1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/sched.h> 26 #include <linux/clkdev.h> 27 28 #include "clk.h" 29 30 static DEFINE_SPINLOCK(enable_lock); 31 static DEFINE_MUTEX(prepare_lock); 32 33 static struct task_struct *prepare_owner; 34 static struct task_struct *enable_owner; 35 36 static int prepare_refcnt; 37 static int enable_refcnt; 38 39 static HLIST_HEAD(clk_root_list); 40 static HLIST_HEAD(clk_orphan_list); 41 static LIST_HEAD(clk_notifier_list); 42 43 /*** private data structures ***/ 44 45 struct clk_core { 46 const char *name; 47 const struct clk_ops *ops; 48 struct clk_hw *hw; 49 struct module *owner; 50 struct device *dev; 51 struct clk_core *parent; 52 const char **parent_names; 53 struct clk_core **parents; 54 u8 num_parents; 55 u8 new_parent_index; 56 unsigned long rate; 57 unsigned long req_rate; 58 unsigned long new_rate; 59 struct clk_core *new_parent; 60 struct clk_core *new_child; 61 unsigned long flags; 62 bool orphan; 63 unsigned int enable_count; 64 unsigned int prepare_count; 65 unsigned long min_rate; 66 unsigned long max_rate; 67 unsigned long accuracy; 68 int phase; 69 struct hlist_head children; 70 struct hlist_node child_node; 71 struct hlist_head clks; 72 unsigned int notifier_count; 73 #ifdef CONFIG_DEBUG_FS 74 struct dentry *dentry; 75 struct hlist_node debug_node; 76 #endif 77 struct kref ref; 78 }; 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/clk.h> 82 83 struct clk { 84 struct clk_core *core; 85 const char *dev_id; 86 const char *con_id; 87 unsigned long min_rate; 88 unsigned long max_rate; 89 struct hlist_node clks_node; 90 }; 91 92 /*** runtime pm ***/ 93 static int clk_pm_runtime_get(struct clk_core *core) 94 { 95 int ret = 0; 96 97 if (!core->dev) 98 return 0; 99 100 ret = pm_runtime_get_sync(core->dev); 101 return ret < 0 ? ret : 0; 102 } 103 104 static void clk_pm_runtime_put(struct clk_core *core) 105 { 106 if (!core->dev) 107 return; 108 109 pm_runtime_put_sync(core->dev); 110 } 111 112 /*** locking ***/ 113 static void clk_prepare_lock(void) 114 { 115 if (!mutex_trylock(&prepare_lock)) { 116 if (prepare_owner == current) { 117 prepare_refcnt++; 118 return; 119 } 120 mutex_lock(&prepare_lock); 121 } 122 WARN_ON_ONCE(prepare_owner != NULL); 123 WARN_ON_ONCE(prepare_refcnt != 0); 124 prepare_owner = current; 125 prepare_refcnt = 1; 126 } 127 128 static void clk_prepare_unlock(void) 129 { 130 WARN_ON_ONCE(prepare_owner != current); 131 WARN_ON_ONCE(prepare_refcnt == 0); 132 133 if (--prepare_refcnt) 134 return; 135 prepare_owner = NULL; 136 mutex_unlock(&prepare_lock); 137 } 138 139 static unsigned long clk_enable_lock(void) 140 __acquires(enable_lock) 141 { 142 unsigned long flags; 143 144 if (!spin_trylock_irqsave(&enable_lock, flags)) { 145 if (enable_owner == current) { 146 enable_refcnt++; 147 __acquire(enable_lock); 148 return flags; 149 } 150 spin_lock_irqsave(&enable_lock, flags); 151 } 152 WARN_ON_ONCE(enable_owner != NULL); 153 WARN_ON_ONCE(enable_refcnt != 0); 154 enable_owner = current; 155 enable_refcnt = 1; 156 return flags; 157 } 158 159 static void clk_enable_unlock(unsigned long flags) 160 __releases(enable_lock) 161 { 162 WARN_ON_ONCE(enable_owner != current); 163 WARN_ON_ONCE(enable_refcnt == 0); 164 165 if (--enable_refcnt) { 166 __release(enable_lock); 167 return; 168 } 169 enable_owner = NULL; 170 spin_unlock_irqrestore(&enable_lock, flags); 171 } 172 173 static bool clk_core_is_prepared(struct clk_core *core) 174 { 175 bool ret = false; 176 177 /* 178 * .is_prepared is optional for clocks that can prepare 179 * fall back to software usage counter if it is missing 180 */ 181 if (!core->ops->is_prepared) 182 return core->prepare_count; 183 184 if (!clk_pm_runtime_get(core)) { 185 ret = core->ops->is_prepared(core->hw); 186 clk_pm_runtime_put(core); 187 } 188 189 return ret; 190 } 191 192 static bool clk_core_is_enabled(struct clk_core *core) 193 { 194 bool ret = false; 195 196 /* 197 * .is_enabled is only mandatory for clocks that gate 198 * fall back to software usage counter if .is_enabled is missing 199 */ 200 if (!core->ops->is_enabled) 201 return core->enable_count; 202 203 /* 204 * Check if clock controller's device is runtime active before 205 * calling .is_enabled callback. If not, assume that clock is 206 * disabled, because we might be called from atomic context, from 207 * which pm_runtime_get() is not allowed. 208 * This function is called mainly from clk_disable_unused_subtree, 209 * which ensures proper runtime pm activation of controller before 210 * taking enable spinlock, but the below check is needed if one tries 211 * to call it from other places. 212 */ 213 if (core->dev) { 214 pm_runtime_get_noresume(core->dev); 215 if (!pm_runtime_active(core->dev)) { 216 ret = false; 217 goto done; 218 } 219 } 220 221 ret = core->ops->is_enabled(core->hw); 222 done: 223 if (core->dev) 224 pm_runtime_put(core->dev); 225 226 return ret; 227 } 228 229 /*** helper functions ***/ 230 231 const char *__clk_get_name(const struct clk *clk) 232 { 233 return !clk ? NULL : clk->core->name; 234 } 235 EXPORT_SYMBOL_GPL(__clk_get_name); 236 237 const char *clk_hw_get_name(const struct clk_hw *hw) 238 { 239 return hw->core->name; 240 } 241 EXPORT_SYMBOL_GPL(clk_hw_get_name); 242 243 struct clk_hw *__clk_get_hw(struct clk *clk) 244 { 245 return !clk ? NULL : clk->core->hw; 246 } 247 EXPORT_SYMBOL_GPL(__clk_get_hw); 248 249 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 250 { 251 return hw->core->num_parents; 252 } 253 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 254 255 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 256 { 257 return hw->core->parent ? hw->core->parent->hw : NULL; 258 } 259 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 260 261 static struct clk_core *__clk_lookup_subtree(const char *name, 262 struct clk_core *core) 263 { 264 struct clk_core *child; 265 struct clk_core *ret; 266 267 if (!strcmp(core->name, name)) 268 return core; 269 270 hlist_for_each_entry(child, &core->children, child_node) { 271 ret = __clk_lookup_subtree(name, child); 272 if (ret) 273 return ret; 274 } 275 276 return NULL; 277 } 278 279 static struct clk_core *clk_core_lookup(const char *name) 280 { 281 struct clk_core *root_clk; 282 struct clk_core *ret; 283 284 if (!name) 285 return NULL; 286 287 /* search the 'proper' clk tree first */ 288 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 289 ret = __clk_lookup_subtree(name, root_clk); 290 if (ret) 291 return ret; 292 } 293 294 /* if not found, then search the orphan tree */ 295 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 296 ret = __clk_lookup_subtree(name, root_clk); 297 if (ret) 298 return ret; 299 } 300 301 return NULL; 302 } 303 304 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 305 u8 index) 306 { 307 if (!core || index >= core->num_parents) 308 return NULL; 309 310 if (!core->parents[index]) 311 core->parents[index] = 312 clk_core_lookup(core->parent_names[index]); 313 314 return core->parents[index]; 315 } 316 317 struct clk_hw * 318 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 319 { 320 struct clk_core *parent; 321 322 parent = clk_core_get_parent_by_index(hw->core, index); 323 324 return !parent ? NULL : parent->hw; 325 } 326 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 327 328 unsigned int __clk_get_enable_count(struct clk *clk) 329 { 330 return !clk ? 0 : clk->core->enable_count; 331 } 332 333 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 334 { 335 unsigned long ret; 336 337 if (!core) { 338 ret = 0; 339 goto out; 340 } 341 342 ret = core->rate; 343 344 if (!core->num_parents) 345 goto out; 346 347 if (!core->parent) 348 ret = 0; 349 350 out: 351 return ret; 352 } 353 354 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 355 { 356 return clk_core_get_rate_nolock(hw->core); 357 } 358 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 359 360 static unsigned long __clk_get_accuracy(struct clk_core *core) 361 { 362 if (!core) 363 return 0; 364 365 return core->accuracy; 366 } 367 368 unsigned long __clk_get_flags(struct clk *clk) 369 { 370 return !clk ? 0 : clk->core->flags; 371 } 372 EXPORT_SYMBOL_GPL(__clk_get_flags); 373 374 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 375 { 376 return hw->core->flags; 377 } 378 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 379 380 bool clk_hw_is_prepared(const struct clk_hw *hw) 381 { 382 return clk_core_is_prepared(hw->core); 383 } 384 385 bool clk_hw_is_enabled(const struct clk_hw *hw) 386 { 387 return clk_core_is_enabled(hw->core); 388 } 389 390 bool __clk_is_enabled(struct clk *clk) 391 { 392 if (!clk) 393 return false; 394 395 return clk_core_is_enabled(clk->core); 396 } 397 EXPORT_SYMBOL_GPL(__clk_is_enabled); 398 399 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 400 unsigned long best, unsigned long flags) 401 { 402 if (flags & CLK_MUX_ROUND_CLOSEST) 403 return abs(now - rate) < abs(best - rate); 404 405 return now <= rate && now > best; 406 } 407 408 static int 409 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, 410 unsigned long flags) 411 { 412 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 413 int i, num_parents, ret; 414 unsigned long best = 0; 415 struct clk_rate_request parent_req = *req; 416 417 /* if NO_REPARENT flag set, pass through to current parent */ 418 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 419 parent = core->parent; 420 if (core->flags & CLK_SET_RATE_PARENT) { 421 ret = __clk_determine_rate(parent ? parent->hw : NULL, 422 &parent_req); 423 if (ret) 424 return ret; 425 426 best = parent_req.rate; 427 } else if (parent) { 428 best = clk_core_get_rate_nolock(parent); 429 } else { 430 best = clk_core_get_rate_nolock(core); 431 } 432 433 goto out; 434 } 435 436 /* find the parent that can provide the fastest rate <= rate */ 437 num_parents = core->num_parents; 438 for (i = 0; i < num_parents; i++) { 439 parent = clk_core_get_parent_by_index(core, i); 440 if (!parent) 441 continue; 442 443 if (core->flags & CLK_SET_RATE_PARENT) { 444 parent_req = *req; 445 ret = __clk_determine_rate(parent->hw, &parent_req); 446 if (ret) 447 continue; 448 } else { 449 parent_req.rate = clk_core_get_rate_nolock(parent); 450 } 451 452 if (mux_is_better_rate(req->rate, parent_req.rate, 453 best, flags)) { 454 best_parent = parent; 455 best = parent_req.rate; 456 } 457 } 458 459 if (!best_parent) 460 return -EINVAL; 461 462 out: 463 if (best_parent) 464 req->best_parent_hw = best_parent->hw; 465 req->best_parent_rate = best; 466 req->rate = best; 467 468 return 0; 469 } 470 471 struct clk *__clk_lookup(const char *name) 472 { 473 struct clk_core *core = clk_core_lookup(name); 474 475 return !core ? NULL : core->hw->clk; 476 } 477 478 static void clk_core_get_boundaries(struct clk_core *core, 479 unsigned long *min_rate, 480 unsigned long *max_rate) 481 { 482 struct clk *clk_user; 483 484 *min_rate = core->min_rate; 485 *max_rate = core->max_rate; 486 487 hlist_for_each_entry(clk_user, &core->clks, clks_node) 488 *min_rate = max(*min_rate, clk_user->min_rate); 489 490 hlist_for_each_entry(clk_user, &core->clks, clks_node) 491 *max_rate = min(*max_rate, clk_user->max_rate); 492 } 493 494 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 495 unsigned long max_rate) 496 { 497 hw->core->min_rate = min_rate; 498 hw->core->max_rate = max_rate; 499 } 500 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 501 502 /* 503 * Helper for finding best parent to provide a given frequency. This can be used 504 * directly as a determine_rate callback (e.g. for a mux), or from a more 505 * complex clock that may combine a mux with other operations. 