xref: /openbmc/linux/drivers/clk/clk.c (revision 6724ed7f)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 
28 #include "clk.h"
29 
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32 
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35 
36 static int prepare_refcnt;
37 static int enable_refcnt;
38 
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42 
43 /***    private data structures    ***/
44 
45 struct clk_core {
46 	const char		*name;
47 	const struct clk_ops	*ops;
48 	struct clk_hw		*hw;
49 	struct module		*owner;
50 	struct device		*dev;
51 	struct clk_core		*parent;
52 	const char		**parent_names;
53 	struct clk_core		**parents;
54 	u8			num_parents;
55 	u8			new_parent_index;
56 	unsigned long		rate;
57 	unsigned long		req_rate;
58 	unsigned long		new_rate;
59 	struct clk_core		*new_parent;
60 	struct clk_core		*new_child;
61 	unsigned long		flags;
62 	bool			orphan;
63 	unsigned int		enable_count;
64 	unsigned int		prepare_count;
65 	unsigned long		min_rate;
66 	unsigned long		max_rate;
67 	unsigned long		accuracy;
68 	int			phase;
69 	struct hlist_head	children;
70 	struct hlist_node	child_node;
71 	struct hlist_head	clks;
72 	unsigned int		notifier_count;
73 #ifdef CONFIG_DEBUG_FS
74 	struct dentry		*dentry;
75 	struct hlist_node	debug_node;
76 #endif
77 	struct kref		ref;
78 };
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82 
83 struct clk {
84 	struct clk_core	*core;
85 	const char *dev_id;
86 	const char *con_id;
87 	unsigned long min_rate;
88 	unsigned long max_rate;
89 	struct hlist_node clks_node;
90 };
91 
92 /***           runtime pm          ***/
93 static int clk_pm_runtime_get(struct clk_core *core)
94 {
95 	int ret = 0;
96 
97 	if (!core->dev)
98 		return 0;
99 
100 	ret = pm_runtime_get_sync(core->dev);
101 	return ret < 0 ? ret : 0;
102 }
103 
104 static void clk_pm_runtime_put(struct clk_core *core)
105 {
106 	if (!core->dev)
107 		return;
108 
109 	pm_runtime_put_sync(core->dev);
110 }
111 
112 /***           locking             ***/
113 static void clk_prepare_lock(void)
114 {
115 	if (!mutex_trylock(&prepare_lock)) {
116 		if (prepare_owner == current) {
117 			prepare_refcnt++;
118 			return;
119 		}
120 		mutex_lock(&prepare_lock);
121 	}
122 	WARN_ON_ONCE(prepare_owner != NULL);
123 	WARN_ON_ONCE(prepare_refcnt != 0);
124 	prepare_owner = current;
125 	prepare_refcnt = 1;
126 }
127 
128 static void clk_prepare_unlock(void)
129 {
130 	WARN_ON_ONCE(prepare_owner != current);
131 	WARN_ON_ONCE(prepare_refcnt == 0);
132 
133 	if (--prepare_refcnt)
134 		return;
135 	prepare_owner = NULL;
136 	mutex_unlock(&prepare_lock);
137 }
138 
139 static unsigned long clk_enable_lock(void)
140 	__acquires(enable_lock)
141 {
142 	unsigned long flags;
143 
144 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
145 		if (enable_owner == current) {
146 			enable_refcnt++;
147 			__acquire(enable_lock);
148 			return flags;
149 		}
150 		spin_lock_irqsave(&enable_lock, flags);
151 	}
152 	WARN_ON_ONCE(enable_owner != NULL);
153 	WARN_ON_ONCE(enable_refcnt != 0);
154 	enable_owner = current;
155 	enable_refcnt = 1;
156 	return flags;
157 }
158 
159 static void clk_enable_unlock(unsigned long flags)
160 	__releases(enable_lock)
161 {
162 	WARN_ON_ONCE(enable_owner != current);
163 	WARN_ON_ONCE(enable_refcnt == 0);
164 
165 	if (--enable_refcnt) {
166 		__release(enable_lock);
167 		return;
168 	}
169 	enable_owner = NULL;
170 	spin_unlock_irqrestore(&enable_lock, flags);
171 }
172 
173 static bool clk_core_is_prepared(struct clk_core *core)
174 {
175 	bool ret = false;
176 
177 	/*
178 	 * .is_prepared is optional for clocks that can prepare
179 	 * fall back to software usage counter if it is missing
180 	 */
181 	if (!core->ops->is_prepared)
182 		return core->prepare_count;
183 
184 	if (!clk_pm_runtime_get(core)) {
185 		ret = core->ops->is_prepared(core->hw);
186 		clk_pm_runtime_put(core);
187 	}
188 
189 	return ret;
190 }
191 
192 static bool clk_core_is_enabled(struct clk_core *core)
193 {
194 	bool ret = false;
195 
196 	/*
197 	 * .is_enabled is only mandatory for clocks that gate
198 	 * fall back to software usage counter if .is_enabled is missing
199 	 */
200 	if (!core->ops->is_enabled)
201 		return core->enable_count;
202 
203 	/*
204 	 * Check if clock controller's device is runtime active before
205 	 * calling .is_enabled callback. If not, assume that clock is
206 	 * disabled, because we might be called from atomic context, from
207 	 * which pm_runtime_get() is not allowed.
208 	 * This function is called mainly from clk_disable_unused_subtree,
209 	 * which ensures proper runtime pm activation of controller before
210 	 * taking enable spinlock, but the below check is needed if one tries
211 	 * to call it from other places.
212 	 */
213 	if (core->dev) {
214 		pm_runtime_get_noresume(core->dev);
215 		if (!pm_runtime_active(core->dev)) {
216 			ret = false;
217 			goto done;
218 		}
219 	}
220 
221 	ret = core->ops->is_enabled(core->hw);
222 done:
223 	if (core->dev)
224 		pm_runtime_put(core->dev);
225 
226 	return ret;
227 }
228 
229 /***    helper functions   ***/
230 
231 const char *__clk_get_name(const struct clk *clk)
232 {
233 	return !clk ? NULL : clk->core->name;
234 }
235 EXPORT_SYMBOL_GPL(__clk_get_name);
236 
237 const char *clk_hw_get_name(const struct clk_hw *hw)
238 {
239 	return hw->core->name;
240 }
241 EXPORT_SYMBOL_GPL(clk_hw_get_name);
242 
243 struct clk_hw *__clk_get_hw(struct clk *clk)
244 {
245 	return !clk ? NULL : clk->core->hw;
246 }
247 EXPORT_SYMBOL_GPL(__clk_get_hw);
248 
249 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
250 {
251 	return hw->core->num_parents;
252 }
253 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
254 
255 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
256 {
257 	return hw->core->parent ? hw->core->parent->hw : NULL;
258 }
259 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
260 
261 static struct clk_core *__clk_lookup_subtree(const char *name,
262 					     struct clk_core *core)
263 {
264 	struct clk_core *child;
265 	struct clk_core *ret;
266 
267 	if (!strcmp(core->name, name))
268 		return core;
269 
270 	hlist_for_each_entry(child, &core->children, child_node) {
271 		ret = __clk_lookup_subtree(name, child);
272 		if (ret)
273 			return ret;
274 	}
275 
276 	return NULL;
277 }
278 
279 static struct clk_core *clk_core_lookup(const char *name)
280 {
281 	struct clk_core *root_clk;
282 	struct clk_core *ret;
283 
284 	if (!name)
285 		return NULL;
286 
287 	/* search the 'proper' clk tree first */
288 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
289 		ret = __clk_lookup_subtree(name, root_clk);
290 		if (ret)
291 			return ret;
292 	}
293 
294 	/* if not found, then search the orphan tree */
295 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
296 		ret = __clk_lookup_subtree(name, root_clk);
297 		if (ret)
298 			return ret;
299 	}
300 
301 	return NULL;
302 }
303 
304 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
305 							 u8 index)
306 {
307 	if (!core || index >= core->num_parents)
308 		return NULL;
309 
310 	if (!core->parents[index])
311 		core->parents[index] =
312 				clk_core_lookup(core->parent_names[index]);
313 
314 	return core->parents[index];
315 }
316 
317 struct clk_hw *
318 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
319 {
320 	struct clk_core *parent;
321 
322 	parent = clk_core_get_parent_by_index(hw->core, index);
323 
324 	return !parent ? NULL : parent->hw;
325 }
326 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
327 
328 unsigned int __clk_get_enable_count(struct clk *clk)
329 {
330 	return !clk ? 0 : clk->core->enable_count;
331 }
332 
333 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
334 {
335 	unsigned long ret;
336 
337 	if (!core) {
338 		ret = 0;
339 		goto out;
340 	}
341 
342 	ret = core->rate;
343 
344 	if (!core->num_parents)
345 		goto out;
346 
347 	if (!core->parent)
348 		ret = 0;
349 
350 out:
351 	return ret;
352 }
353 
354 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
355 {
356 	return clk_core_get_rate_nolock(hw->core);
357 }
358 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
359 
360 static unsigned long __clk_get_accuracy(struct clk_core *core)
361 {
362 	if (!core)
363 		return 0;
364 
365 	return core->accuracy;
366 }
367 
368 unsigned long __clk_get_flags(struct clk *clk)
369 {
370 	return !clk ? 0 : clk->core->flags;
371 }
372 EXPORT_SYMBOL_GPL(__clk_get_flags);
373 
374 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
375 {
376 	return hw->core->flags;
377 }
378 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
379 
380 bool clk_hw_is_prepared(const struct clk_hw *hw)
381 {
382 	return clk_core_is_prepared(hw->core);
383 }
384 
385 bool clk_hw_is_enabled(const struct clk_hw *hw)
386 {
387 	return clk_core_is_enabled(hw->core);
388 }
389 
390 bool __clk_is_enabled(struct clk *clk)
391 {
392 	if (!clk)
393 		return false;
394 
395 	return clk_core_is_enabled(clk->core);
396 }
397 EXPORT_SYMBOL_GPL(__clk_is_enabled);
398 
399 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
400 			   unsigned long best, unsigned long flags)
401 {
402 	if (flags & CLK_MUX_ROUND_CLOSEST)
403 		return abs(now - rate) < abs(best - rate);
404 
405 	return now <= rate && now > best;
406 }
407 
408 static int
409 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
410 			     unsigned long flags)
411 {
412 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
413 	int i, num_parents, ret;
414 	unsigned long best = 0;
415 	struct clk_rate_request parent_req = *req;
416 
417 	/* if NO_REPARENT flag set, pass through to current parent */
418 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
419 		parent = core->parent;
420 		if (core->flags & CLK_SET_RATE_PARENT) {
421 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
422 						   &parent_req);
423 			if (ret)
424 				return ret;
425 
426 			best = parent_req.rate;
427 		} else if (parent) {
428 			best = clk_core_get_rate_nolock(parent);
429 		} else {
430 			best = clk_core_get_rate_nolock(core);
431 		}
432 
433 		goto out;
434 	}
435 
436 	/* find the parent that can provide the fastest rate <= rate */
437 	num_parents = core->num_parents;
438 	for (i = 0; i < num_parents; i++) {
439 		parent = clk_core_get_parent_by_index(core, i);
440 		if (!parent)
441 			continue;
442 
443 		if (core->flags & CLK_SET_RATE_PARENT) {
444 			parent_req = *req;
445 			ret = __clk_determine_rate(parent->hw, &parent_req);
446 			if (ret)
447 				continue;
448 		} else {
449 			parent_req.rate = clk_core_get_rate_nolock(parent);
450 		}
451 
452 		if (mux_is_better_rate(req->rate, parent_req.rate,
453 				       best, flags)) {
454 			best_parent = parent;
455 			best = parent_req.rate;
456 		}
457 	}
458 
459 	if (!best_parent)
460 		return -EINVAL;
461 
462 out:
463 	if (best_parent)
464 		req->best_parent_hw = best_parent->hw;
465 	req->best_parent_rate = best;
466 	req->rate = best;
467 
468 	return 0;
469 }
470 
471 struct clk *__clk_lookup(const char *name)
472 {
473 	struct clk_core *core = clk_core_lookup(name);
474 
475 	return !core ? NULL : core->hw->clk;
476 }
477 
478 static void clk_core_get_boundaries(struct clk_core *core,
479 				    unsigned long *min_rate,
480 				    unsigned long *max_rate)
481 {
482 	struct clk *clk_user;
483 
484 	*min_rate = core->min_rate;
485 	*max_rate = core->max_rate;
486 
487 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
488 		*min_rate = max(*min_rate, clk_user->min_rate);
489 
490 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
491 		*max_rate = min(*max_rate, clk_user->max_rate);
492 }
493 
494 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
495 			   unsigned long max_rate)
496 {
497 	hw->core->min_rate = min_rate;
498 	hw->core->max_rate = max_rate;
499 }
500 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
501 
502 /*
503  * Helper for finding best parent to provide a given frequency. This can be used
504  * directly as a determine_rate callback (e.g. for a mux), or from a more
505  * complex clock that may combine a mux with other operations.
