xref: /openbmc/linux/drivers/clk/clk.c (revision 55b6f763)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	ret = core->ops->is_enabled(core->hw);
255 done:
256 	if (core->rpm_enabled)
257 		pm_runtime_put(core->dev);
258 
259 	return ret;
260 }
261 
262 /***    helper functions   ***/
263 
264 const char *__clk_get_name(const struct clk *clk)
265 {
266 	return !clk ? NULL : clk->core->name;
267 }
268 EXPORT_SYMBOL_GPL(__clk_get_name);
269 
270 const char *clk_hw_get_name(const struct clk_hw *hw)
271 {
272 	return hw->core->name;
273 }
274 EXPORT_SYMBOL_GPL(clk_hw_get_name);
275 
276 struct clk_hw *__clk_get_hw(struct clk *clk)
277 {
278 	return !clk ? NULL : clk->core->hw;
279 }
280 EXPORT_SYMBOL_GPL(__clk_get_hw);
281 
282 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
283 {
284 	return hw->core->num_parents;
285 }
286 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
287 
288 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
289 {
290 	return hw->core->parent ? hw->core->parent->hw : NULL;
291 }
292 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
293 
294 static struct clk_core *__clk_lookup_subtree(const char *name,
295 					     struct clk_core *core)
296 {
297 	struct clk_core *child;
298 	struct clk_core *ret;
299 
300 	if (!strcmp(core->name, name))
301 		return core;
302 
303 	hlist_for_each_entry(child, &core->children, child_node) {
304 		ret = __clk_lookup_subtree(name, child);
305 		if (ret)
306 			return ret;
307 	}
308 
309 	return NULL;
310 }
311 
312 static struct clk_core *clk_core_lookup(const char *name)
313 {
314 	struct clk_core *root_clk;
315 	struct clk_core *ret;
316 
317 	if (!name)
318 		return NULL;
319 
320 	/* search the 'proper' clk tree first */
321 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
322 		ret = __clk_lookup_subtree(name, root_clk);
323 		if (ret)
324 			return ret;
325 	}
326 
327 	/* if not found, then search the orphan tree */
328 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
329 		ret = __clk_lookup_subtree(name, root_clk);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return NULL;
335 }
336 
337 #ifdef CONFIG_OF
338 static int of_parse_clkspec(const struct device_node *np, int index,
339 			    const char *name, struct of_phandle_args *out_args);
340 static struct clk_hw *
341 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
342 #else
343 static inline int of_parse_clkspec(const struct device_node *np, int index,
344 				   const char *name,
345 				   struct of_phandle_args *out_args)
346 {
347 	return -ENOENT;
348 }
349 static inline struct clk_hw *
350 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
351 {
352 	return ERR_PTR(-ENOENT);
353 }
354 #endif
355 
356 /**
357  * clk_core_get - Find the clk_core parent of a clk
358  * @core: clk to find parent of
359  * @p_index: parent index to search for
360  *
361  * This is the preferred method for clk providers to find the parent of a
362  * clk when that parent is external to the clk controller. The parent_names
363  * array is indexed and treated as a local name matching a string in the device
364  * node's 'clock-names' property or as the 'con_id' matching the device's
365  * dev_name() in a clk_lookup. This allows clk providers to use their own
366  * namespace instead of looking for a globally unique parent string.
367  *
368  * For example the following DT snippet would allow a clock registered by the
369  * clock-controller@c001 that has a clk_init_data::parent_data array
370  * with 'xtal' in the 'name' member to find the clock provided by the
371  * clock-controller@f00abcd without needing to get the globally unique name of
372  * the xtal clk.
373  *
374  *      parent: clock-controller@f00abcd {
375  *              reg = <0xf00abcd 0xabcd>;
376  *              #clock-cells = <0>;
377  *      };
378  *
379  *      clock-controller@c001 {
380  *              reg = <0xc001 0xf00d>;
381  *              clocks = <&parent>;
382  *              clock-names = "xtal";
383  *              #clock-cells = <1>;
384  *      };
385  *
386  * Returns: -ENOENT when the provider can't be found or the clk doesn't
387  * exist in the provider or the name can't be found in the DT node or
388  * in a clkdev lookup. NULL when the provider knows about the clk but it
389  * isn't provided on this system.
390  * A valid clk_core pointer when the clk can be found in the provider.
391  */
392 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
393 {
394 	const char *name = core->parents[p_index].fw_name;
395 	int index = core->parents[p_index].index;
396 	struct clk_hw *hw = ERR_PTR(-ENOENT);
397 	struct device *dev = core->dev;
398 	const char *dev_id = dev ? dev_name(dev) : NULL;
399 	struct device_node *np = core->of_node;
400 	struct of_phandle_args clkspec;
401 
402 	if (np && (name || index >= 0) &&
403 	    !of_parse_clkspec(np, index, name, &clkspec)) {
404 		hw = of_clk_get_hw_from_clkspec(&clkspec);
405 		of_node_put(clkspec.np);
406 	} else if (name) {
407 		/*
408 		 * If the DT search above couldn't find the provider fallback to
409 		 * looking up via clkdev based clk_lookups.
410 		 */
411 		hw = clk_find_hw(dev_id, name);
412 	}
413 
414 	if (IS_ERR(hw))
415 		return ERR_CAST(hw);
416 
417 	return hw->core;
418 }
419 
420 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
421 {
422 	struct clk_parent_map *entry = &core->parents[index];
423 	struct clk_core *parent;
424 
425 	if (entry->hw) {
426 		parent = entry->hw->core;
427 		/*
428 		 * We have a direct reference but it isn't registered yet?
429 		 * Orphan it and let clk_reparent() update the orphan status
430 		 * when the parent is registered.
431 		 */
432 		if (!parent)
433 			parent = ERR_PTR(-EPROBE_DEFER);
434 	} else {
435 		parent = clk_core_get(core, index);
436 		if (PTR_ERR(parent) == -ENOENT && entry->name)
437 			parent = clk_core_lookup(entry->name);
438 	}
439 
440 	/* Only cache it if it's not an error */
441 	if (!IS_ERR(parent))
442 		entry->core = parent;
443 }
444 
445 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
446 							 u8 index)
447 {
448 	if (!core || index >= core->num_parents || !core->parents)
449 		return NULL;
450 
451 	if (!core->parents[index].core)
452 		clk_core_fill_parent_index(core, index);
453 
454 	return core->parents[index].core;
455 }
456 
457 struct clk_hw *
458 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
459 {
460 	struct clk_core *parent;
461 
462 	parent = clk_core_get_parent_by_index(hw->core, index);
463 
464 	return !parent ? NULL : parent->hw;
465 }
466 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
467 
468 unsigned int __clk_get_enable_count(struct clk *clk)
469 {
470 	return !clk ? 0 : clk->core->enable_count;
471 }
472 
473 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
474 {
475 	if (!core)
476 		return 0;
477 
478 	if (!core->num_parents || core->parent)
479 		return core->rate;
480 
481 	/*
482 	 * Clk must have a parent because num_parents > 0 but the parent isn't
483 	 * known yet. Best to return 0 as the rate of this clk until we can
484 	 * properly recalc the rate based on the parent's rate.
485 	 */
486 	return 0;
487 }
488 
489 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
490 {
491 	return clk_core_get_rate_nolock(hw->core);
492 }
493 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
494 
495 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
496 {
497 	if (!core)
498 		return 0;
499 
500 	return core->accuracy;
501 }
502 
503 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
504 {
505 	return hw->core->flags;
506 }
507 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
508 
509 bool clk_hw_is_prepared(const struct clk_hw *hw)
510 {
511 	return clk_core_is_prepared(hw->core);
512 }
513 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
514 
515 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
516 {
517 	return clk_core_rate_is_protected(hw->core);
518 }
519 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
520 
521 bool clk_hw_is_enabled(const struct clk_hw *hw)
522 {
523 	return clk_core_is_enabled(hw->core);
524 }
525 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
526 
527 bool __clk_is_enabled(struct clk *clk)
528 {
529 	if (!clk)
530 		return false;
531 
532 	return clk_core_is_enabled(clk->core);
533 }
534 EXPORT_SYMBOL_GPL(__clk_is_enabled);
535 
536 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
537 			   unsigned long best, unsigned long flags)
538 {
539 	if (flags & CLK_MUX_ROUND_CLOSEST)
540 		return abs(now - rate) < abs(best - rate);
541 
542 	return now <= rate && now > best;
543 }
544 
545 int clk_mux_determine_rate_flags(struct clk_hw *hw,
546 				 struct clk_rate_request *req,
547 				 unsigned long flags)
548 {
549 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
550 	int i, num_parents, ret;
551 	unsigned long best = 0;
552 	struct clk_rate_request parent_req = *req;
553 
554 	/* if NO_REPARENT flag set, pass through to current parent */
555 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
556 		parent = core->parent;
557 		if (core->flags & CLK_SET_RATE_PARENT) {
558 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
559 						   &parent_req);
560 			if (ret)
561 				return ret;
562 
563 			best = parent_req.rate;
564 		} else if (parent) {
565 			best = clk_core_get_rate_nolock(parent);
566 		} else {
567 			best = clk_core_get_rate_nolock(core);
568 		}
569 
570 		goto out;
571 	}
572 
573 	/* find the parent that can provide the fastest rate <= rate */
574 	num_parents = core->num_parents;
575 	for (i = 0; i < num_parents; i++) {
576 		parent = clk_core_get_parent_by_index(core, i);
577 		if (!parent)
578 			continue;
579 
580 		if (core->flags & CLK_SET_RATE_PARENT) {
581 			parent_req = *req;
582 			ret = __clk_determine_rate(parent->hw, &parent_req);
583 			if (ret)
584 				continue;
585 		} else {
586 			parent_req.rate = clk_core_get_rate_nolock(parent);
587 		}
588 
589 		if (mux_is_better_rate(req->rate, parent_req.rate,
590 				       best, flags)) {
591 			best_parent = parent;
592 			best = parent_req.rate;
593 		}
594 	}
595 
596 	if (!best_parent)
597 		return -EINVAL;
598 
599 out:
600 	if (best_parent)
601 		req->best_parent_hw = best_parent->hw;
602 	req->best_parent_rate = best;
603 	req->rate = best;
604 
605 	return 0;
606 }
607 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
608 
609 struct clk *__clk_lookup(const char *name)
610 {
611 	struct clk_core *core = clk_core_lookup(name);
612 
613 	return !core ? NULL : core->hw->clk;
614 }
615 
616 static void clk_core_get_boundaries(struct clk_core *core,
617 				    unsigned long *min_rate,
618 				    unsigned long *max_rate)
619 {
620 	struct clk *clk_user;
621 
622 	lockdep_assert_held(&prepare_lock);
623 
624 	*min_rate = core->min_rate;
625 	*max_rate = core->max_rate;
626 
627 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
628 		*min_rate = max(*min_rate, clk_user->min_rate);
629 
630 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
631 		*max_rate = min(*max_rate, clk_user->max_rate);
632 }
633 
634 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
635 			   unsigned long max_rate)
636 {
637 	hw->core->min_rate = min_rate;
638 	hw->core->max_rate = max_rate;
639 }
640 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
641 
642 /*
643  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
644  * @hw: mux type clk to determine rate on
645  * @req: rate request, also used to return preferred parent and frequencies
646  *
647  * Helper for finding best parent to provide a given frequency. This can be used
648  * directly as a determine_rate callback (e.g. for a mux), or from a more
649  * complex clock that may combine a mux with other operations.
650  *
651  * Returns: 0 on success, -EERROR value on error
652  */
653 int __clk_mux_determine_rate(struct clk_hw *hw,
654 			     struct clk_rate_request *req)
655 {
656 	return clk_mux_determine_rate_flags(hw, req, 0);
657 }
658 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
659 
660 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
661 				     struct clk_rate_request *req)
662 {
663 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
664 }
665 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
666 
667 /***        clk api        ***/
668 
669 static void clk_core_rate_unprotect(struct clk_core *core)
670 {
671 	lockdep_assert_held(&prepare_lock);
672 
673 	if (!core)
674 		return;
675 
676 	if (WARN(core->protect_count == 0,
677 	    "%s already unprotected\n", core->name))
678 		return;
679 
680 	if (--core->protect_count > 0)
681 		return;
682 
683 	clk_core_rate_unprotect(core->parent);
684 }
685 
686 static int clk_core_rate_nuke_protect(struct clk_core *core)
687 {
688 	int ret;
689 
690 	lockdep_assert_held(&prepare_lock);
691 
692 	if (!core)
693 		return -EINVAL;
694 
695 	if (core->protect_count == 0)
696 		return 0;
697 
698 	ret = core->protect_count;
699 	core->protect_count = 1;
700 	clk_core_rate_unprotect(core);
701 
702 	return ret;
703 }
704 
705 /**
706  * clk_rate_exclusive_put - release exclusivity over clock rate control
707  * @clk: the clk over which the exclusivity is released
708  *
709  * clk_rate_exclusive_put() completes a critical section during which a clock
710  * consumer cannot tolerate any other consumer making any operation on the
711  * clock which could result in a rate change or rate glitch. Exclusive clocks
712  * cannot have their rate changed, either directly or indirectly due to changes
713  * further up the parent chain of clocks. As a result, clocks up parent chain
714  * also get under exclusive control of the calling consumer.
715  *
716  * If exlusivity is claimed more than once on clock, even by the same consumer,
717  * the rate effectively gets locked as exclusivity can't be preempted.
718  *
719  * Calls to clk_rate_exclusive_put() must be balanced with calls to
720  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
721  * error status.
722  */
723 void clk_rate_exclusive_put(struct clk *clk)
724 {
725 	if (!clk)
726 		return;
727 
728 	clk_prepare_lock();
729 
730 	/*
731 	 * if there is something wrong with this consumer protect count, stop
732 	 * here before messing with the provider
733 	 */
734 	if (WARN_ON(clk->exclusive_count <= 0))
735 		goto out;
736 
737 	clk_core_rate_unprotect(clk->core);
738 	clk->exclusive_count--;
739 out:
740 	clk_prepare_unlock();
741 }
742 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
743 
744 static void clk_core_rate_protect(struct clk_core *core)
745 {
746 	lockdep_assert_held(&prepare_lock);
747 
748 	if (!core)
749 		return;
750 
751 	if (core->protect_count == 0)
752 		clk_core_rate_protect(core->parent);
753 
754 	core->protect_count++;
755 }
756 
757 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
758 {
759 	lockdep_assert_held(&prepare_lock);
760 
761 	if (!core)
762 		return;
763 
764 	if (count == 0)
765 		return;
766 
767 	clk_core_rate_protect(core);
768 	core->protect_count = count;
769 }
770 
771 /**
772  * clk_rate_exclusive_get - get exclusivity over the clk rate control
773  * @clk: the clk over which the exclusity of rate control is requested
774  *
775  * clk_rate_exclusive_get() begins a critical section during which a clock
776  * consumer cannot tolerate any other consumer making any operation on the
777  * clock which could result in a rate change or rate glitch. Exclusive clocks
778  * cannot have their rate changed, either directly or indirectly due to changes
779  * further up the parent chain of clocks. As a result, clocks up parent chain
780  * also get under exclusive control of the calling consumer.
781  *
782  * If exlusivity is claimed more than once on clock, even by the same consumer,
783  * the rate effectively gets locked as exclusivity can't be preempted.
784  *
785  * Calls to clk_rate_exclusive_get() should be balanced with calls to
786  * clk_rate_exclusive_put(). Calls to this function may sleep.
787  * Returns 0 on success, -EERROR otherwise
788  */
789 int clk_rate_exclusive_get(struct clk *clk)
790 {
791 	if (!clk)
792 		return 0;
793 
794 	clk_prepare_lock();
795 	clk_core_rate_protect(clk->core);
796 	clk->exclusive_count++;
797 	clk_prepare_unlock();
798 
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
802 
803 static void clk_core_unprepare(struct clk_core *core)
804 {
805 	lockdep_assert_held(&prepare_lock);
806 
807 	if (!core)
808 		return;
809 
810 	if (WARN(core->prepare_count == 0,
811 	    "%s already unprepared\n", core->name))
812 		return;
813 
814 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
815 	    "Unpreparing critical %s\n", core->name))
816 		return;
817 
818 	if (core->flags & CLK_SET_RATE_GATE)
819 		clk_core_rate_unprotect(core);
820 
821 	if (--core->prepare_count > 0)
822 		return;
823 
824 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
825 
826 	trace_clk_unprepare(core);
827 
828 	if (core->ops->unprepare)
829 		core->ops->unprepare(core->hw);
830 
831 	clk_pm_runtime_put(core);
832 
833 	trace_clk_unprepare_complete(core);
834 	clk_core_unprepare(core->parent);
835 }
836 
837 static void clk_core_unprepare_lock(struct clk_core *core)
838 {
839 	clk_prepare_lock();
840 	clk_core_unprepare(core);
841 	clk_prepare_unlock();
842 }
843 
844 /**
845  * clk_unprepare - undo preparation of a clock source
846  * @clk: the clk being unprepared
847  *
848  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
849  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
850  * if the operation may sleep.  One example is a clk which is accessed over
851  * I2c.  In the complex case a clk gate operation may require a fast and a slow
852  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
853  * exclusive.  In fact clk_disable must be called before clk_unprepare.
854  */
855 void clk_unprepare(struct clk *clk)
856 {
857 	if (IS_ERR_OR_NULL(clk))
858 		return;
859 
860 	clk_core_unprepare_lock(clk->core);
861 }
862 EXPORT_SYMBOL_GPL(clk_unprepare);
863 
864 static int clk_core_prepare(struct clk_core *core)
865 {
866 	int ret = 0;
867 
868 	lockdep_assert_held(&prepare_lock);
869 
870 	if (!core)
871 		return 0;
872 
873 	if (core->prepare_count == 0) {
874 		ret = clk_pm_runtime_get(core);
875 		if (ret)
876 			return ret;
877 
878 		ret = clk_core_prepare(core->parent);
879 		if (ret)
880 			goto runtime_put;
881 
882 		trace_clk_prepare(core);
883 
884 		if (core->ops->prepare)
885 			ret = core->ops->prepare(core->hw);
886 
887 		trace_clk_prepare_complete(core);
888 
889 		if (ret)
890 			goto unprepare;
891 	}
892 
893 	core->prepare_count++;
894 
895 	/*
896 	 * CLK_SET_RATE_GATE is a special case of clock protection
897 	 * Instead of a consumer claiming exclusive rate control, it is
898 	 * actually the provider which prevents any consumer from making any
899 	 * operation which could result in a rate change or rate glitch while
900 	 * the clock is prepared.
