1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 static const struct hlist_head *all_lists[] = { 41 &clk_root_list, 42 &clk_orphan_list, 43 NULL, 44 }; 45 46 /*** private data structures ***/ 47 48 struct clk_parent_map { 49 const struct clk_hw *hw; 50 struct clk_core *core; 51 const char *fw_name; 52 const char *name; 53 int index; 54 }; 55 56 struct clk_core { 57 const char *name; 58 const struct clk_ops *ops; 59 struct clk_hw *hw; 60 struct module *owner; 61 struct device *dev; 62 struct device_node *of_node; 63 struct clk_core *parent; 64 struct clk_parent_map *parents; 65 u8 num_parents; 66 u8 new_parent_index; 67 unsigned long rate; 68 unsigned long req_rate; 69 unsigned long new_rate; 70 struct clk_core *new_parent; 71 struct clk_core *new_child; 72 unsigned long flags; 73 bool orphan; 74 bool rpm_enabled; 75 unsigned int enable_count; 76 unsigned int prepare_count; 77 unsigned int protect_count; 78 unsigned long min_rate; 79 unsigned long max_rate; 80 unsigned long accuracy; 81 int phase; 82 struct clk_duty duty; 83 struct hlist_head children; 84 struct hlist_node child_node; 85 struct hlist_head clks; 86 unsigned int notifier_count; 87 #ifdef CONFIG_DEBUG_FS 88 struct dentry *dentry; 89 struct hlist_node debug_node; 90 #endif 91 struct kref ref; 92 }; 93 94 #define CREATE_TRACE_POINTS 95 #include <trace/events/clk.h> 96 97 struct clk { 98 struct clk_core *core; 99 struct device *dev; 100 const char *dev_id; 101 const char *con_id; 102 unsigned long min_rate; 103 unsigned long max_rate; 104 unsigned int exclusive_count; 105 struct hlist_node clks_node; 106 }; 107 108 /*** runtime pm ***/ 109 static int clk_pm_runtime_get(struct clk_core *core) 110 { 111 if (!core->rpm_enabled) 112 return 0; 113 114 return pm_runtime_resume_and_get(core->dev); 115 } 116 117 static void clk_pm_runtime_put(struct clk_core *core) 118 { 119 if (!core->rpm_enabled) 120 return; 121 122 pm_runtime_put_sync(core->dev); 123 } 124 125 /*** locking ***/ 126 static void clk_prepare_lock(void) 127 { 128 if (!mutex_trylock(&prepare_lock)) { 129 if (prepare_owner == current) { 130 prepare_refcnt++; 131 return; 132 } 133 mutex_lock(&prepare_lock); 134 } 135 WARN_ON_ONCE(prepare_owner != NULL); 136 WARN_ON_ONCE(prepare_refcnt != 0); 137 prepare_owner = current; 138 prepare_refcnt = 1; 139 } 140 141 static void clk_prepare_unlock(void) 142 { 143 WARN_ON_ONCE(prepare_owner != current); 144 WARN_ON_ONCE(prepare_refcnt == 0); 145 146 if (--prepare_refcnt) 147 return; 148 prepare_owner = NULL; 149 mutex_unlock(&prepare_lock); 150 } 151 152 static unsigned long clk_enable_lock(void) 153 __acquires(enable_lock) 154 { 155 unsigned long flags; 156 157 /* 158 * On UP systems, spin_trylock_irqsave() always returns true, even if 159 * we already hold the lock. So, in that case, we rely only on 160 * reference counting. 161 */ 162 if (!IS_ENABLED(CONFIG_SMP) || 163 !spin_trylock_irqsave(&enable_lock, flags)) { 164 if (enable_owner == current) { 165 enable_refcnt++; 166 __acquire(enable_lock); 167 if (!IS_ENABLED(CONFIG_SMP)) 168 local_save_flags(flags); 169 return flags; 170 } 171 spin_lock_irqsave(&enable_lock, flags); 172 } 173 WARN_ON_ONCE(enable_owner != NULL); 174 WARN_ON_ONCE(enable_refcnt != 0); 175 enable_owner = current; 176 enable_refcnt = 1; 177 return flags; 178 } 179 180 static void clk_enable_unlock(unsigned long flags) 181 __releases(enable_lock) 182 { 183 WARN_ON_ONCE(enable_owner != current); 184 WARN_ON_ONCE(enable_refcnt == 0); 185 186 if (--enable_refcnt) { 187 __release(enable_lock); 188 return; 189 } 190 enable_owner = NULL; 191 spin_unlock_irqrestore(&enable_lock, flags); 192 } 193 194 static bool clk_core_rate_is_protected(struct clk_core *core) 195 { 196 return core->protect_count; 197 } 198 199 static bool clk_core_is_prepared(struct clk_core *core) 200 { 201 bool ret = false; 202 203 /* 204 * .is_prepared is optional for clocks that can prepare 205 * fall back to software usage counter if it is missing 206 */ 207 if (!core->ops->is_prepared) 208 return core->prepare_count; 209 210 if (!clk_pm_runtime_get(core)) { 211 ret = core->ops->is_prepared(core->hw); 212 clk_pm_runtime_put(core); 213 } 214 215 return ret; 216 } 217 218 static bool clk_core_is_enabled(struct clk_core *core) 219 { 220 bool ret = false; 221 222 /* 223 * .is_enabled is only mandatory for clocks that gate 224 * fall back to software usage counter if .is_enabled is missing 225 */ 226 if (!core->ops->is_enabled) 227 return core->enable_count; 228 229 /* 230 * Check if clock controller's device is runtime active before 231 * calling .is_enabled callback. If not, assume that clock is 232 * disabled, because we might be called from atomic context, from 233 * which pm_runtime_get() is not allowed. 234 * This function is called mainly from clk_disable_unused_subtree, 235 * which ensures proper runtime pm activation of controller before 236 * taking enable spinlock, but the below check is needed if one tries 237 * to call it from other places. 238 */ 239 if (core->rpm_enabled) { 240 pm_runtime_get_noresume(core->dev); 241 if (!pm_runtime_active(core->dev)) { 242 ret = false; 243 goto done; 244 } 245 } 246 247 /* 248 * This could be called with the enable lock held, or from atomic 249 * context. If the parent isn't enabled already, we can't do 250 * anything here. We can also assume this clock isn't enabled. 251 */ 252 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 253 if (!clk_core_is_enabled(core->parent)) { 254 ret = false; 255 goto done; 256 } 257 258 ret = core->ops->is_enabled(core->hw); 259 done: 260 if (core->rpm_enabled) 261 pm_runtime_put(core->dev); 262 263 return ret; 264 } 265 266 /*** helper functions ***/ 267 268 const char *__clk_get_name(const struct clk *clk) 269 { 270 return !clk ? NULL : clk->core->name; 271 } 272 EXPORT_SYMBOL_GPL(__clk_get_name); 273 274 const char *clk_hw_get_name(const struct clk_hw *hw) 275 { 276 return hw->core->name; 277 } 278 EXPORT_SYMBOL_GPL(clk_hw_get_name); 279 280 struct clk_hw *__clk_get_hw(struct clk *clk) 281 { 282 return !clk ? NULL : clk->core->hw; 283 } 284 EXPORT_SYMBOL_GPL(__clk_get_hw); 285 286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 287 { 288 return hw->core->num_parents; 289 } 290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 291 292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 293 { 294 return hw->core->parent ? hw->core->parent->hw : NULL; 295 } 296 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 297 298 static struct clk_core *__clk_lookup_subtree(const char *name, 299 struct clk_core *core) 300 { 301 struct clk_core *child; 302 struct clk_core *ret; 303 304 if (!strcmp(core->name, name)) 305 return core; 306 307 hlist_for_each_entry(child, &core->children, child_node) { 308 ret = __clk_lookup_subtree(name, child); 309 if (ret) 310 return ret; 311 } 312 313 return NULL; 314 } 315 316 static struct clk_core *clk_core_lookup(const char *name) 317 { 318 struct clk_core *root_clk; 319 struct clk_core *ret; 320 321 if (!name) 322 return NULL; 323 324 /* search the 'proper' clk tree first */ 325 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 326 ret = __clk_lookup_subtree(name, root_clk); 327 if (ret) 328 return ret; 329 } 330 331 /* if not found, then search the orphan tree */ 332 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 333 ret = __clk_lookup_subtree(name, root_clk); 334 if (ret) 335 return ret; 336 } 337 338 return NULL; 339 } 340 341 #ifdef CONFIG_OF 342 static int of_parse_clkspec(const struct device_node *np, int index, 343 const char *name, struct of_phandle_args *out_args); 344 static struct clk_hw * 345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 346 #else 347 static inline int of_parse_clkspec(const struct device_node *np, int index, 348 const char *name, 349 struct of_phandle_args *out_args) 350 { 351 return -ENOENT; 352 } 353 static inline struct clk_hw * 354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 355 { 356 return ERR_PTR(-ENOENT); 357 } 358 #endif 359 360 /** 361 * clk_core_get - Find the clk_core parent of a clk 362 * @core: clk to find parent of 363 * @p_index: parent index to search for 364 * 365 * This is the preferred method for clk providers to find the parent of a 366 * clk when that parent is external to the clk controller. The parent_names 367 * array is indexed and treated as a local name matching a string in the device 368 * node's 'clock-names' property or as the 'con_id' matching the device's 369 * dev_name() in a clk_lookup. This allows clk providers to use their own 370 * namespace instead of looking for a globally unique parent string. 371 * 372 * For example the following DT snippet would allow a clock registered by the 373 * clock-controller@c001 that has a clk_init_data::parent_data array 374 * with 'xtal' in the 'name' member to find the clock provided by the 375 * clock-controller@f00abcd without needing to get the globally unique name of 376 * the xtal clk. 377 * 378 * parent: clock-controller@f00abcd { 379 * reg = <0xf00abcd 0xabcd>; 380 * #clock-cells = <0>; 381 * }; 382 * 383 * clock-controller@c001 { 384 * reg = <0xc001 0xf00d>; 385 * clocks = <&parent>; 386 * clock-names = "xtal"; 387 * #clock-cells = <1>; 388 * }; 389 * 390 * Returns: -ENOENT when the provider can't be found or the clk doesn't 391 * exist in the provider or the name can't be found in the DT node or 392 * in a clkdev lookup. NULL when the provider knows about the clk but it 393 * isn't provided on this system. 394 * A valid clk_core pointer when the clk can be found in the provider. 395 */ 396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 397 { 398 const char *name = core->parents[p_index].fw_name; 399 int index = core->parents[p_index].index; 400 struct clk_hw *hw = ERR_PTR(-ENOENT); 401 struct device *dev = core->dev; 402 const char *dev_id = dev ? dev_name(dev) : NULL; 403 struct device_node *np = core->of_node; 404 struct of_phandle_args clkspec; 405 406 if (np && (name || index >= 0) && 407 !of_parse_clkspec(np, index, name, &clkspec)) { 408 hw = of_clk_get_hw_from_clkspec(&clkspec); 409 of_node_put(clkspec.np); 410 } else if (name) { 411 /* 412 * If the DT search above couldn't find the provider fallback to 413 * looking up via clkdev based clk_lookups. 414 */ 415 hw = clk_find_hw(dev_id, name); 416 } 417 418 if (IS_ERR(hw)) 419 return ERR_CAST(hw); 420 421 return hw->core; 422 } 423 424 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 425 { 426 struct clk_parent_map *entry = &core->parents[index]; 427 struct clk_core *parent; 428 429 if (entry->hw) { 430 parent = entry->hw->core; 431 } else { 432 parent = clk_core_get(core, index); 433 if (PTR_ERR(parent) == -ENOENT && entry->name) 434 parent = clk_core_lookup(entry->name); 435 } 436 437 /* 438 * We have a direct reference but it isn't registered yet? 439 * Orphan it and let clk_reparent() update the orphan status 440 * when the parent is registered. 441 */ 442 if (!parent) 443 parent = ERR_PTR(-EPROBE_DEFER); 444 445 /* Only cache it if it's not an error */ 446 if (!IS_ERR(parent)) 447 entry->core = parent; 448 } 449 450 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 451 u8 index) 452 { 453 if (!core || index >= core->num_parents || !core->parents) 454 return NULL; 455 456 if (!core->parents[index].core) 457 clk_core_fill_parent_index(core, index); 458 459 return core->parents[index].core; 460 } 461 462 struct clk_hw * 463 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 464 { 465 struct clk_core *parent; 466 467 parent = clk_core_get_parent_by_index(hw->core, index); 468 469 return !parent ? NULL : parent->hw; 470 } 471 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 472 473 unsigned int __clk_get_enable_count(struct clk *clk) 474 { 475 return !clk ? 0 : clk->core->enable_count; 476 } 477 478 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 479 { 480 if (!core) 481 return 0; 482 483 if (!core->num_parents || core->parent) 484 return core->rate; 485 486 /* 487 * Clk must have a parent because num_parents > 0 but the parent isn't 488 * known yet. Best to return 0 as the rate of this clk until we can 489 * properly recalc the rate based on the parent's rate. 490 */ 491 return 0; 492 } 493 494 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 495 { 496 return clk_core_get_rate_nolock(hw->core); 497 } 498 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 499 500 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 501 { 502 if (!core) 503 return 0; 504 505 return core->accuracy; 506 } 507 508 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 509 { 510 return hw->core->flags; 511 } 512 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 513 514 bool clk_hw_is_prepared(const struct clk_hw *hw) 515 { 516 return clk_core_is_prepared(hw->core); 517 } 518 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 519 520 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 521 { 522 return clk_core_rate_is_protected(hw->core); 523 } 524 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 525 526 bool clk_hw_is_enabled(const struct clk_hw *hw) 527 { 528 return clk_core_is_enabled(hw->core); 529 } 530 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 531 532 bool __clk_is_enabled(struct clk *clk) 533 { 534 if (!clk) 535 return false; 536 537 return clk_core_is_enabled(clk->core); 538 } 539 EXPORT_SYMBOL_GPL(__clk_is_enabled); 540 541 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 542 unsigned long best, unsigned long flags) 543 { 544 if (flags & CLK_MUX_ROUND_CLOSEST) 545 return abs(now - rate) < abs(best - rate); 546 547 return now <= rate && now > best; 548 } 549 550 static void clk_core_init_rate_req(struct clk_core * const core, 551 struct clk_rate_request *req, 552 unsigned long rate); 553 554 static int clk_core_round_rate_nolock(struct clk_core *core, 555 struct clk_rate_request *req); 556 557 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 558 { 559 struct clk_core *tmp; 560 unsigned int i; 561 562 /* Optimize for the case where the parent is already the parent. */ 563 if (core->parent == parent) 564 return true; 565 566 for (i = 0; i < core->num_parents; i++) { 567 tmp = clk_core_get_parent_by_index(core, i); 568 if (!tmp) 569 continue; 570 571 if (tmp == parent) 572 return true; 573 } 574 575 return false; 576 } 577 578 static void 579 clk_core_forward_rate_req(struct clk_core *core, 580 const struct clk_rate_request *old_req, 581 struct clk_core *parent, 582 struct clk_rate_request *req, 583 unsigned long parent_rate) 584 { 585 if (WARN_ON(!clk_core_has_parent(core, parent))) 586 return; 587 588 clk_core_init_rate_req(parent, req, parent_rate); 589 590 if (req->min_rate < old_req->min_rate) 591 req->min_rate = old_req->min_rate; 592 593 if (req->max_rate > old_req->max_rate) 594 req->max_rate = old_req->max_rate; 595 } 596 597 int clk_mux_determine_rate_flags(struct clk_hw *hw, 598 struct clk_rate_request *req, 599 unsigned long flags) 600 { 601 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 602 int i, num_parents, ret; 603 unsigned long best = 0; 604 605 /* if NO_REPARENT flag set, pass through to current parent */ 606 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 607 parent = core->parent; 608 if (core->flags & CLK_SET_RATE_PARENT) { 609 struct clk_rate_request parent_req; 610 611 if (!parent) { 612 req->rate = 0; 613 return 0; 614 } 615 616 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 617 618 trace_clk_rate_request_start(&parent_req); 619 620 ret = clk_core_round_rate_nolock(parent, &parent_req); 621 if (ret) 622 return ret; 623 624 trace_clk_rate_request_done(&parent_req); 625 626 best = parent_req.rate; 627 } else if (parent) { 628 best = clk_core_get_rate_nolock(parent); 629 } else { 630 best = clk_core_get_rate_nolock(core); 631 } 632 633 goto out; 634 } 635 636 /* find the parent that can provide the fastest rate <= rate */ 637 num_parents = core->num_parents; 638 for (i = 0; i < num_parents; i++) { 639 unsigned long parent_rate; 640 641 parent = clk_core_get_parent_by_index(core, i); 642 if (!parent) 643 continue; 644 645 if (core->flags & CLK_SET_RATE_PARENT) { 646 struct clk_rate_request parent_req; 647 648 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 649 650 trace_clk_rate_request_start(&parent_req); 651 652 ret = clk_core_round_rate_nolock(parent, &parent_req); 653 if (ret) 654 continue; 655 656 trace_clk_rate_request_done(&parent_req); 657 658 parent_rate = parent_req.rate; 659 } else { 660 parent_rate = clk_core_get_rate_nolock(parent); 661 } 662 663 if (mux_is_better_rate(req->rate, parent_rate, 664 best, flags)) { 665 best_parent = parent; 666 best = parent_rate; 667 } 668 } 669 670 if (!best_parent) 671 return -EINVAL; 672 673 out: 674 if (best_parent) 675 req->best_parent_hw = best_parent->hw; 676 req->best_parent_rate = best; 677 req->rate = best; 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 682 683 struct clk *__clk_lookup(const char *name) 684 { 685 struct clk_core *core = clk_core_lookup(name); 686 687 return !core ? NULL : core->hw->clk; 688 } 689 690 static void clk_core_get_boundaries(struct clk_core *core, 691 unsigned long *min_rate, 692 unsigned long *max_rate) 693 { 694 struct clk *clk_user; 695 696 lockdep_assert_held(&prepare_lock); 697 698 *min_rate = core->min_rate; 699 *max_rate = core->max_rate; 700 701 hlist_for_each_entry(clk_user, &core->clks, clks_node) 702 *min_rate = max(*min_rate, clk_user->min_rate); 703 704 hlist_for_each_entry(clk_user, &core->clks, clks_node) 705 *max_rate = min(*max_rate, clk_user->max_rate); 706 } 707 708 /* 709 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 710 * @hw: the hw clk we want to get the range from 711 * @min_rate: pointer to the variable that will hold the minimum 712 * @max_rate: pointer to the variable that will hold the maximum 713 * 714 * Fills the @min_rate and @max_rate variables with the minimum and 715 * maximum that clock can reach. 716 */ 717 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 718 unsigned long *max_rate) 719 { 720 clk_core_get_boundaries(hw->core, min_rate, max_rate); 721 } 722 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 723 724 static bool clk_core_check_boundaries(struct clk_core *core, 725 unsigned long min_rate, 726 unsigned long max_rate) 727 { 728 struct clk *user; 729 730 lockdep_assert_held(&prepare_lock); 731 732 if (min_rate > core->max_rate || max_rate < core->min_rate) 733 return false; 734 735 hlist_for_each_entry(user, &core->clks, clks_node) 736 if (min_rate > user->max_rate || max_rate < user->min_rate) 737 return false; 738 739 return true; 740 } 741 742 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 743 unsigned long max_rate) 744 { 745 hw->core->min_rate = min_rate; 746 hw->core->max_rate = max_rate; 747 } 748 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 749 750 /* 751 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 752 * @hw: mux type clk to determine rate on 753 * @req: rate request, also used to return preferred parent and frequencies 754 * 755 * Helper for finding best parent to provide a given frequency. This can be used 756 * directly as a determine_rate callback (e.g. for a mux), or from a more 757 * complex clock that may combine a mux with other operations. 758 * 759 * Returns: 0 on success, -EERROR value on error 760 */ 761 int __clk_mux_determine_rate(struct clk_hw *hw, 762 struct clk_rate_request *req) 763 { 764 return clk_mux_determine_rate_flags(hw, req, 0); 765 } 766 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 767 768 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 769 struct clk_rate_request *req) 770 { 771 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 772 } 773 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 774 775 /*** clk api ***/ 776 777 static void clk_core_rate_unprotect(struct clk_core *core) 778 { 779 lockdep_assert_held(&prepare_lock); 780 781 if (!core) 782 return; 783 784 if (WARN(core->protect_count == 0, 785 "%s already unprotected\n", core->name)) 786 return; 787 788 if (--core->protect_count > 0) 789 return; 790 791 clk_core_rate_unprotect(core->parent); 792 } 793 794 static int clk_core_rate_nuke_protect(struct clk_core *core) 795 { 796 int ret; 797 798 lockdep_assert_held(&prepare_lock); 799 800 if (!core) 801 return -EINVAL; 802 803 if (core->protect_count == 0) 804 return 0; 805 806 ret = core->protect_count; 807 core->protect_count = 1; 808 clk_core_rate_unprotect(core); 809 810 return ret; 811 } 812 813 /** 814 * clk_rate_exclusive_put - release exclusivity over clock rate control 815 * @clk: the clk over which the exclusivity is released 816 * 817 * clk_rate_exclusive_put() completes a critical section during which a clock 818 * consumer cannot tolerate any other consumer making any operation on the 819 * clock which could result in a rate change or rate glitch. Exclusive clocks 820 * cannot have their rate changed, either directly or indirectly due to changes 821 * further up the parent chain of clocks. As a result, clocks up parent chain 822 * also get under exclusive control of the calling consumer. 823 * 824 * If exlusivity is claimed more than once on clock, even by the same consumer, 825 * the rate effectively gets locked as exclusivity can't be preempted. 826 * 827 * Calls to clk_rate_exclusive_put() must be balanced with calls to 828 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 829 * error status. 830 */ 831 void clk_rate_exclusive_put(struct clk *clk) 832 { 833 if (!clk) 834 return; 835 836 clk_prepare_lock(); 837 838 /* 839 * if there is something wrong with this consumer protect count, stop 840 * here before messing with the provider 841 */ 842 if (WARN_ON(clk->exclusive_count <= 0)) 843 goto out; 844 845 clk_core_rate_unprotect(clk->core); 846 clk->exclusive_count--; 847 out: 848 clk_prepare_unlock(); 849 } 850 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 851 852 static void clk_core_rate_protect(struct clk_core *core) 853 { 854 lockdep_assert_held(&prepare_lock); 855 856 if (!core) 857 return; 858 859 if (core->protect_count == 0) 860 clk_core_rate_protect(core->parent); 861 862 core->protect_count++; 863 } 864 865 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 866 { 867 lockdep_assert_held(&prepare_lock); 868 869 if (!core) 870 return; 871 872 if (count == 0) 873 return; 874 875 clk_core_rate_protect(core); 876 core->protect_count = count; 877 } 878 879 /** 880 * clk_rate_exclusive_get - get exclusivity over the clk rate control 881 * @clk: the clk over which the exclusity of rate control is requested 882 * 883 * clk_rate_exclusive_get() begins a critical section during which a clock 884 * consumer cannot tolerate any other consumer making any operation on the 885 * clock which could result in a rate change or rate glitch. Exclusive clocks 886 * cannot have their rate changed, either directly or indirectly due to changes 887 * further up the parent chain of clocks. As a result, clocks up parent chain 888 * also get under exclusive control of the calling consumer. 889 * 890 * If exlusivity is claimed more than once on clock, even by the same consumer, 891 * the rate effectively gets locked as exclusivity can't be preempted. 892 * 893 * Calls to clk_rate_exclusive_get() should be balanced with calls to 894 * clk_rate_exclusive_put(). Calls to this function may sleep. 895 * Returns 0 on success, -EERROR otherwise 896 */ 897 int clk_rate_exclusive_get(struct clk *clk) 898 { 899 if (!clk) 900 return 0; 901 902 clk_prepare_lock(); 903 clk_core_rate_protect(clk->core); 904 clk->exclusive_count++; 905 clk_prepare_unlock(); 906 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 910 911 static void clk_core_unprepare(struct clk_core *core) 912 { 913 lockdep_assert_held(&prepare_lock); 914 915 if (!core) 916 return; 917 918 if (WARN(core->prepare_count == 0, 919 "%s already unprepared\n", core->name)) 920 return; 921 922 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 923 "Unpreparing critical %s\n", core->name)) 924 return; 925 926 if (core->flags & CLK_SET_RATE_GATE) 927 clk_core_rate_unprotect(core); 928 929 if (--core->prepare_count > 0) 930 return; 931 932 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 933 934 trace_clk_unprepare(core); 935 936 if (core->ops->unprepare) 937 core->ops->unprepare(core->hw); 938 939 trace_clk_unprepare_complete(core); 940 clk_core_unprepare(core->parent); 941 clk_pm_runtime_put(core); 942 } 943 944 static void clk_core_unprepare_lock(struct clk_core *core) 945 { 946 clk_prepare_lock(); 947 clk_core_unprepare(core); 948 clk_prepare_unlock(); 949 } 950 951 /** 952 * clk_unprepare - undo preparation of a clock source 953 * @clk: the clk being unprepared 954 * 955 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 956 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 957 * if the operation may sleep. One example is a clk which is accessed over 958 * I2c. In the complex case a clk gate operation may require a fast and a slow 959 * part. It is this reason that clk_unprepare and clk_disable are not mutually 960 * exclusive. In fact clk_disable must be called before clk_unprepare. 961 */ 962 void clk_unprepare(struct clk *clk) 963 { 964 if (IS_ERR_OR_NULL(clk)) 965 return; 966 967 clk_core_unprepare_lock(clk->core); 968 } 969 EXPORT_SYMBOL_GPL(clk_unprepare); 970 971 static int clk_core_prepare(struct clk_core *core) 972 { 973 int ret = 0; 974 975 lockdep_assert_held(&prepare_lock); 976 977 if (!core) 978 return 0; 979 980 if (core->prepare_count == 0) { 981 ret = clk_pm_runtime_get(core); 982 if (ret) 983 return ret; 984 985 ret = clk_core_prepare(core->parent); 986 if (ret) 987 goto runtime_put; 988 989 trace_clk_prepare(core); 990 991 if (core->ops->prepare) 992 ret = core->ops->prepare(core->hw); 993 994 trace_clk_prepare_complete(core); 995 996 if (ret) 997 goto unprepare; 998 } 999 1000 core->prepare_count++; 1001 1002 /* 1003 * CLK_SET_RATE_GATE is a special case of clock protection 1004 * Instead of a consumer claiming exclusive rate control, it is 1005 * actually the provider which prevents any consumer from making any 1006 * operation which could result in a rate change or rate glitch while 1007 * the clock is prepared. 1008 */ 1009 if (core->flags & CLK_SET_RATE_GATE) 1010 clk_core_rate_protect(core); 1011 1012 return 0; 1013 unprepare: 1014 clk_core_unprepare(core->parent); 1015 runtime_put: 1016 clk_pm_runtime_put(core); 1017 return ret; 1018 } 1019 1020 static int clk_core_prepare_lock(struct clk_core *core) 1021 { 1022 int ret; 1023 1024 clk_prepare_lock(); 1025 ret = clk_core_prepare(core); 1026 clk_prepare_unlock(); 1027 1028 return ret; 1029 } 1030 1031 /** 1032 * clk_prepare - prepare a clock source 1033 * @clk: the clk being prepared 1034 * 1035 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1036 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1037 * operation may sleep. One example is a clk which is accessed over I2c. In 1038 * the complex case a clk ungate operation may require a fast and a slow part. 1039 * It is this reason that clk_prepare and clk_enable are not mutually 1040 * exclusive. In fact clk_prepare must be called before clk_enable. 1041 * Returns 0 on success, -EERROR otherwise. 1042 */ 1043 int clk_prepare(struct clk *clk) 1044 { 1045 if (!clk) 1046 return 0; 1047 1048 return clk_core_prepare_lock(clk->core); 1049 } 1050 EXPORT_SYMBOL_GPL(clk_prepare); 1051 1052 static void clk_core_disable(struct clk_core *core) 1053 { 1054 lockdep_assert_held(&enable_lock); 1055 1056 if (!core) 1057 return; 1058 1059 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1060 return; 1061 1062 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1063 "Disabling critical %s\n", core->name)) 1064 return; 1065 1066 if (--core->enable_count > 0) 1067 return; 1068 1069 trace_clk_disable(core); 1070 1071 if (core->ops->disable) 1072 core->ops->disable(core->hw); 1073 1074 trace_clk_disable_complete(core); 1075 1076 clk_core_disable(core->parent); 1077 } 1078 1079 static void clk_core_disable_lock(struct clk_core *core) 1080 { 1081 unsigned long flags; 1082 1083 flags = clk_enable_lock(); 1084 clk_core_disable(core); 1085 clk_enable_unlock(flags); 1086 } 1087 1088 /** 1089 * clk_disable - gate a clock 1090 * @clk: the clk being gated 1091 * 1092 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1093 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1094 * clk if the operation is fast and will never sleep. One example is a 1095 * SoC-internal clk which is controlled via simple register writes. In the 1096 * complex case a clk gate operation may require a fast and a slow part. It is 1097 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1098 * In fact clk_disable must be called before clk_unprepare. 1099 */ 1100 void clk_disable(struct clk *clk) 1101 { 1102 if (IS_ERR_OR_NULL(clk)) 1103 return; 1104 1105 clk_core_disable_lock(clk->core); 1106 } 1107 EXPORT_SYMBOL_GPL(clk_disable); 1108 1109 static int clk_core_enable(struct clk_core *core) 1110 { 1111 int ret = 0; 1112 1113 lockdep_assert_held(&enable_lock); 1114 1115 if (!core) 1116 return 0; 1117 1118 if (WARN(core->prepare_count == 0, 1119 "Enabling unprepared %s\n", core->name)) 1120 return -ESHUTDOWN; 1121 1122 if (core->enable_count == 0) { 1123 ret = clk_core_enable(core->parent); 1124 1125 if (ret) 1126 return ret; 1127 1128 trace_clk_enable(core); 1129 1130 if (core->ops->enable) 1131 ret = core->ops->enable(core->hw); 1132 1133 trace_clk_enable_complete(core); 1134 1135 if (ret) { 1136 clk_core_disable(core->parent); 1137 return ret; 1138 } 1139 } 1140 1141 core->enable_count++; 1142 return 0; 1143 } 1144 1145 static int clk_core_enable_lock(struct clk_core *core) 1146 { 1147 unsigned long flags; 1148 int ret; 1149 1150 flags = clk_enable_lock(); 1151 ret = clk_core_enable(core); 1152 clk_enable_unlock(flags); 1153 1154 return ret; 1155 } 1156 1157 /** 1158 * clk_gate_restore_context - restore context for poweroff 1159 * @hw: the clk_hw pointer of clock whose state is to be restored 1160 * 1161 * The clock gate restore context function enables or disables 1162 * the gate clocks based on the enable_count. This is done in cases 1163 * where the clock context is lost and based on the enable_count 1164 * the clock either needs to be enabled/disabled. This 1165 * helps restore the state of gate clocks. 