506  */
507 int __clk_mux_determine_rate(struct clk_hw *hw,
508 			     struct clk_rate_request *req)
509 {
510 	return clk_mux_determine_rate_flags(hw, req, 0);
511 }
512 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
513 
514 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
515 				     struct clk_rate_request *req)
516 {
517 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
518 }
519 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
520 
521 /***        clk api        ***/
522 
523 static void clk_core_unprepare(struct clk_core *core)
524 {
525 	lockdep_assert_held(&prepare_lock);
526 
527 	if (!core)
528 		return;
529 
530 	if (WARN_ON(core->prepare_count == 0))
531 		return;
532 
533 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
534 		return;
535 
536 	if (--core->prepare_count > 0)
537 		return;
538 
539 	WARN_ON(core->enable_count > 0);
540 
541 	trace_clk_unprepare(core);
542 
543 	if (core->ops->unprepare)
544 		core->ops->unprepare(core->hw);
545 
546 	clk_pm_runtime_put(core);
547 
548 	trace_clk_unprepare_complete(core);
549 	clk_core_unprepare(core->parent);
550 }
551 
552 static void clk_core_unprepare_lock(struct clk_core *core)
553 {
554 	clk_prepare_lock();
555 	clk_core_unprepare(core);
556 	clk_prepare_unlock();
557 }
558 
559 /**
560  * clk_unprepare - undo preparation of a clock source
561  * @clk: the clk being unprepared
562  *
563  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
564  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
565  * if the operation may sleep.  One example is a clk which is accessed over
566  * I2c.  In the complex case a clk gate operation may require a fast and a slow
567  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
568  * exclusive.  In fact clk_disable must be called before clk_unprepare.
569  */
570 void clk_unprepare(struct clk *clk)
571 {
572 	if (IS_ERR_OR_NULL(clk))
573 		return;
574 
575 	clk_core_unprepare_lock(clk->core);
576 }
577 EXPORT_SYMBOL_GPL(clk_unprepare);
578 
579 static int clk_core_prepare(struct clk_core *core)
580 {
581 	int ret = 0;
582 
583 	lockdep_assert_held(&prepare_lock);
584 
585 	if (!core)
586 		return 0;
587 
588 	if (core->prepare_count == 0) {
589 		ret = clk_pm_runtime_get(core);
590 		if (ret)
591 			return ret;
592 
593 		ret = clk_core_prepare(core->parent);
594 		if (ret)
595 			goto runtime_put;
596 
597 		trace_clk_prepare(core);
598 
599 		if (core->ops->prepare)
600 			ret = core->ops->prepare(core->hw);
601 
602 		trace_clk_prepare_complete(core);
603 
604 		if (ret)
605 			goto unprepare;
606 	}
607 
608 	core->prepare_count++;
609 
610 	return 0;
611 unprepare:
612 	clk_core_unprepare(core->parent);
613 runtime_put:
614 	clk_pm_runtime_put(core);
615 	return ret;
616 }
617 
618 static int clk_core_prepare_lock(struct clk_core *core)
619 {
620 	int ret;
621 
622 	clk_prepare_lock();
623 	ret = clk_core_prepare(core);
624 	clk_prepare_unlock();
625 
626 	return ret;
627 }
628 
629 /**
630  * clk_prepare - prepare a clock source
631  * @clk: the clk being prepared
632  *
633  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
634  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
635  * operation may sleep.  One example is a clk which is accessed over I2c.  In
636  * the complex case a clk ungate operation may require a fast and a slow part.
637  * It is this reason that clk_prepare and clk_enable are not mutually
638  * exclusive.  In fact clk_prepare must be called before clk_enable.
639  * Returns 0 on success, -EERROR otherwise.
640  */
641 int clk_prepare(struct clk *clk)
642 {
643 	if (!clk)
644 		return 0;
645 
646 	return clk_core_prepare_lock(clk->core);
647 }
648 EXPORT_SYMBOL_GPL(clk_prepare);
649 
650 static void clk_core_disable(struct clk_core *core)
651 {
652 	lockdep_assert_held(&enable_lock);
653 
654 	if (!core)
655 		return;
656 
657 	if (WARN_ON(core->enable_count == 0))
658 		return;
659 
660 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
661 		return;
662 
663 	if (--core->enable_count > 0)
664 		return;
665 
666 	trace_clk_disable_rcuidle(core);
667 
668 	if (core->ops->disable)
669 		core->ops->disable(core->hw);
670 
671 	trace_clk_disable_complete_rcuidle(core);
672 
673 	clk_core_disable(core->parent);
674 }
675 
676 static void clk_core_disable_lock(struct clk_core *core)
677 {
678 	unsigned long flags;
679 
680 	flags = clk_enable_lock();
681 	clk_core_disable(core);
682 	clk_enable_unlock(flags);
683 }
684 
685 /**
686  * clk_disable - gate a clock
687  * @clk: the clk being gated
688  *
689  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
690  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
691  * clk if the operation is fast and will never sleep.  One example is a
692  * SoC-internal clk which is controlled via simple register writes.  In the
693  * complex case a clk gate operation may require a fast and a slow part.  It is
694  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
695  * In fact clk_disable must be called before clk_unprepare.
696  */
697 void clk_disable(struct clk *clk)
698 {
699 	if (IS_ERR_OR_NULL(clk))
700 		return;
701 
702 	clk_core_disable_lock(clk->core);
703 }
704 EXPORT_SYMBOL_GPL(clk_disable);
705 
706 static int clk_core_enable(struct clk_core *core)
707 {
708 	int ret = 0;
709 
710 	lockdep_assert_held(&enable_lock);
711 
712 	if (!core)
713 		return 0;
714 
715 	if (WARN_ON(core->prepare_count == 0))
716 		return -ESHUTDOWN;
717 
718 	if (core->enable_count == 0) {
719 		ret = clk_core_enable(core->parent);
720 
721 		if (ret)
722 			return ret;
723 
724 		trace_clk_enable_rcuidle(core);
725 
726 		if (core->ops->enable)
727 			ret = core->ops->enable(core->hw);
728 
729 		trace_clk_enable_complete_rcuidle(core);
730 
731 		if (ret) {
732 			clk_core_disable(core->parent);
733 			return ret;
734 		}
735 	}
736 
737 	core->enable_count++;
738 	return 0;
739 }
740 
741 static int clk_core_enable_lock(struct clk_core *core)
742 {
743 	unsigned long flags;
744 	int ret;
745 
746 	flags = clk_enable_lock();
747 	ret = clk_core_enable(core);
748 	clk_enable_unlock(flags);
749 
750 	return ret;
751 }
752 
753 /**
754  * clk_enable - ungate a clock
755  * @clk: the clk being ungated
756  *
757  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
758  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
759  * if the operation will never sleep.  One example is a SoC-internal clk which
760  * is controlled via simple register writes.  In the complex case a clk ungate
761  * operation may require a fast and a slow part.  It is this reason that
762  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
763  * must be called before clk_enable.  Returns 0 on success, -EERROR
764  * otherwise.
765  */
766 int clk_enable(struct clk *clk)
767 {
768 	if (!clk)
769 		return 0;
770 
771 	return clk_core_enable_lock(clk->core);
772 }
773 EXPORT_SYMBOL_GPL(clk_enable);
774 
775 static int clk_core_prepare_enable(struct clk_core *core)
776 {
777 	int ret;
778 
779 	ret = clk_core_prepare_lock(core);
780 	if (ret)
781 		return ret;
782 
783 	ret = clk_core_enable_lock(core);
784 	if (ret)
785 		clk_core_unprepare_lock(core);
786 
787 	return ret;
788 }
789 
790 static void clk_core_disable_unprepare(struct clk_core *core)
791 {
792 	clk_core_disable_lock(core);
793 	clk_core_unprepare_lock(core);
794 }
795 
796 static void clk_unprepare_unused_subtree(struct clk_core *core)
797 {
798 	struct clk_core *child;
799 
800 	lockdep_assert_held(&prepare_lock);
801 
802 	hlist_for_each_entry(child, &core->children, child_node)
803 		clk_unprepare_unused_subtree(child);
804 
805 	if (core->prepare_count)
806 		return;
807 
808 	if (core->flags & CLK_IGNORE_UNUSED)
809 		return;
810 
811 	if (clk_pm_runtime_get(core))
812 		return;
813 
814 	if (clk_core_is_prepared(core)) {
815 		trace_clk_unprepare(core);
816 		if (core->ops->unprepare_unused)
817 			core->ops->unprepare_unused(core->hw);
818 		else if (core->ops->unprepare)
819 			core->ops->unprepare(core->hw);
820 		trace_clk_unprepare_complete(core);
821 	}
822 
823 	clk_pm_runtime_put(core);
824 }
825 
826 static void clk_disable_unused_subtree(struct clk_core *core)
827 {
828 	struct clk_core *child;
829 	unsigned long flags;
830 
831 	lockdep_assert_held(&prepare_lock);
832 
833 	hlist_for_each_entry(child, &core->children, child_node)
834 		clk_disable_unused_subtree(child);
835 
836 	if (core->flags & CLK_OPS_PARENT_ENABLE)
837 		clk_core_prepare_enable(core->parent);
838 
839 	if (clk_pm_runtime_get(core))
840 		goto unprepare_out;
841 
842 	flags = clk_enable_lock();
843 
844 	if (core->enable_count)
845 		goto unlock_out;
846 
847 	if (core->flags & CLK_IGNORE_UNUSED)
848 		goto unlock_out;
849 
850 	/*
851 	 * some gate clocks have special needs during the disable-unused
852 	 * sequence.  call .disable_unused if available, otherwise fall
853 	 * back to .disable
854 	 */
855 	if (clk_core_is_enabled(core)) {
856 		trace_clk_disable(core);
857 		if (core->ops->disable_unused)
858 			core->ops->disable_unused(core->hw);
859 		else if (core->ops->disable)
860 			core->ops->disable(core->hw);
861 		trace_clk_disable_complete(core);
862 	}
863 
864 unlock_out:
865 	clk_enable_unlock(flags);
866 	clk_pm_runtime_put(core);
867 unprepare_out:
868 	if (core->flags & CLK_OPS_PARENT_ENABLE)
869 		clk_core_disable_unprepare(core->parent);
870 }
871 
872 static bool clk_ignore_unused;
873 static int __init clk_ignore_unused_setup(char *__unused)
874 {
875 	clk_ignore_unused = true;
876 	return 1;
877 }
878 __setup("clk_ignore_unused", clk_ignore_unused_setup);
879 
880 static int clk_disable_unused(void)
881 {
882 	struct clk_core *core;
883 
884 	if (clk_ignore_unused) {
885 		pr_warn("clk: Not disabling unused clocks\n");
886 		return 0;
887 	}
888 
889 	clk_prepare_lock();
890 
891 	hlist_for_each_entry(core, &clk_root_list, child_node)
892 		clk_disable_unused_subtree(core);
893 
894 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
895 		clk_disable_unused_subtree(core);
896 
897 	hlist_for_each_entry(core, &clk_root_list, child_node)
898 		clk_unprepare_unused_subtree(core);
899 
900 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
901 		clk_unprepare_unused_subtree(core);
902 
903 	clk_prepare_unlock();
904 
905 	return 0;
906 }
907 late_initcall_sync(clk_disable_unused);
908 
909 static int clk_core_round_rate_nolock(struct clk_core *core,
910 				      struct clk_rate_request *req)
911 {
912 	struct clk_core *parent;
913 	long rate;
914 
915 	lockdep_assert_held(&prepare_lock);
916 
917 	if (!core)
918 		return 0;
919 
920 	parent = core->parent;
921 	if (parent) {
922 		req->best_parent_hw = parent->hw;
923 		req->best_parent_rate = parent->rate;
924 	} else {
925 		req->best_parent_hw = NULL;
926 		req->best_parent_rate = 0;
927 	}
928 
929 	if (core->ops->determine_rate) {
930 		return core->ops->determine_rate(core->hw, req);
931 	} else if (core->ops->round_rate) {
932 		rate = core->ops->round_rate(core->hw, req->rate,
933 					     &req->best_parent_rate);
934 		if (rate < 0)
935 			return rate;
936 
937 		req->rate = rate;
938 	} else if (core->flags & CLK_SET_RATE_PARENT) {
939 		return clk_core_round_rate_nolock(parent, req);
940 	} else {
941 		req->rate = core->rate;
942 	}
943 
944 	return 0;
945 }
946 
947 /**
948  * __clk_determine_rate - get the closest rate actually supported by a clock
949  * @hw: determine the rate of this clock
950  * @req: target rate request
951  *
952  * Useful for clk_ops such as .set_rate and .determine_rate.
953  */
954 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
955 {
956 	if (!hw) {
957 		req->rate = 0;
958 		return 0;
959 	}
960 
961 	return clk_core_round_rate_nolock(hw->core, req);
962 }
963 EXPORT_SYMBOL_GPL(__clk_determine_rate);
964 
965 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
966 {
967 	int ret;
968 	struct clk_rate_request req;
969 
970 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
971 	req.rate = rate;
972 
973 	ret = clk_core_round_rate_nolock(hw->core, &req);
974 	if (ret)
975 		return 0;
976 
977 	return req.rate;
978 }
979 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
980 
981 /**
982  * clk_round_rate - round the given rate for a clk
983  * @clk: the clk for which we are rounding a rate
984  * @rate: the rate which is to be rounded
985  *
986  * Takes in a rate as input and rounds it to a rate that the clk can actually
987  * use which is then returned.  If clk doesn't support round_rate operation
988  * then the parent rate is returned.
