1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-private.h> 13 #include <linux/clk/clk-conf.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/spinlock.h> 17 #include <linux/err.h> 18 #include <linux/list.h> 19 #include <linux/slab.h> 20 #include <linux/of.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/sched.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** locking ***/ 41 static void clk_prepare_lock(void) 42 { 43 if (!mutex_trylock(&prepare_lock)) { 44 if (prepare_owner == current) { 45 prepare_refcnt++; 46 return; 47 } 48 mutex_lock(&prepare_lock); 49 } 50 WARN_ON_ONCE(prepare_owner != NULL); 51 WARN_ON_ONCE(prepare_refcnt != 0); 52 prepare_owner = current; 53 prepare_refcnt = 1; 54 } 55 56 static void clk_prepare_unlock(void) 57 { 58 WARN_ON_ONCE(prepare_owner != current); 59 WARN_ON_ONCE(prepare_refcnt == 0); 60 61 if (--prepare_refcnt) 62 return; 63 prepare_owner = NULL; 64 mutex_unlock(&prepare_lock); 65 } 66 67 static unsigned long clk_enable_lock(void) 68 { 69 unsigned long flags; 70 71 if (!spin_trylock_irqsave(&enable_lock, flags)) { 72 if (enable_owner == current) { 73 enable_refcnt++; 74 return flags; 75 } 76 spin_lock_irqsave(&enable_lock, flags); 77 } 78 WARN_ON_ONCE(enable_owner != NULL); 79 WARN_ON_ONCE(enable_refcnt != 0); 80 enable_owner = current; 81 enable_refcnt = 1; 82 return flags; 83 } 84 85 static void clk_enable_unlock(unsigned long flags) 86 { 87 WARN_ON_ONCE(enable_owner != current); 88 WARN_ON_ONCE(enable_refcnt == 0); 89 90 if (--enable_refcnt) 91 return; 92 enable_owner = NULL; 93 spin_unlock_irqrestore(&enable_lock, flags); 94 } 95 96 /*** debugfs support ***/ 97 98 #ifdef CONFIG_DEBUG_FS 99 #include <linux/debugfs.h> 100 101 static struct dentry *rootdir; 102 static int inited = 0; 103 static DEFINE_MUTEX(clk_debug_lock); 104 static HLIST_HEAD(clk_debug_list); 105 106 static struct hlist_head *all_lists[] = { 107 &clk_root_list, 108 &clk_orphan_list, 109 NULL, 110 }; 111 112 static struct hlist_head *orphan_list[] = { 113 &clk_orphan_list, 114 NULL, 115 }; 116 117 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level) 118 { 119 if (!c) 120 return; 121 122 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 123 level * 3 + 1, "", 124 30 - level * 3, c->name, 125 c->enable_count, c->prepare_count, clk_get_rate(c), 126 clk_get_accuracy(c), clk_get_phase(c)); 127 } 128 129 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c, 130 int level) 131 { 132 struct clk *child; 133 134 if (!c) 135 return; 136 137 clk_summary_show_one(s, c, level); 138 139 hlist_for_each_entry(child, &c->children, child_node) 140 clk_summary_show_subtree(s, child, level + 1); 141 } 142 143 static int clk_summary_show(struct seq_file *s, void *data) 144 { 145 struct clk *c; 146 struct hlist_head **lists = (struct hlist_head **)s->private; 147 148 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 149 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 150 151 clk_prepare_lock(); 152 153 for (; *lists; lists++) 154 hlist_for_each_entry(c, *lists, child_node) 155 clk_summary_show_subtree(s, c, 0); 156 157 clk_prepare_unlock(); 158 159 return 0; 160 } 161 162 163 static int clk_summary_open(struct inode *inode, struct file *file) 164 { 165 return single_open(file, clk_summary_show, inode->i_private); 166 } 167 168 static const struct file_operations clk_summary_fops = { 169 .open = clk_summary_open, 170 .read = seq_read, 171 .llseek = seq_lseek, 172 .release = single_release, 173 }; 174 175 static void clk_dump_one(struct seq_file *s, struct clk *c, int level) 176 { 177 if (!c) 178 return; 179 180 seq_printf(s, "\"%s\": { ", c->name); 181 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 182 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 183 seq_printf(s, "\"rate\": %lu", clk_get_rate(c)); 184 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c)); 185 seq_printf(s, "\"phase\": %d", clk_get_phase(c)); 186 } 187 188 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level) 189 { 190 struct clk *child; 191 192 if (!c) 193 return; 194 195 clk_dump_one(s, c, level); 196 197 hlist_for_each_entry(child, &c->children, child_node) { 198 seq_printf(s, ","); 199 clk_dump_subtree(s, child, level + 1); 200 } 201 202 seq_printf(s, "}"); 203 } 204 205 static int clk_dump(struct seq_file *s, void *data) 206 { 207 struct clk *c; 208 bool first_node = true; 209 struct hlist_head **lists = (struct hlist_head **)s->private; 210 211 seq_printf(s, "{"); 212 213 clk_prepare_lock(); 214 215 for (; *lists; lists++) { 216 hlist_for_each_entry(c, *lists, child_node) { 217 if (!first_node) 218 seq_puts(s, ","); 219 first_node = false; 220 clk_dump_subtree(s, c, 0); 221 } 222 } 223 224 clk_prepare_unlock(); 225 226 seq_printf(s, "}"); 227 return 0; 228 } 229 230 231 static int clk_dump_open(struct inode *inode, struct file *file) 232 { 233 return single_open(file, clk_dump, inode->i_private); 234 } 235 236 static const struct file_operations clk_dump_fops = { 237 .open = clk_dump_open, 238 .read = seq_read, 239 .llseek = seq_lseek, 240 .release = single_release, 241 }; 242 243 /* caller must hold prepare_lock */ 244 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry) 245 { 246 struct dentry *d; 247 int ret = -ENOMEM; 248 249 if (!clk || !pdentry) { 250 ret = -EINVAL; 251 goto out; 252 } 253 254 d = debugfs_create_dir(clk->name, pdentry); 255 if (!d) 256 goto out; 257 258 clk->dentry = d; 259 260 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry, 261 (u32 *)&clk->rate); 262 if (!d) 263 goto err_out; 264 265 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry, 266 (u32 *)&clk->accuracy); 267 if (!d) 268 goto err_out; 269 270 d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry, 271 (u32 *)&clk->phase); 272 if (!d) 273 goto err_out; 274 275 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry, 276 (u32 *)&clk->flags); 277 if (!d) 278 goto err_out; 279 280 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry, 281 (u32 *)&clk->prepare_count); 282 if (!d) 283 goto err_out; 284 285 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry, 286 (u32 *)&clk->enable_count); 287 if (!d) 288 goto err_out; 289 290 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry, 291 (u32 *)&clk->notifier_count); 292 if (!d) 293 goto err_out; 294 295 if (clk->ops->debug_init) { 296 ret = clk->ops->debug_init(clk->hw, clk->dentry); 297 if (ret) 298 goto err_out; 299 } 300 301 ret = 0; 302 goto out; 303 304 err_out: 305 debugfs_remove_recursive(clk->dentry); 306 clk->dentry = NULL; 307 out: 308 return ret; 309 } 310 311 /** 312 * clk_debug_register - add a clk node to the debugfs clk tree 313 * @clk: the clk being added to the debugfs clk tree 314 * 315 * Dynamically adds a clk to the debugfs clk tree if debugfs has been 316 * initialized. Otherwise it bails out early since the debugfs clk tree 317 * will be created lazily by clk_debug_init as part of a late_initcall. 318 */ 319 static int clk_debug_register(struct clk *clk) 320 { 321 int ret = 0; 322 323 mutex_lock(&clk_debug_lock); 324 hlist_add_head(&clk->debug_node, &clk_debug_list); 325 326 if (!inited) 327 goto unlock; 328 329 ret = clk_debug_create_one(clk, rootdir); 330 unlock: 331 mutex_unlock(&clk_debug_lock); 332 333 return ret; 334 } 335 336 /** 337 * clk_debug_unregister - remove a clk node from the debugfs clk tree 338 * @clk: the clk being removed from the debugfs clk tree 339 * 340 * Dynamically removes a clk and all it's children clk nodes from the 341 * debugfs clk tree if clk->dentry points to debugfs created by 342 * clk_debug_register in __clk_init. 343 */ 344 static void clk_debug_unregister(struct clk *clk) 345 { 346 mutex_lock(&clk_debug_lock); 347 if (!clk->dentry) 348 goto out; 349 350 hlist_del_init(&clk->debug_node); 351 debugfs_remove_recursive(clk->dentry); 352 clk->dentry = NULL; 353 out: 354 mutex_unlock(&clk_debug_lock); 355 } 356 357 struct dentry *clk_debugfs_add_file(struct clk *clk, char *name, umode_t mode, 358 void *data, const struct file_operations *fops) 359 { 360 struct dentry *d = NULL; 361 362 if (clk->dentry) 363 d = debugfs_create_file(name, mode, clk->dentry, data, fops); 364 365 return d; 366 } 367 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 368 369 /** 370 * clk_debug_init - lazily create the debugfs clk tree visualization 371 * 372 * clks are often initialized very early during boot before memory can 373 * be dynamically allocated and well before debugfs is setup. 374 * clk_debug_init walks the clk tree hierarchy while holding 375 * prepare_lock and creates the topology as part of a late_initcall, 376 * thus insuring that clks initialized very early will still be 377 * represented in the debugfs clk tree. This function should only be 378 * called once at boot-time, and all other clks added dynamically will 379 * be done so with clk_debug_register. 