1166 */ 1167 void clk_gate_restore_context(struct clk_hw *hw) 1168 { 1169 struct clk_core *core = hw->core; 1170 1171 if (core->enable_count) 1172 core->ops->enable(hw); 1173 else 1174 core->ops->disable(hw); 1175 } 1176 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1177 1178 static int clk_core_save_context(struct clk_core *core) 1179 { 1180 struct clk_core *child; 1181 int ret = 0; 1182 1183 hlist_for_each_entry(child, &core->children, child_node) { 1184 ret = clk_core_save_context(child); 1185 if (ret < 0) 1186 return ret; 1187 } 1188 1189 if (core->ops && core->ops->save_context) 1190 ret = core->ops->save_context(core->hw); 1191 1192 return ret; 1193 } 1194 1195 static void clk_core_restore_context(struct clk_core *core) 1196 { 1197 struct clk_core *child; 1198 1199 if (core->ops && core->ops->restore_context) 1200 core->ops->restore_context(core->hw); 1201 1202 hlist_for_each_entry(child, &core->children, child_node) 1203 clk_core_restore_context(child); 1204 } 1205 1206 /** 1207 * clk_save_context - save clock context for poweroff 1208 * 1209 * Saves the context of the clock register for powerstates in which the 1210 * contents of the registers will be lost. Occurs deep within the suspend 1211 * code. Returns 0 on success. 1212 */ 1213 int clk_save_context(void) 1214 { 1215 struct clk_core *clk; 1216 int ret; 1217 1218 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1219 ret = clk_core_save_context(clk); 1220 if (ret < 0) 1221 return ret; 1222 } 1223 1224 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1225 ret = clk_core_save_context(clk); 1226 if (ret < 0) 1227 return ret; 1228 } 1229 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(clk_save_context); 1233 1234 /** 1235 * clk_restore_context - restore clock context after poweroff 1236 * 1237 * Restore the saved clock context upon resume. 1238 * 1239 */ 1240 void clk_restore_context(void) 1241 { 1242 struct clk_core *core; 1243 1244 hlist_for_each_entry(core, &clk_root_list, child_node) 1245 clk_core_restore_context(core); 1246 1247 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1248 clk_core_restore_context(core); 1249 } 1250 EXPORT_SYMBOL_GPL(clk_restore_context); 1251 1252 /** 1253 * clk_enable - ungate a clock 1254 * @clk: the clk being ungated 1255 * 1256 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1257 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1258 * if the operation will never sleep. One example is a SoC-internal clk which 1259 * is controlled via simple register writes. In the complex case a clk ungate 1260 * operation may require a fast and a slow part. It is this reason that 1261 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1262 * must be called before clk_enable. Returns 0 on success, -EERROR 1263 * otherwise. 1264 */ 1265 int clk_enable(struct clk *clk) 1266 { 1267 if (!clk) 1268 return 0; 1269 1270 return clk_core_enable_lock(clk->core); 1271 } 1272 EXPORT_SYMBOL_GPL(clk_enable); 1273 1274 /** 1275 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1276 * @clk: clock source 1277 * 1278 * Returns true if clk_prepare() implicitly enables the clock, effectively 1279 * making clk_enable()/clk_disable() no-ops, false otherwise. 1280 * 1281 * This is of interest mainly to power management code where actually 1282 * disabling the clock also requires unpreparing it to have any material 1283 * effect. 1284 * 1285 * Regardless of the value returned here, the caller must always invoke 1286 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1287 * to be right. 1288 */ 1289 bool clk_is_enabled_when_prepared(struct clk *clk) 1290 { 1291 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1292 } 1293 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1294 1295 static int clk_core_prepare_enable(struct clk_core *core) 1296 { 1297 int ret; 1298 1299 ret = clk_core_prepare_lock(core); 1300 if (ret) 1301 return ret; 1302 1303 ret = clk_core_enable_lock(core); 1304 if (ret) 1305 clk_core_unprepare_lock(core); 1306 1307 return ret; 1308 } 1309 1310 static void clk_core_disable_unprepare(struct clk_core *core) 1311 { 1312 clk_core_disable_lock(core); 1313 clk_core_unprepare_lock(core); 1314 } 1315 1316 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1317 { 1318 struct clk_core *child; 1319 1320 lockdep_assert_held(&prepare_lock); 1321 1322 hlist_for_each_entry(child, &core->children, child_node) 1323 clk_unprepare_unused_subtree(child); 1324 1325 if (core->prepare_count) 1326 return; 1327 1328 if (core->flags & CLK_IGNORE_UNUSED) 1329 return; 1330 1331 if (clk_pm_runtime_get(core)) 1332 return; 1333 1334 if (clk_core_is_prepared(core)) { 1335 trace_clk_unprepare(core); 1336 if (core->ops->unprepare_unused) 1337 core->ops->unprepare_unused(core->hw); 1338 else if (core->ops->unprepare) 1339 core->ops->unprepare(core->hw); 1340 trace_clk_unprepare_complete(core); 1341 } 1342 1343 clk_pm_runtime_put(core); 1344 } 1345 1346 static void __init clk_disable_unused_subtree(struct clk_core *core) 1347 { 1348 struct clk_core *child; 1349 unsigned long flags; 1350 1351 lockdep_assert_held(&prepare_lock); 1352 1353 hlist_for_each_entry(child, &core->children, child_node) 1354 clk_disable_unused_subtree(child); 1355 1356 if (core->flags & CLK_OPS_PARENT_ENABLE) 1357 clk_core_prepare_enable(core->parent); 1358 1359 if (clk_pm_runtime_get(core)) 1360 goto unprepare_out; 1361 1362 flags = clk_enable_lock(); 1363 1364 if (core->enable_count) 1365 goto unlock_out; 1366 1367 if (core->flags & CLK_IGNORE_UNUSED) 1368 goto unlock_out; 1369 1370 /* 1371 * some gate clocks have special needs during the disable-unused 1372 * sequence. call .disable_unused if available, otherwise fall 1373 * back to .disable 1374 */ 1375 if (clk_core_is_enabled(core)) { 1376 trace_clk_disable(core); 1377 if (core->ops->disable_unused) 1378 core->ops->disable_unused(core->hw); 1379 else if (core->ops->disable) 1380 core->ops->disable(core->hw); 1381 trace_clk_disable_complete(core); 1382 } 1383 1384 unlock_out: 1385 clk_enable_unlock(flags); 1386 clk_pm_runtime_put(core); 1387 unprepare_out: 1388 if (core->flags & CLK_OPS_PARENT_ENABLE) 1389 clk_core_disable_unprepare(core->parent); 1390 } 1391 1392 static bool clk_ignore_unused __initdata; 1393 static int __init clk_ignore_unused_setup(char *__unused) 1394 { 1395 clk_ignore_unused = true; 1396 return 1; 1397 } 1398 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1399 1400 static int __init clk_disable_unused(void) 1401 { 1402 struct clk_core *core; 1403 1404 if (clk_ignore_unused) { 1405 pr_warn("clk: Not disabling unused clocks\n"); 1406 return 0; 1407 } 1408 1409 pr_info("clk: Disabling unused clocks\n"); 1410 1411 clk_prepare_lock(); 1412 1413 hlist_for_each_entry(core, &clk_root_list, child_node) 1414 clk_disable_unused_subtree(core); 1415 1416 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1417 clk_disable_unused_subtree(core); 1418 1419 hlist_for_each_entry(core, &clk_root_list, child_node) 1420 clk_unprepare_unused_subtree(core); 1421 1422 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1423 clk_unprepare_unused_subtree(core); 1424 1425 clk_prepare_unlock(); 1426 1427 return 0; 1428 } 1429 late_initcall_sync(clk_disable_unused); 1430 1431 static int clk_core_determine_round_nolock(struct clk_core *core, 1432 struct clk_rate_request *req) 1433 { 1434 long rate; 1435 1436 lockdep_assert_held(&prepare_lock); 1437 1438 if (!core) 1439 return 0; 1440 1441 /* 1442 * Some clock providers hand-craft their clk_rate_requests and 1443 * might not fill min_rate and max_rate. 1444 * 1445 * If it's the case, clamping the rate is equivalent to setting 1446 * the rate to 0 which is bad. Skip the clamping but complain so 1447 * that it gets fixed, hopefully. 1448 */ 1449 if (!req->min_rate && !req->max_rate) 1450 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1451 __func__, core->name); 1452 else 1453 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1454 1455 /* 1456 * At this point, core protection will be disabled 1457 * - if the provider is not protected at all 1458 * - if the calling consumer is the only one which has exclusivity 1459 * over the provider 1460 */ 1461 if (clk_core_rate_is_protected(core)) { 1462 req->rate = core->rate; 1463 } else if (core->ops->determine_rate) { 1464 return core->ops->determine_rate(core->hw, req); 1465 } else if (core->ops->round_rate) { 1466 rate = core->ops->round_rate(core->hw, req->rate, 1467 &req->best_parent_rate); 1468 if (rate < 0) 1469 return rate; 1470 1471 req->rate = rate; 1472 } else { 1473 return -EINVAL; 1474 } 1475 1476 return 0; 1477 } 1478 1479 static void clk_core_init_rate_req(struct clk_core * const core, 1480 struct clk_rate_request *req, 1481 unsigned long rate) 1482 { 1483 struct clk_core *parent; 1484 1485 if (WARN_ON(!req)) 1486 return; 1487 1488 memset(req, 0, sizeof(*req)); 1489 req->max_rate = ULONG_MAX; 1490 1491 if (!core) 1492 return; 1493 1494 req->core = core; 1495 req->rate = rate; 1496 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1497 1498 parent = core->parent; 1499 if (parent) { 1500 req->best_parent_hw = parent->hw; 1501 req->best_parent_rate = parent->rate; 1502 } else { 1503 req->best_parent_hw = NULL; 1504 req->best_parent_rate = 0; 1505 } 1506 } 1507 1508 /** 1509 * clk_hw_init_rate_request - Initializes a clk_rate_request 1510 * @hw: the clk for which we want to submit a rate request 1511 * @req: the clk_rate_request structure we want to initialise 1512 * @rate: the rate which is to be requested 1513 * 1514 * Initializes a clk_rate_request structure to submit to 1515 * __clk_determine_rate() or similar functions. 1516 */ 1517 void clk_hw_init_rate_request(const struct clk_hw *hw, 1518 struct clk_rate_request *req, 1519 unsigned long rate) 1520 { 1521 if (WARN_ON(!hw || !req)) 1522 return; 1523 1524 clk_core_init_rate_req(hw->core, req, rate); 1525 } 1526 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1527 1528 /** 1529 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1530 * @hw: the original clock that got the rate request 1531 * @old_req: the original clk_rate_request structure we want to forward 1532 * @parent: the clk we want to forward @old_req to 1533 * @req: the clk_rate_request structure we want to initialise 1534 * @parent_rate: The rate which is to be requested to @parent 1535 * 1536 * Initializes a clk_rate_request structure to submit to a clock parent 1537 * in __clk_determine_rate() or similar functions. 1538 */ 1539 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1540 const struct clk_rate_request *old_req, 1541 const struct clk_hw *parent, 1542 struct clk_rate_request *req, 1543 unsigned long parent_rate) 1544 { 1545 if (WARN_ON(!hw || !old_req || !parent || !req)) 1546 return; 1547 1548 clk_core_forward_rate_req(hw->core, old_req, 1549 parent->core, req, 1550 parent_rate); 1551 } 1552 1553 static bool clk_core_can_round(struct clk_core * const core) 1554 { 1555 return core->ops->determine_rate || core->ops->round_rate; 1556 } 1557 1558 static int clk_core_round_rate_nolock(struct clk_core *core, 1559 struct clk_rate_request *req) 1560 { 1561 int ret; 1562 1563 lockdep_assert_held(&prepare_lock); 1564 1565 if (!core) { 1566 req->rate = 0; 1567 return 0; 1568 } 1569 1570 if (clk_core_can_round(core)) 1571 return clk_core_determine_round_nolock(core, req); 1572 1573 if (core->flags & CLK_SET_RATE_PARENT) { 1574 struct clk_rate_request parent_req; 1575 1576 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1577 1578 trace_clk_rate_request_start(&parent_req); 1579 1580 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1581 if (ret) 1582 return ret; 1583 1584 trace_clk_rate_request_done(&parent_req); 1585 1586 req->best_parent_rate = parent_req.rate; 1587 req->rate = parent_req.rate; 1588 1589 return 0; 1590 } 1591 1592 req->rate = core->rate; 1593 return 0; 1594 } 1595 1596 /** 1597 * __clk_determine_rate - get the closest rate actually supported by a clock 1598 * @hw: determine the rate of this clock 1599 * @req: target rate request 1600 * 1601 * Useful for clk_ops such as .set_rate and .determine_rate. 1602 */ 1603 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1604 { 1605 if (!hw) { 1606 req->rate = 0; 1607 return 0; 1608 } 1609 1610 return clk_core_round_rate_nolock(hw->core, req); 1611 } 1612 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1613 1614 /** 1615 * clk_hw_round_rate() - round the given rate for a hw clk 1616 * @hw: the hw clk for which we are rounding a rate 1617 * @rate: the rate which is to be rounded 1618 * 1619 * Takes in a rate as input and rounds it to a rate that the clk can actually 1620 * use. 1621 * 1622 * Context: prepare_lock must be held. 1623 * For clk providers to call from within clk_ops such as .round_rate, 1624 * .determine_rate. 1625 * 1626 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1627 * else returns the parent rate. 1628 */ 1629 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1630 { 1631 int ret; 1632 struct clk_rate_request req; 1633 1634 clk_core_init_rate_req(hw->core, &req, rate); 1635 1636 trace_clk_rate_request_start(&req); 1637 1638 ret = clk_core_round_rate_nolock(hw->core, &req); 1639 if (ret) 1640 return 0; 1641 1642 trace_clk_rate_request_done(&req); 1643 1644 return req.rate; 1645 } 1646 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1647 1648 /** 1649 * clk_round_rate - round the given rate for a clk 1650 * @clk: the clk for which we are rounding a rate 1651 * @rate: the rate which is to be rounded 1652 * 1653 * Takes in a rate as input and rounds it to a rate that the clk can actually 1654 * use which is then returned. If clk doesn't support round_rate operation 1655 * then the parent rate is returned. 1656 */ 1657 long clk_round_rate(struct clk *clk, unsigned long rate) 1658 { 1659 struct clk_rate_request req; 1660 int ret; 1661 1662 if (!clk) 1663 return 0; 1664 1665 clk_prepare_lock(); 1666 1667 if (clk->exclusive_count) 1668 clk_core_rate_unprotect(clk->core); 1669 1670 clk_core_init_rate_req(clk->core, &req, rate); 1671 1672 trace_clk_rate_request_start(&req); 1673 1674 ret = clk_core_round_rate_nolock(clk->core, &req); 1675 1676 trace_clk_rate_request_done(&req); 1677 1678 if (clk->exclusive_count) 1679 clk_core_rate_protect(clk->core); 1680 1681 clk_prepare_unlock(); 1682 1683 if (ret) 1684 return ret; 1685 1686 return req.rate; 1687 } 1688 EXPORT_SYMBOL_GPL(clk_round_rate); 1689 1690 /** 1691 * __clk_notify - call clk notifier chain 1692 * @core: clk that is changing rate 1693 * @msg: clk notifier type (see include/linux/clk.h) 1694 * @old_rate: old clk rate 1695 * @new_rate: new clk rate 1696 * 1697 * Triggers a notifier call chain on the clk rate-change notification 1698 * for 'clk'. Passes a pointer to the struct clk and the previous 1699 * and current rates to the notifier callback. Intended to be called by 1700 * internal clock code only. Returns NOTIFY_DONE from the last driver 1701 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1702 * a driver returns that. 1703 */ 1704 static int __clk_notify(struct clk_core *core, unsigned long msg, 1705 unsigned long old_rate, unsigned long new_rate) 1706 { 1707 struct clk_notifier *cn; 1708 struct clk_notifier_data cnd; 1709 int ret = NOTIFY_DONE; 1710 1711 cnd.old_rate = old_rate; 1712 cnd.new_rate = new_rate; 1713 1714 list_for_each_entry(cn, &clk_notifier_list, node) { 1715 if (cn->clk->core == core) { 1716 cnd.clk = cn->clk; 1717 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1718 &cnd); 1719 if (ret & NOTIFY_STOP_MASK) 1720 return ret; 1721 } 1722 } 1723 1724 return ret; 1725 } 1726 1727 /** 1728 * __clk_recalc_accuracies 1729 * @core: first clk in the subtree 1730 * 1731 * Walks the subtree of clks starting with clk and recalculates accuracies as 1732 * it goes. Note that if a clk does not implement the .recalc_accuracy 1733 * callback then it is assumed that the clock will take on the accuracy of its 1734 * parent. 