1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** private data structures ***/ 41 42 struct clk_core { 43 const char *name; 44 const struct clk_ops *ops; 45 struct clk_hw *hw; 46 struct module *owner; 47 struct device *dev; 48 struct clk_core *parent; 49 const char **parent_names; 50 struct clk_core **parents; 51 u8 num_parents; 52 u8 new_parent_index; 53 unsigned long rate; 54 unsigned long req_rate; 55 unsigned long new_rate; 56 struct clk_core *new_parent; 57 struct clk_core *new_child; 58 unsigned long flags; 59 bool orphan; 60 bool rpm_enabled; 61 unsigned int enable_count; 62 unsigned int prepare_count; 63 unsigned int protect_count; 64 unsigned long min_rate; 65 unsigned long max_rate; 66 unsigned long accuracy; 67 int phase; 68 struct clk_duty duty; 69 struct hlist_head children; 70 struct hlist_node child_node; 71 struct hlist_head clks; 72 unsigned int notifier_count; 73 #ifdef CONFIG_DEBUG_FS 74 struct dentry *dentry; 75 struct hlist_node debug_node; 76 #endif 77 struct kref ref; 78 }; 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/clk.h> 82 83 struct clk { 84 struct clk_core *core; 85 struct device *dev; 86 const char *dev_id; 87 const char *con_id; 88 unsigned long min_rate; 89 unsigned long max_rate; 90 unsigned int exclusive_count; 91 struct hlist_node clks_node; 92 }; 93 94 /*** runtime pm ***/ 95 static int clk_pm_runtime_get(struct clk_core *core) 96 { 97 int ret; 98 99 if (!core->rpm_enabled) 100 return 0; 101 102 ret = pm_runtime_get_sync(core->dev); 103 return ret < 0 ? ret : 0; 104 } 105 106 static void clk_pm_runtime_put(struct clk_core *core) 107 { 108 if (!core->rpm_enabled) 109 return; 110 111 pm_runtime_put_sync(core->dev); 112 } 113 114 /*** locking ***/ 115 static void clk_prepare_lock(void) 116 { 117 if (!mutex_trylock(&prepare_lock)) { 118 if (prepare_owner == current) { 119 prepare_refcnt++; 120 return; 121 } 122 mutex_lock(&prepare_lock); 123 } 124 WARN_ON_ONCE(prepare_owner != NULL); 125 WARN_ON_ONCE(prepare_refcnt != 0); 126 prepare_owner = current; 127 prepare_refcnt = 1; 128 } 129 130 static void clk_prepare_unlock(void) 131 { 132 WARN_ON_ONCE(prepare_owner != current); 133 WARN_ON_ONCE(prepare_refcnt == 0); 134 135 if (--prepare_refcnt) 136 return; 137 prepare_owner = NULL; 138 mutex_unlock(&prepare_lock); 139 } 140 141 static unsigned long clk_enable_lock(void) 142 __acquires(enable_lock) 143 { 144 unsigned long flags; 145 146 /* 147 * On UP systems, spin_trylock_irqsave() always returns true, even if 148 * we already hold the lock. So, in that case, we rely only on 149 * reference counting. 150 */ 151 if (!IS_ENABLED(CONFIG_SMP) || 152 !spin_trylock_irqsave(&enable_lock, flags)) { 153 if (enable_owner == current) { 154 enable_refcnt++; 155 __acquire(enable_lock); 156 if (!IS_ENABLED(CONFIG_SMP)) 157 local_save_flags(flags); 158 return flags; 159 } 160 spin_lock_irqsave(&enable_lock, flags); 161 } 162 WARN_ON_ONCE(enable_owner != NULL); 163 WARN_ON_ONCE(enable_refcnt != 0); 164 enable_owner = current; 165 enable_refcnt = 1; 166 return flags; 167 } 168 169 static void clk_enable_unlock(unsigned long flags) 170 __releases(enable_lock) 171 { 172 WARN_ON_ONCE(enable_owner != current); 173 WARN_ON_ONCE(enable_refcnt == 0); 174 175 if (--enable_refcnt) { 176 __release(enable_lock); 177 return; 178 } 179 enable_owner = NULL; 180 spin_unlock_irqrestore(&enable_lock, flags); 181 } 182 183 static bool clk_core_rate_is_protected(struct clk_core *core) 184 { 185 return core->protect_count; 186 } 187 188 static bool clk_core_is_prepared(struct clk_core *core) 189 { 190 bool ret = false; 191 192 /* 193 * .is_prepared is optional for clocks that can prepare 194 * fall back to software usage counter if it is missing 195 */ 196 if (!core->ops->is_prepared) 197 return core->prepare_count; 198 199 if (!clk_pm_runtime_get(core)) { 200 ret = core->ops->is_prepared(core->hw); 201 clk_pm_runtime_put(core); 202 } 203 204 return ret; 205 } 206 207 static bool clk_core_is_enabled(struct clk_core *core) 208 { 209 bool ret = false; 210 211 /* 212 * .is_enabled is only mandatory for clocks that gate 213 * fall back to software usage counter if .is_enabled is missing 214 */ 215 if (!core->ops->is_enabled) 216 return core->enable_count; 217 218 /* 219 * Check if clock controller's device is runtime active before 220 * calling .is_enabled callback. If not, assume that clock is 221 * disabled, because we might be called from atomic context, from 222 * which pm_runtime_get() is not allowed. 223 * This function is called mainly from clk_disable_unused_subtree, 224 * which ensures proper runtime pm activation of controller before 225 * taking enable spinlock, but the below check is needed if one tries 226 * to call it from other places. 227 */ 228 if (core->rpm_enabled) { 229 pm_runtime_get_noresume(core->dev); 230 if (!pm_runtime_active(core->dev)) { 231 ret = false; 232 goto done; 233 } 234 } 235 236 ret = core->ops->is_enabled(core->hw); 237 done: 238 if (core->rpm_enabled) 239 pm_runtime_put(core->dev); 240 241 return ret; 242 } 243 244 /*** helper functions ***/ 245 246 const char *__clk_get_name(const struct clk *clk) 247 { 248 return !clk ? NULL : clk->core->name; 249 } 250 EXPORT_SYMBOL_GPL(__clk_get_name); 251 252 const char *clk_hw_get_name(const struct clk_hw *hw) 253 { 254 return hw->core->name; 255 } 256 EXPORT_SYMBOL_GPL(clk_hw_get_name); 257 258 struct clk_hw *__clk_get_hw(struct clk *clk) 259 { 260 return !clk ? NULL : clk->core->hw; 261 } 262 EXPORT_SYMBOL_GPL(__clk_get_hw); 263 264 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 265 { 266 return hw->core->num_parents; 267 } 268 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 269 270 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 271 { 272 return hw->core->parent ? hw->core->parent->hw : NULL; 273 } 274 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 275 276 static struct clk_core *__clk_lookup_subtree(const char *name, 277 struct clk_core *core) 278 { 279 struct clk_core *child; 280 struct clk_core *ret; 281 282 if (!strcmp(core->name, name)) 283 return core; 284 285 hlist_for_each_entry(child, &core->children, child_node) { 286 ret = __clk_lookup_subtree(name, child); 287 if (ret) 288 return ret; 289 } 290 291 return NULL; 292 } 293 294 static struct clk_core *clk_core_lookup(const char *name) 295 { 296 struct clk_core *root_clk; 297 struct clk_core *ret; 298 299 if (!name) 300 return NULL; 301 302 /* search the 'proper' clk tree first */ 303 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 304 ret = __clk_lookup_subtree(name, root_clk); 305 if (ret) 306 return ret; 307 } 308 309 /* if not found, then search the orphan tree */ 310 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 311 ret = __clk_lookup_subtree(name, root_clk); 312 if (ret) 313 return ret; 314 } 315 316 return NULL; 317 } 318 319 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 320 u8 index) 321 { 322 if (!core || index >= core->num_parents) 323 return NULL; 324 325 if (!core->parents[index]) 326 core->parents[index] = 327 clk_core_lookup(core->parent_names[index]); 328 329 return core->parents[index]; 330 } 331 332 struct clk_hw * 333 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 334 { 335 struct clk_core *parent; 336 337 parent = clk_core_get_parent_by_index(hw->core, index); 338 339 return !parent ? NULL : parent->hw; 340 } 341 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 342 343 unsigned int __clk_get_enable_count(struct clk *clk) 344 { 345 return !clk ? 0 : clk->core->enable_count; 346 } 347 348 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 349 { 350 unsigned long ret; 351 352 if (!core) { 353 ret = 0; 354 goto out; 355 } 356 357 ret = core->rate; 358 359 if (!core->num_parents) 360 goto out; 361 362 if (!core->parent) 363 ret = 0; 364 365 out: 366 return ret; 367 } 368 369 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 370 { 371 return clk_core_get_rate_nolock(hw->core); 372 } 373 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 374 375 static unsigned long __clk_get_accuracy(struct clk_core *core) 376 { 377 if (!core) 378 return 0; 379 380 return core->accuracy; 381 } 382 383 unsigned long __clk_get_flags(struct clk *clk) 384 { 385 return !clk ? 0 : clk->core->flags; 386 } 387 EXPORT_SYMBOL_GPL(__clk_get_flags); 388 389 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 390 { 391 return hw->core->flags; 392 } 393 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 394 395 bool clk_hw_is_prepared(const struct clk_hw *hw) 396 { 397 return clk_core_is_prepared(hw->core); 398 } 399 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 400 401 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 402 { 403 return clk_core_rate_is_protected(hw->core); 404 } 405 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 406 407 bool clk_hw_is_enabled(const struct clk_hw *hw) 408 { 409 return clk_core_is_enabled(hw->core); 410 } 411 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 412 413 bool __clk_is_enabled(struct clk *clk) 414 { 415 if (!clk) 416 return false; 417 418 return clk_core_is_enabled(clk->core); 419 } 420 EXPORT_SYMBOL_GPL(__clk_is_enabled); 421 422 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 423 unsigned long best, unsigned long flags) 424 { 425 if (flags & CLK_MUX_ROUND_CLOSEST) 426 return abs(now - rate) < abs(best - rate); 427 428 return now <= rate && now > best; 429 } 430 431 int clk_mux_determine_rate_flags(struct clk_hw *hw, 432 struct clk_rate_request *req, 433 unsigned long flags) 434 { 435 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 436 int i, num_parents, ret; 437 unsigned long best = 0; 438 struct clk_rate_request parent_req = *req; 439 440 /* if NO_REPARENT flag set, pass through to current parent */ 441 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 442 parent = core->parent; 443 if (core->flags & CLK_SET_RATE_PARENT) { 444 ret = __clk_determine_rate(parent ? parent->hw : NULL, 445 &parent_req); 446 if (ret) 447 return ret; 448 449 best = parent_req.rate; 450 } else if (parent) { 451 best = clk_core_get_rate_nolock(parent); 452 } else { 453 best = clk_core_get_rate_nolock(core); 454 } 455 456 goto out; 457 } 458 459 /* find the parent that can provide the fastest rate <= rate */ 460 num_parents = core->num_parents; 461 for (i = 0; i < num_parents; i++) { 462 parent = clk_core_get_parent_by_index(core, i); 463 if (!parent) 464 continue; 465 466 if (core->flags & CLK_SET_RATE_PARENT) { 467 parent_req = *req; 468 ret = __clk_determine_rate(parent->hw, &parent_req); 469 if (ret) 470 continue; 471 } else { 472 parent_req.rate = clk_core_get_rate_nolock(parent); 473 } 474 475 if (mux_is_better_rate(req->rate, parent_req.rate, 476 best, flags)) { 477 best_parent = parent; 478 best = parent_req.rate; 479 } 480 } 481 482 if (!best_parent) 483 return -EINVAL; 484 485 out: 486 if (best_parent) 487 req->best_parent_hw = best_parent->hw; 488 req->best_parent_rate = best; 489 req->rate = best; 490 491 return 0; 492 } 493 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 494 495 struct clk *__clk_lookup(const char *name) 496 { 497 struct clk_core *core = clk_core_lookup(name); 498 499 return !core ? NULL : core->hw->clk; 500 } 501 502 static void clk_core_get_boundaries(struct clk_core *core, 503 unsigned long *min_rate, 504 unsigned long *max_rate) 505 { 506 struct clk *clk_user; 507 508 *min_rate = core->min_rate; 509 *max_rate = core->max_rate; 510 511 hlist_for_each_entry(clk_user, &core->clks, clks_node) 512 *min_rate = max(*min_rate, clk_user->min_rate); 513 514 hlist_for_each_entry(clk_user, &core->clks, clks_node) 515 *max_rate = min(*max_rate, clk_user->max_rate); 516 } 517 518 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 519 unsigned long max_rate) 520 { 521 hw->core->min_rate = min_rate; 522 hw->core->max_rate = max_rate; 523 } 524 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 525 526 /* 527 * Helper for finding best parent to provide a given frequency. This can be used 528 * directly as a determine_rate callback (e.g. for a mux), or from a more 529 * complex clock that may combine a mux with other operations. 530 */ 531 int __clk_mux_determine_rate(struct clk_hw *hw, 532 struct clk_rate_request *req) 533 { 534 return clk_mux_determine_rate_flags(hw, req, 0); 535 } 536 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 537 538 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 539 struct clk_rate_request *req) 540 { 541 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 542 } 543 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 544 545 /*** clk api ***/ 546 547 static void clk_core_rate_unprotect(struct clk_core *core) 548 { 549 lockdep_assert_held(&prepare_lock); 550 551 if (!core) 552 return; 553 554 if (WARN(core->protect_count == 0, 555 "%s already unprotected\n", core->name)) 556 return; 557 558 if (--core->protect_count > 0) 559 return; 560 561 clk_core_rate_unprotect(core->parent); 562 } 563 564 static int clk_core_rate_nuke_protect(struct clk_core *core) 565 { 566 int ret; 567 568 lockdep_assert_held(&prepare_lock); 569 570 if (!core) 571 return -EINVAL; 572 573 if (core->protect_count == 0) 574 return 0; 575 576 ret = core->protect_count; 577 core->protect_count = 1; 578 clk_core_rate_unprotect(core); 579 580 return ret; 581 } 582 583 /** 584 * clk_rate_exclusive_put - release exclusivity over clock rate control 585 * @clk: the clk over which the exclusivity is released 586 * 587 * clk_rate_exclusive_put() completes a critical section during which a clock 588 * consumer cannot tolerate any other consumer making any operation on the 589 * clock which could result in a rate change or rate glitch. Exclusive clocks 590 * cannot have their rate changed, either directly or indirectly due to changes 591 * further up the parent chain of clocks. As a result, clocks up parent chain 592 * also get under exclusive control of the calling consumer. 593 * 594 * If exlusivity is claimed more than once on clock, even by the same consumer, 595 * the rate effectively gets locked as exclusivity can't be preempted. 596 * 597 * Calls to clk_rate_exclusive_put() must be balanced with calls to 598 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 599 * error status. 600 */ 601 void clk_rate_exclusive_put(struct clk *clk) 602 { 603 if (!clk) 604 return; 605 606 clk_prepare_lock(); 607 608 /* 609 * if there is something wrong with this consumer protect count, stop 610 * here before messing with the provider 611 */ 612 if (WARN_ON(clk->exclusive_count <= 0)) 613 goto out; 614 615 clk_core_rate_unprotect(clk->core); 616 clk->exclusive_count--; 617 out: 618 clk_prepare_unlock(); 619 } 620 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 621 622 static void clk_core_rate_protect(struct clk_core *core) 623 { 624 lockdep_assert_held(&prepare_lock); 625 626 if (!core) 627 return; 628 629 if (core->protect_count == 0) 630 clk_core_rate_protect(core->parent); 631 632 core->protect_count++; 633 } 634 635 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 636 { 637 lockdep_assert_held(&prepare_lock); 638 639 if (!core) 640 return; 641 642 if (count == 0) 643 return; 644 645 clk_core_rate_protect(core); 646 core->protect_count = count; 647 } 648 649 /** 650 * clk_rate_exclusive_get - get exclusivity over the clk rate control 651 * @clk: the clk over which the exclusity of rate control is requested 652 * 653 * clk_rate_exlusive_get() begins a critical section during which a clock 654 * consumer cannot tolerate any other consumer making any operation on the 655 * clock which could result in a rate change or rate glitch. Exclusive clocks 656 * cannot have their rate changed, either directly or indirectly due to changes 657 * further up the parent chain of clocks. As a result, clocks up parent chain 658 * also get under exclusive control of the calling consumer. 