985 unsigned long min_rate, max_rate; 2986 2987 clk_core_get_boundaries(c, &min_rate, &max_rate); 2988 2989 /* This should be JSON format, i.e. elements separated with a comma */ 2990 seq_printf(s, "\"%s\": { ", c->name); 2991 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2992 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2993 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2994 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 2995 seq_printf(s, "\"min_rate\": %lu,", min_rate); 2996 seq_printf(s, "\"max_rate\": %lu,", max_rate); 2997 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 2998 phase = clk_core_get_phase(c); 2999 if (phase >= 0) 3000 seq_printf(s, "\"phase\": %d,", phase); 3001 seq_printf(s, "\"duty_cycle\": %u", 3002 clk_core_get_scaled_duty_cycle(c, 100000)); 3003 } 3004 3005 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3006 { 3007 struct clk_core *child; 3008 3009 clk_dump_one(s, c, level); 3010 3011 hlist_for_each_entry(child, &c->children, child_node) { 3012 seq_putc(s, ','); 3013 clk_dump_subtree(s, child, level + 1); 3014 } 3015 3016 seq_putc(s, '}'); 3017 } 3018 3019 static int clk_dump_show(struct seq_file *s, void *data) 3020 { 3021 struct clk_core *c; 3022 bool first_node = true; 3023 struct hlist_head **lists = (struct hlist_head **)s->private; 3024 3025 seq_putc(s, '{'); 3026 clk_prepare_lock(); 3027 3028 for (; *lists; lists++) { 3029 hlist_for_each_entry(c, *lists, child_node) { 3030 if (!first_node) 3031 seq_putc(s, ','); 3032 first_node = false; 3033 clk_dump_subtree(s, c, 0); 3034 } 3035 } 3036 3037 clk_prepare_unlock(); 3038 3039 seq_puts(s, "}\n"); 3040 return 0; 3041 } 3042 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3043 3044 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3045 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3046 /* 3047 * This can be dangerous, therefore don't provide any real compile time 3048 * configuration option for this feature. 3049 * People who want to use this will need to modify the source code directly. 3050 */ 3051 static int clk_rate_set(void *data, u64 val) 3052 { 3053 struct clk_core *core = data; 3054 int ret; 3055 3056 clk_prepare_lock(); 3057 ret = clk_core_set_rate_nolock(core, val); 3058 clk_prepare_unlock(); 3059 3060 return ret; 3061 } 3062 3063 #define clk_rate_mode 0644 3064 3065 static int clk_prepare_enable_set(void *data, u64 val) 3066 { 3067 struct clk_core *core = data; 3068 int ret = 0; 3069 3070 if (val) 3071 ret = clk_prepare_enable(core->hw->clk); 3072 else 3073 clk_disable_unprepare(core->hw->clk); 3074 3075 return ret; 3076 } 3077 3078 static int clk_prepare_enable_get(void *data, u64 *val) 3079 { 3080 struct clk_core *core = data; 3081 3082 *val = core->enable_count && core->prepare_count; 3083 return 0; 3084 } 3085 3086 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3087 clk_prepare_enable_set, "%llu\n"); 3088 3089 #else 3090 #define clk_rate_set NULL 3091 #define clk_rate_mode 0444 3092 #endif 3093 3094 static int clk_rate_get(void *data, u64 *val) 3095 { 3096 struct clk_core *core = data; 3097 3098 *val = core->rate; 3099 return 0; 3100 } 3101 3102 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3103 3104 static const struct { 3105 unsigned long flag; 3106 const char *name; 3107 } clk_flags[] = { 3108 #define ENTRY(f) { f, #f } 3109 ENTRY(CLK_SET_RATE_GATE), 3110 ENTRY(CLK_SET_PARENT_GATE), 3111 ENTRY(CLK_SET_RATE_PARENT), 3112 ENTRY(CLK_IGNORE_UNUSED), 3113 ENTRY(CLK_GET_RATE_NOCACHE), 3114 ENTRY(CLK_SET_RATE_NO_REPARENT), 3115 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3116 ENTRY(CLK_RECALC_NEW_RATES), 3117 ENTRY(CLK_SET_RATE_UNGATE), 3118 ENTRY(CLK_IS_CRITICAL), 3119 ENTRY(CLK_OPS_PARENT_ENABLE), 3120 ENTRY(CLK_DUTY_CYCLE_PARENT), 3121 #undef ENTRY 3122 }; 3123 3124 static int clk_flags_show(struct seq_file *s, void *data) 3125 { 3126 struct clk_core *core = s->private; 3127 unsigned long flags = core->flags; 3128 unsigned int i; 3129 3130 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3131 if (flags & clk_flags[i].flag) { 3132 seq_printf(s, "%s\n", clk_flags[i].name); 3133 flags &= ~clk_flags[i].flag; 3134 } 3135 } 3136 if (flags) { 3137 /* Unknown flags */ 3138 seq_printf(s, "0x%lx\n", flags); 3139 } 3140 3141 return 0; 3142 } 3143 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3144 3145 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3146 unsigned int i, char terminator) 3147 { 3148 struct clk_core *parent; 3149 3150 /* 3151 * Go through the following options to fetch a parent's name. 3152 * 3153 * 1. Fetch the registered parent clock and use its name 3154 * 2. Use the global (fallback) name if specified 3155 * 3. Use the local fw_name if provided 3156 * 4. Fetch parent clock's clock-output-name if DT index was set 3157 * 3158 * This may still fail in some cases, such as when the parent is 3159 * specified directly via a struct clk_hw pointer, but it isn't 3160 * registered (yet). 3161 */ 3162 parent = clk_core_get_parent_by_index(core, i); 3163 if (parent) 3164 seq_puts(s, parent->name); 3165 else if (core->parents[i].name) 3166 seq_puts(s, core->parents[i].name); 3167 else if (core->parents[i].fw_name) 3168 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3169 else if (core->parents[i].index >= 0) 3170 seq_puts(s, 3171 of_clk_get_parent_name(core->of_node, 3172 core->parents[i].index)); 3173 else 3174 seq_puts(s, "(missing)"); 3175 3176 seq_putc(s, terminator); 3177 } 3178 3179 static int possible_parents_show(struct seq_file *s, void *data) 3180 { 3181 struct clk_core *core = s->private; 3182 int i; 3183 3184 for (i = 0; i < core->num_parents - 1; i++) 3185 possible_parent_show(s, core, i, ' '); 3186 3187 possible_parent_show(s, core, i, '\n'); 3188 3189 return 0; 3190 } 3191 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3192 3193 static int current_parent_show(struct seq_file *s, void *data) 3194 { 3195 struct clk_core *core = s->private; 3196 3197 if (core->parent) 3198 seq_printf(s, "%s\n", core->parent->name); 3199 3200 return 0; 3201 } 3202 DEFINE_SHOW_ATTRIBUTE(current_parent); 3203 3204 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3205 { 3206 struct clk_core *core = s->private; 3207 struct clk_duty *duty = &core->duty; 3208 3209 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3210 3211 return 0; 3212 } 3213 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3214 3215 static int clk_min_rate_show(struct seq_file *s, void *data) 3216 { 3217 struct clk_core *core = s->private; 3218 unsigned long min_rate, max_rate; 3219 3220 clk_prepare_lock(); 3221 clk_core_get_boundaries(core, &min_rate, &max_rate); 3222 clk_prepare_unlock(); 3223 seq_printf(s, "%lu\n", min_rate); 3224 3225 return 0; 3226 } 3227 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3228 3229 static int clk_max_rate_show(struct seq_file *s, void *data) 3230 { 3231 struct clk_core *core = s->private; 3232 unsigned long min_rate, max_rate; 3233 3234 clk_prepare_lock(); 3235 clk_core_get_boundaries(core, &min_rate, &max_rate); 3236 clk_prepare_unlock(); 3237 seq_printf(s, "%lu\n", max_rate); 3238 3239 return 0; 3240 } 3241 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3242 3243 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3244 { 3245 struct dentry *root; 3246 3247 if (!core || !pdentry) 3248 return; 3249 3250 root = debugfs_create_dir(core->name, pdentry); 3251 core->dentry = root; 3252 3253 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3254 &clk_rate_fops); 3255 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3256 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3257 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3258 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3259 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3260 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3261 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3262 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3263 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3264 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3265 &clk_duty_cycle_fops); 3266 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3267 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3268 &clk_prepare_enable_fops); 3269 #endif 3270 3271 if (core->num_parents > 0) 3272 debugfs_create_file("clk_parent", 0444, root, core, 3273 ¤t_parent_fops); 3274 3275 if (core->num_parents > 1) 3276 debugfs_create_file("clk_possible_parents", 0444, root, core, 3277 &possible_parents_fops); 3278 3279 if (core->ops->debug_init) 3280 core->ops->debug_init(core->hw, core->dentry); 3281 } 3282 3283 /** 3284 * clk_debug_register - add a clk node to the debugfs clk directory 3285 * @core: the clk being added to the debugfs clk directory 3286 * 3287 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3288 * initialized. Otherwise it bails out early since the debugfs clk directory 3289 * will be created lazily by clk_debug_init as part of a late_initcall. 