1735 */ 1736 static void __clk_recalc_accuracies(struct clk_core *core) 1737 { 1738 unsigned long parent_accuracy = 0; 1739 struct clk_core *child; 1740 1741 lockdep_assert_held(&prepare_lock); 1742 1743 if (core->parent) 1744 parent_accuracy = core->parent->accuracy; 1745 1746 if (core->ops->recalc_accuracy) 1747 core->accuracy = core->ops->recalc_accuracy(core->hw, 1748 parent_accuracy); 1749 else 1750 core->accuracy = parent_accuracy; 1751 1752 hlist_for_each_entry(child, &core->children, child_node) 1753 __clk_recalc_accuracies(child); 1754 } 1755 1756 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1757 { 1758 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1759 __clk_recalc_accuracies(core); 1760 1761 return clk_core_get_accuracy_no_lock(core); 1762 } 1763 1764 /** 1765 * clk_get_accuracy - return the accuracy of clk 1766 * @clk: the clk whose accuracy is being returned 1767 * 1768 * Simply returns the cached accuracy of the clk, unless 1769 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1770 * issued. 1771 * If clk is NULL then returns 0. 1772 */ 1773 long clk_get_accuracy(struct clk *clk) 1774 { 1775 long accuracy; 1776 1777 if (!clk) 1778 return 0; 1779 1780 clk_prepare_lock(); 1781 accuracy = clk_core_get_accuracy_recalc(clk->core); 1782 clk_prepare_unlock(); 1783 1784 return accuracy; 1785 } 1786 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1787 1788 static unsigned long clk_recalc(struct clk_core *core, 1789 unsigned long parent_rate) 1790 { 1791 unsigned long rate = parent_rate; 1792 1793 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1794 rate = core->ops->recalc_rate(core->hw, parent_rate); 1795 clk_pm_runtime_put(core); 1796 } 1797 return rate; 1798 } 1799 1800 /** 1801 * __clk_recalc_rates 1802 * @core: first clk in the subtree 1803 * @update_req: Whether req_rate should be updated with the new rate 1804 * @msg: notification type (see include/linux/clk.h) 1805 * 1806 * Walks the subtree of clks starting with clk and recalculates rates as it 1807 * goes. Note that if a clk does not implement the .recalc_rate callback then 1808 * it is assumed that the clock will take on the rate of its parent. 1809 * 1810 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1811 * if necessary. 1812 */ 1813 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1814 unsigned long msg) 1815 { 1816 unsigned long old_rate; 1817 unsigned long parent_rate = 0; 1818 struct clk_core *child; 1819 1820 lockdep_assert_held(&prepare_lock); 1821 1822 old_rate = core->rate; 1823 1824 if (core->parent) 1825 parent_rate = core->parent->rate; 1826 1827 core->rate = clk_recalc(core, parent_rate); 1828 if (update_req) 1829 core->req_rate = core->rate; 1830 1831 /* 1832 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1833 * & ABORT_RATE_CHANGE notifiers 1834 */ 1835 if (core->notifier_count && msg) 1836 __clk_notify(core, msg, old_rate, core->rate); 1837 1838 hlist_for_each_entry(child, &core->children, child_node) 1839 __clk_recalc_rates(child, update_req, msg); 1840 } 1841 1842 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1843 { 1844 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1845 __clk_recalc_rates(core, false, 0); 1846 1847 return clk_core_get_rate_nolock(core); 1848 } 1849 1850 /** 1851 * clk_get_rate - return the rate of clk 1852 * @clk: the clk whose rate is being returned 1853 * 1854 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1855 * is set, which means a recalc_rate will be issued. Can be called regardless of 1856 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1857 * 0. 1858 */ 1859 unsigned long clk_get_rate(struct clk *clk) 1860 { 1861 unsigned long rate; 1862 1863 if (!clk) 1864 return 0; 1865 1866 clk_prepare_lock(); 1867 rate = clk_core_get_rate_recalc(clk->core); 1868 clk_prepare_unlock(); 1869 1870 return rate; 1871 } 1872 EXPORT_SYMBOL_GPL(clk_get_rate); 1873 1874 static int clk_fetch_parent_index(struct clk_core *core, 1875 struct clk_core *parent) 1876 { 1877 int i; 1878 1879 if (!parent) 1880 return -EINVAL; 1881 1882 for (i = 0; i < core->num_parents; i++) { 1883 /* Found it first try! */ 1884 if (core->parents[i].core == parent) 1885 return i; 1886 1887 /* Something else is here, so keep looking */ 1888 if (core->parents[i].core) 1889 continue; 1890 1891 /* Maybe core hasn't been cached but the hw is all we know? */ 1892 if (core->parents[i].hw) { 1893 if (core->parents[i].hw == parent->hw) 1894 break; 1895 1896 /* Didn't match, but we're expecting a clk_hw */ 1897 continue; 1898 } 1899 1900 /* Maybe it hasn't been cached (clk_set_parent() path) */ 1901 if (parent == clk_core_get(core, i)) 1902 break; 1903 1904 /* Fallback to comparing globally unique names */ 1905 if (core->parents[i].name && 1906 !strcmp(parent->name, core->parents[i].name)) 1907 break; 1908 } 1909 1910 if (i == core->num_parents) 1911 return -EINVAL; 1912 1913 core->parents[i].core = parent; 1914 return i; 1915 } 1916 1917 /** 1918 * clk_hw_get_parent_index - return the index of the parent clock 1919 * @hw: clk_hw associated with the clk being consumed 1920 * 1921 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 1922 * clock does not have a current parent. 1923 */ 1924 int clk_hw_get_parent_index(struct clk_hw *hw) 1925 { 1926 struct clk_hw *parent = clk_hw_get_parent(hw); 1927 1928 if (WARN_ON(parent == NULL)) 1929 return -EINVAL; 1930 1931 return clk_fetch_parent_index(hw->core, parent->core); 1932 } 1933 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 1934 1935 /* 1936 * Update the orphan status of @core and all its children. 1937 */ 1938 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1939 { 1940 struct clk_core *child; 1941 1942 core->orphan = is_orphan; 1943 1944 hlist_for_each_entry(child, &core->children, child_node) 1945 clk_core_update_orphan_status(child, is_orphan); 1946 } 1947 1948 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1949 { 1950 bool was_orphan = core->orphan; 1951 1952 hlist_del(&core->child_node); 1953 1954 if (new_parent) { 1955 bool becomes_orphan = new_parent->orphan; 1956 1957 /* avoid duplicate POST_RATE_CHANGE notifications */ 1958 if (new_parent->new_child == core) 1959 new_parent->new_child = NULL; 1960 1961 hlist_add_head(&core->child_node, &new_parent->children); 1962 1963 if (was_orphan != becomes_orphan) 1964 clk_core_update_orphan_status(core, becomes_orphan); 1965 } else { 1966 hlist_add_head(&core->child_node, &clk_orphan_list); 1967 if (!was_orphan) 1968 clk_core_update_orphan_status(core, true); 1969 } 1970 1971 core->parent = new_parent; 1972 } 1973 1974 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1975 struct clk_core *parent) 1976 { 1977 unsigned long flags; 1978 struct clk_core *old_parent = core->parent; 1979 1980 /* 1981 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1982 * 1983 * 2. Migrate prepare state between parents and prevent race with 1984 * clk_enable(). 1985 * 1986 * If the clock is not prepared, then a race with 1987 * clk_enable/disable() is impossible since we already have the 1988 * prepare lock (future calls to clk_enable() need to be preceded by 1989 * a clk_prepare()). 1990 * 1991 * If the clock is prepared, migrate the prepared state to the new 1992 * parent and also protect against a race with clk_enable() by 1993 * forcing the clock and the new parent on. This ensures that all 1994 * future calls to clk_enable() are practically NOPs with respect to 1995 * hardware and software states. 1996 * 1997 * See also: Comment for clk_set_parent() below. 1998 */ 1999 2000 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 2001 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2002 clk_core_prepare_enable(old_parent); 2003 clk_core_prepare_enable(parent); 2004 } 2005 2006 /* migrate prepare count if > 0 */ 2007 if (core->prepare_count) { 2008 clk_core_prepare_enable(parent); 2009 clk_core_enable_lock(core); 2010 } 2011 2012 /* update the clk tree topology */ 2013 flags = clk_enable_lock(); 2014 clk_reparent(core, parent); 2015 clk_enable_unlock(flags); 2016 2017 return old_parent; 2018 } 2019 2020 static void __clk_set_parent_after(struct clk_core *core, 2021 struct clk_core *parent, 2022 struct clk_core *old_parent) 2023 { 2024 /* 2025 * Finish the migration of prepare state and undo the changes done 2026 * for preventing a race with clk_enable(). 2027 */ 2028 if (core->prepare_count) { 2029 clk_core_disable_lock(core); 2030 clk_core_disable_unprepare(old_parent); 2031 } 2032 2033 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2034 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2035 clk_core_disable_unprepare(parent); 2036 clk_core_disable_unprepare(old_parent); 2037 } 2038 } 2039 2040 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2041 u8 p_index) 2042 { 2043 unsigned long flags; 2044 int ret = 0; 2045 struct clk_core *old_parent; 2046 2047 old_parent = __clk_set_parent_before(core, parent); 2048 2049 trace_clk_set_parent(core, parent); 2050 2051 /* change clock input source */ 2052 if (parent && core->ops->set_parent) 2053 ret = core->ops->set_parent(core->hw, p_index); 2054 2055 trace_clk_set_parent_complete(core, parent); 2056 2057 if (ret) { 2058 flags = clk_enable_lock(); 2059 clk_reparent(core, old_parent); 2060 clk_enable_unlock(flags); 2061 2062 __clk_set_parent_after(core, old_parent, parent); 2063 2064 return ret; 2065 } 2066 2067 __clk_set_parent_after(core, parent, old_parent); 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * __clk_speculate_rates 2074 * @core: first clk in the subtree 2075 * @parent_rate: the "future" rate of clk's parent 2076 * 2077 * Walks the subtree of clks starting with clk, speculating rates as it 2078 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2079 * 2080 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2081 * pre-rate change notifications and returns early if no clks in the 2082 * subtree have subscribed to the notifications. Note that if a clk does not 2083 * implement the .recalc_rate callback then it is assumed that the clock will 2084 * take on the rate of its parent. 2085 */ 2086 static int __clk_speculate_rates(struct clk_core *core, 2087 unsigned long parent_rate) 2088 { 2089 struct clk_core *child; 2090 unsigned long new_rate; 2091 int ret = NOTIFY_DONE; 2092 2093 lockdep_assert_held(&prepare_lock); 2094 2095 new_rate = clk_recalc(core, parent_rate); 2096 2097 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2098 if (core->notifier_count) 2099 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2100 2101 if (ret & NOTIFY_STOP_MASK) { 2102 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2103 __func__, core->name, ret); 2104 goto out; 2105 } 2106 2107 hlist_for_each_entry(child, &core->children, child_node) { 2108 ret = __clk_speculate_rates(child, new_rate); 2109 if (ret & NOTIFY_STOP_MASK) 2110 break; 2111 } 2112 2113 out: 2114 return ret; 2115 } 2116 2117 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2118 struct clk_core *new_parent, u8 p_index) 2119 { 2120 struct clk_core *child; 2121 2122 core->new_rate = new_rate; 2123 core->new_parent = new_parent; 2124 core->new_parent_index = p_index; 2125 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2126 core->new_child = NULL; 2127 if (new_parent && new_parent != core->parent) 2128 new_parent->new_child = core; 2129 2130 hlist_for_each_entry(child, &core->children, child_node) { 2131 child->new_rate = clk_recalc(child, new_rate); 2132 clk_calc_subtree(child, child->new_rate, NULL, 0); 2133 } 2134 } 2135 2136 /* 2137 * calculate the new rates returning the topmost clock that has to be 2138 * changed. 2139 */ 2140 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2141 unsigned long rate) 2142 { 2143 struct clk_core *top = core; 2144 struct clk_core *old_parent, *parent; 2145 unsigned long best_parent_rate = 0; 2146 unsigned long new_rate; 2147 unsigned long min_rate; 2148 unsigned long max_rate; 2149 int p_index = 0; 2150 long ret; 2151 2152 /* sanity */ 2153 if (IS_ERR_OR_NULL(core)) 2154 return NULL; 2155 2156 /* save parent rate, if it exists */ 2157 parent = old_parent = core->parent; 2158 if (parent) 2159 best_parent_rate = parent->rate; 2160 2161 clk_core_get_boundaries(core, &min_rate, &max_rate); 2162 2163 /* find the closest rate and parent clk/rate */ 2164 if (clk_core_can_round(core)) { 2165 struct clk_rate_request req; 2166 2167 clk_core_init_rate_req(core, &req, rate); 2168 2169 trace_clk_rate_request_start(&req); 2170 2171 ret = clk_core_determine_round_nolock(core, &req); 2172 if (ret < 0) 2173 return NULL; 2174 2175 trace_clk_rate_request_done(&req); 2176 2177 best_parent_rate = req.best_parent_rate; 2178 new_rate = req.rate; 2179 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2180 2181 if (new_rate < min_rate || new_rate > max_rate) 2182 return NULL; 2183 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2184 /* pass-through clock without adjustable parent */ 2185 core->new_rate = core->rate; 2186 return NULL; 2187 } else { 2188 /* pass-through clock with adjustable parent */ 2189 top = clk_calc_new_rates(parent, rate); 2190 new_rate = parent->new_rate; 2191 goto out; 2192 } 2193 2194 /* some clocks must be gated to change parent */ 2195 if (parent != old_parent && 2196 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2197 pr_debug("%s: %s not gated but wants to reparent\n", 2198 __func__, core->name); 2199 return NULL; 2200 } 2201 2202 /* try finding the new parent index */ 2203 if (parent && core->num_parents > 1) { 2204 p_index = clk_fetch_parent_index(core, parent); 2205 if (p_index < 0) { 2206 pr_debug("%s: clk %s can not be parent of clk %s\n", 2207 __func__, parent->name, core->name); 2208 return NULL; 2209 } 2210 } 2211 2212 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2213 best_parent_rate != parent->rate) 2214 top = clk_calc_new_rates(parent, best_parent_rate); 2215 2216 out: 2217 clk_calc_subtree(core, new_rate, parent, p_index); 2218 2219 return top; 2220 } 2221 2222 /* 2223 * Notify about rate changes in a subtree. Always walk down the whole tree 2224 * so that in case of an error we can walk down the whole tree again and 2225 * abort the change. 