659 * 660 * If exlusivity is claimed more than once on clock, even by the same consumer, 661 * the rate effectively gets locked as exclusivity can't be preempted. 662 * 663 * Calls to clk_rate_exclusive_get() should be balanced with calls to 664 * clk_rate_exclusive_put(). Calls to this function may sleep. 665 * Returns 0 on success, -EERROR otherwise 666 */ 667 int clk_rate_exclusive_get(struct clk *clk) 668 { 669 if (!clk) 670 return 0; 671 672 clk_prepare_lock(); 673 clk_core_rate_protect(clk->core); 674 clk->exclusive_count++; 675 clk_prepare_unlock(); 676 677 return 0; 678 } 679 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 680 681 static void clk_core_unprepare(struct clk_core *core) 682 { 683 lockdep_assert_held(&prepare_lock); 684 685 if (!core) 686 return; 687 688 if (WARN(core->prepare_count == 0, 689 "%s already unprepared\n", core->name)) 690 return; 691 692 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 693 "Unpreparing critical %s\n", core->name)) 694 return; 695 696 if (core->flags & CLK_SET_RATE_GATE) 697 clk_core_rate_unprotect(core); 698 699 if (--core->prepare_count > 0) 700 return; 701 702 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 703 704 trace_clk_unprepare(core); 705 706 if (core->ops->unprepare) 707 core->ops->unprepare(core->hw); 708 709 clk_pm_runtime_put(core); 710 711 trace_clk_unprepare_complete(core); 712 clk_core_unprepare(core->parent); 713 } 714 715 static void clk_core_unprepare_lock(struct clk_core *core) 716 { 717 clk_prepare_lock(); 718 clk_core_unprepare(core); 719 clk_prepare_unlock(); 720 } 721 722 /** 723 * clk_unprepare - undo preparation of a clock source 724 * @clk: the clk being unprepared 725 * 726 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 727 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 728 * if the operation may sleep. One example is a clk which is accessed over 729 * I2c. In the complex case a clk gate operation may require a fast and a slow 730 * part. It is this reason that clk_unprepare and clk_disable are not mutually 731 * exclusive. In fact clk_disable must be called before clk_unprepare. 732 */ 733 void clk_unprepare(struct clk *clk) 734 { 735 if (IS_ERR_OR_NULL(clk)) 736 return; 737 738 clk_core_unprepare_lock(clk->core); 739 } 740 EXPORT_SYMBOL_GPL(clk_unprepare); 741 742 static int clk_core_prepare(struct clk_core *core) 743 { 744 int ret = 0; 745 746 lockdep_assert_held(&prepare_lock); 747 748 if (!core) 749 return 0; 750 751 if (core->prepare_count == 0) { 752 ret = clk_pm_runtime_get(core); 753 if (ret) 754 return ret; 755 756 ret = clk_core_prepare(core->parent); 757 if (ret) 758 goto runtime_put; 759 760 trace_clk_prepare(core); 761 762 if (core->ops->prepare) 763 ret = core->ops->prepare(core->hw); 764 765 trace_clk_prepare_complete(core); 766 767 if (ret) 768 goto unprepare; 769 } 770 771 core->prepare_count++; 772 773 /* 774 * CLK_SET_RATE_GATE is a special case of clock protection 775 * Instead of a consumer claiming exclusive rate control, it is 776 * actually the provider which prevents any consumer from making any 777 * operation which could result in a rate change or rate glitch while 778 * the clock is prepared. 779 */ 780 if (core->flags & CLK_SET_RATE_GATE) 781 clk_core_rate_protect(core); 782 783 return 0; 784 unprepare: 785 clk_core_unprepare(core->parent); 786 runtime_put: 787 clk_pm_runtime_put(core); 788 return ret; 789 } 790 791 static int clk_core_prepare_lock(struct clk_core *core) 792 { 793 int ret; 794 795 clk_prepare_lock(); 796 ret = clk_core_prepare(core); 797 clk_prepare_unlock(); 798 799 return ret; 800 } 801 802 /** 803 * clk_prepare - prepare a clock source 804 * @clk: the clk being prepared 805 * 806 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 807 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 808 * operation may sleep. One example is a clk which is accessed over I2c. In 809 * the complex case a clk ungate operation may require a fast and a slow part. 810 * It is this reason that clk_prepare and clk_enable are not mutually 811 * exclusive. In fact clk_prepare must be called before clk_enable. 812 * Returns 0 on success, -EERROR otherwise. 813 */ 814 int clk_prepare(struct clk *clk) 815 { 816 if (!clk) 817 return 0; 818 819 return clk_core_prepare_lock(clk->core); 820 } 821 EXPORT_SYMBOL_GPL(clk_prepare); 822 823 static void clk_core_disable(struct clk_core *core) 824 { 825 lockdep_assert_held(&enable_lock); 826 827 if (!core) 828 return; 829 830 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 831 return; 832 833 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 834 "Disabling critical %s\n", core->name)) 835 return; 836 837 if (--core->enable_count > 0) 838 return; 839 840 trace_clk_disable_rcuidle(core); 841 842 if (core->ops->disable) 843 core->ops->disable(core->hw); 844 845 trace_clk_disable_complete_rcuidle(core); 846 847 clk_core_disable(core->parent); 848 } 849 850 static void clk_core_disable_lock(struct clk_core *core) 851 { 852 unsigned long flags; 853 854 flags = clk_enable_lock(); 855 clk_core_disable(core); 856 clk_enable_unlock(flags); 857 } 858 859 /** 860 * clk_disable - gate a clock 861 * @clk: the clk being gated 862 * 863 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 864 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 865 * clk if the operation is fast and will never sleep. One example is a 866 * SoC-internal clk which is controlled via simple register writes. In the 867 * complex case a clk gate operation may require a fast and a slow part. It is 868 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 869 * In fact clk_disable must be called before clk_unprepare. 870 */ 871 void clk_disable(struct clk *clk) 872 { 873 if (IS_ERR_OR_NULL(clk)) 874 return; 875 876 clk_core_disable_lock(clk->core); 877 } 878 EXPORT_SYMBOL_GPL(clk_disable); 879 880 static int clk_core_enable(struct clk_core *core) 881 { 882 int ret = 0; 883 884 lockdep_assert_held(&enable_lock); 885 886 if (!core) 887 return 0; 888 889 if (WARN(core->prepare_count == 0, 890 "Enabling unprepared %s\n", core->name)) 891 return -ESHUTDOWN; 892 893 if (core->enable_count == 0) { 894 ret = clk_core_enable(core->parent); 895 896 if (ret) 897 return ret; 898 899 trace_clk_enable_rcuidle(core); 900 901 if (core->ops->enable) 902 ret = core->ops->enable(core->hw); 903 904 trace_clk_enable_complete_rcuidle(core); 905 906 if (ret) { 907 clk_core_disable(core->parent); 908 return ret; 909 } 910 } 911 912 core->enable_count++; 913 return 0; 914 } 915 916 static int clk_core_enable_lock(struct clk_core *core) 917 { 918 unsigned long flags; 919 int ret; 920 921 flags = clk_enable_lock(); 922 ret = clk_core_enable(core); 923 clk_enable_unlock(flags); 924 925 return ret; 926 } 927 928 /** 929 * clk_gate_restore_context - restore context for poweroff 930 * @hw: the clk_hw pointer of clock whose state is to be restored 931 * 932 * The clock gate restore context function enables or disables 933 * the gate clocks based on the enable_count. This is done in cases 934 * where the clock context is lost and based on the enable_count 935 * the clock either needs to be enabled/disabled. This 936 * helps restore the state of gate clocks. 937 */ 938 void clk_gate_restore_context(struct clk_hw *hw) 939 { 940 struct clk_core *core = hw->core; 941 942 if (core->enable_count) 943 core->ops->enable(hw); 944 else 945 core->ops->disable(hw); 946 } 947 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 948 949 static int clk_core_save_context(struct clk_core *core) 950 { 951 struct clk_core *child; 952 int ret = 0; 953 954 hlist_for_each_entry(child, &core->children, child_node) { 955 ret = clk_core_save_context(child); 956 if (ret < 0) 957 return ret; 958 } 959 960 if (core->ops && core->ops->save_context) 961 ret = core->ops->save_context(core->hw); 962 963 return ret; 964 } 965 966 static void clk_core_restore_context(struct clk_core *core) 967 { 968 struct clk_core *child; 969 970 if (core->ops && core->ops->restore_context) 971 core->ops->restore_context(core->hw); 972 973 hlist_for_each_entry(child, &core->children, child_node) 974 clk_core_restore_context(child); 975 } 976 977 /** 978 * clk_save_context - save clock context for poweroff 979 * 980 * Saves the context of the clock register for powerstates in which the 981 * contents of the registers will be lost. Occurs deep within the suspend 982 * code. Returns 0 on success. 983 */ 984 int clk_save_context(void) 985 { 986 struct clk_core *clk; 987 int ret; 988 989 hlist_for_each_entry(clk, &clk_root_list, child_node) { 990 ret = clk_core_save_context(clk); 991 if (ret < 0) 992 return ret; 993 } 994 995 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 996 ret = clk_core_save_context(clk); 997 if (ret < 0) 998 return ret; 999 } 1000 1001 return 0; 1002 } 1003 EXPORT_SYMBOL_GPL(clk_save_context); 1004 1005 /** 1006 * clk_restore_context - restore clock context after poweroff 1007 * 1008 * Restore the saved clock context upon resume. 1009 * 1010 */ 1011 void clk_restore_context(void) 1012 { 1013 struct clk_core *core; 1014 1015 hlist_for_each_entry(core, &clk_root_list, child_node) 1016 clk_core_restore_context(core); 1017 1018 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1019 clk_core_restore_context(core); 1020 } 1021 EXPORT_SYMBOL_GPL(clk_restore_context); 1022 1023 /** 1024 * clk_enable - ungate a clock 1025 * @clk: the clk being ungated 1026 * 1027 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1028 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1029 * if the operation will never sleep. One example is a SoC-internal clk which 1030 * is controlled via simple register writes. In the complex case a clk ungate 1031 * operation may require a fast and a slow part. It is this reason that 1032 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1033 * must be called before clk_enable. Returns 0 on success, -EERROR 1034 * otherwise. 1035 */ 1036 int clk_enable(struct clk *clk) 1037 { 1038 if (!clk) 1039 return 0; 1040 1041 return clk_core_enable_lock(clk->core); 1042 } 1043 EXPORT_SYMBOL_GPL(clk_enable); 1044 1045 static int clk_core_prepare_enable(struct clk_core *core) 1046 { 1047 int ret; 1048 1049 ret = clk_core_prepare_lock(core); 1050 if (ret) 1051 return ret; 1052 1053 ret = clk_core_enable_lock(core); 1054 if (ret) 1055 clk_core_unprepare_lock(core); 1056 1057 return ret; 1058 } 1059 1060 static void clk_core_disable_unprepare(struct clk_core *core) 1061 { 1062 clk_core_disable_lock(core); 1063 clk_core_unprepare_lock(core); 1064 } 1065 1066 static void clk_unprepare_unused_subtree(struct clk_core *core) 1067 { 1068 struct clk_core *child; 1069 1070 lockdep_assert_held(&prepare_lock); 1071 1072 hlist_for_each_entry(child, &core->children, child_node) 1073 clk_unprepare_unused_subtree(child); 1074 1075 if (core->prepare_count) 1076 return; 1077 1078 if (core->flags & CLK_IGNORE_UNUSED) 1079 return; 1080 1081 if (clk_pm_runtime_get(core)) 1082 return; 1083 1084 if (clk_core_is_prepared(core)) { 1085 trace_clk_unprepare(core); 1086 if (core->ops->unprepare_unused) 1087 core->ops->unprepare_unused(core->hw); 1088 else if (core->ops->unprepare) 1089 core->ops->unprepare(core->hw); 1090 trace_clk_unprepare_complete(core); 1091 } 1092 1093 clk_pm_runtime_put(core); 1094 } 1095 1096 static void clk_disable_unused_subtree(struct clk_core *core) 1097 { 1098 struct clk_core *child; 1099 unsigned long flags; 1100 1101 lockdep_assert_held(&prepare_lock); 1102 1103 hlist_for_each_entry(child, &core->children, child_node) 1104 clk_disable_unused_subtree(child); 1105 1106 if (core->flags & CLK_OPS_PARENT_ENABLE) 1107 clk_core_prepare_enable(core->parent); 1108 1109 if (clk_pm_runtime_get(core)) 1110 goto unprepare_out; 1111 1112 flags = clk_enable_lock(); 1113 1114 if (core->enable_count) 1115 goto unlock_out; 1116 1117 if (core->flags & CLK_IGNORE_UNUSED) 1118 goto unlock_out; 1119 1120 /* 1121 * some gate clocks have special needs during the disable-unused 1122 * sequence. call .disable_unused if available, otherwise fall 1123 * back to .disable 1124 */ 1125 if (clk_core_is_enabled(core)) { 1126 trace_clk_disable(core); 1127 if (core->ops->disable_unused) 1128 core->ops->disable_unused(core->hw); 1129 else if (core->ops->disable) 1130 core->ops->disable(core->hw); 1131 trace_clk_disable_complete(core); 1132 } 1133 1134 unlock_out: 1135 clk_enable_unlock(flags); 1136 clk_pm_runtime_put(core); 1137 unprepare_out: 1138 if (core->flags & CLK_OPS_PARENT_ENABLE) 1139 clk_core_disable_unprepare(core->parent); 1140 } 1141 1142 static bool clk_ignore_unused; 1143 static int __init clk_ignore_unused_setup(char *__unused) 1144 { 1145 clk_ignore_unused = true; 1146 return 1; 1147 } 1148 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1149 1150 static int clk_disable_unused(void) 1151 { 1152 struct clk_core *core; 1153 1154 if (clk_ignore_unused) { 1155 pr_warn("clk: Not disabling unused clocks\n"); 1156 return 0; 1157 } 1158 1159 clk_prepare_lock(); 1160 1161 hlist_for_each_entry(core, &clk_root_list, child_node) 1162 clk_disable_unused_subtree(core); 1163 1164 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1165 clk_disable_unused_subtree(core); 1166 1167 hlist_for_each_entry(core, &clk_root_list, child_node) 1168 clk_unprepare_unused_subtree(core); 1169 1170 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1171 clk_unprepare_unused_subtree(core); 1172 1173 clk_prepare_unlock(); 1174 1175 return 0; 1176 } 1177 late_initcall_sync(clk_disable_unused); 1178 1179 static int clk_core_determine_round_nolock(struct clk_core *core, 1180 struct clk_rate_request *req) 1181 { 1182 long rate; 1183 1184 lockdep_assert_held(&prepare_lock); 1185 1186 if (!core) 1187 return 0; 1188 1189 /* 1190 * At this point, core protection will be disabled if 1191 * - if the provider is not protected at all 1192 * - if the calling consumer is the only one which has exclusivity 1193 * over the provider 1194 */ 1195 if (clk_core_rate_is_protected(core)) { 1196 req->rate = core->rate; 1197 } else if (core->ops->determine_rate) { 1198 return core->ops->determine_rate(core->hw, req); 1199 } else if (core->ops->round_rate) { 1200 rate = core->ops->round_rate(core->hw, req->rate, 1201 &req->best_parent_rate); 1202 if (rate < 0) 1203 return rate; 1204 1205 req->rate = rate; 1206 } else { 1207 return -EINVAL; 1208 } 1209 1210 return 0; 1211 } 1212 1213 static void clk_core_init_rate_req(struct clk_core * const core, 1214 struct clk_rate_request *req) 1215 { 1216 struct clk_core *parent; 1217 1218 if (WARN_ON(!core || !req)) 1219 return; 1220 1221 parent = core->parent; 1222 if (parent) { 1223 req->best_parent_hw = parent->hw; 1224 req->best_parent_rate = parent->rate; 1225 } else { 1226 req->best_parent_hw = NULL; 1227 req->best_parent_rate = 0; 1228 } 1229 } 1230 1231 static bool clk_core_can_round(struct clk_core * const core) 1232 { 1233 if (core->ops->determine_rate || core->ops->round_rate) 1234 return true; 1235 1236 return false; 1237 } 1238 1239 static int clk_core_round_rate_nolock(struct clk_core *core, 1240 struct clk_rate_request *req) 1241 { 1242 lockdep_assert_held(&prepare_lock); 1243 1244 if (!core) { 1245 req->rate = 0; 1246 return 0; 1247 } 1248 1249 clk_core_init_rate_req(core, req); 1250 1251 if (clk_core_can_round(core)) 1252 return clk_core_determine_round_nolock(core, req); 1253 else if (core->flags & CLK_SET_RATE_PARENT) 1254 return clk_core_round_rate_nolock(core->parent, req); 1255 1256 req->rate = core->rate; 1257 return 0; 1258 } 1259 1260 /** 1261 * __clk_determine_rate - get the closest rate actually supported by a clock 1262 * @hw: determine the rate of this clock 1263 * @req: target rate request 1264 * 1265 * Useful for clk_ops such as .set_rate and .determine_rate. 1266 */ 1267 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1268 { 1269 if (!hw) { 1270 req->rate = 0; 1271 return 0; 1272 } 1273 1274 return clk_core_round_rate_nolock(hw->core, req); 1275 } 1276 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1277 1278 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1279 { 1280 int ret; 1281 struct clk_rate_request req; 1282 1283 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1284 req.rate = rate; 1285 1286 ret = clk_core_round_rate_nolock(hw->core, &req); 1287 if (ret) 1288 return 0; 1289 1290 return req.rate; 1291 } 1292 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1293 1294 /** 1295 * clk_round_rate - round the given rate for a clk 1296 * @clk: the clk for which we are rounding a rate 1297 * @rate: the rate which is to be rounded 1298 * 1299 * Takes in a rate as input and rounds it to a rate that the clk can actually 1300 * use which is then returned. If clk doesn't support round_rate operation 1301 * then the parent rate is returned. 