xref: /openbmc/linux/drivers/clk/clk.c (revision 65ee8aeb)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static long clk_core_get_accuracy(struct clk_core *clk);
41 static unsigned long clk_core_get_rate(struct clk_core *clk);
42 static int clk_core_get_phase(struct clk_core *clk);
43 static bool clk_core_is_prepared(struct clk_core *clk);
44 static bool clk_core_is_enabled(struct clk_core *clk);
45 static struct clk_core *clk_core_lookup(const char *name);
46 
47 /***    private data structures    ***/
48 
49 struct clk_core {
50 	const char		*name;
51 	const struct clk_ops	*ops;
52 	struct clk_hw		*hw;
53 	struct module		*owner;
54 	struct clk_core		*parent;
55 	const char		**parent_names;
56 	struct clk_core		**parents;
57 	u8			num_parents;
58 	u8			new_parent_index;
59 	unsigned long		rate;
60 	unsigned long		req_rate;
61 	unsigned long		new_rate;
62 	struct clk_core		*new_parent;
63 	struct clk_core		*new_child;
64 	unsigned long		flags;
65 	unsigned int		enable_count;
66 	unsigned int		prepare_count;
67 	unsigned long		accuracy;
68 	int			phase;
69 	struct hlist_head	children;
70 	struct hlist_node	child_node;
71 	struct hlist_node	debug_node;
72 	struct hlist_head	clks;
73 	unsigned int		notifier_count;
74 #ifdef CONFIG_DEBUG_FS
75 	struct dentry		*dentry;
76 #endif
77 	struct kref		ref;
78 };
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82 
83 struct clk {
84 	struct clk_core	*core;
85 	const char *dev_id;
86 	const char *con_id;
87 	unsigned long min_rate;
88 	unsigned long max_rate;
89 	struct hlist_node clks_node;
90 };
91 
92 /***           locking             ***/
93 static void clk_prepare_lock(void)
94 {
95 	if (!mutex_trylock(&prepare_lock)) {
96 		if (prepare_owner == current) {
97 			prepare_refcnt++;
98 			return;
99 		}
100 		mutex_lock(&prepare_lock);
101 	}
102 	WARN_ON_ONCE(prepare_owner != NULL);
103 	WARN_ON_ONCE(prepare_refcnt != 0);
104 	prepare_owner = current;
105 	prepare_refcnt = 1;
106 }
107 
108 static void clk_prepare_unlock(void)
109 {
110 	WARN_ON_ONCE(prepare_owner != current);
111 	WARN_ON_ONCE(prepare_refcnt == 0);
112 
113 	if (--prepare_refcnt)
114 		return;
115 	prepare_owner = NULL;
116 	mutex_unlock(&prepare_lock);
117 }
118 
119 static unsigned long clk_enable_lock(void)
120 {
121 	unsigned long flags;
122 
123 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
124 		if (enable_owner == current) {
125 			enable_refcnt++;
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
137 static void clk_enable_unlock(unsigned long flags)
138 {
139 	WARN_ON_ONCE(enable_owner != current);
140 	WARN_ON_ONCE(enable_refcnt == 0);
141 
142 	if (--enable_refcnt)
143 		return;
144 	enable_owner = NULL;
145 	spin_unlock_irqrestore(&enable_lock, flags);
146 }
147 
148 /***        debugfs support        ***/
149 
150 #ifdef CONFIG_DEBUG_FS
151 #include <linux/debugfs.h>
152 
153 static struct dentry *rootdir;
154 static int inited = 0;
155 static DEFINE_MUTEX(clk_debug_lock);
156 static HLIST_HEAD(clk_debug_list);
157 
158 static struct hlist_head *all_lists[] = {
159 	&clk_root_list,
160 	&clk_orphan_list,
161 	NULL,
162 };
163 
164 static struct hlist_head *orphan_list[] = {
165 	&clk_orphan_list,
166 	NULL,
167 };
168 
169 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
170 				 int level)
171 {
172 	if (!c)
173 		return;
174 
175 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
176 		   level * 3 + 1, "",
177 		   30 - level * 3, c->name,
178 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
179 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
180 }
181 
182 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
183 				     int level)
184 {
185 	struct clk_core *child;
186 
187 	if (!c)
188 		return;
189 
190 	clk_summary_show_one(s, c, level);
191 
192 	hlist_for_each_entry(child, &c->children, child_node)
193 		clk_summary_show_subtree(s, child, level + 1);
194 }
195 
196 static int clk_summary_show(struct seq_file *s, void *data)
197 {
198 	struct clk_core *c;
199 	struct hlist_head **lists = (struct hlist_head **)s->private;
200 
201 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
202 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
203 
204 	clk_prepare_lock();
205 
206 	for (; *lists; lists++)
207 		hlist_for_each_entry(c, *lists, child_node)
208 			clk_summary_show_subtree(s, c, 0);
209 
210 	clk_prepare_unlock();
211 
212 	return 0;
213 }
214 
215 
216 static int clk_summary_open(struct inode *inode, struct file *file)
217 {
218 	return single_open(file, clk_summary_show, inode->i_private);
219 }
220 
221 static const struct file_operations clk_summary_fops = {
222 	.open		= clk_summary_open,
223 	.read		= seq_read,
224 	.llseek		= seq_lseek,
225 	.release	= single_release,
226 };
227 
228 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
229 {
230 	if (!c)
231 		return;
232 
233 	seq_printf(s, "\"%s\": { ", c->name);
234 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
235 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
236 	seq_printf(s, "\"rate\": %lu", clk_core_get_rate(c));
237 	seq_printf(s, "\"accuracy\": %lu", clk_core_get_accuracy(c));
238 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
239 }
240 
241 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
242 {
243 	struct clk_core *child;
244 
245 	if (!c)
246 		return;
247 
248 	clk_dump_one(s, c, level);
249 
250 	hlist_for_each_entry(child, &c->children, child_node) {
251 		seq_printf(s, ",");
252 		clk_dump_subtree(s, child, level + 1);
253 	}
254 
255 	seq_printf(s, "}");
256 }
257 
258 static int clk_dump(struct seq_file *s, void *data)
259 {
260 	struct clk_core *c;
261 	bool first_node = true;
262 	struct hlist_head **lists = (struct hlist_head **)s->private;
263 
264 	seq_printf(s, "{");
265 
266 	clk_prepare_lock();
267 
268 	for (; *lists; lists++) {
269 		hlist_for_each_entry(c, *lists, child_node) {
270 			if (!first_node)
271 				seq_puts(s, ",");
272 			first_node = false;
273 			clk_dump_subtree(s, c, 0);
274 		}
275 	}
276 
277 	clk_prepare_unlock();
278 
279 	seq_printf(s, "}");
280 	return 0;
281 }
282 
283 
284 static int clk_dump_open(struct inode *inode, struct file *file)
285 {
286 	return single_open(file, clk_dump, inode->i_private);
287 }
288 
289 static const struct file_operations clk_dump_fops = {
290 	.open		= clk_dump_open,
291 	.read		= seq_read,
292 	.llseek		= seq_lseek,
293 	.release	= single_release,
294 };
295 
296 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry)
297 {
298 	struct dentry *d;
299 	int ret = -ENOMEM;
300 
301 	if (!clk || !pdentry) {
302 		ret = -EINVAL;
303 		goto out;
304 	}
305 
306 	d = debugfs_create_dir(clk->name, pdentry);
307 	if (!d)
308 		goto out;
309 
310 	clk->dentry = d;
311 
312 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
313 			(u32 *)&clk->rate);
314 	if (!d)
315 		goto err_out;
316 
317 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
318 			(u32 *)&clk->accuracy);
319 	if (!d)
320 		goto err_out;
321 
322 	d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
323 			(u32 *)&clk->phase);
324 	if (!d)
325 		goto err_out;
326 
327 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
328 			(u32 *)&clk->flags);
329 	if (!d)
330 		goto err_out;
331 
332 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
333 			(u32 *)&clk->prepare_count);
334 	if (!d)
335 		goto err_out;
336 
337 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
338 			(u32 *)&clk->enable_count);
339 	if (!d)
340 		goto err_out;
341 
342 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
343 			(u32 *)&clk->notifier_count);
344 	if (!d)
345 		goto err_out;
346 
347 	if (clk->ops->debug_init) {
348 		ret = clk->ops->debug_init(clk->hw, clk->dentry);
349 		if (ret)
350 			goto err_out;
351 	}
352 
353 	ret = 0;
354 	goto out;
355 
356 err_out:
357 	debugfs_remove_recursive(clk->dentry);
358 	clk->dentry = NULL;
359 out:
360 	return ret;
361 }
362 
363 /**
364  * clk_debug_register - add a clk node to the debugfs clk tree
365  * @clk: the clk being added to the debugfs clk tree
366  *
367  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
368  * initialized.  Otherwise it bails out early since the debugfs clk tree
369  * will be created lazily by clk_debug_init as part of a late_initcall.
370  */
371 static int clk_debug_register(struct clk_core *clk)
372 {
373 	int ret = 0;
374 
375 	mutex_lock(&clk_debug_lock);
376 	hlist_add_head(&clk->debug_node, &clk_debug_list);
377 
378 	if (!inited)
379 		goto unlock;
380 
381 	ret = clk_debug_create_one(clk, rootdir);
382 unlock:
383 	mutex_unlock(&clk_debug_lock);
384 
385 	return ret;
386 }
387 
388  /**
389  * clk_debug_unregister - remove a clk node from the debugfs clk tree
390  * @clk: the clk being removed from the debugfs clk tree
391  *
392  * Dynamically removes a clk and all it's children clk nodes from the
393  * debugfs clk tree if clk->dentry points to debugfs created by
394  * clk_debug_register in __clk_init.
395  */
396 static void clk_debug_unregister(struct clk_core *clk)
397 {
398 	mutex_lock(&clk_debug_lock);
399 	hlist_del_init(&clk->debug_node);
400 	debugfs_remove_recursive(clk->dentry);
401 	clk->dentry = NULL;
402 	mutex_unlock(&clk_debug_lock);
403 }
404 
405 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
406 				void *data, const struct file_operations *fops)
407 {
408 	struct dentry *d = NULL;
409 
410 	if (hw->core->dentry)
411 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
412 					fops);
413 
414 	return d;
415 }
416 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
417 
418 /**
419  * clk_debug_init - lazily create the debugfs clk tree visualization
420  *
421  * clks are often initialized very early during boot before memory can
422  * be dynamically allocated and well before debugfs is setup.
423  * clk_debug_init walks the clk tree hierarchy while holding
424  * prepare_lock and creates the topology as part of a late_initcall,
425  * thus insuring that clks initialized very early will still be
426  * represented in the debugfs clk tree.  This function should only be
427  * called once at boot-time, and all other clks added dynamically will
428  * be done so with clk_debug_register.