989  */
990 long clk_round_rate(struct clk *clk, unsigned long rate)
991 {
992 	struct clk_rate_request req;
993 	int ret;
994 
995 	if (!clk)
996 		return 0;
997 
998 	clk_prepare_lock();
999 
1000 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1001 	req.rate = rate;
1002 
1003 	ret = clk_core_round_rate_nolock(clk->core, &req);
1004 	clk_prepare_unlock();
1005 
1006 	if (ret)
1007 		return ret;
1008 
1009 	return req.rate;
1010 }
1011 EXPORT_SYMBOL_GPL(clk_round_rate);
1012 
1013 /**
1014  * __clk_notify - call clk notifier chain
1015  * @core: clk that is changing rate
1016  * @msg: clk notifier type (see include/linux/clk.h)
1017  * @old_rate: old clk rate
1018  * @new_rate: new clk rate
1019  *
1020  * Triggers a notifier call chain on the clk rate-change notification
1021  * for 'clk'.  Passes a pointer to the struct clk and the previous
1022  * and current rates to the notifier callback.  Intended to be called by
1023  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1024  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1025  * a driver returns that.
1026  */
1027 static int __clk_notify(struct clk_core *core, unsigned long msg,
1028 		unsigned long old_rate, unsigned long new_rate)
1029 {
1030 	struct clk_notifier *cn;
1031 	struct clk_notifier_data cnd;
1032 	int ret = NOTIFY_DONE;
1033 
1034 	cnd.old_rate = old_rate;
1035 	cnd.new_rate = new_rate;
1036 
1037 	list_for_each_entry(cn, &clk_notifier_list, node) {
1038 		if (cn->clk->core == core) {
1039 			cnd.clk = cn->clk;
1040 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1041 					&cnd);
1042 			if (ret & NOTIFY_STOP_MASK)
1043 				return ret;
1044 		}
1045 	}
1046 
1047 	return ret;
1048 }
1049 
1050 /**
1051  * __clk_recalc_accuracies
1052  * @core: first clk in the subtree
1053  *
1054  * Walks the subtree of clks starting with clk and recalculates accuracies as
1055  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1056  * callback then it is assumed that the clock will take on the accuracy of its
1057  * parent.
1058  */
1059 static void __clk_recalc_accuracies(struct clk_core *core)
1060 {
1061 	unsigned long parent_accuracy = 0;
1062 	struct clk_core *child;
1063 
1064 	lockdep_assert_held(&prepare_lock);
1065 
1066 	if (core->parent)
1067 		parent_accuracy = core->parent->accuracy;
1068 
1069 	if (core->ops->recalc_accuracy)
1070 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1071 							  parent_accuracy);
1072 	else
1073 		core->accuracy = parent_accuracy;
1074 
1075 	hlist_for_each_entry(child, &core->children, child_node)
1076 		__clk_recalc_accuracies(child);
1077 }
1078 
1079 static long clk_core_get_accuracy(struct clk_core *core)
1080 {
1081 	unsigned long accuracy;
1082 
1083 	clk_prepare_lock();
1084 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1085 		__clk_recalc_accuracies(core);
1086 
1087 	accuracy = __clk_get_accuracy(core);
1088 	clk_prepare_unlock();
1089 
1090 	return accuracy;
1091 }
1092 
1093 /**
1094  * clk_get_accuracy - return the accuracy of clk
1095  * @clk: the clk whose accuracy is being returned
1096  *
1097  * Simply returns the cached accuracy of the clk, unless
1098  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1099  * issued.
1100  * If clk is NULL then returns 0.
1101  */
1102 long clk_get_accuracy(struct clk *clk)
1103 {
1104 	if (!clk)
1105 		return 0;
1106 
1107 	return clk_core_get_accuracy(clk->core);
1108 }
1109 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1110 
1111 static unsigned long clk_recalc(struct clk_core *core,
1112 				unsigned long parent_rate)
1113 {
1114 	unsigned long rate = parent_rate;
1115 
1116 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1117 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1118 		clk_pm_runtime_put(core);
1119 	}
1120 	return rate;
1121 }
1122 
1123 /**
1124  * __clk_recalc_rates
1125  * @core: first clk in the subtree
1126  * @msg: notification type (see include/linux/clk.h)
1127  *
1128  * Walks the subtree of clks starting with clk and recalculates rates as it
1129  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1130  * it is assumed that the clock will take on the rate of its parent.
1131  *
1132  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1133  * if necessary.
1134  */
1135 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1136 {
1137 	unsigned long old_rate;
1138 	unsigned long parent_rate = 0;
1139 	struct clk_core *child;
1140 
1141 	lockdep_assert_held(&prepare_lock);
1142 
1143 	old_rate = core->rate;
1144 
1145 	if (core->parent)
1146 		parent_rate = core->parent->rate;
1147 
1148 	core->rate = clk_recalc(core, parent_rate);
1149 
1150 	/*
1151 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1152 	 * & ABORT_RATE_CHANGE notifiers
1153 	 */
1154 	if (core->notifier_count && msg)
1155 		__clk_notify(core, msg, old_rate, core->rate);
1156 
1157 	hlist_for_each_entry(child, &core->children, child_node)
1158 		__clk_recalc_rates(child, msg);
1159 }
1160 
1161 static unsigned long clk_core_get_rate(struct clk_core *core)
1162 {
1163 	unsigned long rate;
1164 
1165 	clk_prepare_lock();
1166 
1167 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1168 		__clk_recalc_rates(core, 0);
1169 
1170 	rate = clk_core_get_rate_nolock(core);
1171 	clk_prepare_unlock();
1172 
1173 	return rate;
1174 }
1175 
1176 /**
1177  * clk_get_rate - return the rate of clk
1178  * @clk: the clk whose rate is being returned
1179  *
1180  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1181  * is set, which means a recalc_rate will be issued.
1182  * If clk is NULL then returns 0.
1183  */
1184 unsigned long clk_get_rate(struct clk *clk)
1185 {
1186 	if (!clk)
1187 		return 0;
1188 
1189 	return clk_core_get_rate(clk->core);
1190 }
1191 EXPORT_SYMBOL_GPL(clk_get_rate);
1192 
1193 static int clk_fetch_parent_index(struct clk_core *core,
1194 				  struct clk_core *parent)
1195 {
1196 	int i;
1197 
1198 	if (!parent)
1199 		return -EINVAL;
1200 
1201 	for (i = 0; i < core->num_parents; i++)
1202 		if (clk_core_get_parent_by_index(core, i) == parent)
1203 			return i;
1204 
1205 	return -EINVAL;
1206 }
1207 
1208 /*
1209  * Update the orphan status of @core and all its children.
1210  */
1211 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1212 {
1213 	struct clk_core *child;
1214 
1215 	core->orphan = is_orphan;
1216 
1217 	hlist_for_each_entry(child, &core->children, child_node)
1218 		clk_core_update_orphan_status(child, is_orphan);
1219 }
1220 
1221 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1222 {
1223 	bool was_orphan = core->orphan;
1224 
1225 	hlist_del(&core->child_node);
1226 
1227 	if (new_parent) {
1228 		bool becomes_orphan = new_parent->orphan;
1229 
1230 		/* avoid duplicate POST_RATE_CHANGE notifications */
1231 		if (new_parent->new_child == core)
1232 			new_parent->new_child = NULL;
1233 
1234 		hlist_add_head(&core->child_node, &new_parent->children);
1235 
1236 		if (was_orphan != becomes_orphan)
1237 			clk_core_update_orphan_status(core, becomes_orphan);
1238 	} else {
1239 		hlist_add_head(&core->child_node, &clk_orphan_list);
1240 		if (!was_orphan)
1241 			clk_core_update_orphan_status(core, true);
1242 	}
1243 
1244 	core->parent = new_parent;
1245 }
1246 
1247 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1248 					   struct clk_core *parent)
1249 {
1250 	unsigned long flags;
1251 	struct clk_core *old_parent = core->parent;
1252 
1253 	/*
1254 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1255 	 *
1256 	 * 2. Migrate prepare state between parents and prevent race with
1257 	 * clk_enable().
1258 	 *
1259 	 * If the clock is not prepared, then a race with
1260 	 * clk_enable/disable() is impossible since we already have the
1261 	 * prepare lock (future calls to clk_enable() need to be preceded by
1262 	 * a clk_prepare()).
1263 	 *
1264 	 * If the clock is prepared, migrate the prepared state to the new
1265 	 * parent and also protect against a race with clk_enable() by
1266 	 * forcing the clock and the new parent on.  This ensures that all
1267 	 * future calls to clk_enable() are practically NOPs with respect to
1268 	 * hardware and software states.
1269 	 *
1270 	 * See also: Comment for clk_set_parent() below.
1271 	 */
1272 
1273 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1274 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1275 		clk_core_prepare_enable(old_parent);
1276 		clk_core_prepare_enable(parent);
1277 	}
1278 
1279 	/* migrate prepare count if > 0 */
1280 	if (core->prepare_count) {
1281 		clk_core_prepare_enable(parent);
1282 		clk_core_enable_lock(core);
1283 	}
1284 
1285 	/* update the clk tree topology */
1286 	flags = clk_enable_lock();
1287 	clk_reparent(core, parent);
1288 	clk_enable_unlock(flags);
1289 
1290 	return old_parent;
1291 }
1292 
1293 static void __clk_set_parent_after(struct clk_core *core,
1294 				   struct clk_core *parent,
1295 				   struct clk_core *old_parent)
1296 {
1297 	/*
1298 	 * Finish the migration of prepare state and undo the changes done
1299 	 * for preventing a race with clk_enable().
1300 	 */
1301 	if (core->prepare_count) {
1302 		clk_core_disable_lock(core);
1303 		clk_core_disable_unprepare(old_parent);
1304 	}
1305 
1306 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1307 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1308 		clk_core_disable_unprepare(parent);
1309 		clk_core_disable_unprepare(old_parent);
1310 	}
1311 }
1312 
1313 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1314 			    u8 p_index)
1315 {
1316 	unsigned long flags;
1317 	int ret = 0;
1318 	struct clk_core *old_parent;
1319 
1320 	old_parent = __clk_set_parent_before(core, parent);
1321 
1322 	trace_clk_set_parent(core, parent);
1323 
1324 	/* change clock input source */
1325 	if (parent && core->ops->set_parent)
1326 		ret = core->ops->set_parent(core->hw, p_index);
1327 
1328 	trace_clk_set_parent_complete(core, parent);
1329 
1330 	if (ret) {
1331 		flags = clk_enable_lock();
1332 		clk_reparent(core, old_parent);
1333 		clk_enable_unlock(flags);
1334 		__clk_set_parent_after(core, old_parent, parent);
1335 
1336 		return ret;
1337 	}
1338 
1339 	__clk_set_parent_after(core, parent, old_parent);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * __clk_speculate_rates
1346  * @core: first clk in the subtree
1347  * @parent_rate: the "future" rate of clk's parent
1348  *
1349  * Walks the subtree of clks starting with clk, speculating rates as it
1350  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1351  *
1352  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1353  * pre-rate change notifications and returns early if no clks in the
1354  * subtree have subscribed to the notifications.  Note that if a clk does not
1355  * implement the .recalc_rate callback then it is assumed that the clock will
1356  * take on the rate of its parent.
1357  */
1358 static int __clk_speculate_rates(struct clk_core *core,
1359 				 unsigned long parent_rate)
1360 {
1361 	struct clk_core *child;
1362 	unsigned long new_rate;
1363 	int ret = NOTIFY_DONE;
1364 
1365 	lockdep_assert_held(&prepare_lock);
1366 
1367 	new_rate = clk_recalc(core, parent_rate);
1368 
1369 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1370 	if (core->notifier_count)
1371 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1372 
1373 	if (ret & NOTIFY_STOP_MASK) {
1374 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1375 				__func__, core->name, ret);
1376 		goto out;
1377 	}
1378 
1379 	hlist_for_each_entry(child, &core->children, child_node) {
1380 		ret = __clk_speculate_rates(child, new_rate);
1381 		if (ret & NOTIFY_STOP_MASK)
1382 			break;
1383 	}
1384 
1385 out:
1386 	return ret;
1387 }
1388 
1389 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1390 			     struct clk_core *new_parent, u8 p_index)
1391 {
1392 	struct clk_core *child;
1393 
1394 	core->new_rate = new_rate;
1395 	core->new_parent = new_parent;
1396 	core->new_parent_index = p_index;
1397 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1398 	core->new_child = NULL;
1399 	if (new_parent && new_parent != core->parent)
1400 		new_parent->new_child = core;
1401 
1402 	hlist_for_each_entry(child, &core->children, child_node) {
1403 		child->new_rate = clk_recalc(child, new_rate);
1404 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1405 	}
1406 }
1407 
1408 /*
1409  * calculate the new rates returning the topmost clock that has to be
1410  * changed.