506 */ 507 int __clk_mux_determine_rate(struct clk_hw *hw, 508 struct clk_rate_request *req) 509 { 510 return clk_mux_determine_rate_flags(hw, req, 0); 511 } 512 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 513 514 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 515 struct clk_rate_request *req) 516 { 517 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 518 } 519 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 520 521 /*** clk api ***/ 522 523 static void clk_core_unprepare(struct clk_core *core) 524 { 525 lockdep_assert_held(&prepare_lock); 526 527 if (!core) 528 return; 529 530 if (WARN_ON(core->prepare_count == 0)) 531 return; 532 533 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL)) 534 return; 535 536 if (--core->prepare_count > 0) 537 return; 538 539 WARN_ON(core->enable_count > 0); 540 541 trace_clk_unprepare(core); 542 543 if (core->ops->unprepare) 544 core->ops->unprepare(core->hw); 545 546 clk_pm_runtime_put(core); 547 548 trace_clk_unprepare_complete(core); 549 clk_core_unprepare(core->parent); 550 } 551 552 static void clk_core_unprepare_lock(struct clk_core *core) 553 { 554 clk_prepare_lock(); 555 clk_core_unprepare(core); 556 clk_prepare_unlock(); 557 } 558 559 /** 560 * clk_unprepare - undo preparation of a clock source 561 * @clk: the clk being unprepared 562 * 563 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 564 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 565 * if the operation may sleep. One example is a clk which is accessed over 566 * I2c. In the complex case a clk gate operation may require a fast and a slow 567 * part. It is this reason that clk_unprepare and clk_disable are not mutually 568 * exclusive. In fact clk_disable must be called before clk_unprepare. 569 */ 570 void clk_unprepare(struct clk *clk) 571 { 572 if (IS_ERR_OR_NULL(clk)) 573 return; 574 575 clk_core_unprepare_lock(clk->core); 576 } 577 EXPORT_SYMBOL_GPL(clk_unprepare); 578 579 static int clk_core_prepare(struct clk_core *core) 580 { 581 int ret = 0; 582 583 lockdep_assert_held(&prepare_lock); 584 585 if (!core) 586 return 0; 587 588 if (core->prepare_count == 0) { 589 ret = clk_pm_runtime_get(core); 590 if (ret) 591 return ret; 592 593 ret = clk_core_prepare(core->parent); 594 if (ret) 595 goto runtime_put; 596 597 trace_clk_prepare(core); 598 599 if (core->ops->prepare) 600 ret = core->ops->prepare(core->hw); 601 602 trace_clk_prepare_complete(core); 603 604 if (ret) 605 goto unprepare; 606 } 607 608 core->prepare_count++; 609 610 return 0; 611 unprepare: 612 clk_core_unprepare(core->parent); 613 runtime_put: 614 clk_pm_runtime_put(core); 615 return ret; 616 } 617 618 static int clk_core_prepare_lock(struct clk_core *core) 619 { 620 int ret; 621 622 clk_prepare_lock(); 623 ret = clk_core_prepare(core); 624 clk_prepare_unlock(); 625 626 return ret; 627 } 628 629 /** 630 * clk_prepare - prepare a clock source 631 * @clk: the clk being prepared 632 * 633 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 634 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 635 * operation may sleep. One example is a clk which is accessed over I2c. In 636 * the complex case a clk ungate operation may require a fast and a slow part. 637 * It is this reason that clk_prepare and clk_enable are not mutually 638 * exclusive. In fact clk_prepare must be called before clk_enable. 639 * Returns 0 on success, -EERROR otherwise. 640 */ 641 int clk_prepare(struct clk *clk) 642 { 643 if (!clk) 644 return 0; 645 646 return clk_core_prepare_lock(clk->core); 647 } 648 EXPORT_SYMBOL_GPL(clk_prepare); 649 650 static void clk_core_disable(struct clk_core *core) 651 { 652 lockdep_assert_held(&enable_lock); 653 654 if (!core) 655 return; 656 657 if (WARN_ON(core->enable_count == 0)) 658 return; 659 660 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL)) 661 return; 662 663 if (--core->enable_count > 0) 664 return; 665 666 trace_clk_disable_rcuidle(core); 667 668 if (core->ops->disable) 669 core->ops->disable(core->hw); 670 671 trace_clk_disable_complete_rcuidle(core); 672 673 clk_core_disable(core->parent); 674 } 675 676 static void clk_core_disable_lock(struct clk_core *core) 677 { 678 unsigned long flags; 679 680 flags = clk_enable_lock(); 681 clk_core_disable(core); 682 clk_enable_unlock(flags); 683 } 684 685 /** 686 * clk_disable - gate a clock 687 * @clk: the clk being gated 688 * 689 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 690 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 691 * clk if the operation is fast and will never sleep. One example is a 692 * SoC-internal clk which is controlled via simple register writes. In the 693 * complex case a clk gate operation may require a fast and a slow part. It is 694 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 695 * In fact clk_disable must be called before clk_unprepare. 696 */ 697 void clk_disable(struct clk *clk) 698 { 699 if (IS_ERR_OR_NULL(clk)) 700 return; 701 702 clk_core_disable_lock(clk->core); 703 } 704 EXPORT_SYMBOL_GPL(clk_disable); 705 706 static int clk_core_enable(struct clk_core *core) 707 { 708 int ret = 0; 709 710 lockdep_assert_held(&enable_lock); 711 712 if (!core) 713 return 0; 714 715 if (WARN_ON(core->prepare_count == 0)) 716 return -ESHUTDOWN; 717 718 if (core->enable_count == 0) { 719 ret = clk_core_enable(core->parent); 720 721 if (ret) 722 return ret; 723 724 trace_clk_enable_rcuidle(core); 725 726 if (core->ops->enable) 727 ret = core->ops->enable(core->hw); 728 729 trace_clk_enable_complete_rcuidle(core); 730 731 if (ret) { 732 clk_core_disable(core->parent); 733 return ret; 734 } 735 } 736 737 core->enable_count++; 738 return 0; 739 } 740 741 static int clk_core_enable_lock(struct clk_core *core) 742 { 743 unsigned long flags; 744 int ret; 745 746 flags = clk_enable_lock(); 747 ret = clk_core_enable(core); 748 clk_enable_unlock(flags); 749 750 return ret; 751 } 752 753 /** 754 * clk_enable - ungate a clock 755 * @clk: the clk being ungated 756 * 757 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 758 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 759 * if the operation will never sleep. One example is a SoC-internal clk which 760 * is controlled via simple register writes. In the complex case a clk ungate 761 * operation may require a fast and a slow part. It is this reason that 762 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 763 * must be called before clk_enable. Returns 0 on success, -EERROR 764 * otherwise. 765 */ 766 int clk_enable(struct clk *clk) 767 { 768 if (!clk) 769 return 0; 770 771 return clk_core_enable_lock(clk->core); 772 } 773 EXPORT_SYMBOL_GPL(clk_enable); 774 775 static int clk_core_prepare_enable(struct clk_core *core) 776 { 777 int ret; 778 779 ret = clk_core_prepare_lock(core); 780 if (ret) 781 return ret; 782 783 ret = clk_core_enable_lock(core); 784 if (ret) 785 clk_core_unprepare_lock(core); 786 787 return ret; 788 } 789 790 static void clk_core_disable_unprepare(struct clk_core *core) 791 { 792 clk_core_disable_lock(core); 793 clk_core_unprepare_lock(core); 794 } 795 796 static void clk_unprepare_unused_subtree(struct clk_core *core) 797 { 798 struct clk_core *child; 799 800 lockdep_assert_held(&prepare_lock); 801 802 hlist_for_each_entry(child, &core->children, child_node) 803 clk_unprepare_unused_subtree(child); 804 805 if (core->prepare_count) 806 return; 807 808 if (core->flags & CLK_IGNORE_UNUSED) 809 return; 810 811 if (clk_pm_runtime_get(core)) 812 return; 813 814 if (clk_core_is_prepared(core)) { 815 trace_clk_unprepare(core); 816 if (core->ops->unprepare_unused) 817 core->ops->unprepare_unused(core->hw); 818 else if (core->ops->unprepare) 819 core->ops->unprepare(core->hw); 820 trace_clk_unprepare_complete(core); 821 } 822 823 clk_pm_runtime_put(core); 824 } 825 826 static void clk_disable_unused_subtree(struct clk_core *core) 827 { 828 struct clk_core *child; 829 unsigned long flags; 830 831 lockdep_assert_held(&prepare_lock); 832 833 hlist_for_each_entry(child, &core->children, child_node) 834 clk_disable_unused_subtree(child); 835 836 if (core->flags & CLK_OPS_PARENT_ENABLE) 837 clk_core_prepare_enable(core->parent); 838 839 if (clk_pm_runtime_get(core)) 840 goto unprepare_out; 841 842 flags = clk_enable_lock(); 843 844 if (core->enable_count) 845 goto unlock_out; 846 847 if (core->flags & CLK_IGNORE_UNUSED) 848 goto unlock_out; 849 850 /* 851 * some gate clocks have special needs during the disable-unused 852 * sequence. call .disable_unused if available, otherwise fall 853 * back to .disable 854 */ 855 if (clk_core_is_enabled(core)) { 856 trace_clk_disable(core); 857 if (core->ops->disable_unused) 858 core->ops->disable_unused(core->hw); 859 else if (core->ops->disable) 860 core->ops->disable(core->hw); 861 trace_clk_disable_complete(core); 862 } 863 864 unlock_out: 865 clk_enable_unlock(flags); 866 clk_pm_runtime_put(core); 867 unprepare_out: 868 if (core->flags & CLK_OPS_PARENT_ENABLE) 869 clk_core_disable_unprepare(core->parent); 870 } 871 872 static bool clk_ignore_unused; 873 static int __init clk_ignore_unused_setup(char *__unused) 874 { 875 clk_ignore_unused = true; 876 return 1; 877 } 878 __setup("clk_ignore_unused", clk_ignore_unused_setup); 879 880 static int clk_disable_unused(void) 881 { 882 struct clk_core *core; 883 884 if (clk_ignore_unused) { 885 pr_warn("clk: Not disabling unused clocks\n"); 886 return 0; 887 } 888 889 clk_prepare_lock(); 890 891 hlist_for_each_entry(core, &clk_root_list, child_node) 892 clk_disable_unused_subtree(core); 893 894 hlist_for_each_entry(core, &clk_orphan_list, child_node) 895 clk_disable_unused_subtree(core); 896 897 hlist_for_each_entry(core, &clk_root_list, child_node) 898 clk_unprepare_unused_subtree(core); 899 900 hlist_for_each_entry(core, &clk_orphan_list, child_node) 901 clk_unprepare_unused_subtree(core); 902 903 clk_prepare_unlock(); 904 905 return 0; 906 } 907 late_initcall_sync(clk_disable_unused); 908 909 static int clk_core_round_rate_nolock(struct clk_core *core, 910 struct clk_rate_request *req) 911 { 912 struct clk_core *parent; 913 long rate; 914 915 lockdep_assert_held(&prepare_lock); 916 917 if (!core) 918 return 0; 919 920 parent = core->parent; 921 if (parent) { 922 req->best_parent_hw = parent->hw; 923 req->best_parent_rate = parent->rate; 924 } else { 925 req->best_parent_hw = NULL; 926 req->best_parent_rate = 0; 927 } 928 929 if (core->ops->determine_rate) { 930 return core->ops->determine_rate(core->hw, req); 931 } else if (core->ops->round_rate) { 932 rate = core->ops->round_rate(core->hw, req->rate, 933 &req->best_parent_rate); 934 if (rate < 0) 935 return rate; 936 937 req->rate = rate; 938 } else if (core->flags & CLK_SET_RATE_PARENT) { 939 return clk_core_round_rate_nolock(parent, req); 940 } else { 941 req->rate = core->rate; 942 } 943 944 return 0; 945 } 946 947 /** 948 * __clk_determine_rate - get the closest rate actually supported by a clock 949 * @hw: determine the rate of this clock 950 * @req: target rate request 951 * 952 * Useful for clk_ops such as .set_rate and .determine_rate. 953 */ 954 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 955 { 956 if (!hw) { 957 req->rate = 0; 958 return 0; 959 } 960 961 return clk_core_round_rate_nolock(hw->core, req); 962 } 963 EXPORT_SYMBOL_GPL(__clk_determine_rate); 964 965 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 966 { 967 int ret; 968 struct clk_rate_request req; 969 970 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 971 req.rate = rate; 972 973 ret = clk_core_round_rate_nolock(hw->core, &req); 974 if (ret) 975 return 0; 976 977 return req.rate; 978 } 979 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 980 981 /** 982 * clk_round_rate - round the given rate for a clk 983 * @clk: the clk for which we are rounding a rate 984 * @rate: the rate which is to be rounded 985 * 986 * Takes in a rate as input and rounds it to a rate that the clk can actually 987 * use which is then returned. If clk doesn't support round_rate operation 988 * then the parent rate is returned. 989 */ 990 long clk_round_rate(struct clk *clk, unsigned long rate) 991 { 992 struct clk_rate_request req; 993 int ret; 994 995 if (!clk) 996 return 0; 997 998 clk_prepare_lock(); 999 1000 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1001 req.rate = rate; 1002 1003 ret = clk_core_round_rate_nolock(clk->core, &req); 1004 clk_prepare_unlock(); 1005 1006 if (ret) 1007 return ret; 1008 1009 return req.rate; 1010 } 1011 EXPORT_SYMBOL_GPL(clk_round_rate); 1012 1013 /** 1014 * __clk_notify - call clk notifier chain 1015 * @core: clk that is changing rate 1016 * @msg: clk notifier type (see include/linux/clk.h) 1017 * @old_rate: old clk rate 1018 * @new_rate: new clk rate 1019 * 1020 * Triggers a notifier call chain on the clk rate-change notification 1021 * for 'clk'. Passes a pointer to the struct clk and the previous 1022 * and current rates to the notifier callback. Intended to be called by 1023 * internal clock code only. Returns NOTIFY_DONE from the last driver 1024 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1025 * a driver returns that. 1026 */ 1027 static int __clk_notify(struct clk_core *core, unsigned long msg, 1028 unsigned long old_rate, unsigned long new_rate) 1029 { 1030 struct clk_notifier *cn; 1031 struct clk_notifier_data cnd; 1032 int ret = NOTIFY_DONE; 1033 1034 cnd.old_rate = old_rate; 1035 cnd.new_rate = new_rate; 1036 1037 list_for_each_entry(cn, &clk_notifier_list, node) { 1038 if (cn->clk->core == core) { 1039 cnd.clk = cn->clk; 1040 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1041 &cnd); 1042 if (ret & NOTIFY_STOP_MASK) 1043 return ret; 1044 } 1045 } 1046 1047 return ret; 1048 } 1049 1050 /** 1051 * __clk_recalc_accuracies 1052 * @core: first clk in the subtree 1053 * 1054 * Walks the subtree of clks starting with clk and recalculates accuracies as 1055 * it goes. Note that if a clk does not implement the .recalc_accuracy 1056 * callback then it is assumed that the clock will take on the accuracy of its 1057 * parent. 