901 	 */
902 	if (core->flags & CLK_SET_RATE_GATE)
903 		clk_core_rate_protect(core);
904 
905 	return 0;
906 unprepare:
907 	clk_core_unprepare(core->parent);
908 runtime_put:
909 	clk_pm_runtime_put(core);
910 	return ret;
911 }
912 
913 static int clk_core_prepare_lock(struct clk_core *core)
914 {
915 	int ret;
916 
917 	clk_prepare_lock();
918 	ret = clk_core_prepare(core);
919 	clk_prepare_unlock();
920 
921 	return ret;
922 }
923 
924 /**
925  * clk_prepare - prepare a clock source
926  * @clk: the clk being prepared
927  *
928  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
929  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
930  * operation may sleep.  One example is a clk which is accessed over I2c.  In
931  * the complex case a clk ungate operation may require a fast and a slow part.
932  * It is this reason that clk_prepare and clk_enable are not mutually
933  * exclusive.  In fact clk_prepare must be called before clk_enable.
934  * Returns 0 on success, -EERROR otherwise.
935  */
936 int clk_prepare(struct clk *clk)
937 {
938 	if (!clk)
939 		return 0;
940 
941 	return clk_core_prepare_lock(clk->core);
942 }
943 EXPORT_SYMBOL_GPL(clk_prepare);
944 
945 static void clk_core_disable(struct clk_core *core)
946 {
947 	lockdep_assert_held(&enable_lock);
948 
949 	if (!core)
950 		return;
951 
952 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
953 		return;
954 
955 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
956 	    "Disabling critical %s\n", core->name))
957 		return;
958 
959 	if (--core->enable_count > 0)
960 		return;
961 
962 	trace_clk_disable_rcuidle(core);
963 
964 	if (core->ops->disable)
965 		core->ops->disable(core->hw);
966 
967 	trace_clk_disable_complete_rcuidle(core);
968 
969 	clk_core_disable(core->parent);
970 }
971 
972 static void clk_core_disable_lock(struct clk_core *core)
973 {
974 	unsigned long flags;
975 
976 	flags = clk_enable_lock();
977 	clk_core_disable(core);
978 	clk_enable_unlock(flags);
979 }
980 
981 /**
982  * clk_disable - gate a clock
983  * @clk: the clk being gated
984  *
985  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
986  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
987  * clk if the operation is fast and will never sleep.  One example is a
988  * SoC-internal clk which is controlled via simple register writes.  In the
989  * complex case a clk gate operation may require a fast and a slow part.  It is
990  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
991  * In fact clk_disable must be called before clk_unprepare.
992  */
993 void clk_disable(struct clk *clk)
994 {
995 	if (IS_ERR_OR_NULL(clk))
996 		return;
997 
998 	clk_core_disable_lock(clk->core);
999 }
1000 EXPORT_SYMBOL_GPL(clk_disable);
1001 
1002 static int clk_core_enable(struct clk_core *core)
1003 {
1004 	int ret = 0;
1005 
1006 	lockdep_assert_held(&enable_lock);
1007 
1008 	if (!core)
1009 		return 0;
1010 
1011 	if (WARN(core->prepare_count == 0,
1012 	    "Enabling unprepared %s\n", core->name))
1013 		return -ESHUTDOWN;
1014 
1015 	if (core->enable_count == 0) {
1016 		ret = clk_core_enable(core->parent);
1017 
1018 		if (ret)
1019 			return ret;
1020 
1021 		trace_clk_enable_rcuidle(core);
1022 
1023 		if (core->ops->enable)
1024 			ret = core->ops->enable(core->hw);
1025 
1026 		trace_clk_enable_complete_rcuidle(core);
1027 
1028 		if (ret) {
1029 			clk_core_disable(core->parent);
1030 			return ret;
1031 		}
1032 	}
1033 
1034 	core->enable_count++;
1035 	return 0;
1036 }
1037 
1038 static int clk_core_enable_lock(struct clk_core *core)
1039 {
1040 	unsigned long flags;
1041 	int ret;
1042 
1043 	flags = clk_enable_lock();
1044 	ret = clk_core_enable(core);
1045 	clk_enable_unlock(flags);
1046 
1047 	return ret;
1048 }
1049 
1050 /**
1051  * clk_gate_restore_context - restore context for poweroff
1052  * @hw: the clk_hw pointer of clock whose state is to be restored
1053  *
1054  * The clock gate restore context function enables or disables
1055  * the gate clocks based on the enable_count. This is done in cases
1056  * where the clock context is lost and based on the enable_count
1057  * the clock either needs to be enabled/disabled. This
1058  * helps restore the state of gate clocks.
1059  */
1060 void clk_gate_restore_context(struct clk_hw *hw)
1061 {
1062 	struct clk_core *core = hw->core;
1063 
1064 	if (core->enable_count)
1065 		core->ops->enable(hw);
1066 	else
1067 		core->ops->disable(hw);
1068 }
1069 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1070 
1071 static int clk_core_save_context(struct clk_core *core)
1072 {
1073 	struct clk_core *child;
1074 	int ret = 0;
1075 
1076 	hlist_for_each_entry(child, &core->children, child_node) {
1077 		ret = clk_core_save_context(child);
1078 		if (ret < 0)
1079 			return ret;
1080 	}
1081 
1082 	if (core->ops && core->ops->save_context)
1083 		ret = core->ops->save_context(core->hw);
1084 
1085 	return ret;
1086 }
1087 
1088 static void clk_core_restore_context(struct clk_core *core)
1089 {
1090 	struct clk_core *child;
1091 
1092 	if (core->ops && core->ops->restore_context)
1093 		core->ops->restore_context(core->hw);
1094 
1095 	hlist_for_each_entry(child, &core->children, child_node)
1096 		clk_core_restore_context(child);
1097 }
1098 
1099 /**
1100  * clk_save_context - save clock context for poweroff
1101  *
1102  * Saves the context of the clock register for powerstates in which the
1103  * contents of the registers will be lost. Occurs deep within the suspend
1104  * code.  Returns 0 on success.
1105  */
1106 int clk_save_context(void)
1107 {
1108 	struct clk_core *clk;
1109 	int ret;
1110 
1111 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1112 		ret = clk_core_save_context(clk);
1113 		if (ret < 0)
1114 			return ret;
1115 	}
1116 
1117 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1118 		ret = clk_core_save_context(clk);
1119 		if (ret < 0)
1120 			return ret;
1121 	}
1122 
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(clk_save_context);
1126 
1127 /**
1128  * clk_restore_context - restore clock context after poweroff
1129  *
1130  * Restore the saved clock context upon resume.
1131  *
1132  */
1133 void clk_restore_context(void)
1134 {
1135 	struct clk_core *core;
1136 
1137 	hlist_for_each_entry(core, &clk_root_list, child_node)
1138 		clk_core_restore_context(core);
1139 
1140 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1141 		clk_core_restore_context(core);
1142 }
1143 EXPORT_SYMBOL_GPL(clk_restore_context);
1144 
1145 /**
1146  * clk_enable - ungate a clock
1147  * @clk: the clk being ungated
1148  *
1149  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1150  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1151  * if the operation will never sleep.  One example is a SoC-internal clk which
1152  * is controlled via simple register writes.  In the complex case a clk ungate
1153  * operation may require a fast and a slow part.  It is this reason that
1154  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1155  * must be called before clk_enable.  Returns 0 on success, -EERROR
1156  * otherwise.
1157  */
1158 int clk_enable(struct clk *clk)
1159 {
1160 	if (!clk)
1161 		return 0;
1162 
1163 	return clk_core_enable_lock(clk->core);
1164 }
1165 EXPORT_SYMBOL_GPL(clk_enable);
1166 
1167 static int clk_core_prepare_enable(struct clk_core *core)
1168 {
1169 	int ret;
1170 
1171 	ret = clk_core_prepare_lock(core);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = clk_core_enable_lock(core);
1176 	if (ret)
1177 		clk_core_unprepare_lock(core);
1178 
1179 	return ret;
1180 }
1181 
1182 static void clk_core_disable_unprepare(struct clk_core *core)
1183 {
1184 	clk_core_disable_lock(core);
1185 	clk_core_unprepare_lock(core);
1186 }
1187 
1188 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1189 {
1190 	struct clk_core *child;
1191 
1192 	lockdep_assert_held(&prepare_lock);
1193 
1194 	hlist_for_each_entry(child, &core->children, child_node)
1195 		clk_unprepare_unused_subtree(child);
1196 
1197 	if (core->prepare_count)
1198 		return;
1199 
1200 	if (core->flags & CLK_IGNORE_UNUSED)
1201 		return;
1202 
1203 	if (clk_pm_runtime_get(core))
1204 		return;
1205 
1206 	if (clk_core_is_prepared(core)) {
1207 		trace_clk_unprepare(core);
1208 		if (core->ops->unprepare_unused)
1209 			core->ops->unprepare_unused(core->hw);
1210 		else if (core->ops->unprepare)
1211 			core->ops->unprepare(core->hw);
1212 		trace_clk_unprepare_complete(core);
1213 	}
1214 
1215 	clk_pm_runtime_put(core);
1216 }
1217 
1218 static void __init clk_disable_unused_subtree(struct clk_core *core)
1219 {
1220 	struct clk_core *child;
1221 	unsigned long flags;
1222 
1223 	lockdep_assert_held(&prepare_lock);
1224 
1225 	hlist_for_each_entry(child, &core->children, child_node)
1226 		clk_disable_unused_subtree(child);
1227 
1228 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1229 		clk_core_prepare_enable(core->parent);
1230 
1231 	if (clk_pm_runtime_get(core))
1232 		goto unprepare_out;
1233 
1234 	flags = clk_enable_lock();
1235 
1236 	if (core->enable_count)
1237 		goto unlock_out;
1238 
1239 	if (core->flags & CLK_IGNORE_UNUSED)
1240 		goto unlock_out;
1241 
1242 	/*
1243 	 * some gate clocks have special needs during the disable-unused
1244 	 * sequence.  call .disable_unused if available, otherwise fall
1245 	 * back to .disable
1246 	 */
1247 	if (clk_core_is_enabled(core)) {
1248 		trace_clk_disable(core);
1249 		if (core->ops->disable_unused)
1250 			core->ops->disable_unused(core->hw);
1251 		else if (core->ops->disable)
1252 			core->ops->disable(core->hw);
1253 		trace_clk_disable_complete(core);
1254 	}
1255 
1256 unlock_out:
1257 	clk_enable_unlock(flags);
1258 	clk_pm_runtime_put(core);
1259 unprepare_out:
1260 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1261 		clk_core_disable_unprepare(core->parent);
1262 }
1263 
1264 static bool clk_ignore_unused __initdata;
1265 static int __init clk_ignore_unused_setup(char *__unused)
1266 {
1267 	clk_ignore_unused = true;
1268 	return 1;
1269 }
1270 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1271 
1272 static int __init clk_disable_unused(void)
1273 {
1274 	struct clk_core *core;
1275 
1276 	if (clk_ignore_unused) {
1277 		pr_warn("clk: Not disabling unused clocks\n");
1278 		return 0;
1279 	}
1280 
1281 	clk_prepare_lock();
1282 
1283 	hlist_for_each_entry(core, &clk_root_list, child_node)
1284 		clk_disable_unused_subtree(core);
1285 
1286 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1287 		clk_disable_unused_subtree(core);
1288 
1289 	hlist_for_each_entry(core, &clk_root_list, child_node)
1290 		clk_unprepare_unused_subtree(core);
1291 
1292 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293 		clk_unprepare_unused_subtree(core);
1294 
1295 	clk_prepare_unlock();
1296 
1297 	return 0;
1298 }
1299 late_initcall_sync(clk_disable_unused);
1300 
1301 static int clk_core_determine_round_nolock(struct clk_core *core,
1302 					   struct clk_rate_request *req)
1303 {
1304 	long rate;
1305 
1306 	lockdep_assert_held(&prepare_lock);
1307 
1308 	if (!core)
1309 		return 0;
1310 
1311 	/*
1312 	 * At this point, core protection will be disabled if
1313 	 * - if the provider is not protected at all
1314 	 * - if the calling consumer is the only one which has exclusivity
1315 	 *   over the provider
1316 	 */
1317 	if (clk_core_rate_is_protected(core)) {
1318 		req->rate = core->rate;
1319 	} else if (core->ops->determine_rate) {
1320 		return core->ops->determine_rate(core->hw, req);
1321 	} else if (core->ops->round_rate) {
1322 		rate = core->ops->round_rate(core->hw, req->rate,
1323 					     &req->best_parent_rate);
1324 		if (rate < 0)
1325 			return rate;
1326 
1327 		req->rate = rate;
1328 	} else {
1329 		return -EINVAL;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 static void clk_core_init_rate_req(struct clk_core * const core,
1336 				   struct clk_rate_request *req)
1337 {
1338 	struct clk_core *parent;
1339 
1340 	if (WARN_ON(!core || !req))
1341 		return;
1342 
1343 	parent = core->parent;
1344 	if (parent) {
1345 		req->best_parent_hw = parent->hw;
1346 		req->best_parent_rate = parent->rate;
1347 	} else {
1348 		req->best_parent_hw = NULL;
1349 		req->best_parent_rate = 0;
1350 	}
1351 }
1352 
1353 static bool clk_core_can_round(struct clk_core * const core)
1354 {
1355 	return core->ops->determine_rate || core->ops->round_rate;
1356 }
1357 
1358 static int clk_core_round_rate_nolock(struct clk_core *core,
1359 				      struct clk_rate_request *req)
1360 {
1361 	lockdep_assert_held(&prepare_lock);
1362 
1363 	if (!core) {
1364 		req->rate = 0;
1365 		return 0;
1366 	}
1367 
1368 	clk_core_init_rate_req(core, req);
1369 
1370 	if (clk_core_can_round(core))
1371 		return clk_core_determine_round_nolock(core, req);
1372 	else if (core->flags & CLK_SET_RATE_PARENT)
1373 		return clk_core_round_rate_nolock(core->parent, req);
1374 
1375 	req->rate = core->rate;
1376 	return 0;
1377 }
1378 
1379 /**
1380  * __clk_determine_rate - get the closest rate actually supported by a clock
1381  * @hw: determine the rate of this clock
1382  * @req: target rate request
1383  *
1384  * Useful for clk_ops such as .set_rate and .determine_rate.
1385  */
1386 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1387 {
1388 	if (!hw) {
1389 		req->rate = 0;
1390 		return 0;
1391 	}
1392 
1393 	return clk_core_round_rate_nolock(hw->core, req);
1394 }
1395 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1396 
1397 /**
1398  * clk_hw_round_rate() - round the given rate for a hw clk
1399  * @hw: the hw clk for which we are rounding a rate
1400  * @rate: the rate which is to be rounded
1401  *
1402  * Takes in a rate as input and rounds it to a rate that the clk can actually
1403  * use.
1404  *
1405  * Context: prepare_lock must be held.
1406  *          For clk providers to call from within clk_ops such as .round_rate,
1407  *          .determine_rate.
1408  *
1409  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1410  *         else returns the parent rate.
1411  */
1412 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1413 {
1414 	int ret;
1415 	struct clk_rate_request req;
1416 
1417 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1418 	req.rate = rate;
1419 
1420 	ret = clk_core_round_rate_nolock(hw->core, &req);
1421 	if (ret)
1422 		return 0;
1423 
1424 	return req.rate;
1425 }
1426 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1427 
1428 /**
1429  * clk_round_rate - round the given rate for a clk
1430  * @clk: the clk for which we are rounding a rate
1431  * @rate: the rate which is to be rounded
1432  *
1433  * Takes in a rate as input and rounds it to a rate that the clk can actually
1434  * use which is then returned.  If clk doesn't support round_rate operation
1435  * then the parent rate is returned.
1436  */
1437 long clk_round_rate(struct clk *clk, unsigned long rate)
1438 {
1439 	struct clk_rate_request req;
1440 	int ret;
1441 
1442 	if (!clk)
1443 		return 0;
1444 
1445 	clk_prepare_lock();
1446 
1447 	if (clk->exclusive_count)
1448 		clk_core_rate_unprotect(clk->core);
1449 
1450 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1451 	req.rate = rate;
1452 
1453 	ret = clk_core_round_rate_nolock(clk->core, &req);
1454 
1455 	if (clk->exclusive_count)
1456 		clk_core_rate_protect(clk->core);
1457 
1458 	clk_prepare_unlock();
1459 
1460 	if (ret)
1461 		return ret;
1462 
1463 	return req.rate;
1464 }
1465 EXPORT_SYMBOL_GPL(clk_round_rate);
1466 
1467 /**
1468  * __clk_notify - call clk notifier chain
1469  * @core: clk that is changing rate
1470  * @msg: clk notifier type (see include/linux/clk.h)
1471  * @old_rate: old clk rate
1472  * @new_rate: new clk rate
1473  *
1474  * Triggers a notifier call chain on the clk rate-change notification
1475  * for 'clk'.  Passes a pointer to the struct clk and the previous
1476  * and current rates to the notifier callback.  Intended to be called by
1477  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1478  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1479  * a driver returns that.