3290 */ 3291 static void clk_debug_register(struct clk_core *core) 3292 { 3293 mutex_lock(&clk_debug_lock); 3294 hlist_add_head(&core->debug_node, &clk_debug_list); 3295 if (inited) 3296 clk_debug_create_one(core, rootdir); 3297 mutex_unlock(&clk_debug_lock); 3298 } 3299 3300 /** 3301 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3302 * @core: the clk being removed from the debugfs clk directory 3303 * 3304 * Dynamically removes a clk and all its child nodes from the 3305 * debugfs clk directory if clk->dentry points to debugfs created by 3306 * clk_debug_register in __clk_core_init. 3307 */ 3308 static void clk_debug_unregister(struct clk_core *core) 3309 { 3310 mutex_lock(&clk_debug_lock); 3311 hlist_del_init(&core->debug_node); 3312 debugfs_remove_recursive(core->dentry); 3313 core->dentry = NULL; 3314 mutex_unlock(&clk_debug_lock); 3315 } 3316 3317 /** 3318 * clk_debug_init - lazily populate the debugfs clk directory 3319 * 3320 * clks are often initialized very early during boot before memory can be 3321 * dynamically allocated and well before debugfs is setup. This function 3322 * populates the debugfs clk directory once at boot-time when we know that 3323 * debugfs is setup. It should only be called once at boot-time, all other clks 3324 * added dynamically will be done so with clk_debug_register. 3325 */ 3326 static int __init clk_debug_init(void) 3327 { 3328 struct clk_core *core; 3329 3330 rootdir = debugfs_create_dir("clk", NULL); 3331 3332 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3333 &clk_summary_fops); 3334 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3335 &clk_dump_fops); 3336 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3337 &clk_summary_fops); 3338 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3339 &clk_dump_fops); 3340 3341 mutex_lock(&clk_debug_lock); 3342 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3343 clk_debug_create_one(core, rootdir); 3344 3345 inited = 1; 3346 mutex_unlock(&clk_debug_lock); 3347 3348 return 0; 3349 } 3350 late_initcall(clk_debug_init); 3351 #else 3352 static inline void clk_debug_register(struct clk_core *core) { } 3353 static inline void clk_debug_unregister(struct clk_core *core) 3354 { 3355 } 3356 #endif 3357 3358 static void clk_core_reparent_orphans_nolock(void) 3359 { 3360 struct clk_core *orphan; 3361 struct hlist_node *tmp2; 3362 3363 /* 3364 * walk the list of orphan clocks and reparent any that newly finds a 3365 * parent. 3366 */ 3367 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3368 struct clk_core *parent = __clk_init_parent(orphan); 3369 3370 /* 3371 * We need to use __clk_set_parent_before() and _after() to 3372 * to properly migrate any prepare/enable count of the orphan 3373 * clock. This is important for CLK_IS_CRITICAL clocks, which 3374 * are enabled during init but might not have a parent yet. 3375 */ 3376 if (parent) { 3377 /* update the clk tree topology */ 3378 __clk_set_parent_before(orphan, parent); 3379 __clk_set_parent_after(orphan, parent, NULL); 3380 __clk_recalc_accuracies(orphan); 3381 __clk_recalc_rates(orphan, 0); 3382 } 3383 } 3384 } 3385 3386 /** 3387 * __clk_core_init - initialize the data structures in a struct clk_core 3388 * @core: clk_core being initialized 3389 * 3390 * Initializes the lists in struct clk_core, queries the hardware for the 3391 * parent and rate and sets them both. 3392 */ 3393 static int __clk_core_init(struct clk_core *core) 3394 { 3395 int ret; 3396 struct clk_core *parent; 3397 unsigned long rate; 3398 int phase; 3399 3400 if (!core) 3401 return -EINVAL; 3402 3403 clk_prepare_lock(); 3404 3405 ret = clk_pm_runtime_get(core); 3406 if (ret) 3407 goto unlock; 3408 3409 /* check to see if a clock with this name is already registered */ 3410 if (clk_core_lookup(core->name)) { 3411 pr_debug("%s: clk %s already initialized\n", 3412 __func__, core->name); 3413 ret = -EEXIST; 3414 goto out; 3415 } 3416 3417 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3418 if (core->ops->set_rate && 3419 !((core->ops->round_rate || core->ops->determine_rate) && 3420 core->ops->recalc_rate)) { 3421 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3422 __func__, core->name); 3423 ret = -EINVAL; 3424 goto out; 3425 } 3426 3427 if (core->ops->set_parent && !core->ops->get_parent) { 3428 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3429 __func__, core->name); 3430 ret = -EINVAL; 3431 goto out; 3432 } 3433 3434 if (core->num_parents > 1 && !core->ops->get_parent) { 3435 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3436 __func__, core->name); 3437 ret = -EINVAL; 3438 goto out; 3439 } 3440 3441 if (core->ops->set_rate_and_parent && 3442 !(core->ops->set_parent && core->ops->set_rate)) { 3443 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3444 __func__, core->name); 3445 ret = -EINVAL; 3446 goto out; 3447 } 3448 3449 /* 3450 * optional platform-specific magic 3451 * 3452 * The .init callback is not used by any of the basic clock types, but 3453 * exists for weird hardware that must perform initialization magic for 3454 * CCF to get an accurate view of clock for any other callbacks. It may 3455 * also be used needs to perform dynamic allocations. Such allocation 3456 * must be freed in the terminate() callback. 3457 * This callback shall not be used to initialize the parameters state, 3458 * such as rate, parent, etc ... 3459 * 3460 * If it exist, this callback should called before any other callback of 3461 * the clock 3462 */ 3463 if (core->ops->init) { 3464 ret = core->ops->init(core->hw); 3465 if (ret) 3466 goto out; 3467 } 3468 3469 parent = core->parent = __clk_init_parent(core); 3470 3471 /* 3472 * Populate core->parent if parent has already been clk_core_init'd. If 3473 * parent has not yet been clk_core_init'd then place clk in the orphan 3474 * list. If clk doesn't have any parents then place it in the root 3475 * clk list. 3476 * 3477 * Every time a new clk is clk_init'd then we walk the list of orphan 3478 * clocks and re-parent any that are children of the clock currently 3479 * being clk_init'd. 3480 */ 3481 if (parent) { 3482 hlist_add_head(&core->child_node, &parent->children); 3483 core->orphan = parent->orphan; 3484 } else if (!core->num_parents) { 3485 hlist_add_head(&core->child_node, &clk_root_list); 3486 core->orphan = false; 3487 } else { 3488 hlist_add_head(&core->child_node, &clk_orphan_list); 3489 core->orphan = true; 3490 } 3491 3492 /* 3493 * Set clk's accuracy. The preferred method is to use 3494 * .recalc_accuracy. For simple clocks and lazy developers the default 3495 * fallback is to use the parent's accuracy. If a clock doesn't have a 3496 * parent (or is orphaned) then accuracy is set to zero (perfect 3497 * clock). 