1058 */ 1059 static void __clk_recalc_accuracies(struct clk_core *core) 1060 { 1061 unsigned long parent_accuracy = 0; 1062 struct clk_core *child; 1063 1064 lockdep_assert_held(&prepare_lock); 1065 1066 if (core->parent) 1067 parent_accuracy = core->parent->accuracy; 1068 1069 if (core->ops->recalc_accuracy) 1070 core->accuracy = core->ops->recalc_accuracy(core->hw, 1071 parent_accuracy); 1072 else 1073 core->accuracy = parent_accuracy; 1074 1075 hlist_for_each_entry(child, &core->children, child_node) 1076 __clk_recalc_accuracies(child); 1077 } 1078 1079 static long clk_core_get_accuracy(struct clk_core *core) 1080 { 1081 unsigned long accuracy; 1082 1083 clk_prepare_lock(); 1084 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1085 __clk_recalc_accuracies(core); 1086 1087 accuracy = __clk_get_accuracy(core); 1088 clk_prepare_unlock(); 1089 1090 return accuracy; 1091 } 1092 1093 /** 1094 * clk_get_accuracy - return the accuracy of clk 1095 * @clk: the clk whose accuracy is being returned 1096 * 1097 * Simply returns the cached accuracy of the clk, unless 1098 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1099 * issued. 1100 * If clk is NULL then returns 0. 1101 */ 1102 long clk_get_accuracy(struct clk *clk) 1103 { 1104 if (!clk) 1105 return 0; 1106 1107 return clk_core_get_accuracy(clk->core); 1108 } 1109 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1110 1111 static unsigned long clk_recalc(struct clk_core *core, 1112 unsigned long parent_rate) 1113 { 1114 unsigned long rate = parent_rate; 1115 1116 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1117 rate = core->ops->recalc_rate(core->hw, parent_rate); 1118 clk_pm_runtime_put(core); 1119 } 1120 return rate; 1121 } 1122 1123 /** 1124 * __clk_recalc_rates 1125 * @core: first clk in the subtree 1126 * @msg: notification type (see include/linux/clk.h) 1127 * 1128 * Walks the subtree of clks starting with clk and recalculates rates as it 1129 * goes. Note that if a clk does not implement the .recalc_rate callback then 1130 * it is assumed that the clock will take on the rate of its parent. 1131 * 1132 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1133 * if necessary. 1134 */ 1135 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1136 { 1137 unsigned long old_rate; 1138 unsigned long parent_rate = 0; 1139 struct clk_core *child; 1140 1141 lockdep_assert_held(&prepare_lock); 1142 1143 old_rate = core->rate; 1144 1145 if (core->parent) 1146 parent_rate = core->parent->rate; 1147 1148 core->rate = clk_recalc(core, parent_rate); 1149 1150 /* 1151 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1152 * & ABORT_RATE_CHANGE notifiers 1153 */ 1154 if (core->notifier_count && msg) 1155 __clk_notify(core, msg, old_rate, core->rate); 1156 1157 hlist_for_each_entry(child, &core->children, child_node) 1158 __clk_recalc_rates(child, msg); 1159 } 1160 1161 static unsigned long clk_core_get_rate(struct clk_core *core) 1162 { 1163 unsigned long rate; 1164 1165 clk_prepare_lock(); 1166 1167 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1168 __clk_recalc_rates(core, 0); 1169 1170 rate = clk_core_get_rate_nolock(core); 1171 clk_prepare_unlock(); 1172 1173 return rate; 1174 } 1175 1176 /** 1177 * clk_get_rate - return the rate of clk 1178 * @clk: the clk whose rate is being returned 1179 * 1180 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1181 * is set, which means a recalc_rate will be issued. 1182 * If clk is NULL then returns 0. 1183 */ 1184 unsigned long clk_get_rate(struct clk *clk) 1185 { 1186 if (!clk) 1187 return 0; 1188 1189 return clk_core_get_rate(clk->core); 1190 } 1191 EXPORT_SYMBOL_GPL(clk_get_rate); 1192 1193 static int clk_fetch_parent_index(struct clk_core *core, 1194 struct clk_core *parent) 1195 { 1196 int i; 1197 1198 if (!parent) 1199 return -EINVAL; 1200 1201 for (i = 0; i < core->num_parents; i++) 1202 if (clk_core_get_parent_by_index(core, i) == parent) 1203 return i; 1204 1205 return -EINVAL; 1206 } 1207 1208 /* 1209 * Update the orphan status of @core and all its children. 1210 */ 1211 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1212 { 1213 struct clk_core *child; 1214 1215 core->orphan = is_orphan; 1216 1217 hlist_for_each_entry(child, &core->children, child_node) 1218 clk_core_update_orphan_status(child, is_orphan); 1219 } 1220 1221 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1222 { 1223 bool was_orphan = core->orphan; 1224 1225 hlist_del(&core->child_node); 1226 1227 if (new_parent) { 1228 bool becomes_orphan = new_parent->orphan; 1229 1230 /* avoid duplicate POST_RATE_CHANGE notifications */ 1231 if (new_parent->new_child == core) 1232 new_parent->new_child = NULL; 1233 1234 hlist_add_head(&core->child_node, &new_parent->children); 1235 1236 if (was_orphan != becomes_orphan) 1237 clk_core_update_orphan_status(core, becomes_orphan); 1238 } else { 1239 hlist_add_head(&core->child_node, &clk_orphan_list); 1240 if (!was_orphan) 1241 clk_core_update_orphan_status(core, true); 1242 } 1243 1244 core->parent = new_parent; 1245 } 1246 1247 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1248 struct clk_core *parent) 1249 { 1250 unsigned long flags; 1251 struct clk_core *old_parent = core->parent; 1252 1253 /* 1254 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1255 * 1256 * 2. Migrate prepare state between parents and prevent race with 1257 * clk_enable(). 1258 * 1259 * If the clock is not prepared, then a race with 1260 * clk_enable/disable() is impossible since we already have the 1261 * prepare lock (future calls to clk_enable() need to be preceded by 1262 * a clk_prepare()). 1263 * 1264 * If the clock is prepared, migrate the prepared state to the new 1265 * parent and also protect against a race with clk_enable() by 1266 * forcing the clock and the new parent on. This ensures that all 1267 * future calls to clk_enable() are practically NOPs with respect to 1268 * hardware and software states. 1269 * 1270 * See also: Comment for clk_set_parent() below. 1271 */ 1272 1273 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1274 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1275 clk_core_prepare_enable(old_parent); 1276 clk_core_prepare_enable(parent); 1277 } 1278 1279 /* migrate prepare count if > 0 */ 1280 if (core->prepare_count) { 1281 clk_core_prepare_enable(parent); 1282 clk_core_enable_lock(core); 1283 } 1284 1285 /* update the clk tree topology */ 1286 flags = clk_enable_lock(); 1287 clk_reparent(core, parent); 1288 clk_enable_unlock(flags); 1289 1290 return old_parent; 1291 } 1292 1293 static void __clk_set_parent_after(struct clk_core *core, 1294 struct clk_core *parent, 1295 struct clk_core *old_parent) 1296 { 1297 /* 1298 * Finish the migration of prepare state and undo the changes done 1299 * for preventing a race with clk_enable(). 1300 */ 1301 if (core->prepare_count) { 1302 clk_core_disable_lock(core); 1303 clk_core_disable_unprepare(old_parent); 1304 } 1305 1306 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1307 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1308 clk_core_disable_unprepare(parent); 1309 clk_core_disable_unprepare(old_parent); 1310 } 1311 } 1312 1313 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1314 u8 p_index) 1315 { 1316 unsigned long flags; 1317 int ret = 0; 1318 struct clk_core *old_parent; 1319 1320 old_parent = __clk_set_parent_before(core, parent); 1321 1322 trace_clk_set_parent(core, parent); 1323 1324 /* change clock input source */ 1325 if (parent && core->ops->set_parent) 1326 ret = core->ops->set_parent(core->hw, p_index); 1327 1328 trace_clk_set_parent_complete(core, parent); 1329 1330 if (ret) { 1331 flags = clk_enable_lock(); 1332 clk_reparent(core, old_parent); 1333 clk_enable_unlock(flags); 1334 __clk_set_parent_after(core, old_parent, parent); 1335 1336 return ret; 1337 } 1338 1339 __clk_set_parent_after(core, parent, old_parent); 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * __clk_speculate_rates 1346 * @core: first clk in the subtree 1347 * @parent_rate: the "future" rate of clk's parent 1348 * 1349 * Walks the subtree of clks starting with clk, speculating rates as it 1350 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1351 * 1352 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1353 * pre-rate change notifications and returns early if no clks in the 1354 * subtree have subscribed to the notifications. Note that if a clk does not 1355 * implement the .recalc_rate callback then it is assumed that the clock will 1356 * take on the rate of its parent. 1357 */ 1358 static int __clk_speculate_rates(struct clk_core *core, 1359 unsigned long parent_rate) 1360 { 1361 struct clk_core *child; 1362 unsigned long new_rate; 1363 int ret = NOTIFY_DONE; 1364 1365 lockdep_assert_held(&prepare_lock); 1366 1367 new_rate = clk_recalc(core, parent_rate); 1368 1369 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1370 if (core->notifier_count) 1371 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1372 1373 if (ret & NOTIFY_STOP_MASK) { 1374 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1375 __func__, core->name, ret); 1376 goto out; 1377 } 1378 1379 hlist_for_each_entry(child, &core->children, child_node) { 1380 ret = __clk_speculate_rates(child, new_rate); 1381 if (ret & NOTIFY_STOP_MASK) 1382 break; 1383 } 1384 1385 out: 1386 return ret; 1387 } 1388 1389 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1390 struct clk_core *new_parent, u8 p_index) 1391 { 1392 struct clk_core *child; 1393 1394 core->new_rate = new_rate; 1395 core->new_parent = new_parent; 1396 core->new_parent_index = p_index; 1397 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1398 core->new_child = NULL; 1399 if (new_parent && new_parent != core->parent) 1400 new_parent->new_child = core; 1401 1402 hlist_for_each_entry(child, &core->children, child_node) { 1403 child->new_rate = clk_recalc(child, new_rate); 1404 clk_calc_subtree(child, child->new_rate, NULL, 0); 1405 } 1406 } 1407 1408 /* 1409 * calculate the new rates returning the topmost clock that has to be 1410 * changed. 1411 */ 1412 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1413 unsigned long rate) 1414 { 1415 struct clk_core *top = core; 1416 struct clk_core *old_parent, *parent; 1417 unsigned long best_parent_rate = 0; 1418 unsigned long new_rate; 1419 unsigned long min_rate; 1420 unsigned long max_rate; 1421 int p_index = 0; 1422 long ret; 1423 1424 /* sanity */ 1425 if (IS_ERR_OR_NULL(core)) 1426 return NULL; 1427 1428 /* save parent rate, if it exists */ 1429 parent = old_parent = core->parent; 1430 if (parent) 1431 best_parent_rate = parent->rate; 1432 1433 clk_core_get_boundaries(core, &min_rate, &max_rate); 1434 1435 /* find the closest rate and parent clk/rate */ 1436 if (core->ops->determine_rate) { 1437 struct clk_rate_request req; 1438 1439 req.rate = rate; 1440 req.min_rate = min_rate; 1441 req.max_rate = max_rate; 1442 if (parent) { 1443 req.best_parent_hw = parent->hw; 1444 req.best_parent_rate = parent->rate; 1445 } else { 1446 req.best_parent_hw = NULL; 1447 req.best_parent_rate = 0; 1448 } 1449 1450 ret = core->ops->determine_rate(core->hw, &req); 1451 if (ret < 0) 1452 return NULL; 1453 1454 best_parent_rate = req.best_parent_rate; 1455 new_rate = req.rate; 1456 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1457 } else if (core->ops->round_rate) { 1458 ret = core->ops->round_rate(core->hw, rate, 1459 &best_parent_rate); 1460 if (ret < 0) 1461 return NULL; 1462 1463 new_rate = ret; 1464 if (new_rate < min_rate || new_rate > max_rate) 1465 return NULL; 1466 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1467 /* pass-through clock without adjustable parent */ 1468 core->new_rate = core->rate; 1469 return NULL; 1470 } else { 1471 /* pass-through clock with adjustable parent */ 1472 top = clk_calc_new_rates(parent, rate); 1473 new_rate = parent->new_rate; 1474 goto out; 1475 } 1476 1477 /* some clocks must be gated to change parent */ 1478 if (parent != old_parent && 1479 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1480 pr_debug("%s: %s not gated but wants to reparent\n", 1481 __func__, core->name); 1482 return NULL; 1483 } 1484 1485 /* try finding the new parent index */ 1486 if (parent && core->num_parents > 1) { 1487 p_index = clk_fetch_parent_index(core, parent); 1488 if (p_index < 0) { 1489 pr_debug("%s: clk %s can not be parent of clk %s\n", 1490 __func__, parent->name, core->name); 1491 return NULL; 1492 } 1493 } 1494 1495 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1496 best_parent_rate != parent->rate) 1497 top = clk_calc_new_rates(parent, best_parent_rate); 1498 1499 out: 1500 clk_calc_subtree(core, new_rate, parent, p_index); 1501 1502 return top; 1503 } 1504 1505 /* 1506 * Notify about rate changes in a subtree. Always walk down the whole tree 1507 * so that in case of an error we can walk down the whole tree again and 1508 * abort the change. 