1302 */ 1303 long clk_round_rate(struct clk *clk, unsigned long rate) 1304 { 1305 struct clk_rate_request req; 1306 int ret; 1307 1308 if (!clk) 1309 return 0; 1310 1311 clk_prepare_lock(); 1312 1313 if (clk->exclusive_count) 1314 clk_core_rate_unprotect(clk->core); 1315 1316 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1317 req.rate = rate; 1318 1319 ret = clk_core_round_rate_nolock(clk->core, &req); 1320 1321 if (clk->exclusive_count) 1322 clk_core_rate_protect(clk->core); 1323 1324 clk_prepare_unlock(); 1325 1326 if (ret) 1327 return ret; 1328 1329 return req.rate; 1330 } 1331 EXPORT_SYMBOL_GPL(clk_round_rate); 1332 1333 /** 1334 * __clk_notify - call clk notifier chain 1335 * @core: clk that is changing rate 1336 * @msg: clk notifier type (see include/linux/clk.h) 1337 * @old_rate: old clk rate 1338 * @new_rate: new clk rate 1339 * 1340 * Triggers a notifier call chain on the clk rate-change notification 1341 * for 'clk'. Passes a pointer to the struct clk and the previous 1342 * and current rates to the notifier callback. Intended to be called by 1343 * internal clock code only. Returns NOTIFY_DONE from the last driver 1344 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1345 * a driver returns that. 1346 */ 1347 static int __clk_notify(struct clk_core *core, unsigned long msg, 1348 unsigned long old_rate, unsigned long new_rate) 1349 { 1350 struct clk_notifier *cn; 1351 struct clk_notifier_data cnd; 1352 int ret = NOTIFY_DONE; 1353 1354 cnd.old_rate = old_rate; 1355 cnd.new_rate = new_rate; 1356 1357 list_for_each_entry(cn, &clk_notifier_list, node) { 1358 if (cn->clk->core == core) { 1359 cnd.clk = cn->clk; 1360 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1361 &cnd); 1362 if (ret & NOTIFY_STOP_MASK) 1363 return ret; 1364 } 1365 } 1366 1367 return ret; 1368 } 1369 1370 /** 1371 * __clk_recalc_accuracies 1372 * @core: first clk in the subtree 1373 * 1374 * Walks the subtree of clks starting with clk and recalculates accuracies as 1375 * it goes. Note that if a clk does not implement the .recalc_accuracy 1376 * callback then it is assumed that the clock will take on the accuracy of its 1377 * parent. 1378 */ 1379 static void __clk_recalc_accuracies(struct clk_core *core) 1380 { 1381 unsigned long parent_accuracy = 0; 1382 struct clk_core *child; 1383 1384 lockdep_assert_held(&prepare_lock); 1385 1386 if (core->parent) 1387 parent_accuracy = core->parent->accuracy; 1388 1389 if (core->ops->recalc_accuracy) 1390 core->accuracy = core->ops->recalc_accuracy(core->hw, 1391 parent_accuracy); 1392 else 1393 core->accuracy = parent_accuracy; 1394 1395 hlist_for_each_entry(child, &core->children, child_node) 1396 __clk_recalc_accuracies(child); 1397 } 1398 1399 static long clk_core_get_accuracy(struct clk_core *core) 1400 { 1401 unsigned long accuracy; 1402 1403 clk_prepare_lock(); 1404 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1405 __clk_recalc_accuracies(core); 1406 1407 accuracy = __clk_get_accuracy(core); 1408 clk_prepare_unlock(); 1409 1410 return accuracy; 1411 } 1412 1413 /** 1414 * clk_get_accuracy - return the accuracy of clk 1415 * @clk: the clk whose accuracy is being returned 1416 * 1417 * Simply returns the cached accuracy of the clk, unless 1418 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1419 * issued. 1420 * If clk is NULL then returns 0. 1421 */ 1422 long clk_get_accuracy(struct clk *clk) 1423 { 1424 if (!clk) 1425 return 0; 1426 1427 return clk_core_get_accuracy(clk->core); 1428 } 1429 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1430 1431 static unsigned long clk_recalc(struct clk_core *core, 1432 unsigned long parent_rate) 1433 { 1434 unsigned long rate = parent_rate; 1435 1436 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1437 rate = core->ops->recalc_rate(core->hw, parent_rate); 1438 clk_pm_runtime_put(core); 1439 } 1440 return rate; 1441 } 1442 1443 /** 1444 * __clk_recalc_rates 1445 * @core: first clk in the subtree 1446 * @msg: notification type (see include/linux/clk.h) 1447 * 1448 * Walks the subtree of clks starting with clk and recalculates rates as it 1449 * goes. Note that if a clk does not implement the .recalc_rate callback then 1450 * it is assumed that the clock will take on the rate of its parent. 1451 * 1452 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1453 * if necessary. 1454 */ 1455 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1456 { 1457 unsigned long old_rate; 1458 unsigned long parent_rate = 0; 1459 struct clk_core *child; 1460 1461 lockdep_assert_held(&prepare_lock); 1462 1463 old_rate = core->rate; 1464 1465 if (core->parent) 1466 parent_rate = core->parent->rate; 1467 1468 core->rate = clk_recalc(core, parent_rate); 1469 1470 /* 1471 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1472 * & ABORT_RATE_CHANGE notifiers 1473 */ 1474 if (core->notifier_count && msg) 1475 __clk_notify(core, msg, old_rate, core->rate); 1476 1477 hlist_for_each_entry(child, &core->children, child_node) 1478 __clk_recalc_rates(child, msg); 1479 } 1480 1481 static unsigned long clk_core_get_rate(struct clk_core *core) 1482 { 1483 unsigned long rate; 1484 1485 clk_prepare_lock(); 1486 1487 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1488 __clk_recalc_rates(core, 0); 1489 1490 rate = clk_core_get_rate_nolock(core); 1491 clk_prepare_unlock(); 1492 1493 return rate; 1494 } 1495 1496 /** 1497 * clk_get_rate - return the rate of clk 1498 * @clk: the clk whose rate is being returned 1499 * 1500 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1501 * is set, which means a recalc_rate will be issued. 1502 * If clk is NULL then returns 0. 1503 */ 1504 unsigned long clk_get_rate(struct clk *clk) 1505 { 1506 if (!clk) 1507 return 0; 1508 1509 return clk_core_get_rate(clk->core); 1510 } 1511 EXPORT_SYMBOL_GPL(clk_get_rate); 1512 1513 static int clk_fetch_parent_index(struct clk_core *core, 1514 struct clk_core *parent) 1515 { 1516 int i; 1517 1518 if (!parent) 1519 return -EINVAL; 1520 1521 for (i = 0; i < core->num_parents; i++) { 1522 if (core->parents[i] == parent) 1523 return i; 1524 1525 if (core->parents[i]) 1526 continue; 1527 1528 /* Fallback to comparing globally unique names */ 1529 if (!strcmp(parent->name, core->parent_names[i])) { 1530 core->parents[i] = parent; 1531 return i; 1532 } 1533 } 1534 1535 return -EINVAL; 1536 } 1537 1538 /* 1539 * Update the orphan status of @core and all its children. 1540 */ 1541 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1542 { 1543 struct clk_core *child; 1544 1545 core->orphan = is_orphan; 1546 1547 hlist_for_each_entry(child, &core->children, child_node) 1548 clk_core_update_orphan_status(child, is_orphan); 1549 } 1550 1551 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1552 { 1553 bool was_orphan = core->orphan; 1554 1555 hlist_del(&core->child_node); 1556 1557 if (new_parent) { 1558 bool becomes_orphan = new_parent->orphan; 1559 1560 /* avoid duplicate POST_RATE_CHANGE notifications */ 1561 if (new_parent->new_child == core) 1562 new_parent->new_child = NULL; 1563 1564 hlist_add_head(&core->child_node, &new_parent->children); 1565 1566 if (was_orphan != becomes_orphan) 1567 clk_core_update_orphan_status(core, becomes_orphan); 1568 } else { 1569 hlist_add_head(&core->child_node, &clk_orphan_list); 1570 if (!was_orphan) 1571 clk_core_update_orphan_status(core, true); 1572 } 1573 1574 core->parent = new_parent; 1575 } 1576 1577 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1578 struct clk_core *parent) 1579 { 1580 unsigned long flags; 1581 struct clk_core *old_parent = core->parent; 1582 1583 /* 1584 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1585 * 1586 * 2. Migrate prepare state between parents and prevent race with 1587 * clk_enable(). 1588 * 1589 * If the clock is not prepared, then a race with 1590 * clk_enable/disable() is impossible since we already have the 1591 * prepare lock (future calls to clk_enable() need to be preceded by 1592 * a clk_prepare()). 1593 * 1594 * If the clock is prepared, migrate the prepared state to the new 1595 * parent and also protect against a race with clk_enable() by 1596 * forcing the clock and the new parent on. This ensures that all 1597 * future calls to clk_enable() are practically NOPs with respect to 1598 * hardware and software states. 1599 * 1600 * See also: Comment for clk_set_parent() below. 1601 */ 1602 1603 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1604 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1605 clk_core_prepare_enable(old_parent); 1606 clk_core_prepare_enable(parent); 1607 } 1608 1609 /* migrate prepare count if > 0 */ 1610 if (core->prepare_count) { 1611 clk_core_prepare_enable(parent); 1612 clk_core_enable_lock(core); 1613 } 1614 1615 /* update the clk tree topology */ 1616 flags = clk_enable_lock(); 1617 clk_reparent(core, parent); 1618 clk_enable_unlock(flags); 1619 1620 return old_parent; 1621 } 1622 1623 static void __clk_set_parent_after(struct clk_core *core, 1624 struct clk_core *parent, 1625 struct clk_core *old_parent) 1626 { 1627 /* 1628 * Finish the migration of prepare state and undo the changes done 1629 * for preventing a race with clk_enable(). 1630 */ 1631 if (core->prepare_count) { 1632 clk_core_disable_lock(core); 1633 clk_core_disable_unprepare(old_parent); 1634 } 1635 1636 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1637 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1638 clk_core_disable_unprepare(parent); 1639 clk_core_disable_unprepare(old_parent); 1640 } 1641 } 1642 1643 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1644 u8 p_index) 1645 { 1646 unsigned long flags; 1647 int ret = 0; 1648 struct clk_core *old_parent; 1649 1650 old_parent = __clk_set_parent_before(core, parent); 1651 1652 trace_clk_set_parent(core, parent); 1653 1654 /* change clock input source */ 1655 if (parent && core->ops->set_parent) 1656 ret = core->ops->set_parent(core->hw, p_index); 1657 1658 trace_clk_set_parent_complete(core, parent); 1659 1660 if (ret) { 1661 flags = clk_enable_lock(); 1662 clk_reparent(core, old_parent); 1663 clk_enable_unlock(flags); 1664 __clk_set_parent_after(core, old_parent, parent); 1665 1666 return ret; 1667 } 1668 1669 __clk_set_parent_after(core, parent, old_parent); 1670 1671 return 0; 1672 } 1673 1674 /** 1675 * __clk_speculate_rates 1676 * @core: first clk in the subtree 1677 * @parent_rate: the "future" rate of clk's parent 1678 * 1679 * Walks the subtree of clks starting with clk, speculating rates as it 1680 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1681 * 1682 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1683 * pre-rate change notifications and returns early if no clks in the 1684 * subtree have subscribed to the notifications. Note that if a clk does not 1685 * implement the .recalc_rate callback then it is assumed that the clock will 1686 * take on the rate of its parent. 1687 */ 1688 static int __clk_speculate_rates(struct clk_core *core, 1689 unsigned long parent_rate) 1690 { 1691 struct clk_core *child; 1692 unsigned long new_rate; 1693 int ret = NOTIFY_DONE; 1694 1695 lockdep_assert_held(&prepare_lock); 1696 1697 new_rate = clk_recalc(core, parent_rate); 1698 1699 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1700 if (core->notifier_count) 1701 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1702 1703 if (ret & NOTIFY_STOP_MASK) { 1704 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1705 __func__, core->name, ret); 1706 goto out; 1707 } 1708 1709 hlist_for_each_entry(child, &core->children, child_node) { 1710 ret = __clk_speculate_rates(child, new_rate); 1711 if (ret & NOTIFY_STOP_MASK) 1712 break; 1713 } 1714 1715 out: 1716 return ret; 1717 } 1718 1719 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1720 struct clk_core *new_parent, u8 p_index) 1721 { 1722 struct clk_core *child; 1723 1724 core->new_rate = new_rate; 1725 core->new_parent = new_parent; 1726 core->new_parent_index = p_index; 1727 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1728 core->new_child = NULL; 1729 if (new_parent && new_parent != core->parent) 1730 new_parent->new_child = core; 1731 1732 hlist_for_each_entry(child, &core->children, child_node) { 1733 child->new_rate = clk_recalc(child, new_rate); 1734 clk_calc_subtree(child, child->new_rate, NULL, 0); 1735 } 1736 } 1737 1738 /* 1739 * calculate the new rates returning the topmost clock that has to be 1740 * changed. 