3498 */ 3499 if (core->ops->recalc_accuracy) 3500 core->accuracy = core->ops->recalc_accuracy(core->hw, 3501 clk_core_get_accuracy_no_lock(parent)); 3502 else if (parent) 3503 core->accuracy = parent->accuracy; 3504 else 3505 core->accuracy = 0; 3506 3507 /* 3508 * Set clk's phase by clk_core_get_phase() caching the phase. 3509 * Since a phase is by definition relative to its parent, just 3510 * query the current clock phase, or just assume it's in phase. 3511 */ 3512 phase = clk_core_get_phase(core); 3513 if (phase < 0) { 3514 ret = phase; 3515 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3516 core->name); 3517 goto out; 3518 } 3519 3520 /* 3521 * Set clk's duty cycle. 3522 */ 3523 clk_core_update_duty_cycle_nolock(core); 3524 3525 /* 3526 * Set clk's rate. The preferred method is to use .recalc_rate. For 3527 * simple clocks and lazy developers the default fallback is to use the 3528 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3529 * then rate is set to zero. 3530 */ 3531 if (core->ops->recalc_rate) 3532 rate = core->ops->recalc_rate(core->hw, 3533 clk_core_get_rate_nolock(parent)); 3534 else if (parent) 3535 rate = parent->rate; 3536 else 3537 rate = 0; 3538 core->rate = core->req_rate = rate; 3539 3540 /* 3541 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3542 * don't get accidentally disabled when walking the orphan tree and 3543 * reparenting clocks 3544 */ 3545 if (core->flags & CLK_IS_CRITICAL) { 3546 unsigned long flags; 3547 3548 ret = clk_core_prepare(core); 3549 if (ret) { 3550 pr_warn("%s: critical clk '%s' failed to prepare\n", 3551 __func__, core->name); 3552 goto out; 3553 } 3554 3555 flags = clk_enable_lock(); 3556 ret = clk_core_enable(core); 3557 clk_enable_unlock(flags); 3558 if (ret) { 3559 pr_warn("%s: critical clk '%s' failed to enable\n", 3560 __func__, core->name); 3561 clk_core_unprepare(core); 3562 goto out; 3563 } 3564 } 3565 3566 clk_core_reparent_orphans_nolock(); 3567 3568 3569 kref_init(&core->ref); 3570 out: 3571 clk_pm_runtime_put(core); 3572 unlock: 3573 if (ret) 3574 hlist_del_init(&core->child_node); 3575 3576 clk_prepare_unlock(); 3577 3578 if (!ret) 3579 clk_debug_register(core); 3580 3581 return ret; 3582 } 3583 3584 /** 3585 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3586 * @core: clk to add consumer to 3587 * @clk: consumer to link to a clk 3588 */ 3589 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3590 { 3591 clk_prepare_lock(); 3592 hlist_add_head(&clk->clks_node, &core->clks); 3593 clk_prepare_unlock(); 3594 } 3595 3596 /** 3597 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3598 * @clk: consumer to unlink 3599 */ 3600 static void clk_core_unlink_consumer(struct clk *clk) 3601 { 3602 lockdep_assert_held(&prepare_lock); 3603 hlist_del(&clk->clks_node); 3604 } 3605 3606 /** 3607 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3608 * @core: clk to allocate a consumer for 3609 * @dev_id: string describing device name 3610 * @con_id: connection ID string on device 3611 * 3612 * Returns: clk consumer left unlinked from the consumer list 3613 */ 3614 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3615 const char *con_id) 3616 { 3617 struct clk *clk; 3618 3619 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3620 if (!clk) 3621 return ERR_PTR(-ENOMEM); 3622 3623 clk->core = core; 3624 clk->dev_id = dev_id; 3625 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3626 clk->max_rate = ULONG_MAX; 3627 3628 return clk; 3629 } 3630 3631 /** 3632 * free_clk - Free a clk consumer 3633 * @clk: clk consumer to free 3634 * 3635 * Note, this assumes the clk has been unlinked from the clk_core consumer 3636 * list. 3637 */ 3638 static void free_clk(struct clk *clk) 3639 { 3640 kfree_const(clk->con_id); 3641 kfree(clk); 3642 } 3643 3644 /** 3645 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3646 * a clk_hw 3647 * @dev: clk consumer device 3648 * @hw: clk_hw associated with the clk being consumed 3649 * @dev_id: string describing device name 3650 * @con_id: connection ID string on device 3651 * 3652 * This is the main function used to create a clk pointer for use by clk 3653 * consumers. It connects a consumer to the clk_core and clk_hw structures 3654 * used by the framework and clk provider respectively. 3655 */ 3656 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3657 const char *dev_id, const char *con_id) 3658 { 3659 struct clk *clk; 3660 struct clk_core *core; 3661 3662 /* This is to allow this function to be chained to others */ 3663 if (IS_ERR_OR_NULL(hw)) 3664 return ERR_CAST(hw); 3665 3666 core = hw->core; 3667 clk = alloc_clk(core, dev_id, con_id); 3668 if (IS_ERR(clk)) 3669 return clk; 3670 clk->dev = dev; 3671 3672 if (!try_module_get(core->owner)) { 3673 free_clk(clk); 3674 return ERR_PTR(-ENOENT); 3675 } 3676 3677 kref_get(&core->ref); 3678 clk_core_link_consumer(core, clk); 3679 3680 return clk; 3681 } 3682 3683 /** 3684 * clk_hw_get_clk - get clk consumer given an clk_hw 3685 * @hw: clk_hw associated with the clk being consumed 3686 * @con_id: connection ID string on device 3687 * 3688 * Returns: new clk consumer 3689 * This is the function to be used by providers which need 3690 * to get a consumer clk and act on the clock element 3691 * Calls to this function must be balanced with calls clk_put() 3692 */ 3693 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 3694 { 3695 struct device *dev = hw->core->dev; 3696 3697 return clk_hw_create_clk(dev, hw, dev_name(dev), con_id); 3698 } 3699 EXPORT_SYMBOL(clk_hw_get_clk); 3700 3701 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 3702 { 3703 const char *dst; 3704 3705 if (!src) { 3706 if (must_exist) 3707 return -EINVAL; 3708 return 0; 3709 } 3710 3711 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 3712 if (!dst) 3713 return -ENOMEM; 3714 3715 return 0; 3716 } 3717 3718 static int clk_core_populate_parent_map(struct clk_core *core, 3719 const struct clk_init_data *init) 3720 { 3721 u8 num_parents = init->num_parents; 3722 const char * const *parent_names = init->parent_names; 3723 const struct clk_hw **parent_hws = init->parent_hws; 3724 const struct clk_parent_data *parent_data = init->parent_data; 3725 int i, ret = 0; 3726 struct clk_parent_map *parents, *parent; 3727 3728 if (!num_parents) 3729 return 0; 3730 3731 /* 3732 * Avoid unnecessary string look-ups of clk_core's possible parents by 3733 * having a cache of names/clk_hw pointers to clk_core pointers. 3734 */ 3735 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 3736 core->parents = parents; 3737 if (!parents) 3738 return -ENOMEM; 3739 3740 /* Copy everything over because it might be __initdata */ 3741 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 3742 parent->index = -1; 3743 if (parent_names) { 3744 /* throw a WARN if any entries are NULL */ 3745 WARN(!parent_names[i], 3746 "%s: invalid NULL in %s's .parent_names\n", 3747 __func__, core->name); 3748 ret = clk_cpy_name(&parent->name, parent_names[i], 3749 true); 3750 } else if (parent_data) { 3751 parent->hw = parent_data[i].hw; 3752 parent->index = parent_data[i].index; 3753 ret = clk_cpy_name(&parent->fw_name, 3754 parent_data[i].fw_name, false); 3755 if (!ret) 3756 ret = clk_cpy_name(&parent->name, 3757 parent_data[i].name, 3758 false); 3759 } else if (parent_hws) { 3760 parent->hw = parent_hws[i]; 3761 } else { 3762 ret = -EINVAL; 3763 WARN(1, "Must specify parents if num_parents > 0\n"); 3764 } 3765 3766 if (ret) { 3767 do { 3768 kfree_const(parents[i].name); 3769 kfree_const(parents[i].fw_name); 3770 } while (--i >= 0); 3771 kfree(parents); 3772 3773 return ret; 3774 } 3775 } 3776 3777 return 0; 3778 } 3779 3780 static void clk_core_free_parent_map(struct clk_core *core) 3781 { 3782 int i = core->num_parents; 3783 3784 if (!core->num_parents) 