1509 */ 1510 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1511 unsigned long event) 1512 { 1513 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1514 int ret = NOTIFY_DONE; 1515 1516 if (core->rate == core->new_rate) 1517 return NULL; 1518 1519 if (core->notifier_count) { 1520 ret = __clk_notify(core, event, core->rate, core->new_rate); 1521 if (ret & NOTIFY_STOP_MASK) 1522 fail_clk = core; 1523 } 1524 1525 hlist_for_each_entry(child, &core->children, child_node) { 1526 /* Skip children who will be reparented to another clock */ 1527 if (child->new_parent && child->new_parent != core) 1528 continue; 1529 tmp_clk = clk_propagate_rate_change(child, event); 1530 if (tmp_clk) 1531 fail_clk = tmp_clk; 1532 } 1533 1534 /* handle the new child who might not be in core->children yet */ 1535 if (core->new_child) { 1536 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1537 if (tmp_clk) 1538 fail_clk = tmp_clk; 1539 } 1540 1541 return fail_clk; 1542 } 1543 1544 /* 1545 * walk down a subtree and set the new rates notifying the rate 1546 * change on the way 1547 */ 1548 static void clk_change_rate(struct clk_core *core) 1549 { 1550 struct clk_core *child; 1551 struct hlist_node *tmp; 1552 unsigned long old_rate; 1553 unsigned long best_parent_rate = 0; 1554 bool skip_set_rate = false; 1555 struct clk_core *old_parent; 1556 struct clk_core *parent = NULL; 1557 1558 old_rate = core->rate; 1559 1560 if (core->new_parent) { 1561 parent = core->new_parent; 1562 best_parent_rate = core->new_parent->rate; 1563 } else if (core->parent) { 1564 parent = core->parent; 1565 best_parent_rate = core->parent->rate; 1566 } 1567 1568 if (clk_pm_runtime_get(core)) 1569 return; 1570 1571 if (core->flags & CLK_SET_RATE_UNGATE) { 1572 unsigned long flags; 1573 1574 clk_core_prepare(core); 1575 flags = clk_enable_lock(); 1576 clk_core_enable(core); 1577 clk_enable_unlock(flags); 1578 } 1579 1580 if (core->new_parent && core->new_parent != core->parent) { 1581 old_parent = __clk_set_parent_before(core, core->new_parent); 1582 trace_clk_set_parent(core, core->new_parent); 1583 1584 if (core->ops->set_rate_and_parent) { 1585 skip_set_rate = true; 1586 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1587 best_parent_rate, 1588 core->new_parent_index); 1589 } else if (core->ops->set_parent) { 1590 core->ops->set_parent(core->hw, core->new_parent_index); 1591 } 1592 1593 trace_clk_set_parent_complete(core, core->new_parent); 1594 __clk_set_parent_after(core, core->new_parent, old_parent); 1595 } 1596 1597 if (core->flags & CLK_OPS_PARENT_ENABLE) 1598 clk_core_prepare_enable(parent); 1599 1600 trace_clk_set_rate(core, core->new_rate); 1601 1602 if (!skip_set_rate && core->ops->set_rate) 1603 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1604 1605 trace_clk_set_rate_complete(core, core->new_rate); 1606 1607 core->rate = clk_recalc(core, best_parent_rate); 1608 1609 if (core->flags & CLK_SET_RATE_UNGATE) { 1610 unsigned long flags; 1611 1612 flags = clk_enable_lock(); 1613 clk_core_disable(core); 1614 clk_enable_unlock(flags); 1615 clk_core_unprepare(core); 1616 } 1617 1618 if (core->flags & CLK_OPS_PARENT_ENABLE) 1619 clk_core_disable_unprepare(parent); 1620 1621 if (core->notifier_count && old_rate != core->rate) 1622 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1623 1624 if (core->flags & CLK_RECALC_NEW_RATES) 1625 (void)clk_calc_new_rates(core, core->new_rate); 1626 1627 /* 1628 * Use safe iteration, as change_rate can actually swap parents 1629 * for certain clock types. 1630 */ 1631 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1632 /* Skip children who will be reparented to another clock */ 1633 if (child->new_parent && child->new_parent != core) 1634 continue; 1635 clk_change_rate(child); 1636 } 1637 1638 /* handle the new child who might not be in core->children yet */ 1639 if (core->new_child) 1640 clk_change_rate(core->new_child); 1641 1642 clk_pm_runtime_put(core); 1643 } 1644 1645 static int clk_core_set_rate_nolock(struct clk_core *core, 1646 unsigned long req_rate) 1647 { 1648 struct clk_core *top, *fail_clk; 1649 unsigned long rate = req_rate; 1650 int ret = 0; 1651 1652 if (!core) 1653 return 0; 1654 1655 /* bail early if nothing to do */ 1656 if (rate == clk_core_get_rate_nolock(core)) 1657 return 0; 1658 1659 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1660 return -EBUSY; 1661 1662 /* calculate new rates and get the topmost changed clock */ 1663 top = clk_calc_new_rates(core, rate); 1664 if (!top) 1665 return -EINVAL; 1666 1667 ret = clk_pm_runtime_get(core); 1668 if (ret) 1669 return ret; 1670 1671 /* notify that we are about to change rates */ 1672 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1673 if (fail_clk) { 1674 pr_debug("%s: failed to set %s rate\n", __func__, 1675 fail_clk->name); 1676 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1677 ret = -EBUSY; 1678 goto err; 1679 } 1680 1681 /* change the rates */ 1682 clk_change_rate(top); 1683 1684 core->req_rate = req_rate; 1685 err: 1686 clk_pm_runtime_put(core); 1687 1688 return ret; 1689 } 1690 1691 /** 1692 * clk_set_rate - specify a new rate for clk 1693 * @clk: the clk whose rate is being changed 1694 * @rate: the new rate for clk 1695 * 1696 * In the simplest case clk_set_rate will only adjust the rate of clk. 1697 * 1698 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1699 * propagate up to clk's parent; whether or not this happens depends on the 1700 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1701 * after calling .round_rate then upstream parent propagation is ignored. If 1702 * *parent_rate comes back with a new rate for clk's parent then we propagate 1703 * up to clk's parent and set its rate. Upward propagation will continue 1704 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1705 * .round_rate stops requesting changes to clk's parent_rate. 1706 * 1707 * Rate changes are accomplished via tree traversal that also recalculates the 1708 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1709 * 1710 * Returns 0 on success, -EERROR otherwise. 1711 */ 1712 int clk_set_rate(struct clk *clk, unsigned long rate) 1713 { 1714 int ret; 1715 1716 if (!clk) 1717 return 0; 1718 1719 /* prevent racing with updates to the clock topology */ 1720 clk_prepare_lock(); 1721 1722 ret = clk_core_set_rate_nolock(clk->core, rate); 1723 1724 clk_prepare_unlock(); 1725 1726 return ret; 1727 } 1728 EXPORT_SYMBOL_GPL(clk_set_rate); 1729 1730 /** 1731 * clk_set_rate_range - set a rate range for a clock source 1732 * @clk: clock source 1733 * @min: desired minimum clock rate in Hz, inclusive 1734 * @max: desired maximum clock rate in Hz, inclusive 1735 * 1736 * Returns success (0) or negative errno. 1737 */ 1738 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1739 { 1740 int ret = 0; 1741 1742 if (!clk) 1743 return 0; 1744 1745 if (min > max) { 1746 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1747 __func__, clk->core->name, clk->dev_id, clk->con_id, 1748 min, max); 1749 return -EINVAL; 1750 } 1751 1752 clk_prepare_lock(); 1753 1754 if (min != clk->min_rate || max != clk->max_rate) { 1755 clk->min_rate = min; 1756 clk->max_rate = max; 1757 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1758 } 1759 1760 clk_prepare_unlock(); 1761 1762 return ret; 1763 } 1764 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1765 1766 /** 1767 * clk_set_min_rate - set a minimum clock rate for a clock source 1768 * @clk: clock source 1769 * @rate: desired minimum clock rate in Hz, inclusive 1770 * 1771 * Returns success (0) or negative errno. 1772 */ 1773 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1774 { 1775 if (!clk) 1776 return 0; 1777 1778 return clk_set_rate_range(clk, rate, clk->max_rate); 1779 } 1780 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1781 1782 /** 1783 * clk_set_max_rate - set a maximum clock rate for a clock source 1784 * @clk: clock source 1785 * @rate: desired maximum clock rate in Hz, inclusive 1786 * 1787 * Returns success (0) or negative errno. 1788 */ 1789 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1790 { 1791 if (!clk) 1792 return 0; 1793 1794 return clk_set_rate_range(clk, clk->min_rate, rate); 1795 } 1796 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1797 1798 /** 1799 * clk_get_parent - return the parent of a clk 1800 * @clk: the clk whose parent gets returned 1801 * 1802 * Simply returns clk->parent. Returns NULL if clk is NULL. 1803 */ 1804 struct clk *clk_get_parent(struct clk *clk) 1805 { 1806 struct clk *parent; 1807 1808 if (!clk) 1809 return NULL; 1810 1811 clk_prepare_lock(); 1812 /* TODO: Create a per-user clk and change callers to call clk_put */ 1813 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 1814 clk_prepare_unlock(); 1815 1816 return parent; 1817 } 1818 EXPORT_SYMBOL_GPL(clk_get_parent); 1819 1820 static struct clk_core *__clk_init_parent(struct clk_core *core) 1821 { 1822 u8 index = 0; 1823 1824 if (core->num_parents > 1 && core->ops->get_parent) 1825 index = core->ops->get_parent(core->hw); 1826 1827 return clk_core_get_parent_by_index(core, index); 1828 } 1829 1830 static void clk_core_reparent(struct clk_core *core, 1831 struct clk_core *new_parent) 1832 { 1833 clk_reparent(core, new_parent); 1834 __clk_recalc_accuracies(core); 1835 __clk_recalc_rates(core, POST_RATE_CHANGE); 1836 } 1837 1838 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 1839 { 1840 if (!hw) 1841 return; 1842 1843 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 1844 } 1845 1846 /** 1847 * clk_has_parent - check if a clock is a possible parent for another 1848 * @clk: clock source 1849 * @parent: parent clock source 1850 * 1851 * This function can be used in drivers that need to check that a clock can be 1852 * the parent of another without actually changing the parent. 1853 * 1854 * Returns true if @parent is a possible parent for @clk, false otherwise. 