380 */ 381 static int __init clk_debug_init(void) 382 { 383 struct clk *clk; 384 struct dentry *d; 385 386 rootdir = debugfs_create_dir("clk", NULL); 387 388 if (!rootdir) 389 return -ENOMEM; 390 391 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 392 &clk_summary_fops); 393 if (!d) 394 return -ENOMEM; 395 396 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 397 &clk_dump_fops); 398 if (!d) 399 return -ENOMEM; 400 401 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 402 &orphan_list, &clk_summary_fops); 403 if (!d) 404 return -ENOMEM; 405 406 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 407 &orphan_list, &clk_dump_fops); 408 if (!d) 409 return -ENOMEM; 410 411 mutex_lock(&clk_debug_lock); 412 hlist_for_each_entry(clk, &clk_debug_list, debug_node) 413 clk_debug_create_one(clk, rootdir); 414 415 inited = 1; 416 mutex_unlock(&clk_debug_lock); 417 418 return 0; 419 } 420 late_initcall(clk_debug_init); 421 #else 422 static inline int clk_debug_register(struct clk *clk) { return 0; } 423 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent) 424 { 425 } 426 static inline void clk_debug_unregister(struct clk *clk) 427 { 428 } 429 #endif 430 431 /* caller must hold prepare_lock */ 432 static void clk_unprepare_unused_subtree(struct clk *clk) 433 { 434 struct clk *child; 435 436 if (!clk) 437 return; 438 439 hlist_for_each_entry(child, &clk->children, child_node) 440 clk_unprepare_unused_subtree(child); 441 442 if (clk->prepare_count) 443 return; 444 445 if (clk->flags & CLK_IGNORE_UNUSED) 446 return; 447 448 if (__clk_is_prepared(clk)) { 449 if (clk->ops->unprepare_unused) 450 clk->ops->unprepare_unused(clk->hw); 451 else if (clk->ops->unprepare) 452 clk->ops->unprepare(clk->hw); 453 } 454 } 455 456 /* caller must hold prepare_lock */ 457 static void clk_disable_unused_subtree(struct clk *clk) 458 { 459 struct clk *child; 460 unsigned long flags; 461 462 if (!clk) 463 goto out; 464 465 hlist_for_each_entry(child, &clk->children, child_node) 466 clk_disable_unused_subtree(child); 467 468 flags = clk_enable_lock(); 469 470 if (clk->enable_count) 471 goto unlock_out; 472 473 if (clk->flags & CLK_IGNORE_UNUSED) 474 goto unlock_out; 475 476 /* 477 * some gate clocks have special needs during the disable-unused 478 * sequence. call .disable_unused if available, otherwise fall 479 * back to .disable 480 */ 481 if (__clk_is_enabled(clk)) { 482 if (clk->ops->disable_unused) 483 clk->ops->disable_unused(clk->hw); 484 else if (clk->ops->disable) 485 clk->ops->disable(clk->hw); 486 } 487 488 unlock_out: 489 clk_enable_unlock(flags); 490 491 out: 492 return; 493 } 494 495 static bool clk_ignore_unused; 496 static int __init clk_ignore_unused_setup(char *__unused) 497 { 498 clk_ignore_unused = true; 499 return 1; 500 } 501 __setup("clk_ignore_unused", clk_ignore_unused_setup); 502 503 static int clk_disable_unused(void) 504 { 505 struct clk *clk; 506 507 if (clk_ignore_unused) { 508 pr_warn("clk: Not disabling unused clocks\n"); 509 return 0; 510 } 511 512 clk_prepare_lock(); 513 514 hlist_for_each_entry(clk, &clk_root_list, child_node) 515 clk_disable_unused_subtree(clk); 516 517 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 518 clk_disable_unused_subtree(clk); 519 520 hlist_for_each_entry(clk, &clk_root_list, child_node) 521 clk_unprepare_unused_subtree(clk); 522 523 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 524 clk_unprepare_unused_subtree(clk); 525 526 clk_prepare_unlock(); 527 528 return 0; 529 } 530 late_initcall_sync(clk_disable_unused); 531 532 /*** helper functions ***/ 533 534 const char *__clk_get_name(struct clk *clk) 535 { 536 return !clk ? NULL : clk->name; 537 } 538 EXPORT_SYMBOL_GPL(__clk_get_name); 539 540 struct clk_hw *__clk_get_hw(struct clk *clk) 541 { 542 return !clk ? NULL : clk->hw; 543 } 544 EXPORT_SYMBOL_GPL(__clk_get_hw); 545 546 u8 __clk_get_num_parents(struct clk *clk) 547 { 548 return !clk ? 0 : clk->num_parents; 549 } 550 EXPORT_SYMBOL_GPL(__clk_get_num_parents); 551 552 struct clk *__clk_get_parent(struct clk *clk) 553 { 554 return !clk ? NULL : clk->parent; 555 } 556 EXPORT_SYMBOL_GPL(__clk_get_parent); 557 558 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index) 559 { 560 if (!clk || index >= clk->num_parents) 561 return NULL; 562 else if (!clk->parents) 563 return __clk_lookup(clk->parent_names[index]); 564 else if (!clk->parents[index]) 565 return clk->parents[index] = 566 __clk_lookup(clk->parent_names[index]); 567 else 568 return clk->parents[index]; 569 } 570 EXPORT_SYMBOL_GPL(clk_get_parent_by_index); 571 572 unsigned int __clk_get_enable_count(struct clk *clk) 573 { 574 return !clk ? 0 : clk->enable_count; 575 } 576 577 unsigned int __clk_get_prepare_count(struct clk *clk) 578 { 579 return !clk ? 0 : clk->prepare_count; 580 } 581 582 unsigned long __clk_get_rate(struct clk *clk) 583 { 584 unsigned long ret; 585 586 if (!clk) { 587 ret = 0; 588 goto out; 589 } 590 591 ret = clk->rate; 592 593 if (clk->flags & CLK_IS_ROOT) 594 goto out; 595 596 if (!clk->parent) 597 ret = 0; 598 599 out: 600 return ret; 601 } 602 EXPORT_SYMBOL_GPL(__clk_get_rate); 603 604 unsigned long __clk_get_accuracy(struct clk *clk) 605 { 606 if (!clk) 607 return 0; 608 609 return clk->accuracy; 610 } 611 612 unsigned long __clk_get_flags(struct clk *clk) 613 { 614 return !clk ? 0 : clk->flags; 615 } 616 EXPORT_SYMBOL_GPL(__clk_get_flags); 617 618 bool __clk_is_prepared(struct clk *clk) 619 { 620 int ret; 621 622 if (!clk) 623 return false; 624 625 /* 626 * .is_prepared is optional for clocks that can prepare 627 * fall back to software usage counter if it is missing 628 */ 629 if (!clk->ops->is_prepared) { 630 ret = clk->prepare_count ? 1 : 0; 631 goto out; 632 } 633 634 ret = clk->ops->is_prepared(clk->hw); 635 out: 636 return !!ret; 637 } 638 639 bool __clk_is_enabled(struct clk *clk) 640 { 641 int ret; 642 643 if (!clk) 644 return false; 645 646 /* 647 * .is_enabled is only mandatory for clocks that gate 648 * fall back to software usage counter if .is_enabled is missing 649 */ 650 if (!clk->ops->is_enabled) { 651 ret = clk->enable_count ? 1 : 0; 652 goto out; 653 } 654 655 ret = clk->ops->is_enabled(clk->hw); 656 out: 657 return !!ret; 658 } 659 EXPORT_SYMBOL_GPL(__clk_is_enabled); 660 661 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk) 662 { 663 struct clk *child; 664 struct clk *ret; 665 666 if (!strcmp(clk->name, name)) 667 return clk; 668 669 hlist_for_each_entry(child, &clk->children, child_node) { 670 ret = __clk_lookup_subtree(name, child); 671 if (ret) 672 return ret; 673 } 674 675 return NULL; 676 } 677 678 struct clk *__clk_lookup(const char *name) 679 { 680 struct clk *root_clk; 681 struct clk *ret; 682 683 if (!name) 684 return NULL; 685 686 /* search the 'proper' clk tree first */ 687 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 688 ret = __clk_lookup_subtree(name, root_clk); 689 if (ret) 690 return ret; 691 } 692 693 /* if not found, then search the orphan tree */ 694 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 695 ret = __clk_lookup_subtree(name, root_clk); 696 if (ret) 697 return ret; 698 } 699 700 return NULL; 701 } 702 703 /* 704 * Helper for finding best parent to provide a given frequency. This can be used 705 * directly as a determine_rate callback (e.g. for a mux), or from a more 706 * complex clock that may combine a mux with other operations. 707 */ 708 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate, 709 unsigned long *best_parent_rate, 710 struct clk **best_parent_p) 711 { 712 struct clk *clk = hw->clk, *parent, *best_parent = NULL; 713 int i, num_parents; 714 unsigned long parent_rate, best = 0; 715 716 /* if NO_REPARENT flag set, pass through to current parent */ 717 if (clk->flags & CLK_SET_RATE_NO_REPARENT) { 718 parent = clk->parent; 719 if (clk->flags & CLK_SET_RATE_PARENT) 720 best = __clk_round_rate(parent, rate); 721 else if (parent) 722 best = __clk_get_rate(parent); 723 else 724 best = __clk_get_rate(clk); 725 goto out; 726 } 727 728 /* find the parent that can provide the fastest rate <= rate */ 729 num_parents = clk->num_parents; 730 for (i = 0; i < num_parents; i++) { 731 parent = clk_get_parent_by_index(clk, i); 732 if (!parent) 733 continue; 734 if (clk->flags & CLK_SET_RATE_PARENT) 735 parent_rate = __clk_round_rate(parent, rate); 736 else 737 parent_rate = __clk_get_rate(parent); 738 if (parent_rate <= rate && parent_rate > best) { 739 best_parent = parent; 740 best = parent_rate; 741 } 742 } 743 744 out: 745 if (best_parent) 746 *best_parent_p = best_parent; 747 *best_parent_rate = best; 748 749 return best; 750 } 751 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 752 753 /*** clk api ***/ 754 755 void __clk_unprepare(struct clk *clk) 756 { 757 if (!clk) 758 return; 759 760 if (WARN_ON(clk->prepare_count == 0)) 761 return; 762 763 if (--clk->prepare_count > 0) 764 return; 765 766 WARN_ON(clk->enable_count > 0); 767 768 if (clk->ops->unprepare) 769 clk->ops->unprepare(clk->hw); 770 771 __clk_unprepare(clk->parent); 772 } 773 774 /** 775 * clk_unprepare - undo preparation of a clock source 776 * @clk: the clk being unprepared 777 * 778 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 779 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 780 * if the operation may sleep. One example is a clk which is accessed over 781 * I2c. In the complex case a clk gate operation may require a fast and a slow 782 * part. It is this reason that clk_unprepare and clk_disable are not mutually 783 * exclusive. In fact clk_disable must be called before clk_unprepare. 