3785 return; 3786 3787 while (--i >= 0) { 3788 kfree_const(core->parents[i].name); 3789 kfree_const(core->parents[i].fw_name); 3790 } 3791 3792 kfree(core->parents); 3793 } 3794 3795 static struct clk * 3796 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 3797 { 3798 int ret; 3799 struct clk_core *core; 3800 const struct clk_init_data *init = hw->init; 3801 3802 /* 3803 * The init data is not supposed to be used outside of registration path. 3804 * Set it to NULL so that provider drivers can't use it either and so that 3805 * we catch use of hw->init early on in the core. 3806 */ 3807 hw->init = NULL; 3808 3809 core = kzalloc(sizeof(*core), GFP_KERNEL); 3810 if (!core) { 3811 ret = -ENOMEM; 3812 goto fail_out; 3813 } 3814 3815 core->name = kstrdup_const(init->name, GFP_KERNEL); 3816 if (!core->name) { 3817 ret = -ENOMEM; 3818 goto fail_name; 3819 } 3820 3821 if (WARN_ON(!init->ops)) { 3822 ret = -EINVAL; 3823 goto fail_ops; 3824 } 3825 core->ops = init->ops; 3826 3827 if (dev && pm_runtime_enabled(dev)) 3828 core->rpm_enabled = true; 3829 core->dev = dev; 3830 core->of_node = np; 3831 if (dev && dev->driver) 3832 core->owner = dev->driver->owner; 3833 core->hw = hw; 3834 core->flags = init->flags; 3835 core->num_parents = init->num_parents; 3836 core->min_rate = 0; 3837 core->max_rate = ULONG_MAX; 3838 hw->core = core; 3839 3840 ret = clk_core_populate_parent_map(core, init); 3841 if (ret) 3842 goto fail_parents; 3843 3844 INIT_HLIST_HEAD(&core->clks); 3845 3846 /* 3847 * Don't call clk_hw_create_clk() here because that would pin the 3848 * provider module to itself and prevent it from ever being removed. 3849 */ 3850 hw->clk = alloc_clk(core, NULL, NULL); 3851 if (IS_ERR(hw->clk)) { 3852 ret = PTR_ERR(hw->clk); 3853 goto fail_create_clk; 3854 } 3855 3856 clk_core_link_consumer(hw->core, hw->clk); 3857 3858 ret = __clk_core_init(core); 3859 if (!ret) 3860 return hw->clk; 3861 3862 clk_prepare_lock(); 3863 clk_core_unlink_consumer(hw->clk); 3864 clk_prepare_unlock(); 3865 3866 free_clk(hw->clk); 3867 hw->clk = NULL; 3868 3869 fail_create_clk: 3870 clk_core_free_parent_map(core); 3871 fail_parents: 3872 fail_ops: 3873 kfree_const(core->name); 3874 fail_name: 3875 kfree(core); 3876 fail_out: 3877 return ERR_PTR(ret); 3878 } 3879 3880 /** 3881 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 3882 * @dev: Device to get device node of 3883 * 3884 * Return: device node pointer of @dev, or the device node pointer of 3885 * @dev->parent if dev doesn't have a device node, or NULL if neither 3886 * @dev or @dev->parent have a device node. 3887 */ 3888 static struct device_node *dev_or_parent_of_node(struct device *dev) 3889 { 3890 struct device_node *np; 3891 3892 if (!dev) 3893 return NULL; 3894 3895 np = dev_of_node(dev); 3896 if (!np) 3897 np = dev_of_node(dev->parent); 3898 3899 return np; 3900 } 3901 3902 /** 3903 * clk_register - allocate a new clock, register it and return an opaque cookie 3904 * @dev: device that is registering this clock 3905 * @hw: link to hardware-specific clock data 3906 * 3907 * clk_register is the *deprecated* interface for populating the clock tree with 3908 * new clock nodes. Use clk_hw_register() instead. 3909 * 3910 * Returns: a pointer to the newly allocated struct clk which 3911 * cannot be dereferenced by driver code but may be used in conjunction with the 3912 * rest of the clock API. In the event of an error clk_register will return an 3913 * error code; drivers must test for an error code after calling clk_register. 3914 */ 3915 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3916 { 3917 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 3918 } 3919 EXPORT_SYMBOL_GPL(clk_register); 3920 3921 /** 3922 * clk_hw_register - register a clk_hw and return an error code 3923 * @dev: device that is registering this clock 3924 * @hw: link to hardware-specific clock data 3925 * 3926 * clk_hw_register is the primary interface for populating the clock tree with 3927 * new clock nodes. It returns an integer equal to zero indicating success or 3928 * less than zero indicating failure. Drivers must test for an error code after 3929 * calling clk_hw_register(). 3930 */ 3931 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3932 { 3933 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 3934 hw)); 3935 } 3936 EXPORT_SYMBOL_GPL(clk_hw_register); 3937 3938 /* 3939 * of_clk_hw_register - register a clk_hw and return an error code 3940 * @node: device_node of device that is registering this clock 3941 * @hw: link to hardware-specific clock data 3942 * 3943 * of_clk_hw_register() is the primary interface for populating the clock tree 3944 * with new clock nodes when a struct device is not available, but a struct 3945 * device_node is. It returns an integer equal to zero indicating success or 3946 * less than zero indicating failure. Drivers must test for an error code after 3947 * calling of_clk_hw_register(). 3948 */ 3949 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 3950 { 3951 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 3952 } 3953 EXPORT_SYMBOL_GPL(of_clk_hw_register); 3954 3955 /* Free memory allocated for a clock. */ 3956 static void __clk_release(struct kref *ref) 3957 { 3958 struct clk_core *core = container_of(ref, struct clk_core, ref); 3959 3960 lockdep_assert_held(&prepare_lock); 3961 3962 clk_core_free_parent_map(core); 3963 kfree_const(core->name); 3964 kfree(core); 3965 } 3966 3967 /* 3968 * Empty clk_ops for unregistered clocks. These are used temporarily 3969 * after clk_unregister() was called on a clock and until last clock 3970 * consumer calls clk_put() and the struct clk object is freed. 3971 */ 3972 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3973 { 3974 return -ENXIO; 3975 } 3976 3977 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3978 { 3979 WARN_ON_ONCE(1); 3980 } 3981 3982 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3983 unsigned long parent_rate) 3984 { 3985 return -ENXIO; 3986 } 3987 3988 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3989 { 3990 return -ENXIO; 3991 } 3992 3993 static const struct clk_ops clk_nodrv_ops = { 3994 .enable = clk_nodrv_prepare_enable, 3995 .disable = clk_nodrv_disable_unprepare, 3996 .prepare = clk_nodrv_prepare_enable, 3997 .unprepare = clk_nodrv_disable_unprepare, 3998 .set_rate = clk_nodrv_set_rate, 3999 .set_parent = clk_nodrv_set_parent, 4000 }; 4001 4002 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4003 struct clk_core *target) 4004 { 4005 int i; 4006 struct clk_core *child; 4007 4008 for (i = 0; i < root->num_parents; i++) 4009 if (root->parents[i].core == target) 4010 root->parents[i].core = NULL; 4011 4012 hlist_for_each_entry(child, &root->children, child_node) 4013 clk_core_evict_parent_cache_subtree(child, target); 4014 } 4015 4016 /* Remove this clk from all parent caches */ 4017 static void clk_core_evict_parent_cache(struct clk_core *core) 4018 { 4019 struct hlist_head **lists; 4020 struct clk_core *root; 4021 4022 lockdep_assert_held(&prepare_lock); 4023 4024 for (lists = all_lists; *lists; lists++) 4025 hlist_for_each_entry(root, *lists, child_node) 4026 clk_core_evict_parent_cache_subtree(root, core); 4027 4028 } 4029 4030 /** 4031 * clk_unregister - unregister a currently registered clock 4032 * @clk: clock to unregister 4033 */ 4034 void clk_unregister(struct clk *clk) 4035 { 4036 unsigned long flags; 4037 const struct clk_ops *ops; 4038 4039 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4040 return; 4041 4042 clk_debug_unregister(clk->core); 4043 4044 clk_prepare_lock(); 4045 4046 ops = clk->core->ops; 4047 if (ops == &clk_nodrv_ops) { 4048 pr_err("%s: unregistered clock: %s\n", __func__, 4049 clk->core->name); 4050 goto unlock; 4051 } 4052 /* 4053 * Assign empty clock ops for consumers that might still hold 4054 * a reference to this clock. 