1480  */
1481 static int __clk_notify(struct clk_core *core, unsigned long msg,
1482 		unsigned long old_rate, unsigned long new_rate)
1483 {
1484 	struct clk_notifier *cn;
1485 	struct clk_notifier_data cnd;
1486 	int ret = NOTIFY_DONE;
1487 
1488 	cnd.old_rate = old_rate;
1489 	cnd.new_rate = new_rate;
1490 
1491 	list_for_each_entry(cn, &clk_notifier_list, node) {
1492 		if (cn->clk->core == core) {
1493 			cnd.clk = cn->clk;
1494 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1495 					&cnd);
1496 			if (ret & NOTIFY_STOP_MASK)
1497 				return ret;
1498 		}
1499 	}
1500 
1501 	return ret;
1502 }
1503 
1504 /**
1505  * __clk_recalc_accuracies
1506  * @core: first clk in the subtree
1507  *
1508  * Walks the subtree of clks starting with clk and recalculates accuracies as
1509  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1510  * callback then it is assumed that the clock will take on the accuracy of its
1511  * parent.
1512  */
1513 static void __clk_recalc_accuracies(struct clk_core *core)
1514 {
1515 	unsigned long parent_accuracy = 0;
1516 	struct clk_core *child;
1517 
1518 	lockdep_assert_held(&prepare_lock);
1519 
1520 	if (core->parent)
1521 		parent_accuracy = core->parent->accuracy;
1522 
1523 	if (core->ops->recalc_accuracy)
1524 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1525 							  parent_accuracy);
1526 	else
1527 		core->accuracy = parent_accuracy;
1528 
1529 	hlist_for_each_entry(child, &core->children, child_node)
1530 		__clk_recalc_accuracies(child);
1531 }
1532 
1533 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1534 {
1535 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1536 		__clk_recalc_accuracies(core);
1537 
1538 	return clk_core_get_accuracy_no_lock(core);
1539 }
1540 
1541 /**
1542  * clk_get_accuracy - return the accuracy of clk
1543  * @clk: the clk whose accuracy is being returned
1544  *
1545  * Simply returns the cached accuracy of the clk, unless
1546  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1547  * issued.
1548  * If clk is NULL then returns 0.
1549  */
1550 long clk_get_accuracy(struct clk *clk)
1551 {
1552 	long accuracy;
1553 
1554 	if (!clk)
1555 		return 0;
1556 
1557 	clk_prepare_lock();
1558 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1559 	clk_prepare_unlock();
1560 
1561 	return accuracy;
1562 }
1563 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1564 
1565 static unsigned long clk_recalc(struct clk_core *core,
1566 				unsigned long parent_rate)
1567 {
1568 	unsigned long rate = parent_rate;
1569 
1570 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1571 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1572 		clk_pm_runtime_put(core);
1573 	}
1574 	return rate;
1575 }
1576 
1577 /**
1578  * __clk_recalc_rates
1579  * @core: first clk in the subtree
1580  * @msg: notification type (see include/linux/clk.h)
1581  *
1582  * Walks the subtree of clks starting with clk and recalculates rates as it
1583  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1584  * it is assumed that the clock will take on the rate of its parent.
1585  *
1586  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1587  * if necessary.
1588  */
1589 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1590 {
1591 	unsigned long old_rate;
1592 	unsigned long parent_rate = 0;
1593 	struct clk_core *child;
1594 
1595 	lockdep_assert_held(&prepare_lock);
1596 
1597 	old_rate = core->rate;
1598 
1599 	if (core->parent)
1600 		parent_rate = core->parent->rate;
1601 
1602 	core->rate = clk_recalc(core, parent_rate);
1603 
1604 	/*
1605 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1606 	 * & ABORT_RATE_CHANGE notifiers
1607 	 */
1608 	if (core->notifier_count && msg)
1609 		__clk_notify(core, msg, old_rate, core->rate);
1610 
1611 	hlist_for_each_entry(child, &core->children, child_node)
1612 		__clk_recalc_rates(child, msg);
1613 }
1614 
1615 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1616 {
1617 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1618 		__clk_recalc_rates(core, 0);
1619 
1620 	return clk_core_get_rate_nolock(core);
1621 }
1622 
1623 /**
1624  * clk_get_rate - return the rate of clk
1625  * @clk: the clk whose rate is being returned
1626  *
1627  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1628  * is set, which means a recalc_rate will be issued.
1629  * If clk is NULL then returns 0.
1630  */
1631 unsigned long clk_get_rate(struct clk *clk)
1632 {
1633 	unsigned long rate;
1634 
1635 	if (!clk)
1636 		return 0;
1637 
1638 	clk_prepare_lock();
1639 	rate = clk_core_get_rate_recalc(clk->core);
1640 	clk_prepare_unlock();
1641 
1642 	return rate;
1643 }
1644 EXPORT_SYMBOL_GPL(clk_get_rate);
1645 
1646 static int clk_fetch_parent_index(struct clk_core *core,
1647 				  struct clk_core *parent)
1648 {
1649 	int i;
1650 
1651 	if (!parent)
1652 		return -EINVAL;
1653 
1654 	for (i = 0; i < core->num_parents; i++) {
1655 		/* Found it first try! */
1656 		if (core->parents[i].core == parent)
1657 			return i;
1658 
1659 		/* Something else is here, so keep looking */
1660 		if (core->parents[i].core)
1661 			continue;
1662 
1663 		/* Maybe core hasn't been cached but the hw is all we know? */
1664 		if (core->parents[i].hw) {
1665 			if (core->parents[i].hw == parent->hw)
1666 				break;
1667 
1668 			/* Didn't match, but we're expecting a clk_hw */
1669 			continue;
1670 		}
1671 
1672 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1673 		if (parent == clk_core_get(core, i))
1674 			break;
1675 
1676 		/* Fallback to comparing globally unique names */
1677 		if (core->parents[i].name &&
1678 		    !strcmp(parent->name, core->parents[i].name))
1679 			break;
1680 	}
1681 
1682 	if (i == core->num_parents)
1683 		return -EINVAL;
1684 
1685 	core->parents[i].core = parent;
1686 	return i;
1687 }
1688 
1689 /**
1690  * clk_hw_get_parent_index - return the index of the parent clock
1691  * @hw: clk_hw associated with the clk being consumed
1692  *
1693  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1694  * clock does not have a current parent.
1695  */
1696 int clk_hw_get_parent_index(struct clk_hw *hw)
1697 {
1698 	struct clk_hw *parent = clk_hw_get_parent(hw);
1699 
1700 	if (WARN_ON(parent == NULL))
1701 		return -EINVAL;
1702 
1703 	return clk_fetch_parent_index(hw->core, parent->core);
1704 }
1705 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1706 
1707 /*
1708  * Update the orphan status of @core and all its children.
1709  */
1710 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1711 {
1712 	struct clk_core *child;
1713 
1714 	core->orphan = is_orphan;
1715 
1716 	hlist_for_each_entry(child, &core->children, child_node)
1717 		clk_core_update_orphan_status(child, is_orphan);
1718 }
1719 
1720 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1721 {
1722 	bool was_orphan = core->orphan;
1723 
1724 	hlist_del(&core->child_node);
1725 
1726 	if (new_parent) {
1727 		bool becomes_orphan = new_parent->orphan;
1728 
1729 		/* avoid duplicate POST_RATE_CHANGE notifications */
1730 		if (new_parent->new_child == core)
1731 			new_parent->new_child = NULL;
1732 
1733 		hlist_add_head(&core->child_node, &new_parent->children);
1734 
1735 		if (was_orphan != becomes_orphan)
1736 			clk_core_update_orphan_status(core, becomes_orphan);
1737 	} else {
1738 		hlist_add_head(&core->child_node, &clk_orphan_list);
1739 		if (!was_orphan)
1740 			clk_core_update_orphan_status(core, true);
1741 	}
1742 
1743 	core->parent = new_parent;
1744 }
1745 
1746 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1747 					   struct clk_core *parent)
1748 {
1749 	unsigned long flags;
1750 	struct clk_core *old_parent = core->parent;
1751 
1752 	/*
1753 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1754 	 *
1755 	 * 2. Migrate prepare state between parents and prevent race with
1756 	 * clk_enable().
1757 	 *
1758 	 * If the clock is not prepared, then a race with
1759 	 * clk_enable/disable() is impossible since we already have the
1760 	 * prepare lock (future calls to clk_enable() need to be preceded by
1761 	 * a clk_prepare()).
1762 	 *
1763 	 * If the clock is prepared, migrate the prepared state to the new
1764 	 * parent and also protect against a race with clk_enable() by
1765 	 * forcing the clock and the new parent on.  This ensures that all
1766 	 * future calls to clk_enable() are practically NOPs with respect to
1767 	 * hardware and software states.
1768 	 *
1769 	 * See also: Comment for clk_set_parent() below.
1770 	 */
1771 
1772 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1773 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1774 		clk_core_prepare_enable(old_parent);
1775 		clk_core_prepare_enable(parent);
1776 	}
1777 
1778 	/* migrate prepare count if > 0 */
1779 	if (core->prepare_count) {
1780 		clk_core_prepare_enable(parent);
1781 		clk_core_enable_lock(core);
1782 	}
1783 
1784 	/* update the clk tree topology */
1785 	flags = clk_enable_lock();
1786 	clk_reparent(core, parent);
1787 	clk_enable_unlock(flags);
1788 
1789 	return old_parent;
1790 }
1791 
1792 static void __clk_set_parent_after(struct clk_core *core,
1793 				   struct clk_core *parent,
1794 				   struct clk_core *old_parent)
1795 {
1796 	/*
1797 	 * Finish the migration of prepare state and undo the changes done
1798 	 * for preventing a race with clk_enable().
1799 	 */
1800 	if (core->prepare_count) {
1801 		clk_core_disable_lock(core);
1802 		clk_core_disable_unprepare(old_parent);
1803 	}
1804 
1805 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1806 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1807 		clk_core_disable_unprepare(parent);
1808 		clk_core_disable_unprepare(old_parent);
1809 	}
1810 }
1811 
1812 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1813 			    u8 p_index)
1814 {
1815 	unsigned long flags;
1816 	int ret = 0;
1817 	struct clk_core *old_parent;
1818 
1819 	old_parent = __clk_set_parent_before(core, parent);
1820 
1821 	trace_clk_set_parent(core, parent);
1822 
1823 	/* change clock input source */
1824 	if (parent && core->ops->set_parent)
1825 		ret = core->ops->set_parent(core->hw, p_index);
1826 
1827 	trace_clk_set_parent_complete(core, parent);
1828 
1829 	if (ret) {
1830 		flags = clk_enable_lock();
1831 		clk_reparent(core, old_parent);
1832 		clk_enable_unlock(flags);
1833 		__clk_set_parent_after(core, old_parent, parent);
1834 
1835 		return ret;
1836 	}
1837 
1838 	__clk_set_parent_after(core, parent, old_parent);
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * __clk_speculate_rates
1845  * @core: first clk in the subtree
1846  * @parent_rate: the "future" rate of clk's parent
1847  *
1848  * Walks the subtree of clks starting with clk, speculating rates as it
1849  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1850  *
1851  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1852  * pre-rate change notifications and returns early if no clks in the
1853  * subtree have subscribed to the notifications.  Note that if a clk does not
1854  * implement the .recalc_rate callback then it is assumed that the clock will
1855  * take on the rate of its parent.
1856  */
1857 static int __clk_speculate_rates(struct clk_core *core,
1858 				 unsigned long parent_rate)
1859 {
1860 	struct clk_core *child;
1861 	unsigned long new_rate;
1862 	int ret = NOTIFY_DONE;
1863 
1864 	lockdep_assert_held(&prepare_lock);
1865 
1866 	new_rate = clk_recalc(core, parent_rate);
1867 
1868 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1869 	if (core->notifier_count)
1870 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1871 
1872 	if (ret & NOTIFY_STOP_MASK) {
1873 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1874 				__func__, core->name, ret);
1875 		goto out;
1876 	}
1877 
1878 	hlist_for_each_entry(child, &core->children, child_node) {
1879 		ret = __clk_speculate_rates(child, new_rate);
1880 		if (ret & NOTIFY_STOP_MASK)
1881 			break;
1882 	}
1883 
1884 out:
1885 	return ret;
1886 }
1887 
1888 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1889 			     struct clk_core *new_parent, u8 p_index)
1890 {
1891 	struct clk_core *child;
1892 
1893 	core->new_rate = new_rate;
1894 	core->new_parent = new_parent;
1895 	core->new_parent_index = p_index;
1896 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1897 	core->new_child = NULL;
1898 	if (new_parent && new_parent != core->parent)
1899 		new_parent->new_child = core;
1900 
1901 	hlist_for_each_entry(child, &core->children, child_node) {
1902 		child->new_rate = clk_recalc(child, new_rate);
1903 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1904 	}
1905 }
1906 
1907 /*
1908  * calculate the new rates returning the topmost clock that has to be
1909  * changed.
1910  */
1911 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1912 					   unsigned long rate)
1913 {
1914 	struct clk_core *top = core;
1915 	struct clk_core *old_parent, *parent;
1916 	unsigned long best_parent_rate = 0;
1917 	unsigned long new_rate;
1918 	unsigned long min_rate;
1919 	unsigned long max_rate;
1920 	int p_index = 0;
1921 	long ret;
1922 
1923 	/* sanity */
1924 	if (IS_ERR_OR_NULL(core))
1925 		return NULL;
1926 
1927 	/* save parent rate, if it exists */
1928 	parent = old_parent = core->parent;
1929 	if (parent)
1930 		best_parent_rate = parent->rate;
1931 
1932 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1933 
1934 	/* find the closest rate and parent clk/rate */
1935 	if (clk_core_can_round(core)) {
1936 		struct clk_rate_request req;
1937 
1938 		req.rate = rate;
1939 		req.min_rate = min_rate;
1940 		req.max_rate = max_rate;
1941 
1942 		clk_core_init_rate_req(core, &req);
1943 
1944 		ret = clk_core_determine_round_nolock(core, &req);
1945 		if (ret < 0)
1946 			return NULL;
1947 
1948 		best_parent_rate = req.best_parent_rate;
1949 		new_rate = req.rate;
1950 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1951 
1952 		if (new_rate < min_rate || new_rate > max_rate)
1953 			return NULL;
1954 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1955 		/* pass-through clock without adjustable parent */
1956 		core->new_rate = core->rate;
1957 		return NULL;
1958 	} else {
1959 		/* pass-through clock with adjustable parent */
1960 		top = clk_calc_new_rates(parent, rate);
1961 		new_rate = parent->new_rate;
1962 		goto out;
1963 	}
1964 
1965 	/* some clocks must be gated to change parent */
1966 	if (parent != old_parent &&
1967 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1968 		pr_debug("%s: %s not gated but wants to reparent\n",
1969 			 __func__, core->name);
1970 		return NULL;
1971 	}
1972 
1973 	/* try finding the new parent index */
1974 	if (parent && core->num_parents > 1) {
1975 		p_index = clk_fetch_parent_index(core, parent);
1976 		if (p_index < 0) {
1977 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1978 				 __func__, parent->name, core->name);
1979 			return NULL;
1980 		}
1981 	}
1982 
1983 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1984 	    best_parent_rate != parent->rate)
1985 		top = clk_calc_new_rates(parent, best_parent_rate);
1986 
1987 out:
1988 	clk_calc_subtree(core, new_rate, parent, p_index);
1989 
1990 	return top;
1991 }
1992 
1993 /*
1994  * Notify about rate changes in a subtree. Always walk down the whole tree
1995  * so that in case of an error we can walk down the whole tree again and
1996  * abort the change.
1997  */
1998 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1999 						  unsigned long event)
2000 {
2001 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2002 	int ret = NOTIFY_DONE;
2003 
2004 	if (core->rate == core->new_rate)
2005 		return NULL;
2006 
2007 	if (core->notifier_count) {
2008 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2009 		if (ret & NOTIFY_STOP_MASK)
2010 			fail_clk = core;
2011 	}
2012 
2013 	hlist_for_each_entry(child, &core->children, child_node) {
2014 		/* Skip children who will be reparented to another clock */
2015 		if (child->new_parent && child->new_parent != core)
2016 			continue;
2017 		tmp_clk = clk_propagate_rate_change(child, event);
2018 		if (tmp_clk)
2019 			fail_clk = tmp_clk;
2020 	}
2021 
2022 	/* handle the new child who might not be in core->children yet */
2023 	if (core->new_child) {
2024 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2025 		if (tmp_clk)
2026 			fail_clk = tmp_clk;
2027 	}
2028 
2029 	return fail_clk;
2030 }
2031 
2032 /*
2033  * walk down a subtree and set the new rates notifying the rate
2034  * change on the way
2035  */
2036 static void clk_change_rate(struct clk_core *core)
2037 {
2038 	struct clk_core *child;
2039 	struct hlist_node *tmp;
2040 	unsigned long old_rate;
2041 	unsigned long best_parent_rate = 0;
2042 	bool skip_set_rate = false;
2043 	struct clk_core *old_parent;
2044 	struct clk_core *parent = NULL;
2045 
2046 	old_rate = core->rate;
2047 
2048 	if (core->new_parent) {
2049 		parent = core->new_parent;
2050 		best_parent_rate = core->new_parent->rate;
2051 	} else if (core->parent) {
2052 		parent = core->parent;
2053 		best_parent_rate = core->parent->rate;
2054 	}
2055 
2056 	if (clk_pm_runtime_get(core))
2057 		return;
2058 
2059 	if (core->flags & CLK_SET_RATE_UNGATE) {
2060 		unsigned long flags;
2061 
2062 		clk_core_prepare(core);
2063 		flags = clk_enable_lock();
2064 		clk_core_enable(core);
2065 		clk_enable_unlock(flags);
2066 	}
2067 
2068 	if (core->new_parent && core->new_parent != core->parent) {
2069 		old_parent = __clk_set_parent_before(core, core->new_parent);
2070 		trace_clk_set_parent(core, core->new_parent);
2071 
2072 		if (core->ops->set_rate_and_parent) {
2073 			skip_set_rate = true;
2074 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2075 					best_parent_rate,
2076 					core->new_parent_index);
2077 		} else if (core->ops->set_parent) {
2078 			core->ops->set_parent(core->hw, core->new_parent_index);
2079 		}
2080 
2081 		trace_clk_set_parent_complete(core, core->new_parent);
2082 		__clk_set_parent_after(core, core->new_parent, old_parent);
2083 	}
2084 
2085 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2086 		clk_core_prepare_enable(parent);
2087 
2088 	trace_clk_set_rate(core, core->new_rate);
2089 
2090 	if (!skip_set_rate && core->ops->set_rate)
2091 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2092 
2093 	trace_clk_set_rate_complete(core, core->new_rate);
2094 
2095 	core->rate = clk_recalc(core, best_parent_rate);
2096 
2097 	if (core->flags & CLK_SET_RATE_UNGATE) {
2098 		unsigned long flags;
2099 
2100 		flags = clk_enable_lock();
2101 		clk_core_disable(core);
2102 		clk_enable_unlock(flags);
2103 		clk_core_unprepare(core);
2104 	}
2105 
2106 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2107 		clk_core_disable_unprepare(parent);
2108 
2109 	if (core->notifier_count && old_rate != core->rate)
2110 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2111 
2112 	if (core->flags & CLK_RECALC_NEW_RATES)
2113 		(void)clk_calc_new_rates(core, core->new_rate);
2114 
2115 	/*
2116 	 * Use safe iteration, as change_rate can actually swap parents
2117 	 * for certain clock types.