1741 */ 1742 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1743 unsigned long rate) 1744 { 1745 struct clk_core *top = core; 1746 struct clk_core *old_parent, *parent; 1747 unsigned long best_parent_rate = 0; 1748 unsigned long new_rate; 1749 unsigned long min_rate; 1750 unsigned long max_rate; 1751 int p_index = 0; 1752 long ret; 1753 1754 /* sanity */ 1755 if (IS_ERR_OR_NULL(core)) 1756 return NULL; 1757 1758 /* save parent rate, if it exists */ 1759 parent = old_parent = core->parent; 1760 if (parent) 1761 best_parent_rate = parent->rate; 1762 1763 clk_core_get_boundaries(core, &min_rate, &max_rate); 1764 1765 /* find the closest rate and parent clk/rate */ 1766 if (clk_core_can_round(core)) { 1767 struct clk_rate_request req; 1768 1769 req.rate = rate; 1770 req.min_rate = min_rate; 1771 req.max_rate = max_rate; 1772 1773 clk_core_init_rate_req(core, &req); 1774 1775 ret = clk_core_determine_round_nolock(core, &req); 1776 if (ret < 0) 1777 return NULL; 1778 1779 best_parent_rate = req.best_parent_rate; 1780 new_rate = req.rate; 1781 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1782 1783 if (new_rate < min_rate || new_rate > max_rate) 1784 return NULL; 1785 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1786 /* pass-through clock without adjustable parent */ 1787 core->new_rate = core->rate; 1788 return NULL; 1789 } else { 1790 /* pass-through clock with adjustable parent */ 1791 top = clk_calc_new_rates(parent, rate); 1792 new_rate = parent->new_rate; 1793 goto out; 1794 } 1795 1796 /* some clocks must be gated to change parent */ 1797 if (parent != old_parent && 1798 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1799 pr_debug("%s: %s not gated but wants to reparent\n", 1800 __func__, core->name); 1801 return NULL; 1802 } 1803 1804 /* try finding the new parent index */ 1805 if (parent && core->num_parents > 1) { 1806 p_index = clk_fetch_parent_index(core, parent); 1807 if (p_index < 0) { 1808 pr_debug("%s: clk %s can not be parent of clk %s\n", 1809 __func__, parent->name, core->name); 1810 return NULL; 1811 } 1812 } 1813 1814 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1815 best_parent_rate != parent->rate) 1816 top = clk_calc_new_rates(parent, best_parent_rate); 1817 1818 out: 1819 clk_calc_subtree(core, new_rate, parent, p_index); 1820 1821 return top; 1822 } 1823 1824 /* 1825 * Notify about rate changes in a subtree. Always walk down the whole tree 1826 * so that in case of an error we can walk down the whole tree again and 1827 * abort the change. 1828 */ 1829 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1830 unsigned long event) 1831 { 1832 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1833 int ret = NOTIFY_DONE; 1834 1835 if (core->rate == core->new_rate) 1836 return NULL; 1837 1838 if (core->notifier_count) { 1839 ret = __clk_notify(core, event, core->rate, core->new_rate); 1840 if (ret & NOTIFY_STOP_MASK) 1841 fail_clk = core; 1842 } 1843 1844 hlist_for_each_entry(child, &core->children, child_node) { 1845 /* Skip children who will be reparented to another clock */ 1846 if (child->new_parent && child->new_parent != core) 1847 continue; 1848 tmp_clk = clk_propagate_rate_change(child, event); 1849 if (tmp_clk) 1850 fail_clk = tmp_clk; 1851 } 1852 1853 /* handle the new child who might not be in core->children yet */ 1854 if (core->new_child) { 1855 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1856 if (tmp_clk) 1857 fail_clk = tmp_clk; 1858 } 1859 1860 return fail_clk; 1861 } 1862 1863 /* 1864 * walk down a subtree and set the new rates notifying the rate 1865 * change on the way 1866 */ 1867 static void clk_change_rate(struct clk_core *core) 1868 { 1869 struct clk_core *child; 1870 struct hlist_node *tmp; 1871 unsigned long old_rate; 1872 unsigned long best_parent_rate = 0; 1873 bool skip_set_rate = false; 1874 struct clk_core *old_parent; 1875 struct clk_core *parent = NULL; 1876 1877 old_rate = core->rate; 1878 1879 if (core->new_parent) { 1880 parent = core->new_parent; 1881 best_parent_rate = core->new_parent->rate; 1882 } else if (core->parent) { 1883 parent = core->parent; 1884 best_parent_rate = core->parent->rate; 1885 } 1886 1887 if (clk_pm_runtime_get(core)) 1888 return; 1889 1890 if (core->flags & CLK_SET_RATE_UNGATE) { 1891 unsigned long flags; 1892 1893 clk_core_prepare(core); 1894 flags = clk_enable_lock(); 1895 clk_core_enable(core); 1896 clk_enable_unlock(flags); 1897 } 1898 1899 if (core->new_parent && core->new_parent != core->parent) { 1900 old_parent = __clk_set_parent_before(core, core->new_parent); 1901 trace_clk_set_parent(core, core->new_parent); 1902 1903 if (core->ops->set_rate_and_parent) { 1904 skip_set_rate = true; 1905 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1906 best_parent_rate, 1907 core->new_parent_index); 1908 } else if (core->ops->set_parent) { 1909 core->ops->set_parent(core->hw, core->new_parent_index); 1910 } 1911 1912 trace_clk_set_parent_complete(core, core->new_parent); 1913 __clk_set_parent_after(core, core->new_parent, old_parent); 1914 } 1915 1916 if (core->flags & CLK_OPS_PARENT_ENABLE) 1917 clk_core_prepare_enable(parent); 1918 1919 trace_clk_set_rate(core, core->new_rate); 1920 1921 if (!skip_set_rate && core->ops->set_rate) 1922 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1923 1924 trace_clk_set_rate_complete(core, core->new_rate); 1925 1926 core->rate = clk_recalc(core, best_parent_rate); 1927 1928 if (core->flags & CLK_SET_RATE_UNGATE) { 1929 unsigned long flags; 1930 1931 flags = clk_enable_lock(); 1932 clk_core_disable(core); 1933 clk_enable_unlock(flags); 1934 clk_core_unprepare(core); 1935 } 1936 1937 if (core->flags & CLK_OPS_PARENT_ENABLE) 1938 clk_core_disable_unprepare(parent); 1939 1940 if (core->notifier_count && old_rate != core->rate) 1941 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1942 1943 if (core->flags & CLK_RECALC_NEW_RATES) 1944 (void)clk_calc_new_rates(core, core->new_rate); 1945 1946 /* 1947 * Use safe iteration, as change_rate can actually swap parents 1948 * for certain clock types. 1949 */ 1950 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1951 /* Skip children who will be reparented to another clock */ 1952 if (child->new_parent && child->new_parent != core) 1953 continue; 1954 clk_change_rate(child); 1955 } 1956 1957 /* handle the new child who might not be in core->children yet */ 1958 if (core->new_child) 1959 clk_change_rate(core->new_child); 1960 1961 clk_pm_runtime_put(core); 1962 } 1963 1964 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 1965 unsigned long req_rate) 1966 { 1967 int ret, cnt; 1968 struct clk_rate_request req; 1969 1970 lockdep_assert_held(&prepare_lock); 1971 1972 if (!core) 1973 return 0; 1974 1975 /* simulate what the rate would be if it could be freely set */ 1976 cnt = clk_core_rate_nuke_protect(core); 1977 if (cnt < 0) 1978 return cnt; 1979 1980 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 1981 req.rate = req_rate; 1982 1983 ret = clk_core_round_rate_nolock(core, &req); 1984 1985 /* restore the protection */ 1986 clk_core_rate_restore_protect(core, cnt); 1987 1988 return ret ? 0 : req.rate; 1989 } 1990 1991 static int clk_core_set_rate_nolock(struct clk_core *core, 1992 unsigned long req_rate) 1993 { 1994 struct clk_core *top, *fail_clk; 1995 unsigned long rate; 1996 int ret = 0; 1997 1998 if (!core) 1999 return 0; 2000 2001 rate = clk_core_req_round_rate_nolock(core, req_rate); 2002 2003 /* bail early if nothing to do */ 2004 if (rate == clk_core_get_rate_nolock(core)) 2005 return 0; 2006 2007 /* fail on a direct rate set of a protected provider */ 2008 if (clk_core_rate_is_protected(core)) 2009 return -EBUSY; 2010 2011 /* calculate new rates and get the topmost changed clock */ 2012 top = clk_calc_new_rates(core, req_rate); 2013 if (!top) 2014 return -EINVAL; 2015 2016 ret = clk_pm_runtime_get(core); 2017 if (ret) 2018 return ret; 2019 2020 /* notify that we are about to change rates */ 2021 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2022 if (fail_clk) { 2023 pr_debug("%s: failed to set %s rate\n", __func__, 2024 fail_clk->name); 2025 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2026 ret = -EBUSY; 2027 goto err; 2028 } 2029 2030 /* change the rates */ 2031 clk_change_rate(top); 2032 2033 core->req_rate = req_rate; 2034 err: 2035 clk_pm_runtime_put(core); 2036 2037 return ret; 2038 } 2039 2040 /** 2041 * clk_set_rate - specify a new rate for clk 2042 * @clk: the clk whose rate is being changed 2043 * @rate: the new rate for clk 2044 * 2045 * In the simplest case clk_set_rate will only adjust the rate of clk. 2046 * 2047 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2048 * propagate up to clk's parent; whether or not this happens depends on the 2049 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2050 * after calling .round_rate then upstream parent propagation is ignored. If 2051 * *parent_rate comes back with a new rate for clk's parent then we propagate 2052 * up to clk's parent and set its rate. Upward propagation will continue 2053 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2054 * .round_rate stops requesting changes to clk's parent_rate. 2055 * 2056 * Rate changes are accomplished via tree traversal that also recalculates the 2057 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2058 * 2059 * Returns 0 on success, -EERROR otherwise. 2060 */ 2061 int clk_set_rate(struct clk *clk, unsigned long rate) 2062 { 2063 int ret; 2064 2065 if (!clk) 2066 return 0; 2067 2068 /* prevent racing with updates to the clock topology */ 2069 clk_prepare_lock(); 2070 2071 if (clk->exclusive_count) 2072 clk_core_rate_unprotect(clk->core); 2073 2074 ret = clk_core_set_rate_nolock(clk->core, rate); 2075 2076 if (clk->exclusive_count) 2077 clk_core_rate_protect(clk->core); 2078 2079 clk_prepare_unlock(); 2080 2081 return ret; 2082 } 2083 EXPORT_SYMBOL_GPL(clk_set_rate); 2084 2085 /** 2086 * clk_set_rate_exclusive - specify a new rate get exclusive control 2087 * @clk: the clk whose rate is being changed 2088 * @rate: the new rate for clk 2089 * 2090 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2091 * within a critical section 2092 * 2093 * This can be used initially to ensure that at least 1 consumer is 2094 * statisfied when several consumers are competing for exclusivity over the 2095 * same clock provider. 2096 * 2097 * The exclusivity is not applied if setting the rate failed. 2098 * 2099 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2100 * clk_rate_exclusive_put(). 2101 * 2102 * Returns 0 on success, -EERROR otherwise. 2103 */ 2104 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2105 { 2106 int ret; 2107 2108 if (!clk) 2109 return 0; 2110 2111 /* prevent racing with updates to the clock topology */ 2112 clk_prepare_lock(); 2113 2114 /* 2115 * The temporary protection removal is not here, on purpose 2116 * This function is meant to be used instead of clk_rate_protect, 2117 * so before the consumer code path protect the clock provider 2118 */ 2119 2120 ret = clk_core_set_rate_nolock(clk->core, rate); 2121 if (!ret) { 2122 clk_core_rate_protect(clk->core); 2123 clk->exclusive_count++; 2124 } 2125 2126 clk_prepare_unlock(); 2127 2128 return ret; 2129 } 2130 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2131 2132 /** 2133 * clk_set_rate_range - set a rate range for a clock source 2134 * @clk: clock source 2135 * @min: desired minimum clock rate in Hz, inclusive 2136 * @max: desired maximum clock rate in Hz, inclusive 2137 * 2138 * Returns success (0) or negative errno. 2139 */ 2140 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2141 { 2142 int ret = 0; 2143 unsigned long old_min, old_max, rate; 2144 2145 if (!clk) 2146 return 0; 2147 2148 if (min > max) { 2149 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2150 __func__, clk->core->name, clk->dev_id, clk->con_id, 2151 min, max); 2152 return -EINVAL; 2153 } 2154 2155 clk_prepare_lock(); 2156 2157 if (clk->exclusive_count) 2158 clk_core_rate_unprotect(clk->core); 2159 2160 /* Save the current values in case we need to rollback the change */ 2161 old_min = clk->min_rate; 2162 old_max = clk->max_rate; 2163 clk->min_rate = min; 2164 clk->max_rate = max; 2165 2166 rate = clk_core_get_rate_nolock(clk->core); 2167 if (rate < min || rate > max) { 2168 /* 2169 * FIXME: 2170 * We are in bit of trouble here, current rate is outside the 2171 * the requested range. We are going try to request appropriate 2172 * range boundary but there is a catch. It may fail for the 2173 * usual reason (clock broken, clock protected, etc) but also 2174 * because: 2175 * - round_rate() was not favorable and fell on the wrong 2176 * side of the boundary 2177 * - the determine_rate() callback does not really check for 2178 * this corner case when determining the rate 2179 */ 2180 2181 if (rate < min) 2182 rate = min; 2183 else 2184 rate = max; 2185 2186 ret = clk_core_set_rate_nolock(clk->core, rate); 2187 if (ret) { 2188 /* rollback the changes */ 2189 clk->min_rate = old_min; 2190 clk->max_rate = old_max; 2191 } 2192 } 2193 2194 if (clk->exclusive_count) 2195 clk_core_rate_protect(clk->core); 2196 2197 clk_prepare_unlock(); 2198 2199 return ret; 2200 } 2201 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2202 2203 /** 2204 * clk_set_min_rate - set a minimum clock rate for a clock source 2205 * @clk: clock source 2206 * @rate: desired minimum clock rate in Hz, inclusive 2207 * 2208 * Returns success (0) or negative errno. 2209 */ 2210 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2211 { 2212 if (!clk) 2213 return 0; 2214 2215 return clk_set_rate_range(clk, rate, clk->max_rate); 2216 } 2217 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2218 2219 /** 2220 * clk_set_max_rate - set a maximum clock rate for a clock source 2221 * @clk: clock source 2222 * @rate: desired maximum clock rate in Hz, inclusive 2223 * 2224 * Returns success (0) or negative errno. 2225 */ 2226 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2227 { 2228 if (!clk) 2229 return 0; 2230 2231 return clk_set_rate_range(clk, clk->min_rate, rate); 2232 } 2233 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2234 2235 /** 2236 * clk_get_parent - return the parent of a clk 2237 * @clk: the clk whose parent gets returned 2238 * 2239 * Simply returns clk->parent. Returns NULL if clk is NULL. 2240 */ 2241 struct clk *clk_get_parent(struct clk *clk) 2242 { 2243 struct clk *parent; 2244 2245 if (!clk) 2246 return NULL; 2247 2248 clk_prepare_lock(); 2249 /* TODO: Create a per-user clk and change callers to call clk_put */ 2250 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2251 clk_prepare_unlock(); 2252 2253 return parent; 2254 } 2255 EXPORT_SYMBOL_GPL(clk_get_parent); 2256 2257 static struct clk_core *__clk_init_parent(struct clk_core *core) 2258 { 2259 u8 index = 0; 2260 2261 if (core->num_parents > 1 && core->ops->get_parent) 2262 index = core->ops->get_parent(core->hw); 2263 2264 return clk_core_get_parent_by_index(core, index); 2265 } 2266 2267 static void clk_core_reparent(struct clk_core *core, 2268 struct clk_core *new_parent) 2269 { 2270 clk_reparent(core, new_parent); 2271 __clk_recalc_accuracies(core); 2272 __clk_recalc_rates(core, POST_RATE_CHANGE); 2273 } 2274 2275 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2276 { 2277 if (!hw) 2278 return; 2279 2280 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2281 } 2282 2283 /** 2284 * clk_has_parent - check if a clock is a possible parent for another 2285 * @clk: clock source 2286 * @parent: parent clock source 2287 * 2288 * This function can be used in drivers that need to check that a clock can be 2289 * the parent of another without actually changing the parent. 2290 * 2291 * Returns true if @parent is a possible parent for @clk, false otherwise. 