429  */
430 static int __init clk_debug_init(void)
431 {
432 	struct clk_core *clk;
433 	struct dentry *d;
434 
435 	rootdir = debugfs_create_dir("clk", NULL);
436 
437 	if (!rootdir)
438 		return -ENOMEM;
439 
440 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
441 				&clk_summary_fops);
442 	if (!d)
443 		return -ENOMEM;
444 
445 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
446 				&clk_dump_fops);
447 	if (!d)
448 		return -ENOMEM;
449 
450 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
451 				&orphan_list, &clk_summary_fops);
452 	if (!d)
453 		return -ENOMEM;
454 
455 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
456 				&orphan_list, &clk_dump_fops);
457 	if (!d)
458 		return -ENOMEM;
459 
460 	mutex_lock(&clk_debug_lock);
461 	hlist_for_each_entry(clk, &clk_debug_list, debug_node)
462 		clk_debug_create_one(clk, rootdir);
463 
464 	inited = 1;
465 	mutex_unlock(&clk_debug_lock);
466 
467 	return 0;
468 }
469 late_initcall(clk_debug_init);
470 #else
471 static inline int clk_debug_register(struct clk_core *clk) { return 0; }
472 static inline void clk_debug_reparent(struct clk_core *clk,
473 				      struct clk_core *new_parent)
474 {
475 }
476 static inline void clk_debug_unregister(struct clk_core *clk)
477 {
478 }
479 #endif
480 
481 /* caller must hold prepare_lock */
482 static void clk_unprepare_unused_subtree(struct clk_core *clk)
483 {
484 	struct clk_core *child;
485 
486 	lockdep_assert_held(&prepare_lock);
487 
488 	hlist_for_each_entry(child, &clk->children, child_node)
489 		clk_unprepare_unused_subtree(child);
490 
491 	if (clk->prepare_count)
492 		return;
493 
494 	if (clk->flags & CLK_IGNORE_UNUSED)
495 		return;
496 
497 	if (clk_core_is_prepared(clk)) {
498 		trace_clk_unprepare(clk);
499 		if (clk->ops->unprepare_unused)
500 			clk->ops->unprepare_unused(clk->hw);
501 		else if (clk->ops->unprepare)
502 			clk->ops->unprepare(clk->hw);
503 		trace_clk_unprepare_complete(clk);
504 	}
505 }
506 
507 /* caller must hold prepare_lock */
508 static void clk_disable_unused_subtree(struct clk_core *clk)
509 {
510 	struct clk_core *child;
511 	unsigned long flags;
512 
513 	lockdep_assert_held(&prepare_lock);
514 
515 	hlist_for_each_entry(child, &clk->children, child_node)
516 		clk_disable_unused_subtree(child);
517 
518 	flags = clk_enable_lock();
519 
520 	if (clk->enable_count)
521 		goto unlock_out;
522 
523 	if (clk->flags & CLK_IGNORE_UNUSED)
524 		goto unlock_out;
525 
526 	/*
527 	 * some gate clocks have special needs during the disable-unused
528 	 * sequence.  call .disable_unused if available, otherwise fall
529 	 * back to .disable
530 	 */
531 	if (clk_core_is_enabled(clk)) {
532 		trace_clk_disable(clk);
533 		if (clk->ops->disable_unused)
534 			clk->ops->disable_unused(clk->hw);
535 		else if (clk->ops->disable)
536 			clk->ops->disable(clk->hw);
537 		trace_clk_disable_complete(clk);
538 	}
539 
540 unlock_out:
541 	clk_enable_unlock(flags);
542 }
543 
544 static bool clk_ignore_unused;
545 static int __init clk_ignore_unused_setup(char *__unused)
546 {
547 	clk_ignore_unused = true;
548 	return 1;
549 }
550 __setup("clk_ignore_unused", clk_ignore_unused_setup);
551 
552 static int clk_disable_unused(void)
553 {
554 	struct clk_core *clk;
555 
556 	if (clk_ignore_unused) {
557 		pr_warn("clk: Not disabling unused clocks\n");
558 		return 0;
559 	}
560 
561 	clk_prepare_lock();
562 
563 	hlist_for_each_entry(clk, &clk_root_list, child_node)
564 		clk_disable_unused_subtree(clk);
565 
566 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
567 		clk_disable_unused_subtree(clk);
568 
569 	hlist_for_each_entry(clk, &clk_root_list, child_node)
570 		clk_unprepare_unused_subtree(clk);
571 
572 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
573 		clk_unprepare_unused_subtree(clk);
574 
575 	clk_prepare_unlock();
576 
577 	return 0;
578 }
579 late_initcall_sync(clk_disable_unused);
580 
581 /***    helper functions   ***/
582 
583 const char *__clk_get_name(struct clk *clk)
584 {
585 	return !clk ? NULL : clk->core->name;
586 }
587 EXPORT_SYMBOL_GPL(__clk_get_name);
588 
589 struct clk_hw *__clk_get_hw(struct clk *clk)
590 {
591 	return !clk ? NULL : clk->core->hw;
592 }
593 EXPORT_SYMBOL_GPL(__clk_get_hw);
594 
595 u8 __clk_get_num_parents(struct clk *clk)
596 {
597 	return !clk ? 0 : clk->core->num_parents;
598 }
599 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
600 
601 struct clk *__clk_get_parent(struct clk *clk)
602 {
603 	if (!clk)
604 		return NULL;
605 
606 	/* TODO: Create a per-user clk and change callers to call clk_put */
607 	return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
608 }
609 EXPORT_SYMBOL_GPL(__clk_get_parent);
610 
611 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk,
612 							 u8 index)
613 {
614 	if (!clk || index >= clk->num_parents)
615 		return NULL;
616 	else if (!clk->parents)
617 		return clk_core_lookup(clk->parent_names[index]);
618 	else if (!clk->parents[index])
619 		return clk->parents[index] =
620 			clk_core_lookup(clk->parent_names[index]);
621 	else
622 		return clk->parents[index];
623 }
624 
625 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
626 {
627 	struct clk_core *parent;
628 
629 	if (!clk)
630 		return NULL;
631 
632 	parent = clk_core_get_parent_by_index(clk->core, index);
633 
634 	return !parent ? NULL : parent->hw->clk;
635 }
636 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
637 
638 unsigned int __clk_get_enable_count(struct clk *clk)
639 {
640 	return !clk ? 0 : clk->core->enable_count;
641 }
642 
643 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk)
644 {
645 	unsigned long ret;
646 
647 	if (!clk) {
648 		ret = 0;
649 		goto out;
650 	}
651 
652 	ret = clk->rate;
653 
654 	if (clk->flags & CLK_IS_ROOT)
655 		goto out;
656 
657 	if (!clk->parent)
658 		ret = 0;
659 
660 out:
661 	return ret;
662 }
663 
664 unsigned long __clk_get_rate(struct clk *clk)
665 {
666 	if (!clk)
667 		return 0;
668 
669 	return clk_core_get_rate_nolock(clk->core);
670 }
671 EXPORT_SYMBOL_GPL(__clk_get_rate);
672 
673 static unsigned long __clk_get_accuracy(struct clk_core *clk)
674 {
675 	if (!clk)
676 		return 0;
677 
678 	return clk->accuracy;
679 }
680 
681 unsigned long __clk_get_flags(struct clk *clk)
682 {
683 	return !clk ? 0 : clk->core->flags;
684 }
685 EXPORT_SYMBOL_GPL(__clk_get_flags);
686 
687 static bool clk_core_is_prepared(struct clk_core *clk)
688 {
689 	int ret;
690 
691 	if (!clk)
692 		return false;
693 
694 	/*
695 	 * .is_prepared is optional for clocks that can prepare
696 	 * fall back to software usage counter if it is missing
697 	 */
698 	if (!clk->ops->is_prepared) {
699 		ret = clk->prepare_count ? 1 : 0;
700 		goto out;
701 	}
702 
703 	ret = clk->ops->is_prepared(clk->hw);
704 out:
705 	return !!ret;
706 }
707 
708 bool __clk_is_prepared(struct clk *clk)
709 {
710 	if (!clk)
711 		return false;
712 
713 	return clk_core_is_prepared(clk->core);
714 }
715 
716 static bool clk_core_is_enabled(struct clk_core *clk)
717 {
718 	int ret;
719 
720 	if (!clk)
721 		return false;
722 
723 	/*
724 	 * .is_enabled is only mandatory for clocks that gate
725 	 * fall back to software usage counter if .is_enabled is missing
726 	 */
727 	if (!clk->ops->is_enabled) {
728 		ret = clk->enable_count ? 1 : 0;
729 		goto out;
730 	}
731 
732 	ret = clk->ops->is_enabled(clk->hw);
733 out:
734 	return !!ret;
735 }
736 
737 bool __clk_is_enabled(struct clk *clk)
738 {
739 	if (!clk)
740 		return false;
741 
742 	return clk_core_is_enabled(clk->core);
743 }
744 EXPORT_SYMBOL_GPL(__clk_is_enabled);
745 
746 static struct clk_core *__clk_lookup_subtree(const char *name,
747 					     struct clk_core *clk)
748 {
749 	struct clk_core *child;
750 	struct clk_core *ret;
751 
752 	if (!strcmp(clk->name, name))
753 		return clk;
754 
755 	hlist_for_each_entry(child, &clk->children, child_node) {
756 		ret = __clk_lookup_subtree(name, child);
757 		if (ret)
758 			return ret;
759 	}
760 
761 	return NULL;
762 }
763 
764 static struct clk_core *clk_core_lookup(const char *name)
765 {
766 	struct clk_core *root_clk;
767 	struct clk_core *ret;
768 
769 	if (!name)
770 		return NULL;
771 
772 	/* search the 'proper' clk tree first */
773 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
774 		ret = __clk_lookup_subtree(name, root_clk);
775 		if (ret)
776 			return ret;
777 	}
778 
779 	/* if not found, then search the orphan tree */
780 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
781 		ret = __clk_lookup_subtree(name, root_clk);
782 		if (ret)
783 			return ret;
784 	}
785 
786 	return NULL;
787 }
788 
789 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
790 			   unsigned long best, unsigned long flags)
791 {
792 	if (flags & CLK_MUX_ROUND_CLOSEST)
793 		return abs(now - rate) < abs(best - rate);
794 
795 	return now <= rate && now > best;
796 }
797 
798 static long
799 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
800 			     unsigned long min_rate,
801 			     unsigned long max_rate,
802 			     unsigned long *best_parent_rate,
803 			     struct clk_hw **best_parent_p,
804 			     unsigned long flags)
805 {
806 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
807 	int i, num_parents;
808 	unsigned long parent_rate, best = 0;
809 
810 	/* if NO_REPARENT flag set, pass through to current parent */
811 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
812 		parent = core->parent;
813 		if (core->flags & CLK_SET_RATE_PARENT)
814 			best = __clk_determine_rate(parent ? parent->hw : NULL,
815 						    rate, min_rate, max_rate);
816 		else if (parent)
817 			best = clk_core_get_rate_nolock(parent);
818 		else
819 			best = clk_core_get_rate_nolock(core);
820 		goto out;
821 	}
822 
823 	/* find the parent that can provide the fastest rate <= rate */
824 	num_parents = core->num_parents;
825 	for (i = 0; i < num_parents; i++) {
826 		parent = clk_core_get_parent_by_index(core, i);
827 		if (!parent)
828 			continue;
829 		if (core->flags & CLK_SET_RATE_PARENT)
830 			parent_rate = __clk_determine_rate(parent->hw, rate,
831 							   min_rate,
832 							   max_rate);
833 		else
834 			parent_rate = clk_core_get_rate_nolock(parent);
835 		if (mux_is_better_rate(rate, parent_rate, best, flags)) {
836 			best_parent = parent;
837 			best = parent_rate;
838 		}
839 	}
840 
841 out:
842 	if (best_parent)
843 		*best_parent_p = best_parent->hw;
844 	*best_parent_rate = best;
845 
846 	return best;
847 }
848 
849 struct clk *__clk_lookup(const char *name)
850 {
851 	struct clk_core *core = clk_core_lookup(name);
852 
853 	return !core ? NULL : core->hw->clk;
854 }
855 
856 static void clk_core_get_boundaries(struct clk_core *clk,
857 				    unsigned long *min_rate,
858 				    unsigned long *max_rate)
859 {
860 	struct clk *clk_user;
861 
862 	*min_rate = 0;
863 	*max_rate = ULONG_MAX;
864 
865 	hlist_for_each_entry(clk_user, &clk->clks, clks_node)
866 		*min_rate = max(*min_rate, clk_user->min_rate);
867 
868 	hlist_for_each_entry(clk_user, &clk->clks, clks_node)
869 		*max_rate = min(*max_rate, clk_user->max_rate);
870 }
871 
872 /*
873  * Helper for finding best parent to provide a given frequency. This can be used
874  * directly as a determine_rate callback (e.g. for a mux), or from a more
875  * complex clock that may combine a mux with other operations.