1411  */
1412 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1413 					   unsigned long rate)
1414 {
1415 	struct clk_core *top = core;
1416 	struct clk_core *old_parent, *parent;
1417 	unsigned long best_parent_rate = 0;
1418 	unsigned long new_rate;
1419 	unsigned long min_rate;
1420 	unsigned long max_rate;
1421 	int p_index = 0;
1422 	long ret;
1423 
1424 	/* sanity */
1425 	if (IS_ERR_OR_NULL(core))
1426 		return NULL;
1427 
1428 	/* save parent rate, if it exists */
1429 	parent = old_parent = core->parent;
1430 	if (parent)
1431 		best_parent_rate = parent->rate;
1432 
1433 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1434 
1435 	/* find the closest rate and parent clk/rate */
1436 	if (core->ops->determine_rate) {
1437 		struct clk_rate_request req;
1438 
1439 		req.rate = rate;
1440 		req.min_rate = min_rate;
1441 		req.max_rate = max_rate;
1442 		if (parent) {
1443 			req.best_parent_hw = parent->hw;
1444 			req.best_parent_rate = parent->rate;
1445 		} else {
1446 			req.best_parent_hw = NULL;
1447 			req.best_parent_rate = 0;
1448 		}
1449 
1450 		ret = core->ops->determine_rate(core->hw, &req);
1451 		if (ret < 0)
1452 			return NULL;
1453 
1454 		best_parent_rate = req.best_parent_rate;
1455 		new_rate = req.rate;
1456 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1457 	} else if (core->ops->round_rate) {
1458 		ret = core->ops->round_rate(core->hw, rate,
1459 					    &best_parent_rate);
1460 		if (ret < 0)
1461 			return NULL;
1462 
1463 		new_rate = ret;
1464 		if (new_rate < min_rate || new_rate > max_rate)
1465 			return NULL;
1466 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1467 		/* pass-through clock without adjustable parent */
1468 		core->new_rate = core->rate;
1469 		return NULL;
1470 	} else {
1471 		/* pass-through clock with adjustable parent */
1472 		top = clk_calc_new_rates(parent, rate);
1473 		new_rate = parent->new_rate;
1474 		goto out;
1475 	}
1476 
1477 	/* some clocks must be gated to change parent */
1478 	if (parent != old_parent &&
1479 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1480 		pr_debug("%s: %s not gated but wants to reparent\n",
1481 			 __func__, core->name);
1482 		return NULL;
1483 	}
1484 
1485 	/* try finding the new parent index */
1486 	if (parent && core->num_parents > 1) {
1487 		p_index = clk_fetch_parent_index(core, parent);
1488 		if (p_index < 0) {
1489 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1490 				 __func__, parent->name, core->name);
1491 			return NULL;
1492 		}
1493 	}
1494 
1495 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1496 	    best_parent_rate != parent->rate)
1497 		top = clk_calc_new_rates(parent, best_parent_rate);
1498 
1499 out:
1500 	clk_calc_subtree(core, new_rate, parent, p_index);
1501 
1502 	return top;
1503 }
1504 
1505 /*
1506  * Notify about rate changes in a subtree. Always walk down the whole tree
1507  * so that in case of an error we can walk down the whole tree again and
1508  * abort the change.
1509  */
1510 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1511 						  unsigned long event)
1512 {
1513 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1514 	int ret = NOTIFY_DONE;
1515 
1516 	if (core->rate == core->new_rate)
1517 		return NULL;
1518 
1519 	if (core->notifier_count) {
1520 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1521 		if (ret & NOTIFY_STOP_MASK)
1522 			fail_clk = core;
1523 	}
1524 
1525 	hlist_for_each_entry(child, &core->children, child_node) {
1526 		/* Skip children who will be reparented to another clock */
1527 		if (child->new_parent && child->new_parent != core)
1528 			continue;
1529 		tmp_clk = clk_propagate_rate_change(child, event);
1530 		if (tmp_clk)
1531 			fail_clk = tmp_clk;
1532 	}
1533 
1534 	/* handle the new child who might not be in core->children yet */
1535 	if (core->new_child) {
1536 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1537 		if (tmp_clk)
1538 			fail_clk = tmp_clk;
1539 	}
1540 
1541 	return fail_clk;
1542 }
1543 
1544 /*
1545  * walk down a subtree and set the new rates notifying the rate
1546  * change on the way
1547  */
1548 static void clk_change_rate(struct clk_core *core)
1549 {
1550 	struct clk_core *child;
1551 	struct hlist_node *tmp;
1552 	unsigned long old_rate;
1553 	unsigned long best_parent_rate = 0;
1554 	bool skip_set_rate = false;
1555 	struct clk_core *old_parent;
1556 	struct clk_core *parent = NULL;
1557 
1558 	old_rate = core->rate;
1559 
1560 	if (core->new_parent) {
1561 		parent = core->new_parent;
1562 		best_parent_rate = core->new_parent->rate;
1563 	} else if (core->parent) {
1564 		parent = core->parent;
1565 		best_parent_rate = core->parent->rate;
1566 	}
1567 
1568 	if (clk_pm_runtime_get(core))
1569 		return;
1570 
1571 	if (core->flags & CLK_SET_RATE_UNGATE) {
1572 		unsigned long flags;
1573 
1574 		clk_core_prepare(core);
1575 		flags = clk_enable_lock();
1576 		clk_core_enable(core);
1577 		clk_enable_unlock(flags);
1578 	}
1579 
1580 	if (core->new_parent && core->new_parent != core->parent) {
1581 		old_parent = __clk_set_parent_before(core, core->new_parent);
1582 		trace_clk_set_parent(core, core->new_parent);
1583 
1584 		if (core->ops->set_rate_and_parent) {
1585 			skip_set_rate = true;
1586 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1587 					best_parent_rate,
1588 					core->new_parent_index);
1589 		} else if (core->ops->set_parent) {
1590 			core->ops->set_parent(core->hw, core->new_parent_index);
1591 		}
1592 
1593 		trace_clk_set_parent_complete(core, core->new_parent);
1594 		__clk_set_parent_after(core, core->new_parent, old_parent);
1595 	}
1596 
1597 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1598 		clk_core_prepare_enable(parent);
1599 
1600 	trace_clk_set_rate(core, core->new_rate);
1601 
1602 	if (!skip_set_rate && core->ops->set_rate)
1603 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1604 
1605 	trace_clk_set_rate_complete(core, core->new_rate);
1606 
1607 	core->rate = clk_recalc(core, best_parent_rate);
1608 
1609 	if (core->flags & CLK_SET_RATE_UNGATE) {
1610 		unsigned long flags;
1611 
1612 		flags = clk_enable_lock();
1613 		clk_core_disable(core);
1614 		clk_enable_unlock(flags);
1615 		clk_core_unprepare(core);
1616 	}
1617 
1618 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1619 		clk_core_disable_unprepare(parent);
1620 
1621 	if (core->notifier_count && old_rate != core->rate)
1622 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1623 
1624 	if (core->flags & CLK_RECALC_NEW_RATES)
1625 		(void)clk_calc_new_rates(core, core->new_rate);
1626 
1627 	/*
1628 	 * Use safe iteration, as change_rate can actually swap parents
1629 	 * for certain clock types.
1630 	 */
1631 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1632 		/* Skip children who will be reparented to another clock */
1633 		if (child->new_parent && child->new_parent != core)
1634 			continue;
1635 		clk_change_rate(child);
1636 	}
1637 
1638 	/* handle the new child who might not be in core->children yet */
1639 	if (core->new_child)
1640 		clk_change_rate(core->new_child);
1641 
1642 	clk_pm_runtime_put(core);
1643 }
1644 
1645 static int clk_core_set_rate_nolock(struct clk_core *core,
1646 				    unsigned long req_rate)
1647 {
1648 	struct clk_core *top, *fail_clk;
1649 	unsigned long rate = req_rate;
1650 	int ret = 0;
1651 
1652 	if (!core)
1653 		return 0;
1654 
1655 	/* bail early if nothing to do */
1656 	if (rate == clk_core_get_rate_nolock(core))
1657 		return 0;
1658 
1659 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1660 		return -EBUSY;
1661 
1662 	/* calculate new rates and get the topmost changed clock */
1663 	top = clk_calc_new_rates(core, rate);
1664 	if (!top)
1665 		return -EINVAL;
1666 
1667 	ret = clk_pm_runtime_get(core);
1668 	if (ret)
1669 		return ret;
1670 
1671 	/* notify that we are about to change rates */
1672 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1673 	if (fail_clk) {
1674 		pr_debug("%s: failed to set %s rate\n", __func__,
1675 				fail_clk->name);
1676 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1677 		ret = -EBUSY;
1678 		goto err;
1679 	}
1680 
1681 	/* change the rates */
1682 	clk_change_rate(top);
1683 
1684 	core->req_rate = req_rate;
1685 err:
1686 	clk_pm_runtime_put(core);
1687 
1688 	return ret;
1689 }
1690 
1691 /**
1692  * clk_set_rate - specify a new rate for clk
1693  * @clk: the clk whose rate is being changed
1694  * @rate: the new rate for clk
1695  *
1696  * In the simplest case clk_set_rate will only adjust the rate of clk.
1697  *
1698  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1699  * propagate up to clk's parent; whether or not this happens depends on the
1700  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1701  * after calling .round_rate then upstream parent propagation is ignored.  If
1702  * *parent_rate comes back with a new rate for clk's parent then we propagate
1703  * up to clk's parent and set its rate.  Upward propagation will continue
1704  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1705  * .round_rate stops requesting changes to clk's parent_rate.
1706  *
1707  * Rate changes are accomplished via tree traversal that also recalculates the
1708  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1709  *
1710  * Returns 0 on success, -EERROR otherwise.
1711  */
1712 int clk_set_rate(struct clk *clk, unsigned long rate)
1713 {
1714 	int ret;
1715 
1716 	if (!clk)
1717 		return 0;
1718 
1719 	/* prevent racing with updates to the clock topology */
1720 	clk_prepare_lock();
1721 
1722 	ret = clk_core_set_rate_nolock(clk->core, rate);
1723 
1724 	clk_prepare_unlock();
1725 
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(clk_set_rate);
1729 
1730 /**
1731  * clk_set_rate_range - set a rate range for a clock source
1732  * @clk: clock source
1733  * @min: desired minimum clock rate in Hz, inclusive
1734  * @max: desired maximum clock rate in Hz, inclusive
1735  *
1736  * Returns success (0) or negative errno.
1737  */
1738 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1739 {
1740 	int ret = 0;
1741 
1742 	if (!clk)
1743 		return 0;
1744 
1745 	if (min > max) {
1746 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1747 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1748 		       min, max);
1749 		return -EINVAL;
1750 	}
1751 
1752 	clk_prepare_lock();
1753 
1754 	if (min != clk->min_rate || max != clk->max_rate) {
1755 		clk->min_rate = min;
1756 		clk->max_rate = max;
1757 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1758 	}
1759 
1760 	clk_prepare_unlock();
1761 
1762 	return ret;
1763 }
1764 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1765 
1766 /**
1767  * clk_set_min_rate - set a minimum clock rate for a clock source
1768  * @clk: clock source
1769  * @rate: desired minimum clock rate in Hz, inclusive
1770  *
1771  * Returns success (0) or negative errno.
1772  */
1773 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1774 {
1775 	if (!clk)
1776 		return 0;
1777 
1778 	return clk_set_rate_range(clk, rate, clk->max_rate);
1779 }
1780 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1781 
1782 /**
1783  * clk_set_max_rate - set a maximum clock rate for a clock source
1784  * @clk: clock source
1785  * @rate: desired maximum clock rate in Hz, inclusive
1786  *
1787  * Returns success (0) or negative errno.
1788  */
1789 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1790 {
1791 	if (!clk)
1792 		return 0;
1793 
1794 	return clk_set_rate_range(clk, clk->min_rate, rate);
1795 }
1796 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1797 
1798 /**
1799  * clk_get_parent - return the parent of a clk
1800  * @clk: the clk whose parent gets returned
1801  *
1802  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1803  */
1804 struct clk *clk_get_parent(struct clk *clk)
1805 {
1806 	struct clk *parent;
1807 
1808 	if (!clk)
1809 		return NULL;
1810 
1811 	clk_prepare_lock();
1812 	/* TODO: Create a per-user clk and change callers to call clk_put */
1813 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1814 	clk_prepare_unlock();
1815 
1816 	return parent;
1817 }
1818 EXPORT_SYMBOL_GPL(clk_get_parent);
1819 
1820 static struct clk_core *__clk_init_parent(struct clk_core *core)
1821 {
1822 	u8 index = 0;
1823 
1824 	if (core->num_parents > 1 && core->ops->get_parent)
1825 		index = core->ops->get_parent(core->hw);
1826 
1827 	return clk_core_get_parent_by_index(core, index);
1828 }
1829 
1830 static void clk_core_reparent(struct clk_core *core,
1831 				  struct clk_core *new_parent)
1832 {
1833 	clk_reparent(core, new_parent);
1834 	__clk_recalc_accuracies(core);
1835 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1836 }
1837 
1838 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1839 {
1840 	if (!hw)
1841 		return;
1842 
1843 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1844 }
1845 
1846 /**
1847  * clk_has_parent - check if a clock is a possible parent for another
1848  * @clk: clock source
1849  * @parent: parent clock source
1850  *
1851  * This function can be used in drivers that need to check that a clock can be
1852  * the parent of another without actually changing the parent.
1853  *
1854  * Returns true if @parent is a possible parent for @clk, false otherwise.