784 */ 785 void clk_unprepare(struct clk *clk) 786 { 787 if (IS_ERR_OR_NULL(clk)) 788 return; 789 790 clk_prepare_lock(); 791 __clk_unprepare(clk); 792 clk_prepare_unlock(); 793 } 794 EXPORT_SYMBOL_GPL(clk_unprepare); 795 796 int __clk_prepare(struct clk *clk) 797 { 798 int ret = 0; 799 800 if (!clk) 801 return 0; 802 803 if (clk->prepare_count == 0) { 804 ret = __clk_prepare(clk->parent); 805 if (ret) 806 return ret; 807 808 if (clk->ops->prepare) { 809 ret = clk->ops->prepare(clk->hw); 810 if (ret) { 811 __clk_unprepare(clk->parent); 812 return ret; 813 } 814 } 815 } 816 817 clk->prepare_count++; 818 819 return 0; 820 } 821 822 /** 823 * clk_prepare - prepare a clock source 824 * @clk: the clk being prepared 825 * 826 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 827 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 828 * operation may sleep. One example is a clk which is accessed over I2c. In 829 * the complex case a clk ungate operation may require a fast and a slow part. 830 * It is this reason that clk_prepare and clk_enable are not mutually 831 * exclusive. In fact clk_prepare must be called before clk_enable. 832 * Returns 0 on success, -EERROR otherwise. 833 */ 834 int clk_prepare(struct clk *clk) 835 { 836 int ret; 837 838 clk_prepare_lock(); 839 ret = __clk_prepare(clk); 840 clk_prepare_unlock(); 841 842 return ret; 843 } 844 EXPORT_SYMBOL_GPL(clk_prepare); 845 846 static void __clk_disable(struct clk *clk) 847 { 848 if (!clk) 849 return; 850 851 if (WARN_ON(clk->enable_count == 0)) 852 return; 853 854 if (--clk->enable_count > 0) 855 return; 856 857 if (clk->ops->disable) 858 clk->ops->disable(clk->hw); 859 860 __clk_disable(clk->parent); 861 } 862 863 /** 864 * clk_disable - gate a clock 865 * @clk: the clk being gated 866 * 867 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 868 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 869 * clk if the operation is fast and will never sleep. One example is a 870 * SoC-internal clk which is controlled via simple register writes. In the 871 * complex case a clk gate operation may require a fast and a slow part. It is 872 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 873 * In fact clk_disable must be called before clk_unprepare. 874 */ 875 void clk_disable(struct clk *clk) 876 { 877 unsigned long flags; 878 879 if (IS_ERR_OR_NULL(clk)) 880 return; 881 882 flags = clk_enable_lock(); 883 __clk_disable(clk); 884 clk_enable_unlock(flags); 885 } 886 EXPORT_SYMBOL_GPL(clk_disable); 887 888 static int __clk_enable(struct clk *clk) 889 { 890 int ret = 0; 891 892 if (!clk) 893 return 0; 894 895 if (WARN_ON(clk->prepare_count == 0)) 896 return -ESHUTDOWN; 897 898 if (clk->enable_count == 0) { 899 ret = __clk_enable(clk->parent); 900 901 if (ret) 902 return ret; 903 904 if (clk->ops->enable) { 905 ret = clk->ops->enable(clk->hw); 906 if (ret) { 907 __clk_disable(clk->parent); 908 return ret; 909 } 910 } 911 } 912 913 clk->enable_count++; 914 return 0; 915 } 916 917 /** 918 * clk_enable - ungate a clock 919 * @clk: the clk being ungated 920 * 921 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 922 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 923 * if the operation will never sleep. One example is a SoC-internal clk which 924 * is controlled via simple register writes. In the complex case a clk ungate 925 * operation may require a fast and a slow part. It is this reason that 926 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 927 * must be called before clk_enable. Returns 0 on success, -EERROR 928 * otherwise. 929 */ 930 int clk_enable(struct clk *clk) 931 { 932 unsigned long flags; 933 int ret; 934 935 flags = clk_enable_lock(); 936 ret = __clk_enable(clk); 937 clk_enable_unlock(flags); 938 939 return ret; 940 } 941 EXPORT_SYMBOL_GPL(clk_enable); 942 943 /** 944 * __clk_round_rate - round the given rate for a clk 945 * @clk: round the rate of this clock 946 * @rate: the rate which is to be rounded 947 * 948 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate 949 */ 950 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 951 { 952 unsigned long parent_rate = 0; 953 struct clk *parent; 954 955 if (!clk) 956 return 0; 957 958 parent = clk->parent; 959 if (parent) 960 parent_rate = parent->rate; 961 962 if (clk->ops->determine_rate) 963 return clk->ops->determine_rate(clk->hw, rate, &parent_rate, 964 &parent); 965 else if (clk->ops->round_rate) 966 return clk->ops->round_rate(clk->hw, rate, &parent_rate); 967 else if (clk->flags & CLK_SET_RATE_PARENT) 968 return __clk_round_rate(clk->parent, rate); 969 else 970 return clk->rate; 971 } 972 EXPORT_SYMBOL_GPL(__clk_round_rate); 973 974 /** 975 * clk_round_rate - round the given rate for a clk 976 * @clk: the clk for which we are rounding a rate 977 * @rate: the rate which is to be rounded 978 * 979 * Takes in a rate as input and rounds it to a rate that the clk can actually 980 * use which is then returned. If clk doesn't support round_rate operation 981 * then the parent rate is returned. 982 */ 983 long clk_round_rate(struct clk *clk, unsigned long rate) 984 { 985 unsigned long ret; 986 987 clk_prepare_lock(); 988 ret = __clk_round_rate(clk, rate); 989 clk_prepare_unlock(); 990 991 return ret; 992 } 993 EXPORT_SYMBOL_GPL(clk_round_rate); 994 995 /** 996 * __clk_notify - call clk notifier chain 997 * @clk: struct clk * that is changing rate 998 * @msg: clk notifier type (see include/linux/clk.h) 999 * @old_rate: old clk rate 1000 * @new_rate: new clk rate 1001 * 1002 * Triggers a notifier call chain on the clk rate-change notification 1003 * for 'clk'. Passes a pointer to the struct clk and the previous 1004 * and current rates to the notifier callback. Intended to be called by 1005 * internal clock code only. Returns NOTIFY_DONE from the last driver 1006 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1007 * a driver returns that. 1008 */ 1009 static int __clk_notify(struct clk *clk, unsigned long msg, 1010 unsigned long old_rate, unsigned long new_rate) 1011 { 1012 struct clk_notifier *cn; 1013 struct clk_notifier_data cnd; 1014 int ret = NOTIFY_DONE; 1015 1016 cnd.clk = clk; 1017 cnd.old_rate = old_rate; 1018 cnd.new_rate = new_rate; 1019 1020 list_for_each_entry(cn, &clk_notifier_list, node) { 1021 if (cn->clk == clk) { 1022 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1023 &cnd); 1024 break; 1025 } 1026 } 1027 1028 return ret; 1029 } 1030 1031 /** 1032 * __clk_recalc_accuracies 1033 * @clk: first clk in the subtree 1034 * 1035 * Walks the subtree of clks starting with clk and recalculates accuracies as 1036 * it goes. Note that if a clk does not implement the .recalc_accuracy 1037 * callback then it is assumed that the clock will take on the accuracy of it's 1038 * parent. 1039 * 1040 * Caller must hold prepare_lock. 1041 */ 1042 static void __clk_recalc_accuracies(struct clk *clk) 1043 { 1044 unsigned long parent_accuracy = 0; 1045 struct clk *child; 1046 1047 if (clk->parent) 1048 parent_accuracy = clk->parent->accuracy; 1049 1050 if (clk->ops->recalc_accuracy) 1051 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 1052 parent_accuracy); 1053 else 1054 clk->accuracy = parent_accuracy; 1055 1056 hlist_for_each_entry(child, &clk->children, child_node) 1057 __clk_recalc_accuracies(child); 1058 } 1059 1060 /** 1061 * clk_get_accuracy - return the accuracy of clk 1062 * @clk: the clk whose accuracy is being returned 1063 * 1064 * Simply returns the cached accuracy of the clk, unless 1065 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1066 * issued. 1067 * If clk is NULL then returns 0. 1068 */ 1069 long clk_get_accuracy(struct clk *clk) 1070 { 1071 unsigned long accuracy; 1072 1073 clk_prepare_lock(); 1074 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE)) 1075 __clk_recalc_accuracies(clk); 1076 1077 accuracy = __clk_get_accuracy(clk); 1078 clk_prepare_unlock(); 1079 1080 return accuracy; 1081 } 1082 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1083 1084 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate) 1085 { 1086 if (clk->ops->recalc_rate) 1087 return clk->ops->recalc_rate(clk->hw, parent_rate); 1088 return parent_rate; 1089 } 1090 1091 /** 1092 * __clk_recalc_rates 1093 * @clk: first clk in the subtree 1094 * @msg: notification type (see include/linux/clk.h) 1095 * 1096 * Walks the subtree of clks starting with clk and recalculates rates as it 1097 * goes. Note that if a clk does not implement the .recalc_rate callback then 1098 * it is assumed that the clock will take on the rate of its parent. 1099 * 1100 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1101 * if necessary. 