1855 */ 1856 bool clk_has_parent(struct clk *clk, struct clk *parent) 1857 { 1858 struct clk_core *core, *parent_core; 1859 unsigned int i; 1860 1861 /* NULL clocks should be nops, so return success if either is NULL. */ 1862 if (!clk || !parent) 1863 return true; 1864 1865 core = clk->core; 1866 parent_core = parent->core; 1867 1868 /* Optimize for the case where the parent is already the parent. */ 1869 if (core->parent == parent_core) 1870 return true; 1871 1872 for (i = 0; i < core->num_parents; i++) 1873 if (strcmp(core->parent_names[i], parent_core->name) == 0) 1874 return true; 1875 1876 return false; 1877 } 1878 EXPORT_SYMBOL_GPL(clk_has_parent); 1879 1880 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent) 1881 { 1882 int ret = 0; 1883 int p_index = 0; 1884 unsigned long p_rate = 0; 1885 1886 if (!core) 1887 return 0; 1888 1889 /* prevent racing with updates to the clock topology */ 1890 clk_prepare_lock(); 1891 1892 if (core->parent == parent) 1893 goto out; 1894 1895 /* verify ops for for multi-parent clks */ 1896 if ((core->num_parents > 1) && (!core->ops->set_parent)) { 1897 ret = -ENOSYS; 1898 goto out; 1899 } 1900 1901 /* check that we are allowed to re-parent if the clock is in use */ 1902 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1903 ret = -EBUSY; 1904 goto out; 1905 } 1906 1907 /* try finding the new parent index */ 1908 if (parent) { 1909 p_index = clk_fetch_parent_index(core, parent); 1910 if (p_index < 0) { 1911 pr_debug("%s: clk %s can not be parent of clk %s\n", 1912 __func__, parent->name, core->name); 1913 ret = p_index; 1914 goto out; 1915 } 1916 p_rate = parent->rate; 1917 } 1918 1919 ret = clk_pm_runtime_get(core); 1920 if (ret) 1921 goto out; 1922 1923 /* propagate PRE_RATE_CHANGE notifications */ 1924 ret = __clk_speculate_rates(core, p_rate); 1925 1926 /* abort if a driver objects */ 1927 if (ret & NOTIFY_STOP_MASK) 1928 goto runtime_put; 1929 1930 /* do the re-parent */ 1931 ret = __clk_set_parent(core, parent, p_index); 1932 1933 /* propagate rate an accuracy recalculation accordingly */ 1934 if (ret) { 1935 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 1936 } else { 1937 __clk_recalc_rates(core, POST_RATE_CHANGE); 1938 __clk_recalc_accuracies(core); 1939 } 1940 1941 runtime_put: 1942 clk_pm_runtime_put(core); 1943 out: 1944 clk_prepare_unlock(); 1945 1946 return ret; 1947 } 1948 1949 /** 1950 * clk_set_parent - switch the parent of a mux clk 1951 * @clk: the mux clk whose input we are switching 1952 * @parent: the new input to clk 1953 * 1954 * Re-parent clk to use parent as its new input source. If clk is in 1955 * prepared state, the clk will get enabled for the duration of this call. If 1956 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1957 * that, the reparenting is glitchy in hardware, etc), use the 1958 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1959 * 1960 * After successfully changing clk's parent clk_set_parent will update the 1961 * clk topology, sysfs topology and propagate rate recalculation via 1962 * __clk_recalc_rates. 1963 * 1964 * Returns 0 on success, -EERROR otherwise. 1965 */ 1966 int clk_set_parent(struct clk *clk, struct clk *parent) 1967 { 1968 if (!clk) 1969 return 0; 1970 1971 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 1972 } 1973 EXPORT_SYMBOL_GPL(clk_set_parent); 1974 1975 /** 1976 * clk_set_phase - adjust the phase shift of a clock signal 1977 * @clk: clock signal source 1978 * @degrees: number of degrees the signal is shifted 1979 * 1980 * Shifts the phase of a clock signal by the specified 1981 * degrees. Returns 0 on success, -EERROR otherwise. 1982 * 1983 * This function makes no distinction about the input or reference 1984 * signal that we adjust the clock signal phase against. For example 1985 * phase locked-loop clock signal generators we may shift phase with 1986 * respect to feedback clock signal input, but for other cases the 1987 * clock phase may be shifted with respect to some other, unspecified 1988 * signal. 1989 * 1990 * Additionally the concept of phase shift does not propagate through 1991 * the clock tree hierarchy, which sets it apart from clock rates and 1992 * clock accuracy. A parent clock phase attribute does not have an 1993 * impact on the phase attribute of a child clock. 1994 */ 1995 int clk_set_phase(struct clk *clk, int degrees) 1996 { 1997 int ret = -EINVAL; 1998 1999 if (!clk) 2000 return 0; 2001 2002 /* sanity check degrees */ 2003 degrees %= 360; 2004 if (degrees < 0) 2005 degrees += 360; 2006 2007 clk_prepare_lock(); 2008 2009 trace_clk_set_phase(clk->core, degrees); 2010 2011 if (clk->core->ops->set_phase) 2012 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 2013 2014 trace_clk_set_phase_complete(clk->core, degrees); 2015 2016 if (!ret) 2017 clk->core->phase = degrees; 2018 2019 clk_prepare_unlock(); 2020 2021 return ret; 2022 } 2023 EXPORT_SYMBOL_GPL(clk_set_phase); 2024 2025 static int clk_core_get_phase(struct clk_core *core) 2026 { 2027 int ret; 2028 2029 clk_prepare_lock(); 2030 ret = core->phase; 2031 clk_prepare_unlock(); 2032 2033 return ret; 2034 } 2035 2036 /** 2037 * clk_get_phase - return the phase shift of a clock signal 2038 * @clk: clock signal source 2039 * 2040 * Returns the phase shift of a clock node in degrees, otherwise returns 2041 * -EERROR. 2042 */ 2043 int clk_get_phase(struct clk *clk) 2044 { 2045 if (!clk) 2046 return 0; 2047 2048 return clk_core_get_phase(clk->core); 2049 } 2050 EXPORT_SYMBOL_GPL(clk_get_phase); 2051 2052 /** 2053 * clk_is_match - check if two clk's point to the same hardware clock 2054 * @p: clk compared against q 2055 * @q: clk compared against p 2056 * 2057 * Returns true if the two struct clk pointers both point to the same hardware 2058 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2059 * share the same struct clk_core object. 2060 * 2061 * Returns false otherwise. Note that two NULL clks are treated as matching. 2062 */ 2063 bool clk_is_match(const struct clk *p, const struct clk *q) 2064 { 2065 /* trivial case: identical struct clk's or both NULL */ 2066 if (p == q) 2067 return true; 2068 2069 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2070 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2071 if (p->core == q->core) 2072 return true; 2073 2074 return false; 2075 } 2076 EXPORT_SYMBOL_GPL(clk_is_match); 2077 2078 /*** debugfs support ***/ 2079 2080 #ifdef CONFIG_DEBUG_FS 2081 #include <linux/debugfs.h> 2082 2083 static struct dentry *rootdir; 2084 static int inited = 0; 2085 static DEFINE_MUTEX(clk_debug_lock); 2086 static HLIST_HEAD(clk_debug_list); 2087 2088 static struct hlist_head *all_lists[] = { 2089 &clk_root_list, 2090 &clk_orphan_list, 2091 NULL, 2092 }; 2093 2094 static struct hlist_head *orphan_list[] = { 2095 &clk_orphan_list, 2096 NULL, 2097 }; 2098 2099 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2100 int level) 2101 { 2102 if (!c) 2103 return; 2104 2105 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 2106 level * 3 + 1, "", 2107 30 - level * 3, c->name, 2108 c->enable_count, c->prepare_count, clk_core_get_rate(c), 2109 clk_core_get_accuracy(c), clk_core_get_phase(c)); 2110 } 2111 2112 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2113 int level) 2114 { 2115 struct clk_core *child; 2116 2117 if (!c) 2118 return; 2119 2120 clk_summary_show_one(s, c, level); 2121 2122 hlist_for_each_entry(child, &c->children, child_node) 2123 clk_summary_show_subtree(s, child, level + 1); 2124 } 2125 2126 static int clk_summary_show(struct seq_file *s, void *data) 2127 { 2128 struct clk_core *c; 2129 struct hlist_head **lists = (struct hlist_head **)s->private; 2130 2131 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 2132 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2133 2134 clk_prepare_lock(); 2135 2136 for (; *lists; lists++) 2137 hlist_for_each_entry(c, *lists, child_node) 2138 clk_summary_show_subtree(s, c, 0); 2139 2140 clk_prepare_unlock(); 2141 2142 return 0; 2143 } 2144 2145 2146 static int clk_summary_open(struct inode *inode, struct file *file) 2147 { 2148 return single_open(file, clk_summary_show, inode->i_private); 2149 } 2150 2151 static const struct file_operations clk_summary_fops = { 2152 .open = clk_summary_open, 2153 .read = seq_read, 2154 .llseek = seq_lseek, 2155 .release = single_release, 2156 }; 2157 2158 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2159 { 2160 if (!c) 2161 return; 2162 2163 /* This should be JSON format, i.e. elements separated with a comma */ 2164 seq_printf(s, "\"%s\": { ", c->name); 2165 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2166 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2167 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2168 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2169 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2170 } 2171 2172 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2173 { 2174 struct clk_core *child; 2175 2176 if (!c) 2177 return; 2178 2179 clk_dump_one(s, c, level); 2180 2181 hlist_for_each_entry(child, &c->children, child_node) { 2182 seq_putc(s, ','); 2183 clk_dump_subtree(s, child, level + 1); 2184 } 2185 2186 seq_putc(s, '}'); 2187 } 2188 2189 static int clk_dump(struct seq_file *s, void *data) 2190 { 2191 struct clk_core *c; 2192 bool first_node = true; 2193 struct hlist_head **lists = (struct hlist_head **)s->private; 2194 2195 seq_putc(s, '{'); 2196 clk_prepare_lock(); 2197 2198 for (; *lists; lists++) { 2199 hlist_for_each_entry(c, *lists, child_node) { 2200 if (!first_node) 2201 seq_putc(s, ','); 2202 first_node = false; 2203 clk_dump_subtree(s, c, 0); 2204 } 2205 } 2206 2207 clk_prepare_unlock(); 2208 2209 seq_puts(s, "}\n"); 2210 return 0; 2211 } 2212 2213 2214 static int clk_dump_open(struct inode *inode, struct file *file) 2215 { 2216 return single_open(file, clk_dump, inode->i_private); 2217 } 2218 2219 static const struct file_operations clk_dump_fops = { 2220 .open = clk_dump_open, 2221 .read = seq_read, 2222 .llseek = seq_lseek, 2223 .release = single_release, 2224 }; 2225 2226 static int possible_parents_dump(struct seq_file *s, void *data) 2227 { 2228 struct clk_core *core = s->private; 2229 int i; 2230 2231 for (i = 0; i < core->num_parents - 1; i++) 2232 seq_printf(s, "%s ", core->parent_names[i]); 2233 2234 seq_printf(s, "%s\n", core->parent_names[i]); 2235 2236 return 0; 2237 } 2238 2239 static int possible_parents_open(struct inode *inode, struct file *file) 2240 { 2241 return single_open(file, possible_parents_dump, inode->i_private); 2242 } 2243 2244 static const struct file_operations possible_parents_fops = { 2245 .open = possible_parents_open, 2246 .read = seq_read, 2247 .llseek = seq_lseek, 2248 .release = single_release, 2249 }; 2250 2251 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2252 { 2253 struct dentry *d; 2254 int ret = -ENOMEM; 2255 2256 if (!core || !pdentry) { 2257 ret = -EINVAL; 2258 goto out; 2259 } 2260 2261 d = debugfs_create_dir(core->name, pdentry); 2262 if (!d) 2263 goto out; 2264 2265 core->dentry = d; 2266 2267 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry, 2268 (u32 *)&core->rate); 2269 if (!d) 2270 goto err_out; 2271 2272 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry, 2273 (u32 *)&core->accuracy); 2274 if (!d) 2275 goto err_out; 2276 2277 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry, 2278 (u32 *)&core->phase); 2279 if (!d) 2280 goto err_out; 2281 2282 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry, 2283 (u32 *)&core->flags); 2284 if (!d) 2285 goto err_out; 2286 2287 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry, 2288 (u32 *)&core->prepare_count); 2289 if (!d) 2290 goto err_out; 2291 2292 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry, 2293 (u32 *)&core->enable_count); 2294 if (!d) 2295 goto err_out; 2296 2297 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry, 2298 (u32 *)&core->notifier_count); 2299 if (!d) 2300 goto err_out; 2301 2302 if (core->num_parents > 1) { 2303 d = debugfs_create_file("clk_possible_parents", S_IRUGO, 2304 core->dentry, core, &possible_parents_fops); 2305 if (!d) 2306 goto err_out; 2307 } 2308 2309 if (core->ops->debug_init) { 2310 ret = core->ops->debug_init(core->hw, core->dentry); 2311 if (ret) 2312 goto err_out; 2313 } 2314 2315 ret = 0; 2316 goto out; 2317 2318 err_out: 2319 debugfs_remove_recursive(core->dentry); 2320 core->dentry = NULL; 2321 out: 2322 return ret; 2323 } 2324 2325 /** 2326 * clk_debug_register - add a clk node to the debugfs clk directory 2327 * @core: the clk being added to the debugfs clk directory 2328 * 2329 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2330 * initialized. Otherwise it bails out early since the debugfs clk directory 2331 * will be created lazily by clk_debug_init as part of a late_initcall. 