1855  */
1856 bool clk_has_parent(struct clk *clk, struct clk *parent)
1857 {
1858 	struct clk_core *core, *parent_core;
1859 	unsigned int i;
1860 
1861 	/* NULL clocks should be nops, so return success if either is NULL. */
1862 	if (!clk || !parent)
1863 		return true;
1864 
1865 	core = clk->core;
1866 	parent_core = parent->core;
1867 
1868 	/* Optimize for the case where the parent is already the parent. */
1869 	if (core->parent == parent_core)
1870 		return true;
1871 
1872 	for (i = 0; i < core->num_parents; i++)
1873 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1874 			return true;
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL_GPL(clk_has_parent);
1879 
1880 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1881 {
1882 	int ret = 0;
1883 	int p_index = 0;
1884 	unsigned long p_rate = 0;
1885 
1886 	if (!core)
1887 		return 0;
1888 
1889 	/* prevent racing with updates to the clock topology */
1890 	clk_prepare_lock();
1891 
1892 	if (core->parent == parent)
1893 		goto out;
1894 
1895 	/* verify ops for for multi-parent clks */
1896 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1897 		ret = -ENOSYS;
1898 		goto out;
1899 	}
1900 
1901 	/* check that we are allowed to re-parent if the clock is in use */
1902 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1903 		ret = -EBUSY;
1904 		goto out;
1905 	}
1906 
1907 	/* try finding the new parent index */
1908 	if (parent) {
1909 		p_index = clk_fetch_parent_index(core, parent);
1910 		if (p_index < 0) {
1911 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1912 					__func__, parent->name, core->name);
1913 			ret = p_index;
1914 			goto out;
1915 		}
1916 		p_rate = parent->rate;
1917 	}
1918 
1919 	ret = clk_pm_runtime_get(core);
1920 	if (ret)
1921 		goto out;
1922 
1923 	/* propagate PRE_RATE_CHANGE notifications */
1924 	ret = __clk_speculate_rates(core, p_rate);
1925 
1926 	/* abort if a driver objects */
1927 	if (ret & NOTIFY_STOP_MASK)
1928 		goto runtime_put;
1929 
1930 	/* do the re-parent */
1931 	ret = __clk_set_parent(core, parent, p_index);
1932 
1933 	/* propagate rate an accuracy recalculation accordingly */
1934 	if (ret) {
1935 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1936 	} else {
1937 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1938 		__clk_recalc_accuracies(core);
1939 	}
1940 
1941 runtime_put:
1942 	clk_pm_runtime_put(core);
1943 out:
1944 	clk_prepare_unlock();
1945 
1946 	return ret;
1947 }
1948 
1949 /**
1950  * clk_set_parent - switch the parent of a mux clk
1951  * @clk: the mux clk whose input we are switching
1952  * @parent: the new input to clk
1953  *
1954  * Re-parent clk to use parent as its new input source.  If clk is in
1955  * prepared state, the clk will get enabled for the duration of this call. If
1956  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1957  * that, the reparenting is glitchy in hardware, etc), use the
1958  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1959  *
1960  * After successfully changing clk's parent clk_set_parent will update the
1961  * clk topology, sysfs topology and propagate rate recalculation via
1962  * __clk_recalc_rates.
1963  *
1964  * Returns 0 on success, -EERROR otherwise.
1965  */
1966 int clk_set_parent(struct clk *clk, struct clk *parent)
1967 {
1968 	if (!clk)
1969 		return 0;
1970 
1971 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1972 }
1973 EXPORT_SYMBOL_GPL(clk_set_parent);
1974 
1975 /**
1976  * clk_set_phase - adjust the phase shift of a clock signal
1977  * @clk: clock signal source
1978  * @degrees: number of degrees the signal is shifted
1979  *
1980  * Shifts the phase of a clock signal by the specified
1981  * degrees. Returns 0 on success, -EERROR otherwise.
1982  *
1983  * This function makes no distinction about the input or reference
1984  * signal that we adjust the clock signal phase against. For example
1985  * phase locked-loop clock signal generators we may shift phase with
1986  * respect to feedback clock signal input, but for other cases the
1987  * clock phase may be shifted with respect to some other, unspecified
1988  * signal.
1989  *
1990  * Additionally the concept of phase shift does not propagate through
1991  * the clock tree hierarchy, which sets it apart from clock rates and
1992  * clock accuracy. A parent clock phase attribute does not have an
1993  * impact on the phase attribute of a child clock.
1994  */
1995 int clk_set_phase(struct clk *clk, int degrees)
1996 {
1997 	int ret = -EINVAL;
1998 
1999 	if (!clk)
2000 		return 0;
2001 
2002 	/* sanity check degrees */
2003 	degrees %= 360;
2004 	if (degrees < 0)
2005 		degrees += 360;
2006 
2007 	clk_prepare_lock();
2008 
2009 	trace_clk_set_phase(clk->core, degrees);
2010 
2011 	if (clk->core->ops->set_phase)
2012 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2013 
2014 	trace_clk_set_phase_complete(clk->core, degrees);
2015 
2016 	if (!ret)
2017 		clk->core->phase = degrees;
2018 
2019 	clk_prepare_unlock();
2020 
2021 	return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(clk_set_phase);
2024 
2025 static int clk_core_get_phase(struct clk_core *core)
2026 {
2027 	int ret;
2028 
2029 	clk_prepare_lock();
2030 	ret = core->phase;
2031 	clk_prepare_unlock();
2032 
2033 	return ret;
2034 }
2035 
2036 /**
2037  * clk_get_phase - return the phase shift of a clock signal
2038  * @clk: clock signal source
2039  *
2040  * Returns the phase shift of a clock node in degrees, otherwise returns
2041  * -EERROR.
2042  */
2043 int clk_get_phase(struct clk *clk)
2044 {
2045 	if (!clk)
2046 		return 0;
2047 
2048 	return clk_core_get_phase(clk->core);
2049 }
2050 EXPORT_SYMBOL_GPL(clk_get_phase);
2051 
2052 /**
2053  * clk_is_match - check if two clk's point to the same hardware clock
2054  * @p: clk compared against q
2055  * @q: clk compared against p
2056  *
2057  * Returns true if the two struct clk pointers both point to the same hardware
2058  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2059  * share the same struct clk_core object.
2060  *
2061  * Returns false otherwise. Note that two NULL clks are treated as matching.
2062  */
2063 bool clk_is_match(const struct clk *p, const struct clk *q)
2064 {
2065 	/* trivial case: identical struct clk's or both NULL */
2066 	if (p == q)
2067 		return true;
2068 
2069 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2070 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2071 		if (p->core == q->core)
2072 			return true;
2073 
2074 	return false;
2075 }
2076 EXPORT_SYMBOL_GPL(clk_is_match);
2077 
2078 /***        debugfs support        ***/
2079 
2080 #ifdef CONFIG_DEBUG_FS
2081 #include <linux/debugfs.h>
2082 
2083 static struct dentry *rootdir;
2084 static int inited = 0;
2085 static DEFINE_MUTEX(clk_debug_lock);
2086 static HLIST_HEAD(clk_debug_list);
2087 
2088 static struct hlist_head *all_lists[] = {
2089 	&clk_root_list,
2090 	&clk_orphan_list,
2091 	NULL,
2092 };
2093 
2094 static struct hlist_head *orphan_list[] = {
2095 	&clk_orphan_list,
2096 	NULL,
2097 };
2098 
2099 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2100 				 int level)
2101 {
2102 	if (!c)
2103 		return;
2104 
2105 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2106 		   level * 3 + 1, "",
2107 		   30 - level * 3, c->name,
2108 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
2109 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
2110 }
2111 
2112 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2113 				     int level)
2114 {
2115 	struct clk_core *child;
2116 
2117 	if (!c)
2118 		return;
2119 
2120 	clk_summary_show_one(s, c, level);
2121 
2122 	hlist_for_each_entry(child, &c->children, child_node)
2123 		clk_summary_show_subtree(s, child, level + 1);
2124 }
2125 
2126 static int clk_summary_show(struct seq_file *s, void *data)
2127 {
2128 	struct clk_core *c;
2129 	struct hlist_head **lists = (struct hlist_head **)s->private;
2130 
2131 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2132 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2133 
2134 	clk_prepare_lock();
2135 
2136 	for (; *lists; lists++)
2137 		hlist_for_each_entry(c, *lists, child_node)
2138 			clk_summary_show_subtree(s, c, 0);
2139 
2140 	clk_prepare_unlock();
2141 
2142 	return 0;
2143 }
2144 
2145 
2146 static int clk_summary_open(struct inode *inode, struct file *file)
2147 {
2148 	return single_open(file, clk_summary_show, inode->i_private);
2149 }
2150 
2151 static const struct file_operations clk_summary_fops = {
2152 	.open		= clk_summary_open,
2153 	.read		= seq_read,
2154 	.llseek		= seq_lseek,
2155 	.release	= single_release,
2156 };
2157 
2158 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2159 {
2160 	if (!c)
2161 		return;
2162 
2163 	/* This should be JSON format, i.e. elements separated with a comma */
2164 	seq_printf(s, "\"%s\": { ", c->name);
2165 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2166 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2167 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2168 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2169 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2170 }
2171 
2172 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2173 {
2174 	struct clk_core *child;
2175 
2176 	if (!c)
2177 		return;
2178 
2179 	clk_dump_one(s, c, level);
2180 
2181 	hlist_for_each_entry(child, &c->children, child_node) {
2182 		seq_putc(s, ',');
2183 		clk_dump_subtree(s, child, level + 1);
2184 	}
2185 
2186 	seq_putc(s, '}');
2187 }
2188 
2189 static int clk_dump(struct seq_file *s, void *data)
2190 {
2191 	struct clk_core *c;
2192 	bool first_node = true;
2193 	struct hlist_head **lists = (struct hlist_head **)s->private;
2194 
2195 	seq_putc(s, '{');
2196 	clk_prepare_lock();
2197 
2198 	for (; *lists; lists++) {
2199 		hlist_for_each_entry(c, *lists, child_node) {
2200 			if (!first_node)
2201 				seq_putc(s, ',');
2202 			first_node = false;
2203 			clk_dump_subtree(s, c, 0);
2204 		}
2205 	}
2206 
2207 	clk_prepare_unlock();
2208 
2209 	seq_puts(s, "}\n");
2210 	return 0;
2211 }
2212 
2213 
2214 static int clk_dump_open(struct inode *inode, struct file *file)
2215 {
2216 	return single_open(file, clk_dump, inode->i_private);
2217 }
2218 
2219 static const struct file_operations clk_dump_fops = {
2220 	.open		= clk_dump_open,
2221 	.read		= seq_read,
2222 	.llseek		= seq_lseek,
2223 	.release	= single_release,
2224 };
2225 
2226 static int possible_parents_dump(struct seq_file *s, void *data)
2227 {
2228 	struct clk_core *core = s->private;
2229 	int i;
2230 
2231 	for (i = 0; i < core->num_parents - 1; i++)
2232 		seq_printf(s, "%s ", core->parent_names[i]);
2233 
2234 	seq_printf(s, "%s\n", core->parent_names[i]);
2235 
2236 	return 0;
2237 }
2238 
2239 static int possible_parents_open(struct inode *inode, struct file *file)
2240 {
2241 	return single_open(file, possible_parents_dump, inode->i_private);
2242 }
2243 
2244 static const struct file_operations possible_parents_fops = {
2245 	.open		= possible_parents_open,
2246 	.read		= seq_read,
2247 	.llseek		= seq_lseek,
2248 	.release	= single_release,
2249 };
2250 
2251 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2252 {
2253 	struct dentry *d;
2254 	int ret = -ENOMEM;
2255 
2256 	if (!core || !pdentry) {
2257 		ret = -EINVAL;
2258 		goto out;
2259 	}
2260 
2261 	d = debugfs_create_dir(core->name, pdentry);
2262 	if (!d)
2263 		goto out;
2264 
2265 	core->dentry = d;
2266 
2267 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2268 			(u32 *)&core->rate);
2269 	if (!d)
2270 		goto err_out;
2271 
2272 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2273 			(u32 *)&core->accuracy);
2274 	if (!d)
2275 		goto err_out;
2276 
2277 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2278 			(u32 *)&core->phase);
2279 	if (!d)
2280 		goto err_out;
2281 
2282 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2283 			(u32 *)&core->flags);
2284 	if (!d)
2285 		goto err_out;
2286 
2287 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2288 			(u32 *)&core->prepare_count);
2289 	if (!d)
2290 		goto err_out;
2291 
2292 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2293 			(u32 *)&core->enable_count);
2294 	if (!d)
2295 		goto err_out;
2296 
2297 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2298 			(u32 *)&core->notifier_count);
2299 	if (!d)
2300 		goto err_out;
2301 
2302 	if (core->num_parents > 1) {
2303 		d = debugfs_create_file("clk_possible_parents", S_IRUGO,
2304 				core->dentry, core, &possible_parents_fops);
2305 		if (!d)
2306 			goto err_out;
2307 	}
2308 
2309 	if (core->ops->debug_init) {
2310 		ret = core->ops->debug_init(core->hw, core->dentry);
2311 		if (ret)
2312 			goto err_out;
2313 	}
2314 
2315 	ret = 0;
2316 	goto out;
2317 
2318 err_out:
2319 	debugfs_remove_recursive(core->dentry);
2320 	core->dentry = NULL;
2321 out:
2322 	return ret;
2323 }
2324 
2325 /**
2326  * clk_debug_register - add a clk node to the debugfs clk directory
2327  * @core: the clk being added to the debugfs clk directory
2328  *
2329  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2330  * initialized.  Otherwise it bails out early since the debugfs clk directory
2331  * will be created lazily by clk_debug_init as part of a late_initcall.