1102 * 1103 * Caller must hold prepare_lock. 1104 */ 1105 static void __clk_recalc_rates(struct clk *clk, unsigned long msg) 1106 { 1107 unsigned long old_rate; 1108 unsigned long parent_rate = 0; 1109 struct clk *child; 1110 1111 old_rate = clk->rate; 1112 1113 if (clk->parent) 1114 parent_rate = clk->parent->rate; 1115 1116 clk->rate = clk_recalc(clk, parent_rate); 1117 1118 /* 1119 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1120 * & ABORT_RATE_CHANGE notifiers 1121 */ 1122 if (clk->notifier_count && msg) 1123 __clk_notify(clk, msg, old_rate, clk->rate); 1124 1125 hlist_for_each_entry(child, &clk->children, child_node) 1126 __clk_recalc_rates(child, msg); 1127 } 1128 1129 /** 1130 * clk_get_rate - return the rate of clk 1131 * @clk: the clk whose rate is being returned 1132 * 1133 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1134 * is set, which means a recalc_rate will be issued. 1135 * If clk is NULL then returns 0. 1136 */ 1137 unsigned long clk_get_rate(struct clk *clk) 1138 { 1139 unsigned long rate; 1140 1141 clk_prepare_lock(); 1142 1143 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE)) 1144 __clk_recalc_rates(clk, 0); 1145 1146 rate = __clk_get_rate(clk); 1147 clk_prepare_unlock(); 1148 1149 return rate; 1150 } 1151 EXPORT_SYMBOL_GPL(clk_get_rate); 1152 1153 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent) 1154 { 1155 int i; 1156 1157 if (!clk->parents) { 1158 clk->parents = kcalloc(clk->num_parents, 1159 sizeof(struct clk *), GFP_KERNEL); 1160 if (!clk->parents) 1161 return -ENOMEM; 1162 } 1163 1164 /* 1165 * find index of new parent clock using cached parent ptrs, 1166 * or if not yet cached, use string name comparison and cache 1167 * them now to avoid future calls to __clk_lookup. 1168 */ 1169 for (i = 0; i < clk->num_parents; i++) { 1170 if (clk->parents[i] == parent) 1171 return i; 1172 1173 if (clk->parents[i]) 1174 continue; 1175 1176 if (!strcmp(clk->parent_names[i], parent->name)) { 1177 clk->parents[i] = __clk_lookup(parent->name); 1178 return i; 1179 } 1180 } 1181 1182 return -EINVAL; 1183 } 1184 1185 static void clk_reparent(struct clk *clk, struct clk *new_parent) 1186 { 1187 hlist_del(&clk->child_node); 1188 1189 if (new_parent) { 1190 /* avoid duplicate POST_RATE_CHANGE notifications */ 1191 if (new_parent->new_child == clk) 1192 new_parent->new_child = NULL; 1193 1194 hlist_add_head(&clk->child_node, &new_parent->children); 1195 } else { 1196 hlist_add_head(&clk->child_node, &clk_orphan_list); 1197 } 1198 1199 clk->parent = new_parent; 1200 } 1201 1202 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent) 1203 { 1204 unsigned long flags; 1205 struct clk *old_parent = clk->parent; 1206 1207 /* 1208 * Migrate prepare state between parents and prevent race with 1209 * clk_enable(). 1210 * 1211 * If the clock is not prepared, then a race with 1212 * clk_enable/disable() is impossible since we already have the 1213 * prepare lock (future calls to clk_enable() need to be preceded by 1214 * a clk_prepare()). 1215 * 1216 * If the clock is prepared, migrate the prepared state to the new 1217 * parent and also protect against a race with clk_enable() by 1218 * forcing the clock and the new parent on. This ensures that all 1219 * future calls to clk_enable() are practically NOPs with respect to 1220 * hardware and software states. 1221 * 1222 * See also: Comment for clk_set_parent() below. 1223 */ 1224 if (clk->prepare_count) { 1225 __clk_prepare(parent); 1226 clk_enable(parent); 1227 clk_enable(clk); 1228 } 1229 1230 /* update the clk tree topology */ 1231 flags = clk_enable_lock(); 1232 clk_reparent(clk, parent); 1233 clk_enable_unlock(flags); 1234 1235 return old_parent; 1236 } 1237 1238 static void __clk_set_parent_after(struct clk *clk, struct clk *parent, 1239 struct clk *old_parent) 1240 { 1241 /* 1242 * Finish the migration of prepare state and undo the changes done 1243 * for preventing a race with clk_enable(). 1244 */ 1245 if (clk->prepare_count) { 1246 clk_disable(clk); 1247 clk_disable(old_parent); 1248 __clk_unprepare(old_parent); 1249 } 1250 } 1251 1252 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index) 1253 { 1254 unsigned long flags; 1255 int ret = 0; 1256 struct clk *old_parent; 1257 1258 old_parent = __clk_set_parent_before(clk, parent); 1259 1260 /* change clock input source */ 1261 if (parent && clk->ops->set_parent) 1262 ret = clk->ops->set_parent(clk->hw, p_index); 1263 1264 if (ret) { 1265 flags = clk_enable_lock(); 1266 clk_reparent(clk, old_parent); 1267 clk_enable_unlock(flags); 1268 1269 if (clk->prepare_count) { 1270 clk_disable(clk); 1271 clk_disable(parent); 1272 __clk_unprepare(parent); 1273 } 1274 return ret; 1275 } 1276 1277 __clk_set_parent_after(clk, parent, old_parent); 1278 1279 return 0; 1280 } 1281 1282 /** 1283 * __clk_speculate_rates 1284 * @clk: first clk in the subtree 1285 * @parent_rate: the "future" rate of clk's parent 1286 * 1287 * Walks the subtree of clks starting with clk, speculating rates as it 1288 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1289 * 1290 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1291 * pre-rate change notifications and returns early if no clks in the 1292 * subtree have subscribed to the notifications. Note that if a clk does not 1293 * implement the .recalc_rate callback then it is assumed that the clock will 1294 * take on the rate of its parent. 1295 * 1296 * Caller must hold prepare_lock. 1297 */ 1298 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate) 1299 { 1300 struct clk *child; 1301 unsigned long new_rate; 1302 int ret = NOTIFY_DONE; 1303 1304 new_rate = clk_recalc(clk, parent_rate); 1305 1306 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1307 if (clk->notifier_count) 1308 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate); 1309 1310 if (ret & NOTIFY_STOP_MASK) { 1311 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1312 __func__, clk->name, ret); 1313 goto out; 1314 } 1315 1316 hlist_for_each_entry(child, &clk->children, child_node) { 1317 ret = __clk_speculate_rates(child, new_rate); 1318 if (ret & NOTIFY_STOP_MASK) 1319 break; 1320 } 1321 1322 out: 1323 return ret; 1324 } 1325 1326 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate, 1327 struct clk *new_parent, u8 p_index) 1328 { 1329 struct clk *child; 1330 1331 clk->new_rate = new_rate; 1332 clk->new_parent = new_parent; 1333 clk->new_parent_index = p_index; 1334 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1335 clk->new_child = NULL; 1336 if (new_parent && new_parent != clk->parent) 1337 new_parent->new_child = clk; 1338 1339 hlist_for_each_entry(child, &clk->children, child_node) { 1340 child->new_rate = clk_recalc(child, new_rate); 1341 clk_calc_subtree(child, child->new_rate, NULL, 0); 1342 } 1343 } 1344 1345 /* 1346 * calculate the new rates returning the topmost clock that has to be 1347 * changed. 1348 */ 1349 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate) 1350 { 1351 struct clk *top = clk; 1352 struct clk *old_parent, *parent; 1353 unsigned long best_parent_rate = 0; 1354 unsigned long new_rate; 1355 int p_index = 0; 1356 1357 /* sanity */ 1358 if (IS_ERR_OR_NULL(clk)) 1359 return NULL; 1360 1361 /* save parent rate, if it exists */ 1362 parent = old_parent = clk->parent; 1363 if (parent) 1364 best_parent_rate = parent->rate; 1365 1366 /* find the closest rate and parent clk/rate */ 1367 if (clk->ops->determine_rate) { 1368 new_rate = clk->ops->determine_rate(clk->hw, rate, 1369 &best_parent_rate, 1370 &parent); 1371 } else if (clk->ops->round_rate) { 1372 new_rate = clk->ops->round_rate(clk->hw, rate, 1373 &best_parent_rate); 1374 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) { 1375 /* pass-through clock without adjustable parent */ 1376 clk->new_rate = clk->rate; 1377 return NULL; 1378 } else { 1379 /* pass-through clock with adjustable parent */ 1380 top = clk_calc_new_rates(parent, rate); 1381 new_rate = parent->new_rate; 1382 goto out; 1383 } 1384 1385 /* some clocks must be gated to change parent */ 1386 if (parent != old_parent && 1387 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1388 pr_debug("%s: %s not gated but wants to reparent\n", 1389 __func__, clk->name); 1390 return NULL; 1391 } 1392 1393 /* try finding the new parent index */ 1394 if (parent) { 1395 p_index = clk_fetch_parent_index(clk, parent); 1396 if (p_index < 0) { 1397 pr_debug("%s: clk %s can not be parent of clk %s\n", 1398 __func__, parent->name, clk->name); 1399 return NULL; 1400 } 1401 } 1402 1403 if ((clk->flags & CLK_SET_RATE_PARENT) && parent && 1404 best_parent_rate != parent->rate) 1405 top = clk_calc_new_rates(parent, best_parent_rate); 1406 1407 out: 1408 clk_calc_subtree(clk, new_rate, parent, p_index); 1409 1410 return top; 1411 } 1412 1413 /* 1414 * Notify about rate changes in a subtree. Always walk down the whole tree 1415 * so that in case of an error we can walk down the whole tree again and 1416 * abort the change. 