2118 	 */
2119 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2120 		/* Skip children who will be reparented to another clock */
2121 		if (child->new_parent && child->new_parent != core)
2122 			continue;
2123 		clk_change_rate(child);
2124 	}
2125 
2126 	/* handle the new child who might not be in core->children yet */
2127 	if (core->new_child)
2128 		clk_change_rate(core->new_child);
2129 
2130 	clk_pm_runtime_put(core);
2131 }
2132 
2133 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2134 						     unsigned long req_rate)
2135 {
2136 	int ret, cnt;
2137 	struct clk_rate_request req;
2138 
2139 	lockdep_assert_held(&prepare_lock);
2140 
2141 	if (!core)
2142 		return 0;
2143 
2144 	/* simulate what the rate would be if it could be freely set */
2145 	cnt = clk_core_rate_nuke_protect(core);
2146 	if (cnt < 0)
2147 		return cnt;
2148 
2149 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2150 	req.rate = req_rate;
2151 
2152 	ret = clk_core_round_rate_nolock(core, &req);
2153 
2154 	/* restore the protection */
2155 	clk_core_rate_restore_protect(core, cnt);
2156 
2157 	return ret ? 0 : req.rate;
2158 }
2159 
2160 static int clk_core_set_rate_nolock(struct clk_core *core,
2161 				    unsigned long req_rate)
2162 {
2163 	struct clk_core *top, *fail_clk;
2164 	unsigned long rate;
2165 	int ret = 0;
2166 
2167 	if (!core)
2168 		return 0;
2169 
2170 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2171 
2172 	/* bail early if nothing to do */
2173 	if (rate == clk_core_get_rate_nolock(core))
2174 		return 0;
2175 
2176 	/* fail on a direct rate set of a protected provider */
2177 	if (clk_core_rate_is_protected(core))
2178 		return -EBUSY;
2179 
2180 	/* calculate new rates and get the topmost changed clock */
2181 	top = clk_calc_new_rates(core, req_rate);
2182 	if (!top)
2183 		return -EINVAL;
2184 
2185 	ret = clk_pm_runtime_get(core);
2186 	if (ret)
2187 		return ret;
2188 
2189 	/* notify that we are about to change rates */
2190 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2191 	if (fail_clk) {
2192 		pr_debug("%s: failed to set %s rate\n", __func__,
2193 				fail_clk->name);
2194 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2195 		ret = -EBUSY;
2196 		goto err;
2197 	}
2198 
2199 	/* change the rates */
2200 	clk_change_rate(top);
2201 
2202 	core->req_rate = req_rate;
2203 err:
2204 	clk_pm_runtime_put(core);
2205 
2206 	return ret;
2207 }
2208 
2209 /**
2210  * clk_set_rate - specify a new rate for clk
2211  * @clk: the clk whose rate is being changed
2212  * @rate: the new rate for clk
2213  *
2214  * In the simplest case clk_set_rate will only adjust the rate of clk.
2215  *
2216  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2217  * propagate up to clk's parent; whether or not this happens depends on the
2218  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2219  * after calling .round_rate then upstream parent propagation is ignored.  If
2220  * *parent_rate comes back with a new rate for clk's parent then we propagate
2221  * up to clk's parent and set its rate.  Upward propagation will continue
2222  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2223  * .round_rate stops requesting changes to clk's parent_rate.
2224  *
2225  * Rate changes are accomplished via tree traversal that also recalculates the
2226  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2227  *
2228  * Returns 0 on success, -EERROR otherwise.
2229  */
2230 int clk_set_rate(struct clk *clk, unsigned long rate)
2231 {
2232 	int ret;
2233 
2234 	if (!clk)
2235 		return 0;
2236 
2237 	/* prevent racing with updates to the clock topology */
2238 	clk_prepare_lock();
2239 
2240 	if (clk->exclusive_count)
2241 		clk_core_rate_unprotect(clk->core);
2242 
2243 	ret = clk_core_set_rate_nolock(clk->core, rate);
2244 
2245 	if (clk->exclusive_count)
2246 		clk_core_rate_protect(clk->core);
2247 
2248 	clk_prepare_unlock();
2249 
2250 	return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(clk_set_rate);
2253 
2254 /**
2255  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2256  * @clk: the clk whose rate is being changed
2257  * @rate: the new rate for clk
2258  *
2259  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2260  * within a critical section
2261  *
2262  * This can be used initially to ensure that at least 1 consumer is
2263  * satisfied when several consumers are competing for exclusivity over the
2264  * same clock provider.
2265  *
2266  * The exclusivity is not applied if setting the rate failed.
2267  *
2268  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2269  * clk_rate_exclusive_put().
2270  *
2271  * Returns 0 on success, -EERROR otherwise.
2272  */
2273 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2274 {
2275 	int ret;
2276 
2277 	if (!clk)
2278 		return 0;
2279 
2280 	/* prevent racing with updates to the clock topology */
2281 	clk_prepare_lock();
2282 
2283 	/*
2284 	 * The temporary protection removal is not here, on purpose
2285 	 * This function is meant to be used instead of clk_rate_protect,
2286 	 * so before the consumer code path protect the clock provider
2287 	 */
2288 
2289 	ret = clk_core_set_rate_nolock(clk->core, rate);
2290 	if (!ret) {
2291 		clk_core_rate_protect(clk->core);
2292 		clk->exclusive_count++;
2293 	}
2294 
2295 	clk_prepare_unlock();
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2300 
2301 /**
2302  * clk_set_rate_range - set a rate range for a clock source
2303  * @clk: clock source
2304  * @min: desired minimum clock rate in Hz, inclusive
2305  * @max: desired maximum clock rate in Hz, inclusive
2306  *
2307  * Returns success (0) or negative errno.
2308  */
2309 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2310 {
2311 	int ret = 0;
2312 	unsigned long old_min, old_max, rate;
2313 
2314 	if (!clk)
2315 		return 0;
2316 
2317 	trace_clk_set_rate_range(clk->core, min, max);
2318 
2319 	if (min > max) {
2320 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2321 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2322 		       min, max);
2323 		return -EINVAL;
2324 	}
2325 
2326 	clk_prepare_lock();
2327 
2328 	if (clk->exclusive_count)
2329 		clk_core_rate_unprotect(clk->core);
2330 
2331 	/* Save the current values in case we need to rollback the change */
2332 	old_min = clk->min_rate;
2333 	old_max = clk->max_rate;
2334 	clk->min_rate = min;
2335 	clk->max_rate = max;
2336 
2337 	rate = clk_core_get_rate_nolock(clk->core);
2338 	if (rate < min || rate > max) {
2339 		/*
2340 		 * FIXME:
2341 		 * We are in bit of trouble here, current rate is outside the
2342 		 * the requested range. We are going try to request appropriate
2343 		 * range boundary but there is a catch. It may fail for the
2344 		 * usual reason (clock broken, clock protected, etc) but also
2345 		 * because:
2346 		 * - round_rate() was not favorable and fell on the wrong
2347 		 *   side of the boundary
2348 		 * - the determine_rate() callback does not really check for
2349 		 *   this corner case when determining the rate
2350 		 */
2351 
2352 		if (rate < min)
2353 			rate = min;
2354 		else
2355 			rate = max;
2356 
2357 		ret = clk_core_set_rate_nolock(clk->core, rate);
2358 		if (ret) {
2359 			/* rollback the changes */
2360 			clk->min_rate = old_min;
2361 			clk->max_rate = old_max;
2362 		}
2363 	}
2364 
2365 	if (clk->exclusive_count)
2366 		clk_core_rate_protect(clk->core);
2367 
2368 	clk_prepare_unlock();
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2373 
2374 /**
2375  * clk_set_min_rate - set a minimum clock rate for a clock source
2376  * @clk: clock source
2377  * @rate: desired minimum clock rate in Hz, inclusive
2378  *
2379  * Returns success (0) or negative errno.
2380  */
2381 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2382 {
2383 	if (!clk)
2384 		return 0;
2385 
2386 	trace_clk_set_min_rate(clk->core, rate);
2387 
2388 	return clk_set_rate_range(clk, rate, clk->max_rate);
2389 }
2390 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2391 
2392 /**
2393  * clk_set_max_rate - set a maximum clock rate for a clock source
2394  * @clk: clock source
2395  * @rate: desired maximum clock rate in Hz, inclusive
2396  *
2397  * Returns success (0) or negative errno.
2398  */
2399 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2400 {
2401 	if (!clk)
2402 		return 0;
2403 
2404 	trace_clk_set_max_rate(clk->core, rate);
2405 
2406 	return clk_set_rate_range(clk, clk->min_rate, rate);
2407 }
2408 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2409 
2410 /**
2411  * clk_get_parent - return the parent of a clk
2412  * @clk: the clk whose parent gets returned
2413  *
2414  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2415  */
2416 struct clk *clk_get_parent(struct clk *clk)
2417 {
2418 	struct clk *parent;
2419 
2420 	if (!clk)
2421 		return NULL;
2422 
2423 	clk_prepare_lock();
2424 	/* TODO: Create a per-user clk and change callers to call clk_put */
2425 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2426 	clk_prepare_unlock();
2427 
2428 	return parent;
2429 }
2430 EXPORT_SYMBOL_GPL(clk_get_parent);
2431 
2432 static struct clk_core *__clk_init_parent(struct clk_core *core)
2433 {
2434 	u8 index = 0;
2435 
2436 	if (core->num_parents > 1 && core->ops->get_parent)
2437 		index = core->ops->get_parent(core->hw);
2438 
2439 	return clk_core_get_parent_by_index(core, index);
2440 }
2441 
2442 static void clk_core_reparent(struct clk_core *core,
2443 				  struct clk_core *new_parent)
2444 {
2445 	clk_reparent(core, new_parent);
2446 	__clk_recalc_accuracies(core);
2447 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2448 }
2449 
2450 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2451 {
2452 	if (!hw)
2453 		return;
2454 
2455 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2456 }
2457 
2458 /**
2459  * clk_has_parent - check if a clock is a possible parent for another
2460  * @clk: clock source
2461  * @parent: parent clock source
2462  *
2463  * This function can be used in drivers that need to check that a clock can be
2464  * the parent of another without actually changing the parent.
2465  *
2466  * Returns true if @parent is a possible parent for @clk, false otherwise.
2467  */
2468 bool clk_has_parent(struct clk *clk, struct clk *parent)
2469 {
2470 	struct clk_core *core, *parent_core;
2471 	int i;
2472 
2473 	/* NULL clocks should be nops, so return success if either is NULL. */
2474 	if (!clk || !parent)
2475 		return true;
2476 
2477 	core = clk->core;
2478 	parent_core = parent->core;
2479 
2480 	/* Optimize for the case where the parent is already the parent. */
2481 	if (core->parent == parent_core)
2482 		return true;
2483 
2484 	for (i = 0; i < core->num_parents; i++)
2485 		if (!strcmp(core->parents[i].name, parent_core->name))
2486 			return true;
2487 
2488 	return false;
2489 }
2490 EXPORT_SYMBOL_GPL(clk_has_parent);
2491 
2492 static int clk_core_set_parent_nolock(struct clk_core *core,
2493 				      struct clk_core *parent)
2494 {
2495 	int ret = 0;
2496 	int p_index = 0;
2497 	unsigned long p_rate = 0;
2498 
2499 	lockdep_assert_held(&prepare_lock);
2500 
2501 	if (!core)
2502 		return 0;
2503 
2504 	if (core->parent == parent)
2505 		return 0;
2506 
2507 	/* verify ops for multi-parent clks */
2508 	if (core->num_parents > 1 && !core->ops->set_parent)
2509 		return -EPERM;
2510 
2511 	/* check that we are allowed to re-parent if the clock is in use */
2512 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2513 		return -EBUSY;
2514 
2515 	if (clk_core_rate_is_protected(core))
2516 		return -EBUSY;
2517 
2518 	/* try finding the new parent index */
2519 	if (parent) {
2520 		p_index = clk_fetch_parent_index(core, parent);
2521 		if (p_index < 0) {
2522 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2523 					__func__, parent->name, core->name);
2524 			return p_index;
2525 		}
2526 		p_rate = parent->rate;
2527 	}
2528 
2529 	ret = clk_pm_runtime_get(core);
2530 	if (ret)
2531 		return ret;
2532 
2533 	/* propagate PRE_RATE_CHANGE notifications */
2534 	ret = __clk_speculate_rates(core, p_rate);
2535 
2536 	/* abort if a driver objects */
2537 	if (ret & NOTIFY_STOP_MASK)
2538 		goto runtime_put;
2539 
2540 	/* do the re-parent */
2541 	ret = __clk_set_parent(core, parent, p_index);
2542 
2543 	/* propagate rate an accuracy recalculation accordingly */
2544 	if (ret) {
2545 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2546 	} else {
2547 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2548 		__clk_recalc_accuracies(core);
2549 	}
2550 
2551 runtime_put:
2552 	clk_pm_runtime_put(core);
2553 
2554 	return ret;
2555 }
2556 
2557 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2558 {
2559 	return clk_core_set_parent_nolock(hw->core, parent->core);
2560 }
2561 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2562 
2563 /**
2564  * clk_set_parent - switch the parent of a mux clk
2565  * @clk: the mux clk whose input we are switching
2566  * @parent: the new input to clk
2567  *
2568  * Re-parent clk to use parent as its new input source.  If clk is in
2569  * prepared state, the clk will get enabled for the duration of this call. If
2570  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2571  * that, the reparenting is glitchy in hardware, etc), use the
2572  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2573  *
2574  * After successfully changing clk's parent clk_set_parent will update the
2575  * clk topology, sysfs topology and propagate rate recalculation via
2576  * __clk_recalc_rates.
2577  *
2578  * Returns 0 on success, -EERROR otherwise.
2579  */
2580 int clk_set_parent(struct clk *clk, struct clk *parent)
2581 {
2582 	int ret;
2583 
2584 	if (!clk)
2585 		return 0;
2586 
2587 	clk_prepare_lock();
2588 
2589 	if (clk->exclusive_count)
2590 		clk_core_rate_unprotect(clk->core);
2591 
2592 	ret = clk_core_set_parent_nolock(clk->core,
2593 					 parent ? parent->core : NULL);
2594 
2595 	if (clk->exclusive_count)
2596 		clk_core_rate_protect(clk->core);
2597 
2598 	clk_prepare_unlock();
2599 
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(clk_set_parent);
2603 
2604 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2605 {
2606 	int ret = -EINVAL;
2607 
2608 	lockdep_assert_held(&prepare_lock);
2609 
2610 	if (!core)
2611 		return 0;
2612 
2613 	if (clk_core_rate_is_protected(core))
2614 		return -EBUSY;
2615 
2616 	trace_clk_set_phase(core, degrees);
2617 
2618 	if (core->ops->set_phase) {
2619 		ret = core->ops->set_phase(core->hw, degrees);
2620 		if (!ret)
2621 			core->phase = degrees;
2622 	}
2623 
2624 	trace_clk_set_phase_complete(core, degrees);
2625 
2626 	return ret;
2627 }
2628 
2629 /**
2630  * clk_set_phase - adjust the phase shift of a clock signal
2631  * @clk: clock signal source
2632  * @degrees: number of degrees the signal is shifted
2633  *
2634  * Shifts the phase of a clock signal by the specified
2635  * degrees. Returns 0 on success, -EERROR otherwise.
2636  *
2637  * This function makes no distinction about the input or reference
2638  * signal that we adjust the clock signal phase against. For example
2639  * phase locked-loop clock signal generators we may shift phase with
2640  * respect to feedback clock signal input, but for other cases the
2641  * clock phase may be shifted with respect to some other, unspecified
2642  * signal.
2643  *
2644  * Additionally the concept of phase shift does not propagate through
2645  * the clock tree hierarchy, which sets it apart from clock rates and
2646  * clock accuracy. A parent clock phase attribute does not have an
2647  * impact on the phase attribute of a child clock.
2648  */
2649 int clk_set_phase(struct clk *clk, int degrees)
2650 {
2651 	int ret;
2652 
2653 	if (!clk)
2654 		return 0;
2655 
2656 	/* sanity check degrees */
2657 	degrees %= 360;
2658 	if (degrees < 0)
2659 		degrees += 360;
2660 
2661 	clk_prepare_lock();
2662 
2663 	if (clk->exclusive_count)
2664 		clk_core_rate_unprotect(clk->core);
2665 
2666 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2667 
2668 	if (clk->exclusive_count)
2669 		clk_core_rate_protect(clk->core);
2670 
2671 	clk_prepare_unlock();
2672 
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL_GPL(clk_set_phase);
2676 
2677 static int clk_core_get_phase(struct clk_core *core)
2678 {
2679 	int ret;
2680 
2681 	lockdep_assert_held(&prepare_lock);
2682 	if (!core->ops->get_phase)
2683 		return 0;
2684 
2685 	/* Always try to update cached phase if possible */
2686 	ret = core->ops->get_phase(core->hw);
2687 	if (ret >= 0)
2688 		core->phase = ret;
2689 
2690 	return ret;
2691 }
2692 
2693 /**
2694  * clk_get_phase - return the phase shift of a clock signal
2695  * @clk: clock signal source
2696  *
2697  * Returns the phase shift of a clock node in degrees, otherwise returns
2698  * -EERROR.