4055 */ 4056 flags = clk_enable_lock(); 4057 clk->core->ops = &clk_nodrv_ops; 4058 clk_enable_unlock(flags); 4059 4060 if (ops->terminate) 4061 ops->terminate(clk->core->hw); 4062 4063 if (!hlist_empty(&clk->core->children)) { 4064 struct clk_core *child; 4065 struct hlist_node *t; 4066 4067 /* Reparent all children to the orphan list. */ 4068 hlist_for_each_entry_safe(child, t, &clk->core->children, 4069 child_node) 4070 clk_core_set_parent_nolock(child, NULL); 4071 } 4072 4073 clk_core_evict_parent_cache(clk->core); 4074 4075 hlist_del_init(&clk->core->child_node); 4076 4077 if (clk->core->prepare_count) 4078 pr_warn("%s: unregistering prepared clock: %s\n", 4079 __func__, clk->core->name); 4080 4081 if (clk->core->protect_count) 4082 pr_warn("%s: unregistering protected clock: %s\n", 4083 __func__, clk->core->name); 4084 4085 kref_put(&clk->core->ref, __clk_release); 4086 free_clk(clk); 4087 unlock: 4088 clk_prepare_unlock(); 4089 } 4090 EXPORT_SYMBOL_GPL(clk_unregister); 4091 4092 /** 4093 * clk_hw_unregister - unregister a currently registered clk_hw 4094 * @hw: hardware-specific clock data to unregister 4095 */ 4096 void clk_hw_unregister(struct clk_hw *hw) 4097 { 4098 clk_unregister(hw->clk); 4099 } 4100 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4101 4102 static void devm_clk_unregister_cb(struct device *dev, void *res) 4103 { 4104 clk_unregister(*(struct clk **)res); 4105 } 4106 4107 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4108 { 4109 clk_hw_unregister(*(struct clk_hw **)res); 4110 } 4111 4112 /** 4113 * devm_clk_register - resource managed clk_register() 4114 * @dev: device that is registering this clock 4115 * @hw: link to hardware-specific clock data 4116 * 4117 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4118 * 4119 * Clocks returned from this function are automatically clk_unregister()ed on 4120 * driver detach. See clk_register() for more information. 4121 */ 4122 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4123 { 4124 struct clk *clk; 4125 struct clk **clkp; 4126 4127 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4128 if (!clkp) 4129 return ERR_PTR(-ENOMEM); 4130 4131 clk = clk_register(dev, hw); 4132 if (!IS_ERR(clk)) { 4133 *clkp = clk; 4134 devres_add(dev, clkp); 4135 } else { 4136 devres_free(clkp); 4137 } 4138 4139 return clk; 4140 } 4141 EXPORT_SYMBOL_GPL(devm_clk_register); 4142 4143 /** 4144 * devm_clk_hw_register - resource managed clk_hw_register() 4145 * @dev: device that is registering this clock 4146 * @hw: link to hardware-specific clock data 4147 * 4148 * Managed clk_hw_register(). Clocks registered by this function are 4149 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4150 * for more information. 4151 */ 4152 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4153 { 4154 struct clk_hw **hwp; 4155 int ret; 4156 4157 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4158 if (!hwp) 4159 return -ENOMEM; 4160 4161 ret = clk_hw_register(dev, hw); 4162 if (!ret) { 4163 *hwp = hw; 4164 devres_add(dev, hwp); 4165 } else { 4166 devres_free(hwp); 4167 } 4168 4169 return ret; 4170 } 4171 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4172 4173 static int devm_clk_match(struct device *dev, void *res, void *data) 4174 { 4175 struct clk *c = res; 4176 if (WARN_ON(!c)) 4177 return 0; 4178 return c == data; 4179 } 4180 4181 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 4182 { 4183 struct clk_hw *hw = res; 4184 4185 if (WARN_ON(!hw)) 4186 return 0; 4187 return hw == data; 4188 } 4189 4190 /** 4191 * devm_clk_unregister - resource managed clk_unregister() 4192 * @dev: device that is unregistering the clock data 4193 * @clk: clock to unregister 4194 * 4195 * Deallocate a clock allocated with devm_clk_register(). Normally 4196 * this function will not need to be called and the resource management 4197 * code will ensure that the resource is freed. 4198 */ 4199 void devm_clk_unregister(struct device *dev, struct clk *clk) 4200 { 4201 WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk)); 4202 } 4203 EXPORT_SYMBOL_GPL(devm_clk_unregister); 4204 4205 /** 4206 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 4207 * @dev: device that is unregistering the hardware-specific clock data 4208 * @hw: link to hardware-specific clock data 4209 * 4210 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 4211 * this function will not need to be called and the resource management 4212 * code will ensure that the resource is freed. 4213 */ 4214 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 4215 { 4216 WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match, 4217 hw)); 4218 } 4219 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 4220 4221 static void devm_clk_release(struct device *dev, void *res) 4222 { 4223 clk_put(*(struct clk **)res); 4224 } 4225 4226 /** 4227 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4228 * @dev: device that is registering this clock 4229 * @hw: clk_hw associated with the clk being consumed 4230 * @con_id: connection ID string on device 4231 * 4232 * Managed clk_hw_get_clk(). Clocks got with this function are 4233 * automatically clk_put() on driver detach. See clk_put() 4234 * for more information. 4235 */ 4236 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4237 const char *con_id) 4238 { 4239 struct clk *clk; 4240 struct clk **clkp; 4241 4242 /* This should not happen because it would mean we have drivers 4243 * passing around clk_hw pointers instead of having the caller use 4244 * proper clk_get() style APIs 4245 */ 4246 WARN_ON_ONCE(dev != hw->core->dev); 4247 4248 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4249 if (!clkp) 4250 return ERR_PTR(-ENOMEM); 4251 4252 clk = clk_hw_get_clk(hw, con_id); 4253 if (!IS_ERR(clk)) { 4254 *clkp = clk; 4255 devres_add(dev, clkp); 4256 } else { 4257 devres_free(clkp); 4258 } 4259 4260 return clk; 4261 } 4262 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4263 4264 /* 4265 * clkdev helpers 4266 */ 4267 4268 void __clk_put(struct clk *clk) 4269 { 4270 struct module *owner; 4271 4272 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4273 return; 4274 4275 clk_prepare_lock(); 4276 4277 /* 4278 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4279 * given user should be balanced with calls to clk_rate_exclusive_put() 4280 * and by that same consumer 4281 */ 4282 if (WARN_ON(clk->exclusive_count)) { 4283 /* We voiced our concern, let's sanitize the situation */ 4284 clk->core->protect_count -= (clk->exclusive_count - 1); 4285 clk_core_rate_unprotect(clk->core); 4286 clk->exclusive_count = 0; 4287 } 4288 4289 hlist_del(&clk->clks_node); 4290 if (clk->min_rate > clk->core->req_rate || 4291 clk->max_rate < clk->core->req_rate) 4292 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 4293 4294 owner = clk->core->owner; 4295 kref_put(&clk->core->ref, __clk_release); 4296 4297 clk_prepare_unlock(); 4298 4299 module_put(owner); 4300 4301 free_clk(clk); 4302 } 4303 4304 /*** clk rate change notifiers ***/ 4305 4306 /** 4307 * clk_notifier_register - add a clk rate change notifier 4308 * @clk: struct clk * to watch 4309 * @nb: struct notifier_block * with callback info 4310 * 4311 * Request notification when clk's rate changes. This uses an SRCU 4312 * notifier because we want it to block and notifier unregistrations are 4313 * uncommon. The callbacks associated with the notifier must not 4314 * re-enter into the clk framework by calling any top-level clk APIs; 4315 * this will cause a nested prepare_lock mutex. 4316 * 4317 * In all notification cases (pre, post and abort rate change) the original 4318 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4319 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4320 * 4321 * clk_notifier_register() must be called from non-atomic context. 