2332 */ 2333 static int clk_debug_register(struct clk_core *core) 2334 { 2335 int ret = 0; 2336 2337 mutex_lock(&clk_debug_lock); 2338 hlist_add_head(&core->debug_node, &clk_debug_list); 2339 2340 if (!inited) 2341 goto unlock; 2342 2343 ret = clk_debug_create_one(core, rootdir); 2344 unlock: 2345 mutex_unlock(&clk_debug_lock); 2346 2347 return ret; 2348 } 2349 2350 /** 2351 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2352 * @core: the clk being removed from the debugfs clk directory 2353 * 2354 * Dynamically removes a clk and all its child nodes from the 2355 * debugfs clk directory if clk->dentry points to debugfs created by 2356 * clk_debug_register in __clk_core_init. 2357 */ 2358 static void clk_debug_unregister(struct clk_core *core) 2359 { 2360 mutex_lock(&clk_debug_lock); 2361 hlist_del_init(&core->debug_node); 2362 debugfs_remove_recursive(core->dentry); 2363 core->dentry = NULL; 2364 mutex_unlock(&clk_debug_lock); 2365 } 2366 2367 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2368 void *data, const struct file_operations *fops) 2369 { 2370 struct dentry *d = NULL; 2371 2372 if (hw->core->dentry) 2373 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2374 fops); 2375 2376 return d; 2377 } 2378 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2379 2380 /** 2381 * clk_debug_init - lazily populate the debugfs clk directory 2382 * 2383 * clks are often initialized very early during boot before memory can be 2384 * dynamically allocated and well before debugfs is setup. This function 2385 * populates the debugfs clk directory once at boot-time when we know that 2386 * debugfs is setup. It should only be called once at boot-time, all other clks 2387 * added dynamically will be done so with clk_debug_register. 2388 */ 2389 static int __init clk_debug_init(void) 2390 { 2391 struct clk_core *core; 2392 struct dentry *d; 2393 2394 rootdir = debugfs_create_dir("clk", NULL); 2395 2396 if (!rootdir) 2397 return -ENOMEM; 2398 2399 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 2400 &clk_summary_fops); 2401 if (!d) 2402 return -ENOMEM; 2403 2404 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 2405 &clk_dump_fops); 2406 if (!d) 2407 return -ENOMEM; 2408 2409 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 2410 &orphan_list, &clk_summary_fops); 2411 if (!d) 2412 return -ENOMEM; 2413 2414 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 2415 &orphan_list, &clk_dump_fops); 2416 if (!d) 2417 return -ENOMEM; 2418 2419 mutex_lock(&clk_debug_lock); 2420 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2421 clk_debug_create_one(core, rootdir); 2422 2423 inited = 1; 2424 mutex_unlock(&clk_debug_lock); 2425 2426 return 0; 2427 } 2428 late_initcall(clk_debug_init); 2429 #else 2430 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2431 static inline void clk_debug_reparent(struct clk_core *core, 2432 struct clk_core *new_parent) 2433 { 2434 } 2435 static inline void clk_debug_unregister(struct clk_core *core) 2436 { 2437 } 2438 #endif 2439 2440 /** 2441 * __clk_core_init - initialize the data structures in a struct clk_core 2442 * @core: clk_core being initialized 2443 * 2444 * Initializes the lists in struct clk_core, queries the hardware for the 2445 * parent and rate and sets them both. 2446 */ 2447 static int __clk_core_init(struct clk_core *core) 2448 { 2449 int i, ret; 2450 struct clk_core *orphan; 2451 struct hlist_node *tmp2; 2452 unsigned long rate; 2453 2454 if (!core) 2455 return -EINVAL; 2456 2457 clk_prepare_lock(); 2458 2459 ret = clk_pm_runtime_get(core); 2460 if (ret) 2461 goto unlock; 2462 2463 /* check to see if a clock with this name is already registered */ 2464 if (clk_core_lookup(core->name)) { 2465 pr_debug("%s: clk %s already initialized\n", 2466 __func__, core->name); 2467 ret = -EEXIST; 2468 goto out; 2469 } 2470 2471 /* check that clk_ops are sane. See Documentation/clk.txt */ 2472 if (core->ops->set_rate && 2473 !((core->ops->round_rate || core->ops->determine_rate) && 2474 core->ops->recalc_rate)) { 2475 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2476 __func__, core->name); 2477 ret = -EINVAL; 2478 goto out; 2479 } 2480 2481 if (core->ops->set_parent && !core->ops->get_parent) { 2482 pr_err("%s: %s must implement .get_parent & .set_parent\n", 2483 __func__, core->name); 2484 ret = -EINVAL; 2485 goto out; 2486 } 2487 2488 if (core->num_parents > 1 && !core->ops->get_parent) { 2489 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 2490 __func__, core->name); 2491 ret = -EINVAL; 2492 goto out; 2493 } 2494 2495 if (core->ops->set_rate_and_parent && 2496 !(core->ops->set_parent && core->ops->set_rate)) { 2497 pr_err("%s: %s must implement .set_parent & .set_rate\n", 2498 __func__, core->name); 2499 ret = -EINVAL; 2500 goto out; 2501 } 2502 2503 /* throw a WARN if any entries in parent_names are NULL */ 2504 for (i = 0; i < core->num_parents; i++) 2505 WARN(!core->parent_names[i], 2506 "%s: invalid NULL in %s's .parent_names\n", 2507 __func__, core->name); 2508 2509 core->parent = __clk_init_parent(core); 2510 2511 /* 2512 * Populate core->parent if parent has already been clk_core_init'd. If 2513 * parent has not yet been clk_core_init'd then place clk in the orphan 2514 * list. If clk doesn't have any parents then place it in the root 2515 * clk list. 2516 * 2517 * Every time a new clk is clk_init'd then we walk the list of orphan 2518 * clocks and re-parent any that are children of the clock currently 2519 * being clk_init'd. 2520 */ 2521 if (core->parent) { 2522 hlist_add_head(&core->child_node, 2523 &core->parent->children); 2524 core->orphan = core->parent->orphan; 2525 } else if (!core->num_parents) { 2526 hlist_add_head(&core->child_node, &clk_root_list); 2527 core->orphan = false; 2528 } else { 2529 hlist_add_head(&core->child_node, &clk_orphan_list); 2530 core->orphan = true; 2531 } 2532 2533 /* 2534 * Set clk's accuracy. The preferred method is to use 2535 * .recalc_accuracy. For simple clocks and lazy developers the default 2536 * fallback is to use the parent's accuracy. If a clock doesn't have a 2537 * parent (or is orphaned) then accuracy is set to zero (perfect 2538 * clock). 2539 */ 2540 if (core->ops->recalc_accuracy) 2541 core->accuracy = core->ops->recalc_accuracy(core->hw, 2542 __clk_get_accuracy(core->parent)); 2543 else if (core->parent) 2544 core->accuracy = core->parent->accuracy; 2545 else 2546 core->accuracy = 0; 2547 2548 /* 2549 * Set clk's phase. 2550 * Since a phase is by definition relative to its parent, just 2551 * query the current clock phase, or just assume it's in phase. 2552 */ 2553 if (core->ops->get_phase) 2554 core->phase = core->ops->get_phase(core->hw); 2555 else 2556 core->phase = 0; 2557 2558 /* 2559 * Set clk's rate. The preferred method is to use .recalc_rate. For 2560 * simple clocks and lazy developers the default fallback is to use the 2561 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2562 * then rate is set to zero. 2563 */ 2564 if (core->ops->recalc_rate) 2565 rate = core->ops->recalc_rate(core->hw, 2566 clk_core_get_rate_nolock(core->parent)); 2567 else if (core->parent) 2568 rate = core->parent->rate; 2569 else 2570 rate = 0; 2571 core->rate = core->req_rate = rate; 2572 2573 /* 2574 * walk the list of orphan clocks and reparent any that newly finds a 2575 * parent. 2576 */ 2577 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2578 struct clk_core *parent = __clk_init_parent(orphan); 2579 2580 /* 2581 * we could call __clk_set_parent, but that would result in a 2582 * redundant call to the .set_rate op, if it exists 2583 */ 2584 if (parent) { 2585 __clk_set_parent_before(orphan, parent); 2586 __clk_set_parent_after(orphan, parent, NULL); 2587 __clk_recalc_accuracies(orphan); 2588 __clk_recalc_rates(orphan, 0); 2589 } 2590 } 2591 2592 /* 2593 * optional platform-specific magic 2594 * 2595 * The .init callback is not used by any of the basic clock types, but 2596 * exists for weird hardware that must perform initialization magic. 2597 * Please consider other ways of solving initialization problems before 2598 * using this callback, as its use is discouraged. 2599 */ 2600 if (core->ops->init) 2601 core->ops->init(core->hw); 2602 2603 if (core->flags & CLK_IS_CRITICAL) { 2604 unsigned long flags; 2605 2606 clk_core_prepare(core); 2607 2608 flags = clk_enable_lock(); 2609 clk_core_enable(core); 2610 clk_enable_unlock(flags); 2611 } 2612 2613 kref_init(&core->ref); 2614 out: 2615 clk_pm_runtime_put(core); 2616 unlock: 2617 clk_prepare_unlock(); 2618 2619 if (!ret) 2620 clk_debug_register(core); 2621 2622 return ret; 2623 } 2624 2625 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2626 const char *con_id) 2627 { 2628 struct clk *clk; 2629 2630 /* This is to allow this function to be chained to others */ 2631 if (IS_ERR_OR_NULL(hw)) 2632 return ERR_CAST(hw); 2633 2634 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2635 if (!clk) 2636 return ERR_PTR(-ENOMEM); 2637 2638 clk->core = hw->core; 2639 clk->dev_id = dev_id; 2640 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 2641 clk->max_rate = ULONG_MAX; 2642 2643 clk_prepare_lock(); 2644 hlist_add_head(&clk->clks_node, &hw->core->clks); 2645 clk_prepare_unlock(); 2646 2647 return clk; 2648 } 2649 2650 void __clk_free_clk(struct clk *clk) 2651 { 2652 clk_prepare_lock(); 2653 hlist_del(&clk->clks_node); 2654 clk_prepare_unlock(); 2655 2656 kfree_const(clk->con_id); 2657 kfree(clk); 2658 } 2659 2660 /** 2661 * clk_register - allocate a new clock, register it and return an opaque cookie 2662 * @dev: device that is registering this clock 2663 * @hw: link to hardware-specific clock data 2664 * 2665 * clk_register is the primary interface for populating the clock tree with new 2666 * clock nodes. It returns a pointer to the newly allocated struct clk which 2667 * cannot be dereferenced by driver code but may be used in conjunction with the 2668 * rest of the clock API. In the event of an error clk_register will return an 2669 * error code; drivers must test for an error code after calling clk_register. 2670 */ 2671 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2672 { 2673 int i, ret; 2674 struct clk_core *core; 2675 2676 core = kzalloc(sizeof(*core), GFP_KERNEL); 2677 if (!core) { 2678 ret = -ENOMEM; 2679 goto fail_out; 2680 } 2681 2682 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2683 if (!core->name) { 2684 ret = -ENOMEM; 2685 goto fail_name; 2686 } 2687 core->ops = hw->init->ops; 2688 if (dev && pm_runtime_enabled(dev)) 2689 core->dev = dev; 2690 if (dev && dev->driver) 2691 core->owner = dev->driver->owner; 2692 core->hw = hw; 2693 core->flags = hw->init->flags; 2694 core->num_parents = hw->init->num_parents; 2695 core->min_rate = 0; 2696 core->max_rate = ULONG_MAX; 2697 hw->core = core; 2698 2699 /* allocate local copy in case parent_names is __initdata */ 2700 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 2701 GFP_KERNEL); 2702 2703 if (!core->parent_names) { 2704 ret = -ENOMEM; 2705 goto fail_parent_names; 2706 } 2707 2708 2709 /* copy each string name in case parent_names is __initdata */ 2710 for (i = 0; i < core->num_parents; i++) { 2711 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2712 GFP_KERNEL); 2713 if (!core->parent_names[i]) { 2714 ret = -ENOMEM; 2715 goto fail_parent_names_copy; 2716 } 2717 } 2718 2719 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 2720 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 2721 GFP_KERNEL); 2722 if (!core->parents) { 2723 ret = -ENOMEM; 2724 goto fail_parents; 2725 }; 2726 2727 INIT_HLIST_HEAD(&core->clks); 2728 2729 hw->clk = __clk_create_clk(hw, NULL, NULL); 2730 if (IS_ERR(hw->clk)) { 2731 ret = PTR_ERR(hw->clk); 2732 goto fail_parents; 2733 } 2734 2735 ret = __clk_core_init(core); 2736 if (!ret) 2737 return hw->clk; 2738 2739 __clk_free_clk(hw->clk); 2740 hw->clk = NULL; 2741 2742 fail_parents: 2743 kfree(core->parents); 2744 fail_parent_names_copy: 2745 while (--i >= 0) 2746 kfree_const(core->parent_names[i]); 2747 kfree(core->parent_names); 2748 fail_parent_names: 2749 kfree_const(core->name); 2750 fail_name: 2751 kfree(core); 2752 fail_out: 2753 return ERR_PTR(ret); 2754 } 2755 EXPORT_SYMBOL_GPL(clk_register); 2756 2757 /** 2758 * clk_hw_register - register a clk_hw and return an error code 2759 * @dev: device that is registering this clock 2760 * @hw: link to hardware-specific clock data 2761 * 2762 * clk_hw_register is the primary interface for populating the clock tree with 2763 * new clock nodes. It returns an integer equal to zero indicating success or 2764 * less than zero indicating failure. Drivers must test for an error code after 2765 * calling clk_hw_register(). 