2699  */
2700 int clk_get_phase(struct clk *clk)
2701 {
2702 	int ret;
2703 
2704 	if (!clk)
2705 		return 0;
2706 
2707 	clk_prepare_lock();
2708 	ret = clk_core_get_phase(clk->core);
2709 	clk_prepare_unlock();
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(clk_get_phase);
2714 
2715 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2716 {
2717 	/* Assume a default value of 50% */
2718 	core->duty.num = 1;
2719 	core->duty.den = 2;
2720 }
2721 
2722 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2723 
2724 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2725 {
2726 	struct clk_duty *duty = &core->duty;
2727 	int ret = 0;
2728 
2729 	if (!core->ops->get_duty_cycle)
2730 		return clk_core_update_duty_cycle_parent_nolock(core);
2731 
2732 	ret = core->ops->get_duty_cycle(core->hw, duty);
2733 	if (ret)
2734 		goto reset;
2735 
2736 	/* Don't trust the clock provider too much */
2737 	if (duty->den == 0 || duty->num > duty->den) {
2738 		ret = -EINVAL;
2739 		goto reset;
2740 	}
2741 
2742 	return 0;
2743 
2744 reset:
2745 	clk_core_reset_duty_cycle_nolock(core);
2746 	return ret;
2747 }
2748 
2749 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2750 {
2751 	int ret = 0;
2752 
2753 	if (core->parent &&
2754 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2755 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2756 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2757 	} else {
2758 		clk_core_reset_duty_cycle_nolock(core);
2759 	}
2760 
2761 	return ret;
2762 }
2763 
2764 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2765 						 struct clk_duty *duty);
2766 
2767 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2768 					  struct clk_duty *duty)
2769 {
2770 	int ret;
2771 
2772 	lockdep_assert_held(&prepare_lock);
2773 
2774 	if (clk_core_rate_is_protected(core))
2775 		return -EBUSY;
2776 
2777 	trace_clk_set_duty_cycle(core, duty);
2778 
2779 	if (!core->ops->set_duty_cycle)
2780 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2781 
2782 	ret = core->ops->set_duty_cycle(core->hw, duty);
2783 	if (!ret)
2784 		memcpy(&core->duty, duty, sizeof(*duty));
2785 
2786 	trace_clk_set_duty_cycle_complete(core, duty);
2787 
2788 	return ret;
2789 }
2790 
2791 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2792 						 struct clk_duty *duty)
2793 {
2794 	int ret = 0;
2795 
2796 	if (core->parent &&
2797 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2798 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2799 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 /**
2806  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2807  * @clk: clock signal source
2808  * @num: numerator of the duty cycle ratio to be applied
2809  * @den: denominator of the duty cycle ratio to be applied
2810  *
2811  * Apply the duty cycle ratio if the ratio is valid and the clock can
2812  * perform this operation
2813  *
2814  * Returns (0) on success, a negative errno otherwise.
2815  */
2816 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2817 {
2818 	int ret;
2819 	struct clk_duty duty;
2820 
2821 	if (!clk)
2822 		return 0;
2823 
2824 	/* sanity check the ratio */
2825 	if (den == 0 || num > den)
2826 		return -EINVAL;
2827 
2828 	duty.num = num;
2829 	duty.den = den;
2830 
2831 	clk_prepare_lock();
2832 
2833 	if (clk->exclusive_count)
2834 		clk_core_rate_unprotect(clk->core);
2835 
2836 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2837 
2838 	if (clk->exclusive_count)
2839 		clk_core_rate_protect(clk->core);
2840 
2841 	clk_prepare_unlock();
2842 
2843 	return ret;
2844 }
2845 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2846 
2847 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2848 					  unsigned int scale)
2849 {
2850 	struct clk_duty *duty = &core->duty;
2851 	int ret;
2852 
2853 	clk_prepare_lock();
2854 
2855 	ret = clk_core_update_duty_cycle_nolock(core);
2856 	if (!ret)
2857 		ret = mult_frac(scale, duty->num, duty->den);
2858 
2859 	clk_prepare_unlock();
2860 
2861 	return ret;
2862 }
2863 
2864 /**
2865  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2866  * @clk: clock signal source
2867  * @scale: scaling factor to be applied to represent the ratio as an integer
2868  *
2869  * Returns the duty cycle ratio of a clock node multiplied by the provided
2870  * scaling factor, or negative errno on error.
2871  */
2872 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2873 {
2874 	if (!clk)
2875 		return 0;
2876 
2877 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2878 }
2879 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2880 
2881 /**
2882  * clk_is_match - check if two clk's point to the same hardware clock
2883  * @p: clk compared against q
2884  * @q: clk compared against p
2885  *
2886  * Returns true if the two struct clk pointers both point to the same hardware
2887  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2888  * share the same struct clk_core object.
2889  *
2890  * Returns false otherwise. Note that two NULL clks are treated as matching.
2891  */
2892 bool clk_is_match(const struct clk *p, const struct clk *q)
2893 {
2894 	/* trivial case: identical struct clk's or both NULL */
2895 	if (p == q)
2896 		return true;
2897 
2898 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2899 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2900 		if (p->core == q->core)
2901 			return true;
2902 
2903 	return false;
2904 }
2905 EXPORT_SYMBOL_GPL(clk_is_match);
2906 
2907 /***        debugfs support        ***/
2908 
2909 #ifdef CONFIG_DEBUG_FS
2910 #include <linux/debugfs.h>
2911 
2912 static struct dentry *rootdir;
2913 static int inited = 0;
2914 static DEFINE_MUTEX(clk_debug_lock);
2915 static HLIST_HEAD(clk_debug_list);
2916 
2917 static struct hlist_head *orphan_list[] = {
2918 	&clk_orphan_list,
2919 	NULL,
2920 };
2921 
2922 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2923 				 int level)
2924 {
2925 	int phase;
2926 
2927 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2928 		   level * 3 + 1, "",
2929 		   30 - level * 3, c->name,
2930 		   c->enable_count, c->prepare_count, c->protect_count,
2931 		   clk_core_get_rate_recalc(c),
2932 		   clk_core_get_accuracy_recalc(c));
2933 
2934 	phase = clk_core_get_phase(c);
2935 	if (phase >= 0)
2936 		seq_printf(s, "%5d", phase);
2937 	else
2938 		seq_puts(s, "-----");
2939 
2940 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
2941 
2942 	if (c->ops->is_enabled)
2943 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
2944 	else if (!c->ops->enable)
2945 		seq_printf(s, " %9c\n", 'Y');
2946 	else
2947 		seq_printf(s, " %9c\n", '?');
2948 }
2949 
2950 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2951 				     int level)
2952 {
2953 	struct clk_core *child;
2954 
2955 	clk_summary_show_one(s, c, level);
2956 
2957 	hlist_for_each_entry(child, &c->children, child_node)
2958 		clk_summary_show_subtree(s, child, level + 1);
2959 }
2960 
2961 static int clk_summary_show(struct seq_file *s, void *data)
2962 {
2963 	struct clk_core *c;
2964 	struct hlist_head **lists = (struct hlist_head **)s->private;
2965 
2966 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
2967 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
2968 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
2969 
2970 	clk_prepare_lock();
2971 
2972 	for (; *lists; lists++)
2973 		hlist_for_each_entry(c, *lists, child_node)
2974 			clk_summary_show_subtree(s, c, 0);
2975 
2976 	clk_prepare_unlock();
2977 
2978 	return 0;
2979 }
2980 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2981 
2982 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2983 {
2984 	int phase;
2985 	unsigned long min_rate, max_rate;
2986 
2987 	clk_core_get_boundaries(c, &min_rate, &max_rate);
2988 
2989 	/* This should be JSON format, i.e. elements separated with a comma */
2990 	seq_printf(s, "\"%s\": { ", c->name);
2991 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2992 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2993 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2994 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
2995 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2996 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2997 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
2998 	phase = clk_core_get_phase(c);
2999 	if (phase >= 0)
3000 		seq_printf(s, "\"phase\": %d,", phase);
3001 	seq_printf(s, "\"duty_cycle\": %u",
3002 		   clk_core_get_scaled_duty_cycle(c, 100000));
3003 }
3004 
3005 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3006 {
3007 	struct clk_core *child;
3008 
3009 	clk_dump_one(s, c, level);
3010 
3011 	hlist_for_each_entry(child, &c->children, child_node) {
3012 		seq_putc(s, ',');
3013 		clk_dump_subtree(s, child, level + 1);
3014 	}
3015 
3016 	seq_putc(s, '}');
3017 }
3018 
3019 static int clk_dump_show(struct seq_file *s, void *data)
3020 {
3021 	struct clk_core *c;
3022 	bool first_node = true;
3023 	struct hlist_head **lists = (struct hlist_head **)s->private;
3024 
3025 	seq_putc(s, '{');
3026 	clk_prepare_lock();
3027 
3028 	for (; *lists; lists++) {
3029 		hlist_for_each_entry(c, *lists, child_node) {
3030 			if (!first_node)
3031 				seq_putc(s, ',');
3032 			first_node = false;
3033 			clk_dump_subtree(s, c, 0);
3034 		}
3035 	}
3036 
3037 	clk_prepare_unlock();
3038 
3039 	seq_puts(s, "}\n");
3040 	return 0;
3041 }
3042 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3043 
3044 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3045 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3046 /*
3047  * This can be dangerous, therefore don't provide any real compile time
3048  * configuration option for this feature.
3049  * People who want to use this will need to modify the source code directly.
3050  */
3051 static int clk_rate_set(void *data, u64 val)
3052 {
3053 	struct clk_core *core = data;
3054 	int ret;
3055 
3056 	clk_prepare_lock();
3057 	ret = clk_core_set_rate_nolock(core, val);
3058 	clk_prepare_unlock();
3059 
3060 	return ret;
3061 }
3062 
3063 #define clk_rate_mode	0644
3064 
3065 static int clk_prepare_enable_set(void *data, u64 val)
3066 {
3067 	struct clk_core *core = data;
3068 	int ret = 0;
3069 
3070 	if (val)
3071 		ret = clk_prepare_enable(core->hw->clk);
3072 	else
3073 		clk_disable_unprepare(core->hw->clk);
3074 
3075 	return ret;
3076 }
3077 
3078 static int clk_prepare_enable_get(void *data, u64 *val)
3079 {
3080 	struct clk_core *core = data;
3081 
3082 	*val = core->enable_count && core->prepare_count;
3083 	return 0;
3084 }
3085 
3086 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3087 			 clk_prepare_enable_set, "%llu\n");
3088 
3089 #else
3090 #define clk_rate_set	NULL
3091 #define clk_rate_mode	0444
3092 #endif
3093 
3094 static int clk_rate_get(void *data, u64 *val)
3095 {
3096 	struct clk_core *core = data;
3097 
3098 	*val = core->rate;
3099 	return 0;
3100 }
3101 
3102 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3103 
3104 static const struct {
3105 	unsigned long flag;
3106 	const char *name;
3107 } clk_flags[] = {
3108 #define ENTRY(f) { f, #f }
3109 	ENTRY(CLK_SET_RATE_GATE),
3110 	ENTRY(CLK_SET_PARENT_GATE),
3111 	ENTRY(CLK_SET_RATE_PARENT),
3112 	ENTRY(CLK_IGNORE_UNUSED),
3113 	ENTRY(CLK_GET_RATE_NOCACHE),
3114 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3115 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3116 	ENTRY(CLK_RECALC_NEW_RATES),
3117 	ENTRY(CLK_SET_RATE_UNGATE),
3118 	ENTRY(CLK_IS_CRITICAL),
3119 	ENTRY(CLK_OPS_PARENT_ENABLE),
3120 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3121 #undef ENTRY
3122 };
3123 
3124 static int clk_flags_show(struct seq_file *s, void *data)
3125 {
3126 	struct clk_core *core = s->private;
3127 	unsigned long flags = core->flags;
3128 	unsigned int i;
3129 
3130 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3131 		if (flags & clk_flags[i].flag) {
3132 			seq_printf(s, "%s\n", clk_flags[i].name);
3133 			flags &= ~clk_flags[i].flag;
3134 		}
3135 	}
3136 	if (flags) {
3137 		/* Unknown flags */
3138 		seq_printf(s, "0x%lx\n", flags);
3139 	}
3140 
3141 	return 0;
3142 }
3143 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3144 
3145 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3146 				 unsigned int i, char terminator)
3147 {
3148 	struct clk_core *parent;
3149 
3150 	/*
3151 	 * Go through the following options to fetch a parent's name.
3152 	 *
3153 	 * 1. Fetch the registered parent clock and use its name
3154 	 * 2. Use the global (fallback) name if specified
3155 	 * 3. Use the local fw_name if provided
3156 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3157 	 *
3158 	 * This may still fail in some cases, such as when the parent is
3159 	 * specified directly via a struct clk_hw pointer, but it isn't
3160 	 * registered (yet).
3161 	 */
3162 	parent = clk_core_get_parent_by_index(core, i);
3163 	if (parent)
3164 		seq_puts(s, parent->name);
3165 	else if (core->parents[i].name)
3166 		seq_puts(s, core->parents[i].name);
3167 	else if (core->parents[i].fw_name)
3168 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3169 	else if (core->parents[i].index >= 0)
3170 		seq_puts(s,
3171 			 of_clk_get_parent_name(core->of_node,
3172 						core->parents[i].index));
3173 	else
3174 		seq_puts(s, "(missing)");
3175 
3176 	seq_putc(s, terminator);
3177 }
3178 
3179 static int possible_parents_show(struct seq_file *s, void *data)
3180 {
3181 	struct clk_core *core = s->private;
3182 	int i;
3183 
3184 	for (i = 0; i < core->num_parents - 1; i++)
3185 		possible_parent_show(s, core, i, ' ');
3186 
3187 	possible_parent_show(s, core, i, '\n');
3188 
3189 	return 0;
3190 }
3191 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3192 
3193 static int current_parent_show(struct seq_file *s, void *data)
3194 {
3195 	struct clk_core *core = s->private;
3196 
3197 	if (core->parent)
3198 		seq_printf(s, "%s\n", core->parent->name);
3199 
3200 	return 0;
3201 }
3202 DEFINE_SHOW_ATTRIBUTE(current_parent);
3203 
3204 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3205 {
3206 	struct clk_core *core = s->private;
3207 	struct clk_duty *duty = &core->duty;
3208 
3209 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3210 
3211 	return 0;
3212 }
3213 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3214 
3215 static int clk_min_rate_show(struct seq_file *s, void *data)
3216 {
3217 	struct clk_core *core = s->private;
3218 	unsigned long min_rate, max_rate;
3219 
3220 	clk_prepare_lock();
3221 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3222 	clk_prepare_unlock();
3223 	seq_printf(s, "%lu\n", min_rate);
3224 
3225 	return 0;
3226 }
3227 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3228 
3229 static int clk_max_rate_show(struct seq_file *s, void *data)
3230 {
3231 	struct clk_core *core = s->private;
3232 	unsigned long min_rate, max_rate;
3233 
3234 	clk_prepare_lock();
3235 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3236 	clk_prepare_unlock();
3237 	seq_printf(s, "%lu\n", max_rate);
3238 
3239 	return 0;
3240 }
3241 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3242 
3243 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3244 {
3245 	struct dentry *root;
3246 
3247 	if (!core || !pdentry)
3248 		return;
3249 
3250 	root = debugfs_create_dir(core->name, pdentry);
3251 	core->dentry = root;
3252 
3253 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3254 			    &clk_rate_fops);
3255 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3256 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3257 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3258 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3259 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3260 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3261 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3262 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3263 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3264 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3265 			    &clk_duty_cycle_fops);
3266 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3267 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3268 			    &clk_prepare_enable_fops);
3269 #endif
3270 
3271 	if (core->num_parents > 0)
3272 		debugfs_create_file("clk_parent", 0444, root, core,
3273 				    &current_parent_fops);
3274 
3275 	if (core->num_parents > 1)
3276 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3277 				    &possible_parents_fops);
3278 
3279 	if (core->ops->debug_init)
3280 		core->ops->debug_init(core->hw, core->dentry);
3281 }
3282 
3283 /**
3284  * clk_debug_register - add a clk node to the debugfs clk directory
3285  * @core: the clk being added to the debugfs clk directory
3286  *
3287  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3288  * initialized.  Otherwise it bails out early since the debugfs clk directory
3289  * will be created lazily by clk_debug_init as part of a late_initcall.
3290  */
3291 static void clk_debug_register(struct clk_core *core)
3292 {
3293 	mutex_lock(&clk_debug_lock);
3294 	hlist_add_head(&core->debug_node, &clk_debug_list);
3295 	if (inited)
3296 		clk_debug_create_one(core, rootdir);
3297 	mutex_unlock(&clk_debug_lock);
3298 }
3299 
3300  /**
3301  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3302  * @core: the clk being removed from the debugfs clk directory
3303  *
3304  * Dynamically removes a clk and all its child nodes from the
3305  * debugfs clk directory if clk->dentry points to debugfs created by
3306  * clk_debug_register in __clk_core_init.
3307  */
3308 static void clk_debug_unregister(struct clk_core *core)
3309 {
3310 	mutex_lock(&clk_debug_lock);
3311 	hlist_del_init(&core->debug_node);
3312 	debugfs_remove_recursive(core->dentry);
3313 	core->dentry = NULL;
3314 	mutex_unlock(&clk_debug_lock);
3315 }
3316 
3317 /**
3318  * clk_debug_init - lazily populate the debugfs clk directory
3319  *
3320  * clks are often initialized very early during boot before memory can be
3321  * dynamically allocated and well before debugfs is setup. This function
3322  * populates the debugfs clk directory once at boot-time when we know that
3323  * debugfs is setup. It should only be called once at boot-time, all other clks
3324  * added dynamically will be done so with clk_debug_register.