2292 */ 2293 bool clk_has_parent(struct clk *clk, struct clk *parent) 2294 { 2295 struct clk_core *core, *parent_core; 2296 2297 /* NULL clocks should be nops, so return success if either is NULL. */ 2298 if (!clk || !parent) 2299 return true; 2300 2301 core = clk->core; 2302 parent_core = parent->core; 2303 2304 /* Optimize for the case where the parent is already the parent. */ 2305 if (core->parent == parent_core) 2306 return true; 2307 2308 return match_string(core->parent_names, core->num_parents, 2309 parent_core->name) >= 0; 2310 } 2311 EXPORT_SYMBOL_GPL(clk_has_parent); 2312 2313 static int clk_core_set_parent_nolock(struct clk_core *core, 2314 struct clk_core *parent) 2315 { 2316 int ret = 0; 2317 int p_index = 0; 2318 unsigned long p_rate = 0; 2319 2320 lockdep_assert_held(&prepare_lock); 2321 2322 if (!core) 2323 return 0; 2324 2325 if (core->parent == parent) 2326 return 0; 2327 2328 /* verify ops for for multi-parent clks */ 2329 if (core->num_parents > 1 && !core->ops->set_parent) 2330 return -EPERM; 2331 2332 /* check that we are allowed to re-parent if the clock is in use */ 2333 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2334 return -EBUSY; 2335 2336 if (clk_core_rate_is_protected(core)) 2337 return -EBUSY; 2338 2339 /* try finding the new parent index */ 2340 if (parent) { 2341 p_index = clk_fetch_parent_index(core, parent); 2342 if (p_index < 0) { 2343 pr_debug("%s: clk %s can not be parent of clk %s\n", 2344 __func__, parent->name, core->name); 2345 return p_index; 2346 } 2347 p_rate = parent->rate; 2348 } 2349 2350 ret = clk_pm_runtime_get(core); 2351 if (ret) 2352 return ret; 2353 2354 /* propagate PRE_RATE_CHANGE notifications */ 2355 ret = __clk_speculate_rates(core, p_rate); 2356 2357 /* abort if a driver objects */ 2358 if (ret & NOTIFY_STOP_MASK) 2359 goto runtime_put; 2360 2361 /* do the re-parent */ 2362 ret = __clk_set_parent(core, parent, p_index); 2363 2364 /* propagate rate an accuracy recalculation accordingly */ 2365 if (ret) { 2366 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2367 } else { 2368 __clk_recalc_rates(core, POST_RATE_CHANGE); 2369 __clk_recalc_accuracies(core); 2370 } 2371 2372 runtime_put: 2373 clk_pm_runtime_put(core); 2374 2375 return ret; 2376 } 2377 2378 /** 2379 * clk_set_parent - switch the parent of a mux clk 2380 * @clk: the mux clk whose input we are switching 2381 * @parent: the new input to clk 2382 * 2383 * Re-parent clk to use parent as its new input source. If clk is in 2384 * prepared state, the clk will get enabled for the duration of this call. If 2385 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2386 * that, the reparenting is glitchy in hardware, etc), use the 2387 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2388 * 2389 * After successfully changing clk's parent clk_set_parent will update the 2390 * clk topology, sysfs topology and propagate rate recalculation via 2391 * __clk_recalc_rates. 2392 * 2393 * Returns 0 on success, -EERROR otherwise. 2394 */ 2395 int clk_set_parent(struct clk *clk, struct clk *parent) 2396 { 2397 int ret; 2398 2399 if (!clk) 2400 return 0; 2401 2402 clk_prepare_lock(); 2403 2404 if (clk->exclusive_count) 2405 clk_core_rate_unprotect(clk->core); 2406 2407 ret = clk_core_set_parent_nolock(clk->core, 2408 parent ? parent->core : NULL); 2409 2410 if (clk->exclusive_count) 2411 clk_core_rate_protect(clk->core); 2412 2413 clk_prepare_unlock(); 2414 2415 return ret; 2416 } 2417 EXPORT_SYMBOL_GPL(clk_set_parent); 2418 2419 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2420 { 2421 int ret = -EINVAL; 2422 2423 lockdep_assert_held(&prepare_lock); 2424 2425 if (!core) 2426 return 0; 2427 2428 if (clk_core_rate_is_protected(core)) 2429 return -EBUSY; 2430 2431 trace_clk_set_phase(core, degrees); 2432 2433 if (core->ops->set_phase) { 2434 ret = core->ops->set_phase(core->hw, degrees); 2435 if (!ret) 2436 core->phase = degrees; 2437 } 2438 2439 trace_clk_set_phase_complete(core, degrees); 2440 2441 return ret; 2442 } 2443 2444 /** 2445 * clk_set_phase - adjust the phase shift of a clock signal 2446 * @clk: clock signal source 2447 * @degrees: number of degrees the signal is shifted 2448 * 2449 * Shifts the phase of a clock signal by the specified 2450 * degrees. Returns 0 on success, -EERROR otherwise. 2451 * 2452 * This function makes no distinction about the input or reference 2453 * signal that we adjust the clock signal phase against. For example 2454 * phase locked-loop clock signal generators we may shift phase with 2455 * respect to feedback clock signal input, but for other cases the 2456 * clock phase may be shifted with respect to some other, unspecified 2457 * signal. 2458 * 2459 * Additionally the concept of phase shift does not propagate through 2460 * the clock tree hierarchy, which sets it apart from clock rates and 2461 * clock accuracy. A parent clock phase attribute does not have an 2462 * impact on the phase attribute of a child clock. 2463 */ 2464 int clk_set_phase(struct clk *clk, int degrees) 2465 { 2466 int ret; 2467 2468 if (!clk) 2469 return 0; 2470 2471 /* sanity check degrees */ 2472 degrees %= 360; 2473 if (degrees < 0) 2474 degrees += 360; 2475 2476 clk_prepare_lock(); 2477 2478 if (clk->exclusive_count) 2479 clk_core_rate_unprotect(clk->core); 2480 2481 ret = clk_core_set_phase_nolock(clk->core, degrees); 2482 2483 if (clk->exclusive_count) 2484 clk_core_rate_protect(clk->core); 2485 2486 clk_prepare_unlock(); 2487 2488 return ret; 2489 } 2490 EXPORT_SYMBOL_GPL(clk_set_phase); 2491 2492 static int clk_core_get_phase(struct clk_core *core) 2493 { 2494 int ret; 2495 2496 clk_prepare_lock(); 2497 /* Always try to update cached phase if possible */ 2498 if (core->ops->get_phase) 2499 core->phase = core->ops->get_phase(core->hw); 2500 ret = core->phase; 2501 clk_prepare_unlock(); 2502 2503 return ret; 2504 } 2505 2506 /** 2507 * clk_get_phase - return the phase shift of a clock signal 2508 * @clk: clock signal source 2509 * 2510 * Returns the phase shift of a clock node in degrees, otherwise returns 2511 * -EERROR. 2512 */ 2513 int clk_get_phase(struct clk *clk) 2514 { 2515 if (!clk) 2516 return 0; 2517 2518 return clk_core_get_phase(clk->core); 2519 } 2520 EXPORT_SYMBOL_GPL(clk_get_phase); 2521 2522 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2523 { 2524 /* Assume a default value of 50% */ 2525 core->duty.num = 1; 2526 core->duty.den = 2; 2527 } 2528 2529 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2530 2531 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2532 { 2533 struct clk_duty *duty = &core->duty; 2534 int ret = 0; 2535 2536 if (!core->ops->get_duty_cycle) 2537 return clk_core_update_duty_cycle_parent_nolock(core); 2538 2539 ret = core->ops->get_duty_cycle(core->hw, duty); 2540 if (ret) 2541 goto reset; 2542 2543 /* Don't trust the clock provider too much */ 2544 if (duty->den == 0 || duty->num > duty->den) { 2545 ret = -EINVAL; 2546 goto reset; 2547 } 2548 2549 return 0; 2550 2551 reset: 2552 clk_core_reset_duty_cycle_nolock(core); 2553 return ret; 2554 } 2555 2556 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2557 { 2558 int ret = 0; 2559 2560 if (core->parent && 2561 core->flags & CLK_DUTY_CYCLE_PARENT) { 2562 ret = clk_core_update_duty_cycle_nolock(core->parent); 2563 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2564 } else { 2565 clk_core_reset_duty_cycle_nolock(core); 2566 } 2567 2568 return ret; 2569 } 2570 2571 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2572 struct clk_duty *duty); 2573 2574 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 2575 struct clk_duty *duty) 2576 { 2577 int ret; 2578 2579 lockdep_assert_held(&prepare_lock); 2580 2581 if (clk_core_rate_is_protected(core)) 2582 return -EBUSY; 2583 2584 trace_clk_set_duty_cycle(core, duty); 2585 2586 if (!core->ops->set_duty_cycle) 2587 return clk_core_set_duty_cycle_parent_nolock(core, duty); 2588 2589 ret = core->ops->set_duty_cycle(core->hw, duty); 2590 if (!ret) 2591 memcpy(&core->duty, duty, sizeof(*duty)); 2592 2593 trace_clk_set_duty_cycle_complete(core, duty); 2594 2595 return ret; 2596 } 2597 2598 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2599 struct clk_duty *duty) 2600 { 2601 int ret = 0; 2602 2603 if (core->parent && 2604 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 2605 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 2606 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2607 } 2608 2609 return ret; 2610 } 2611 2612 /** 2613 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 2614 * @clk: clock signal source 2615 * @num: numerator of the duty cycle ratio to be applied 2616 * @den: denominator of the duty cycle ratio to be applied 2617 * 2618 * Apply the duty cycle ratio if the ratio is valid and the clock can 2619 * perform this operation 2620 * 2621 * Returns (0) on success, a negative errno otherwise. 2622 */ 2623 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 2624 { 2625 int ret; 2626 struct clk_duty duty; 2627 2628 if (!clk) 2629 return 0; 2630 2631 /* sanity check the ratio */ 2632 if (den == 0 || num > den) 2633 return -EINVAL; 2634 2635 duty.num = num; 2636 duty.den = den; 2637 2638 clk_prepare_lock(); 2639 2640 if (clk->exclusive_count) 2641 clk_core_rate_unprotect(clk->core); 2642 2643 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 2644 2645 if (clk->exclusive_count) 2646 clk_core_rate_protect(clk->core); 2647 2648 clk_prepare_unlock(); 2649 2650 return ret; 2651 } 2652 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 2653 2654 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 2655 unsigned int scale) 2656 { 2657 struct clk_duty *duty = &core->duty; 2658 int ret; 2659 2660 clk_prepare_lock(); 2661 2662 ret = clk_core_update_duty_cycle_nolock(core); 2663 if (!ret) 2664 ret = mult_frac(scale, duty->num, duty->den); 2665 2666 clk_prepare_unlock(); 2667 2668 return ret; 2669 } 2670 2671 /** 2672 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 2673 * @clk: clock signal source 2674 * @scale: scaling factor to be applied to represent the ratio as an integer 2675 * 2676 * Returns the duty cycle ratio of a clock node multiplied by the provided 2677 * scaling factor, or negative errno on error. 2678 */ 2679 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 2680 { 2681 if (!clk) 2682 return 0; 2683 2684 return clk_core_get_scaled_duty_cycle(clk->core, scale); 2685 } 2686 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 2687 2688 /** 2689 * clk_is_match - check if two clk's point to the same hardware clock 2690 * @p: clk compared against q 2691 * @q: clk compared against p 2692 * 2693 * Returns true if the two struct clk pointers both point to the same hardware 2694 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2695 * share the same struct clk_core object. 2696 * 2697 * Returns false otherwise. Note that two NULL clks are treated as matching. 2698 */ 2699 bool clk_is_match(const struct clk *p, const struct clk *q) 2700 { 2701 /* trivial case: identical struct clk's or both NULL */ 2702 if (p == q) 2703 return true; 2704 2705 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2706 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2707 if (p->core == q->core) 2708 return true; 2709 2710 return false; 2711 } 2712 EXPORT_SYMBOL_GPL(clk_is_match); 2713 2714 /*** debugfs support ***/ 2715 2716 #ifdef CONFIG_DEBUG_FS 2717 #include <linux/debugfs.h> 2718 2719 static struct dentry *rootdir; 2720 static int inited = 0; 2721 static DEFINE_MUTEX(clk_debug_lock); 2722 static HLIST_HEAD(clk_debug_list); 2723 2724 static struct hlist_head *all_lists[] = { 2725 &clk_root_list, 2726 &clk_orphan_list, 2727 NULL, 2728 }; 2729 2730 static struct hlist_head *orphan_list[] = { 2731 &clk_orphan_list, 2732 NULL, 2733 }; 2734 2735 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2736 int level) 2737 { 2738 if (!c) 2739 return; 2740 2741 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n", 2742 level * 3 + 1, "", 2743 30 - level * 3, c->name, 2744 c->enable_count, c->prepare_count, c->protect_count, 2745 clk_core_get_rate(c), clk_core_get_accuracy(c), 2746 clk_core_get_phase(c), 2747 clk_core_get_scaled_duty_cycle(c, 100000)); 2748 } 2749 2750 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2751 int level) 2752 { 2753 struct clk_core *child; 2754 2755 if (!c) 2756 return; 2757 2758 clk_summary_show_one(s, c, level); 2759 2760 hlist_for_each_entry(child, &c->children, child_node) 2761 clk_summary_show_subtree(s, child, level + 1); 2762 } 2763 2764 static int clk_summary_show(struct seq_file *s, void *data) 2765 { 2766 struct clk_core *c; 2767 struct hlist_head **lists = (struct hlist_head **)s->private; 2768 2769 seq_puts(s, " enable prepare protect duty\n"); 2770 seq_puts(s, " clock count count count rate accuracy phase cycle\n"); 2771 seq_puts(s, "---------------------------------------------------------------------------------------------\n"); 2772 2773 clk_prepare_lock(); 2774 2775 for (; *lists; lists++) 2776 hlist_for_each_entry(c, *lists, child_node) 2777 clk_summary_show_subtree(s, c, 0); 2778 2779 clk_prepare_unlock(); 2780 2781 return 0; 2782 } 2783 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2784 2785 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2786 { 2787 if (!c) 2788 return; 2789 2790 /* This should be JSON format, i.e. elements separated with a comma */ 2791 seq_printf(s, "\"%s\": { ", c->name); 2792 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2793 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2794 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2795 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2796 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2797 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c)); 2798 seq_printf(s, "\"duty_cycle\": %u", 2799 clk_core_get_scaled_duty_cycle(c, 100000)); 2800 } 2801 2802 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2803 { 2804 struct clk_core *child; 2805 2806 if (!c) 2807 return; 2808 2809 clk_dump_one(s, c, level); 2810 2811 hlist_for_each_entry(child, &c->children, child_node) { 2812 seq_putc(s, ','); 2813 clk_dump_subtree(s, child, level + 1); 2814 } 2815 2816 seq_putc(s, '}'); 2817 } 2818 2819 static int clk_dump_show(struct seq_file *s, void *data) 2820 { 2821 struct clk_core *c; 2822 bool first_node = true; 2823 struct hlist_head **lists = (struct hlist_head **)s->private; 2824 2825 seq_putc(s, '{'); 2826 clk_prepare_lock(); 2827 2828 for (; *lists; lists++) { 2829 hlist_for_each_entry(c, *lists, child_node) { 2830 if (!first_node) 2831 seq_putc(s, ','); 2832 first_node = false; 2833 clk_dump_subtree(s, c, 0); 2834 } 2835 } 2836 2837 clk_prepare_unlock(); 2838 2839 seq_puts(s, "}\n"); 2840 return 0; 2841 } 2842 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2843 2844 static const struct { 2845 unsigned long flag; 2846 const char *name; 2847 } clk_flags[] = { 2848 #define ENTRY(f) { f, #f } 2849 ENTRY(CLK_SET_RATE_GATE), 2850 ENTRY(CLK_SET_PARENT_GATE), 2851 ENTRY(CLK_SET_RATE_PARENT), 2852 ENTRY(CLK_IGNORE_UNUSED), 2853 ENTRY(CLK_IS_BASIC), 2854 ENTRY(CLK_GET_RATE_NOCACHE), 2855 ENTRY(CLK_SET_RATE_NO_REPARENT), 2856 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2857 ENTRY(CLK_RECALC_NEW_RATES), 2858 ENTRY(CLK_SET_RATE_UNGATE), 2859 ENTRY(CLK_IS_CRITICAL), 2860 ENTRY(CLK_OPS_PARENT_ENABLE), 2861 ENTRY(CLK_DUTY_CYCLE_PARENT), 2862 #undef ENTRY 2863 }; 2864 2865 static int clk_flags_show(struct seq_file *s, void *data) 2866 { 2867 struct clk_core *core = s->private; 2868 unsigned long flags = core->flags; 2869 unsigned int i; 2870 2871 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2872 if (flags & clk_flags[i].flag) { 2873 seq_printf(s, "%s\n", clk_flags[i].name); 2874 flags &= ~clk_flags[i].flag; 2875 } 2876 } 2877 if (flags) { 2878 /* Unknown flags */ 2879 seq_printf(s, "0x%lx\n", flags); 2880 } 2881 2882 return 0; 2883 } 2884 DEFINE_SHOW_ATTRIBUTE(clk_flags); 2885 2886 static int possible_parents_show(struct seq_file *s, void *data) 2887 { 2888 struct clk_core *core = s->private; 2889 int i; 2890 2891 for (i = 0; i < core->num_parents - 1; i++) 2892 seq_printf(s, "%s ", core->parent_names[i]); 2893 2894 seq_printf(s, "%s\n", core->parent_names[i]); 2895 2896 return 0; 2897 } 2898 DEFINE_SHOW_ATTRIBUTE(possible_parents); 2899 2900 static int clk_duty_cycle_show(struct seq_file *s, void *data) 2901 { 2902 struct clk_core *core = s->private; 2903 struct clk_duty *duty = &core->duty; 2904 2905 seq_printf(s, "%u/%u\n", duty->num, duty->den); 2906 2907 return 0; 2908 } 2909 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 2910 2911 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2912 { 2913 struct dentry *root; 2914 2915 if (!core || !pdentry) 2916 return; 2917 2918 root = debugfs_create_dir(core->name, pdentry); 2919 core->dentry = root; 2920 2921 debugfs_create_ulong("clk_rate", 0444, root, &core->rate); 2922 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 2923 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 2924 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 2925 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 2926 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 2927 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 2928 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 2929 debugfs_create_file("clk_duty_cycle", 0444, root, core, 2930 &clk_duty_cycle_fops); 2931 2932 if (core->num_parents > 1) 2933 debugfs_create_file("clk_possible_parents", 0444, root, core, 2934 &possible_parents_fops); 2935 2936 if (core->ops->debug_init) 2937 core->ops->debug_init(core->hw, core->dentry); 2938 } 2939 2940 /** 2941 * clk_debug_register - add a clk node to the debugfs clk directory 2942 * @core: the clk being added to the debugfs clk directory 2943 * 2944 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2945 * initialized. Otherwise it bails out early since the debugfs clk directory 2946 * will be created lazily by clk_debug_init as part of a late_initcall. 