2766 */ 2767 int clk_hw_register(struct device *dev, struct clk_hw *hw) 2768 { 2769 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 2770 } 2771 EXPORT_SYMBOL_GPL(clk_hw_register); 2772 2773 /* Free memory allocated for a clock. */ 2774 static void __clk_release(struct kref *ref) 2775 { 2776 struct clk_core *core = container_of(ref, struct clk_core, ref); 2777 int i = core->num_parents; 2778 2779 lockdep_assert_held(&prepare_lock); 2780 2781 kfree(core->parents); 2782 while (--i >= 0) 2783 kfree_const(core->parent_names[i]); 2784 2785 kfree(core->parent_names); 2786 kfree_const(core->name); 2787 kfree(core); 2788 } 2789 2790 /* 2791 * Empty clk_ops for unregistered clocks. These are used temporarily 2792 * after clk_unregister() was called on a clock and until last clock 2793 * consumer calls clk_put() and the struct clk object is freed. 2794 */ 2795 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2796 { 2797 return -ENXIO; 2798 } 2799 2800 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2801 { 2802 WARN_ON_ONCE(1); 2803 } 2804 2805 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2806 unsigned long parent_rate) 2807 { 2808 return -ENXIO; 2809 } 2810 2811 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2812 { 2813 return -ENXIO; 2814 } 2815 2816 static const struct clk_ops clk_nodrv_ops = { 2817 .enable = clk_nodrv_prepare_enable, 2818 .disable = clk_nodrv_disable_unprepare, 2819 .prepare = clk_nodrv_prepare_enable, 2820 .unprepare = clk_nodrv_disable_unprepare, 2821 .set_rate = clk_nodrv_set_rate, 2822 .set_parent = clk_nodrv_set_parent, 2823 }; 2824 2825 /** 2826 * clk_unregister - unregister a currently registered clock 2827 * @clk: clock to unregister 2828 */ 2829 void clk_unregister(struct clk *clk) 2830 { 2831 unsigned long flags; 2832 2833 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2834 return; 2835 2836 clk_debug_unregister(clk->core); 2837 2838 clk_prepare_lock(); 2839 2840 if (clk->core->ops == &clk_nodrv_ops) { 2841 pr_err("%s: unregistered clock: %s\n", __func__, 2842 clk->core->name); 2843 goto unlock; 2844 } 2845 /* 2846 * Assign empty clock ops for consumers that might still hold 2847 * a reference to this clock. 2848 */ 2849 flags = clk_enable_lock(); 2850 clk->core->ops = &clk_nodrv_ops; 2851 clk_enable_unlock(flags); 2852 2853 if (!hlist_empty(&clk->core->children)) { 2854 struct clk_core *child; 2855 struct hlist_node *t; 2856 2857 /* Reparent all children to the orphan list. */ 2858 hlist_for_each_entry_safe(child, t, &clk->core->children, 2859 child_node) 2860 clk_core_set_parent(child, NULL); 2861 } 2862 2863 hlist_del_init(&clk->core->child_node); 2864 2865 if (clk->core->prepare_count) 2866 pr_warn("%s: unregistering prepared clock: %s\n", 2867 __func__, clk->core->name); 2868 kref_put(&clk->core->ref, __clk_release); 2869 unlock: 2870 clk_prepare_unlock(); 2871 } 2872 EXPORT_SYMBOL_GPL(clk_unregister); 2873 2874 /** 2875 * clk_hw_unregister - unregister a currently registered clk_hw 2876 * @hw: hardware-specific clock data to unregister 2877 */ 2878 void clk_hw_unregister(struct clk_hw *hw) 2879 { 2880 clk_unregister(hw->clk); 2881 } 2882 EXPORT_SYMBOL_GPL(clk_hw_unregister); 2883 2884 static void devm_clk_release(struct device *dev, void *res) 2885 { 2886 clk_unregister(*(struct clk **)res); 2887 } 2888 2889 static void devm_clk_hw_release(struct device *dev, void *res) 2890 { 2891 clk_hw_unregister(*(struct clk_hw **)res); 2892 } 2893 2894 /** 2895 * devm_clk_register - resource managed clk_register() 2896 * @dev: device that is registering this clock 2897 * @hw: link to hardware-specific clock data 2898 * 2899 * Managed clk_register(). Clocks returned from this function are 2900 * automatically clk_unregister()ed on driver detach. See clk_register() for 2901 * more information. 2902 */ 2903 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2904 { 2905 struct clk *clk; 2906 struct clk **clkp; 2907 2908 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2909 if (!clkp) 2910 return ERR_PTR(-ENOMEM); 2911 2912 clk = clk_register(dev, hw); 2913 if (!IS_ERR(clk)) { 2914 *clkp = clk; 2915 devres_add(dev, clkp); 2916 } else { 2917 devres_free(clkp); 2918 } 2919 2920 return clk; 2921 } 2922 EXPORT_SYMBOL_GPL(devm_clk_register); 2923 2924 /** 2925 * devm_clk_hw_register - resource managed clk_hw_register() 2926 * @dev: device that is registering this clock 2927 * @hw: link to hardware-specific clock data 2928 * 2929 * Managed clk_hw_register(). Clocks registered by this function are 2930 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 2931 * for more information. 2932 */ 2933 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 2934 { 2935 struct clk_hw **hwp; 2936 int ret; 2937 2938 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 2939 if (!hwp) 2940 return -ENOMEM; 2941 2942 ret = clk_hw_register(dev, hw); 2943 if (!ret) { 2944 *hwp = hw; 2945 devres_add(dev, hwp); 2946 } else { 2947 devres_free(hwp); 2948 } 2949 2950 return ret; 2951 } 2952 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 2953 2954 static int devm_clk_match(struct device *dev, void *res, void *data) 2955 { 2956 struct clk *c = res; 2957 if (WARN_ON(!c)) 2958 return 0; 2959 return c == data; 2960 } 2961 2962 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 2963 { 2964 struct clk_hw *hw = res; 2965 2966 if (WARN_ON(!hw)) 2967 return 0; 2968 return hw == data; 2969 } 2970 2971 /** 2972 * devm_clk_unregister - resource managed clk_unregister() 2973 * @clk: clock to unregister 2974 * 2975 * Deallocate a clock allocated with devm_clk_register(). Normally 2976 * this function will not need to be called and the resource management 2977 * code will ensure that the resource is freed. 2978 */ 2979 void devm_clk_unregister(struct device *dev, struct clk *clk) 2980 { 2981 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2982 } 2983 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2984 2985 /** 2986 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 2987 * @dev: device that is unregistering the hardware-specific clock data 2988 * @hw: link to hardware-specific clock data 2989 * 2990 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 2991 * this function will not need to be called and the resource management 2992 * code will ensure that the resource is freed. 2993 */ 2994 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 2995 { 2996 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 2997 hw)); 2998 } 2999 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3000 3001 /* 3002 * clkdev helpers 3003 */ 3004 int __clk_get(struct clk *clk) 3005 { 3006 struct clk_core *core = !clk ? NULL : clk->core; 3007 3008 if (core) { 3009 if (!try_module_get(core->owner)) 3010 return 0; 3011 3012 kref_get(&core->ref); 3013 } 3014 return 1; 3015 } 3016 3017 void __clk_put(struct clk *clk) 3018 { 3019 struct module *owner; 3020 3021 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3022 return; 3023 3024 clk_prepare_lock(); 3025 3026 hlist_del(&clk->clks_node); 3027 if (clk->min_rate > clk->core->req_rate || 3028 clk->max_rate < clk->core->req_rate) 3029 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3030 3031 owner = clk->core->owner; 3032 kref_put(&clk->core->ref, __clk_release); 3033 3034 clk_prepare_unlock(); 3035 3036 module_put(owner); 3037 3038 kfree(clk); 3039 } 3040 3041 /*** clk rate change notifiers ***/ 3042 3043 /** 3044 * clk_notifier_register - add a clk rate change notifier 3045 * @clk: struct clk * to watch 3046 * @nb: struct notifier_block * with callback info 3047 * 3048 * Request notification when clk's rate changes. This uses an SRCU 3049 * notifier because we want it to block and notifier unregistrations are 3050 * uncommon. The callbacks associated with the notifier must not 3051 * re-enter into the clk framework by calling any top-level clk APIs; 3052 * this will cause a nested prepare_lock mutex. 3053 * 3054 * In all notification cases (pre, post and abort rate change) the original 3055 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3056 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3057 * 3058 * clk_notifier_register() must be called from non-atomic context. 3059 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3060 * allocation failure; otherwise, passes along the return value of 3061 * srcu_notifier_chain_register(). 3062 */ 3063 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3064 { 3065 struct clk_notifier *cn; 3066 int ret = -ENOMEM; 3067 3068 if (!clk || !nb) 3069 return -EINVAL; 3070 3071 clk_prepare_lock(); 3072 3073 /* search the list of notifiers for this clk */ 3074 list_for_each_entry(cn, &clk_notifier_list, node) 3075 if (cn->clk == clk) 3076 break; 3077 3078 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3079 if (cn->clk != clk) { 3080 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3081 if (!cn) 3082 goto out; 3083 3084 cn->clk = clk; 3085 srcu_init_notifier_head(&cn->notifier_head); 3086 3087 list_add(&cn->node, &clk_notifier_list); 3088 } 3089 3090 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3091 3092 clk->core->notifier_count++; 3093 3094 out: 3095 clk_prepare_unlock(); 3096 3097 return ret; 3098 } 3099 EXPORT_SYMBOL_GPL(clk_notifier_register); 3100 3101 /** 3102 * clk_notifier_unregister - remove a clk rate change notifier 3103 * @clk: struct clk * 3104 * @nb: struct notifier_block * with callback info 3105 * 3106 * Request no further notification for changes to 'clk' and frees memory 3107 * allocated in clk_notifier_register. 3108 * 3109 * Returns -EINVAL if called with null arguments; otherwise, passes 3110 * along the return value of srcu_notifier_chain_unregister(). 3111 */ 3112 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3113 { 3114 struct clk_notifier *cn = NULL; 3115 int ret = -EINVAL; 3116 3117 if (!clk || !nb) 3118 return -EINVAL; 3119 3120 clk_prepare_lock(); 3121 3122 list_for_each_entry(cn, &clk_notifier_list, node) 3123 if (cn->clk == clk) 3124 break; 3125 3126 if (cn->clk == clk) { 3127 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3128 3129 clk->core->notifier_count--; 3130 3131 /* XXX the notifier code should handle this better */ 3132 if (!cn->notifier_head.head) { 3133 srcu_cleanup_notifier_head(&cn->notifier_head); 3134 list_del(&cn->node); 3135 kfree(cn); 3136 } 3137 3138 } else { 3139 ret = -ENOENT; 3140 } 3141 3142 clk_prepare_unlock(); 3143 3144 return ret; 3145 } 3146 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3147 3148 #ifdef CONFIG_OF 3149 /** 3150 * struct of_clk_provider - Clock provider registration structure 3151 * @link: Entry in global list of clock providers 3152 * @node: Pointer to device tree node of clock provider 3153 * @get: Get clock callback. Returns NULL or a struct clk for the 3154 * given clock specifier 3155 * @data: context pointer to be passed into @get callback 3156 */ 3157 struct of_clk_provider { 3158 struct list_head link; 3159 3160 struct device_node *node; 3161 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3162 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3163 void *data; 3164 }; 3165 3166 static const struct of_device_id __clk_of_table_sentinel 3167 __used __section(__clk_of_table_end); 3168 3169 static LIST_HEAD(of_clk_providers); 3170 static DEFINE_MUTEX(of_clk_mutex); 3171 3172 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3173 void *data) 3174 { 3175 return data; 3176 } 3177 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3178 3179 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3180 { 3181 return data; 3182 } 3183 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3184 3185 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3186 { 3187 struct clk_onecell_data *clk_data = data; 3188 unsigned int idx = clkspec->args[0]; 3189 3190 if (idx >= clk_data->clk_num) { 3191 pr_err("%s: invalid clock index %u\n", __func__, idx); 3192 return ERR_PTR(-EINVAL); 3193 } 3194 3195 return clk_data->clks[idx]; 3196 } 3197 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3198 3199 struct clk_hw * 3200 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3201 { 3202 struct clk_hw_onecell_data *hw_data = data; 3203 unsigned int idx = clkspec->args[0]; 3204 3205 if (idx >= hw_data->num) { 3206 pr_err("%s: invalid index %u\n", __func__, idx); 3207 return ERR_PTR(-EINVAL); 3208 } 3209 3210 return hw_data->hws[idx]; 3211 } 3212 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3213 3214 /** 3215 * of_clk_add_provider() - Register a clock provider for a node 3216 * @np: Device node pointer associated with clock provider 3217 * @clk_src_get: callback for decoding clock 3218 * @data: context pointer for @clk_src_get callback. 