4322 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4323 * allocation failure; otherwise, passes along the return value of 4324 * srcu_notifier_chain_register(). 4325 */ 4326 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4327 { 4328 struct clk_notifier *cn; 4329 int ret = -ENOMEM; 4330 4331 if (!clk || !nb) 4332 return -EINVAL; 4333 4334 clk_prepare_lock(); 4335 4336 /* search the list of notifiers for this clk */ 4337 list_for_each_entry(cn, &clk_notifier_list, node) 4338 if (cn->clk == clk) 4339 break; 4340 4341 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4342 if (cn->clk != clk) { 4343 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4344 if (!cn) 4345 goto out; 4346 4347 cn->clk = clk; 4348 srcu_init_notifier_head(&cn->notifier_head); 4349 4350 list_add(&cn->node, &clk_notifier_list); 4351 } 4352 4353 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4354 4355 clk->core->notifier_count++; 4356 4357 out: 4358 clk_prepare_unlock(); 4359 4360 return ret; 4361 } 4362 EXPORT_SYMBOL_GPL(clk_notifier_register); 4363 4364 /** 4365 * clk_notifier_unregister - remove a clk rate change notifier 4366 * @clk: struct clk * 4367 * @nb: struct notifier_block * with callback info 4368 * 4369 * Request no further notification for changes to 'clk' and frees memory 4370 * allocated in clk_notifier_register. 4371 * 4372 * Returns -EINVAL if called with null arguments; otherwise, passes 4373 * along the return value of srcu_notifier_chain_unregister(). 4374 */ 4375 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4376 { 4377 struct clk_notifier *cn = NULL; 4378 int ret = -EINVAL; 4379 4380 if (!clk || !nb) 4381 return -EINVAL; 4382 4383 clk_prepare_lock(); 4384 4385 list_for_each_entry(cn, &clk_notifier_list, node) 4386 if (cn->clk == clk) 4387 break; 4388 4389 if (cn->clk == clk) { 4390 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4391 4392 clk->core->notifier_count--; 4393 4394 /* XXX the notifier code should handle this better */ 4395 if (!cn->notifier_head.head) { 4396 srcu_cleanup_notifier_head(&cn->notifier_head); 4397 list_del(&cn->node); 4398 kfree(cn); 4399 } 4400 4401 } else { 4402 ret = -ENOENT; 4403 } 4404 4405 clk_prepare_unlock(); 4406 4407 return ret; 4408 } 4409 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4410 4411 struct clk_notifier_devres { 4412 struct clk *clk; 4413 struct notifier_block *nb; 4414 }; 4415 4416 static void devm_clk_notifier_release(struct device *dev, void *res) 4417 { 4418 struct clk_notifier_devres *devres = res; 4419 4420 clk_notifier_unregister(devres->clk, devres->nb); 4421 } 4422 4423 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4424 struct notifier_block *nb) 4425 { 4426 struct clk_notifier_devres *devres; 4427 int ret; 4428 4429 devres = devres_alloc(devm_clk_notifier_release, 4430 sizeof(*devres), GFP_KERNEL); 4431 4432 if (!devres) 4433 return -ENOMEM; 4434 4435 ret = clk_notifier_register(clk, nb); 4436 if (!ret) { 4437 devres->clk = clk; 4438 devres->nb = nb; 4439 } else { 4440 devres_free(devres); 4441 } 4442 4443 return ret; 4444 } 4445 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4446 4447 #ifdef CONFIG_OF 4448 static void clk_core_reparent_orphans(void) 4449 { 4450 clk_prepare_lock(); 4451 clk_core_reparent_orphans_nolock(); 4452 clk_prepare_unlock(); 4453 } 4454 4455 /** 4456 * struct of_clk_provider - Clock provider registration structure 4457 * @link: Entry in global list of clock providers 4458 * @node: Pointer to device tree node of clock provider 4459 * @get: Get clock callback. Returns NULL or a struct clk for the 4460 * given clock specifier 4461 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4462 * struct clk_hw for the given clock specifier 4463 * @data: context pointer to be passed into @get callback 4464 */ 4465 struct of_clk_provider { 4466 struct list_head link; 4467 4468 struct device_node *node; 4469 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4470 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4471 void *data; 4472 }; 4473 4474 extern struct of_device_id __clk_of_table; 4475 static const struct of_device_id __clk_of_table_sentinel 4476 __used __section("__clk_of_table_end"); 4477 4478 static LIST_HEAD(of_clk_providers); 4479 static DEFINE_MUTEX(of_clk_mutex); 4480 4481 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4482 void *data) 4483 { 4484 return data; 4485 } 4486 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4487 4488 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4489 { 4490 return data; 4491 } 4492 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4493 4494 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4495 { 4496 struct clk_onecell_data *clk_data = data; 4497 unsigned int idx = clkspec->args[0]; 4498 4499 if (idx >= clk_data->clk_num) { 4500 pr_err("%s: invalid clock index %u\n", __func__, idx); 4501 return ERR_PTR(-EINVAL); 4502 } 4503 4504 return clk_data->clks[idx]; 4505 } 4506 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4507 4508 struct clk_hw * 4509 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4510 { 4511 struct clk_hw_onecell_data *hw_data = data; 4512 unsigned int idx = clkspec->args[0]; 4513 4514 if (idx >= hw_data->num) { 4515 pr_err("%s: invalid index %u\n", __func__, idx); 4516 return ERR_PTR(-EINVAL); 4517 } 4518 4519 return hw_data->hws[idx]; 4520 } 4521 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4522 4523 /** 4524 * of_clk_add_provider() - Register a clock provider for a node 4525 * @np: Device node pointer associated with clock provider 4526 * @clk_src_get: callback for decoding clock 4527 * @data: context pointer for @clk_src_get callback. 4528 * 4529 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4530 */ 4531 int of_clk_add_provider(struct device_node *np, 4532 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4533 void *data), 4534 void *data) 4535 { 4536 struct of_clk_provider *cp; 4537 int ret; 4538 4539 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4540 if (!cp) 4541 return -ENOMEM; 4542 4543 cp->node = of_node_get(np); 4544 cp->data = data; 4545 cp->get = clk_src_get; 4546 4547 mutex_lock(&of_clk_mutex); 4548 list_add(&cp->link, &of_clk_providers); 4549 mutex_unlock(&of_clk_mutex); 4550 pr_debug("Added clock from %pOF\n", np); 4551 4552 clk_core_reparent_orphans(); 4553 4554 ret = of_clk_set_defaults(np, true); 4555 if (ret < 0) 4556 of_clk_del_provider(np); 4557 4558 return ret; 4559 } 4560 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4561 4562 /** 4563 * of_clk_add_hw_provider() - Register a clock provider for a node 4564 * @np: Device node pointer associated with clock provider 4565 * @get: callback for decoding clk_hw 4566 * @data: context pointer for @get callback. 