2947 */ 2948 static void clk_debug_register(struct clk_core *core) 2949 { 2950 mutex_lock(&clk_debug_lock); 2951 hlist_add_head(&core->debug_node, &clk_debug_list); 2952 if (inited) 2953 clk_debug_create_one(core, rootdir); 2954 mutex_unlock(&clk_debug_lock); 2955 } 2956 2957 /** 2958 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2959 * @core: the clk being removed from the debugfs clk directory 2960 * 2961 * Dynamically removes a clk and all its child nodes from the 2962 * debugfs clk directory if clk->dentry points to debugfs created by 2963 * clk_debug_register in __clk_core_init. 2964 */ 2965 static void clk_debug_unregister(struct clk_core *core) 2966 { 2967 mutex_lock(&clk_debug_lock); 2968 hlist_del_init(&core->debug_node); 2969 debugfs_remove_recursive(core->dentry); 2970 core->dentry = NULL; 2971 mutex_unlock(&clk_debug_lock); 2972 } 2973 2974 /** 2975 * clk_debug_init - lazily populate the debugfs clk directory 2976 * 2977 * clks are often initialized very early during boot before memory can be 2978 * dynamically allocated and well before debugfs is setup. This function 2979 * populates the debugfs clk directory once at boot-time when we know that 2980 * debugfs is setup. It should only be called once at boot-time, all other clks 2981 * added dynamically will be done so with clk_debug_register. 2982 */ 2983 static int __init clk_debug_init(void) 2984 { 2985 struct clk_core *core; 2986 2987 rootdir = debugfs_create_dir("clk", NULL); 2988 2989 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 2990 &clk_summary_fops); 2991 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 2992 &clk_dump_fops); 2993 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 2994 &clk_summary_fops); 2995 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 2996 &clk_dump_fops); 2997 2998 mutex_lock(&clk_debug_lock); 2999 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3000 clk_debug_create_one(core, rootdir); 3001 3002 inited = 1; 3003 mutex_unlock(&clk_debug_lock); 3004 3005 return 0; 3006 } 3007 late_initcall(clk_debug_init); 3008 #else 3009 static inline void clk_debug_register(struct clk_core *core) { } 3010 static inline void clk_debug_reparent(struct clk_core *core, 3011 struct clk_core *new_parent) 3012 { 3013 } 3014 static inline void clk_debug_unregister(struct clk_core *core) 3015 { 3016 } 3017 #endif 3018 3019 /** 3020 * __clk_core_init - initialize the data structures in a struct clk_core 3021 * @core: clk_core being initialized 3022 * 3023 * Initializes the lists in struct clk_core, queries the hardware for the 3024 * parent and rate and sets them both. 3025 */ 3026 static int __clk_core_init(struct clk_core *core) 3027 { 3028 int i, ret; 3029 struct clk_core *orphan; 3030 struct hlist_node *tmp2; 3031 unsigned long rate; 3032 3033 if (!core) 3034 return -EINVAL; 3035 3036 clk_prepare_lock(); 3037 3038 ret = clk_pm_runtime_get(core); 3039 if (ret) 3040 goto unlock; 3041 3042 /* check to see if a clock with this name is already registered */ 3043 if (clk_core_lookup(core->name)) { 3044 pr_debug("%s: clk %s already initialized\n", 3045 __func__, core->name); 3046 ret = -EEXIST; 3047 goto out; 3048 } 3049 3050 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3051 if (core->ops->set_rate && 3052 !((core->ops->round_rate || core->ops->determine_rate) && 3053 core->ops->recalc_rate)) { 3054 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3055 __func__, core->name); 3056 ret = -EINVAL; 3057 goto out; 3058 } 3059 3060 if (core->ops->set_parent && !core->ops->get_parent) { 3061 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3062 __func__, core->name); 3063 ret = -EINVAL; 3064 goto out; 3065 } 3066 3067 if (core->num_parents > 1 && !core->ops->get_parent) { 3068 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3069 __func__, core->name); 3070 ret = -EINVAL; 3071 goto out; 3072 } 3073 3074 if (core->ops->set_rate_and_parent && 3075 !(core->ops->set_parent && core->ops->set_rate)) { 3076 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3077 __func__, core->name); 3078 ret = -EINVAL; 3079 goto out; 3080 } 3081 3082 /* throw a WARN if any entries in parent_names are NULL */ 3083 for (i = 0; i < core->num_parents; i++) 3084 WARN(!core->parent_names[i], 3085 "%s: invalid NULL in %s's .parent_names\n", 3086 __func__, core->name); 3087 3088 core->parent = __clk_init_parent(core); 3089 3090 /* 3091 * Populate core->parent if parent has already been clk_core_init'd. If 3092 * parent has not yet been clk_core_init'd then place clk in the orphan 3093 * list. If clk doesn't have any parents then place it in the root 3094 * clk list. 3095 * 3096 * Every time a new clk is clk_init'd then we walk the list of orphan 3097 * clocks and re-parent any that are children of the clock currently 3098 * being clk_init'd. 3099 */ 3100 if (core->parent) { 3101 hlist_add_head(&core->child_node, 3102 &core->parent->children); 3103 core->orphan = core->parent->orphan; 3104 } else if (!core->num_parents) { 3105 hlist_add_head(&core->child_node, &clk_root_list); 3106 core->orphan = false; 3107 } else { 3108 hlist_add_head(&core->child_node, &clk_orphan_list); 3109 core->orphan = true; 3110 } 3111 3112 /* 3113 * optional platform-specific magic 3114 * 3115 * The .init callback is not used by any of the basic clock types, but 3116 * exists for weird hardware that must perform initialization magic. 3117 * Please consider other ways of solving initialization problems before 3118 * using this callback, as its use is discouraged. 3119 */ 3120 if (core->ops->init) 3121 core->ops->init(core->hw); 3122 3123 /* 3124 * Set clk's accuracy. The preferred method is to use 3125 * .recalc_accuracy. For simple clocks and lazy developers the default 3126 * fallback is to use the parent's accuracy. If a clock doesn't have a 3127 * parent (or is orphaned) then accuracy is set to zero (perfect 3128 * clock). 3129 */ 3130 if (core->ops->recalc_accuracy) 3131 core->accuracy = core->ops->recalc_accuracy(core->hw, 3132 __clk_get_accuracy(core->parent)); 3133 else if (core->parent) 3134 core->accuracy = core->parent->accuracy; 3135 else 3136 core->accuracy = 0; 3137 3138 /* 3139 * Set clk's phase. 3140 * Since a phase is by definition relative to its parent, just 3141 * query the current clock phase, or just assume it's in phase. 3142 */ 3143 if (core->ops->get_phase) 3144 core->phase = core->ops->get_phase(core->hw); 3145 else 3146 core->phase = 0; 3147 3148 /* 3149 * Set clk's duty cycle. 3150 */ 3151 clk_core_update_duty_cycle_nolock(core); 3152 3153 /* 3154 * Set clk's rate. The preferred method is to use .recalc_rate. For 3155 * simple clocks and lazy developers the default fallback is to use the 3156 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3157 * then rate is set to zero. 3158 */ 3159 if (core->ops->recalc_rate) 3160 rate = core->ops->recalc_rate(core->hw, 3161 clk_core_get_rate_nolock(core->parent)); 3162 else if (core->parent) 3163 rate = core->parent->rate; 3164 else 3165 rate = 0; 3166 core->rate = core->req_rate = rate; 3167 3168 /* 3169 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3170 * don't get accidentally disabled when walking the orphan tree and 3171 * reparenting clocks 3172 */ 3173 if (core->flags & CLK_IS_CRITICAL) { 3174 unsigned long flags; 3175 3176 clk_core_prepare(core); 3177 3178 flags = clk_enable_lock(); 3179 clk_core_enable(core); 3180 clk_enable_unlock(flags); 3181 } 3182 3183 /* 3184 * walk the list of orphan clocks and reparent any that newly finds a 3185 * parent. 3186 */ 3187 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3188 struct clk_core *parent = __clk_init_parent(orphan); 3189 3190 /* 3191 * We need to use __clk_set_parent_before() and _after() to 3192 * to properly migrate any prepare/enable count of the orphan 3193 * clock. This is important for CLK_IS_CRITICAL clocks, which 3194 * are enabled during init but might not have a parent yet. 3195 */ 3196 if (parent) { 3197 /* update the clk tree topology */ 3198 __clk_set_parent_before(orphan, parent); 3199 __clk_set_parent_after(orphan, parent, NULL); 3200 __clk_recalc_accuracies(orphan); 3201 __clk_recalc_rates(orphan, 0); 3202 } 3203 } 3204 3205 kref_init(&core->ref); 3206 out: 3207 clk_pm_runtime_put(core); 3208 unlock: 3209 clk_prepare_unlock(); 3210 3211 if (!ret) 3212 clk_debug_register(core); 3213 3214 return ret; 3215 } 3216 3217 /** 3218 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3219 * @core: clk to add consumer to 3220 * @clk: consumer to link to a clk 3221 */ 3222 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3223 { 3224 clk_prepare_lock(); 3225 hlist_add_head(&clk->clks_node, &core->clks); 3226 clk_prepare_unlock(); 3227 } 3228 3229 /** 3230 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3231 * @clk: consumer to unlink 3232 */ 3233 static void clk_core_unlink_consumer(struct clk *clk) 3234 { 3235 lockdep_assert_held(&prepare_lock); 3236 hlist_del(&clk->clks_node); 3237 } 3238 3239 /** 3240 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3241 * @core: clk to allocate a consumer for 3242 * @dev_id: string describing device name 3243 * @con_id: connection ID string on device 3244 * 3245 * Returns: clk consumer left unlinked from the consumer list 3246 */ 3247 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3248 const char *con_id) 3249 { 3250 struct clk *clk; 3251 3252 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3253 if (!clk) 3254 return ERR_PTR(-ENOMEM); 3255 3256 clk->core = core; 3257 clk->dev_id = dev_id; 3258 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3259 clk->max_rate = ULONG_MAX; 3260 3261 return clk; 3262 } 3263 3264 /** 3265 * free_clk - Free a clk consumer 3266 * @clk: clk consumer to free 3267 * 3268 * Note, this assumes the clk has been unlinked from the clk_core consumer 3269 * list. 3270 */ 3271 static void free_clk(struct clk *clk) 3272 { 3273 kfree_const(clk->con_id); 3274 kfree(clk); 3275 } 3276 3277 /** 3278 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3279 * a clk_hw 3280 * @dev: clk consumer device 3281 * @hw: clk_hw associated with the clk being consumed 3282 * @dev_id: string describing device name 3283 * @con_id: connection ID string on device 3284 * 3285 * This is the main function used to create a clk pointer for use by clk 3286 * consumers. It connects a consumer to the clk_core and clk_hw structures 3287 * used by the framework and clk provider respectively. 3288 */ 3289 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3290 const char *dev_id, const char *con_id) 3291 { 3292 struct clk *clk; 3293 struct clk_core *core; 3294 3295 /* This is to allow this function to be chained to others */ 3296 if (IS_ERR_OR_NULL(hw)) 3297 return ERR_CAST(hw); 3298 3299 core = hw->core; 3300 clk = alloc_clk(core, dev_id, con_id); 3301 if (IS_ERR(clk)) 3302 return clk; 3303 clk->dev = dev; 3304 3305 if (!try_module_get(core->owner)) { 3306 free_clk(clk); 3307 return ERR_PTR(-ENOENT); 3308 } 3309 3310 kref_get(&core->ref); 3311 clk_core_link_consumer(core, clk); 3312 3313 return clk; 3314 } 3315 3316 /** 3317 * clk_register - allocate a new clock, register it and return an opaque cookie 3318 * @dev: device that is registering this clock 3319 * @hw: link to hardware-specific clock data 3320 * 3321 * clk_register is the primary interface for populating the clock tree with new 3322 * clock nodes. It returns a pointer to the newly allocated struct clk which 3323 * cannot be dereferenced by driver code but may be used in conjunction with the 3324 * rest of the clock API. In the event of an error clk_register will return an 3325 * error code; drivers must test for an error code after calling clk_register. 3326 */ 3327 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3328 { 3329 int i, ret; 3330 struct clk_core *core; 3331 3332 core = kzalloc(sizeof(*core), GFP_KERNEL); 3333 if (!core) { 3334 ret = -ENOMEM; 3335 goto fail_out; 3336 } 3337 3338 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3339 if (!core->name) { 3340 ret = -ENOMEM; 3341 goto fail_name; 3342 } 3343 3344 if (WARN_ON(!hw->init->ops)) { 3345 ret = -EINVAL; 3346 goto fail_ops; 3347 } 3348 core->ops = hw->init->ops; 3349 3350 if (dev && pm_runtime_enabled(dev)) 3351 core->rpm_enabled = true; 3352 core->dev = dev; 3353 if (dev && dev->driver) 3354 core->owner = dev->driver->owner; 3355 core->hw = hw; 3356 core->flags = hw->init->flags; 3357 core->num_parents = hw->init->num_parents; 3358 core->min_rate = 0; 3359 core->max_rate = ULONG_MAX; 3360 hw->core = core; 3361 3362 /* allocate local copy in case parent_names is __initdata */ 3363 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 3364 GFP_KERNEL); 3365 3366 if (!core->parent_names) { 3367 ret = -ENOMEM; 3368 goto fail_parent_names; 3369 } 3370 3371 3372 /* copy each string name in case parent_names is __initdata */ 3373 for (i = 0; i < core->num_parents; i++) { 3374 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 3375 GFP_KERNEL); 3376 if (!core->parent_names[i]) { 3377 ret = -ENOMEM; 3378 goto fail_parent_names_copy; 3379 } 3380 } 3381 3382 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 3383 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 3384 GFP_KERNEL); 3385 if (!core->parents) { 3386 ret = -ENOMEM; 3387 goto fail_parents; 3388 }; 3389 3390 INIT_HLIST_HEAD(&core->clks); 3391 3392 /* 3393 * Don't call clk_hw_create_clk() here because that would pin the 3394 * provider module to itself and prevent it from ever being removed. 