1417 */ 1418 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event) 1419 { 1420 struct clk *child, *tmp_clk, *fail_clk = NULL; 1421 int ret = NOTIFY_DONE; 1422 1423 if (clk->rate == clk->new_rate) 1424 return NULL; 1425 1426 if (clk->notifier_count) { 1427 ret = __clk_notify(clk, event, clk->rate, clk->new_rate); 1428 if (ret & NOTIFY_STOP_MASK) 1429 fail_clk = clk; 1430 } 1431 1432 hlist_for_each_entry(child, &clk->children, child_node) { 1433 /* Skip children who will be reparented to another clock */ 1434 if (child->new_parent && child->new_parent != clk) 1435 continue; 1436 tmp_clk = clk_propagate_rate_change(child, event); 1437 if (tmp_clk) 1438 fail_clk = tmp_clk; 1439 } 1440 1441 /* handle the new child who might not be in clk->children yet */ 1442 if (clk->new_child) { 1443 tmp_clk = clk_propagate_rate_change(clk->new_child, event); 1444 if (tmp_clk) 1445 fail_clk = tmp_clk; 1446 } 1447 1448 return fail_clk; 1449 } 1450 1451 /* 1452 * walk down a subtree and set the new rates notifying the rate 1453 * change on the way 1454 */ 1455 static void clk_change_rate(struct clk *clk) 1456 { 1457 struct clk *child; 1458 struct hlist_node *tmp; 1459 unsigned long old_rate; 1460 unsigned long best_parent_rate = 0; 1461 bool skip_set_rate = false; 1462 struct clk *old_parent; 1463 1464 old_rate = clk->rate; 1465 1466 if (clk->new_parent) 1467 best_parent_rate = clk->new_parent->rate; 1468 else if (clk->parent) 1469 best_parent_rate = clk->parent->rate; 1470 1471 if (clk->new_parent && clk->new_parent != clk->parent) { 1472 old_parent = __clk_set_parent_before(clk, clk->new_parent); 1473 1474 if (clk->ops->set_rate_and_parent) { 1475 skip_set_rate = true; 1476 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate, 1477 best_parent_rate, 1478 clk->new_parent_index); 1479 } else if (clk->ops->set_parent) { 1480 clk->ops->set_parent(clk->hw, clk->new_parent_index); 1481 } 1482 1483 __clk_set_parent_after(clk, clk->new_parent, old_parent); 1484 } 1485 1486 if (!skip_set_rate && clk->ops->set_rate) 1487 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate); 1488 1489 clk->rate = clk_recalc(clk, best_parent_rate); 1490 1491 if (clk->notifier_count && old_rate != clk->rate) 1492 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate); 1493 1494 /* 1495 * Use safe iteration, as change_rate can actually swap parents 1496 * for certain clock types. 1497 */ 1498 hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) { 1499 /* Skip children who will be reparented to another clock */ 1500 if (child->new_parent && child->new_parent != clk) 1501 continue; 1502 clk_change_rate(child); 1503 } 1504 1505 /* handle the new child who might not be in clk->children yet */ 1506 if (clk->new_child) 1507 clk_change_rate(clk->new_child); 1508 } 1509 1510 /** 1511 * clk_set_rate - specify a new rate for clk 1512 * @clk: the clk whose rate is being changed 1513 * @rate: the new rate for clk 1514 * 1515 * In the simplest case clk_set_rate will only adjust the rate of clk. 1516 * 1517 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1518 * propagate up to clk's parent; whether or not this happens depends on the 1519 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1520 * after calling .round_rate then upstream parent propagation is ignored. If 1521 * *parent_rate comes back with a new rate for clk's parent then we propagate 1522 * up to clk's parent and set its rate. Upward propagation will continue 1523 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1524 * .round_rate stops requesting changes to clk's parent_rate. 1525 * 1526 * Rate changes are accomplished via tree traversal that also recalculates the 1527 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1528 * 1529 * Returns 0 on success, -EERROR otherwise. 1530 */ 1531 int clk_set_rate(struct clk *clk, unsigned long rate) 1532 { 1533 struct clk *top, *fail_clk; 1534 int ret = 0; 1535 1536 if (!clk) 1537 return 0; 1538 1539 /* prevent racing with updates to the clock topology */ 1540 clk_prepare_lock(); 1541 1542 /* bail early if nothing to do */ 1543 if (rate == clk_get_rate(clk)) 1544 goto out; 1545 1546 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) { 1547 ret = -EBUSY; 1548 goto out; 1549 } 1550 1551 /* calculate new rates and get the topmost changed clock */ 1552 top = clk_calc_new_rates(clk, rate); 1553 if (!top) { 1554 ret = -EINVAL; 1555 goto out; 1556 } 1557 1558 /* notify that we are about to change rates */ 1559 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1560 if (fail_clk) { 1561 pr_debug("%s: failed to set %s rate\n", __func__, 1562 fail_clk->name); 1563 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1564 ret = -EBUSY; 1565 goto out; 1566 } 1567 1568 /* change the rates */ 1569 clk_change_rate(top); 1570 1571 out: 1572 clk_prepare_unlock(); 1573 1574 return ret; 1575 } 1576 EXPORT_SYMBOL_GPL(clk_set_rate); 1577 1578 /** 1579 * clk_get_parent - return the parent of a clk 1580 * @clk: the clk whose parent gets returned 1581 * 1582 * Simply returns clk->parent. Returns NULL if clk is NULL. 1583 */ 1584 struct clk *clk_get_parent(struct clk *clk) 1585 { 1586 struct clk *parent; 1587 1588 clk_prepare_lock(); 1589 parent = __clk_get_parent(clk); 1590 clk_prepare_unlock(); 1591 1592 return parent; 1593 } 1594 EXPORT_SYMBOL_GPL(clk_get_parent); 1595 1596 /* 1597 * .get_parent is mandatory for clocks with multiple possible parents. It is 1598 * optional for single-parent clocks. Always call .get_parent if it is 1599 * available and WARN if it is missing for multi-parent clocks. 1600 * 1601 * For single-parent clocks without .get_parent, first check to see if the 1602 * .parents array exists, and if so use it to avoid an expensive tree 1603 * traversal. If .parents does not exist then walk the tree with __clk_lookup. 1604 */ 1605 static struct clk *__clk_init_parent(struct clk *clk) 1606 { 1607 struct clk *ret = NULL; 1608 u8 index; 1609 1610 /* handle the trivial cases */ 1611 1612 if (!clk->num_parents) 1613 goto out; 1614 1615 if (clk->num_parents == 1) { 1616 if (IS_ERR_OR_NULL(clk->parent)) 1617 ret = clk->parent = __clk_lookup(clk->parent_names[0]); 1618 ret = clk->parent; 1619 goto out; 1620 } 1621 1622 if (!clk->ops->get_parent) { 1623 WARN(!clk->ops->get_parent, 1624 "%s: multi-parent clocks must implement .get_parent\n", 1625 __func__); 1626 goto out; 1627 }; 1628 1629 /* 1630 * Do our best to cache parent clocks in clk->parents. This prevents 1631 * unnecessary and expensive calls to __clk_lookup. We don't set 1632 * clk->parent here; that is done by the calling function 1633 */ 1634 1635 index = clk->ops->get_parent(clk->hw); 1636 1637 if (!clk->parents) 1638 clk->parents = 1639 kcalloc(clk->num_parents, sizeof(struct clk *), 1640 GFP_KERNEL); 1641 1642 ret = clk_get_parent_by_index(clk, index); 1643 1644 out: 1645 return ret; 1646 } 1647 1648 void __clk_reparent(struct clk *clk, struct clk *new_parent) 1649 { 1650 clk_reparent(clk, new_parent); 1651 __clk_recalc_accuracies(clk); 1652 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1653 } 1654 1655 /** 1656 * clk_set_parent - switch the parent of a mux clk 1657 * @clk: the mux clk whose input we are switching 1658 * @parent: the new input to clk 1659 * 1660 * Re-parent clk to use parent as its new input source. If clk is in 1661 * prepared state, the clk will get enabled for the duration of this call. If 1662 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1663 * that, the reparenting is glitchy in hardware, etc), use the 1664 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1665 * 1666 * After successfully changing clk's parent clk_set_parent will update the 1667 * clk topology, sysfs topology and propagate rate recalculation via 1668 * __clk_recalc_rates. 1669 * 1670 * Returns 0 on success, -EERROR otherwise. 1671 */ 1672 int clk_set_parent(struct clk *clk, struct clk *parent) 1673 { 1674 int ret = 0; 1675 int p_index = 0; 1676 unsigned long p_rate = 0; 1677 1678 if (!clk) 1679 return 0; 1680 1681 /* verify ops for for multi-parent clks */ 1682 if ((clk->num_parents > 1) && (!clk->ops->set_parent)) 1683 return -ENOSYS; 1684 1685 /* prevent racing with updates to the clock topology */ 1686 clk_prepare_lock(); 1687 1688 if (clk->parent == parent) 1689 goto out; 1690 1691 /* check that we are allowed to re-parent if the clock is in use */ 1692 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1693 ret = -EBUSY; 1694 goto out; 1695 } 1696 1697 /* try finding the new parent index */ 1698 if (parent) { 1699 p_index = clk_fetch_parent_index(clk, parent); 1700 p_rate = parent->rate; 1701 if (p_index < 0) { 1702 pr_debug("%s: clk %s can not be parent of clk %s\n", 1703 __func__, parent->name, clk->name); 1704 ret = p_index; 1705 goto out; 1706 } 1707 } 1708 1709 /* propagate PRE_RATE_CHANGE notifications */ 1710 ret = __clk_speculate_rates(clk, p_rate); 1711 1712 /* abort if a driver objects */ 1713 if (ret & NOTIFY_STOP_MASK) 1714 goto out; 1715 1716 /* do the re-parent */ 1717 ret = __clk_set_parent(clk, parent, p_index); 1718 1719 /* propagate rate an accuracy recalculation accordingly */ 1720 if (ret) { 1721 __clk_recalc_rates(clk, ABORT_RATE_CHANGE); 1722 } else { 1723 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1724 __clk_recalc_accuracies(clk); 1725 } 1726 1727 out: 1728 clk_prepare_unlock(); 1729 1730 return ret; 1731 } 1732 EXPORT_SYMBOL_GPL(clk_set_parent); 1733 1734 /** 1735 * clk_set_phase - adjust the phase shift of a clock signal 1736 * @clk: clock signal source 1737 * @degrees: number of degrees the signal is shifted 1738 * 1739 * Shifts the phase of a clock signal by the specified 1740 * degrees. Returns 0 on success, -EERROR otherwise. 