2332  */
2333 static int clk_debug_register(struct clk_core *core)
2334 {
2335 	int ret = 0;
2336 
2337 	mutex_lock(&clk_debug_lock);
2338 	hlist_add_head(&core->debug_node, &clk_debug_list);
2339 
2340 	if (!inited)
2341 		goto unlock;
2342 
2343 	ret = clk_debug_create_one(core, rootdir);
2344 unlock:
2345 	mutex_unlock(&clk_debug_lock);
2346 
2347 	return ret;
2348 }
2349 
2350  /**
2351  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2352  * @core: the clk being removed from the debugfs clk directory
2353  *
2354  * Dynamically removes a clk and all its child nodes from the
2355  * debugfs clk directory if clk->dentry points to debugfs created by
2356  * clk_debug_register in __clk_core_init.
2357  */
2358 static void clk_debug_unregister(struct clk_core *core)
2359 {
2360 	mutex_lock(&clk_debug_lock);
2361 	hlist_del_init(&core->debug_node);
2362 	debugfs_remove_recursive(core->dentry);
2363 	core->dentry = NULL;
2364 	mutex_unlock(&clk_debug_lock);
2365 }
2366 
2367 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2368 				void *data, const struct file_operations *fops)
2369 {
2370 	struct dentry *d = NULL;
2371 
2372 	if (hw->core->dentry)
2373 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2374 					fops);
2375 
2376 	return d;
2377 }
2378 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2379 
2380 /**
2381  * clk_debug_init - lazily populate the debugfs clk directory
2382  *
2383  * clks are often initialized very early during boot before memory can be
2384  * dynamically allocated and well before debugfs is setup. This function
2385  * populates the debugfs clk directory once at boot-time when we know that
2386  * debugfs is setup. It should only be called once at boot-time, all other clks
2387  * added dynamically will be done so with clk_debug_register.
2388  */
2389 static int __init clk_debug_init(void)
2390 {
2391 	struct clk_core *core;
2392 	struct dentry *d;
2393 
2394 	rootdir = debugfs_create_dir("clk", NULL);
2395 
2396 	if (!rootdir)
2397 		return -ENOMEM;
2398 
2399 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2400 				&clk_summary_fops);
2401 	if (!d)
2402 		return -ENOMEM;
2403 
2404 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2405 				&clk_dump_fops);
2406 	if (!d)
2407 		return -ENOMEM;
2408 
2409 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2410 				&orphan_list, &clk_summary_fops);
2411 	if (!d)
2412 		return -ENOMEM;
2413 
2414 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2415 				&orphan_list, &clk_dump_fops);
2416 	if (!d)
2417 		return -ENOMEM;
2418 
2419 	mutex_lock(&clk_debug_lock);
2420 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2421 		clk_debug_create_one(core, rootdir);
2422 
2423 	inited = 1;
2424 	mutex_unlock(&clk_debug_lock);
2425 
2426 	return 0;
2427 }
2428 late_initcall(clk_debug_init);
2429 #else
2430 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2431 static inline void clk_debug_reparent(struct clk_core *core,
2432 				      struct clk_core *new_parent)
2433 {
2434 }
2435 static inline void clk_debug_unregister(struct clk_core *core)
2436 {
2437 }
2438 #endif
2439 
2440 /**
2441  * __clk_core_init - initialize the data structures in a struct clk_core
2442  * @core:	clk_core being initialized
2443  *
2444  * Initializes the lists in struct clk_core, queries the hardware for the
2445  * parent and rate and sets them both.
2446  */
2447 static int __clk_core_init(struct clk_core *core)
2448 {
2449 	int i, ret;
2450 	struct clk_core *orphan;
2451 	struct hlist_node *tmp2;
2452 	unsigned long rate;
2453 
2454 	if (!core)
2455 		return -EINVAL;
2456 
2457 	clk_prepare_lock();
2458 
2459 	ret = clk_pm_runtime_get(core);
2460 	if (ret)
2461 		goto unlock;
2462 
2463 	/* check to see if a clock with this name is already registered */
2464 	if (clk_core_lookup(core->name)) {
2465 		pr_debug("%s: clk %s already initialized\n",
2466 				__func__, core->name);
2467 		ret = -EEXIST;
2468 		goto out;
2469 	}
2470 
2471 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2472 	if (core->ops->set_rate &&
2473 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2474 	      core->ops->recalc_rate)) {
2475 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2476 		       __func__, core->name);
2477 		ret = -EINVAL;
2478 		goto out;
2479 	}
2480 
2481 	if (core->ops->set_parent && !core->ops->get_parent) {
2482 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2483 		       __func__, core->name);
2484 		ret = -EINVAL;
2485 		goto out;
2486 	}
2487 
2488 	if (core->num_parents > 1 && !core->ops->get_parent) {
2489 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2490 		       __func__, core->name);
2491 		ret = -EINVAL;
2492 		goto out;
2493 	}
2494 
2495 	if (core->ops->set_rate_and_parent &&
2496 			!(core->ops->set_parent && core->ops->set_rate)) {
2497 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2498 				__func__, core->name);
2499 		ret = -EINVAL;
2500 		goto out;
2501 	}
2502 
2503 	/* throw a WARN if any entries in parent_names are NULL */
2504 	for (i = 0; i < core->num_parents; i++)
2505 		WARN(!core->parent_names[i],
2506 				"%s: invalid NULL in %s's .parent_names\n",
2507 				__func__, core->name);
2508 
2509 	core->parent = __clk_init_parent(core);
2510 
2511 	/*
2512 	 * Populate core->parent if parent has already been clk_core_init'd. If
2513 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2514 	 * list.  If clk doesn't have any parents then place it in the root
2515 	 * clk list.
2516 	 *
2517 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2518 	 * clocks and re-parent any that are children of the clock currently
2519 	 * being clk_init'd.
2520 	 */
2521 	if (core->parent) {
2522 		hlist_add_head(&core->child_node,
2523 				&core->parent->children);
2524 		core->orphan = core->parent->orphan;
2525 	} else if (!core->num_parents) {
2526 		hlist_add_head(&core->child_node, &clk_root_list);
2527 		core->orphan = false;
2528 	} else {
2529 		hlist_add_head(&core->child_node, &clk_orphan_list);
2530 		core->orphan = true;
2531 	}
2532 
2533 	/*
2534 	 * Set clk's accuracy.  The preferred method is to use
2535 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2536 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2537 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2538 	 * clock).
2539 	 */
2540 	if (core->ops->recalc_accuracy)
2541 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2542 					__clk_get_accuracy(core->parent));
2543 	else if (core->parent)
2544 		core->accuracy = core->parent->accuracy;
2545 	else
2546 		core->accuracy = 0;
2547 
2548 	/*
2549 	 * Set clk's phase.
2550 	 * Since a phase is by definition relative to its parent, just
2551 	 * query the current clock phase, or just assume it's in phase.
2552 	 */
2553 	if (core->ops->get_phase)
2554 		core->phase = core->ops->get_phase(core->hw);
2555 	else
2556 		core->phase = 0;
2557 
2558 	/*
2559 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2560 	 * simple clocks and lazy developers the default fallback is to use the
2561 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2562 	 * then rate is set to zero.
2563 	 */
2564 	if (core->ops->recalc_rate)
2565 		rate = core->ops->recalc_rate(core->hw,
2566 				clk_core_get_rate_nolock(core->parent));
2567 	else if (core->parent)
2568 		rate = core->parent->rate;
2569 	else
2570 		rate = 0;
2571 	core->rate = core->req_rate = rate;
2572 
2573 	/*
2574 	 * walk the list of orphan clocks and reparent any that newly finds a
2575 	 * parent.
2576 	 */
2577 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2578 		struct clk_core *parent = __clk_init_parent(orphan);
2579 
2580 		/*
2581 		 * we could call __clk_set_parent, but that would result in a
2582 		 * redundant call to the .set_rate op, if it exists
2583 		 */
2584 		if (parent) {
2585 			__clk_set_parent_before(orphan, parent);
2586 			__clk_set_parent_after(orphan, parent, NULL);
2587 			__clk_recalc_accuracies(orphan);
2588 			__clk_recalc_rates(orphan, 0);
2589 		}
2590 	}
2591 
2592 	/*
2593 	 * optional platform-specific magic
2594 	 *
2595 	 * The .init callback is not used by any of the basic clock types, but
2596 	 * exists for weird hardware that must perform initialization magic.
2597 	 * Please consider other ways of solving initialization problems before
2598 	 * using this callback, as its use is discouraged.
2599 	 */
2600 	if (core->ops->init)
2601 		core->ops->init(core->hw);
2602 
2603 	if (core->flags & CLK_IS_CRITICAL) {
2604 		unsigned long flags;
2605 
2606 		clk_core_prepare(core);
2607 
2608 		flags = clk_enable_lock();
2609 		clk_core_enable(core);
2610 		clk_enable_unlock(flags);
2611 	}
2612 
2613 	kref_init(&core->ref);
2614 out:
2615 	clk_pm_runtime_put(core);
2616 unlock:
2617 	clk_prepare_unlock();
2618 
2619 	if (!ret)
2620 		clk_debug_register(core);
2621 
2622 	return ret;
2623 }
2624 
2625 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2626 			     const char *con_id)
2627 {
2628 	struct clk *clk;
2629 
2630 	/* This is to allow this function to be chained to others */
2631 	if (IS_ERR_OR_NULL(hw))
2632 		return ERR_CAST(hw);
2633 
2634 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2635 	if (!clk)
2636 		return ERR_PTR(-ENOMEM);
2637 
2638 	clk->core = hw->core;
2639 	clk->dev_id = dev_id;
2640 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2641 	clk->max_rate = ULONG_MAX;
2642 
2643 	clk_prepare_lock();
2644 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2645 	clk_prepare_unlock();
2646 
2647 	return clk;
2648 }
2649 
2650 void __clk_free_clk(struct clk *clk)
2651 {
2652 	clk_prepare_lock();
2653 	hlist_del(&clk->clks_node);
2654 	clk_prepare_unlock();
2655 
2656 	kfree_const(clk->con_id);
2657 	kfree(clk);
2658 }
2659 
2660 /**
2661  * clk_register - allocate a new clock, register it and return an opaque cookie
2662  * @dev: device that is registering this clock
2663  * @hw: link to hardware-specific clock data
2664  *
2665  * clk_register is the primary interface for populating the clock tree with new
2666  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2667  * cannot be dereferenced by driver code but may be used in conjunction with the
2668  * rest of the clock API.  In the event of an error clk_register will return an
2669  * error code; drivers must test for an error code after calling clk_register.
2670  */
2671 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2672 {
2673 	int i, ret;
2674 	struct clk_core *core;
2675 
2676 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2677 	if (!core) {
2678 		ret = -ENOMEM;
2679 		goto fail_out;
2680 	}
2681 
2682 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2683 	if (!core->name) {
2684 		ret = -ENOMEM;
2685 		goto fail_name;
2686 	}
2687 	core->ops = hw->init->ops;
2688 	if (dev && pm_runtime_enabled(dev))
2689 		core->dev = dev;
2690 	if (dev && dev->driver)
2691 		core->owner = dev->driver->owner;
2692 	core->hw = hw;
2693 	core->flags = hw->init->flags;
2694 	core->num_parents = hw->init->num_parents;
2695 	core->min_rate = 0;
2696 	core->max_rate = ULONG_MAX;
2697 	hw->core = core;
2698 
2699 	/* allocate local copy in case parent_names is __initdata */
2700 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2701 					GFP_KERNEL);
2702 
2703 	if (!core->parent_names) {
2704 		ret = -ENOMEM;
2705 		goto fail_parent_names;
2706 	}
2707 
2708 
2709 	/* copy each string name in case parent_names is __initdata */
2710 	for (i = 0; i < core->num_parents; i++) {
2711 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2712 						GFP_KERNEL);
2713 		if (!core->parent_names[i]) {
2714 			ret = -ENOMEM;
2715 			goto fail_parent_names_copy;
2716 		}
2717 	}
2718 
2719 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2720 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2721 				GFP_KERNEL);
2722 	if (!core->parents) {
2723 		ret = -ENOMEM;
2724 		goto fail_parents;
2725 	};
2726 
2727 	INIT_HLIST_HEAD(&core->clks);
2728 
2729 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2730 	if (IS_ERR(hw->clk)) {
2731 		ret = PTR_ERR(hw->clk);
2732 		goto fail_parents;
2733 	}
2734 
2735 	ret = __clk_core_init(core);
2736 	if (!ret)
2737 		return hw->clk;
2738 
2739 	__clk_free_clk(hw->clk);
2740 	hw->clk = NULL;
2741 
2742 fail_parents:
2743 	kfree(core->parents);
2744 fail_parent_names_copy:
2745 	while (--i >= 0)
2746 		kfree_const(core->parent_names[i]);
2747 	kfree(core->parent_names);
2748 fail_parent_names:
2749 	kfree_const(core->name);
2750 fail_name:
2751 	kfree(core);
2752 fail_out:
2753 	return ERR_PTR(ret);
2754 }
2755 EXPORT_SYMBOL_GPL(clk_register);
2756 
2757 /**
2758  * clk_hw_register - register a clk_hw and return an error code
2759  * @dev: device that is registering this clock
2760  * @hw: link to hardware-specific clock data
2761  *
2762  * clk_hw_register is the primary interface for populating the clock tree with
2763  * new clock nodes. It returns an integer equal to zero indicating success or
2764  * less than zero indicating failure. Drivers must test for an error code after
2765  * calling clk_hw_register().