876  */
877 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
878 			      unsigned long min_rate,
879 			      unsigned long max_rate,
880 			      unsigned long *best_parent_rate,
881 			      struct clk_hw **best_parent_p)
882 {
883 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
884 					    best_parent_rate,
885 					    best_parent_p, 0);
886 }
887 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
888 
889 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
890 			      unsigned long min_rate,
891 			      unsigned long max_rate,
892 			      unsigned long *best_parent_rate,
893 			      struct clk_hw **best_parent_p)
894 {
895 	return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
896 					    best_parent_rate,
897 					    best_parent_p,
898 					    CLK_MUX_ROUND_CLOSEST);
899 }
900 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
901 
902 /***        clk api        ***/
903 
904 static void clk_core_unprepare(struct clk_core *clk)
905 {
906 	if (!clk)
907 		return;
908 
909 	if (WARN_ON(clk->prepare_count == 0))
910 		return;
911 
912 	if (--clk->prepare_count > 0)
913 		return;
914 
915 	WARN_ON(clk->enable_count > 0);
916 
917 	trace_clk_unprepare(clk);
918 
919 	if (clk->ops->unprepare)
920 		clk->ops->unprepare(clk->hw);
921 
922 	trace_clk_unprepare_complete(clk);
923 	clk_core_unprepare(clk->parent);
924 }
925 
926 /**
927  * clk_unprepare - undo preparation of a clock source
928  * @clk: the clk being unprepared
929  *
930  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
931  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
932  * if the operation may sleep.  One example is a clk which is accessed over
933  * I2c.  In the complex case a clk gate operation may require a fast and a slow
934  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
935  * exclusive.  In fact clk_disable must be called before clk_unprepare.
936  */
937 void clk_unprepare(struct clk *clk)
938 {
939 	if (IS_ERR_OR_NULL(clk))
940 		return;
941 
942 	clk_prepare_lock();
943 	clk_core_unprepare(clk->core);
944 	clk_prepare_unlock();
945 }
946 EXPORT_SYMBOL_GPL(clk_unprepare);
947 
948 static int clk_core_prepare(struct clk_core *clk)
949 {
950 	int ret = 0;
951 
952 	if (!clk)
953 		return 0;
954 
955 	if (clk->prepare_count == 0) {
956 		ret = clk_core_prepare(clk->parent);
957 		if (ret)
958 			return ret;
959 
960 		trace_clk_prepare(clk);
961 
962 		if (clk->ops->prepare)
963 			ret = clk->ops->prepare(clk->hw);
964 
965 		trace_clk_prepare_complete(clk);
966 
967 		if (ret) {
968 			clk_core_unprepare(clk->parent);
969 			return ret;
970 		}
971 	}
972 
973 	clk->prepare_count++;
974 
975 	return 0;
976 }
977 
978 /**
979  * clk_prepare - prepare a clock source
980  * @clk: the clk being prepared
981  *
982  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
983  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
984  * operation may sleep.  One example is a clk which is accessed over I2c.  In
985  * the complex case a clk ungate operation may require a fast and a slow part.
986  * It is this reason that clk_prepare and clk_enable are not mutually
987  * exclusive.  In fact clk_prepare must be called before clk_enable.
988  * Returns 0 on success, -EERROR otherwise.
989  */
990 int clk_prepare(struct clk *clk)
991 {
992 	int ret;
993 
994 	if (!clk)
995 		return 0;
996 
997 	clk_prepare_lock();
998 	ret = clk_core_prepare(clk->core);
999 	clk_prepare_unlock();
1000 
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(clk_prepare);
1004 
1005 static void clk_core_disable(struct clk_core *clk)
1006 {
1007 	if (!clk)
1008 		return;
1009 
1010 	if (WARN_ON(clk->enable_count == 0))
1011 		return;
1012 
1013 	if (--clk->enable_count > 0)
1014 		return;
1015 
1016 	trace_clk_disable(clk);
1017 
1018 	if (clk->ops->disable)
1019 		clk->ops->disable(clk->hw);
1020 
1021 	trace_clk_disable_complete(clk);
1022 
1023 	clk_core_disable(clk->parent);
1024 }
1025 
1026 static void __clk_disable(struct clk *clk)
1027 {
1028 	if (!clk)
1029 		return;
1030 
1031 	clk_core_disable(clk->core);
1032 }
1033 
1034 /**
1035  * clk_disable - gate a clock
1036  * @clk: the clk being gated
1037  *
1038  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1039  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1040  * clk if the operation is fast and will never sleep.  One example is a
1041  * SoC-internal clk which is controlled via simple register writes.  In the
1042  * complex case a clk gate operation may require a fast and a slow part.  It is
1043  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1044  * In fact clk_disable must be called before clk_unprepare.
1045  */
1046 void clk_disable(struct clk *clk)
1047 {
1048 	unsigned long flags;
1049 
1050 	if (IS_ERR_OR_NULL(clk))
1051 		return;
1052 
1053 	flags = clk_enable_lock();
1054 	__clk_disable(clk);
1055 	clk_enable_unlock(flags);
1056 }
1057 EXPORT_SYMBOL_GPL(clk_disable);
1058 
1059 static int clk_core_enable(struct clk_core *clk)
1060 {
1061 	int ret = 0;
1062 
1063 	if (!clk)
1064 		return 0;
1065 
1066 	if (WARN_ON(clk->prepare_count == 0))
1067 		return -ESHUTDOWN;
1068 
1069 	if (clk->enable_count == 0) {
1070 		ret = clk_core_enable(clk->parent);
1071 
1072 		if (ret)
1073 			return ret;
1074 
1075 		trace_clk_enable(clk);
1076 
1077 		if (clk->ops->enable)
1078 			ret = clk->ops->enable(clk->hw);
1079 
1080 		trace_clk_enable_complete(clk);
1081 
1082 		if (ret) {
1083 			clk_core_disable(clk->parent);
1084 			return ret;
1085 		}
1086 	}
1087 
1088 	clk->enable_count++;
1089 	return 0;
1090 }
1091 
1092 static int __clk_enable(struct clk *clk)
1093 {
1094 	if (!clk)
1095 		return 0;
1096 
1097 	return clk_core_enable(clk->core);
1098 }
1099 
1100 /**
1101  * clk_enable - ungate a clock
1102  * @clk: the clk being ungated
1103  *
1104  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1105  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1106  * if the operation will never sleep.  One example is a SoC-internal clk which
1107  * is controlled via simple register writes.  In the complex case a clk ungate
1108  * operation may require a fast and a slow part.  It is this reason that
1109  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1110  * must be called before clk_enable.  Returns 0 on success, -EERROR
1111  * otherwise.
1112  */
1113 int clk_enable(struct clk *clk)
1114 {
1115 	unsigned long flags;
1116 	int ret;
1117 
1118 	flags = clk_enable_lock();
1119 	ret = __clk_enable(clk);
1120 	clk_enable_unlock(flags);
1121 
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(clk_enable);
1125 
1126 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk,
1127 						unsigned long rate,
1128 						unsigned long min_rate,
1129 						unsigned long max_rate)
1130 {
1131 	unsigned long parent_rate = 0;
1132 	struct clk_core *parent;
1133 	struct clk_hw *parent_hw;
1134 
1135 	lockdep_assert_held(&prepare_lock);
1136 
1137 	if (!clk)
1138 		return 0;
1139 
1140 	parent = clk->parent;
1141 	if (parent)
1142 		parent_rate = parent->rate;
1143 
1144 	if (clk->ops->determine_rate) {
1145 		parent_hw = parent ? parent->hw : NULL;
1146 		return clk->ops->determine_rate(clk->hw, rate,
1147 						min_rate, max_rate,
1148 						&parent_rate, &parent_hw);
1149 	} else if (clk->ops->round_rate)
1150 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1151 	else if (clk->flags & CLK_SET_RATE_PARENT)
1152 		return clk_core_round_rate_nolock(clk->parent, rate, min_rate,
1153 						  max_rate);
1154 	else
1155 		return clk->rate;
1156 }
1157 
1158 /**
1159  * __clk_determine_rate - get the closest rate actually supported by a clock
1160  * @hw: determine the rate of this clock
1161  * @rate: target rate
1162  * @min_rate: returned rate must be greater than this rate
1163  * @max_rate: returned rate must be less than this rate
1164  *
1165  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate and
1166  * .determine_rate.
1167  */
1168 unsigned long __clk_determine_rate(struct clk_hw *hw,
1169 				   unsigned long rate,
1170 				   unsigned long min_rate,
1171 				   unsigned long max_rate)
1172 {
1173 	if (!hw)
1174 		return 0;
1175 
1176 	return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
1177 }
1178 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1179 
1180 /**
1181  * __clk_round_rate - round the given rate for a clk
1182  * @clk: round the rate of this clock
1183  * @rate: the rate which is to be rounded
1184  *
1185  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
1186  */
1187 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1188 {
1189 	unsigned long min_rate;
1190 	unsigned long max_rate;
1191 
1192 	if (!clk)
1193 		return 0;
1194 
1195 	clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
1196 
1197 	return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
1198 }
1199 EXPORT_SYMBOL_GPL(__clk_round_rate);
1200 
1201 /**
1202  * clk_round_rate - round the given rate for a clk
1203  * @clk: the clk for which we are rounding a rate
1204  * @rate: the rate which is to be rounded
1205  *
1206  * Takes in a rate as input and rounds it to a rate that the clk can actually
1207  * use which is then returned.  If clk doesn't support round_rate operation
1208  * then the parent rate is returned.
1209  */
1210 long clk_round_rate(struct clk *clk, unsigned long rate)
1211 {
1212 	unsigned long ret;
1213 
1214 	if (!clk)
1215 		return 0;
1216 
1217 	clk_prepare_lock();
1218 	ret = __clk_round_rate(clk, rate);
1219 	clk_prepare_unlock();
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(clk_round_rate);
1224 
1225 /**
1226  * __clk_notify - call clk notifier chain
1227  * @clk: struct clk * that is changing rate
1228  * @msg: clk notifier type (see include/linux/clk.h)
1229  * @old_rate: old clk rate
1230  * @new_rate: new clk rate
1231  *
1232  * Triggers a notifier call chain on the clk rate-change notification
1233  * for 'clk'.  Passes a pointer to the struct clk and the previous
1234  * and current rates to the notifier callback.  Intended to be called by
1235  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1236  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1237  * a driver returns that.
1238  */
1239 static int __clk_notify(struct clk_core *clk, unsigned long msg,
1240 		unsigned long old_rate, unsigned long new_rate)
1241 {
1242 	struct clk_notifier *cn;
1243 	struct clk_notifier_data cnd;
1244 	int ret = NOTIFY_DONE;
1245 
1246 	cnd.old_rate = old_rate;
1247 	cnd.new_rate = new_rate;
1248 
1249 	list_for_each_entry(cn, &clk_notifier_list, node) {
1250 		if (cn->clk->core == clk) {
1251 			cnd.clk = cn->clk;
1252 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1253 					&cnd);
1254 		}
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * __clk_recalc_accuracies
1262  * @clk: first clk in the subtree
1263  *
1264  * Walks the subtree of clks starting with clk and recalculates accuracies as
1265  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1266  * callback then it is assumed that the clock will take on the accuracy of it's
1267  * parent.
1268  *
1269  * Caller must hold prepare_lock.