2226 */ 2227 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2228 unsigned long event) 2229 { 2230 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2231 int ret = NOTIFY_DONE; 2232 2233 if (core->rate == core->new_rate) 2234 return NULL; 2235 2236 if (core->notifier_count) { 2237 ret = __clk_notify(core, event, core->rate, core->new_rate); 2238 if (ret & NOTIFY_STOP_MASK) 2239 fail_clk = core; 2240 } 2241 2242 hlist_for_each_entry(child, &core->children, child_node) { 2243 /* Skip children who will be reparented to another clock */ 2244 if (child->new_parent && child->new_parent != core) 2245 continue; 2246 tmp_clk = clk_propagate_rate_change(child, event); 2247 if (tmp_clk) 2248 fail_clk = tmp_clk; 2249 } 2250 2251 /* handle the new child who might not be in core->children yet */ 2252 if (core->new_child) { 2253 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2254 if (tmp_clk) 2255 fail_clk = tmp_clk; 2256 } 2257 2258 return fail_clk; 2259 } 2260 2261 /* 2262 * walk down a subtree and set the new rates notifying the rate 2263 * change on the way 2264 */ 2265 static void clk_change_rate(struct clk_core *core) 2266 { 2267 struct clk_core *child; 2268 struct hlist_node *tmp; 2269 unsigned long old_rate; 2270 unsigned long best_parent_rate = 0; 2271 bool skip_set_rate = false; 2272 struct clk_core *old_parent; 2273 struct clk_core *parent = NULL; 2274 2275 old_rate = core->rate; 2276 2277 if (core->new_parent) { 2278 parent = core->new_parent; 2279 best_parent_rate = core->new_parent->rate; 2280 } else if (core->parent) { 2281 parent = core->parent; 2282 best_parent_rate = core->parent->rate; 2283 } 2284 2285 if (clk_pm_runtime_get(core)) 2286 return; 2287 2288 if (core->flags & CLK_SET_RATE_UNGATE) { 2289 clk_core_prepare(core); 2290 clk_core_enable_lock(core); 2291 } 2292 2293 if (core->new_parent && core->new_parent != core->parent) { 2294 old_parent = __clk_set_parent_before(core, core->new_parent); 2295 trace_clk_set_parent(core, core->new_parent); 2296 2297 if (core->ops->set_rate_and_parent) { 2298 skip_set_rate = true; 2299 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2300 best_parent_rate, 2301 core->new_parent_index); 2302 } else if (core->ops->set_parent) { 2303 core->ops->set_parent(core->hw, core->new_parent_index); 2304 } 2305 2306 trace_clk_set_parent_complete(core, core->new_parent); 2307 __clk_set_parent_after(core, core->new_parent, old_parent); 2308 } 2309 2310 if (core->flags & CLK_OPS_PARENT_ENABLE) 2311 clk_core_prepare_enable(parent); 2312 2313 trace_clk_set_rate(core, core->new_rate); 2314 2315 if (!skip_set_rate && core->ops->set_rate) 2316 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2317 2318 trace_clk_set_rate_complete(core, core->new_rate); 2319 2320 core->rate = clk_recalc(core, best_parent_rate); 2321 2322 if (core->flags & CLK_SET_RATE_UNGATE) { 2323 clk_core_disable_lock(core); 2324 clk_core_unprepare(core); 2325 } 2326 2327 if (core->flags & CLK_OPS_PARENT_ENABLE) 2328 clk_core_disable_unprepare(parent); 2329 2330 if (core->notifier_count && old_rate != core->rate) 2331 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2332 2333 if (core->flags & CLK_RECALC_NEW_RATES) 2334 (void)clk_calc_new_rates(core, core->new_rate); 2335 2336 /* 2337 * Use safe iteration, as change_rate can actually swap parents 2338 * for certain clock types. 2339 */ 2340 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2341 /* Skip children who will be reparented to another clock */ 2342 if (child->new_parent && child->new_parent != core) 2343 continue; 2344 clk_change_rate(child); 2345 } 2346 2347 /* handle the new child who might not be in core->children yet */ 2348 if (core->new_child) 2349 clk_change_rate(core->new_child); 2350 2351 clk_pm_runtime_put(core); 2352 } 2353 2354 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2355 unsigned long req_rate) 2356 { 2357 int ret, cnt; 2358 struct clk_rate_request req; 2359 2360 lockdep_assert_held(&prepare_lock); 2361 2362 if (!core) 2363 return 0; 2364 2365 /* simulate what the rate would be if it could be freely set */ 2366 cnt = clk_core_rate_nuke_protect(core); 2367 if (cnt < 0) 2368 return cnt; 2369 2370 clk_core_init_rate_req(core, &req, req_rate); 2371 2372 trace_clk_rate_request_start(&req); 2373 2374 ret = clk_core_round_rate_nolock(core, &req); 2375 2376 trace_clk_rate_request_done(&req); 2377 2378 /* restore the protection */ 2379 clk_core_rate_restore_protect(core, cnt); 2380 2381 return ret ? 0 : req.rate; 2382 } 2383 2384 static int clk_core_set_rate_nolock(struct clk_core *core, 2385 unsigned long req_rate) 2386 { 2387 struct clk_core *top, *fail_clk; 2388 unsigned long rate; 2389 int ret; 2390 2391 if (!core) 2392 return 0; 2393 2394 rate = clk_core_req_round_rate_nolock(core, req_rate); 2395 2396 /* bail early if nothing to do */ 2397 if (rate == clk_core_get_rate_nolock(core)) 2398 return 0; 2399 2400 /* fail on a direct rate set of a protected provider */ 2401 if (clk_core_rate_is_protected(core)) 2402 return -EBUSY; 2403 2404 /* calculate new rates and get the topmost changed clock */ 2405 top = clk_calc_new_rates(core, req_rate); 2406 if (!top) 2407 return -EINVAL; 2408 2409 ret = clk_pm_runtime_get(core); 2410 if (ret) 2411 return ret; 2412 2413 /* notify that we are about to change rates */ 2414 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2415 if (fail_clk) { 2416 pr_debug("%s: failed to set %s rate\n", __func__, 2417 fail_clk->name); 2418 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2419 ret = -EBUSY; 2420 goto err; 2421 } 2422 2423 /* change the rates */ 2424 clk_change_rate(top); 2425 2426 core->req_rate = req_rate; 2427 err: 2428 clk_pm_runtime_put(core); 2429 2430 return ret; 2431 } 2432 2433 /** 2434 * clk_set_rate - specify a new rate for clk 2435 * @clk: the clk whose rate is being changed 2436 * @rate: the new rate for clk 2437 * 2438 * In the simplest case clk_set_rate will only adjust the rate of clk. 2439 * 2440 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2441 * propagate up to clk's parent; whether or not this happens depends on the 2442 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2443 * after calling .round_rate then upstream parent propagation is ignored. If 2444 * *parent_rate comes back with a new rate for clk's parent then we propagate 2445 * up to clk's parent and set its rate. Upward propagation will continue 2446 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2447 * .round_rate stops requesting changes to clk's parent_rate. 2448 * 2449 * Rate changes are accomplished via tree traversal that also recalculates the 2450 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2451 * 2452 * Returns 0 on success, -EERROR otherwise. 2453 */ 2454 int clk_set_rate(struct clk *clk, unsigned long rate) 2455 { 2456 int ret; 2457 2458 if (!clk) 2459 return 0; 2460 2461 /* prevent racing with updates to the clock topology */ 2462 clk_prepare_lock(); 2463 2464 if (clk->exclusive_count) 2465 clk_core_rate_unprotect(clk->core); 2466 2467 ret = clk_core_set_rate_nolock(clk->core, rate); 2468 2469 if (clk->exclusive_count) 2470 clk_core_rate_protect(clk->core); 2471 2472 clk_prepare_unlock(); 2473 2474 return ret; 2475 } 2476 EXPORT_SYMBOL_GPL(clk_set_rate); 2477 2478 /** 2479 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2480 * @clk: the clk whose rate is being changed 2481 * @rate: the new rate for clk 2482 * 2483 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2484 * within a critical section 2485 * 2486 * This can be used initially to ensure that at least 1 consumer is 2487 * satisfied when several consumers are competing for exclusivity over the 2488 * same clock provider. 2489 * 2490 * The exclusivity is not applied if setting the rate failed. 2491 * 2492 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2493 * clk_rate_exclusive_put(). 2494 * 2495 * Returns 0 on success, -EERROR otherwise. 2496 */ 2497 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2498 { 2499 int ret; 2500 2501 if (!clk) 2502 return 0; 2503 2504 /* prevent racing with updates to the clock topology */ 2505 clk_prepare_lock(); 2506 2507 /* 2508 * The temporary protection removal is not here, on purpose 2509 * This function is meant to be used instead of clk_rate_protect, 2510 * so before the consumer code path protect the clock provider 2511 */ 2512 2513 ret = clk_core_set_rate_nolock(clk->core, rate); 2514 if (!ret) { 2515 clk_core_rate_protect(clk->core); 2516 clk->exclusive_count++; 2517 } 2518 2519 clk_prepare_unlock(); 2520 2521 return ret; 2522 } 2523 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2524 2525 static int clk_set_rate_range_nolock(struct clk *clk, 2526 unsigned long min, 2527 unsigned long max) 2528 { 2529 int ret = 0; 2530 unsigned long old_min, old_max, rate; 2531 2532 lockdep_assert_held(&prepare_lock); 2533 2534 if (!clk) 2535 return 0; 2536 2537 trace_clk_set_rate_range(clk->core, min, max); 2538 2539 if (min > max) { 2540 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2541 __func__, clk->core->name, clk->dev_id, clk->con_id, 2542 min, max); 2543 return -EINVAL; 2544 } 2545 2546 if (clk->exclusive_count) 2547 clk_core_rate_unprotect(clk->core); 2548 2549 /* Save the current values in case we need to rollback the change */ 2550 old_min = clk->min_rate; 2551 old_max = clk->max_rate; 2552 clk->min_rate = min; 2553 clk->max_rate = max; 2554 2555 if (!clk_core_check_boundaries(clk->core, min, max)) { 2556 ret = -EINVAL; 2557 goto out; 2558 } 2559 2560 rate = clk->core->req_rate; 2561 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2562 rate = clk_core_get_rate_recalc(clk->core); 2563 2564 /* 2565 * Since the boundaries have been changed, let's give the 2566 * opportunity to the provider to adjust the clock rate based on 2567 * the new boundaries. 2568 * 2569 * We also need to handle the case where the clock is currently 2570 * outside of the boundaries. Clamping the last requested rate 2571 * to the current minimum and maximum will also handle this. 2572 * 2573 * FIXME: 2574 * There is a catch. It may fail for the usual reason (clock 2575 * broken, clock protected, etc) but also because: 2576 * - round_rate() was not favorable and fell on the wrong 2577 * side of the boundary 2578 * - the determine_rate() callback does not really check for 2579 * this corner case when determining the rate 2580 */ 2581 rate = clamp(rate, min, max); 2582 ret = clk_core_set_rate_nolock(clk->core, rate); 2583 if (ret) { 2584 /* rollback the changes */ 2585 clk->min_rate = old_min; 2586 clk->max_rate = old_max; 2587 } 2588 2589 out: 2590 if (clk->exclusive_count) 2591 clk_core_rate_protect(clk->core); 2592 2593 return ret; 2594 } 2595 2596 /** 2597 * clk_set_rate_range - set a rate range for a clock source 2598 * @clk: clock source 2599 * @min: desired minimum clock rate in Hz, inclusive 2600 * @max: desired maximum clock rate in Hz, inclusive 2601 * 2602 * Return: 0 for success or negative errno on failure. 2603 */ 2604 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2605 { 2606 int ret; 2607 2608 if (!clk) 2609 return 0; 2610 2611 clk_prepare_lock(); 2612 2613 ret = clk_set_rate_range_nolock(clk, min, max); 2614 2615 clk_prepare_unlock(); 2616 2617 return ret; 2618 } 2619 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2620 2621 /** 2622 * clk_set_min_rate - set a minimum clock rate for a clock source 2623 * @clk: clock source 2624 * @rate: desired minimum clock rate in Hz, inclusive 2625 * 2626 * Returns success (0) or negative errno. 2627 */ 2628 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2629 { 2630 if (!clk) 2631 return 0; 2632 2633 trace_clk_set_min_rate(clk->core, rate); 2634 2635 return clk_set_rate_range(clk, rate, clk->max_rate); 2636 } 2637 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2638 2639 /** 2640 * clk_set_max_rate - set a maximum clock rate for a clock source 2641 * @clk: clock source 2642 * @rate: desired maximum clock rate in Hz, inclusive 2643 * 2644 * Returns success (0) or negative errno. 2645 */ 2646 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2647 { 2648 if (!clk) 2649 return 0; 2650 2651 trace_clk_set_max_rate(clk->core, rate); 2652 2653 return clk_set_rate_range(clk, clk->min_rate, rate); 2654 } 2655 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2656 2657 /** 2658 * clk_get_parent - return the parent of a clk 2659 * @clk: the clk whose parent gets returned 2660 * 2661 * Simply returns clk->parent. Returns NULL if clk is NULL. 2662 */ 2663 struct clk *clk_get_parent(struct clk *clk) 2664 { 2665 struct clk *parent; 2666 2667 if (!clk) 2668 return NULL; 2669 2670 clk_prepare_lock(); 2671 /* TODO: Create a per-user clk and change callers to call clk_put */ 2672 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2673 clk_prepare_unlock(); 2674 2675 return parent; 2676 } 2677 EXPORT_SYMBOL_GPL(clk_get_parent); 2678 2679 static struct clk_core *__clk_init_parent(struct clk_core *core) 2680 { 2681 u8 index = 0; 2682 2683 if (core->num_parents > 1 && core->ops->get_parent) 2684 index = core->ops->get_parent(core->hw); 2685 2686 return clk_core_get_parent_by_index(core, index); 2687 } 2688 2689 static void clk_core_reparent(struct clk_core *core, 2690 struct clk_core *new_parent) 2691 { 2692 clk_reparent(core, new_parent); 2693 __clk_recalc_accuracies(core); 2694 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2695 } 2696 2697 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2698 { 2699 if (!hw) 2700 return; 2701 2702 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2703 } 2704 2705 /** 2706 * clk_has_parent - check if a clock is a possible parent for another 2707 * @clk: clock source 2708 * @parent: parent clock source 2709 * 2710 * This function can be used in drivers that need to check that a clock can be 2711 * the parent of another without actually changing the parent. 2712 * 2713 * Returns true if @parent is a possible parent for @clk, false otherwise. 2714 */ 2715 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2716 { 2717 /* NULL clocks should be nops, so return success if either is NULL. */ 2718 if (!clk || !parent) 2719 return true; 2720 2721 return clk_core_has_parent(clk->core, parent->core); 2722 } 2723 EXPORT_SYMBOL_GPL(clk_has_parent); 2724 2725 static int clk_core_set_parent_nolock(struct clk_core *core, 2726 struct clk_core *parent) 2727 { 2728 int ret = 0; 2729 int p_index = 0; 2730 unsigned long p_rate = 0; 2731 2732 lockdep_assert_held(&prepare_lock); 2733 2734 if (!core) 2735 return 0; 2736 2737 if (core->parent == parent) 2738 return 0; 2739 2740 /* verify ops for multi-parent clks */ 2741 if (core->num_parents > 1 && !core->ops->set_parent) 2742 return -EPERM; 2743 2744 /* check that we are allowed to re-parent if the clock is in use */ 2745 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2746 return -EBUSY; 2747 2748 if (clk_core_rate_is_protected(core)) 2749 return -EBUSY; 2750 2751 /* try finding the new parent index */ 2752 if (parent) { 2753 p_index = clk_fetch_parent_index(core, parent); 2754 if (p_index < 0) { 2755 pr_debug("%s: clk %s can not be parent of clk %s\n", 2756 __func__, parent->name, core->name); 2757 return p_index; 2758 } 2759 p_rate = parent->rate; 2760 } 2761 2762 ret = clk_pm_runtime_get(core); 2763 if (ret) 2764 return ret; 2765 2766 /* propagate PRE_RATE_CHANGE notifications */ 2767 ret = __clk_speculate_rates(core, p_rate); 2768 2769 /* abort if a driver objects */ 2770 if (ret & NOTIFY_STOP_MASK) 2771 goto runtime_put; 2772 2773 /* do the re-parent */ 2774 ret = __clk_set_parent(core, parent, p_index); 2775 2776 /* propagate rate an accuracy recalculation accordingly */ 2777 if (ret) { 2778 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2779 } else { 2780 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2781 __clk_recalc_accuracies(core); 2782 } 2783 2784 runtime_put: 2785 clk_pm_runtime_put(core); 2786 2787 return ret; 2788 } 2789 2790 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2791 { 2792 return clk_core_set_parent_nolock(hw->core, parent->core); 2793 } 2794 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2795 2796 /** 2797 * clk_set_parent - switch the parent of a mux clk 2798 * @clk: the mux clk whose input we are switching 2799 * @parent: the new input to clk 2800 * 2801 * Re-parent clk to use parent as its new input source. If clk is in 2802 * prepared state, the clk will get enabled for the duration of this call. If 2803 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2804 * that, the reparenting is glitchy in hardware, etc), use the 2805 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2806 * 2807 * After successfully changing clk's parent clk_set_parent will update the 2808 * clk topology, sysfs topology and propagate rate recalculation via 2809 * __clk_recalc_rates. 