1741 * 1742 * This function makes no distinction about the input or reference 1743 * signal that we adjust the clock signal phase against. For example 1744 * phase locked-loop clock signal generators we may shift phase with 1745 * respect to feedback clock signal input, but for other cases the 1746 * clock phase may be shifted with respect to some other, unspecified 1747 * signal. 1748 * 1749 * Additionally the concept of phase shift does not propagate through 1750 * the clock tree hierarchy, which sets it apart from clock rates and 1751 * clock accuracy. A parent clock phase attribute does not have an 1752 * impact on the phase attribute of a child clock. 1753 */ 1754 int clk_set_phase(struct clk *clk, int degrees) 1755 { 1756 int ret = 0; 1757 1758 if (!clk) 1759 goto out; 1760 1761 /* sanity check degrees */ 1762 degrees %= 360; 1763 if (degrees < 0) 1764 degrees += 360; 1765 1766 clk_prepare_lock(); 1767 1768 if (!clk->ops->set_phase) 1769 goto out_unlock; 1770 1771 ret = clk->ops->set_phase(clk->hw, degrees); 1772 1773 if (!ret) 1774 clk->phase = degrees; 1775 1776 out_unlock: 1777 clk_prepare_unlock(); 1778 1779 out: 1780 return ret; 1781 } 1782 1783 /** 1784 * clk_get_phase - return the phase shift of a clock signal 1785 * @clk: clock signal source 1786 * 1787 * Returns the phase shift of a clock node in degrees, otherwise returns 1788 * -EERROR. 1789 */ 1790 int clk_get_phase(struct clk *clk) 1791 { 1792 int ret = 0; 1793 1794 if (!clk) 1795 goto out; 1796 1797 clk_prepare_lock(); 1798 ret = clk->phase; 1799 clk_prepare_unlock(); 1800 1801 out: 1802 return ret; 1803 } 1804 1805 /** 1806 * __clk_init - initialize the data structures in a struct clk 1807 * @dev: device initializing this clk, placeholder for now 1808 * @clk: clk being initialized 1809 * 1810 * Initializes the lists in struct clk, queries the hardware for the 1811 * parent and rate and sets them both. 1812 */ 1813 int __clk_init(struct device *dev, struct clk *clk) 1814 { 1815 int i, ret = 0; 1816 struct clk *orphan; 1817 struct hlist_node *tmp2; 1818 1819 if (!clk) 1820 return -EINVAL; 1821 1822 clk_prepare_lock(); 1823 1824 /* check to see if a clock with this name is already registered */ 1825 if (__clk_lookup(clk->name)) { 1826 pr_debug("%s: clk %s already initialized\n", 1827 __func__, clk->name); 1828 ret = -EEXIST; 1829 goto out; 1830 } 1831 1832 /* check that clk_ops are sane. See Documentation/clk.txt */ 1833 if (clk->ops->set_rate && 1834 !((clk->ops->round_rate || clk->ops->determine_rate) && 1835 clk->ops->recalc_rate)) { 1836 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 1837 __func__, clk->name); 1838 ret = -EINVAL; 1839 goto out; 1840 } 1841 1842 if (clk->ops->set_parent && !clk->ops->get_parent) { 1843 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 1844 __func__, clk->name); 1845 ret = -EINVAL; 1846 goto out; 1847 } 1848 1849 if (clk->ops->set_rate_and_parent && 1850 !(clk->ops->set_parent && clk->ops->set_rate)) { 1851 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 1852 __func__, clk->name); 1853 ret = -EINVAL; 1854 goto out; 1855 } 1856 1857 /* throw a WARN if any entries in parent_names are NULL */ 1858 for (i = 0; i < clk->num_parents; i++) 1859 WARN(!clk->parent_names[i], 1860 "%s: invalid NULL in %s's .parent_names\n", 1861 __func__, clk->name); 1862 1863 /* 1864 * Allocate an array of struct clk *'s to avoid unnecessary string 1865 * look-ups of clk's possible parents. This can fail for clocks passed 1866 * in to clk_init during early boot; thus any access to clk->parents[] 1867 * must always check for a NULL pointer and try to populate it if 1868 * necessary. 1869 * 1870 * If clk->parents is not NULL we skip this entire block. This allows 1871 * for clock drivers to statically initialize clk->parents. 1872 */ 1873 if (clk->num_parents > 1 && !clk->parents) { 1874 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *), 1875 GFP_KERNEL); 1876 /* 1877 * __clk_lookup returns NULL for parents that have not been 1878 * clk_init'd; thus any access to clk->parents[] must check 1879 * for a NULL pointer. We can always perform lazy lookups for 1880 * missing parents later on. 1881 */ 1882 if (clk->parents) 1883 for (i = 0; i < clk->num_parents; i++) 1884 clk->parents[i] = 1885 __clk_lookup(clk->parent_names[i]); 1886 } 1887 1888 clk->parent = __clk_init_parent(clk); 1889 1890 /* 1891 * Populate clk->parent if parent has already been __clk_init'd. If 1892 * parent has not yet been __clk_init'd then place clk in the orphan 1893 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 1894 * clk list. 1895 * 1896 * Every time a new clk is clk_init'd then we walk the list of orphan 1897 * clocks and re-parent any that are children of the clock currently 1898 * being clk_init'd. 1899 */ 1900 if (clk->parent) 1901 hlist_add_head(&clk->child_node, 1902 &clk->parent->children); 1903 else if (clk->flags & CLK_IS_ROOT) 1904 hlist_add_head(&clk->child_node, &clk_root_list); 1905 else 1906 hlist_add_head(&clk->child_node, &clk_orphan_list); 1907 1908 /* 1909 * Set clk's accuracy. The preferred method is to use 1910 * .recalc_accuracy. For simple clocks and lazy developers the default 1911 * fallback is to use the parent's accuracy. If a clock doesn't have a 1912 * parent (or is orphaned) then accuracy is set to zero (perfect 1913 * clock). 1914 */ 1915 if (clk->ops->recalc_accuracy) 1916 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 1917 __clk_get_accuracy(clk->parent)); 1918 else if (clk->parent) 1919 clk->accuracy = clk->parent->accuracy; 1920 else 1921 clk->accuracy = 0; 1922 1923 /* 1924 * Set clk's phase. 1925 * Since a phase is by definition relative to its parent, just 1926 * query the current clock phase, or just assume it's in phase. 1927 */ 1928 if (clk->ops->get_phase) 1929 clk->phase = clk->ops->get_phase(clk->hw); 1930 else 1931 clk->phase = 0; 1932 1933 /* 1934 * Set clk's rate. The preferred method is to use .recalc_rate. For 1935 * simple clocks and lazy developers the default fallback is to use the 1936 * parent's rate. If a clock doesn't have a parent (or is orphaned) 1937 * then rate is set to zero. 1938 */ 1939 if (clk->ops->recalc_rate) 1940 clk->rate = clk->ops->recalc_rate(clk->hw, 1941 __clk_get_rate(clk->parent)); 1942 else if (clk->parent) 1943 clk->rate = clk->parent->rate; 1944 else 1945 clk->rate = 0; 1946 1947 clk_debug_register(clk); 1948 /* 1949 * walk the list of orphan clocks and reparent any that are children of 1950 * this clock 1951 */ 1952 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 1953 if (orphan->num_parents && orphan->ops->get_parent) { 1954 i = orphan->ops->get_parent(orphan->hw); 1955 if (!strcmp(clk->name, orphan->parent_names[i])) 1956 __clk_reparent(orphan, clk); 1957 continue; 1958 } 1959 1960 for (i = 0; i < orphan->num_parents; i++) 1961 if (!strcmp(clk->name, orphan->parent_names[i])) { 1962 __clk_reparent(orphan, clk); 1963 break; 1964 } 1965 } 1966 1967 /* 1968 * optional platform-specific magic 1969 * 1970 * The .init callback is not used by any of the basic clock types, but 1971 * exists for weird hardware that must perform initialization magic. 1972 * Please consider other ways of solving initialization problems before 1973 * using this callback, as its use is discouraged. 1974 */ 1975 if (clk->ops->init) 1976 clk->ops->init(clk->hw); 1977 1978 kref_init(&clk->ref); 1979 out: 1980 clk_prepare_unlock(); 1981 1982 return ret; 1983 } 1984 1985 /** 1986 * __clk_register - register a clock and return a cookie. 1987 * 1988 * Same as clk_register, except that the .clk field inside hw shall point to a 1989 * preallocated (generally statically allocated) struct clk. None of the fields 1990 * of the struct clk need to be initialized. 1991 * 1992 * The data pointed to by .init and .clk field shall NOT be marked as init 1993 * data. 1994 * 1995 * __clk_register is only exposed via clk-private.h and is intended for use with 1996 * very large numbers of clocks that need to be statically initialized. It is 1997 * a layering violation to include clk-private.h from any code which implements 1998 * a clock's .ops; as such any statically initialized clock data MUST be in a 1999 * separate C file from the logic that implements its operations. Returns 0 2000 * on success, otherwise an error code. 2001 */ 2002 struct clk *__clk_register(struct device *dev, struct clk_hw *hw) 2003 { 2004 int ret; 2005 struct clk *clk; 2006 2007 clk = hw->clk; 2008 clk->name = hw->init->name; 2009 clk->ops = hw->init->ops; 2010 clk->hw = hw; 2011 clk->flags = hw->init->flags; 2012 clk->parent_names = hw->init->parent_names; 2013 clk->num_parents = hw->init->num_parents; 2014 if (dev && dev->driver) 2015 clk->owner = dev->driver->owner; 2016 else 2017 clk->owner = NULL; 2018 2019 ret = __clk_init(dev, clk); 2020 if (ret) 2021 return ERR_PTR(ret); 2022 2023 return clk; 2024 } 2025 EXPORT_SYMBOL_GPL(__clk_register); 2026 2027 /** 2028 * clk_register - allocate a new clock, register it and return an opaque cookie 2029 * @dev: device that is registering this clock 2030 * @hw: link to hardware-specific clock data 2031 * 2032 * clk_register is the primary interface for populating the clock tree with new 2033 * clock nodes. It returns a pointer to the newly allocated struct clk which 2034 * cannot be dereferenced by driver code but may be used in conjuction with the 2035 * rest of the clock API. In the event of an error clk_register will return an 2036 * error code; drivers must test for an error code after calling clk_register. 