3325  */
3326 static int __init clk_debug_init(void)
3327 {
3328 	struct clk_core *core;
3329 
3330 	rootdir = debugfs_create_dir("clk", NULL);
3331 
3332 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3333 			    &clk_summary_fops);
3334 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3335 			    &clk_dump_fops);
3336 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3337 			    &clk_summary_fops);
3338 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3339 			    &clk_dump_fops);
3340 
3341 	mutex_lock(&clk_debug_lock);
3342 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3343 		clk_debug_create_one(core, rootdir);
3344 
3345 	inited = 1;
3346 	mutex_unlock(&clk_debug_lock);
3347 
3348 	return 0;
3349 }
3350 late_initcall(clk_debug_init);
3351 #else
3352 static inline void clk_debug_register(struct clk_core *core) { }
3353 static inline void clk_debug_unregister(struct clk_core *core)
3354 {
3355 }
3356 #endif
3357 
3358 static void clk_core_reparent_orphans_nolock(void)
3359 {
3360 	struct clk_core *orphan;
3361 	struct hlist_node *tmp2;
3362 
3363 	/*
3364 	 * walk the list of orphan clocks and reparent any that newly finds a
3365 	 * parent.
3366 	 */
3367 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3368 		struct clk_core *parent = __clk_init_parent(orphan);
3369 
3370 		/*
3371 		 * We need to use __clk_set_parent_before() and _after() to
3372 		 * to properly migrate any prepare/enable count of the orphan
3373 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3374 		 * are enabled during init but might not have a parent yet.
3375 		 */
3376 		if (parent) {
3377 			/* update the clk tree topology */
3378 			__clk_set_parent_before(orphan, parent);
3379 			__clk_set_parent_after(orphan, parent, NULL);
3380 			__clk_recalc_accuracies(orphan);
3381 			__clk_recalc_rates(orphan, 0);
3382 		}
3383 	}
3384 }
3385 
3386 /**
3387  * __clk_core_init - initialize the data structures in a struct clk_core
3388  * @core:	clk_core being initialized
3389  *
3390  * Initializes the lists in struct clk_core, queries the hardware for the
3391  * parent and rate and sets them both.
3392  */
3393 static int __clk_core_init(struct clk_core *core)
3394 {
3395 	int ret;
3396 	struct clk_core *parent;
3397 	unsigned long rate;
3398 	int phase;
3399 
3400 	if (!core)
3401 		return -EINVAL;
3402 
3403 	clk_prepare_lock();
3404 
3405 	ret = clk_pm_runtime_get(core);
3406 	if (ret)
3407 		goto unlock;
3408 
3409 	/* check to see if a clock with this name is already registered */
3410 	if (clk_core_lookup(core->name)) {
3411 		pr_debug("%s: clk %s already initialized\n",
3412 				__func__, core->name);
3413 		ret = -EEXIST;
3414 		goto out;
3415 	}
3416 
3417 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3418 	if (core->ops->set_rate &&
3419 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3420 	      core->ops->recalc_rate)) {
3421 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3422 		       __func__, core->name);
3423 		ret = -EINVAL;
3424 		goto out;
3425 	}
3426 
3427 	if (core->ops->set_parent && !core->ops->get_parent) {
3428 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3429 		       __func__, core->name);
3430 		ret = -EINVAL;
3431 		goto out;
3432 	}
3433 
3434 	if (core->num_parents > 1 && !core->ops->get_parent) {
3435 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3436 		       __func__, core->name);
3437 		ret = -EINVAL;
3438 		goto out;
3439 	}
3440 
3441 	if (core->ops->set_rate_and_parent &&
3442 			!(core->ops->set_parent && core->ops->set_rate)) {
3443 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3444 				__func__, core->name);
3445 		ret = -EINVAL;
3446 		goto out;
3447 	}
3448 
3449 	/*
3450 	 * optional platform-specific magic
3451 	 *
3452 	 * The .init callback is not used by any of the basic clock types, but
3453 	 * exists for weird hardware that must perform initialization magic for
3454 	 * CCF to get an accurate view of clock for any other callbacks. It may
3455 	 * also be used needs to perform dynamic allocations. Such allocation
3456 	 * must be freed in the terminate() callback.
3457 	 * This callback shall not be used to initialize the parameters state,
3458 	 * such as rate, parent, etc ...
3459 	 *
3460 	 * If it exist, this callback should called before any other callback of
3461 	 * the clock
3462 	 */
3463 	if (core->ops->init) {
3464 		ret = core->ops->init(core->hw);
3465 		if (ret)
3466 			goto out;
3467 	}
3468 
3469 	parent = core->parent = __clk_init_parent(core);
3470 
3471 	/*
3472 	 * Populate core->parent if parent has already been clk_core_init'd. If
3473 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3474 	 * list.  If clk doesn't have any parents then place it in the root
3475 	 * clk list.
3476 	 *
3477 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3478 	 * clocks and re-parent any that are children of the clock currently
3479 	 * being clk_init'd.
3480 	 */
3481 	if (parent) {
3482 		hlist_add_head(&core->child_node, &parent->children);
3483 		core->orphan = parent->orphan;
3484 	} else if (!core->num_parents) {
3485 		hlist_add_head(&core->child_node, &clk_root_list);
3486 		core->orphan = false;
3487 	} else {
3488 		hlist_add_head(&core->child_node, &clk_orphan_list);
3489 		core->orphan = true;
3490 	}
3491 
3492 	/*
3493 	 * Set clk's accuracy.  The preferred method is to use
3494 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3495 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3496 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3497 	 * clock).
3498 	 */
3499 	if (core->ops->recalc_accuracy)
3500 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3501 					clk_core_get_accuracy_no_lock(parent));
3502 	else if (parent)
3503 		core->accuracy = parent->accuracy;
3504 	else
3505 		core->accuracy = 0;
3506 
3507 	/*
3508 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3509 	 * Since a phase is by definition relative to its parent, just
3510 	 * query the current clock phase, or just assume it's in phase.
3511 	 */
3512 	phase = clk_core_get_phase(core);
3513 	if (phase < 0) {
3514 		ret = phase;
3515 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3516 			core->name);
3517 		goto out;
3518 	}
3519 
3520 	/*
3521 	 * Set clk's duty cycle.
3522 	 */
3523 	clk_core_update_duty_cycle_nolock(core);
3524 
3525 	/*
3526 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3527 	 * simple clocks and lazy developers the default fallback is to use the
3528 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3529 	 * then rate is set to zero.
3530 	 */
3531 	if (core->ops->recalc_rate)
3532 		rate = core->ops->recalc_rate(core->hw,
3533 				clk_core_get_rate_nolock(parent));
3534 	else if (parent)
3535 		rate = parent->rate;
3536 	else
3537 		rate = 0;
3538 	core->rate = core->req_rate = rate;
3539 
3540 	/*
3541 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3542 	 * don't get accidentally disabled when walking the orphan tree and
3543 	 * reparenting clocks
3544 	 */
3545 	if (core->flags & CLK_IS_CRITICAL) {
3546 		unsigned long flags;
3547 
3548 		ret = clk_core_prepare(core);
3549 		if (ret) {
3550 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3551 			       __func__, core->name);
3552 			goto out;
3553 		}
3554 
3555 		flags = clk_enable_lock();
3556 		ret = clk_core_enable(core);
3557 		clk_enable_unlock(flags);
3558 		if (ret) {
3559 			pr_warn("%s: critical clk '%s' failed to enable\n",
3560 			       __func__, core->name);
3561 			clk_core_unprepare(core);
3562 			goto out;
3563 		}
3564 	}
3565 
3566 	clk_core_reparent_orphans_nolock();
3567 
3568 
3569 	kref_init(&core->ref);
3570 out:
3571 	clk_pm_runtime_put(core);
3572 unlock:
3573 	if (ret)
3574 		hlist_del_init(&core->child_node);
3575 
3576 	clk_prepare_unlock();
3577 
3578 	if (!ret)
3579 		clk_debug_register(core);
3580 
3581 	return ret;
3582 }
3583 
3584 /**
3585  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3586  * @core: clk to add consumer to
3587  * @clk: consumer to link to a clk
3588  */
3589 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3590 {
3591 	clk_prepare_lock();
3592 	hlist_add_head(&clk->clks_node, &core->clks);
3593 	clk_prepare_unlock();
3594 }
3595 
3596 /**
3597  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3598  * @clk: consumer to unlink
3599  */
3600 static void clk_core_unlink_consumer(struct clk *clk)
3601 {
3602 	lockdep_assert_held(&prepare_lock);
3603 	hlist_del(&clk->clks_node);
3604 }
3605 
3606 /**
3607  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3608  * @core: clk to allocate a consumer for
3609  * @dev_id: string describing device name
3610  * @con_id: connection ID string on device
3611  *
3612  * Returns: clk consumer left unlinked from the consumer list
3613  */
3614 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3615 			     const char *con_id)
3616 {
3617 	struct clk *clk;
3618 
3619 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3620 	if (!clk)
3621 		return ERR_PTR(-ENOMEM);
3622 
3623 	clk->core = core;
3624 	clk->dev_id = dev_id;
3625 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3626 	clk->max_rate = ULONG_MAX;
3627 
3628 	return clk;
3629 }
3630 
3631 /**
3632  * free_clk - Free a clk consumer
3633  * @clk: clk consumer to free
3634  *
3635  * Note, this assumes the clk has been unlinked from the clk_core consumer
3636  * list.
3637  */
3638 static void free_clk(struct clk *clk)
3639 {
3640 	kfree_const(clk->con_id);
3641 	kfree(clk);
3642 }
3643 
3644 /**
3645  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3646  * a clk_hw
3647  * @dev: clk consumer device
3648  * @hw: clk_hw associated with the clk being consumed
3649  * @dev_id: string describing device name
3650  * @con_id: connection ID string on device
3651  *
3652  * This is the main function used to create a clk pointer for use by clk
3653  * consumers. It connects a consumer to the clk_core and clk_hw structures
3654  * used by the framework and clk provider respectively.
3655  */
3656 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3657 			      const char *dev_id, const char *con_id)
3658 {
3659 	struct clk *clk;
3660 	struct clk_core *core;
3661 
3662 	/* This is to allow this function to be chained to others */
3663 	if (IS_ERR_OR_NULL(hw))
3664 		return ERR_CAST(hw);
3665 
3666 	core = hw->core;
3667 	clk = alloc_clk(core, dev_id, con_id);
3668 	if (IS_ERR(clk))
3669 		return clk;
3670 	clk->dev = dev;
3671 
3672 	if (!try_module_get(core->owner)) {
3673 		free_clk(clk);
3674 		return ERR_PTR(-ENOENT);
3675 	}
3676 
3677 	kref_get(&core->ref);
3678 	clk_core_link_consumer(core, clk);
3679 
3680 	return clk;
3681 }
3682 
3683 /**
3684  * clk_hw_get_clk - get clk consumer given an clk_hw
3685  * @hw: clk_hw associated with the clk being consumed
3686  * @con_id: connection ID string on device
3687  *
3688  * Returns: new clk consumer
3689  * This is the function to be used by providers which need
3690  * to get a consumer clk and act on the clock element
3691  * Calls to this function must be balanced with calls clk_put()
3692  */
3693 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3694 {
3695 	struct device *dev = hw->core->dev;
3696 
3697 	return clk_hw_create_clk(dev, hw, dev_name(dev), con_id);
3698 }
3699 EXPORT_SYMBOL(clk_hw_get_clk);
3700 
3701 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3702 {
3703 	const char *dst;
3704 
3705 	if (!src) {
3706 		if (must_exist)
3707 			return -EINVAL;
3708 		return 0;
3709 	}
3710 
3711 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3712 	if (!dst)
3713 		return -ENOMEM;
3714 
3715 	return 0;
3716 }
3717 
3718 static int clk_core_populate_parent_map(struct clk_core *core,
3719 					const struct clk_init_data *init)
3720 {
3721 	u8 num_parents = init->num_parents;
3722 	const char * const *parent_names = init->parent_names;
3723 	const struct clk_hw **parent_hws = init->parent_hws;
3724 	const struct clk_parent_data *parent_data = init->parent_data;
3725 	int i, ret = 0;
3726 	struct clk_parent_map *parents, *parent;
3727 
3728 	if (!num_parents)
3729 		return 0;
3730 
3731 	/*
3732 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3733 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3734 	 */
3735 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3736 	core->parents = parents;
3737 	if (!parents)
3738 		return -ENOMEM;
3739 
3740 	/* Copy everything over because it might be __initdata */
3741 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3742 		parent->index = -1;
3743 		if (parent_names) {
3744 			/* throw a WARN if any entries are NULL */
3745 			WARN(!parent_names[i],
3746 				"%s: invalid NULL in %s's .parent_names\n",
3747 				__func__, core->name);
3748 			ret = clk_cpy_name(&parent->name, parent_names[i],
3749 					   true);
3750 		} else if (parent_data) {
3751 			parent->hw = parent_data[i].hw;
3752 			parent->index = parent_data[i].index;
3753 			ret = clk_cpy_name(&parent->fw_name,
3754 					   parent_data[i].fw_name, false);
3755 			if (!ret)
3756 				ret = clk_cpy_name(&parent->name,
3757 						   parent_data[i].name,
3758 						   false);
3759 		} else if (parent_hws) {
3760 			parent->hw = parent_hws[i];
3761 		} else {
3762 			ret = -EINVAL;
3763 			WARN(1, "Must specify parents if num_parents > 0\n");
3764 		}
3765 
3766 		if (ret) {
3767 			do {
3768 				kfree_const(parents[i].name);
3769 				kfree_const(parents[i].fw_name);
3770 			} while (--i >= 0);
3771 			kfree(parents);
3772 
3773 			return ret;
3774 		}
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 static void clk_core_free_parent_map(struct clk_core *core)
3781 {
3782 	int i = core->num_parents;
3783 
3784 	if (!core->num_parents)
3785 		return;
3786 
3787 	while (--i >= 0) {
3788 		kfree_const(core->parents[i].name);
3789 		kfree_const(core->parents[i].fw_name);
3790 	}
3791 
3792 	kfree(core->parents);
3793 }
3794 
3795 static struct clk *
3796 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3797 {
3798 	int ret;
3799 	struct clk_core *core;
3800 	const struct clk_init_data *init = hw->init;
3801 
3802 	/*
3803 	 * The init data is not supposed to be used outside of registration path.
3804 	 * Set it to NULL so that provider drivers can't use it either and so that
3805 	 * we catch use of hw->init early on in the core.
3806 	 */
3807 	hw->init = NULL;
3808 
3809 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3810 	if (!core) {
3811 		ret = -ENOMEM;
3812 		goto fail_out;
3813 	}
3814 
3815 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3816 	if (!core->name) {
3817 		ret = -ENOMEM;
3818 		goto fail_name;
3819 	}
3820 
3821 	if (WARN_ON(!init->ops)) {
3822 		ret = -EINVAL;
3823 		goto fail_ops;
3824 	}
3825 	core->ops = init->ops;
3826 
3827 	if (dev && pm_runtime_enabled(dev))
3828 		core->rpm_enabled = true;
3829 	core->dev = dev;
3830 	core->of_node = np;
3831 	if (dev && dev->driver)
3832 		core->owner = dev->driver->owner;
3833 	core->hw = hw;
3834 	core->flags = init->flags;
3835 	core->num_parents = init->num_parents;
3836 	core->min_rate = 0;
3837 	core->max_rate = ULONG_MAX;
3838 	hw->core = core;
3839 
3840 	ret = clk_core_populate_parent_map(core, init);
3841 	if (ret)
3842 		goto fail_parents;
3843 
3844 	INIT_HLIST_HEAD(&core->clks);
3845 
3846 	/*
3847 	 * Don't call clk_hw_create_clk() here because that would pin the
3848 	 * provider module to itself and prevent it from ever being removed.
3849 	 */
3850 	hw->clk = alloc_clk(core, NULL, NULL);
3851 	if (IS_ERR(hw->clk)) {
3852 		ret = PTR_ERR(hw->clk);
3853 		goto fail_create_clk;
3854 	}
3855 
3856 	clk_core_link_consumer(hw->core, hw->clk);
3857 
3858 	ret = __clk_core_init(core);
3859 	if (!ret)
3860 		return hw->clk;
3861 
3862 	clk_prepare_lock();
3863 	clk_core_unlink_consumer(hw->clk);
3864 	clk_prepare_unlock();
3865 
3866 	free_clk(hw->clk);
3867 	hw->clk = NULL;
3868 
3869 fail_create_clk:
3870 	clk_core_free_parent_map(core);
3871 fail_parents:
3872 fail_ops:
3873 	kfree_const(core->name);
3874 fail_name:
3875 	kfree(core);
3876 fail_out:
3877 	return ERR_PTR(ret);
3878 }
3879 
3880 /**
3881  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3882  * @dev: Device to get device node of
3883  *
3884  * Return: device node pointer of @dev, or the device node pointer of
3885  * @dev->parent if dev doesn't have a device node, or NULL if neither
3886  * @dev or @dev->parent have a device node.
3887  */
3888 static struct device_node *dev_or_parent_of_node(struct device *dev)
3889 {
3890 	struct device_node *np;
3891 
3892 	if (!dev)
3893 		return NULL;
3894 
3895 	np = dev_of_node(dev);
3896 	if (!np)
3897 		np = dev_of_node(dev->parent);
3898 
3899 	return np;
3900 }
3901 
3902 /**
3903  * clk_register - allocate a new clock, register it and return an opaque cookie
3904  * @dev: device that is registering this clock
3905  * @hw: link to hardware-specific clock data
3906  *
3907  * clk_register is the *deprecated* interface for populating the clock tree with
3908  * new clock nodes. Use clk_hw_register() instead.
3909  *
3910  * Returns: a pointer to the newly allocated struct clk which
3911  * cannot be dereferenced by driver code but may be used in conjunction with the
3912  * rest of the clock API.  In the event of an error clk_register will return an
3913  * error code; drivers must test for an error code after calling clk_register.