2810 * 2811 * Returns 0 on success, -EERROR otherwise. 2812 */ 2813 int clk_set_parent(struct clk *clk, struct clk *parent) 2814 { 2815 int ret; 2816 2817 if (!clk) 2818 return 0; 2819 2820 clk_prepare_lock(); 2821 2822 if (clk->exclusive_count) 2823 clk_core_rate_unprotect(clk->core); 2824 2825 ret = clk_core_set_parent_nolock(clk->core, 2826 parent ? parent->core : NULL); 2827 2828 if (clk->exclusive_count) 2829 clk_core_rate_protect(clk->core); 2830 2831 clk_prepare_unlock(); 2832 2833 return ret; 2834 } 2835 EXPORT_SYMBOL_GPL(clk_set_parent); 2836 2837 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2838 { 2839 int ret = -EINVAL; 2840 2841 lockdep_assert_held(&prepare_lock); 2842 2843 if (!core) 2844 return 0; 2845 2846 if (clk_core_rate_is_protected(core)) 2847 return -EBUSY; 2848 2849 trace_clk_set_phase(core, degrees); 2850 2851 if (core->ops->set_phase) { 2852 ret = core->ops->set_phase(core->hw, degrees); 2853 if (!ret) 2854 core->phase = degrees; 2855 } 2856 2857 trace_clk_set_phase_complete(core, degrees); 2858 2859 return ret; 2860 } 2861 2862 /** 2863 * clk_set_phase - adjust the phase shift of a clock signal 2864 * @clk: clock signal source 2865 * @degrees: number of degrees the signal is shifted 2866 * 2867 * Shifts the phase of a clock signal by the specified 2868 * degrees. Returns 0 on success, -EERROR otherwise. 2869 * 2870 * This function makes no distinction about the input or reference 2871 * signal that we adjust the clock signal phase against. For example 2872 * phase locked-loop clock signal generators we may shift phase with 2873 * respect to feedback clock signal input, but for other cases the 2874 * clock phase may be shifted with respect to some other, unspecified 2875 * signal. 2876 * 2877 * Additionally the concept of phase shift does not propagate through 2878 * the clock tree hierarchy, which sets it apart from clock rates and 2879 * clock accuracy. A parent clock phase attribute does not have an 2880 * impact on the phase attribute of a child clock. 2881 */ 2882 int clk_set_phase(struct clk *clk, int degrees) 2883 { 2884 int ret; 2885 2886 if (!clk) 2887 return 0; 2888 2889 /* sanity check degrees */ 2890 degrees %= 360; 2891 if (degrees < 0) 2892 degrees += 360; 2893 2894 clk_prepare_lock(); 2895 2896 if (clk->exclusive_count) 2897 clk_core_rate_unprotect(clk->core); 2898 2899 ret = clk_core_set_phase_nolock(clk->core, degrees); 2900 2901 if (clk->exclusive_count) 2902 clk_core_rate_protect(clk->core); 2903 2904 clk_prepare_unlock(); 2905 2906 return ret; 2907 } 2908 EXPORT_SYMBOL_GPL(clk_set_phase); 2909 2910 static int clk_core_get_phase(struct clk_core *core) 2911 { 2912 int ret; 2913 2914 lockdep_assert_held(&prepare_lock); 2915 if (!core->ops->get_phase) 2916 return 0; 2917 2918 /* Always try to update cached phase if possible */ 2919 ret = core->ops->get_phase(core->hw); 2920 if (ret >= 0) 2921 core->phase = ret; 2922 2923 return ret; 2924 } 2925 2926 /** 2927 * clk_get_phase - return the phase shift of a clock signal 2928 * @clk: clock signal source 2929 * 2930 * Returns the phase shift of a clock node in degrees, otherwise returns 2931 * -EERROR. 2932 */ 2933 int clk_get_phase(struct clk *clk) 2934 { 2935 int ret; 2936 2937 if (!clk) 2938 return 0; 2939 2940 clk_prepare_lock(); 2941 ret = clk_core_get_phase(clk->core); 2942 clk_prepare_unlock(); 2943 2944 return ret; 2945 } 2946 EXPORT_SYMBOL_GPL(clk_get_phase); 2947 2948 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 2949 { 2950 /* Assume a default value of 50% */ 2951 core->duty.num = 1; 2952 core->duty.den = 2; 2953 } 2954 2955 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 2956 2957 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 2958 { 2959 struct clk_duty *duty = &core->duty; 2960 int ret = 0; 2961 2962 if (!core->ops->get_duty_cycle) 2963 return clk_core_update_duty_cycle_parent_nolock(core); 2964 2965 ret = core->ops->get_duty_cycle(core->hw, duty); 2966 if (ret) 2967 goto reset; 2968 2969 /* Don't trust the clock provider too much */ 2970 if (duty->den == 0 || duty->num > duty->den) { 2971 ret = -EINVAL; 2972 goto reset; 2973 } 2974 2975 return 0; 2976 2977 reset: 2978 clk_core_reset_duty_cycle_nolock(core); 2979 return ret; 2980 } 2981 2982 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 2983 { 2984 int ret = 0; 2985 2986 if (core->parent && 2987 core->flags & CLK_DUTY_CYCLE_PARENT) { 2988 ret = clk_core_update_duty_cycle_nolock(core->parent); 2989 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 2990 } else { 2991 clk_core_reset_duty_cycle_nolock(core); 2992 } 2993 2994 return ret; 2995 } 2996 2997 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 2998 struct clk_duty *duty); 2999 3000 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 3001 struct clk_duty *duty) 3002 { 3003 int ret; 3004 3005 lockdep_assert_held(&prepare_lock); 3006 3007 if (clk_core_rate_is_protected(core)) 3008 return -EBUSY; 3009 3010 trace_clk_set_duty_cycle(core, duty); 3011 3012 if (!core->ops->set_duty_cycle) 3013 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3014 3015 ret = core->ops->set_duty_cycle(core->hw, duty); 3016 if (!ret) 3017 memcpy(&core->duty, duty, sizeof(*duty)); 3018 3019 trace_clk_set_duty_cycle_complete(core, duty); 3020 3021 return ret; 3022 } 3023 3024 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3025 struct clk_duty *duty) 3026 { 3027 int ret = 0; 3028 3029 if (core->parent && 3030 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3031 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3032 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3033 } 3034 3035 return ret; 3036 } 3037 3038 /** 3039 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3040 * @clk: clock signal source 3041 * @num: numerator of the duty cycle ratio to be applied 3042 * @den: denominator of the duty cycle ratio to be applied 3043 * 3044 * Apply the duty cycle ratio if the ratio is valid and the clock can 3045 * perform this operation 3046 * 3047 * Returns (0) on success, a negative errno otherwise. 3048 */ 3049 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3050 { 3051 int ret; 3052 struct clk_duty duty; 3053 3054 if (!clk) 3055 return 0; 3056 3057 /* sanity check the ratio */ 3058 if (den == 0 || num > den) 3059 return -EINVAL; 3060 3061 duty.num = num; 3062 duty.den = den; 3063 3064 clk_prepare_lock(); 3065 3066 if (clk->exclusive_count) 3067 clk_core_rate_unprotect(clk->core); 3068 3069 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3070 3071 if (clk->exclusive_count) 3072 clk_core_rate_protect(clk->core); 3073 3074 clk_prepare_unlock(); 3075 3076 return ret; 3077 } 3078 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3079 3080 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3081 unsigned int scale) 3082 { 3083 struct clk_duty *duty = &core->duty; 3084 int ret; 3085 3086 clk_prepare_lock(); 3087 3088 ret = clk_core_update_duty_cycle_nolock(core); 3089 if (!ret) 3090 ret = mult_frac(scale, duty->num, duty->den); 3091 3092 clk_prepare_unlock(); 3093 3094 return ret; 3095 } 3096 3097 /** 3098 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3099 * @clk: clock signal source 3100 * @scale: scaling factor to be applied to represent the ratio as an integer 3101 * 3102 * Returns the duty cycle ratio of a clock node multiplied by the provided 3103 * scaling factor, or negative errno on error. 3104 */ 3105 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3106 { 3107 if (!clk) 3108 return 0; 3109 3110 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3111 } 3112 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3113 3114 /** 3115 * clk_is_match - check if two clk's point to the same hardware clock 3116 * @p: clk compared against q 3117 * @q: clk compared against p 3118 * 3119 * Returns true if the two struct clk pointers both point to the same hardware 3120 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3121 * share the same struct clk_core object. 3122 * 3123 * Returns false otherwise. Note that two NULL clks are treated as matching. 3124 */ 3125 bool clk_is_match(const struct clk *p, const struct clk *q) 3126 { 3127 /* trivial case: identical struct clk's or both NULL */ 3128 if (p == q) 3129 return true; 3130 3131 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3132 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3133 if (p->core == q->core) 3134 return true; 3135 3136 return false; 3137 } 3138 EXPORT_SYMBOL_GPL(clk_is_match); 3139 3140 /*** debugfs support ***/ 3141 3142 #ifdef CONFIG_DEBUG_FS 3143 #include <linux/debugfs.h> 3144 3145 static struct dentry *rootdir; 3146 static int inited = 0; 3147 static DEFINE_MUTEX(clk_debug_lock); 3148 static HLIST_HEAD(clk_debug_list); 3149 3150 static struct hlist_head *orphan_list[] = { 3151 &clk_orphan_list, 3152 NULL, 3153 }; 3154 3155 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3156 int level) 3157 { 3158 int phase; 3159 3160 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ", 3161 level * 3 + 1, "", 3162 30 - level * 3, c->name, 3163 c->enable_count, c->prepare_count, c->protect_count, 3164 clk_core_get_rate_recalc(c), 3165 clk_core_get_accuracy_recalc(c)); 3166 3167 phase = clk_core_get_phase(c); 3168 if (phase >= 0) 3169 seq_printf(s, "%5d", phase); 3170 else 3171 seq_puts(s, "-----"); 3172 3173 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3174 3175 if (c->ops->is_enabled) 3176 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N'); 3177 else if (!c->ops->enable) 3178 seq_printf(s, " %9c\n", 'Y'); 3179 else 3180 seq_printf(s, " %9c\n", '?'); 3181 } 3182 3183 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3184 int level) 3185 { 3186 struct clk_core *child; 3187 3188 clk_pm_runtime_get(c); 3189 clk_summary_show_one(s, c, level); 3190 clk_pm_runtime_put(c); 3191 3192 hlist_for_each_entry(child, &c->children, child_node) 3193 clk_summary_show_subtree(s, child, level + 1); 3194 } 3195 3196 static int clk_summary_show(struct seq_file *s, void *data) 3197 { 3198 struct clk_core *c; 3199 struct hlist_head **lists = s->private; 3200 3201 seq_puts(s, " enable prepare protect duty hardware\n"); 3202 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n"); 3203 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n"); 3204 3205 clk_prepare_lock(); 3206 3207 for (; *lists; lists++) 3208 hlist_for_each_entry(c, *lists, child_node) 3209 clk_summary_show_subtree(s, c, 0); 3210 3211 clk_prepare_unlock(); 3212 3213 return 0; 3214 } 3215 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3216 3217 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3218 { 3219 int phase; 3220 unsigned long min_rate, max_rate; 3221 3222 clk_core_get_boundaries(c, &min_rate, &max_rate); 3223 3224 /* This should be JSON format, i.e. elements separated with a comma */ 3225 seq_printf(s, "\"%s\": { ", c->name); 3226 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3227 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3228 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3229 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3230 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3231 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3232 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3233 phase = clk_core_get_phase(c); 3234 if (phase >= 0) 3235 seq_printf(s, "\"phase\": %d,", phase); 3236 seq_printf(s, "\"duty_cycle\": %u", 3237 clk_core_get_scaled_duty_cycle(c, 100000)); 3238 } 3239 3240 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3241 { 3242 struct clk_core *child; 3243 3244 clk_dump_one(s, c, level); 3245 3246 hlist_for_each_entry(child, &c->children, child_node) { 3247 seq_putc(s, ','); 3248 clk_dump_subtree(s, child, level + 1); 3249 } 3250 3251 seq_putc(s, '}'); 3252 } 3253 3254 static int clk_dump_show(struct seq_file *s, void *data) 3255 { 3256 struct clk_core *c; 3257 bool first_node = true; 3258 struct hlist_head **lists = s->private; 3259 3260 seq_putc(s, '{'); 3261 clk_prepare_lock(); 3262 3263 for (; *lists; lists++) { 3264 hlist_for_each_entry(c, *lists, child_node) { 3265 if (!first_node) 3266 seq_putc(s, ','); 3267 first_node = false; 3268 clk_dump_subtree(s, c, 0); 3269 } 3270 } 3271 3272 clk_prepare_unlock(); 3273 3274 seq_puts(s, "}\n"); 3275 return 0; 3276 } 3277 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3278 3279 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3280 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3281 /* 3282 * This can be dangerous, therefore don't provide any real compile time 3283 * configuration option for this feature. 3284 * People who want to use this will need to modify the source code directly. 