2037 */ 2038 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2039 { 2040 int i, ret; 2041 struct clk *clk; 2042 2043 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2044 if (!clk) { 2045 pr_err("%s: could not allocate clk\n", __func__); 2046 ret = -ENOMEM; 2047 goto fail_out; 2048 } 2049 2050 clk->name = kstrdup(hw->init->name, GFP_KERNEL); 2051 if (!clk->name) { 2052 pr_err("%s: could not allocate clk->name\n", __func__); 2053 ret = -ENOMEM; 2054 goto fail_name; 2055 } 2056 clk->ops = hw->init->ops; 2057 if (dev && dev->driver) 2058 clk->owner = dev->driver->owner; 2059 clk->hw = hw; 2060 clk->flags = hw->init->flags; 2061 clk->num_parents = hw->init->num_parents; 2062 hw->clk = clk; 2063 2064 /* allocate local copy in case parent_names is __initdata */ 2065 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *), 2066 GFP_KERNEL); 2067 2068 if (!clk->parent_names) { 2069 pr_err("%s: could not allocate clk->parent_names\n", __func__); 2070 ret = -ENOMEM; 2071 goto fail_parent_names; 2072 } 2073 2074 2075 /* copy each string name in case parent_names is __initdata */ 2076 for (i = 0; i < clk->num_parents; i++) { 2077 clk->parent_names[i] = kstrdup(hw->init->parent_names[i], 2078 GFP_KERNEL); 2079 if (!clk->parent_names[i]) { 2080 pr_err("%s: could not copy parent_names\n", __func__); 2081 ret = -ENOMEM; 2082 goto fail_parent_names_copy; 2083 } 2084 } 2085 2086 ret = __clk_init(dev, clk); 2087 if (!ret) 2088 return clk; 2089 2090 fail_parent_names_copy: 2091 while (--i >= 0) 2092 kfree(clk->parent_names[i]); 2093 kfree(clk->parent_names); 2094 fail_parent_names: 2095 kfree(clk->name); 2096 fail_name: 2097 kfree(clk); 2098 fail_out: 2099 return ERR_PTR(ret); 2100 } 2101 EXPORT_SYMBOL_GPL(clk_register); 2102 2103 /* 2104 * Free memory allocated for a clock. 2105 * Caller must hold prepare_lock. 2106 */ 2107 static void __clk_release(struct kref *ref) 2108 { 2109 struct clk *clk = container_of(ref, struct clk, ref); 2110 int i = clk->num_parents; 2111 2112 kfree(clk->parents); 2113 while (--i >= 0) 2114 kfree(clk->parent_names[i]); 2115 2116 kfree(clk->parent_names); 2117 kfree(clk->name); 2118 kfree(clk); 2119 } 2120 2121 /* 2122 * Empty clk_ops for unregistered clocks. These are used temporarily 2123 * after clk_unregister() was called on a clock and until last clock 2124 * consumer calls clk_put() and the struct clk object is freed. 2125 */ 2126 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2127 { 2128 return -ENXIO; 2129 } 2130 2131 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2132 { 2133 WARN_ON_ONCE(1); 2134 } 2135 2136 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2137 unsigned long parent_rate) 2138 { 2139 return -ENXIO; 2140 } 2141 2142 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2143 { 2144 return -ENXIO; 2145 } 2146 2147 static const struct clk_ops clk_nodrv_ops = { 2148 .enable = clk_nodrv_prepare_enable, 2149 .disable = clk_nodrv_disable_unprepare, 2150 .prepare = clk_nodrv_prepare_enable, 2151 .unprepare = clk_nodrv_disable_unprepare, 2152 .set_rate = clk_nodrv_set_rate, 2153 .set_parent = clk_nodrv_set_parent, 2154 }; 2155 2156 /** 2157 * clk_unregister - unregister a currently registered clock 2158 * @clk: clock to unregister 2159 */ 2160 void clk_unregister(struct clk *clk) 2161 { 2162 unsigned long flags; 2163 2164 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2165 return; 2166 2167 clk_debug_unregister(clk); 2168 2169 clk_prepare_lock(); 2170 2171 if (clk->ops == &clk_nodrv_ops) { 2172 pr_err("%s: unregistered clock: %s\n", __func__, clk->name); 2173 return; 2174 } 2175 /* 2176 * Assign empty clock ops for consumers that might still hold 2177 * a reference to this clock. 2178 */ 2179 flags = clk_enable_lock(); 2180 clk->ops = &clk_nodrv_ops; 2181 clk_enable_unlock(flags); 2182 2183 if (!hlist_empty(&clk->children)) { 2184 struct clk *child; 2185 struct hlist_node *t; 2186 2187 /* Reparent all children to the orphan list. */ 2188 hlist_for_each_entry_safe(child, t, &clk->children, child_node) 2189 clk_set_parent(child, NULL); 2190 } 2191 2192 hlist_del_init(&clk->child_node); 2193 2194 if (clk->prepare_count) 2195 pr_warn("%s: unregistering prepared clock: %s\n", 2196 __func__, clk->name); 2197 kref_put(&clk->ref, __clk_release); 2198 2199 clk_prepare_unlock(); 2200 } 2201 EXPORT_SYMBOL_GPL(clk_unregister); 2202 2203 static void devm_clk_release(struct device *dev, void *res) 2204 { 2205 clk_unregister(*(struct clk **)res); 2206 } 2207 2208 /** 2209 * devm_clk_register - resource managed clk_register() 2210 * @dev: device that is registering this clock 2211 * @hw: link to hardware-specific clock data 2212 * 2213 * Managed clk_register(). Clocks returned from this function are 2214 * automatically clk_unregister()ed on driver detach. See clk_register() for 2215 * more information. 2216 */ 2217 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2218 { 2219 struct clk *clk; 2220 struct clk **clkp; 2221 2222 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2223 if (!clkp) 2224 return ERR_PTR(-ENOMEM); 2225 2226 clk = clk_register(dev, hw); 2227 if (!IS_ERR(clk)) { 2228 *clkp = clk; 2229 devres_add(dev, clkp); 2230 } else { 2231 devres_free(clkp); 2232 } 2233 2234 return clk; 2235 } 2236 EXPORT_SYMBOL_GPL(devm_clk_register); 2237 2238 static int devm_clk_match(struct device *dev, void *res, void *data) 2239 { 2240 struct clk *c = res; 2241 if (WARN_ON(!c)) 2242 return 0; 2243 return c == data; 2244 } 2245 2246 /** 2247 * devm_clk_unregister - resource managed clk_unregister() 2248 * @clk: clock to unregister 2249 * 2250 * Deallocate a clock allocated with devm_clk_register(). Normally 2251 * this function will not need to be called and the resource management 2252 * code will ensure that the resource is freed. 2253 */ 2254 void devm_clk_unregister(struct device *dev, struct clk *clk) 2255 { 2256 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2257 } 2258 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2259 2260 /* 2261 * clkdev helpers 2262 */ 2263 int __clk_get(struct clk *clk) 2264 { 2265 if (clk) { 2266 if (!try_module_get(clk->owner)) 2267 return 0; 2268 2269 kref_get(&clk->ref); 2270 } 2271 return 1; 2272 } 2273 2274 void __clk_put(struct clk *clk) 2275 { 2276 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2277 return; 2278 2279 clk_prepare_lock(); 2280 kref_put(&clk->ref, __clk_release); 2281 clk_prepare_unlock(); 2282 2283 module_put(clk->owner); 2284 } 2285 2286 /*** clk rate change notifiers ***/ 2287 2288 /** 2289 * clk_notifier_register - add a clk rate change notifier 2290 * @clk: struct clk * to watch 2291 * @nb: struct notifier_block * with callback info 2292 * 2293 * Request notification when clk's rate changes. This uses an SRCU 2294 * notifier because we want it to block and notifier unregistrations are 2295 * uncommon. The callbacks associated with the notifier must not 2296 * re-enter into the clk framework by calling any top-level clk APIs; 2297 * this will cause a nested prepare_lock mutex. 2298 * 2299 * In all notification cases cases (pre, post and abort rate change) the 2300 * original clock rate is passed to the callback via struct 2301 * clk_notifier_data.old_rate and the new frequency is passed via struct 2302 * clk_notifier_data.new_rate. 2303 * 2304 * clk_notifier_register() must be called from non-atomic context. 2305 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2306 * allocation failure; otherwise, passes along the return value of 2307 * srcu_notifier_chain_register(). 2308 */ 2309 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2310 { 2311 struct clk_notifier *cn; 2312 int ret = -ENOMEM; 2313 2314 if (!clk || !nb) 2315 return -EINVAL; 2316 2317 clk_prepare_lock(); 2318 2319 /* search the list of notifiers for this clk */ 2320 list_for_each_entry(cn, &clk_notifier_list, node) 2321 if (cn->clk == clk) 2322 break; 2323 2324 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2325 if (cn->clk != clk) { 2326 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2327 if (!cn) 2328 goto out; 2329 2330 cn->clk = clk; 2331 srcu_init_notifier_head(&cn->notifier_head); 2332 2333 list_add(&cn->node, &clk_notifier_list); 2334 } 2335 2336 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2337 2338 clk->notifier_count++; 2339 2340 out: 2341 clk_prepare_unlock(); 2342 2343 return ret; 2344 } 2345 EXPORT_SYMBOL_GPL(clk_notifier_register); 2346 2347 /** 2348 * clk_notifier_unregister - remove a clk rate change notifier 2349 * @clk: struct clk * 2350 * @nb: struct notifier_block * with callback info 2351 * 2352 * Request no further notification for changes to 'clk' and frees memory 2353 * allocated in clk_notifier_register. 