1270  */
1271 static void __clk_recalc_accuracies(struct clk_core *clk)
1272 {
1273 	unsigned long parent_accuracy = 0;
1274 	struct clk_core *child;
1275 
1276 	lockdep_assert_held(&prepare_lock);
1277 
1278 	if (clk->parent)
1279 		parent_accuracy = clk->parent->accuracy;
1280 
1281 	if (clk->ops->recalc_accuracy)
1282 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1283 							  parent_accuracy);
1284 	else
1285 		clk->accuracy = parent_accuracy;
1286 
1287 	hlist_for_each_entry(child, &clk->children, child_node)
1288 		__clk_recalc_accuracies(child);
1289 }
1290 
1291 static long clk_core_get_accuracy(struct clk_core *clk)
1292 {
1293 	unsigned long accuracy;
1294 
1295 	clk_prepare_lock();
1296 	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1297 		__clk_recalc_accuracies(clk);
1298 
1299 	accuracy = __clk_get_accuracy(clk);
1300 	clk_prepare_unlock();
1301 
1302 	return accuracy;
1303 }
1304 
1305 /**
1306  * clk_get_accuracy - return the accuracy of clk
1307  * @clk: the clk whose accuracy is being returned
1308  *
1309  * Simply returns the cached accuracy of the clk, unless
1310  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1311  * issued.
1312  * If clk is NULL then returns 0.
1313  */
1314 long clk_get_accuracy(struct clk *clk)
1315 {
1316 	if (!clk)
1317 		return 0;
1318 
1319 	return clk_core_get_accuracy(clk->core);
1320 }
1321 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1322 
1323 static unsigned long clk_recalc(struct clk_core *clk,
1324 				unsigned long parent_rate)
1325 {
1326 	if (clk->ops->recalc_rate)
1327 		return clk->ops->recalc_rate(clk->hw, parent_rate);
1328 	return parent_rate;
1329 }
1330 
1331 /**
1332  * __clk_recalc_rates
1333  * @clk: first clk in the subtree
1334  * @msg: notification type (see include/linux/clk.h)
1335  *
1336  * Walks the subtree of clks starting with clk and recalculates rates as it
1337  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1338  * it is assumed that the clock will take on the rate of its parent.
1339  *
1340  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1341  * if necessary.
1342  *
1343  * Caller must hold prepare_lock.
1344  */
1345 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg)
1346 {
1347 	unsigned long old_rate;
1348 	unsigned long parent_rate = 0;
1349 	struct clk_core *child;
1350 
1351 	lockdep_assert_held(&prepare_lock);
1352 
1353 	old_rate = clk->rate;
1354 
1355 	if (clk->parent)
1356 		parent_rate = clk->parent->rate;
1357 
1358 	clk->rate = clk_recalc(clk, parent_rate);
1359 
1360 	/*
1361 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1362 	 * & ABORT_RATE_CHANGE notifiers
1363 	 */
1364 	if (clk->notifier_count && msg)
1365 		__clk_notify(clk, msg, old_rate, clk->rate);
1366 
1367 	hlist_for_each_entry(child, &clk->children, child_node)
1368 		__clk_recalc_rates(child, msg);
1369 }
1370 
1371 static unsigned long clk_core_get_rate(struct clk_core *clk)
1372 {
1373 	unsigned long rate;
1374 
1375 	clk_prepare_lock();
1376 
1377 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1378 		__clk_recalc_rates(clk, 0);
1379 
1380 	rate = clk_core_get_rate_nolock(clk);
1381 	clk_prepare_unlock();
1382 
1383 	return rate;
1384 }
1385 
1386 /**
1387  * clk_get_rate - return the rate of clk
1388  * @clk: the clk whose rate is being returned
1389  *
1390  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1391  * is set, which means a recalc_rate will be issued.
1392  * If clk is NULL then returns 0.
1393  */
1394 unsigned long clk_get_rate(struct clk *clk)
1395 {
1396 	if (!clk)
1397 		return 0;
1398 
1399 	return clk_core_get_rate(clk->core);
1400 }
1401 EXPORT_SYMBOL_GPL(clk_get_rate);
1402 
1403 static int clk_fetch_parent_index(struct clk_core *clk,
1404 				  struct clk_core *parent)
1405 {
1406 	int i;
1407 
1408 	if (!clk->parents) {
1409 		clk->parents = kcalloc(clk->num_parents,
1410 					sizeof(struct clk *), GFP_KERNEL);
1411 		if (!clk->parents)
1412 			return -ENOMEM;
1413 	}
1414 
1415 	/*
1416 	 * find index of new parent clock using cached parent ptrs,
1417 	 * or if not yet cached, use string name comparison and cache
1418 	 * them now to avoid future calls to clk_core_lookup.
1419 	 */
1420 	for (i = 0; i < clk->num_parents; i++) {
1421 		if (clk->parents[i] == parent)
1422 			return i;
1423 
1424 		if (clk->parents[i])
1425 			continue;
1426 
1427 		if (!strcmp(clk->parent_names[i], parent->name)) {
1428 			clk->parents[i] = clk_core_lookup(parent->name);
1429 			return i;
1430 		}
1431 	}
1432 
1433 	return -EINVAL;
1434 }
1435 
1436 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent)
1437 {
1438 	hlist_del(&clk->child_node);
1439 
1440 	if (new_parent) {
1441 		/* avoid duplicate POST_RATE_CHANGE notifications */
1442 		if (new_parent->new_child == clk)
1443 			new_parent->new_child = NULL;
1444 
1445 		hlist_add_head(&clk->child_node, &new_parent->children);
1446 	} else {
1447 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1448 	}
1449 
1450 	clk->parent = new_parent;
1451 }
1452 
1453 static struct clk_core *__clk_set_parent_before(struct clk_core *clk,
1454 					   struct clk_core *parent)
1455 {
1456 	unsigned long flags;
1457 	struct clk_core *old_parent = clk->parent;
1458 
1459 	/*
1460 	 * Migrate prepare state between parents and prevent race with
1461 	 * clk_enable().
1462 	 *
1463 	 * If the clock is not prepared, then a race with
1464 	 * clk_enable/disable() is impossible since we already have the
1465 	 * prepare lock (future calls to clk_enable() need to be preceded by
1466 	 * a clk_prepare()).
1467 	 *
1468 	 * If the clock is prepared, migrate the prepared state to the new
1469 	 * parent and also protect against a race with clk_enable() by
1470 	 * forcing the clock and the new parent on.  This ensures that all
1471 	 * future calls to clk_enable() are practically NOPs with respect to
1472 	 * hardware and software states.
1473 	 *
1474 	 * See also: Comment for clk_set_parent() below.
1475 	 */
1476 	if (clk->prepare_count) {
1477 		clk_core_prepare(parent);
1478 		flags = clk_enable_lock();
1479 		clk_core_enable(parent);
1480 		clk_core_enable(clk);
1481 		clk_enable_unlock(flags);
1482 	}
1483 
1484 	/* update the clk tree topology */
1485 	flags = clk_enable_lock();
1486 	clk_reparent(clk, parent);
1487 	clk_enable_unlock(flags);
1488 
1489 	return old_parent;
1490 }
1491 
1492 static void __clk_set_parent_after(struct clk_core *core,
1493 				   struct clk_core *parent,
1494 				   struct clk_core *old_parent)
1495 {
1496 	unsigned long flags;
1497 
1498 	/*
1499 	 * Finish the migration of prepare state and undo the changes done
1500 	 * for preventing a race with clk_enable().
1501 	 */
1502 	if (core->prepare_count) {
1503 		flags = clk_enable_lock();
1504 		clk_core_disable(core);
1505 		clk_core_disable(old_parent);
1506 		clk_enable_unlock(flags);
1507 		clk_core_unprepare(old_parent);
1508 	}
1509 }
1510 
1511 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent,
1512 			    u8 p_index)
1513 {
1514 	unsigned long flags;
1515 	int ret = 0;
1516 	struct clk_core *old_parent;
1517 
1518 	old_parent = __clk_set_parent_before(clk, parent);
1519 
1520 	trace_clk_set_parent(clk, parent);
1521 
1522 	/* change clock input source */
1523 	if (parent && clk->ops->set_parent)
1524 		ret = clk->ops->set_parent(clk->hw, p_index);
1525 
1526 	trace_clk_set_parent_complete(clk, parent);
1527 
1528 	if (ret) {
1529 		flags = clk_enable_lock();
1530 		clk_reparent(clk, old_parent);
1531 		clk_enable_unlock(flags);
1532 
1533 		if (clk->prepare_count) {
1534 			flags = clk_enable_lock();
1535 			clk_core_disable(clk);
1536 			clk_core_disable(parent);
1537 			clk_enable_unlock(flags);
1538 			clk_core_unprepare(parent);
1539 		}
1540 		return ret;
1541 	}
1542 
1543 	__clk_set_parent_after(clk, parent, old_parent);
1544 
1545 	return 0;
1546 }
1547 
1548 /**
1549  * __clk_speculate_rates
1550  * @clk: first clk in the subtree
1551  * @parent_rate: the "future" rate of clk's parent
1552  *
1553  * Walks the subtree of clks starting with clk, speculating rates as it
1554  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1555  *
1556  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1557  * pre-rate change notifications and returns early if no clks in the
1558  * subtree have subscribed to the notifications.  Note that if a clk does not
1559  * implement the .recalc_rate callback then it is assumed that the clock will
1560  * take on the rate of its parent.
1561  *
1562  * Caller must hold prepare_lock.
1563  */
1564 static int __clk_speculate_rates(struct clk_core *clk,
1565 				 unsigned long parent_rate)
1566 {
1567 	struct clk_core *child;
1568 	unsigned long new_rate;
1569 	int ret = NOTIFY_DONE;
1570 
1571 	lockdep_assert_held(&prepare_lock);
1572 
1573 	new_rate = clk_recalc(clk, parent_rate);
1574 
1575 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1576 	if (clk->notifier_count)
1577 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1578 
1579 	if (ret & NOTIFY_STOP_MASK) {
1580 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1581 				__func__, clk->name, ret);
1582 		goto out;
1583 	}
1584 
1585 	hlist_for_each_entry(child, &clk->children, child_node) {
1586 		ret = __clk_speculate_rates(child, new_rate);
1587 		if (ret & NOTIFY_STOP_MASK)
1588 			break;
1589 	}
1590 
1591 out:
1592 	return ret;
1593 }
1594 
1595 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate,
1596 			     struct clk_core *new_parent, u8 p_index)
1597 {
1598 	struct clk_core *child;
1599 
1600 	clk->new_rate = new_rate;
1601 	clk->new_parent = new_parent;
1602 	clk->new_parent_index = p_index;
1603 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1604 	clk->new_child = NULL;
1605 	if (new_parent && new_parent != clk->parent)
1606 		new_parent->new_child = clk;
1607 
1608 	hlist_for_each_entry(child, &clk->children, child_node) {
1609 		child->new_rate = clk_recalc(child, new_rate);
1610 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1611 	}
1612 }
1613 
1614 /*
1615  * calculate the new rates returning the topmost clock that has to be
1616  * changed.