3285 */ 3286 static int clk_rate_set(void *data, u64 val) 3287 { 3288 struct clk_core *core = data; 3289 int ret; 3290 3291 clk_prepare_lock(); 3292 ret = clk_core_set_rate_nolock(core, val); 3293 clk_prepare_unlock(); 3294 3295 return ret; 3296 } 3297 3298 #define clk_rate_mode 0644 3299 3300 static int clk_prepare_enable_set(void *data, u64 val) 3301 { 3302 struct clk_core *core = data; 3303 int ret = 0; 3304 3305 if (val) 3306 ret = clk_prepare_enable(core->hw->clk); 3307 else 3308 clk_disable_unprepare(core->hw->clk); 3309 3310 return ret; 3311 } 3312 3313 static int clk_prepare_enable_get(void *data, u64 *val) 3314 { 3315 struct clk_core *core = data; 3316 3317 *val = core->enable_count && core->prepare_count; 3318 return 0; 3319 } 3320 3321 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3322 clk_prepare_enable_set, "%llu\n"); 3323 3324 #else 3325 #define clk_rate_set NULL 3326 #define clk_rate_mode 0444 3327 #endif 3328 3329 static int clk_rate_get(void *data, u64 *val) 3330 { 3331 struct clk_core *core = data; 3332 3333 clk_prepare_lock(); 3334 *val = clk_core_get_rate_recalc(core); 3335 clk_prepare_unlock(); 3336 3337 return 0; 3338 } 3339 3340 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3341 3342 static const struct { 3343 unsigned long flag; 3344 const char *name; 3345 } clk_flags[] = { 3346 #define ENTRY(f) { f, #f } 3347 ENTRY(CLK_SET_RATE_GATE), 3348 ENTRY(CLK_SET_PARENT_GATE), 3349 ENTRY(CLK_SET_RATE_PARENT), 3350 ENTRY(CLK_IGNORE_UNUSED), 3351 ENTRY(CLK_GET_RATE_NOCACHE), 3352 ENTRY(CLK_SET_RATE_NO_REPARENT), 3353 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3354 ENTRY(CLK_RECALC_NEW_RATES), 3355 ENTRY(CLK_SET_RATE_UNGATE), 3356 ENTRY(CLK_IS_CRITICAL), 3357 ENTRY(CLK_OPS_PARENT_ENABLE), 3358 ENTRY(CLK_DUTY_CYCLE_PARENT), 3359 #undef ENTRY 3360 }; 3361 3362 static int clk_flags_show(struct seq_file *s, void *data) 3363 { 3364 struct clk_core *core = s->private; 3365 unsigned long flags = core->flags; 3366 unsigned int i; 3367 3368 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3369 if (flags & clk_flags[i].flag) { 3370 seq_printf(s, "%s\n", clk_flags[i].name); 3371 flags &= ~clk_flags[i].flag; 3372 } 3373 } 3374 if (flags) { 3375 /* Unknown flags */ 3376 seq_printf(s, "0x%lx\n", flags); 3377 } 3378 3379 return 0; 3380 } 3381 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3382 3383 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3384 unsigned int i, char terminator) 3385 { 3386 struct clk_core *parent; 3387 3388 /* 3389 * Go through the following options to fetch a parent's name. 3390 * 3391 * 1. Fetch the registered parent clock and use its name 3392 * 2. Use the global (fallback) name if specified 3393 * 3. Use the local fw_name if provided 3394 * 4. Fetch parent clock's clock-output-name if DT index was set 3395 * 3396 * This may still fail in some cases, such as when the parent is 3397 * specified directly via a struct clk_hw pointer, but it isn't 3398 * registered (yet). 3399 */ 3400 parent = clk_core_get_parent_by_index(core, i); 3401 if (parent) 3402 seq_puts(s, parent->name); 3403 else if (core->parents[i].name) 3404 seq_puts(s, core->parents[i].name); 3405 else if (core->parents[i].fw_name) 3406 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3407 else if (core->parents[i].index >= 0) 3408 seq_puts(s, 3409 of_clk_get_parent_name(core->of_node, 3410 core->parents[i].index)); 3411 else 3412 seq_puts(s, "(missing)"); 3413 3414 seq_putc(s, terminator); 3415 } 3416 3417 static int possible_parents_show(struct seq_file *s, void *data) 3418 { 3419 struct clk_core *core = s->private; 3420 int i; 3421 3422 for (i = 0; i < core->num_parents - 1; i++) 3423 possible_parent_show(s, core, i, ' '); 3424 3425 possible_parent_show(s, core, i, '\n'); 3426 3427 return 0; 3428 } 3429 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3430 3431 static int current_parent_show(struct seq_file *s, void *data) 3432 { 3433 struct clk_core *core = s->private; 3434 3435 if (core->parent) 3436 seq_printf(s, "%s\n", core->parent->name); 3437 3438 return 0; 3439 } 3440 DEFINE_SHOW_ATTRIBUTE(current_parent); 3441 3442 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3443 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3444 size_t count, loff_t *ppos) 3445 { 3446 struct seq_file *s = file->private_data; 3447 struct clk_core *core = s->private; 3448 struct clk_core *parent; 3449 u8 idx; 3450 int err; 3451 3452 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3453 if (err < 0) 3454 return err; 3455 3456 parent = clk_core_get_parent_by_index(core, idx); 3457 if (!parent) 3458 return -ENOENT; 3459 3460 clk_prepare_lock(); 3461 err = clk_core_set_parent_nolock(core, parent); 3462 clk_prepare_unlock(); 3463 if (err) 3464 return err; 3465 3466 return count; 3467 } 3468 3469 static const struct file_operations current_parent_rw_fops = { 3470 .open = current_parent_open, 3471 .write = current_parent_write, 3472 .read = seq_read, 3473 .llseek = seq_lseek, 3474 .release = single_release, 3475 }; 3476 #endif 3477 3478 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3479 { 3480 struct clk_core *core = s->private; 3481 struct clk_duty *duty = &core->duty; 3482 3483 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3484 3485 return 0; 3486 } 3487 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3488 3489 static int clk_min_rate_show(struct seq_file *s, void *data) 3490 { 3491 struct clk_core *core = s->private; 3492 unsigned long min_rate, max_rate; 3493 3494 clk_prepare_lock(); 3495 clk_core_get_boundaries(core, &min_rate, &max_rate); 3496 clk_prepare_unlock(); 3497 seq_printf(s, "%lu\n", min_rate); 3498 3499 return 0; 3500 } 3501 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3502 3503 static int clk_max_rate_show(struct seq_file *s, void *data) 3504 { 3505 struct clk_core *core = s->private; 3506 unsigned long min_rate, max_rate; 3507 3508 clk_prepare_lock(); 3509 clk_core_get_boundaries(core, &min_rate, &max_rate); 3510 clk_prepare_unlock(); 3511 seq_printf(s, "%lu\n", max_rate); 3512 3513 return 0; 3514 } 3515 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3516 3517 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3518 { 3519 struct dentry *root; 3520 3521 if (!core || !pdentry) 3522 return; 3523 3524 root = debugfs_create_dir(core->name, pdentry); 3525 core->dentry = root; 3526 3527 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3528 &clk_rate_fops); 3529 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3530 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3531 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3532 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3533 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3534 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3535 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3536 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3537 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3538 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3539 &clk_duty_cycle_fops); 3540 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3541 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3542 &clk_prepare_enable_fops); 3543 3544 if (core->num_parents > 1) 3545 debugfs_create_file("clk_parent", 0644, root, core, 3546 ¤t_parent_rw_fops); 3547 else 3548 #endif 3549 if (core->num_parents > 0) 3550 debugfs_create_file("clk_parent", 0444, root, core, 3551 ¤t_parent_fops); 3552 3553 if (core->num_parents > 1) 3554 debugfs_create_file("clk_possible_parents", 0444, root, core, 3555 &possible_parents_fops); 3556 3557 if (core->ops->debug_init) 3558 core->ops->debug_init(core->hw, core->dentry); 3559 } 3560 3561 /** 3562 * clk_debug_register - add a clk node to the debugfs clk directory 3563 * @core: the clk being added to the debugfs clk directory 3564 * 3565 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3566 * initialized. Otherwise it bails out early since the debugfs clk directory 3567 * will be created lazily by clk_debug_init as part of a late_initcall. 3568 */ 3569 static void clk_debug_register(struct clk_core *core) 3570 { 3571 mutex_lock(&clk_debug_lock); 3572 hlist_add_head(&core->debug_node, &clk_debug_list); 3573 if (inited) 3574 clk_debug_create_one(core, rootdir); 3575 mutex_unlock(&clk_debug_lock); 3576 } 3577 3578 /** 3579 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3580 * @core: the clk being removed from the debugfs clk directory 3581 * 3582 * Dynamically removes a clk and all its child nodes from the 3583 * debugfs clk directory if clk->dentry points to debugfs created by 3584 * clk_debug_register in __clk_core_init. 3585 */ 3586 static void clk_debug_unregister(struct clk_core *core) 3587 { 3588 mutex_lock(&clk_debug_lock); 3589 hlist_del_init(&core->debug_node); 3590 debugfs_remove_recursive(core->dentry); 3591 core->dentry = NULL; 3592 mutex_unlock(&clk_debug_lock); 3593 } 3594 3595 /** 3596 * clk_debug_init - lazily populate the debugfs clk directory 3597 * 3598 * clks are often initialized very early during boot before memory can be 3599 * dynamically allocated and well before debugfs is setup. This function 3600 * populates the debugfs clk directory once at boot-time when we know that 3601 * debugfs is setup. It should only be called once at boot-time, all other clks 3602 * added dynamically will be done so with clk_debug_register. 3603 */ 3604 static int __init clk_debug_init(void) 3605 { 3606 struct clk_core *core; 3607 3608 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3609 pr_warn("\n"); 3610 pr_warn("********************************************************************\n"); 3611 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3612 pr_warn("** **\n"); 3613 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3614 pr_warn("** **\n"); 3615 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3616 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3617 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3618 pr_warn("** **\n"); 3619 pr_warn("** If you see this message and you are not debugging the **\n"); 3620 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3621 pr_warn("** **\n"); 3622 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3623 pr_warn("********************************************************************\n"); 3624 #endif 3625 3626 rootdir = debugfs_create_dir("clk", NULL); 3627 3628 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3629 &clk_summary_fops); 3630 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3631 &clk_dump_fops); 3632 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3633 &clk_summary_fops); 3634 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3635 &clk_dump_fops); 3636 3637 mutex_lock(&clk_debug_lock); 3638 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3639 clk_debug_create_one(core, rootdir); 3640 3641 inited = 1; 3642 mutex_unlock(&clk_debug_lock); 3643 3644 return 0; 3645 } 3646 late_initcall(clk_debug_init); 3647 #else 3648 static inline void clk_debug_register(struct clk_core *core) { } 3649 static inline void clk_debug_unregister(struct clk_core *core) 3650 { 3651 } 3652 #endif 3653 3654 static void clk_core_reparent_orphans_nolock(void) 3655 { 3656 struct clk_core *orphan; 3657 struct hlist_node *tmp2; 3658 3659 /* 3660 * walk the list of orphan clocks and reparent any that newly finds a 3661 * parent. 3662 */ 3663 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3664 struct clk_core *parent = __clk_init_parent(orphan); 3665 3666 /* 3667 * We need to use __clk_set_parent_before() and _after() to 3668 * properly migrate any prepare/enable count of the orphan 3669 * clock. This is important for CLK_IS_CRITICAL clocks, which 3670 * are enabled during init but might not have a parent yet. 3671 */ 3672 if (parent) { 3673 /* update the clk tree topology */ 3674 __clk_set_parent_before(orphan, parent); 3675 __clk_set_parent_after(orphan, parent, NULL); 3676 __clk_recalc_accuracies(orphan); 3677 __clk_recalc_rates(orphan, true, 0); 3678 3679 /* 3680 * __clk_init_parent() will set the initial req_rate to 3681 * 0 if the clock doesn't have clk_ops::recalc_rate and 3682 * is an orphan when it's registered. 3683 * 3684 * 'req_rate' is used by clk_set_rate_range() and 3685 * clk_put() to trigger a clk_set_rate() call whenever 3686 * the boundaries are modified. Let's make sure 3687 * 'req_rate' is set to something non-zero so that 3688 * clk_set_rate_range() doesn't drop the frequency. 3689 */ 3690 orphan->req_rate = orphan->rate; 3691 } 3692 } 3693 } 3694 3695 /** 3696 * __clk_core_init - initialize the data structures in a struct clk_core 3697 * @core: clk_core being initialized 3698 * 3699 * Initializes the lists in struct clk_core, queries the hardware for the 3700 * parent and rate and sets them both. 3701 */ 3702 static int __clk_core_init(struct clk_core *core) 3703 { 3704 int ret; 3705 struct clk_core *parent; 3706 unsigned long rate; 3707 int phase; 3708 3709 clk_prepare_lock(); 3710 3711 /* 3712 * Set hw->core after grabbing the prepare_lock to synchronize with 3713 * callers of clk_core_fill_parent_index() where we treat hw->core 3714 * being NULL as the clk not being registered yet. This is crucial so 3715 * that clks aren't parented until their parent is fully registered. 3716 */ 3717 core->hw->core = core; 3718 3719 ret = clk_pm_runtime_get(core); 3720 if (ret) 3721 goto unlock; 3722 3723 /* check to see if a clock with this name is already registered */ 3724 if (clk_core_lookup(core->name)) { 3725 pr_debug("%s: clk %s already initialized\n", 3726 __func__, core->name); 3727 ret = -EEXIST; 3728 goto out; 3729 } 3730 3731 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3732 if (core->ops->set_rate && 3733 !((core->ops->round_rate || core->ops->determine_rate) && 3734 core->ops->recalc_rate)) { 3735 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3736 __func__, core->name); 3737 ret = -EINVAL; 3738 goto out; 3739 } 3740 3741 if (core->ops->set_parent && !core->ops->get_parent) { 3742 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3743 __func__, core->name); 3744 ret = -EINVAL; 3745 goto out; 3746 } 3747 3748 if (core->num_parents > 1 && !core->ops->get_parent) { 3749 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3750 __func__, core->name); 3751 ret = -EINVAL; 3752 goto out; 3753 } 3754 3755 if (core->ops->set_rate_and_parent && 3756 !(core->ops->set_parent && core->ops->set_rate)) { 3757 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3758 __func__, core->name); 3759 ret = -EINVAL; 3760 goto out; 3761 } 3762 3763 /* 3764 * optional platform-specific magic 3765 * 3766 * The .init callback is not used by any of the basic clock types, but 3767 * exists for weird hardware that must perform initialization magic for 3768 * CCF to get an accurate view of clock for any other callbacks. It may 3769 * also be used needs to perform dynamic allocations. Such allocation 3770 * must be freed in the terminate() callback. 3771 * This callback shall not be used to initialize the parameters state, 3772 * such as rate, parent, etc ... 3773 * 3774 * If it exist, this callback should called before any other callback of 3775 * the clock 3776 */ 3777 if (core->ops->init) { 3778 ret = core->ops->init(core->hw); 3779 if (ret) 3780 goto out; 3781 } 3782 3783 parent = core->parent = __clk_init_parent(core); 3784 3785 /* 3786 * Populate core->parent if parent has already been clk_core_init'd. If 3787 * parent has not yet been clk_core_init'd then place clk in the orphan 3788 * list. If clk doesn't have any parents then place it in the root 3789 * clk list. 3790 * 3791 * Every time a new clk is clk_init'd then we walk the list of orphan 3792 * clocks and re-parent any that are children of the clock currently 3793 * being clk_init'd. 3794 */ 3795 if (parent) { 3796 hlist_add_head(&core->child_node, &parent->children); 3797 core->orphan = parent->orphan; 3798 } else if (!core->num_parents) { 3799 hlist_add_head(&core->child_node, &clk_root_list); 3800 core->orphan = false; 3801 } else { 3802 hlist_add_head(&core->child_node, &clk_orphan_list); 3803 core->orphan = true; 3804 } 3805 3806 /* 3807 * Set clk's accuracy. The preferred method is to use 3808 * .recalc_accuracy. For simple clocks and lazy developers the default 3809 * fallback is to use the parent's accuracy. If a clock doesn't have a 3810 * parent (or is orphaned) then accuracy is set to zero (perfect 3811 * clock). 3812 */ 3813 if (core->ops->recalc_accuracy) 3814 core->accuracy = core->ops->recalc_accuracy(core->hw, 3815 clk_core_get_accuracy_no_lock(parent)); 3816 else if (parent) 3817 core->accuracy = parent->accuracy; 3818 else 3819 core->accuracy = 0; 3820 3821 /* 3822 * Set clk's phase by clk_core_get_phase() caching the phase. 