3914  */
3915 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3916 {
3917 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3918 }
3919 EXPORT_SYMBOL_GPL(clk_register);
3920 
3921 /**
3922  * clk_hw_register - register a clk_hw and return an error code
3923  * @dev: device that is registering this clock
3924  * @hw: link to hardware-specific clock data
3925  *
3926  * clk_hw_register is the primary interface for populating the clock tree with
3927  * new clock nodes. It returns an integer equal to zero indicating success or
3928  * less than zero indicating failure. Drivers must test for an error code after
3929  * calling clk_hw_register().
3930  */
3931 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3932 {
3933 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3934 			       hw));
3935 }
3936 EXPORT_SYMBOL_GPL(clk_hw_register);
3937 
3938 /*
3939  * of_clk_hw_register - register a clk_hw and return an error code
3940  * @node: device_node of device that is registering this clock
3941  * @hw: link to hardware-specific clock data
3942  *
3943  * of_clk_hw_register() is the primary interface for populating the clock tree
3944  * with new clock nodes when a struct device is not available, but a struct
3945  * device_node is. It returns an integer equal to zero indicating success or
3946  * less than zero indicating failure. Drivers must test for an error code after
3947  * calling of_clk_hw_register().
3948  */
3949 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3950 {
3951 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3952 }
3953 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3954 
3955 /* Free memory allocated for a clock. */
3956 static void __clk_release(struct kref *ref)
3957 {
3958 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3959 
3960 	lockdep_assert_held(&prepare_lock);
3961 
3962 	clk_core_free_parent_map(core);
3963 	kfree_const(core->name);
3964 	kfree(core);
3965 }
3966 
3967 /*
3968  * Empty clk_ops for unregistered clocks. These are used temporarily
3969  * after clk_unregister() was called on a clock and until last clock
3970  * consumer calls clk_put() and the struct clk object is freed.
3971  */
3972 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3973 {
3974 	return -ENXIO;
3975 }
3976 
3977 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3978 {
3979 	WARN_ON_ONCE(1);
3980 }
3981 
3982 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3983 					unsigned long parent_rate)
3984 {
3985 	return -ENXIO;
3986 }
3987 
3988 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3989 {
3990 	return -ENXIO;
3991 }
3992 
3993 static const struct clk_ops clk_nodrv_ops = {
3994 	.enable		= clk_nodrv_prepare_enable,
3995 	.disable	= clk_nodrv_disable_unprepare,
3996 	.prepare	= clk_nodrv_prepare_enable,
3997 	.unprepare	= clk_nodrv_disable_unprepare,
3998 	.set_rate	= clk_nodrv_set_rate,
3999 	.set_parent	= clk_nodrv_set_parent,
4000 };
4001 
4002 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4003 						struct clk_core *target)
4004 {
4005 	int i;
4006 	struct clk_core *child;
4007 
4008 	for (i = 0; i < root->num_parents; i++)
4009 		if (root->parents[i].core == target)
4010 			root->parents[i].core = NULL;
4011 
4012 	hlist_for_each_entry(child, &root->children, child_node)
4013 		clk_core_evict_parent_cache_subtree(child, target);
4014 }
4015 
4016 /* Remove this clk from all parent caches */
4017 static void clk_core_evict_parent_cache(struct clk_core *core)
4018 {
4019 	struct hlist_head **lists;
4020 	struct clk_core *root;
4021 
4022 	lockdep_assert_held(&prepare_lock);
4023 
4024 	for (lists = all_lists; *lists; lists++)
4025 		hlist_for_each_entry(root, *lists, child_node)
4026 			clk_core_evict_parent_cache_subtree(root, core);
4027 
4028 }
4029 
4030 /**
4031  * clk_unregister - unregister a currently registered clock
4032  * @clk: clock to unregister
4033  */
4034 void clk_unregister(struct clk *clk)
4035 {
4036 	unsigned long flags;
4037 	const struct clk_ops *ops;
4038 
4039 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4040 		return;
4041 
4042 	clk_debug_unregister(clk->core);
4043 
4044 	clk_prepare_lock();
4045 
4046 	ops = clk->core->ops;
4047 	if (ops == &clk_nodrv_ops) {
4048 		pr_err("%s: unregistered clock: %s\n", __func__,
4049 		       clk->core->name);
4050 		goto unlock;
4051 	}
4052 	/*
4053 	 * Assign empty clock ops for consumers that might still hold
4054 	 * a reference to this clock.
4055 	 */
4056 	flags = clk_enable_lock();
4057 	clk->core->ops = &clk_nodrv_ops;
4058 	clk_enable_unlock(flags);
4059 
4060 	if (ops->terminate)
4061 		ops->terminate(clk->core->hw);
4062 
4063 	if (!hlist_empty(&clk->core->children)) {
4064 		struct clk_core *child;
4065 		struct hlist_node *t;
4066 
4067 		/* Reparent all children to the orphan list. */
4068 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4069 					  child_node)
4070 			clk_core_set_parent_nolock(child, NULL);
4071 	}
4072 
4073 	clk_core_evict_parent_cache(clk->core);
4074 
4075 	hlist_del_init(&clk->core->child_node);
4076 
4077 	if (clk->core->prepare_count)
4078 		pr_warn("%s: unregistering prepared clock: %s\n",
4079 					__func__, clk->core->name);
4080 
4081 	if (clk->core->protect_count)
4082 		pr_warn("%s: unregistering protected clock: %s\n",
4083 					__func__, clk->core->name);
4084 
4085 	kref_put(&clk->core->ref, __clk_release);
4086 	free_clk(clk);
4087 unlock:
4088 	clk_prepare_unlock();
4089 }
4090 EXPORT_SYMBOL_GPL(clk_unregister);
4091 
4092 /**
4093  * clk_hw_unregister - unregister a currently registered clk_hw
4094  * @hw: hardware-specific clock data to unregister
4095  */
4096 void clk_hw_unregister(struct clk_hw *hw)
4097 {
4098 	clk_unregister(hw->clk);
4099 }
4100 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4101 
4102 static void devm_clk_unregister_cb(struct device *dev, void *res)
4103 {
4104 	clk_unregister(*(struct clk **)res);
4105 }
4106 
4107 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4108 {
4109 	clk_hw_unregister(*(struct clk_hw **)res);
4110 }
4111 
4112 /**
4113  * devm_clk_register - resource managed clk_register()
4114  * @dev: device that is registering this clock
4115  * @hw: link to hardware-specific clock data
4116  *
4117  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4118  *
4119  * Clocks returned from this function are automatically clk_unregister()ed on
4120  * driver detach. See clk_register() for more information.
4121  */
4122 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4123 {
4124 	struct clk *clk;
4125 	struct clk **clkp;
4126 
4127 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4128 	if (!clkp)
4129 		return ERR_PTR(-ENOMEM);
4130 
4131 	clk = clk_register(dev, hw);
4132 	if (!IS_ERR(clk)) {
4133 		*clkp = clk;
4134 		devres_add(dev, clkp);
4135 	} else {
4136 		devres_free(clkp);
4137 	}
4138 
4139 	return clk;
4140 }
4141 EXPORT_SYMBOL_GPL(devm_clk_register);
4142 
4143 /**
4144  * devm_clk_hw_register - resource managed clk_hw_register()
4145  * @dev: device that is registering this clock
4146  * @hw: link to hardware-specific clock data
4147  *
4148  * Managed clk_hw_register(). Clocks registered by this function are
4149  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4150  * for more information.
4151  */
4152 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4153 {
4154 	struct clk_hw **hwp;
4155 	int ret;
4156 
4157 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4158 	if (!hwp)
4159 		return -ENOMEM;
4160 
4161 	ret = clk_hw_register(dev, hw);
4162 	if (!ret) {
4163 		*hwp = hw;
4164 		devres_add(dev, hwp);
4165 	} else {
4166 		devres_free(hwp);
4167 	}
4168 
4169 	return ret;
4170 }
4171 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4172 
4173 static int devm_clk_match(struct device *dev, void *res, void *data)
4174 {
4175 	struct clk *c = res;
4176 	if (WARN_ON(!c))
4177 		return 0;
4178 	return c == data;
4179 }
4180 
4181 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4182 {
4183 	struct clk_hw *hw = res;
4184 
4185 	if (WARN_ON(!hw))
4186 		return 0;
4187 	return hw == data;
4188 }
4189 
4190 /**
4191  * devm_clk_unregister - resource managed clk_unregister()
4192  * @dev: device that is unregistering the clock data
4193  * @clk: clock to unregister
4194  *
4195  * Deallocate a clock allocated with devm_clk_register(). Normally
4196  * this function will not need to be called and the resource management
4197  * code will ensure that the resource is freed.
4198  */
4199 void devm_clk_unregister(struct device *dev, struct clk *clk)
4200 {
4201 	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4202 }
4203 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4204 
4205 /**
4206  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4207  * @dev: device that is unregistering the hardware-specific clock data
4208  * @hw: link to hardware-specific clock data
4209  *
4210  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4211  * this function will not need to be called and the resource management
4212  * code will ensure that the resource is freed.
4213  */
4214 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4215 {
4216 	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4217 				hw));
4218 }
4219 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4220 
4221 static void devm_clk_release(struct device *dev, void *res)
4222 {
4223 	clk_put(*(struct clk **)res);
4224 }
4225 
4226 /**
4227  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4228  * @dev: device that is registering this clock
4229  * @hw: clk_hw associated with the clk being consumed
4230  * @con_id: connection ID string on device
4231  *
4232  * Managed clk_hw_get_clk(). Clocks got with this function are
4233  * automatically clk_put() on driver detach. See clk_put()
4234  * for more information.
4235  */
4236 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4237 				const char *con_id)
4238 {
4239 	struct clk *clk;
4240 	struct clk **clkp;
4241 
4242 	/* This should not happen because it would mean we have drivers
4243 	 * passing around clk_hw pointers instead of having the caller use
4244 	 * proper clk_get() style APIs
4245 	 */
4246 	WARN_ON_ONCE(dev != hw->core->dev);
4247 
4248 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4249 	if (!clkp)
4250 		return ERR_PTR(-ENOMEM);
4251 
4252 	clk = clk_hw_get_clk(hw, con_id);
4253 	if (!IS_ERR(clk)) {
4254 		*clkp = clk;
4255 		devres_add(dev, clkp);
4256 	} else {
4257 		devres_free(clkp);
4258 	}
4259 
4260 	return clk;
4261 }
4262 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4263 
4264 /*
4265  * clkdev helpers
4266  */
4267 
4268 void __clk_put(struct clk *clk)
4269 {
4270 	struct module *owner;
4271 
4272 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4273 		return;
4274 
4275 	clk_prepare_lock();
4276 
4277 	/*
4278 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4279 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4280 	 * and by that same consumer
4281 	 */
4282 	if (WARN_ON(clk->exclusive_count)) {
4283 		/* We voiced our concern, let's sanitize the situation */
4284 		clk->core->protect_count -= (clk->exclusive_count - 1);
4285 		clk_core_rate_unprotect(clk->core);
4286 		clk->exclusive_count = 0;
4287 	}
4288 
4289 	hlist_del(&clk->clks_node);
4290 	if (clk->min_rate > clk->core->req_rate ||
4291 	    clk->max_rate < clk->core->req_rate)
4292 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4293 
4294 	owner = clk->core->owner;
4295 	kref_put(&clk->core->ref, __clk_release);
4296 
4297 	clk_prepare_unlock();
4298 
4299 	module_put(owner);
4300 
4301 	free_clk(clk);
4302 }
4303 
4304 /***        clk rate change notifiers        ***/
4305 
4306 /**
4307  * clk_notifier_register - add a clk rate change notifier
4308  * @clk: struct clk * to watch
4309  * @nb: struct notifier_block * with callback info
4310  *
4311  * Request notification when clk's rate changes.  This uses an SRCU
4312  * notifier because we want it to block and notifier unregistrations are
4313  * uncommon.  The callbacks associated with the notifier must not
4314  * re-enter into the clk framework by calling any top-level clk APIs;
4315  * this will cause a nested prepare_lock mutex.
4316  *
4317  * In all notification cases (pre, post and abort rate change) the original
4318  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4319  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4320  *
4321  * clk_notifier_register() must be called from non-atomic context.
4322  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4323  * allocation failure; otherwise, passes along the return value of
4324  * srcu_notifier_chain_register().
4325  */
4326 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4327 {
4328 	struct clk_notifier *cn;
4329 	int ret = -ENOMEM;
4330 
4331 	if (!clk || !nb)
4332 		return -EINVAL;
4333 
4334 	clk_prepare_lock();
4335 
4336 	/* search the list of notifiers for this clk */
4337 	list_for_each_entry(cn, &clk_notifier_list, node)
4338 		if (cn->clk == clk)
4339 			break;
4340 
4341 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4342 	if (cn->clk != clk) {
4343 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4344 		if (!cn)
4345 			goto out;
4346 
4347 		cn->clk = clk;
4348 		srcu_init_notifier_head(&cn->notifier_head);
4349 
4350 		list_add(&cn->node, &clk_notifier_list);
4351 	}
4352 
4353 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4354 
4355 	clk->core->notifier_count++;
4356 
4357 out:
4358 	clk_prepare_unlock();
4359 
4360 	return ret;
4361 }
4362 EXPORT_SYMBOL_GPL(clk_notifier_register);
4363 
4364 /**
4365  * clk_notifier_unregister - remove a clk rate change notifier
4366  * @clk: struct clk *
4367  * @nb: struct notifier_block * with callback info
4368  *
4369  * Request no further notification for changes to 'clk' and frees memory
4370  * allocated in clk_notifier_register.
4371  *
4372  * Returns -EINVAL if called with null arguments; otherwise, passes
4373  * along the return value of srcu_notifier_chain_unregister().
4374  */
4375 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4376 {
4377 	struct clk_notifier *cn = NULL;
4378 	int ret = -EINVAL;
4379 
4380 	if (!clk || !nb)
4381 		return -EINVAL;
4382 
4383 	clk_prepare_lock();
4384 
4385 	list_for_each_entry(cn, &clk_notifier_list, node)
4386 		if (cn->clk == clk)
4387 			break;
4388 
4389 	if (cn->clk == clk) {
4390 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4391 
4392 		clk->core->notifier_count--;
4393 
4394 		/* XXX the notifier code should handle this better */
4395 		if (!cn->notifier_head.head) {
4396 			srcu_cleanup_notifier_head(&cn->notifier_head);
4397 			list_del(&cn->node);
4398 			kfree(cn);
4399 		}
4400 
4401 	} else {
4402 		ret = -ENOENT;
4403 	}
4404 
4405 	clk_prepare_unlock();
4406 
4407 	return ret;
4408 }
4409 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4410 
4411 struct clk_notifier_devres {
4412 	struct clk *clk;
4413 	struct notifier_block *nb;
4414 };
4415 
4416 static void devm_clk_notifier_release(struct device *dev, void *res)
4417 {
4418 	struct clk_notifier_devres *devres = res;
4419 
4420 	clk_notifier_unregister(devres->clk, devres->nb);
4421 }
4422 
4423 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4424 			       struct notifier_block *nb)
4425 {
4426 	struct clk_notifier_devres *devres;
4427 	int ret;
4428 
4429 	devres = devres_alloc(devm_clk_notifier_release,
4430 			      sizeof(*devres), GFP_KERNEL);
4431 
4432 	if (!devres)
4433 		return -ENOMEM;
4434 
4435 	ret = clk_notifier_register(clk, nb);
4436 	if (!ret) {
4437 		devres->clk = clk;
4438 		devres->nb = nb;
4439 	} else {
4440 		devres_free(devres);
4441 	}
4442 
4443 	return ret;
4444 }
4445 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4446 
4447 #ifdef CONFIG_OF
4448 static void clk_core_reparent_orphans(void)
4449 {
4450 	clk_prepare_lock();
4451 	clk_core_reparent_orphans_nolock();
4452 	clk_prepare_unlock();
4453 }
4454 
4455 /**
4456  * struct of_clk_provider - Clock provider registration structure
4457  * @link: Entry in global list of clock providers
4458  * @node: Pointer to device tree node of clock provider
4459  * @get: Get clock callback.  Returns NULL or a struct clk for the
4460  *       given clock specifier
4461  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4462  *       struct clk_hw for the given clock specifier
4463  * @data: context pointer to be passed into @get callback
4464  */
4465 struct of_clk_provider {
4466 	struct list_head link;
4467 
4468 	struct device_node *node;
4469 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4470 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4471 	void *data;
4472 };
4473 
4474 extern struct of_device_id __clk_of_table;
4475 static const struct of_device_id __clk_of_table_sentinel
4476 	__used __section("__clk_of_table_end");
4477 
4478 static LIST_HEAD(of_clk_providers);
4479 static DEFINE_MUTEX(of_clk_mutex);
4480 
4481 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4482 				     void *data)
4483 {
4484 	return data;
4485 }
4486 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4487 
4488 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4489 {
4490 	return data;
4491 }
4492 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4493 
4494 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4495 {
4496 	struct clk_onecell_data *clk_data = data;
4497 	unsigned int idx = clkspec->args[0];
4498 
4499 	if (idx >= clk_data->clk_num) {
4500 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4501 		return ERR_PTR(-EINVAL);
4502 	}
4503 
4504 	return clk_data->clks[idx];
4505 }
4506 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4507 
4508 struct clk_hw *
4509 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4510 {
4511 	struct clk_hw_onecell_data *hw_data = data;
4512 	unsigned int idx = clkspec->args[0];
4513 
4514 	if (idx >= hw_data->num) {
4515 		pr_err("%s: invalid index %u\n", __func__, idx);
4516 		return ERR_PTR(-EINVAL);
4517 	}
4518 
4519 	return hw_data->hws[idx];
4520 }
4521 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4522 
4523 /**
4524  * of_clk_add_provider() - Register a clock provider for a node
4525  * @np: Device node pointer associated with clock provider
4526  * @clk_src_get: callback for decoding clock
4527  * @data: context pointer for @clk_src_get callback.