3395 */ 3396 hw->clk = alloc_clk(core, NULL, NULL); 3397 if (IS_ERR(hw->clk)) { 3398 ret = PTR_ERR(hw->clk); 3399 goto fail_parents; 3400 } 3401 3402 clk_core_link_consumer(hw->core, hw->clk); 3403 3404 ret = __clk_core_init(core); 3405 if (!ret) 3406 return hw->clk; 3407 3408 clk_prepare_lock(); 3409 clk_core_unlink_consumer(hw->clk); 3410 clk_prepare_unlock(); 3411 3412 free_clk(hw->clk); 3413 hw->clk = NULL; 3414 3415 fail_parents: 3416 kfree(core->parents); 3417 fail_parent_names_copy: 3418 while (--i >= 0) 3419 kfree_const(core->parent_names[i]); 3420 kfree(core->parent_names); 3421 fail_parent_names: 3422 fail_ops: 3423 kfree_const(core->name); 3424 fail_name: 3425 kfree(core); 3426 fail_out: 3427 return ERR_PTR(ret); 3428 } 3429 EXPORT_SYMBOL_GPL(clk_register); 3430 3431 /** 3432 * clk_hw_register - register a clk_hw and return an error code 3433 * @dev: device that is registering this clock 3434 * @hw: link to hardware-specific clock data 3435 * 3436 * clk_hw_register is the primary interface for populating the clock tree with 3437 * new clock nodes. It returns an integer equal to zero indicating success or 3438 * less than zero indicating failure. Drivers must test for an error code after 3439 * calling clk_hw_register(). 3440 */ 3441 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3442 { 3443 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 3444 } 3445 EXPORT_SYMBOL_GPL(clk_hw_register); 3446 3447 /* Free memory allocated for a clock. */ 3448 static void __clk_release(struct kref *ref) 3449 { 3450 struct clk_core *core = container_of(ref, struct clk_core, ref); 3451 int i = core->num_parents; 3452 3453 lockdep_assert_held(&prepare_lock); 3454 3455 kfree(core->parents); 3456 while (--i >= 0) 3457 kfree_const(core->parent_names[i]); 3458 3459 kfree(core->parent_names); 3460 kfree_const(core->name); 3461 kfree(core); 3462 } 3463 3464 /* 3465 * Empty clk_ops for unregistered clocks. These are used temporarily 3466 * after clk_unregister() was called on a clock and until last clock 3467 * consumer calls clk_put() and the struct clk object is freed. 3468 */ 3469 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3470 { 3471 return -ENXIO; 3472 } 3473 3474 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3475 { 3476 WARN_ON_ONCE(1); 3477 } 3478 3479 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3480 unsigned long parent_rate) 3481 { 3482 return -ENXIO; 3483 } 3484 3485 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3486 { 3487 return -ENXIO; 3488 } 3489 3490 static const struct clk_ops clk_nodrv_ops = { 3491 .enable = clk_nodrv_prepare_enable, 3492 .disable = clk_nodrv_disable_unprepare, 3493 .prepare = clk_nodrv_prepare_enable, 3494 .unprepare = clk_nodrv_disable_unprepare, 3495 .set_rate = clk_nodrv_set_rate, 3496 .set_parent = clk_nodrv_set_parent, 3497 }; 3498 3499 /** 3500 * clk_unregister - unregister a currently registered clock 3501 * @clk: clock to unregister 3502 */ 3503 void clk_unregister(struct clk *clk) 3504 { 3505 unsigned long flags; 3506 3507 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3508 return; 3509 3510 clk_debug_unregister(clk->core); 3511 3512 clk_prepare_lock(); 3513 3514 if (clk->core->ops == &clk_nodrv_ops) { 3515 pr_err("%s: unregistered clock: %s\n", __func__, 3516 clk->core->name); 3517 goto unlock; 3518 } 3519 /* 3520 * Assign empty clock ops for consumers that might still hold 3521 * a reference to this clock. 3522 */ 3523 flags = clk_enable_lock(); 3524 clk->core->ops = &clk_nodrv_ops; 3525 clk_enable_unlock(flags); 3526 3527 if (!hlist_empty(&clk->core->children)) { 3528 struct clk_core *child; 3529 struct hlist_node *t; 3530 3531 /* Reparent all children to the orphan list. */ 3532 hlist_for_each_entry_safe(child, t, &clk->core->children, 3533 child_node) 3534 clk_core_set_parent_nolock(child, NULL); 3535 } 3536 3537 hlist_del_init(&clk->core->child_node); 3538 3539 if (clk->core->prepare_count) 3540 pr_warn("%s: unregistering prepared clock: %s\n", 3541 __func__, clk->core->name); 3542 3543 if (clk->core->protect_count) 3544 pr_warn("%s: unregistering protected clock: %s\n", 3545 __func__, clk->core->name); 3546 3547 kref_put(&clk->core->ref, __clk_release); 3548 unlock: 3549 clk_prepare_unlock(); 3550 } 3551 EXPORT_SYMBOL_GPL(clk_unregister); 3552 3553 /** 3554 * clk_hw_unregister - unregister a currently registered clk_hw 3555 * @hw: hardware-specific clock data to unregister 3556 */ 3557 void clk_hw_unregister(struct clk_hw *hw) 3558 { 3559 clk_unregister(hw->clk); 3560 } 3561 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3562 3563 static void devm_clk_release(struct device *dev, void *res) 3564 { 3565 clk_unregister(*(struct clk **)res); 3566 } 3567 3568 static void devm_clk_hw_release(struct device *dev, void *res) 3569 { 3570 clk_hw_unregister(*(struct clk_hw **)res); 3571 } 3572 3573 /** 3574 * devm_clk_register - resource managed clk_register() 3575 * @dev: device that is registering this clock 3576 * @hw: link to hardware-specific clock data 3577 * 3578 * Managed clk_register(). Clocks returned from this function are 3579 * automatically clk_unregister()ed on driver detach. See clk_register() for 3580 * more information. 3581 */ 3582 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3583 { 3584 struct clk *clk; 3585 struct clk **clkp; 3586 3587 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3588 if (!clkp) 3589 return ERR_PTR(-ENOMEM); 3590 3591 clk = clk_register(dev, hw); 3592 if (!IS_ERR(clk)) { 3593 *clkp = clk; 3594 devres_add(dev, clkp); 3595 } else { 3596 devres_free(clkp); 3597 } 3598 3599 return clk; 3600 } 3601 EXPORT_SYMBOL_GPL(devm_clk_register); 3602 3603 /** 3604 * devm_clk_hw_register - resource managed clk_hw_register() 3605 * @dev: device that is registering this clock 3606 * @hw: link to hardware-specific clock data 3607 * 3608 * Managed clk_hw_register(). Clocks registered by this function are 3609 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3610 * for more information. 3611 */ 3612 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3613 { 3614 struct clk_hw **hwp; 3615 int ret; 3616 3617 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3618 if (!hwp) 3619 return -ENOMEM; 3620 3621 ret = clk_hw_register(dev, hw); 3622 if (!ret) { 3623 *hwp = hw; 3624 devres_add(dev, hwp); 3625 } else { 3626 devres_free(hwp); 3627 } 3628 3629 return ret; 3630 } 3631 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3632 3633 static int devm_clk_match(struct device *dev, void *res, void *data) 3634 { 3635 struct clk *c = res; 3636 if (WARN_ON(!c)) 3637 return 0; 3638 return c == data; 3639 } 3640 3641 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3642 { 3643 struct clk_hw *hw = res; 3644 3645 if (WARN_ON(!hw)) 3646 return 0; 3647 return hw == data; 3648 } 3649 3650 /** 3651 * devm_clk_unregister - resource managed clk_unregister() 3652 * @clk: clock to unregister 3653 * 3654 * Deallocate a clock allocated with devm_clk_register(). Normally 3655 * this function will not need to be called and the resource management 3656 * code will ensure that the resource is freed. 3657 */ 3658 void devm_clk_unregister(struct device *dev, struct clk *clk) 3659 { 3660 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3661 } 3662 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3663 3664 /** 3665 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3666 * @dev: device that is unregistering the hardware-specific clock data 3667 * @hw: link to hardware-specific clock data 3668 * 3669 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3670 * this function will not need to be called and the resource management 3671 * code will ensure that the resource is freed. 3672 */ 3673 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3674 { 3675 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3676 hw)); 3677 } 3678 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3679 3680 /* 3681 * clkdev helpers 3682 */ 3683 3684 void __clk_put(struct clk *clk) 3685 { 3686 struct module *owner; 3687 3688 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3689 return; 3690 3691 clk_prepare_lock(); 3692 3693 /* 3694 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3695 * given user should be balanced with calls to clk_rate_exclusive_put() 3696 * and by that same consumer 3697 */ 3698 if (WARN_ON(clk->exclusive_count)) { 3699 /* We voiced our concern, let's sanitize the situation */ 3700 clk->core->protect_count -= (clk->exclusive_count - 1); 3701 clk_core_rate_unprotect(clk->core); 3702 clk->exclusive_count = 0; 3703 } 3704 3705 hlist_del(&clk->clks_node); 3706 if (clk->min_rate > clk->core->req_rate || 3707 clk->max_rate < clk->core->req_rate) 3708 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3709 3710 owner = clk->core->owner; 3711 kref_put(&clk->core->ref, __clk_release); 3712 3713 clk_prepare_unlock(); 3714 3715 module_put(owner); 3716 3717 free_clk(clk); 3718 } 3719 3720 /*** clk rate change notifiers ***/ 3721 3722 /** 3723 * clk_notifier_register - add a clk rate change notifier 3724 * @clk: struct clk * to watch 3725 * @nb: struct notifier_block * with callback info 3726 * 3727 * Request notification when clk's rate changes. This uses an SRCU 3728 * notifier because we want it to block and notifier unregistrations are 3729 * uncommon. The callbacks associated with the notifier must not 3730 * re-enter into the clk framework by calling any top-level clk APIs; 3731 * this will cause a nested prepare_lock mutex. 3732 * 3733 * In all notification cases (pre, post and abort rate change) the original 3734 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3735 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3736 * 3737 * clk_notifier_register() must be called from non-atomic context. 3738 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3739 * allocation failure; otherwise, passes along the return value of 3740 * srcu_notifier_chain_register(). 3741 */ 3742 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3743 { 3744 struct clk_notifier *cn; 3745 int ret = -ENOMEM; 3746 3747 if (!clk || !nb) 3748 return -EINVAL; 3749 3750 clk_prepare_lock(); 3751 3752 /* search the list of notifiers for this clk */ 3753 list_for_each_entry(cn, &clk_notifier_list, node) 3754 if (cn->clk == clk) 3755 break; 3756 3757 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3758 if (cn->clk != clk) { 3759 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3760 if (!cn) 3761 goto out; 3762 3763 cn->clk = clk; 3764 srcu_init_notifier_head(&cn->notifier_head); 3765 3766 list_add(&cn->node, &clk_notifier_list); 3767 } 3768 3769 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3770 3771 clk->core->notifier_count++; 3772 3773 out: 3774 clk_prepare_unlock(); 3775 3776 return ret; 3777 } 3778 EXPORT_SYMBOL_GPL(clk_notifier_register); 3779 3780 /** 3781 * clk_notifier_unregister - remove a clk rate change notifier 3782 * @clk: struct clk * 3783 * @nb: struct notifier_block * with callback info 3784 * 3785 * Request no further notification for changes to 'clk' and frees memory 3786 * allocated in clk_notifier_register. 3787 * 3788 * Returns -EINVAL if called with null arguments; otherwise, passes 3789 * along the return value of srcu_notifier_chain_unregister(). 3790 */ 3791 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3792 { 3793 struct clk_notifier *cn = NULL; 3794 int ret = -EINVAL; 3795 3796 if (!clk || !nb) 3797 return -EINVAL; 3798 3799 clk_prepare_lock(); 3800 3801 list_for_each_entry(cn, &clk_notifier_list, node) 3802 if (cn->clk == clk) 3803 break; 3804 3805 if (cn->clk == clk) { 3806 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3807 3808 clk->core->notifier_count--; 3809 3810 /* XXX the notifier code should handle this better */ 3811 if (!cn->notifier_head.head) { 3812 srcu_cleanup_notifier_head(&cn->notifier_head); 3813 list_del(&cn->node); 3814 kfree(cn); 3815 } 3816 3817 } else { 3818 ret = -ENOENT; 3819 } 3820 3821 clk_prepare_unlock(); 3822 3823 return ret; 3824 } 3825 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3826 3827 #ifdef CONFIG_OF 3828 /** 3829 * struct of_clk_provider - Clock provider registration structure 3830 * @link: Entry in global list of clock providers 3831 * @node: Pointer to device tree node of clock provider 3832 * @get: Get clock callback. Returns NULL or a struct clk for the 3833 * given clock specifier 3834 * @data: context pointer to be passed into @get callback 3835 */ 3836 struct of_clk_provider { 3837 struct list_head link; 3838 3839 struct device_node *node; 3840 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3841 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3842 void *data; 3843 }; 3844 3845 static const struct of_device_id __clk_of_table_sentinel 3846 __used __section(__clk_of_table_end); 3847 3848 static LIST_HEAD(of_clk_providers); 3849 static DEFINE_MUTEX(of_clk_mutex); 3850 3851 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3852 void *data) 3853 { 3854 return data; 3855 } 3856 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3857 3858 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3859 { 3860 return data; 3861 } 3862 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3863 3864 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3865 { 3866 struct clk_onecell_data *clk_data = data; 3867 unsigned int idx = clkspec->args[0]; 3868 3869 if (idx >= clk_data->clk_num) { 3870 pr_err("%s: invalid clock index %u\n", __func__, idx); 3871 return ERR_PTR(-EINVAL); 3872 } 3873 3874 return clk_data->clks[idx]; 3875 } 3876 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3877 3878 struct clk_hw * 3879 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3880 { 3881 struct clk_hw_onecell_data *hw_data = data; 3882 unsigned int idx = clkspec->args[0]; 3883 3884 if (idx >= hw_data->num) { 3885 pr_err("%s: invalid index %u\n", __func__, idx); 3886 return ERR_PTR(-EINVAL); 3887 } 3888 3889 return hw_data->hws[idx]; 3890 } 3891 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3892 3893 /** 3894 * of_clk_add_provider() - Register a clock provider for a node 3895 * @np: Device node pointer associated with clock provider 3896 * @clk_src_get: callback for decoding clock 3897 * @data: context pointer for @clk_src_get callback. 3898 */ 3899 int of_clk_add_provider(struct device_node *np, 3900 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3901 void *data), 3902 void *data) 3903 { 3904 struct of_clk_provider *cp; 3905 int ret; 3906 3907 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3908 if (!cp) 3909 return -ENOMEM; 3910 3911 cp->node = of_node_get(np); 3912 cp->data = data; 3913 cp->get = clk_src_get; 3914 3915 mutex_lock(&of_clk_mutex); 3916 list_add(&cp->link, &of_clk_providers); 3917 mutex_unlock(&of_clk_mutex); 3918 pr_debug("Added clock from %pOF\n", np); 3919 3920 ret = of_clk_set_defaults(np, true); 3921 if (ret < 0) 3922 of_clk_del_provider(np); 3923 3924 return ret; 3925 } 3926 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3927 3928 /** 3929 * of_clk_add_hw_provider() - Register a clock provider for a node 3930 * @np: Device node pointer associated with clock provider 3931 * @get: callback for decoding clk_hw 3932 * @data: context pointer for @get callback. 