2766  */
2767 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2768 {
2769 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2770 }
2771 EXPORT_SYMBOL_GPL(clk_hw_register);
2772 
2773 /* Free memory allocated for a clock. */
2774 static void __clk_release(struct kref *ref)
2775 {
2776 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2777 	int i = core->num_parents;
2778 
2779 	lockdep_assert_held(&prepare_lock);
2780 
2781 	kfree(core->parents);
2782 	while (--i >= 0)
2783 		kfree_const(core->parent_names[i]);
2784 
2785 	kfree(core->parent_names);
2786 	kfree_const(core->name);
2787 	kfree(core);
2788 }
2789 
2790 /*
2791  * Empty clk_ops for unregistered clocks. These are used temporarily
2792  * after clk_unregister() was called on a clock and until last clock
2793  * consumer calls clk_put() and the struct clk object is freed.
2794  */
2795 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2796 {
2797 	return -ENXIO;
2798 }
2799 
2800 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2801 {
2802 	WARN_ON_ONCE(1);
2803 }
2804 
2805 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2806 					unsigned long parent_rate)
2807 {
2808 	return -ENXIO;
2809 }
2810 
2811 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2812 {
2813 	return -ENXIO;
2814 }
2815 
2816 static const struct clk_ops clk_nodrv_ops = {
2817 	.enable		= clk_nodrv_prepare_enable,
2818 	.disable	= clk_nodrv_disable_unprepare,
2819 	.prepare	= clk_nodrv_prepare_enable,
2820 	.unprepare	= clk_nodrv_disable_unprepare,
2821 	.set_rate	= clk_nodrv_set_rate,
2822 	.set_parent	= clk_nodrv_set_parent,
2823 };
2824 
2825 /**
2826  * clk_unregister - unregister a currently registered clock
2827  * @clk: clock to unregister
2828  */
2829 void clk_unregister(struct clk *clk)
2830 {
2831 	unsigned long flags;
2832 
2833 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2834 		return;
2835 
2836 	clk_debug_unregister(clk->core);
2837 
2838 	clk_prepare_lock();
2839 
2840 	if (clk->core->ops == &clk_nodrv_ops) {
2841 		pr_err("%s: unregistered clock: %s\n", __func__,
2842 		       clk->core->name);
2843 		goto unlock;
2844 	}
2845 	/*
2846 	 * Assign empty clock ops for consumers that might still hold
2847 	 * a reference to this clock.
2848 	 */
2849 	flags = clk_enable_lock();
2850 	clk->core->ops = &clk_nodrv_ops;
2851 	clk_enable_unlock(flags);
2852 
2853 	if (!hlist_empty(&clk->core->children)) {
2854 		struct clk_core *child;
2855 		struct hlist_node *t;
2856 
2857 		/* Reparent all children to the orphan list. */
2858 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2859 					  child_node)
2860 			clk_core_set_parent(child, NULL);
2861 	}
2862 
2863 	hlist_del_init(&clk->core->child_node);
2864 
2865 	if (clk->core->prepare_count)
2866 		pr_warn("%s: unregistering prepared clock: %s\n",
2867 					__func__, clk->core->name);
2868 	kref_put(&clk->core->ref, __clk_release);
2869 unlock:
2870 	clk_prepare_unlock();
2871 }
2872 EXPORT_SYMBOL_GPL(clk_unregister);
2873 
2874 /**
2875  * clk_hw_unregister - unregister a currently registered clk_hw
2876  * @hw: hardware-specific clock data to unregister
2877  */
2878 void clk_hw_unregister(struct clk_hw *hw)
2879 {
2880 	clk_unregister(hw->clk);
2881 }
2882 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2883 
2884 static void devm_clk_release(struct device *dev, void *res)
2885 {
2886 	clk_unregister(*(struct clk **)res);
2887 }
2888 
2889 static void devm_clk_hw_release(struct device *dev, void *res)
2890 {
2891 	clk_hw_unregister(*(struct clk_hw **)res);
2892 }
2893 
2894 /**
2895  * devm_clk_register - resource managed clk_register()
2896  * @dev: device that is registering this clock
2897  * @hw: link to hardware-specific clock data
2898  *
2899  * Managed clk_register(). Clocks returned from this function are
2900  * automatically clk_unregister()ed on driver detach. See clk_register() for
2901  * more information.
2902  */
2903 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2904 {
2905 	struct clk *clk;
2906 	struct clk **clkp;
2907 
2908 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2909 	if (!clkp)
2910 		return ERR_PTR(-ENOMEM);
2911 
2912 	clk = clk_register(dev, hw);
2913 	if (!IS_ERR(clk)) {
2914 		*clkp = clk;
2915 		devres_add(dev, clkp);
2916 	} else {
2917 		devres_free(clkp);
2918 	}
2919 
2920 	return clk;
2921 }
2922 EXPORT_SYMBOL_GPL(devm_clk_register);
2923 
2924 /**
2925  * devm_clk_hw_register - resource managed clk_hw_register()
2926  * @dev: device that is registering this clock
2927  * @hw: link to hardware-specific clock data
2928  *
2929  * Managed clk_hw_register(). Clocks registered by this function are
2930  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2931  * for more information.
2932  */
2933 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2934 {
2935 	struct clk_hw **hwp;
2936 	int ret;
2937 
2938 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2939 	if (!hwp)
2940 		return -ENOMEM;
2941 
2942 	ret = clk_hw_register(dev, hw);
2943 	if (!ret) {
2944 		*hwp = hw;
2945 		devres_add(dev, hwp);
2946 	} else {
2947 		devres_free(hwp);
2948 	}
2949 
2950 	return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2953 
2954 static int devm_clk_match(struct device *dev, void *res, void *data)
2955 {
2956 	struct clk *c = res;
2957 	if (WARN_ON(!c))
2958 		return 0;
2959 	return c == data;
2960 }
2961 
2962 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2963 {
2964 	struct clk_hw *hw = res;
2965 
2966 	if (WARN_ON(!hw))
2967 		return 0;
2968 	return hw == data;
2969 }
2970 
2971 /**
2972  * devm_clk_unregister - resource managed clk_unregister()
2973  * @clk: clock to unregister
2974  *
2975  * Deallocate a clock allocated with devm_clk_register(). Normally
2976  * this function will not need to be called and the resource management
2977  * code will ensure that the resource is freed.
2978  */
2979 void devm_clk_unregister(struct device *dev, struct clk *clk)
2980 {
2981 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2982 }
2983 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2984 
2985 /**
2986  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2987  * @dev: device that is unregistering the hardware-specific clock data
2988  * @hw: link to hardware-specific clock data
2989  *
2990  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2991  * this function will not need to be called and the resource management
2992  * code will ensure that the resource is freed.
2993  */
2994 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2995 {
2996 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2997 				hw));
2998 }
2999 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3000 
3001 /*
3002  * clkdev helpers
3003  */
3004 int __clk_get(struct clk *clk)
3005 {
3006 	struct clk_core *core = !clk ? NULL : clk->core;
3007 
3008 	if (core) {
3009 		if (!try_module_get(core->owner))
3010 			return 0;
3011 
3012 		kref_get(&core->ref);
3013 	}
3014 	return 1;
3015 }
3016 
3017 void __clk_put(struct clk *clk)
3018 {
3019 	struct module *owner;
3020 
3021 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3022 		return;
3023 
3024 	clk_prepare_lock();
3025 
3026 	hlist_del(&clk->clks_node);
3027 	if (clk->min_rate > clk->core->req_rate ||
3028 	    clk->max_rate < clk->core->req_rate)
3029 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3030 
3031 	owner = clk->core->owner;
3032 	kref_put(&clk->core->ref, __clk_release);
3033 
3034 	clk_prepare_unlock();
3035 
3036 	module_put(owner);
3037 
3038 	kfree(clk);
3039 }
3040 
3041 /***        clk rate change notifiers        ***/
3042 
3043 /**
3044  * clk_notifier_register - add a clk rate change notifier
3045  * @clk: struct clk * to watch
3046  * @nb: struct notifier_block * with callback info
3047  *
3048  * Request notification when clk's rate changes.  This uses an SRCU
3049  * notifier because we want it to block and notifier unregistrations are
3050  * uncommon.  The callbacks associated with the notifier must not
3051  * re-enter into the clk framework by calling any top-level clk APIs;
3052  * this will cause a nested prepare_lock mutex.
3053  *
3054  * In all notification cases (pre, post and abort rate change) the original
3055  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3056  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3057  *
3058  * clk_notifier_register() must be called from non-atomic context.
3059  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3060  * allocation failure; otherwise, passes along the return value of
3061  * srcu_notifier_chain_register().
3062  */
3063 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3064 {
3065 	struct clk_notifier *cn;
3066 	int ret = -ENOMEM;
3067 
3068 	if (!clk || !nb)
3069 		return -EINVAL;
3070 
3071 	clk_prepare_lock();
3072 
3073 	/* search the list of notifiers for this clk */
3074 	list_for_each_entry(cn, &clk_notifier_list, node)
3075 		if (cn->clk == clk)
3076 			break;
3077 
3078 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3079 	if (cn->clk != clk) {
3080 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3081 		if (!cn)
3082 			goto out;
3083 
3084 		cn->clk = clk;
3085 		srcu_init_notifier_head(&cn->notifier_head);
3086 
3087 		list_add(&cn->node, &clk_notifier_list);
3088 	}
3089 
3090 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3091 
3092 	clk->core->notifier_count++;
3093 
3094 out:
3095 	clk_prepare_unlock();
3096 
3097 	return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(clk_notifier_register);
3100 
3101 /**
3102  * clk_notifier_unregister - remove a clk rate change notifier
3103  * @clk: struct clk *
3104  * @nb: struct notifier_block * with callback info
3105  *
3106  * Request no further notification for changes to 'clk' and frees memory
3107  * allocated in clk_notifier_register.
3108  *
3109  * Returns -EINVAL if called with null arguments; otherwise, passes
3110  * along the return value of srcu_notifier_chain_unregister().
3111  */
3112 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3113 {
3114 	struct clk_notifier *cn = NULL;
3115 	int ret = -EINVAL;
3116 
3117 	if (!clk || !nb)
3118 		return -EINVAL;
3119 
3120 	clk_prepare_lock();
3121 
3122 	list_for_each_entry(cn, &clk_notifier_list, node)
3123 		if (cn->clk == clk)
3124 			break;
3125 
3126 	if (cn->clk == clk) {
3127 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3128 
3129 		clk->core->notifier_count--;
3130 
3131 		/* XXX the notifier code should handle this better */
3132 		if (!cn->notifier_head.head) {
3133 			srcu_cleanup_notifier_head(&cn->notifier_head);
3134 			list_del(&cn->node);
3135 			kfree(cn);
3136 		}
3137 
3138 	} else {
3139 		ret = -ENOENT;
3140 	}
3141 
3142 	clk_prepare_unlock();
3143 
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3147 
3148 #ifdef CONFIG_OF
3149 /**
3150  * struct of_clk_provider - Clock provider registration structure
3151  * @link: Entry in global list of clock providers
3152  * @node: Pointer to device tree node of clock provider
3153  * @get: Get clock callback.  Returns NULL or a struct clk for the
3154  *       given clock specifier
3155  * @data: context pointer to be passed into @get callback
3156  */
3157 struct of_clk_provider {
3158 	struct list_head link;
3159 
3160 	struct device_node *node;
3161 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3162 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3163 	void *data;
3164 };
3165 
3166 static const struct of_device_id __clk_of_table_sentinel
3167 	__used __section(__clk_of_table_end);
3168 
3169 static LIST_HEAD(of_clk_providers);
3170 static DEFINE_MUTEX(of_clk_mutex);
3171 
3172 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3173 				     void *data)
3174 {
3175 	return data;
3176 }
3177 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3178 
3179 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3180 {
3181 	return data;
3182 }
3183 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3184 
3185 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3186 {
3187 	struct clk_onecell_data *clk_data = data;
3188 	unsigned int idx = clkspec->args[0];
3189 
3190 	if (idx >= clk_data->clk_num) {
3191 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3192 		return ERR_PTR(-EINVAL);
3193 	}
3194 
3195 	return clk_data->clks[idx];
3196 }
3197 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3198 
3199 struct clk_hw *
3200 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3201 {
3202 	struct clk_hw_onecell_data *hw_data = data;
3203 	unsigned int idx = clkspec->args[0];
3204 
3205 	if (idx >= hw_data->num) {
3206 		pr_err("%s: invalid index %u\n", __func__, idx);
3207 		return ERR_PTR(-EINVAL);
3208 	}
3209 
3210 	return hw_data->hws[idx];
3211 }
3212 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3213 
3214 /**
3215  * of_clk_add_provider() - Register a clock provider for a node
3216  * @np: Device node pointer associated with clock provider
3217  * @clk_src_get: callback for decoding clock
3218  * @data: context pointer for @clk_src_get callback.