1617  */
1618 static struct clk_core *clk_calc_new_rates(struct clk_core *clk,
1619 					   unsigned long rate)
1620 {
1621 	struct clk_core *top = clk;
1622 	struct clk_core *old_parent, *parent;
1623 	struct clk_hw *parent_hw;
1624 	unsigned long best_parent_rate = 0;
1625 	unsigned long new_rate;
1626 	unsigned long min_rate;
1627 	unsigned long max_rate;
1628 	int p_index = 0;
1629 	long ret;
1630 
1631 	/* sanity */
1632 	if (IS_ERR_OR_NULL(clk))
1633 		return NULL;
1634 
1635 	/* save parent rate, if it exists */
1636 	parent = old_parent = clk->parent;
1637 	if (parent)
1638 		best_parent_rate = parent->rate;
1639 
1640 	clk_core_get_boundaries(clk, &min_rate, &max_rate);
1641 
1642 	/* find the closest rate and parent clk/rate */
1643 	if (clk->ops->determine_rate) {
1644 		parent_hw = parent ? parent->hw : NULL;
1645 		ret = clk->ops->determine_rate(clk->hw, rate,
1646 					       min_rate,
1647 					       max_rate,
1648 					       &best_parent_rate,
1649 					       &parent_hw);
1650 		if (ret < 0)
1651 			return NULL;
1652 
1653 		new_rate = ret;
1654 		parent = parent_hw ? parent_hw->core : NULL;
1655 	} else if (clk->ops->round_rate) {
1656 		ret = clk->ops->round_rate(clk->hw, rate,
1657 					   &best_parent_rate);
1658 		if (ret < 0)
1659 			return NULL;
1660 
1661 		new_rate = ret;
1662 		if (new_rate < min_rate || new_rate > max_rate)
1663 			return NULL;
1664 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1665 		/* pass-through clock without adjustable parent */
1666 		clk->new_rate = clk->rate;
1667 		return NULL;
1668 	} else {
1669 		/* pass-through clock with adjustable parent */
1670 		top = clk_calc_new_rates(parent, rate);
1671 		new_rate = parent->new_rate;
1672 		goto out;
1673 	}
1674 
1675 	/* some clocks must be gated to change parent */
1676 	if (parent != old_parent &&
1677 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1678 		pr_debug("%s: %s not gated but wants to reparent\n",
1679 			 __func__, clk->name);
1680 		return NULL;
1681 	}
1682 
1683 	/* try finding the new parent index */
1684 	if (parent && clk->num_parents > 1) {
1685 		p_index = clk_fetch_parent_index(clk, parent);
1686 		if (p_index < 0) {
1687 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1688 				 __func__, parent->name, clk->name);
1689 			return NULL;
1690 		}
1691 	}
1692 
1693 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1694 	    best_parent_rate != parent->rate)
1695 		top = clk_calc_new_rates(parent, best_parent_rate);
1696 
1697 out:
1698 	clk_calc_subtree(clk, new_rate, parent, p_index);
1699 
1700 	return top;
1701 }
1702 
1703 /*
1704  * Notify about rate changes in a subtree. Always walk down the whole tree
1705  * so that in case of an error we can walk down the whole tree again and
1706  * abort the change.
1707  */
1708 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk,
1709 						  unsigned long event)
1710 {
1711 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1712 	int ret = NOTIFY_DONE;
1713 
1714 	if (clk->rate == clk->new_rate)
1715 		return NULL;
1716 
1717 	if (clk->notifier_count) {
1718 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1719 		if (ret & NOTIFY_STOP_MASK)
1720 			fail_clk = clk;
1721 	}
1722 
1723 	hlist_for_each_entry(child, &clk->children, child_node) {
1724 		/* Skip children who will be reparented to another clock */
1725 		if (child->new_parent && child->new_parent != clk)
1726 			continue;
1727 		tmp_clk = clk_propagate_rate_change(child, event);
1728 		if (tmp_clk)
1729 			fail_clk = tmp_clk;
1730 	}
1731 
1732 	/* handle the new child who might not be in clk->children yet */
1733 	if (clk->new_child) {
1734 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1735 		if (tmp_clk)
1736 			fail_clk = tmp_clk;
1737 	}
1738 
1739 	return fail_clk;
1740 }
1741 
1742 /*
1743  * walk down a subtree and set the new rates notifying the rate
1744  * change on the way
1745  */
1746 static void clk_change_rate(struct clk_core *clk)
1747 {
1748 	struct clk_core *child;
1749 	struct hlist_node *tmp;
1750 	unsigned long old_rate;
1751 	unsigned long best_parent_rate = 0;
1752 	bool skip_set_rate = false;
1753 	struct clk_core *old_parent;
1754 
1755 	old_rate = clk->rate;
1756 
1757 	if (clk->new_parent)
1758 		best_parent_rate = clk->new_parent->rate;
1759 	else if (clk->parent)
1760 		best_parent_rate = clk->parent->rate;
1761 
1762 	if (clk->new_parent && clk->new_parent != clk->parent) {
1763 		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1764 		trace_clk_set_parent(clk, clk->new_parent);
1765 
1766 		if (clk->ops->set_rate_and_parent) {
1767 			skip_set_rate = true;
1768 			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1769 					best_parent_rate,
1770 					clk->new_parent_index);
1771 		} else if (clk->ops->set_parent) {
1772 			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1773 		}
1774 
1775 		trace_clk_set_parent_complete(clk, clk->new_parent);
1776 		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1777 	}
1778 
1779 	trace_clk_set_rate(clk, clk->new_rate);
1780 
1781 	if (!skip_set_rate && clk->ops->set_rate)
1782 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1783 
1784 	trace_clk_set_rate_complete(clk, clk->new_rate);
1785 
1786 	clk->rate = clk_recalc(clk, best_parent_rate);
1787 
1788 	if (clk->notifier_count && old_rate != clk->rate)
1789 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1790 
1791 	/*
1792 	 * Use safe iteration, as change_rate can actually swap parents
1793 	 * for certain clock types.
1794 	 */
1795 	hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1796 		/* Skip children who will be reparented to another clock */
1797 		if (child->new_parent && child->new_parent != clk)
1798 			continue;
1799 		clk_change_rate(child);
1800 	}
1801 
1802 	/* handle the new child who might not be in clk->children yet */
1803 	if (clk->new_child)
1804 		clk_change_rate(clk->new_child);
1805 }
1806 
1807 static int clk_core_set_rate_nolock(struct clk_core *clk,
1808 				    unsigned long req_rate)
1809 {
1810 	struct clk_core *top, *fail_clk;
1811 	unsigned long rate = req_rate;
1812 	int ret = 0;
1813 
1814 	if (!clk)
1815 		return 0;
1816 
1817 	/* bail early if nothing to do */
1818 	if (rate == clk_core_get_rate_nolock(clk))
1819 		return 0;
1820 
1821 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count)
1822 		return -EBUSY;
1823 
1824 	/* calculate new rates and get the topmost changed clock */
1825 	top = clk_calc_new_rates(clk, rate);
1826 	if (!top)
1827 		return -EINVAL;
1828 
1829 	/* notify that we are about to change rates */
1830 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1831 	if (fail_clk) {
1832 		pr_debug("%s: failed to set %s rate\n", __func__,
1833 				fail_clk->name);
1834 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1835 		return -EBUSY;
1836 	}
1837 
1838 	/* change the rates */
1839 	clk_change_rate(top);
1840 
1841 	clk->req_rate = req_rate;
1842 
1843 	return ret;
1844 }
1845 
1846 /**
1847  * clk_set_rate - specify a new rate for clk
1848  * @clk: the clk whose rate is being changed
1849  * @rate: the new rate for clk
1850  *
1851  * In the simplest case clk_set_rate will only adjust the rate of clk.
1852  *
1853  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1854  * propagate up to clk's parent; whether or not this happens depends on the
1855  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1856  * after calling .round_rate then upstream parent propagation is ignored.  If
1857  * *parent_rate comes back with a new rate for clk's parent then we propagate
1858  * up to clk's parent and set its rate.  Upward propagation will continue
1859  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1860  * .round_rate stops requesting changes to clk's parent_rate.
1861  *
1862  * Rate changes are accomplished via tree traversal that also recalculates the
1863  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1864  *
1865  * Returns 0 on success, -EERROR otherwise.
1866  */
1867 int clk_set_rate(struct clk *clk, unsigned long rate)
1868 {
1869 	int ret;
1870 
1871 	if (!clk)
1872 		return 0;
1873 
1874 	/* prevent racing with updates to the clock topology */
1875 	clk_prepare_lock();
1876 
1877 	ret = clk_core_set_rate_nolock(clk->core, rate);
1878 
1879 	clk_prepare_unlock();
1880 
1881 	return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(clk_set_rate);
1884 
1885 /**
1886  * clk_set_rate_range - set a rate range for a clock source
1887  * @clk: clock source
1888  * @min: desired minimum clock rate in Hz, inclusive
1889  * @max: desired maximum clock rate in Hz, inclusive
1890  *
1891  * Returns success (0) or negative errno.
1892  */
1893 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1894 {
1895 	int ret = 0;
1896 
1897 	if (!clk)
1898 		return 0;
1899 
1900 	if (min > max) {
1901 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1902 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1903 		       min, max);
1904 		return -EINVAL;
1905 	}
1906 
1907 	clk_prepare_lock();
1908 
1909 	if (min != clk->min_rate || max != clk->max_rate) {
1910 		clk->min_rate = min;
1911 		clk->max_rate = max;
1912 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1913 	}
1914 
1915 	clk_prepare_unlock();
1916 
1917 	return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1920 
1921 /**
1922  * clk_set_min_rate - set a minimum clock rate for a clock source
1923  * @clk: clock source
1924  * @rate: desired minimum clock rate in Hz, inclusive
1925  *
1926  * Returns success (0) or negative errno.
1927  */
1928 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1929 {
1930 	if (!clk)
1931 		return 0;
1932 
1933 	return clk_set_rate_range(clk, rate, clk->max_rate);
1934 }
1935 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1936 
1937 /**
1938  * clk_set_max_rate - set a maximum clock rate for a clock source
1939  * @clk: clock source
1940  * @rate: desired maximum clock rate in Hz, inclusive
1941  *
1942  * Returns success (0) or negative errno.
1943  */
1944 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1945 {
1946 	if (!clk)
1947 		return 0;
1948 
1949 	return clk_set_rate_range(clk, clk->min_rate, rate);
1950 }
1951 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1952 
1953 /**
1954  * clk_get_parent - return the parent of a clk
1955  * @clk: the clk whose parent gets returned
1956  *
1957  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1958  */
1959 struct clk *clk_get_parent(struct clk *clk)
1960 {
1961 	struct clk *parent;
1962 
1963 	clk_prepare_lock();
1964 	parent = __clk_get_parent(clk);
1965 	clk_prepare_unlock();
1966 
1967 	return parent;
1968 }
1969 EXPORT_SYMBOL_GPL(clk_get_parent);
1970 
1971 /*
1972  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1973  * optional for single-parent clocks.  Always call .get_parent if it is
1974  * available and WARN if it is missing for multi-parent clocks.
1975  *
1976  * For single-parent clocks without .get_parent, first check to see if the
1977  * .parents array exists, and if so use it to avoid an expensive tree
1978  * traversal.  If .parents does not exist then walk the tree.
1979  */
1980 static struct clk_core *__clk_init_parent(struct clk_core *clk)
1981 {
1982 	struct clk_core *ret = NULL;
1983 	u8 index;
1984 
1985 	/* handle the trivial cases */
1986 
1987 	if (!clk->num_parents)
1988 		goto out;
1989 
1990 	if (clk->num_parents == 1) {
1991 		if (IS_ERR_OR_NULL(clk->parent))
1992 			clk->parent = clk_core_lookup(clk->parent_names[0]);
1993 		ret = clk->parent;
1994 		goto out;
1995 	}
1996 
1997 	if (!clk->ops->get_parent) {
1998 		WARN(!clk->ops->get_parent,
1999 			"%s: multi-parent clocks must implement .get_parent\n",
2000 			__func__);
2001 		goto out;
2002 	};
2003 
2004 	/*
2005 	 * Do our best to cache parent clocks in clk->parents.  This prevents
2006 	 * unnecessary and expensive lookups.  We don't set clk->parent here;
2007 	 * that is done by the calling function.
2008 	 */
2009 
2010 	index = clk->ops->get_parent(clk->hw);
2011 
2012 	if (!clk->parents)
2013 		clk->parents =
2014 			kcalloc(clk->num_parents, sizeof(struct clk *),
2015 					GFP_KERNEL);
2016 
2017 	ret = clk_core_get_parent_by_index(clk, index);
2018 
2019 out:
2020 	return ret;
2021 }
2022 
2023 static void clk_core_reparent(struct clk_core *clk,
2024 				  struct clk_core *new_parent)
2025 {
2026 	clk_reparent(clk, new_parent);
2027 	__clk_recalc_accuracies(clk);
2028 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
2029 }
2030 
2031 /**
2032  * clk_has_parent - check if a clock is a possible parent for another
2033  * @clk: clock source
2034  * @parent: parent clock source
2035  *
2036  * This function can be used in drivers that need to check that a clock can be
2037  * the parent of another without actually changing the parent.