4567 */ 4568 int of_clk_add_hw_provider(struct device_node *np, 4569 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4570 void *data), 4571 void *data) 4572 { 4573 struct of_clk_provider *cp; 4574 int ret; 4575 4576 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4577 if (!cp) 4578 return -ENOMEM; 4579 4580 cp->node = of_node_get(np); 4581 cp->data = data; 4582 cp->get_hw = get; 4583 4584 mutex_lock(&of_clk_mutex); 4585 list_add(&cp->link, &of_clk_providers); 4586 mutex_unlock(&of_clk_mutex); 4587 pr_debug("Added clk_hw provider from %pOF\n", np); 4588 4589 clk_core_reparent_orphans(); 4590 4591 ret = of_clk_set_defaults(np, true); 4592 if (ret < 0) 4593 of_clk_del_provider(np); 4594 4595 return ret; 4596 } 4597 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4598 4599 static void devm_of_clk_release_provider(struct device *dev, void *res) 4600 { 4601 of_clk_del_provider(*(struct device_node **)res); 4602 } 4603 4604 /* 4605 * We allow a child device to use its parent device as the clock provider node 4606 * for cases like MFD sub-devices where the child device driver wants to use 4607 * devm_*() APIs but not list the device in DT as a sub-node. 4608 */ 4609 static struct device_node *get_clk_provider_node(struct device *dev) 4610 { 4611 struct device_node *np, *parent_np; 4612 4613 np = dev->of_node; 4614 parent_np = dev->parent ? dev->parent->of_node : NULL; 4615 4616 if (!of_find_property(np, "#clock-cells", NULL)) 4617 if (of_find_property(parent_np, "#clock-cells", NULL)) 4618 np = parent_np; 4619 4620 return np; 4621 } 4622 4623 /** 4624 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4625 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4626 * @get: callback for decoding clk_hw 4627 * @data: context pointer for @get callback 4628 * 4629 * Registers clock provider for given device's node. If the device has no DT 4630 * node or if the device node lacks of clock provider information (#clock-cells) 4631 * then the parent device's node is scanned for this information. If parent node 4632 * has the #clock-cells then it is used in registration. Provider is 4633 * automatically released at device exit. 4634 * 4635 * Return: 0 on success or an errno on failure. 4636 */ 4637 int devm_of_clk_add_hw_provider(struct device *dev, 4638 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4639 void *data), 4640 void *data) 4641 { 4642 struct device_node **ptr, *np; 4643 int ret; 4644 4645 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4646 GFP_KERNEL); 4647 if (!ptr) 4648 return -ENOMEM; 4649 4650 np = get_clk_provider_node(dev); 4651 ret = of_clk_add_hw_provider(np, get, data); 4652 if (!ret) { 4653 *ptr = np; 4654 devres_add(dev, ptr); 4655 } else { 4656 devres_free(ptr); 4657 } 4658 4659 return ret; 4660 } 4661 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4662 4663 /** 4664 * of_clk_del_provider() - Remove a previously registered clock provider 4665 * @np: Device node pointer associated with clock provider 4666 */ 4667 void of_clk_del_provider(struct device_node *np) 4668 { 4669 struct of_clk_provider *cp; 4670 4671 mutex_lock(&of_clk_mutex); 4672 list_for_each_entry(cp, &of_clk_providers, link) { 4673 if (cp->node == np) { 4674 list_del(&cp->link); 4675 of_node_put(cp->node); 4676 kfree(cp); 4677 break; 4678 } 4679 } 4680 mutex_unlock(&of_clk_mutex); 4681 } 4682 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4683 4684 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4685 { 4686 struct device_node **np = res; 4687 4688 if (WARN_ON(!np || !*np)) 4689 return 0; 4690 4691 return *np == data; 4692 } 4693 4694 /** 4695 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4696 * @dev: Device to whose lifetime the clock provider was bound 4697 */ 4698 void devm_of_clk_del_provider(struct device *dev) 4699 { 4700 int ret; 4701 struct device_node *np = get_clk_provider_node(dev); 4702 4703 ret = devres_release(dev, devm_of_clk_release_provider, 4704 devm_clk_provider_match, np); 4705 4706 WARN_ON(ret); 4707 } 4708 EXPORT_SYMBOL(devm_of_clk_del_provider); 4709 4710 /** 4711 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4712 * @np: device node to parse clock specifier from 4713 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4714 * @name: clock name to find and parse. If name is NULL, the index is used 4715 * @out_args: Result of parsing the clock specifier 4716 * 4717 * Parses a device node's "clocks" and "clock-names" properties to find the 4718 * phandle and cells for the index or name that is desired. The resulting clock 4719 * specifier is placed into @out_args, or an errno is returned when there's a 4720 * parsing error. The @index argument is ignored if @name is non-NULL. 4721 * 4722 * Example: 4723 * 4724 * phandle1: clock-controller@1 { 4725 * #clock-cells = <2>; 4726 * } 4727 * 4728 * phandle2: clock-controller@2 { 4729 * #clock-cells = <1>; 4730 * } 4731 * 4732 * clock-consumer@3 { 4733 * clocks = <&phandle1 1 2 &phandle2 3>; 4734 * clock-names = "name1", "name2"; 4735 * } 4736 * 4737 * To get a device_node for `clock-controller@2' node you may call this 4738 * function a few different ways: 4739 * 4740 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4741 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4742 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4743 * 4744 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4745 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4746 * the "clock-names" property of @np. 4747 */ 4748 static int of_parse_clkspec(const struct device_node *np, int index, 4749 const char *name, struct of_phandle_args *out_args) 4750 { 4751 int ret = -ENOENT; 4752 4753 /* Walk up the tree of devices looking for a clock property that matches */ 4754 while (np) { 4755 /* 4756 * For named clocks, first look up the name in the 4757 * "clock-names" property. If it cannot be found, then index 4758 * will be an error code and of_parse_phandle_with_args() will 4759 * return -EINVAL. 4760 */ 4761 if (name) 4762 index = of_property_match_string(np, "clock-names", name); 4763 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4764 index, out_args); 4765 if (!ret) 4766 break; 4767 if (name && index >= 0) 4768 break; 4769 4770 /* 4771 * No matching clock found on this node. If the parent node 4772 * has a "clock-ranges" property, then we can try one of its 4773 * clocks. 4774 */ 4775 np = np->parent; 4776 if (np && !of_get_property(np, "clock-ranges", NULL)) 4777 break; 4778 index = 0; 4779 } 4780 4781 return ret; 4782 } 4783 4784 static struct clk_hw * 4785 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4786 struct of_phandle_args *clkspec) 4787 { 4788 struct clk *clk; 4789 4790 if (provider->get_hw) 4791 return provider->get_hw(clkspec, provider->data); 4792 4793 clk = provider->get(clkspec, provider->data); 4794 if (IS_ERR(clk)) 4795 return ERR_CAST(clk); 4796 return __clk_get_hw(clk); 4797 } 4798 4799 static struct clk_hw * 4800 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4801 { 4802 struct of_clk_provider *provider; 4803 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4804 4805 if (!clkspec) 4806 return ERR_PTR(-EINVAL); 4807 4808 mutex_lock(&of_clk_mutex); 4809 list_for_each_entry(provider, &of_clk_providers, link) { 4810 if (provider->node == clkspec->np) { 4811 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4812 if (!IS_ERR(hw)) 4813 break; 4814 } 4815 } 4816 mutex_unlock(&of_clk_mutex); 4817 4818 return hw; 4819 } 4820 4821 /** 4822 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4823 * @clkspec: pointer to a clock specifier data structure 4824 * 4825 * This function looks up a struct clk from the registered list of clock 4826 * providers, an input is a clock specifier data structure as returned 4827 * from the of_parse_phandle_with_args() function call. 4828 */ 4829 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4830 { 4831 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4832 4833 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4834 } 4835 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4836 4837 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4838 const char *con_id) 4839 { 4840 int ret; 4841 struct clk_hw *hw; 4842 struct of_phandle_args clkspec; 4843 4844 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4845 if (ret) 4846 return ERR_PTR(ret); 4847 4848 hw = of_clk_get_hw_from_clkspec(&clkspec); 4849 of_node_put(clkspec.np); 4850 4851 return hw; 4852 } 4853 4854 static struct clk *__of_clk_get(struct device_node *np, 4855 int index, const char *dev_id, 4856 const char *con_id) 4857 { 4858 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4859 4860 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4861 } 4862 4863 struct clk *of_clk_get(struct device_node *np, int index) 4864 { 4865 return __of_clk_get(np, index, np->full_name, NULL); 4866 } 4867 EXPORT_SYMBOL(of_clk_get); 4868 4869 /** 4870 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4871 * @np: pointer to clock consumer node 4872 * @name: name of consumer's clock input, or NULL for the first clock reference 4873 * 4874 * This function parses the clocks and clock-names properties, 4875 * and uses them to look up the struct clk from the registered list of clock 4876 * providers. 