3219 */ 3220 int of_clk_add_provider(struct device_node *np, 3221 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3222 void *data), 3223 void *data) 3224 { 3225 struct of_clk_provider *cp; 3226 int ret; 3227 3228 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3229 if (!cp) 3230 return -ENOMEM; 3231 3232 cp->node = of_node_get(np); 3233 cp->data = data; 3234 cp->get = clk_src_get; 3235 3236 mutex_lock(&of_clk_mutex); 3237 list_add(&cp->link, &of_clk_providers); 3238 mutex_unlock(&of_clk_mutex); 3239 pr_debug("Added clock from %pOF\n", np); 3240 3241 ret = of_clk_set_defaults(np, true); 3242 if (ret < 0) 3243 of_clk_del_provider(np); 3244 3245 return ret; 3246 } 3247 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3248 3249 /** 3250 * of_clk_add_hw_provider() - Register a clock provider for a node 3251 * @np: Device node pointer associated with clock provider 3252 * @get: callback for decoding clk_hw 3253 * @data: context pointer for @get callback. 3254 */ 3255 int of_clk_add_hw_provider(struct device_node *np, 3256 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3257 void *data), 3258 void *data) 3259 { 3260 struct of_clk_provider *cp; 3261 int ret; 3262 3263 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3264 if (!cp) 3265 return -ENOMEM; 3266 3267 cp->node = of_node_get(np); 3268 cp->data = data; 3269 cp->get_hw = get; 3270 3271 mutex_lock(&of_clk_mutex); 3272 list_add(&cp->link, &of_clk_providers); 3273 mutex_unlock(&of_clk_mutex); 3274 pr_debug("Added clk_hw provider from %pOF\n", np); 3275 3276 ret = of_clk_set_defaults(np, true); 3277 if (ret < 0) 3278 of_clk_del_provider(np); 3279 3280 return ret; 3281 } 3282 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3283 3284 static void devm_of_clk_release_provider(struct device *dev, void *res) 3285 { 3286 of_clk_del_provider(*(struct device_node **)res); 3287 } 3288 3289 int devm_of_clk_add_hw_provider(struct device *dev, 3290 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3291 void *data), 3292 void *data) 3293 { 3294 struct device_node **ptr, *np; 3295 int ret; 3296 3297 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 3298 GFP_KERNEL); 3299 if (!ptr) 3300 return -ENOMEM; 3301 3302 np = dev->of_node; 3303 ret = of_clk_add_hw_provider(np, get, data); 3304 if (!ret) { 3305 *ptr = np; 3306 devres_add(dev, ptr); 3307 } else { 3308 devres_free(ptr); 3309 } 3310 3311 return ret; 3312 } 3313 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 3314 3315 /** 3316 * of_clk_del_provider() - Remove a previously registered clock provider 3317 * @np: Device node pointer associated with clock provider 3318 */ 3319 void of_clk_del_provider(struct device_node *np) 3320 { 3321 struct of_clk_provider *cp; 3322 3323 mutex_lock(&of_clk_mutex); 3324 list_for_each_entry(cp, &of_clk_providers, link) { 3325 if (cp->node == np) { 3326 list_del(&cp->link); 3327 of_node_put(cp->node); 3328 kfree(cp); 3329 break; 3330 } 3331 } 3332 mutex_unlock(&of_clk_mutex); 3333 } 3334 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3335 3336 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 3337 { 3338 struct device_node **np = res; 3339 3340 if (WARN_ON(!np || !*np)) 3341 return 0; 3342 3343 return *np == data; 3344 } 3345 3346 void devm_of_clk_del_provider(struct device *dev) 3347 { 3348 int ret; 3349 3350 ret = devres_release(dev, devm_of_clk_release_provider, 3351 devm_clk_provider_match, dev->of_node); 3352 3353 WARN_ON(ret); 3354 } 3355 EXPORT_SYMBOL(devm_of_clk_del_provider); 3356 3357 static struct clk_hw * 3358 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 3359 struct of_phandle_args *clkspec) 3360 { 3361 struct clk *clk; 3362 3363 if (provider->get_hw) 3364 return provider->get_hw(clkspec, provider->data); 3365 3366 clk = provider->get(clkspec, provider->data); 3367 if (IS_ERR(clk)) 3368 return ERR_CAST(clk); 3369 return __clk_get_hw(clk); 3370 } 3371 3372 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3373 const char *dev_id, const char *con_id) 3374 { 3375 struct of_clk_provider *provider; 3376 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3377 struct clk_hw *hw; 3378 3379 if (!clkspec) 3380 return ERR_PTR(-EINVAL); 3381 3382 /* Check if we have such a provider in our array */ 3383 mutex_lock(&of_clk_mutex); 3384 list_for_each_entry(provider, &of_clk_providers, link) { 3385 if (provider->node == clkspec->np) { 3386 hw = __of_clk_get_hw_from_provider(provider, clkspec); 3387 clk = __clk_create_clk(hw, dev_id, con_id); 3388 } 3389 3390 if (!IS_ERR(clk)) { 3391 if (!__clk_get(clk)) { 3392 __clk_free_clk(clk); 3393 clk = ERR_PTR(-ENOENT); 3394 } 3395 3396 break; 3397 } 3398 } 3399 mutex_unlock(&of_clk_mutex); 3400 3401 return clk; 3402 } 3403 3404 /** 3405 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3406 * @clkspec: pointer to a clock specifier data structure 3407 * 3408 * This function looks up a struct clk from the registered list of clock 3409 * providers, an input is a clock specifier data structure as returned 3410 * from the of_parse_phandle_with_args() function call. 3411 */ 3412 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3413 { 3414 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3415 } 3416 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 3417 3418 /** 3419 * of_clk_get_parent_count() - Count the number of clocks a device node has 3420 * @np: device node to count 3421 * 3422 * Returns: The number of clocks that are possible parents of this node 3423 */ 3424 unsigned int of_clk_get_parent_count(struct device_node *np) 3425 { 3426 int count; 3427 3428 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3429 if (count < 0) 3430 return 0; 3431 3432 return count; 3433 } 3434 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3435 3436 const char *of_clk_get_parent_name(struct device_node *np, int index) 3437 { 3438 struct of_phandle_args clkspec; 3439 struct property *prop; 3440 const char *clk_name; 3441 const __be32 *vp; 3442 u32 pv; 3443 int rc; 3444 int count; 3445 struct clk *clk; 3446 3447 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3448 &clkspec); 3449 if (rc) 3450 return NULL; 3451 3452 index = clkspec.args_count ? clkspec.args[0] : 0; 3453 count = 0; 3454 3455 /* if there is an indices property, use it to transfer the index 3456 * specified into an array offset for the clock-output-names property. 3457 */ 3458 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3459 if (index == pv) { 3460 index = count; 3461 break; 3462 } 3463 count++; 3464 } 3465 /* We went off the end of 'clock-indices' without finding it */ 3466 if (prop && !vp) 3467 return NULL; 3468 3469 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3470 index, 3471 &clk_name) < 0) { 3472 /* 3473 * Best effort to get the name if the clock has been 3474 * registered with the framework. If the clock isn't 3475 * registered, we return the node name as the name of 3476 * the clock as long as #clock-cells = 0. 3477 */ 3478 clk = of_clk_get_from_provider(&clkspec); 3479 if (IS_ERR(clk)) { 3480 if (clkspec.args_count == 0) 3481 clk_name = clkspec.np->name; 3482 else 3483 clk_name = NULL; 3484 } else { 3485 clk_name = __clk_get_name(clk); 3486 clk_put(clk); 3487 } 3488 } 3489 3490 3491 of_node_put(clkspec.np); 3492 return clk_name; 3493 } 3494 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3495 3496 /** 3497 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3498 * number of parents 3499 * @np: Device node pointer associated with clock provider 3500 * @parents: pointer to char array that hold the parents' names 3501 * @size: size of the @parents array 3502 * 3503 * Return: number of parents for the clock node. 3504 */ 3505 int of_clk_parent_fill(struct device_node *np, const char **parents, 3506 unsigned int size) 3507 { 3508 unsigned int i = 0; 3509 3510 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3511 i++; 3512 3513 return i; 3514 } 3515 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3516 3517 struct clock_provider { 3518 of_clk_init_cb_t clk_init_cb; 3519 struct device_node *np; 3520 struct list_head node; 3521 }; 3522 3523 /* 3524 * This function looks for a parent clock. If there is one, then it 3525 * checks that the provider for this parent clock was initialized, in 3526 * this case the parent clock will be ready. 3527 */ 3528 static int parent_ready(struct device_node *np) 3529 { 3530 int i = 0; 3531 3532 while (true) { 3533 struct clk *clk = of_clk_get(np, i); 3534 3535 /* this parent is ready we can check the next one */ 3536 if (!IS_ERR(clk)) { 3537 clk_put(clk); 3538 i++; 3539 continue; 3540 } 3541 3542 /* at least one parent is not ready, we exit now */ 3543 if (PTR_ERR(clk) == -EPROBE_DEFER) 3544 return 0; 3545 3546 /* 3547 * Here we make assumption that the device tree is 3548 * written correctly. So an error means that there is 3549 * no more parent. As we didn't exit yet, then the 3550 * previous parent are ready. If there is no clock 3551 * parent, no need to wait for them, then we can 3552 * consider their absence as being ready 3553 */ 3554 return 1; 3555 } 3556 } 3557 3558 /** 3559 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 3560 * @np: Device node pointer associated with clock provider 3561 * @index: clock index 3562 * @flags: pointer to clk_core->flags 3563 * 3564 * Detects if the clock-critical property exists and, if so, sets the 3565 * corresponding CLK_IS_CRITICAL flag. 3566 * 3567 * Do not use this function. It exists only for legacy Device Tree 3568 * bindings, such as the one-clock-per-node style that are outdated. 3569 * Those bindings typically put all clock data into .dts and the Linux 3570 * driver has no clock data, thus making it impossible to set this flag 3571 * correctly from the driver. Only those drivers may call 3572 * of_clk_detect_critical from their setup functions. 3573 * 3574 * Return: error code or zero on success 3575 */ 3576 int of_clk_detect_critical(struct device_node *np, 3577 int index, unsigned long *flags) 3578 { 3579 struct property *prop; 3580 const __be32 *cur; 3581 uint32_t idx; 3582 3583 if (!np || !flags) 3584 return -EINVAL; 3585 3586 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 3587 if (index == idx) 3588 *flags |= CLK_IS_CRITICAL; 3589 3590 return 0; 3591 } 3592 3593 /** 3594 * of_clk_init() - Scan and init clock providers from the DT 3595 * @matches: array of compatible values and init functions for providers. 3596 * 3597 * This function scans the device tree for matching clock providers 3598 * and calls their initialization functions. It also does it by trying 3599 * to follow the dependencies. 3600 */ 3601 void __init of_clk_init(const struct of_device_id *matches) 3602 { 3603 const struct of_device_id *match; 3604 struct device_node *np; 3605 struct clock_provider *clk_provider, *next; 3606 bool is_init_done; 3607 bool force = false; 3608 LIST_HEAD(clk_provider_list); 3609 3610 if (!matches) 3611 matches = &__clk_of_table; 3612 3613 /* First prepare the list of the clocks providers */ 3614 for_each_matching_node_and_match(np, matches, &match) { 3615 struct clock_provider *parent; 3616 3617 if (!of_device_is_available(np)) 3618 continue; 3619 3620 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 3621 if (!parent) { 3622 list_for_each_entry_safe(clk_provider, next, 3623 &clk_provider_list, node) { 3624 list_del(&clk_provider->node); 3625 of_node_put(clk_provider->np); 3626 kfree(clk_provider); 3627 } 3628 of_node_put(np); 3629 return; 3630 } 3631 3632 parent->clk_init_cb = match->data; 3633 parent->np = of_node_get(np); 3634 list_add_tail(&parent->node, &clk_provider_list); 3635 } 3636 3637 while (!list_empty(&clk_provider_list)) { 3638 is_init_done = false; 3639 list_for_each_entry_safe(clk_provider, next, 3640 &clk_provider_list, node) { 3641 if (force || parent_ready(clk_provider->np)) { 3642 3643 /* Don't populate platform devices */ 3644 of_node_set_flag(clk_provider->np, 3645 OF_POPULATED); 3646 3647 clk_provider->clk_init_cb(clk_provider->np); 3648 of_clk_set_defaults(clk_provider->np, true); 3649 3650 list_del(&clk_provider->node); 3651 of_node_put(clk_provider->np); 3652 kfree(clk_provider); 3653 is_init_done = true; 3654 } 3655 } 3656 3657 /* 3658 * We didn't manage to initialize any of the 3659 * remaining providers during the last loop, so now we 3660 * initialize all the remaining ones unconditionally 3661 * in case the clock parent was not mandatory 3662 */ 3663 if (!is_init_done) 3664 force = true; 3665 } 3666 } 3667 #endif 3668