2038  *
2039  * Returns true if @parent is a possible parent for @clk, false otherwise.
2040  */
2041 bool clk_has_parent(struct clk *clk, struct clk *parent)
2042 {
2043 	struct clk_core *core, *parent_core;
2044 	unsigned int i;
2045 
2046 	/* NULL clocks should be nops, so return success if either is NULL. */
2047 	if (!clk || !parent)
2048 		return true;
2049 
2050 	core = clk->core;
2051 	parent_core = parent->core;
2052 
2053 	/* Optimize for the case where the parent is already the parent. */
2054 	if (core->parent == parent_core)
2055 		return true;
2056 
2057 	for (i = 0; i < core->num_parents; i++)
2058 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
2059 			return true;
2060 
2061 	return false;
2062 }
2063 EXPORT_SYMBOL_GPL(clk_has_parent);
2064 
2065 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent)
2066 {
2067 	int ret = 0;
2068 	int p_index = 0;
2069 	unsigned long p_rate = 0;
2070 
2071 	if (!clk)
2072 		return 0;
2073 
2074 	/* prevent racing with updates to the clock topology */
2075 	clk_prepare_lock();
2076 
2077 	if (clk->parent == parent)
2078 		goto out;
2079 
2080 	/* verify ops for for multi-parent clks */
2081 	if ((clk->num_parents > 1) && (!clk->ops->set_parent)) {
2082 		ret = -ENOSYS;
2083 		goto out;
2084 	}
2085 
2086 	/* check that we are allowed to re-parent if the clock is in use */
2087 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
2088 		ret = -EBUSY;
2089 		goto out;
2090 	}
2091 
2092 	/* try finding the new parent index */
2093 	if (parent) {
2094 		p_index = clk_fetch_parent_index(clk, parent);
2095 		p_rate = parent->rate;
2096 		if (p_index < 0) {
2097 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2098 					__func__, parent->name, clk->name);
2099 			ret = p_index;
2100 			goto out;
2101 		}
2102 	}
2103 
2104 	/* propagate PRE_RATE_CHANGE notifications */
2105 	ret = __clk_speculate_rates(clk, p_rate);
2106 
2107 	/* abort if a driver objects */
2108 	if (ret & NOTIFY_STOP_MASK)
2109 		goto out;
2110 
2111 	/* do the re-parent */
2112 	ret = __clk_set_parent(clk, parent, p_index);
2113 
2114 	/* propagate rate an accuracy recalculation accordingly */
2115 	if (ret) {
2116 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
2117 	} else {
2118 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
2119 		__clk_recalc_accuracies(clk);
2120 	}
2121 
2122 out:
2123 	clk_prepare_unlock();
2124 
2125 	return ret;
2126 }
2127 
2128 /**
2129  * clk_set_parent - switch the parent of a mux clk
2130  * @clk: the mux clk whose input we are switching
2131  * @parent: the new input to clk
2132  *
2133  * Re-parent clk to use parent as its new input source.  If clk is in
2134  * prepared state, the clk will get enabled for the duration of this call. If
2135  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2136  * that, the reparenting is glitchy in hardware, etc), use the
2137  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2138  *
2139  * After successfully changing clk's parent clk_set_parent will update the
2140  * clk topology, sysfs topology and propagate rate recalculation via
2141  * __clk_recalc_rates.
2142  *
2143  * Returns 0 on success, -EERROR otherwise.
2144  */
2145 int clk_set_parent(struct clk *clk, struct clk *parent)
2146 {
2147 	if (!clk)
2148 		return 0;
2149 
2150 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
2151 }
2152 EXPORT_SYMBOL_GPL(clk_set_parent);
2153 
2154 /**
2155  * clk_set_phase - adjust the phase shift of a clock signal
2156  * @clk: clock signal source
2157  * @degrees: number of degrees the signal is shifted
2158  *
2159  * Shifts the phase of a clock signal by the specified
2160  * degrees. Returns 0 on success, -EERROR otherwise.
2161  *
2162  * This function makes no distinction about the input or reference
2163  * signal that we adjust the clock signal phase against. For example
2164  * phase locked-loop clock signal generators we may shift phase with
2165  * respect to feedback clock signal input, but for other cases the
2166  * clock phase may be shifted with respect to some other, unspecified
2167  * signal.
2168  *
2169  * Additionally the concept of phase shift does not propagate through
2170  * the clock tree hierarchy, which sets it apart from clock rates and
2171  * clock accuracy. A parent clock phase attribute does not have an
2172  * impact on the phase attribute of a child clock.
2173  */
2174 int clk_set_phase(struct clk *clk, int degrees)
2175 {
2176 	int ret = -EINVAL;
2177 
2178 	if (!clk)
2179 		return 0;
2180 
2181 	/* sanity check degrees */
2182 	degrees %= 360;
2183 	if (degrees < 0)
2184 		degrees += 360;
2185 
2186 	clk_prepare_lock();
2187 
2188 	trace_clk_set_phase(clk->core, degrees);
2189 
2190 	if (clk->core->ops->set_phase)
2191 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2192 
2193 	trace_clk_set_phase_complete(clk->core, degrees);
2194 
2195 	if (!ret)
2196 		clk->core->phase = degrees;
2197 
2198 	clk_prepare_unlock();
2199 
2200 	return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(clk_set_phase);
2203 
2204 static int clk_core_get_phase(struct clk_core *clk)
2205 {
2206 	int ret = 0;
2207 
2208 	if (!clk)
2209 		goto out;
2210 
2211 	clk_prepare_lock();
2212 	ret = clk->phase;
2213 	clk_prepare_unlock();
2214 
2215 out:
2216 	return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(clk_get_phase);
2219 
2220 /**
2221  * clk_get_phase - return the phase shift of a clock signal
2222  * @clk: clock signal source
2223  *
2224  * Returns the phase shift of a clock node in degrees, otherwise returns
2225  * -EERROR.
2226  */
2227 int clk_get_phase(struct clk *clk)
2228 {
2229 	if (!clk)
2230 		return 0;
2231 
2232 	return clk_core_get_phase(clk->core);
2233 }
2234 
2235 /**
2236  * clk_is_match - check if two clk's point to the same hardware clock
2237  * @p: clk compared against q
2238  * @q: clk compared against p
2239  *
2240  * Returns true if the two struct clk pointers both point to the same hardware
2241  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2242  * share the same struct clk_core object.
2243  *
2244  * Returns false otherwise. Note that two NULL clks are treated as matching.
2245  */
2246 bool clk_is_match(const struct clk *p, const struct clk *q)
2247 {
2248 	/* trivial case: identical struct clk's or both NULL */
2249 	if (p == q)
2250 		return true;
2251 
2252 	/* true if clk->core pointers match. Avoid derefing garbage */
2253 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2254 		if (p->core == q->core)
2255 			return true;
2256 
2257 	return false;
2258 }
2259 EXPORT_SYMBOL_GPL(clk_is_match);
2260 
2261 /**
2262  * __clk_init - initialize the data structures in a struct clk
2263  * @dev:	device initializing this clk, placeholder for now
2264  * @clk:	clk being initialized
2265  *
2266  * Initializes the lists in struct clk_core, queries the hardware for the
2267  * parent and rate and sets them both.
2268  */
2269 static int __clk_init(struct device *dev, struct clk *clk_user)
2270 {
2271 	int i, ret = 0;
2272 	struct clk_core *orphan;
2273 	struct hlist_node *tmp2;
2274 	struct clk_core *clk;
2275 	unsigned long rate;
2276 
2277 	if (!clk_user)
2278 		return -EINVAL;
2279 
2280 	clk = clk_user->core;
2281 
2282 	clk_prepare_lock();
2283 
2284 	/* check to see if a clock with this name is already registered */
2285 	if (clk_core_lookup(clk->name)) {
2286 		pr_debug("%s: clk %s already initialized\n",
2287 				__func__, clk->name);
2288 		ret = -EEXIST;
2289 		goto out;
2290 	}
2291 
2292 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2293 	if (clk->ops->set_rate &&
2294 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
2295 	      clk->ops->recalc_rate)) {
2296 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2297 				__func__, clk->name);
2298 		ret = -EINVAL;
2299 		goto out;
2300 	}
2301 
2302 	if (clk->ops->set_parent && !clk->ops->get_parent) {
2303 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2304 				__func__, clk->name);
2305 		ret = -EINVAL;
2306 		goto out;
2307 	}
2308 
2309 	if (clk->ops->set_rate_and_parent &&
2310 			!(clk->ops->set_parent && clk->ops->set_rate)) {
2311 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2312 				__func__, clk->name);
2313 		ret = -EINVAL;
2314 		goto out;
2315 	}
2316 
2317 	/* throw a WARN if any entries in parent_names are NULL */
2318 	for (i = 0; i < clk->num_parents; i++)
2319 		WARN(!clk->parent_names[i],
2320 				"%s: invalid NULL in %s's .parent_names\n",
2321 				__func__, clk->name);
2322 
2323 	/*
2324 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2325 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2326 	 * in to clk_init during early boot; thus any access to clk->parents[]
2327 	 * must always check for a NULL pointer and try to populate it if
2328 	 * necessary.
2329 	 *
2330 	 * If clk->parents is not NULL we skip this entire block.  This allows
2331 	 * for clock drivers to statically initialize clk->parents.
2332 	 */
2333 	if (clk->num_parents > 1 && !clk->parents) {
2334 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2335 					GFP_KERNEL);
2336 		/*
2337 		 * clk_core_lookup returns NULL for parents that have not been
2338 		 * clk_init'd; thus any access to clk->parents[] must check
2339 		 * for a NULL pointer.  We can always perform lazy lookups for
2340 		 * missing parents later on.
2341 		 */
2342 		if (clk->parents)
2343 			for (i = 0; i < clk->num_parents; i++)
2344 				clk->parents[i] =
2345 					clk_core_lookup(clk->parent_names[i]);
2346 	}
2347 
2348 	clk->parent = __clk_init_parent(clk);
2349 
2350 	/*
2351 	 * Populate clk->parent if parent has already been __clk_init'd.  If
2352 	 * parent has not yet been __clk_init'd then place clk in the orphan
2353 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2354 	 * clk list.
2355 	 *
2356 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2357 	 * clocks and re-parent any that are children of the clock currently
2358 	 * being clk_init'd.
2359 	 */
2360 	if (clk->parent)
2361 		hlist_add_head(&clk->child_node,
2362 				&clk->parent->children);
2363 	else if (clk->flags & CLK_IS_ROOT)
2364 		hlist_add_head(&clk->child_node, &clk_root_list);
2365 	else
2366 		hlist_add_head(&clk->child_node, &clk_orphan_list);
2367 
2368 	/*
2369 	 * Set clk's accuracy.  The preferred method is to use
2370 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2371 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2372 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2373 	 * clock).
2374 	 */
2375 	if (clk->ops->recalc_accuracy)
2376 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2377 					__clk_get_accuracy(clk->parent));
2378 	else if (clk->parent)
2379 		clk->accuracy = clk->parent->accuracy;
2380 	else
2381 		clk->accuracy = 0;
2382 
2383 	/*
2384 	 * Set clk's phase.
2385 	 * Since a phase is by definition relative to its parent, just
2386 	 * query the current clock phase, or just assume it's in phase.
2387 	 */
2388 	if (clk->ops->get_phase)
2389 		clk->phase = clk->ops->get_phase(clk->hw);
2390 	else
2391 		clk->phase = 0;
2392 
2393 	/*
2394 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2395 	 * simple clocks and lazy developers the default fallback is to use the
2396 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2397 	 * then rate is set to zero.