4528  *
4529  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4530  */
4531 int of_clk_add_provider(struct device_node *np,
4532 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4533 						   void *data),
4534 			void *data)
4535 {
4536 	struct of_clk_provider *cp;
4537 	int ret;
4538 
4539 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4540 	if (!cp)
4541 		return -ENOMEM;
4542 
4543 	cp->node = of_node_get(np);
4544 	cp->data = data;
4545 	cp->get = clk_src_get;
4546 
4547 	mutex_lock(&of_clk_mutex);
4548 	list_add(&cp->link, &of_clk_providers);
4549 	mutex_unlock(&of_clk_mutex);
4550 	pr_debug("Added clock from %pOF\n", np);
4551 
4552 	clk_core_reparent_orphans();
4553 
4554 	ret = of_clk_set_defaults(np, true);
4555 	if (ret < 0)
4556 		of_clk_del_provider(np);
4557 
4558 	return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4561 
4562 /**
4563  * of_clk_add_hw_provider() - Register a clock provider for a node
4564  * @np: Device node pointer associated with clock provider
4565  * @get: callback for decoding clk_hw
4566  * @data: context pointer for @get callback.
4567  */
4568 int of_clk_add_hw_provider(struct device_node *np,
4569 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4570 						 void *data),
4571 			   void *data)
4572 {
4573 	struct of_clk_provider *cp;
4574 	int ret;
4575 
4576 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4577 	if (!cp)
4578 		return -ENOMEM;
4579 
4580 	cp->node = of_node_get(np);
4581 	cp->data = data;
4582 	cp->get_hw = get;
4583 
4584 	mutex_lock(&of_clk_mutex);
4585 	list_add(&cp->link, &of_clk_providers);
4586 	mutex_unlock(&of_clk_mutex);
4587 	pr_debug("Added clk_hw provider from %pOF\n", np);
4588 
4589 	clk_core_reparent_orphans();
4590 
4591 	ret = of_clk_set_defaults(np, true);
4592 	if (ret < 0)
4593 		of_clk_del_provider(np);
4594 
4595 	return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4598 
4599 static void devm_of_clk_release_provider(struct device *dev, void *res)
4600 {
4601 	of_clk_del_provider(*(struct device_node **)res);
4602 }
4603 
4604 /*
4605  * We allow a child device to use its parent device as the clock provider node
4606  * for cases like MFD sub-devices where the child device driver wants to use
4607  * devm_*() APIs but not list the device in DT as a sub-node.
4608  */
4609 static struct device_node *get_clk_provider_node(struct device *dev)
4610 {
4611 	struct device_node *np, *parent_np;
4612 
4613 	np = dev->of_node;
4614 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4615 
4616 	if (!of_find_property(np, "#clock-cells", NULL))
4617 		if (of_find_property(parent_np, "#clock-cells", NULL))
4618 			np = parent_np;
4619 
4620 	return np;
4621 }
4622 
4623 /**
4624  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4625  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4626  * @get: callback for decoding clk_hw
4627  * @data: context pointer for @get callback
4628  *
4629  * Registers clock provider for given device's node. If the device has no DT
4630  * node or if the device node lacks of clock provider information (#clock-cells)
4631  * then the parent device's node is scanned for this information. If parent node
4632  * has the #clock-cells then it is used in registration. Provider is
4633  * automatically released at device exit.
4634  *
4635  * Return: 0 on success or an errno on failure.
4636  */
4637 int devm_of_clk_add_hw_provider(struct device *dev,
4638 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4639 					      void *data),
4640 			void *data)
4641 {
4642 	struct device_node **ptr, *np;
4643 	int ret;
4644 
4645 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4646 			   GFP_KERNEL);
4647 	if (!ptr)
4648 		return -ENOMEM;
4649 
4650 	np = get_clk_provider_node(dev);
4651 	ret = of_clk_add_hw_provider(np, get, data);
4652 	if (!ret) {
4653 		*ptr = np;
4654 		devres_add(dev, ptr);
4655 	} else {
4656 		devres_free(ptr);
4657 	}
4658 
4659 	return ret;
4660 }
4661 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4662 
4663 /**
4664  * of_clk_del_provider() - Remove a previously registered clock provider
4665  * @np: Device node pointer associated with clock provider
4666  */
4667 void of_clk_del_provider(struct device_node *np)
4668 {
4669 	struct of_clk_provider *cp;
4670 
4671 	mutex_lock(&of_clk_mutex);
4672 	list_for_each_entry(cp, &of_clk_providers, link) {
4673 		if (cp->node == np) {
4674 			list_del(&cp->link);
4675 			of_node_put(cp->node);
4676 			kfree(cp);
4677 			break;
4678 		}
4679 	}
4680 	mutex_unlock(&of_clk_mutex);
4681 }
4682 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4683 
4684 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4685 {
4686 	struct device_node **np = res;
4687 
4688 	if (WARN_ON(!np || !*np))
4689 		return 0;
4690 
4691 	return *np == data;
4692 }
4693 
4694 /**
4695  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4696  * @dev: Device to whose lifetime the clock provider was bound
4697  */
4698 void devm_of_clk_del_provider(struct device *dev)
4699 {
4700 	int ret;
4701 	struct device_node *np = get_clk_provider_node(dev);
4702 
4703 	ret = devres_release(dev, devm_of_clk_release_provider,
4704 			     devm_clk_provider_match, np);
4705 
4706 	WARN_ON(ret);
4707 }
4708 EXPORT_SYMBOL(devm_of_clk_del_provider);
4709 
4710 /**
4711  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4712  * @np: device node to parse clock specifier from
4713  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4714  * @name: clock name to find and parse. If name is NULL, the index is used
4715  * @out_args: Result of parsing the clock specifier
4716  *
4717  * Parses a device node's "clocks" and "clock-names" properties to find the
4718  * phandle and cells for the index or name that is desired. The resulting clock
4719  * specifier is placed into @out_args, or an errno is returned when there's a
4720  * parsing error. The @index argument is ignored if @name is non-NULL.
4721  *
4722  * Example:
4723  *
4724  * phandle1: clock-controller@1 {
4725  *	#clock-cells = <2>;
4726  * }
4727  *
4728  * phandle2: clock-controller@2 {
4729  *	#clock-cells = <1>;
4730  * }
4731  *
4732  * clock-consumer@3 {
4733  *	clocks = <&phandle1 1 2 &phandle2 3>;
4734  *	clock-names = "name1", "name2";
4735  * }
4736  *
4737  * To get a device_node for `clock-controller@2' node you may call this
4738  * function a few different ways:
4739  *
4740  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4741  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4742  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4743  *
4744  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4745  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4746  * the "clock-names" property of @np.
4747  */
4748 static int of_parse_clkspec(const struct device_node *np, int index,
4749 			    const char *name, struct of_phandle_args *out_args)
4750 {
4751 	int ret = -ENOENT;
4752 
4753 	/* Walk up the tree of devices looking for a clock property that matches */
4754 	while (np) {
4755 		/*
4756 		 * For named clocks, first look up the name in the
4757 		 * "clock-names" property.  If it cannot be found, then index
4758 		 * will be an error code and of_parse_phandle_with_args() will
4759 		 * return -EINVAL.
4760 		 */
4761 		if (name)
4762 			index = of_property_match_string(np, "clock-names", name);
4763 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4764 						 index, out_args);
4765 		if (!ret)
4766 			break;
4767 		if (name && index >= 0)
4768 			break;
4769 
4770 		/*
4771 		 * No matching clock found on this node.  If the parent node
4772 		 * has a "clock-ranges" property, then we can try one of its
4773 		 * clocks.
4774 		 */
4775 		np = np->parent;
4776 		if (np && !of_get_property(np, "clock-ranges", NULL))
4777 			break;
4778 		index = 0;
4779 	}
4780 
4781 	return ret;
4782 }
4783 
4784 static struct clk_hw *
4785 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4786 			      struct of_phandle_args *clkspec)
4787 {
4788 	struct clk *clk;
4789 
4790 	if (provider->get_hw)
4791 		return provider->get_hw(clkspec, provider->data);
4792 
4793 	clk = provider->get(clkspec, provider->data);
4794 	if (IS_ERR(clk))
4795 		return ERR_CAST(clk);
4796 	return __clk_get_hw(clk);
4797 }
4798 
4799 static struct clk_hw *
4800 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4801 {
4802 	struct of_clk_provider *provider;
4803 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4804 
4805 	if (!clkspec)
4806 		return ERR_PTR(-EINVAL);
4807 
4808 	mutex_lock(&of_clk_mutex);
4809 	list_for_each_entry(provider, &of_clk_providers, link) {
4810 		if (provider->node == clkspec->np) {
4811 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4812 			if (!IS_ERR(hw))
4813 				break;
4814 		}
4815 	}
4816 	mutex_unlock(&of_clk_mutex);
4817 
4818 	return hw;
4819 }
4820 
4821 /**
4822  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4823  * @clkspec: pointer to a clock specifier data structure
4824  *
4825  * This function looks up a struct clk from the registered list of clock
4826  * providers, an input is a clock specifier data structure as returned
4827  * from the of_parse_phandle_with_args() function call.
4828  */
4829 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4830 {
4831 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4832 
4833 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4834 }
4835 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4836 
4837 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4838 			     const char *con_id)
4839 {
4840 	int ret;
4841 	struct clk_hw *hw;
4842 	struct of_phandle_args clkspec;
4843 
4844 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4845 	if (ret)
4846 		return ERR_PTR(ret);
4847 
4848 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4849 	of_node_put(clkspec.np);
4850 
4851 	return hw;
4852 }
4853 
4854 static struct clk *__of_clk_get(struct device_node *np,
4855 				int index, const char *dev_id,
4856 				const char *con_id)
4857 {
4858 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4859 
4860 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4861 }
4862 
4863 struct clk *of_clk_get(struct device_node *np, int index)
4864 {
4865 	return __of_clk_get(np, index, np->full_name, NULL);
4866 }
4867 EXPORT_SYMBOL(of_clk_get);
4868 
4869 /**
4870  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4871  * @np: pointer to clock consumer node
4872  * @name: name of consumer's clock input, or NULL for the first clock reference
4873  *
4874  * This function parses the clocks and clock-names properties,
4875  * and uses them to look up the struct clk from the registered list of clock
4876  * providers.
4877  */
4878 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4879 {
4880 	if (!np)
4881 		return ERR_PTR(-ENOENT);
4882 
4883 	return __of_clk_get(np, 0, np->full_name, name);
4884 }
4885 EXPORT_SYMBOL(of_clk_get_by_name);
4886 
4887 /**
4888  * of_clk_get_parent_count() - Count the number of clocks a device node has
4889  * @np: device node to count
4890  *
4891  * Returns: The number of clocks that are possible parents of this node
4892  */
4893 unsigned int of_clk_get_parent_count(const struct device_node *np)
4894 {
4895 	int count;
4896 
4897 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4898 	if (count < 0)
4899 		return 0;
4900 
4901 	return count;
4902 }
4903 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4904 
4905 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4906 {
4907 	struct of_phandle_args clkspec;
4908 	struct property *prop;
4909 	const char *clk_name;
4910 	const __be32 *vp;
4911 	u32 pv;
4912 	int rc;
4913 	int count;
4914 	struct clk *clk;
4915 
4916 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4917 					&clkspec);
4918 	if (rc)
4919 		return NULL;
4920 
4921 	index = clkspec.args_count ? clkspec.args[0] : 0;
4922 	count = 0;
4923 
4924 	/* if there is an indices property, use it to transfer the index
4925 	 * specified into an array offset for the clock-output-names property.
4926 	 */
4927 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4928 		if (index == pv) {
4929 			index = count;
4930 			break;
4931 		}
4932 		count++;
4933 	}
4934 	/* We went off the end of 'clock-indices' without finding it */
4935 	if (prop && !vp)
4936 		return NULL;
4937 
4938 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4939 					  index,
4940 					  &clk_name) < 0) {
4941 		/*
4942 		 * Best effort to get the name if the clock has been
4943 		 * registered with the framework. If the clock isn't
4944 		 * registered, we return the node name as the name of
4945 		 * the clock as long as #clock-cells = 0.
4946 		 */
4947 		clk = of_clk_get_from_provider(&clkspec);
4948 		if (IS_ERR(clk)) {
4949 			if (clkspec.args_count == 0)
4950 				clk_name = clkspec.np->name;
4951 			else
4952 				clk_name = NULL;
4953 		} else {
4954 			clk_name = __clk_get_name(clk);
4955 			clk_put(clk);
4956 		}
4957 	}
4958 
4959 
4960 	of_node_put(clkspec.np);
4961 	return clk_name;
4962 }
4963 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4964 
4965 /**
4966  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4967  * number of parents
4968  * @np: Device node pointer associated with clock provider
4969  * @parents: pointer to char array that hold the parents' names
4970  * @size: size of the @parents array
4971  *
4972  * Return: number of parents for the clock node.
4973  */
4974 int of_clk_parent_fill(struct device_node *np, const char **parents,
4975 		       unsigned int size)
4976 {
4977 	unsigned int i = 0;
4978 
4979 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4980 		i++;
4981 
4982 	return i;
4983 }
4984 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4985 
4986 struct clock_provider {
4987 	void (*clk_init_cb)(struct device_node *);
4988 	struct device_node *np;
4989 	struct list_head node;
4990 };
4991 
4992 /*
4993  * This function looks for a parent clock. If there is one, then it
4994  * checks that the provider for this parent clock was initialized, in
4995  * this case the parent clock will be ready.
4996  */
4997 static int parent_ready(struct device_node *np)
4998 {
4999 	int i = 0;
5000 
5001 	while (true) {
5002 		struct clk *clk = of_clk_get(np, i);
5003 
5004 		/* this parent is ready we can check the next one */
5005 		if (!IS_ERR(clk)) {
5006 			clk_put(clk);
5007 			i++;
5008 			continue;
5009 		}
5010 
5011 		/* at least one parent is not ready, we exit now */
5012 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5013 			return 0;
5014 
5015 		/*
5016 		 * Here we make assumption that the device tree is
5017 		 * written correctly. So an error means that there is
5018 		 * no more parent. As we didn't exit yet, then the
5019 		 * previous parent are ready. If there is no clock
5020 		 * parent, no need to wait for them, then we can
5021 		 * consider their absence as being ready
5022 		 */
5023 		return 1;
5024 	}
5025 }
5026 
5027 /**
5028  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5029  * @np: Device node pointer associated with clock provider
5030  * @index: clock index
5031  * @flags: pointer to top-level framework flags
5032  *
5033  * Detects if the clock-critical property exists and, if so, sets the
5034  * corresponding CLK_IS_CRITICAL flag.
5035  *
5036  * Do not use this function. It exists only for legacy Device Tree
5037  * bindings, such as the one-clock-per-node style that are outdated.
5038  * Those bindings typically put all clock data into .dts and the Linux
5039  * driver has no clock data, thus making it impossible to set this flag
5040  * correctly from the driver. Only those drivers may call
5041  * of_clk_detect_critical from their setup functions.
5042  *
5043  * Return: error code or zero on success
5044  */
5045 int of_clk_detect_critical(struct device_node *np, int index,
5046 			   unsigned long *flags)
5047 {
5048 	struct property *prop;
5049 	const __be32 *cur;
5050 	uint32_t idx;
5051 
5052 	if (!np || !flags)
5053 		return -EINVAL;
5054 
5055 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5056 		if (index == idx)
5057 			*flags |= CLK_IS_CRITICAL;
5058 
5059 	return 0;
5060 }
5061 
5062 /**
5063  * of_clk_init() - Scan and init clock providers from the DT
5064  * @matches: array of compatible values and init functions for providers.
5065  *
5066  * This function scans the device tree for matching clock providers
5067  * and calls their initialization functions. It also does it by trying
5068  * to follow the dependencies.
5069  */
5070 void __init of_clk_init(const struct of_device_id *matches)
5071 {
5072 	const struct of_device_id *match;
5073 	struct device_node *np;
5074 	struct clock_provider *clk_provider, *next;
5075 	bool is_init_done;
5076 	bool force = false;
5077 	LIST_HEAD(clk_provider_list);
5078 
5079 	if (!matches)
5080 		matches = &__clk_of_table;
5081 
5082 	/* First prepare the list of the clocks providers */
5083 	for_each_matching_node_and_match(np, matches, &match) {
5084 		struct clock_provider *parent;
5085 
5086 		if (!of_device_is_available(np))
5087 			continue;
5088 
5089 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5090 		if (!parent) {
5091 			list_for_each_entry_safe(clk_provider, next,
5092 						 &clk_provider_list, node) {
5093 				list_del(&clk_provider->node);
5094 				of_node_put(clk_provider->np);
5095 				kfree(clk_provider);
5096 			}
5097 			of_node_put(np);
5098 			return;
5099 		}
5100 
5101 		parent->clk_init_cb = match->data;
5102 		parent->np = of_node_get(np);
5103 		list_add_tail(&parent->node, &clk_provider_list);
5104 	}
5105 
5106 	while (!list_empty(&clk_provider_list)) {
5107 		is_init_done = false;
5108 		list_for_each_entry_safe(clk_provider, next,
5109 					&clk_provider_list, node) {
5110 			if (force || parent_ready(clk_provider->np)) {
5111 
5112 				/* Don't populate platform devices */
5113 				of_node_set_flag(clk_provider->np,
5114 						 OF_POPULATED);
5115 
5116 				clk_provider->clk_init_cb(clk_provider->np);
5117 				of_clk_set_defaults(clk_provider->np, true);
5118 
5119 				list_del(&clk_provider->node);
5120 				of_node_put(clk_provider->np);
5121 				kfree(clk_provider);
5122 				is_init_done = true;
5123 			}
5124 		}
5125 
5126 		/*
5127 		 * We didn't manage to initialize any of the
5128 		 * remaining providers during the last loop, so now we
5129 		 * initialize all the remaining ones unconditionally
5130 		 * in case the clock parent was not mandatory
5131 		 */
5132 		if (!is_init_done)
5133 			force = true;
5134 	}
5135 }
5136 #endif
5137