2354 * 2355 * Returns -EINVAL if called with null arguments; otherwise, passes 2356 * along the return value of srcu_notifier_chain_unregister(). 2357 */ 2358 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2359 { 2360 struct clk_notifier *cn = NULL; 2361 int ret = -EINVAL; 2362 2363 if (!clk || !nb) 2364 return -EINVAL; 2365 2366 clk_prepare_lock(); 2367 2368 list_for_each_entry(cn, &clk_notifier_list, node) 2369 if (cn->clk == clk) 2370 break; 2371 2372 if (cn->clk == clk) { 2373 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2374 2375 clk->notifier_count--; 2376 2377 /* XXX the notifier code should handle this better */ 2378 if (!cn->notifier_head.head) { 2379 srcu_cleanup_notifier_head(&cn->notifier_head); 2380 list_del(&cn->node); 2381 kfree(cn); 2382 } 2383 2384 } else { 2385 ret = -ENOENT; 2386 } 2387 2388 clk_prepare_unlock(); 2389 2390 return ret; 2391 } 2392 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2393 2394 #ifdef CONFIG_OF 2395 /** 2396 * struct of_clk_provider - Clock provider registration structure 2397 * @link: Entry in global list of clock providers 2398 * @node: Pointer to device tree node of clock provider 2399 * @get: Get clock callback. Returns NULL or a struct clk for the 2400 * given clock specifier 2401 * @data: context pointer to be passed into @get callback 2402 */ 2403 struct of_clk_provider { 2404 struct list_head link; 2405 2406 struct device_node *node; 2407 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2408 void *data; 2409 }; 2410 2411 static const struct of_device_id __clk_of_table_sentinel 2412 __used __section(__clk_of_table_end); 2413 2414 static LIST_HEAD(of_clk_providers); 2415 static DEFINE_MUTEX(of_clk_mutex); 2416 2417 /* of_clk_provider list locking helpers */ 2418 void of_clk_lock(void) 2419 { 2420 mutex_lock(&of_clk_mutex); 2421 } 2422 2423 void of_clk_unlock(void) 2424 { 2425 mutex_unlock(&of_clk_mutex); 2426 } 2427 2428 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2429 void *data) 2430 { 2431 return data; 2432 } 2433 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2434 2435 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2436 { 2437 struct clk_onecell_data *clk_data = data; 2438 unsigned int idx = clkspec->args[0]; 2439 2440 if (idx >= clk_data->clk_num) { 2441 pr_err("%s: invalid clock index %d\n", __func__, idx); 2442 return ERR_PTR(-EINVAL); 2443 } 2444 2445 return clk_data->clks[idx]; 2446 } 2447 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2448 2449 /** 2450 * of_clk_add_provider() - Register a clock provider for a node 2451 * @np: Device node pointer associated with clock provider 2452 * @clk_src_get: callback for decoding clock 2453 * @data: context pointer for @clk_src_get callback. 2454 */ 2455 int of_clk_add_provider(struct device_node *np, 2456 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2457 void *data), 2458 void *data) 2459 { 2460 struct of_clk_provider *cp; 2461 int ret; 2462 2463 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2464 if (!cp) 2465 return -ENOMEM; 2466 2467 cp->node = of_node_get(np); 2468 cp->data = data; 2469 cp->get = clk_src_get; 2470 2471 mutex_lock(&of_clk_mutex); 2472 list_add(&cp->link, &of_clk_providers); 2473 mutex_unlock(&of_clk_mutex); 2474 pr_debug("Added clock from %s\n", np->full_name); 2475 2476 ret = of_clk_set_defaults(np, true); 2477 if (ret < 0) 2478 of_clk_del_provider(np); 2479 2480 return ret; 2481 } 2482 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2483 2484 /** 2485 * of_clk_del_provider() - Remove a previously registered clock provider 2486 * @np: Device node pointer associated with clock provider 2487 */ 2488 void of_clk_del_provider(struct device_node *np) 2489 { 2490 struct of_clk_provider *cp; 2491 2492 mutex_lock(&of_clk_mutex); 2493 list_for_each_entry(cp, &of_clk_providers, link) { 2494 if (cp->node == np) { 2495 list_del(&cp->link); 2496 of_node_put(cp->node); 2497 kfree(cp); 2498 break; 2499 } 2500 } 2501 mutex_unlock(&of_clk_mutex); 2502 } 2503 EXPORT_SYMBOL_GPL(of_clk_del_provider); 2504 2505 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec) 2506 { 2507 struct of_clk_provider *provider; 2508 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 2509 2510 /* Check if we have such a provider in our array */ 2511 list_for_each_entry(provider, &of_clk_providers, link) { 2512 if (provider->node == clkspec->np) 2513 clk = provider->get(clkspec, provider->data); 2514 if (!IS_ERR(clk)) 2515 break; 2516 } 2517 2518 return clk; 2519 } 2520 2521 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 2522 { 2523 struct clk *clk; 2524 2525 mutex_lock(&of_clk_mutex); 2526 clk = __of_clk_get_from_provider(clkspec); 2527 mutex_unlock(&of_clk_mutex); 2528 2529 return clk; 2530 } 2531 2532 int of_clk_get_parent_count(struct device_node *np) 2533 { 2534 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 2535 } 2536 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 2537 2538 const char *of_clk_get_parent_name(struct device_node *np, int index) 2539 { 2540 struct of_phandle_args clkspec; 2541 struct property *prop; 2542 const char *clk_name; 2543 const __be32 *vp; 2544 u32 pv; 2545 int rc; 2546 int count; 2547 2548 if (index < 0) 2549 return NULL; 2550 2551 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 2552 &clkspec); 2553 if (rc) 2554 return NULL; 2555 2556 index = clkspec.args_count ? clkspec.args[0] : 0; 2557 count = 0; 2558 2559 /* if there is an indices property, use it to transfer the index 2560 * specified into an array offset for the clock-output-names property. 2561 */ 2562 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 2563 if (index == pv) { 2564 index = count; 2565 break; 2566 } 2567 count++; 2568 } 2569 2570 if (of_property_read_string_index(clkspec.np, "clock-output-names", 2571 index, 2572 &clk_name) < 0) 2573 clk_name = clkspec.np->name; 2574 2575 of_node_put(clkspec.np); 2576 return clk_name; 2577 } 2578 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 2579 2580 struct clock_provider { 2581 of_clk_init_cb_t clk_init_cb; 2582 struct device_node *np; 2583 struct list_head node; 2584 }; 2585 2586 static LIST_HEAD(clk_provider_list); 2587 2588 /* 2589 * This function looks for a parent clock. If there is one, then it 2590 * checks that the provider for this parent clock was initialized, in 2591 * this case the parent clock will be ready. 2592 */ 2593 static int parent_ready(struct device_node *np) 2594 { 2595 int i = 0; 2596 2597 while (true) { 2598 struct clk *clk = of_clk_get(np, i); 2599 2600 /* this parent is ready we can check the next one */ 2601 if (!IS_ERR(clk)) { 2602 clk_put(clk); 2603 i++; 2604 continue; 2605 } 2606 2607 /* at least one parent is not ready, we exit now */ 2608 if (PTR_ERR(clk) == -EPROBE_DEFER) 2609 return 0; 2610 2611 /* 2612 * Here we make assumption that the device tree is 2613 * written correctly. So an error means that there is 2614 * no more parent. As we didn't exit yet, then the 2615 * previous parent are ready. If there is no clock 2616 * parent, no need to wait for them, then we can 2617 * consider their absence as being ready 2618 */ 2619 return 1; 2620 } 2621 } 2622 2623 /** 2624 * of_clk_init() - Scan and init clock providers from the DT 2625 * @matches: array of compatible values and init functions for providers. 2626 * 2627 * This function scans the device tree for matching clock providers 2628 * and calls their initialization functions. It also does it by trying 2629 * to follow the dependencies. 2630 */ 2631 void __init of_clk_init(const struct of_device_id *matches) 2632 { 2633 const struct of_device_id *match; 2634 struct device_node *np; 2635 struct clock_provider *clk_provider, *next; 2636 bool is_init_done; 2637 bool force = false; 2638 2639 if (!matches) 2640 matches = &__clk_of_table; 2641 2642 /* First prepare the list of the clocks providers */ 2643 for_each_matching_node_and_match(np, matches, &match) { 2644 struct clock_provider *parent = 2645 kzalloc(sizeof(struct clock_provider), GFP_KERNEL); 2646 2647 parent->clk_init_cb = match->data; 2648 parent->np = np; 2649 list_add_tail(&parent->node, &clk_provider_list); 2650 } 2651 2652 while (!list_empty(&clk_provider_list)) { 2653 is_init_done = false; 2654 list_for_each_entry_safe(clk_provider, next, 2655 &clk_provider_list, node) { 2656 if (force || parent_ready(clk_provider->np)) { 2657 2658 clk_provider->clk_init_cb(clk_provider->np); 2659 of_clk_set_defaults(clk_provider->np, true); 2660 2661 list_del(&clk_provider->node); 2662 kfree(clk_provider); 2663 is_init_done = true; 2664 } 2665 } 2666 2667 /* 2668 * We didn't manage to initialize any of the 2669 * remaining providers during the last loop, so now we 2670 * initialize all the remaining ones unconditionally 2671 * in case the clock parent was not mandatory 2672 */ 2673 if (!is_init_done) 2674 force = true; 2675 } 2676 } 2677 #endif 2678