2398 	 */
2399 	if (clk->ops->recalc_rate)
2400 		rate = clk->ops->recalc_rate(clk->hw,
2401 				clk_core_get_rate_nolock(clk->parent));
2402 	else if (clk->parent)
2403 		rate = clk->parent->rate;
2404 	else
2405 		rate = 0;
2406 	clk->rate = clk->req_rate = rate;
2407 
2408 	/*
2409 	 * walk the list of orphan clocks and reparent any that are children of
2410 	 * this clock
2411 	 */
2412 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2413 		if (orphan->num_parents && orphan->ops->get_parent) {
2414 			i = orphan->ops->get_parent(orphan->hw);
2415 			if (!strcmp(clk->name, orphan->parent_names[i]))
2416 				clk_core_reparent(orphan, clk);
2417 			continue;
2418 		}
2419 
2420 		for (i = 0; i < orphan->num_parents; i++)
2421 			if (!strcmp(clk->name, orphan->parent_names[i])) {
2422 				clk_core_reparent(orphan, clk);
2423 				break;
2424 			}
2425 	 }
2426 
2427 	/*
2428 	 * optional platform-specific magic
2429 	 *
2430 	 * The .init callback is not used by any of the basic clock types, but
2431 	 * exists for weird hardware that must perform initialization magic.
2432 	 * Please consider other ways of solving initialization problems before
2433 	 * using this callback, as its use is discouraged.
2434 	 */
2435 	if (clk->ops->init)
2436 		clk->ops->init(clk->hw);
2437 
2438 	kref_init(&clk->ref);
2439 out:
2440 	clk_prepare_unlock();
2441 
2442 	if (!ret)
2443 		clk_debug_register(clk);
2444 
2445 	return ret;
2446 }
2447 
2448 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2449 			     const char *con_id)
2450 {
2451 	struct clk *clk;
2452 
2453 	/* This is to allow this function to be chained to others */
2454 	if (!hw || IS_ERR(hw))
2455 		return (struct clk *) hw;
2456 
2457 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2458 	if (!clk)
2459 		return ERR_PTR(-ENOMEM);
2460 
2461 	clk->core = hw->core;
2462 	clk->dev_id = dev_id;
2463 	clk->con_id = con_id;
2464 	clk->max_rate = ULONG_MAX;
2465 
2466 	clk_prepare_lock();
2467 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2468 	clk_prepare_unlock();
2469 
2470 	return clk;
2471 }
2472 
2473 void __clk_free_clk(struct clk *clk)
2474 {
2475 	clk_prepare_lock();
2476 	hlist_del(&clk->clks_node);
2477 	clk_prepare_unlock();
2478 
2479 	kfree(clk);
2480 }
2481 
2482 /**
2483  * clk_register - allocate a new clock, register it and return an opaque cookie
2484  * @dev: device that is registering this clock
2485  * @hw: link to hardware-specific clock data
2486  *
2487  * clk_register is the primary interface for populating the clock tree with new
2488  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2489  * cannot be dereferenced by driver code but may be used in conjuction with the
2490  * rest of the clock API.  In the event of an error clk_register will return an
2491  * error code; drivers must test for an error code after calling clk_register.
2492  */
2493 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2494 {
2495 	int i, ret;
2496 	struct clk_core *clk;
2497 
2498 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2499 	if (!clk) {
2500 		pr_err("%s: could not allocate clk\n", __func__);
2501 		ret = -ENOMEM;
2502 		goto fail_out;
2503 	}
2504 
2505 	clk->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2506 	if (!clk->name) {
2507 		pr_err("%s: could not allocate clk->name\n", __func__);
2508 		ret = -ENOMEM;
2509 		goto fail_name;
2510 	}
2511 	clk->ops = hw->init->ops;
2512 	if (dev && dev->driver)
2513 		clk->owner = dev->driver->owner;
2514 	clk->hw = hw;
2515 	clk->flags = hw->init->flags;
2516 	clk->num_parents = hw->init->num_parents;
2517 	hw->core = clk;
2518 
2519 	/* allocate local copy in case parent_names is __initdata */
2520 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2521 					GFP_KERNEL);
2522 
2523 	if (!clk->parent_names) {
2524 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2525 		ret = -ENOMEM;
2526 		goto fail_parent_names;
2527 	}
2528 
2529 
2530 	/* copy each string name in case parent_names is __initdata */
2531 	for (i = 0; i < clk->num_parents; i++) {
2532 		clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2533 						GFP_KERNEL);
2534 		if (!clk->parent_names[i]) {
2535 			pr_err("%s: could not copy parent_names\n", __func__);
2536 			ret = -ENOMEM;
2537 			goto fail_parent_names_copy;
2538 		}
2539 	}
2540 
2541 	INIT_HLIST_HEAD(&clk->clks);
2542 
2543 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2544 	if (IS_ERR(hw->clk)) {
2545 		pr_err("%s: could not allocate per-user clk\n", __func__);
2546 		ret = PTR_ERR(hw->clk);
2547 		goto fail_parent_names_copy;
2548 	}
2549 
2550 	ret = __clk_init(dev, hw->clk);
2551 	if (!ret)
2552 		return hw->clk;
2553 
2554 	__clk_free_clk(hw->clk);
2555 	hw->clk = NULL;
2556 
2557 fail_parent_names_copy:
2558 	while (--i >= 0)
2559 		kfree_const(clk->parent_names[i]);
2560 	kfree(clk->parent_names);
2561 fail_parent_names:
2562 	kfree_const(clk->name);
2563 fail_name:
2564 	kfree(clk);
2565 fail_out:
2566 	return ERR_PTR(ret);
2567 }
2568 EXPORT_SYMBOL_GPL(clk_register);
2569 
2570 /*
2571  * Free memory allocated for a clock.
2572  * Caller must hold prepare_lock.
2573  */
2574 static void __clk_release(struct kref *ref)
2575 {
2576 	struct clk_core *clk = container_of(ref, struct clk_core, ref);
2577 	int i = clk->num_parents;
2578 
2579 	lockdep_assert_held(&prepare_lock);
2580 
2581 	kfree(clk->parents);
2582 	while (--i >= 0)
2583 		kfree_const(clk->parent_names[i]);
2584 
2585 	kfree(clk->parent_names);
2586 	kfree_const(clk->name);
2587 	kfree(clk);
2588 }
2589 
2590 /*
2591  * Empty clk_ops for unregistered clocks. These are used temporarily
2592  * after clk_unregister() was called on a clock and until last clock
2593  * consumer calls clk_put() and the struct clk object is freed.
2594  */
2595 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2596 {
2597 	return -ENXIO;
2598 }
2599 
2600 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2601 {
2602 	WARN_ON_ONCE(1);
2603 }
2604 
2605 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2606 					unsigned long parent_rate)
2607 {
2608 	return -ENXIO;
2609 }
2610 
2611 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2612 {
2613 	return -ENXIO;
2614 }
2615 
2616 static const struct clk_ops clk_nodrv_ops = {
2617 	.enable		= clk_nodrv_prepare_enable,
2618 	.disable	= clk_nodrv_disable_unprepare,
2619 	.prepare	= clk_nodrv_prepare_enable,
2620 	.unprepare	= clk_nodrv_disable_unprepare,
2621 	.set_rate	= clk_nodrv_set_rate,
2622 	.set_parent	= clk_nodrv_set_parent,
2623 };
2624 
2625 /**
2626  * clk_unregister - unregister a currently registered clock
2627  * @clk: clock to unregister
2628  */
2629 void clk_unregister(struct clk *clk)
2630 {
2631 	unsigned long flags;
2632 
2633 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2634 		return;
2635 
2636 	clk_debug_unregister(clk->core);
2637 
2638 	clk_prepare_lock();
2639 
2640 	if (clk->core->ops == &clk_nodrv_ops) {
2641 		pr_err("%s: unregistered clock: %s\n", __func__,
2642 		       clk->core->name);
2643 		return;
2644 	}
2645 	/*
2646 	 * Assign empty clock ops for consumers that might still hold
2647 	 * a reference to this clock.
2648 	 */
2649 	flags = clk_enable_lock();
2650 	clk->core->ops = &clk_nodrv_ops;
2651 	clk_enable_unlock(flags);
2652 
2653 	if (!hlist_empty(&clk->core->children)) {
2654 		struct clk_core *child;
2655 		struct hlist_node *t;
2656 
2657 		/* Reparent all children to the orphan list. */
2658 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2659 					  child_node)
2660 			clk_core_set_parent(child, NULL);
2661 	}
2662 
2663 	hlist_del_init(&clk->core->child_node);
2664 
2665 	if (clk->core->prepare_count)
2666 		pr_warn("%s: unregistering prepared clock: %s\n",
2667 					__func__, clk->core->name);
2668 	kref_put(&clk->core->ref, __clk_release);
2669 
2670 	clk_prepare_unlock();
2671 }
2672 EXPORT_SYMBOL_GPL(clk_unregister);
2673 
2674 static void devm_clk_release(struct device *dev, void *res)
2675 {
2676 	clk_unregister(*(struct clk **)res);
2677 }
2678 
2679 /**
2680  * devm_clk_register - resource managed clk_register()
2681  * @dev: device that is registering this clock
2682  * @hw: link to hardware-specific clock data
2683  *
2684  * Managed clk_register(). Clocks returned from this function are
2685  * automatically clk_unregister()ed on driver detach. See clk_register() for
2686  * more information.
2687  */
2688 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2689 {
2690 	struct clk *clk;
2691 	struct clk **clkp;
2692 
2693 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2694 	if (!clkp)
2695 		return ERR_PTR(-ENOMEM);
2696 
2697 	clk = clk_register(dev, hw);
2698 	if (!IS_ERR(clk)) {
2699 		*clkp = clk;
2700 		devres_add(dev, clkp);
2701 	} else {
2702 		devres_free(clkp);
2703 	}
2704 
2705 	return clk;
2706 }
2707 EXPORT_SYMBOL_GPL(devm_clk_register);
2708 
2709 static int devm_clk_match(struct device *dev, void *res, void *data)
2710 {
2711 	struct clk *c = res;
2712 	if (WARN_ON(!c))
2713 		return 0;
2714 	return c == data;
2715 }
2716 
2717 /**
2718  * devm_clk_unregister - resource managed clk_unregister()
2719  * @clk: clock to unregister
2720  *
2721  * Deallocate a clock allocated with devm_clk_register(). Normally
2722  * this function will not need to be called and the resource management
2723  * code will ensure that the resource is freed.
2724  */
2725 void devm_clk_unregister(struct device *dev, struct clk *clk)
2726 {
2727 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2728 }
2729 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2730 
2731 /*
2732  * clkdev helpers
2733  */
2734 int __clk_get(struct clk *clk)
2735 {
2736 	struct clk_core *core = !clk ? NULL : clk->core;
2737 
2738 	if (core) {
2739 		if (!try_module_get(core->owner))
2740 			return 0;
2741 
2742 		kref_get(&core->ref);
2743 	}
2744 	return 1;
2745 }
2746 
2747 void __clk_put(struct clk *clk)
2748 {
2749 	struct module *owner;
2750 
2751 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2752 		return;
2753 
2754 	clk_prepare_lock();
2755 
2756 	hlist_del(&clk->clks_node);
2757 	if (clk->min_rate > clk->core->req_rate ||
2758 	    clk->max_rate < clk->core->req_rate)
2759 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2760 
2761 	owner = clk->core->owner;
2762 	kref_put(&clk->core->ref, __clk_release);
2763 
2764 	clk_prepare_unlock();
2765 
2766 	module_put(owner);
2767 
2768 	kfree(clk);
2769 }
2770 
2771 /***        clk rate change notifiers        ***/
2772 
2773 /**
2774  * clk_notifier_register - add a clk rate change notifier
2775  * @clk: struct clk * to watch
2776  * @nb: struct notifier_block * with callback info
2777  *
2778  * Request notification when clk's rate changes.  This uses an SRCU
2779  * notifier because we want it to block and notifier unregistrations are
2780  * uncommon.  The callbacks associated with the notifier must not
2781  * re-enter into the clk framework by calling any top-level clk APIs;
2782  * this will cause a nested prepare_lock mutex.