4877 */ 4878 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4879 { 4880 if (!np) 4881 return ERR_PTR(-ENOENT); 4882 4883 return __of_clk_get(np, 0, np->full_name, name); 4884 } 4885 EXPORT_SYMBOL(of_clk_get_by_name); 4886 4887 /** 4888 * of_clk_get_parent_count() - Count the number of clocks a device node has 4889 * @np: device node to count 4890 * 4891 * Returns: The number of clocks that are possible parents of this node 4892 */ 4893 unsigned int of_clk_get_parent_count(const struct device_node *np) 4894 { 4895 int count; 4896 4897 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4898 if (count < 0) 4899 return 0; 4900 4901 return count; 4902 } 4903 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4904 4905 const char *of_clk_get_parent_name(const struct device_node *np, int index) 4906 { 4907 struct of_phandle_args clkspec; 4908 struct property *prop; 4909 const char *clk_name; 4910 const __be32 *vp; 4911 u32 pv; 4912 int rc; 4913 int count; 4914 struct clk *clk; 4915 4916 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4917 &clkspec); 4918 if (rc) 4919 return NULL; 4920 4921 index = clkspec.args_count ? clkspec.args[0] : 0; 4922 count = 0; 4923 4924 /* if there is an indices property, use it to transfer the index 4925 * specified into an array offset for the clock-output-names property. 4926 */ 4927 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4928 if (index == pv) { 4929 index = count; 4930 break; 4931 } 4932 count++; 4933 } 4934 /* We went off the end of 'clock-indices' without finding it */ 4935 if (prop && !vp) 4936 return NULL; 4937 4938 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4939 index, 4940 &clk_name) < 0) { 4941 /* 4942 * Best effort to get the name if the clock has been 4943 * registered with the framework. If the clock isn't 4944 * registered, we return the node name as the name of 4945 * the clock as long as #clock-cells = 0. 4946 */ 4947 clk = of_clk_get_from_provider(&clkspec); 4948 if (IS_ERR(clk)) { 4949 if (clkspec.args_count == 0) 4950 clk_name = clkspec.np->name; 4951 else 4952 clk_name = NULL; 4953 } else { 4954 clk_name = __clk_get_name(clk); 4955 clk_put(clk); 4956 } 4957 } 4958 4959 4960 of_node_put(clkspec.np); 4961 return clk_name; 4962 } 4963 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4964 4965 /** 4966 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4967 * number of parents 4968 * @np: Device node pointer associated with clock provider 4969 * @parents: pointer to char array that hold the parents' names 4970 * @size: size of the @parents array 4971 * 4972 * Return: number of parents for the clock node. 4973 */ 4974 int of_clk_parent_fill(struct device_node *np, const char **parents, 4975 unsigned int size) 4976 { 4977 unsigned int i = 0; 4978 4979 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4980 i++; 4981 4982 return i; 4983 } 4984 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4985 4986 struct clock_provider { 4987 void (*clk_init_cb)(struct device_node *); 4988 struct device_node *np; 4989 struct list_head node; 4990 }; 4991 4992 /* 4993 * This function looks for a parent clock. If there is one, then it 4994 * checks that the provider for this parent clock was initialized, in 4995 * this case the parent clock will be ready. 4996 */ 4997 static int parent_ready(struct device_node *np) 4998 { 4999 int i = 0; 5000 5001 while (true) { 5002 struct clk *clk = of_clk_get(np, i); 5003 5004 /* this parent is ready we can check the next one */ 5005 if (!IS_ERR(clk)) { 5006 clk_put(clk); 5007 i++; 5008 continue; 5009 } 5010 5011 /* at least one parent is not ready, we exit now */ 5012 if (PTR_ERR(clk) == -EPROBE_DEFER) 5013 return 0; 5014 5015 /* 5016 * Here we make assumption that the device tree is 5017 * written correctly. So an error means that there is 5018 * no more parent. As we didn't exit yet, then the 5019 * previous parent are ready. If there is no clock 5020 * parent, no need to wait for them, then we can 5021 * consider their absence as being ready 5022 */ 5023 return 1; 5024 } 5025 } 5026 5027 /** 5028 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5029 * @np: Device node pointer associated with clock provider 5030 * @index: clock index 5031 * @flags: pointer to top-level framework flags 5032 * 5033 * Detects if the clock-critical property exists and, if so, sets the 5034 * corresponding CLK_IS_CRITICAL flag. 5035 * 5036 * Do not use this function. It exists only for legacy Device Tree 5037 * bindings, such as the one-clock-per-node style that are outdated. 5038 * Those bindings typically put all clock data into .dts and the Linux 5039 * driver has no clock data, thus making it impossible to set this flag 5040 * correctly from the driver. Only those drivers may call 5041 * of_clk_detect_critical from their setup functions. 5042 * 5043 * Return: error code or zero on success 5044 */ 5045 int of_clk_detect_critical(struct device_node *np, int index, 5046 unsigned long *flags) 5047 { 5048 struct property *prop; 5049 const __be32 *cur; 5050 uint32_t idx; 5051 5052 if (!np || !flags) 5053 return -EINVAL; 5054 5055 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5056 if (index == idx) 5057 *flags |= CLK_IS_CRITICAL; 5058 5059 return 0; 5060 } 5061 5062 /** 5063 * of_clk_init() - Scan and init clock providers from the DT 5064 * @matches: array of compatible values and init functions for providers. 5065 * 5066 * This function scans the device tree for matching clock providers 5067 * and calls their initialization functions. It also does it by trying 5068 * to follow the dependencies. 5069 */ 5070 void __init of_clk_init(const struct of_device_id *matches) 5071 { 5072 const struct of_device_id *match; 5073 struct device_node *np; 5074 struct clock_provider *clk_provider, *next; 5075 bool is_init_done; 5076 bool force = false; 5077 LIST_HEAD(clk_provider_list); 5078 5079 if (!matches) 5080 matches = &__clk_of_table; 5081 5082 /* First prepare the list of the clocks providers */ 5083 for_each_matching_node_and_match(np, matches, &match) { 5084 struct clock_provider *parent; 5085 5086 if (!of_device_is_available(np)) 5087 continue; 5088 5089 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5090 if (!parent) { 5091 list_for_each_entry_safe(clk_provider, next, 5092 &clk_provider_list, node) { 5093 list_del(&clk_provider->node); 5094 of_node_put(clk_provider->np); 5095 kfree(clk_provider); 5096 } 5097 of_node_put(np); 5098 return; 5099 } 5100 5101 parent->clk_init_cb = match->data; 5102 parent->np = of_node_get(np); 5103 list_add_tail(&parent->node, &clk_provider_list); 5104 } 5105 5106 while (!list_empty(&clk_provider_list)) { 5107 is_init_done = false; 5108 list_for_each_entry_safe(clk_provider, next, 5109 &clk_provider_list, node) { 5110 if (force || parent_ready(clk_provider->np)) { 5111 5112 /* Don't populate platform devices */ 5113 of_node_set_flag(clk_provider->np, 5114 OF_POPULATED); 5115 5116 clk_provider->clk_init_cb(clk_provider->np); 5117 of_clk_set_defaults(clk_provider->np, true); 5118 5119 list_del(&clk_provider->node); 5120 of_node_put(clk_provider->np); 5121 kfree(clk_provider); 5122 is_init_done = true; 5123 } 5124 } 5125 5126 /* 5127 * We didn't manage to initialize any of the 5128 * remaining providers during the last loop, so now we 5129 * initialize all the remaining ones unconditionally 5130 * in case the clock parent was not mandatory 5131 */ 5132 if (!is_init_done) 5133 force = true; 5134 } 5135 } 5136 #endif 5137