3219  */
3220 int of_clk_add_provider(struct device_node *np,
3221 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3222 						   void *data),
3223 			void *data)
3224 {
3225 	struct of_clk_provider *cp;
3226 	int ret;
3227 
3228 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3229 	if (!cp)
3230 		return -ENOMEM;
3231 
3232 	cp->node = of_node_get(np);
3233 	cp->data = data;
3234 	cp->get = clk_src_get;
3235 
3236 	mutex_lock(&of_clk_mutex);
3237 	list_add(&cp->link, &of_clk_providers);
3238 	mutex_unlock(&of_clk_mutex);
3239 	pr_debug("Added clock from %pOF\n", np);
3240 
3241 	ret = of_clk_set_defaults(np, true);
3242 	if (ret < 0)
3243 		of_clk_del_provider(np);
3244 
3245 	return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3248 
3249 /**
3250  * of_clk_add_hw_provider() - Register a clock provider for a node
3251  * @np: Device node pointer associated with clock provider
3252  * @get: callback for decoding clk_hw
3253  * @data: context pointer for @get callback.
3254  */
3255 int of_clk_add_hw_provider(struct device_node *np,
3256 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3257 						 void *data),
3258 			   void *data)
3259 {
3260 	struct of_clk_provider *cp;
3261 	int ret;
3262 
3263 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3264 	if (!cp)
3265 		return -ENOMEM;
3266 
3267 	cp->node = of_node_get(np);
3268 	cp->data = data;
3269 	cp->get_hw = get;
3270 
3271 	mutex_lock(&of_clk_mutex);
3272 	list_add(&cp->link, &of_clk_providers);
3273 	mutex_unlock(&of_clk_mutex);
3274 	pr_debug("Added clk_hw provider from %pOF\n", np);
3275 
3276 	ret = of_clk_set_defaults(np, true);
3277 	if (ret < 0)
3278 		of_clk_del_provider(np);
3279 
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3283 
3284 static void devm_of_clk_release_provider(struct device *dev, void *res)
3285 {
3286 	of_clk_del_provider(*(struct device_node **)res);
3287 }
3288 
3289 int devm_of_clk_add_hw_provider(struct device *dev,
3290 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3291 					      void *data),
3292 			void *data)
3293 {
3294 	struct device_node **ptr, *np;
3295 	int ret;
3296 
3297 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3298 			   GFP_KERNEL);
3299 	if (!ptr)
3300 		return -ENOMEM;
3301 
3302 	np = dev->of_node;
3303 	ret = of_clk_add_hw_provider(np, get, data);
3304 	if (!ret) {
3305 		*ptr = np;
3306 		devres_add(dev, ptr);
3307 	} else {
3308 		devres_free(ptr);
3309 	}
3310 
3311 	return ret;
3312 }
3313 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3314 
3315 /**
3316  * of_clk_del_provider() - Remove a previously registered clock provider
3317  * @np: Device node pointer associated with clock provider
3318  */
3319 void of_clk_del_provider(struct device_node *np)
3320 {
3321 	struct of_clk_provider *cp;
3322 
3323 	mutex_lock(&of_clk_mutex);
3324 	list_for_each_entry(cp, &of_clk_providers, link) {
3325 		if (cp->node == np) {
3326 			list_del(&cp->link);
3327 			of_node_put(cp->node);
3328 			kfree(cp);
3329 			break;
3330 		}
3331 	}
3332 	mutex_unlock(&of_clk_mutex);
3333 }
3334 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3335 
3336 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3337 {
3338 	struct device_node **np = res;
3339 
3340 	if (WARN_ON(!np || !*np))
3341 		return 0;
3342 
3343 	return *np == data;
3344 }
3345 
3346 void devm_of_clk_del_provider(struct device *dev)
3347 {
3348 	int ret;
3349 
3350 	ret = devres_release(dev, devm_of_clk_release_provider,
3351 			     devm_clk_provider_match, dev->of_node);
3352 
3353 	WARN_ON(ret);
3354 }
3355 EXPORT_SYMBOL(devm_of_clk_del_provider);
3356 
3357 static struct clk_hw *
3358 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3359 			      struct of_phandle_args *clkspec)
3360 {
3361 	struct clk *clk;
3362 
3363 	if (provider->get_hw)
3364 		return provider->get_hw(clkspec, provider->data);
3365 
3366 	clk = provider->get(clkspec, provider->data);
3367 	if (IS_ERR(clk))
3368 		return ERR_CAST(clk);
3369 	return __clk_get_hw(clk);
3370 }
3371 
3372 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3373 				       const char *dev_id, const char *con_id)
3374 {
3375 	struct of_clk_provider *provider;
3376 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3377 	struct clk_hw *hw;
3378 
3379 	if (!clkspec)
3380 		return ERR_PTR(-EINVAL);
3381 
3382 	/* Check if we have such a provider in our array */
3383 	mutex_lock(&of_clk_mutex);
3384 	list_for_each_entry(provider, &of_clk_providers, link) {
3385 		if (provider->node == clkspec->np) {
3386 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3387 			clk = __clk_create_clk(hw, dev_id, con_id);
3388 		}
3389 
3390 		if (!IS_ERR(clk)) {
3391 			if (!__clk_get(clk)) {
3392 				__clk_free_clk(clk);
3393 				clk = ERR_PTR(-ENOENT);
3394 			}
3395 
3396 			break;
3397 		}
3398 	}
3399 	mutex_unlock(&of_clk_mutex);
3400 
3401 	return clk;
3402 }
3403 
3404 /**
3405  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3406  * @clkspec: pointer to a clock specifier data structure
3407  *
3408  * This function looks up a struct clk from the registered list of clock
3409  * providers, an input is a clock specifier data structure as returned
3410  * from the of_parse_phandle_with_args() function call.
3411  */
3412 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3413 {
3414 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3415 }
3416 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3417 
3418 /**
3419  * of_clk_get_parent_count() - Count the number of clocks a device node has
3420  * @np: device node to count
3421  *
3422  * Returns: The number of clocks that are possible parents of this node
3423  */
3424 unsigned int of_clk_get_parent_count(struct device_node *np)
3425 {
3426 	int count;
3427 
3428 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3429 	if (count < 0)
3430 		return 0;
3431 
3432 	return count;
3433 }
3434 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3435 
3436 const char *of_clk_get_parent_name(struct device_node *np, int index)
3437 {
3438 	struct of_phandle_args clkspec;
3439 	struct property *prop;
3440 	const char *clk_name;
3441 	const __be32 *vp;
3442 	u32 pv;
3443 	int rc;
3444 	int count;
3445 	struct clk *clk;
3446 
3447 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3448 					&clkspec);
3449 	if (rc)
3450 		return NULL;
3451 
3452 	index = clkspec.args_count ? clkspec.args[0] : 0;
3453 	count = 0;
3454 
3455 	/* if there is an indices property, use it to transfer the index
3456 	 * specified into an array offset for the clock-output-names property.
3457 	 */
3458 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3459 		if (index == pv) {
3460 			index = count;
3461 			break;
3462 		}
3463 		count++;
3464 	}
3465 	/* We went off the end of 'clock-indices' without finding it */
3466 	if (prop && !vp)
3467 		return NULL;
3468 
3469 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3470 					  index,
3471 					  &clk_name) < 0) {
3472 		/*
3473 		 * Best effort to get the name if the clock has been
3474 		 * registered with the framework. If the clock isn't
3475 		 * registered, we return the node name as the name of
3476 		 * the clock as long as #clock-cells = 0.
3477 		 */
3478 		clk = of_clk_get_from_provider(&clkspec);
3479 		if (IS_ERR(clk)) {
3480 			if (clkspec.args_count == 0)
3481 				clk_name = clkspec.np->name;
3482 			else
3483 				clk_name = NULL;
3484 		} else {
3485 			clk_name = __clk_get_name(clk);
3486 			clk_put(clk);
3487 		}
3488 	}
3489 
3490 
3491 	of_node_put(clkspec.np);
3492 	return clk_name;
3493 }
3494 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3495 
3496 /**
3497  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3498  * number of parents
3499  * @np: Device node pointer associated with clock provider
3500  * @parents: pointer to char array that hold the parents' names
3501  * @size: size of the @parents array
3502  *
3503  * Return: number of parents for the clock node.
3504  */
3505 int of_clk_parent_fill(struct device_node *np, const char **parents,
3506 		       unsigned int size)
3507 {
3508 	unsigned int i = 0;
3509 
3510 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3511 		i++;
3512 
3513 	return i;
3514 }
3515 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3516 
3517 struct clock_provider {
3518 	of_clk_init_cb_t clk_init_cb;
3519 	struct device_node *np;
3520 	struct list_head node;
3521 };
3522 
3523 /*
3524  * This function looks for a parent clock. If there is one, then it
3525  * checks that the provider for this parent clock was initialized, in
3526  * this case the parent clock will be ready.
3527  */
3528 static int parent_ready(struct device_node *np)
3529 {
3530 	int i = 0;
3531 
3532 	while (true) {
3533 		struct clk *clk = of_clk_get(np, i);
3534 
3535 		/* this parent is ready we can check the next one */
3536 		if (!IS_ERR(clk)) {
3537 			clk_put(clk);
3538 			i++;
3539 			continue;
3540 		}
3541 
3542 		/* at least one parent is not ready, we exit now */
3543 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3544 			return 0;
3545 
3546 		/*
3547 		 * Here we make assumption that the device tree is
3548 		 * written correctly. So an error means that there is
3549 		 * no more parent. As we didn't exit yet, then the
3550 		 * previous parent are ready. If there is no clock
3551 		 * parent, no need to wait for them, then we can
3552 		 * consider their absence as being ready
3553 		 */
3554 		return 1;
3555 	}
3556 }
3557 
3558 /**
3559  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3560  * @np: Device node pointer associated with clock provider
3561  * @index: clock index
3562  * @flags: pointer to clk_core->flags
3563  *
3564  * Detects if the clock-critical property exists and, if so, sets the
3565  * corresponding CLK_IS_CRITICAL flag.
3566  *
3567  * Do not use this function. It exists only for legacy Device Tree
3568  * bindings, such as the one-clock-per-node style that are outdated.
3569  * Those bindings typically put all clock data into .dts and the Linux
3570  * driver has no clock data, thus making it impossible to set this flag
3571  * correctly from the driver. Only those drivers may call
3572  * of_clk_detect_critical from their setup functions.
3573  *
3574  * Return: error code or zero on success
3575  */
3576 int of_clk_detect_critical(struct device_node *np,
3577 					  int index, unsigned long *flags)
3578 {
3579 	struct property *prop;
3580 	const __be32 *cur;
3581 	uint32_t idx;
3582 
3583 	if (!np || !flags)
3584 		return -EINVAL;
3585 
3586 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3587 		if (index == idx)
3588 			*flags |= CLK_IS_CRITICAL;
3589 
3590 	return 0;
3591 }
3592 
3593 /**
3594  * of_clk_init() - Scan and init clock providers from the DT
3595  * @matches: array of compatible values and init functions for providers.
3596  *
3597  * This function scans the device tree for matching clock providers
3598  * and calls their initialization functions. It also does it by trying
3599  * to follow the dependencies.
3600  */
3601 void __init of_clk_init(const struct of_device_id *matches)
3602 {
3603 	const struct of_device_id *match;
3604 	struct device_node *np;
3605 	struct clock_provider *clk_provider, *next;
3606 	bool is_init_done;
3607 	bool force = false;
3608 	LIST_HEAD(clk_provider_list);
3609 
3610 	if (!matches)
3611 		matches = &__clk_of_table;
3612 
3613 	/* First prepare the list of the clocks providers */
3614 	for_each_matching_node_and_match(np, matches, &match) {
3615 		struct clock_provider *parent;
3616 
3617 		if (!of_device_is_available(np))
3618 			continue;
3619 
3620 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3621 		if (!parent) {
3622 			list_for_each_entry_safe(clk_provider, next,
3623 						 &clk_provider_list, node) {
3624 				list_del(&clk_provider->node);
3625 				of_node_put(clk_provider->np);
3626 				kfree(clk_provider);
3627 			}
3628 			of_node_put(np);
3629 			return;
3630 		}
3631 
3632 		parent->clk_init_cb = match->data;
3633 		parent->np = of_node_get(np);
3634 		list_add_tail(&parent->node, &clk_provider_list);
3635 	}
3636 
3637 	while (!list_empty(&clk_provider_list)) {
3638 		is_init_done = false;
3639 		list_for_each_entry_safe(clk_provider, next,
3640 					&clk_provider_list, node) {
3641 			if (force || parent_ready(clk_provider->np)) {
3642 
3643 				/* Don't populate platform devices */
3644 				of_node_set_flag(clk_provider->np,
3645 						 OF_POPULATED);
3646 
3647 				clk_provider->clk_init_cb(clk_provider->np);
3648 				of_clk_set_defaults(clk_provider->np, true);
3649 
3650 				list_del(&clk_provider->node);
3651 				of_node_put(clk_provider->np);
3652 				kfree(clk_provider);
3653 				is_init_done = true;
3654 			}
3655 		}
3656 
3657 		/*
3658 		 * We didn't manage to initialize any of the
3659 		 * remaining providers during the last loop, so now we
3660 		 * initialize all the remaining ones unconditionally
3661 		 * in case the clock parent was not mandatory
3662 		 */
3663 		if (!is_init_done)
3664 			force = true;
3665 	}
3666 }
3667 #endif
3668