2783  *
2784  * In all notification cases cases (pre, post and abort rate change) the
2785  * original clock rate is passed to the callback via struct
2786  * clk_notifier_data.old_rate and the new frequency is passed via struct
2787  * clk_notifier_data.new_rate.
2788  *
2789  * clk_notifier_register() must be called from non-atomic context.
2790  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2791  * allocation failure; otherwise, passes along the return value of
2792  * srcu_notifier_chain_register().
2793  */
2794 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2795 {
2796 	struct clk_notifier *cn;
2797 	int ret = -ENOMEM;
2798 
2799 	if (!clk || !nb)
2800 		return -EINVAL;
2801 
2802 	clk_prepare_lock();
2803 
2804 	/* search the list of notifiers for this clk */
2805 	list_for_each_entry(cn, &clk_notifier_list, node)
2806 		if (cn->clk == clk)
2807 			break;
2808 
2809 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2810 	if (cn->clk != clk) {
2811 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2812 		if (!cn)
2813 			goto out;
2814 
2815 		cn->clk = clk;
2816 		srcu_init_notifier_head(&cn->notifier_head);
2817 
2818 		list_add(&cn->node, &clk_notifier_list);
2819 	}
2820 
2821 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2822 
2823 	clk->core->notifier_count++;
2824 
2825 out:
2826 	clk_prepare_unlock();
2827 
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL_GPL(clk_notifier_register);
2831 
2832 /**
2833  * clk_notifier_unregister - remove a clk rate change notifier
2834  * @clk: struct clk *
2835  * @nb: struct notifier_block * with callback info
2836  *
2837  * Request no further notification for changes to 'clk' and frees memory
2838  * allocated in clk_notifier_register.
2839  *
2840  * Returns -EINVAL if called with null arguments; otherwise, passes
2841  * along the return value of srcu_notifier_chain_unregister().
2842  */
2843 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2844 {
2845 	struct clk_notifier *cn = NULL;
2846 	int ret = -EINVAL;
2847 
2848 	if (!clk || !nb)
2849 		return -EINVAL;
2850 
2851 	clk_prepare_lock();
2852 
2853 	list_for_each_entry(cn, &clk_notifier_list, node)
2854 		if (cn->clk == clk)
2855 			break;
2856 
2857 	if (cn->clk == clk) {
2858 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2859 
2860 		clk->core->notifier_count--;
2861 
2862 		/* XXX the notifier code should handle this better */
2863 		if (!cn->notifier_head.head) {
2864 			srcu_cleanup_notifier_head(&cn->notifier_head);
2865 			list_del(&cn->node);
2866 			kfree(cn);
2867 		}
2868 
2869 	} else {
2870 		ret = -ENOENT;
2871 	}
2872 
2873 	clk_prepare_unlock();
2874 
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2878 
2879 #ifdef CONFIG_OF
2880 /**
2881  * struct of_clk_provider - Clock provider registration structure
2882  * @link: Entry in global list of clock providers
2883  * @node: Pointer to device tree node of clock provider
2884  * @get: Get clock callback.  Returns NULL or a struct clk for the
2885  *       given clock specifier
2886  * @data: context pointer to be passed into @get callback
2887  */
2888 struct of_clk_provider {
2889 	struct list_head link;
2890 
2891 	struct device_node *node;
2892 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2893 	void *data;
2894 };
2895 
2896 static const struct of_device_id __clk_of_table_sentinel
2897 	__used __section(__clk_of_table_end);
2898 
2899 static LIST_HEAD(of_clk_providers);
2900 static DEFINE_MUTEX(of_clk_mutex);
2901 
2902 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2903 				     void *data)
2904 {
2905 	return data;
2906 }
2907 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2908 
2909 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2910 {
2911 	struct clk_onecell_data *clk_data = data;
2912 	unsigned int idx = clkspec->args[0];
2913 
2914 	if (idx >= clk_data->clk_num) {
2915 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2916 		return ERR_PTR(-EINVAL);
2917 	}
2918 
2919 	return clk_data->clks[idx];
2920 }
2921 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2922 
2923 /**
2924  * of_clk_add_provider() - Register a clock provider for a node
2925  * @np: Device node pointer associated with clock provider
2926  * @clk_src_get: callback for decoding clock
2927  * @data: context pointer for @clk_src_get callback.
2928  */
2929 int of_clk_add_provider(struct device_node *np,
2930 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2931 						   void *data),
2932 			void *data)
2933 {
2934 	struct of_clk_provider *cp;
2935 	int ret;
2936 
2937 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2938 	if (!cp)
2939 		return -ENOMEM;
2940 
2941 	cp->node = of_node_get(np);
2942 	cp->data = data;
2943 	cp->get = clk_src_get;
2944 
2945 	mutex_lock(&of_clk_mutex);
2946 	list_add(&cp->link, &of_clk_providers);
2947 	mutex_unlock(&of_clk_mutex);
2948 	pr_debug("Added clock from %s\n", np->full_name);
2949 
2950 	ret = of_clk_set_defaults(np, true);
2951 	if (ret < 0)
2952 		of_clk_del_provider(np);
2953 
2954 	return ret;
2955 }
2956 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2957 
2958 /**
2959  * of_clk_del_provider() - Remove a previously registered clock provider
2960  * @np: Device node pointer associated with clock provider
2961  */
2962 void of_clk_del_provider(struct device_node *np)
2963 {
2964 	struct of_clk_provider *cp;
2965 
2966 	mutex_lock(&of_clk_mutex);
2967 	list_for_each_entry(cp, &of_clk_providers, link) {
2968 		if (cp->node == np) {
2969 			list_del(&cp->link);
2970 			of_node_put(cp->node);
2971 			kfree(cp);
2972 			break;
2973 		}
2974 	}
2975 	mutex_unlock(&of_clk_mutex);
2976 }
2977 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2978 
2979 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2980 				       const char *dev_id, const char *con_id)
2981 {
2982 	struct of_clk_provider *provider;
2983 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2984 
2985 	if (!clkspec)
2986 		return ERR_PTR(-EINVAL);
2987 
2988 	/* Check if we have such a provider in our array */
2989 	mutex_lock(&of_clk_mutex);
2990 	list_for_each_entry(provider, &of_clk_providers, link) {
2991 		if (provider->node == clkspec->np)
2992 			clk = provider->get(clkspec, provider->data);
2993 		if (!IS_ERR(clk)) {
2994 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2995 					       con_id);
2996 
2997 			if (!IS_ERR(clk) && !__clk_get(clk)) {
2998 				__clk_free_clk(clk);
2999 				clk = ERR_PTR(-ENOENT);
3000 			}
3001 
3002 			break;
3003 		}
3004 	}
3005 	mutex_unlock(&of_clk_mutex);
3006 
3007 	return clk;
3008 }
3009 
3010 /**
3011  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3012  * @clkspec: pointer to a clock specifier data structure
3013  *
3014  * This function looks up a struct clk from the registered list of clock
3015  * providers, an input is a clock specifier data structure as returned
3016  * from the of_parse_phandle_with_args() function call.
3017  */
3018 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3019 {
3020 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3021 }
3022 
3023 int of_clk_get_parent_count(struct device_node *np)
3024 {
3025 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3026 }
3027 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3028 
3029 const char *of_clk_get_parent_name(struct device_node *np, int index)
3030 {
3031 	struct of_phandle_args clkspec;
3032 	struct property *prop;
3033 	const char *clk_name;
3034 	const __be32 *vp;
3035 	u32 pv;
3036 	int rc;
3037 	int count;
3038 
3039 	if (index < 0)
3040 		return NULL;
3041 
3042 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3043 					&clkspec);
3044 	if (rc)
3045 		return NULL;
3046 
3047 	index = clkspec.args_count ? clkspec.args[0] : 0;
3048 	count = 0;
3049 
3050 	/* if there is an indices property, use it to transfer the index
3051 	 * specified into an array offset for the clock-output-names property.
3052 	 */
3053 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3054 		if (index == pv) {
3055 			index = count;
3056 			break;
3057 		}
3058 		count++;
3059 	}
3060 
3061 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3062 					  index,
3063 					  &clk_name) < 0)
3064 		clk_name = clkspec.np->name;
3065 
3066 	of_node_put(clkspec.np);
3067 	return clk_name;
3068 }
3069 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3070 
3071 struct clock_provider {
3072 	of_clk_init_cb_t clk_init_cb;
3073 	struct device_node *np;
3074 	struct list_head node;
3075 };
3076 
3077 static LIST_HEAD(clk_provider_list);
3078 
3079 /*
3080  * This function looks for a parent clock. If there is one, then it
3081  * checks that the provider for this parent clock was initialized, in
3082  * this case the parent clock will be ready.
3083  */
3084 static int parent_ready(struct device_node *np)
3085 {
3086 	int i = 0;
3087 
3088 	while (true) {
3089 		struct clk *clk = of_clk_get(np, i);
3090 
3091 		/* this parent is ready we can check the next one */
3092 		if (!IS_ERR(clk)) {
3093 			clk_put(clk);
3094 			i++;
3095 			continue;
3096 		}
3097 
3098 		/* at least one parent is not ready, we exit now */
3099 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3100 			return 0;
3101 
3102 		/*
3103 		 * Here we make assumption that the device tree is
3104 		 * written correctly. So an error means that there is
3105 		 * no more parent. As we didn't exit yet, then the
3106 		 * previous parent are ready. If there is no clock
3107 		 * parent, no need to wait for them, then we can
3108 		 * consider their absence as being ready
3109 		 */
3110 		return 1;
3111 	}
3112 }
3113 
3114 /**
3115  * of_clk_init() - Scan and init clock providers from the DT
3116  * @matches: array of compatible values and init functions for providers.
3117  *
3118  * This function scans the device tree for matching clock providers
3119  * and calls their initialization functions. It also does it by trying
3120  * to follow the dependencies.
3121  */
3122 void __init of_clk_init(const struct of_device_id *matches)
3123 {
3124 	const struct of_device_id *match;
3125 	struct device_node *np;
3126 	struct clock_provider *clk_provider, *next;
3127 	bool is_init_done;
3128 	bool force = false;
3129 
3130 	if (!matches)
3131 		matches = &__clk_of_table;
3132 
3133 	/* First prepare the list of the clocks providers */
3134 	for_each_matching_node_and_match(np, matches, &match) {
3135 		struct clock_provider *parent =
3136 			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
3137 
3138 		parent->clk_init_cb = match->data;
3139 		parent->np = np;
3140 		list_add_tail(&parent->node, &clk_provider_list);
3141 	}
3142 
3143 	while (!list_empty(&clk_provider_list)) {
3144 		is_init_done = false;
3145 		list_for_each_entry_safe(clk_provider, next,
3146 					&clk_provider_list, node) {
3147 			if (force || parent_ready(clk_provider->np)) {
3148 
3149 				clk_provider->clk_init_cb(clk_provider->np);
3150 				of_clk_set_defaults(clk_provider->np, true);
3151 
3152 				list_del(&clk_provider->node);
3153 				kfree(clk_provider);
3154 				is_init_done = true;
3155 			}
3156 		}
3157 
3158 		/*
3159 		 * We didn't manage to initialize any of the
3160 		 * remaining providers during the last loop, so now we
3161 		 * initialize all the remaining ones unconditionally
3162 		 * in case the clock parent was not mandatory
3163 		 */
3164 		if (!is_init_done)
3165 			force = true;
3166 	}
3167 }
3168 #endif
3169