3933 */ 3934 int of_clk_add_hw_provider(struct device_node *np, 3935 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3936 void *data), 3937 void *data) 3938 { 3939 struct of_clk_provider *cp; 3940 int ret; 3941 3942 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3943 if (!cp) 3944 return -ENOMEM; 3945 3946 cp->node = of_node_get(np); 3947 cp->data = data; 3948 cp->get_hw = get; 3949 3950 mutex_lock(&of_clk_mutex); 3951 list_add(&cp->link, &of_clk_providers); 3952 mutex_unlock(&of_clk_mutex); 3953 pr_debug("Added clk_hw provider from %pOF\n", np); 3954 3955 ret = of_clk_set_defaults(np, true); 3956 if (ret < 0) 3957 of_clk_del_provider(np); 3958 3959 return ret; 3960 } 3961 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3962 3963 static void devm_of_clk_release_provider(struct device *dev, void *res) 3964 { 3965 of_clk_del_provider(*(struct device_node **)res); 3966 } 3967 3968 /* 3969 * We allow a child device to use its parent device as the clock provider node 3970 * for cases like MFD sub-devices where the child device driver wants to use 3971 * devm_*() APIs but not list the device in DT as a sub-node. 3972 */ 3973 static struct device_node *get_clk_provider_node(struct device *dev) 3974 { 3975 struct device_node *np, *parent_np; 3976 3977 np = dev->of_node; 3978 parent_np = dev->parent ? dev->parent->of_node : NULL; 3979 3980 if (!of_find_property(np, "#clock-cells", NULL)) 3981 if (of_find_property(parent_np, "#clock-cells", NULL)) 3982 np = parent_np; 3983 3984 return np; 3985 } 3986 3987 /** 3988 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 3989 * @dev: Device acting as the clock provider (used for DT node and lifetime) 3990 * @get: callback for decoding clk_hw 3991 * @data: context pointer for @get callback 3992 * 3993 * Registers clock provider for given device's node. If the device has no DT 3994 * node or if the device node lacks of clock provider information (#clock-cells) 3995 * then the parent device's node is scanned for this information. If parent node 3996 * has the #clock-cells then it is used in registration. Provider is 3997 * automatically released at device exit. 3998 * 3999 * Return: 0 on success or an errno on failure. 4000 */ 4001 int devm_of_clk_add_hw_provider(struct device *dev, 4002 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4003 void *data), 4004 void *data) 4005 { 4006 struct device_node **ptr, *np; 4007 int ret; 4008 4009 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4010 GFP_KERNEL); 4011 if (!ptr) 4012 return -ENOMEM; 4013 4014 np = get_clk_provider_node(dev); 4015 ret = of_clk_add_hw_provider(np, get, data); 4016 if (!ret) { 4017 *ptr = np; 4018 devres_add(dev, ptr); 4019 } else { 4020 devres_free(ptr); 4021 } 4022 4023 return ret; 4024 } 4025 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4026 4027 /** 4028 * of_clk_del_provider() - Remove a previously registered clock provider 4029 * @np: Device node pointer associated with clock provider 4030 */ 4031 void of_clk_del_provider(struct device_node *np) 4032 { 4033 struct of_clk_provider *cp; 4034 4035 mutex_lock(&of_clk_mutex); 4036 list_for_each_entry(cp, &of_clk_providers, link) { 4037 if (cp->node == np) { 4038 list_del(&cp->link); 4039 of_node_put(cp->node); 4040 kfree(cp); 4041 break; 4042 } 4043 } 4044 mutex_unlock(&of_clk_mutex); 4045 } 4046 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4047 4048 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 4049 { 4050 struct device_node **np = res; 4051 4052 if (WARN_ON(!np || !*np)) 4053 return 0; 4054 4055 return *np == data; 4056 } 4057 4058 /** 4059 * devm_of_clk_del_provider() - Remove clock provider registered using devm 4060 * @dev: Device to whose lifetime the clock provider was bound 4061 */ 4062 void devm_of_clk_del_provider(struct device *dev) 4063 { 4064 int ret; 4065 struct device_node *np = get_clk_provider_node(dev); 4066 4067 ret = devres_release(dev, devm_of_clk_release_provider, 4068 devm_clk_provider_match, np); 4069 4070 WARN_ON(ret); 4071 } 4072 EXPORT_SYMBOL(devm_of_clk_del_provider); 4073 4074 /* 4075 * Beware the return values when np is valid, but no clock provider is found. 4076 * If name == NULL, the function returns -ENOENT. 4077 * If name != NULL, the function returns -EINVAL. This is because 4078 * of_parse_phandle_with_args() is called even if of_property_match_string() 4079 * returns an error. 4080 */ 4081 static int of_parse_clkspec(const struct device_node *np, int index, 4082 const char *name, struct of_phandle_args *out_args) 4083 { 4084 int ret = -ENOENT; 4085 4086 /* Walk up the tree of devices looking for a clock property that matches */ 4087 while (np) { 4088 /* 4089 * For named clocks, first look up the name in the 4090 * "clock-names" property. If it cannot be found, then index 4091 * will be an error code and of_parse_phandle_with_args() will 4092 * return -EINVAL. 4093 */ 4094 if (name) 4095 index = of_property_match_string(np, "clock-names", name); 4096 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 4097 index, out_args); 4098 if (!ret) 4099 break; 4100 if (name && index >= 0) 4101 break; 4102 4103 /* 4104 * No matching clock found on this node. If the parent node 4105 * has a "clock-ranges" property, then we can try one of its 4106 * clocks. 4107 */ 4108 np = np->parent; 4109 if (np && !of_get_property(np, "clock-ranges", NULL)) 4110 break; 4111 index = 0; 4112 } 4113 4114 return ret; 4115 } 4116 4117 static struct clk_hw * 4118 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 4119 struct of_phandle_args *clkspec) 4120 { 4121 struct clk *clk; 4122 4123 if (provider->get_hw) 4124 return provider->get_hw(clkspec, provider->data); 4125 4126 clk = provider->get(clkspec, provider->data); 4127 if (IS_ERR(clk)) 4128 return ERR_CAST(clk); 4129 return __clk_get_hw(clk); 4130 } 4131 4132 static struct clk_hw * 4133 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 4134 { 4135 struct of_clk_provider *provider; 4136 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 4137 4138 if (!clkspec) 4139 return ERR_PTR(-EINVAL); 4140 4141 mutex_lock(&of_clk_mutex); 4142 list_for_each_entry(provider, &of_clk_providers, link) { 4143 if (provider->node == clkspec->np) { 4144 hw = __of_clk_get_hw_from_provider(provider, clkspec); 4145 if (!IS_ERR(hw)) 4146 break; 4147 } 4148 } 4149 mutex_unlock(&of_clk_mutex); 4150 4151 return hw; 4152 } 4153 4154 /** 4155 * of_clk_get_from_provider() - Lookup a clock from a clock provider 4156 * @clkspec: pointer to a clock specifier data structure 4157 * 4158 * This function looks up a struct clk from the registered list of clock 4159 * providers, an input is a clock specifier data structure as returned 4160 * from the of_parse_phandle_with_args() function call. 4161 */ 4162 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 4163 { 4164 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 4165 4166 return clk_hw_create_clk(NULL, hw, NULL, __func__); 4167 } 4168 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 4169 4170 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 4171 const char *con_id) 4172 { 4173 int ret; 4174 struct clk_hw *hw; 4175 struct of_phandle_args clkspec; 4176 4177 ret = of_parse_clkspec(np, index, con_id, &clkspec); 4178 if (ret) 4179 return ERR_PTR(ret); 4180 4181 hw = of_clk_get_hw_from_clkspec(&clkspec); 4182 of_node_put(clkspec.np); 4183 4184 return hw; 4185 } 4186 4187 static struct clk *__of_clk_get(struct device_node *np, 4188 int index, const char *dev_id, 4189 const char *con_id) 4190 { 4191 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 4192 4193 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 4194 } 4195 4196 struct clk *of_clk_get(struct device_node *np, int index) 4197 { 4198 return __of_clk_get(np, index, np->full_name, NULL); 4199 } 4200 EXPORT_SYMBOL(of_clk_get); 4201 4202 /** 4203 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 4204 * @np: pointer to clock consumer node 4205 * @name: name of consumer's clock input, or NULL for the first clock reference 4206 * 4207 * This function parses the clocks and clock-names properties, 4208 * and uses them to look up the struct clk from the registered list of clock 4209 * providers. 4210 */ 4211 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 4212 { 4213 if (!np) 4214 return ERR_PTR(-ENOENT); 4215 4216 return __of_clk_get(np, 0, np->full_name, name); 4217 } 4218 EXPORT_SYMBOL(of_clk_get_by_name); 4219 4220 /** 4221 * of_clk_get_parent_count() - Count the number of clocks a device node has 4222 * @np: device node to count 4223 * 4224 * Returns: The number of clocks that are possible parents of this node 4225 */ 4226 unsigned int of_clk_get_parent_count(struct device_node *np) 4227 { 4228 int count; 4229 4230 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 4231 if (count < 0) 4232 return 0; 4233 4234 return count; 4235 } 4236 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 4237 4238 const char *of_clk_get_parent_name(struct device_node *np, int index) 4239 { 4240 struct of_phandle_args clkspec; 4241 struct property *prop; 4242 const char *clk_name; 4243 const __be32 *vp; 4244 u32 pv; 4245 int rc; 4246 int count; 4247 struct clk *clk; 4248 4249 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 4250 &clkspec); 4251 if (rc) 4252 return NULL; 4253 4254 index = clkspec.args_count ? clkspec.args[0] : 0; 4255 count = 0; 4256 4257 /* if there is an indices property, use it to transfer the index 4258 * specified into an array offset for the clock-output-names property. 4259 */ 4260 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 4261 if (index == pv) { 4262 index = count; 4263 break; 4264 } 4265 count++; 4266 } 4267 /* We went off the end of 'clock-indices' without finding it */ 4268 if (prop && !vp) 4269 return NULL; 4270 4271 if (of_property_read_string_index(clkspec.np, "clock-output-names", 4272 index, 4273 &clk_name) < 0) { 4274 /* 4275 * Best effort to get the name if the clock has been 4276 * registered with the framework. If the clock isn't 4277 * registered, we return the node name as the name of 4278 * the clock as long as #clock-cells = 0. 4279 */ 4280 clk = of_clk_get_from_provider(&clkspec); 4281 if (IS_ERR(clk)) { 4282 if (clkspec.args_count == 0) 4283 clk_name = clkspec.np->name; 4284 else 4285 clk_name = NULL; 4286 } else { 4287 clk_name = __clk_get_name(clk); 4288 clk_put(clk); 4289 } 4290 } 4291 4292 4293 of_node_put(clkspec.np); 4294 return clk_name; 4295 } 4296 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 4297 4298 /** 4299 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 4300 * number of parents 4301 * @np: Device node pointer associated with clock provider 4302 * @parents: pointer to char array that hold the parents' names 4303 * @size: size of the @parents array 4304 * 4305 * Return: number of parents for the clock node. 4306 */ 4307 int of_clk_parent_fill(struct device_node *np, const char **parents, 4308 unsigned int size) 4309 { 4310 unsigned int i = 0; 4311 4312 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 4313 i++; 4314 4315 return i; 4316 } 4317 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 4318 4319 struct clock_provider { 4320 void (*clk_init_cb)(struct device_node *); 4321 struct device_node *np; 4322 struct list_head node; 4323 }; 4324 4325 /* 4326 * This function looks for a parent clock. If there is one, then it 4327 * checks that the provider for this parent clock was initialized, in 4328 * this case the parent clock will be ready. 4329 */ 4330 static int parent_ready(struct device_node *np) 4331 { 4332 int i = 0; 4333 4334 while (true) { 4335 struct clk *clk = of_clk_get(np, i); 4336 4337 /* this parent is ready we can check the next one */ 4338 if (!IS_ERR(clk)) { 4339 clk_put(clk); 4340 i++; 4341 continue; 4342 } 4343 4344 /* at least one parent is not ready, we exit now */ 4345 if (PTR_ERR(clk) == -EPROBE_DEFER) 4346 return 0; 4347 4348 /* 4349 * Here we make assumption that the device tree is 4350 * written correctly. So an error means that there is 4351 * no more parent. As we didn't exit yet, then the 4352 * previous parent are ready. If there is no clock 4353 * parent, no need to wait for them, then we can 4354 * consider their absence as being ready 4355 */ 4356 return 1; 4357 } 4358 } 4359 4360 /** 4361 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 4362 * @np: Device node pointer associated with clock provider 4363 * @index: clock index 4364 * @flags: pointer to top-level framework flags 4365 * 4366 * Detects if the clock-critical property exists and, if so, sets the 4367 * corresponding CLK_IS_CRITICAL flag. 4368 * 4369 * Do not use this function. It exists only for legacy Device Tree 4370 * bindings, such as the one-clock-per-node style that are outdated. 4371 * Those bindings typically put all clock data into .dts and the Linux 4372 * driver has no clock data, thus making it impossible to set this flag 4373 * correctly from the driver. Only those drivers may call 4374 * of_clk_detect_critical from their setup functions. 4375 * 4376 * Return: error code or zero on success 4377 */ 4378 int of_clk_detect_critical(struct device_node *np, 4379 int index, unsigned long *flags) 4380 { 4381 struct property *prop; 4382 const __be32 *cur; 4383 uint32_t idx; 4384 4385 if (!np || !flags) 4386 return -EINVAL; 4387 4388 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4389 if (index == idx) 4390 *flags |= CLK_IS_CRITICAL; 4391 4392 return 0; 4393 } 4394 4395 /** 4396 * of_clk_init() - Scan and init clock providers from the DT 4397 * @matches: array of compatible values and init functions for providers. 4398 * 4399 * This function scans the device tree for matching clock providers 4400 * and calls their initialization functions. It also does it by trying 4401 * to follow the dependencies. 4402 */ 4403 void __init of_clk_init(const struct of_device_id *matches) 4404 { 4405 const struct of_device_id *match; 4406 struct device_node *np; 4407 struct clock_provider *clk_provider, *next; 4408 bool is_init_done; 4409 bool force = false; 4410 LIST_HEAD(clk_provider_list); 4411 4412 if (!matches) 4413 matches = &__clk_of_table; 4414 4415 /* First prepare the list of the clocks providers */ 4416 for_each_matching_node_and_match(np, matches, &match) { 4417 struct clock_provider *parent; 4418 4419 if (!of_device_is_available(np)) 4420 continue; 4421 4422 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4423 if (!parent) { 4424 list_for_each_entry_safe(clk_provider, next, 4425 &clk_provider_list, node) { 4426 list_del(&clk_provider->node); 4427 of_node_put(clk_provider->np); 4428 kfree(clk_provider); 4429 } 4430 of_node_put(np); 4431 return; 4432 } 4433 4434 parent->clk_init_cb = match->data; 4435 parent->np = of_node_get(np); 4436 list_add_tail(&parent->node, &clk_provider_list); 4437 } 4438 4439 while (!list_empty(&clk_provider_list)) { 4440 is_init_done = false; 4441 list_for_each_entry_safe(clk_provider, next, 4442 &clk_provider_list, node) { 4443 if (force || parent_ready(clk_provider->np)) { 4444 4445 /* Don't populate platform devices */ 4446 of_node_set_flag(clk_provider->np, 4447 OF_POPULATED); 4448 4449 clk_provider->clk_init_cb(clk_provider->np); 4450 of_clk_set_defaults(clk_provider->np, true); 4451 4452 list_del(&clk_provider->node); 4453 of_node_put(clk_provider->np); 4454 kfree(clk_provider); 4455 is_init_done = true; 4456 } 4457 } 4458 4459 /* 4460 * We didn't manage to initialize any of the 4461 * remaining providers during the last loop, so now we 4462 * initialize all the remaining ones unconditionally 4463 * in case the clock parent was not mandatory 4464 */ 4465 if (!is_init_done) 4466 force = true; 4467 } 4468 } 4469 #endif 4470