3823 * Since a phase is by definition relative to its parent, just 3824 * query the current clock phase, or just assume it's in phase. 3825 */ 3826 phase = clk_core_get_phase(core); 3827 if (phase < 0) { 3828 ret = phase; 3829 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3830 core->name); 3831 goto out; 3832 } 3833 3834 /* 3835 * Set clk's duty cycle. 3836 */ 3837 clk_core_update_duty_cycle_nolock(core); 3838 3839 /* 3840 * Set clk's rate. The preferred method is to use .recalc_rate. For 3841 * simple clocks and lazy developers the default fallback is to use the 3842 * parent's rate. If a clock doesn't have a parent (or is orphaned) 3843 * then rate is set to zero. 3844 */ 3845 if (core->ops->recalc_rate) 3846 rate = core->ops->recalc_rate(core->hw, 3847 clk_core_get_rate_nolock(parent)); 3848 else if (parent) 3849 rate = parent->rate; 3850 else 3851 rate = 0; 3852 core->rate = core->req_rate = rate; 3853 3854 /* 3855 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 3856 * don't get accidentally disabled when walking the orphan tree and 3857 * reparenting clocks 3858 */ 3859 if (core->flags & CLK_IS_CRITICAL) { 3860 ret = clk_core_prepare(core); 3861 if (ret) { 3862 pr_warn("%s: critical clk '%s' failed to prepare\n", 3863 __func__, core->name); 3864 goto out; 3865 } 3866 3867 ret = clk_core_enable_lock(core); 3868 if (ret) { 3869 pr_warn("%s: critical clk '%s' failed to enable\n", 3870 __func__, core->name); 3871 clk_core_unprepare(core); 3872 goto out; 3873 } 3874 } 3875 3876 clk_core_reparent_orphans_nolock(); 3877 3878 kref_init(&core->ref); 3879 out: 3880 clk_pm_runtime_put(core); 3881 unlock: 3882 if (ret) { 3883 hlist_del_init(&core->child_node); 3884 core->hw->core = NULL; 3885 } 3886 3887 clk_prepare_unlock(); 3888 3889 if (!ret) 3890 clk_debug_register(core); 3891 3892 return ret; 3893 } 3894 3895 /** 3896 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 3897 * @core: clk to add consumer to 3898 * @clk: consumer to link to a clk 3899 */ 3900 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 3901 { 3902 clk_prepare_lock(); 3903 hlist_add_head(&clk->clks_node, &core->clks); 3904 clk_prepare_unlock(); 3905 } 3906 3907 /** 3908 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 3909 * @clk: consumer to unlink 3910 */ 3911 static void clk_core_unlink_consumer(struct clk *clk) 3912 { 3913 lockdep_assert_held(&prepare_lock); 3914 hlist_del(&clk->clks_node); 3915 } 3916 3917 /** 3918 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 3919 * @core: clk to allocate a consumer for 3920 * @dev_id: string describing device name 3921 * @con_id: connection ID string on device 3922 * 3923 * Returns: clk consumer left unlinked from the consumer list 3924 */ 3925 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 3926 const char *con_id) 3927 { 3928 struct clk *clk; 3929 3930 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3931 if (!clk) 3932 return ERR_PTR(-ENOMEM); 3933 3934 clk->core = core; 3935 clk->dev_id = dev_id; 3936 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3937 clk->max_rate = ULONG_MAX; 3938 3939 return clk; 3940 } 3941 3942 /** 3943 * free_clk - Free a clk consumer 3944 * @clk: clk consumer to free 3945 * 3946 * Note, this assumes the clk has been unlinked from the clk_core consumer 3947 * list. 3948 */ 3949 static void free_clk(struct clk *clk) 3950 { 3951 kfree_const(clk->con_id); 3952 kfree(clk); 3953 } 3954 3955 /** 3956 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 3957 * a clk_hw 3958 * @dev: clk consumer device 3959 * @hw: clk_hw associated with the clk being consumed 3960 * @dev_id: string describing device name 3961 * @con_id: connection ID string on device 3962 * 3963 * This is the main function used to create a clk pointer for use by clk 3964 * consumers. It connects a consumer to the clk_core and clk_hw structures 3965 * used by the framework and clk provider respectively. 3966 */ 3967 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 3968 const char *dev_id, const char *con_id) 3969 { 3970 struct clk *clk; 3971 struct clk_core *core; 3972 3973 /* This is to allow this function to be chained to others */ 3974 if (IS_ERR_OR_NULL(hw)) 3975 return ERR_CAST(hw); 3976 3977 core = hw->core; 3978 clk = alloc_clk(core, dev_id, con_id); 3979 if (IS_ERR(clk)) 3980 return clk; 3981 clk->dev = dev; 3982 3983 if (!try_module_get(core->owner)) { 3984 free_clk(clk); 3985 return ERR_PTR(-ENOENT); 3986 } 3987 3988 kref_get(&core->ref); 3989 clk_core_link_consumer(core, clk); 3990 3991 return clk; 3992 } 3993 3994 /** 3995 * clk_hw_get_clk - get clk consumer given an clk_hw 3996 * @hw: clk_hw associated with the clk being consumed 3997 * @con_id: connection ID string on device 3998 * 3999 * Returns: new clk consumer 4000 * This is the function to be used by providers which need 4001 * to get a consumer clk and act on the clock element 4002 * Calls to this function must be balanced with calls clk_put() 4003 */ 4004 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4005 { 4006 struct device *dev = hw->core->dev; 4007 const char *name = dev ? dev_name(dev) : NULL; 4008 4009 return clk_hw_create_clk(dev, hw, name, con_id); 4010 } 4011 EXPORT_SYMBOL(clk_hw_get_clk); 4012 4013 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4014 { 4015 const char *dst; 4016 4017 if (!src) { 4018 if (must_exist) 4019 return -EINVAL; 4020 return 0; 4021 } 4022 4023 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4024 if (!dst) 4025 return -ENOMEM; 4026 4027 return 0; 4028 } 4029 4030 static int clk_core_populate_parent_map(struct clk_core *core, 4031 const struct clk_init_data *init) 4032 { 4033 u8 num_parents = init->num_parents; 4034 const char * const *parent_names = init->parent_names; 4035 const struct clk_hw **parent_hws = init->parent_hws; 4036 const struct clk_parent_data *parent_data = init->parent_data; 4037 int i, ret = 0; 4038 struct clk_parent_map *parents, *parent; 4039 4040 if (!num_parents) 4041 return 0; 4042 4043 /* 4044 * Avoid unnecessary string look-ups of clk_core's possible parents by 4045 * having a cache of names/clk_hw pointers to clk_core pointers. 4046 */ 4047 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4048 core->parents = parents; 4049 if (!parents) 4050 return -ENOMEM; 4051 4052 /* Copy everything over because it might be __initdata */ 4053 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4054 parent->index = -1; 4055 if (parent_names) { 4056 /* throw a WARN if any entries are NULL */ 4057 WARN(!parent_names[i], 4058 "%s: invalid NULL in %s's .parent_names\n", 4059 __func__, core->name); 4060 ret = clk_cpy_name(&parent->name, parent_names[i], 4061 true); 4062 } else if (parent_data) { 4063 parent->hw = parent_data[i].hw; 4064 parent->index = parent_data[i].index; 4065 ret = clk_cpy_name(&parent->fw_name, 4066 parent_data[i].fw_name, false); 4067 if (!ret) 4068 ret = clk_cpy_name(&parent->name, 4069 parent_data[i].name, 4070 false); 4071 } else if (parent_hws) { 4072 parent->hw = parent_hws[i]; 4073 } else { 4074 ret = -EINVAL; 4075 WARN(1, "Must specify parents if num_parents > 0\n"); 4076 } 4077 4078 if (ret) { 4079 do { 4080 kfree_const(parents[i].name); 4081 kfree_const(parents[i].fw_name); 4082 } while (--i >= 0); 4083 kfree(parents); 4084 4085 return ret; 4086 } 4087 } 4088 4089 return 0; 4090 } 4091 4092 static void clk_core_free_parent_map(struct clk_core *core) 4093 { 4094 int i = core->num_parents; 4095 4096 if (!core->num_parents) 4097 return; 4098 4099 while (--i >= 0) { 4100 kfree_const(core->parents[i].name); 4101 kfree_const(core->parents[i].fw_name); 4102 } 4103 4104 kfree(core->parents); 4105 } 4106 4107 static struct clk * 4108 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4109 { 4110 int ret; 4111 struct clk_core *core; 4112 const struct clk_init_data *init = hw->init; 4113 4114 /* 4115 * The init data is not supposed to be used outside of registration path. 4116 * Set it to NULL so that provider drivers can't use it either and so that 4117 * we catch use of hw->init early on in the core. 4118 */ 4119 hw->init = NULL; 4120 4121 core = kzalloc(sizeof(*core), GFP_KERNEL); 4122 if (!core) { 4123 ret = -ENOMEM; 4124 goto fail_out; 4125 } 4126 4127 core->name = kstrdup_const(init->name, GFP_KERNEL); 4128 if (!core->name) { 4129 ret = -ENOMEM; 4130 goto fail_name; 4131 } 4132 4133 if (WARN_ON(!init->ops)) { 4134 ret = -EINVAL; 4135 goto fail_ops; 4136 } 4137 core->ops = init->ops; 4138 4139 if (dev && pm_runtime_enabled(dev)) 4140 core->rpm_enabled = true; 4141 core->dev = dev; 4142 core->of_node = np; 4143 if (dev && dev->driver) 4144 core->owner = dev->driver->owner; 4145 core->hw = hw; 4146 core->flags = init->flags; 4147 core->num_parents = init->num_parents; 4148 core->min_rate = 0; 4149 core->max_rate = ULONG_MAX; 4150 4151 ret = clk_core_populate_parent_map(core, init); 4152 if (ret) 4153 goto fail_parents; 4154 4155 INIT_HLIST_HEAD(&core->clks); 4156 4157 /* 4158 * Don't call clk_hw_create_clk() here because that would pin the 4159 * provider module to itself and prevent it from ever being removed. 4160 */ 4161 hw->clk = alloc_clk(core, NULL, NULL); 4162 if (IS_ERR(hw->clk)) { 4163 ret = PTR_ERR(hw->clk); 4164 goto fail_create_clk; 4165 } 4166 4167 clk_core_link_consumer(core, hw->clk); 4168 4169 ret = __clk_core_init(core); 4170 if (!ret) 4171 return hw->clk; 4172 4173 clk_prepare_lock(); 4174 clk_core_unlink_consumer(hw->clk); 4175 clk_prepare_unlock(); 4176 4177 free_clk(hw->clk); 4178 hw->clk = NULL; 4179 4180 fail_create_clk: 4181 clk_core_free_parent_map(core); 4182 fail_parents: 4183 fail_ops: 4184 kfree_const(core->name); 4185 fail_name: 4186 kfree(core); 4187 fail_out: 4188 return ERR_PTR(ret); 4189 } 4190 4191 /** 4192 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4193 * @dev: Device to get device node of 4194 * 4195 * Return: device node pointer of @dev, or the device node pointer of 4196 * @dev->parent if dev doesn't have a device node, or NULL if neither 4197 * @dev or @dev->parent have a device node. 4198 */ 4199 static struct device_node *dev_or_parent_of_node(struct device *dev) 4200 { 4201 struct device_node *np; 4202 4203 if (!dev) 4204 return NULL; 4205 4206 np = dev_of_node(dev); 4207 if (!np) 4208 np = dev_of_node(dev->parent); 4209 4210 return np; 4211 } 4212 4213 /** 4214 * clk_register - allocate a new clock, register it and return an opaque cookie 4215 * @dev: device that is registering this clock 4216 * @hw: link to hardware-specific clock data 4217 * 4218 * clk_register is the *deprecated* interface for populating the clock tree with 4219 * new clock nodes. Use clk_hw_register() instead. 4220 * 4221 * Returns: a pointer to the newly allocated struct clk which 4222 * cannot be dereferenced by driver code but may be used in conjunction with the 4223 * rest of the clock API. In the event of an error clk_register will return an 4224 * error code; drivers must test for an error code after calling clk_register. 4225 */ 4226 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4227 { 4228 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4229 } 4230 EXPORT_SYMBOL_GPL(clk_register); 4231 4232 /** 4233 * clk_hw_register - register a clk_hw and return an error code 4234 * @dev: device that is registering this clock 4235 * @hw: link to hardware-specific clock data 4236 * 4237 * clk_hw_register is the primary interface for populating the clock tree with 4238 * new clock nodes. It returns an integer equal to zero indicating success or 4239 * less than zero indicating failure. Drivers must test for an error code after 4240 * calling clk_hw_register(). 4241 */ 4242 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4243 { 4244 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4245 hw)); 4246 } 4247 EXPORT_SYMBOL_GPL(clk_hw_register); 4248 4249 /* 4250 * of_clk_hw_register - register a clk_hw and return an error code 4251 * @node: device_node of device that is registering this clock 4252 * @hw: link to hardware-specific clock data 4253 * 4254 * of_clk_hw_register() is the primary interface for populating the clock tree 4255 * with new clock nodes when a struct device is not available, but a struct 4256 * device_node is. It returns an integer equal to zero indicating success or 4257 * less than zero indicating failure. Drivers must test for an error code after 4258 * calling of_clk_hw_register(). 4259 */ 4260 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4261 { 4262 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4263 } 4264 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4265 4266 /* Free memory allocated for a clock. */ 4267 static void __clk_release(struct kref *ref) 4268 { 4269 struct clk_core *core = container_of(ref, struct clk_core, ref); 4270 4271 lockdep_assert_held(&prepare_lock); 4272 4273 clk_core_free_parent_map(core); 4274 kfree_const(core->name); 4275 kfree(core); 4276 } 4277 4278 /* 4279 * Empty clk_ops for unregistered clocks. These are used temporarily 4280 * after clk_unregister() was called on a clock and until last clock 4281 * consumer calls clk_put() and the struct clk object is freed. 4282 */ 4283 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4284 { 4285 return -ENXIO; 4286 } 4287 4288 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4289 { 4290 WARN_ON_ONCE(1); 4291 } 4292 4293 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4294 unsigned long parent_rate) 4295 { 4296 return -ENXIO; 4297 } 4298 4299 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4300 { 4301 return -ENXIO; 4302 } 4303 4304 static const struct clk_ops clk_nodrv_ops = { 4305 .enable = clk_nodrv_prepare_enable, 4306 .disable = clk_nodrv_disable_unprepare, 4307 .prepare = clk_nodrv_prepare_enable, 4308 .unprepare = clk_nodrv_disable_unprepare, 4309 .set_rate = clk_nodrv_set_rate, 4310 .set_parent = clk_nodrv_set_parent, 4311 }; 4312 4313 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4314 const struct clk_core *target) 4315 { 4316 int i; 4317 struct clk_core *child; 4318 4319 for (i = 0; i < root->num_parents; i++) 4320 if (root->parents[i].core == target) 4321 root->parents[i].core = NULL; 4322 4323 hlist_for_each_entry(child, &root->children, child_node) 4324 clk_core_evict_parent_cache_subtree(child, target); 4325 } 4326 4327 /* Remove this clk from all parent caches */ 4328 static void clk_core_evict_parent_cache(struct clk_core *core) 4329 { 4330 const struct hlist_head **lists; 4331 struct clk_core *root; 4332 4333 lockdep_assert_held(&prepare_lock); 4334 4335 for (lists = all_lists; *lists; lists++) 4336 hlist_for_each_entry(root, *lists, child_node) 4337 clk_core_evict_parent_cache_subtree(root, core); 4338 4339 } 4340 4341 /** 4342 * clk_unregister - unregister a currently registered clock 4343 * @clk: clock to unregister 4344 */ 4345 void clk_unregister(struct clk *clk) 4346 { 4347 unsigned long flags; 4348 const struct clk_ops *ops; 4349 4350 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4351 return; 4352 4353 clk_debug_unregister(clk->core); 4354 4355 clk_prepare_lock(); 4356 4357 ops = clk->core->ops; 4358 if (ops == &clk_nodrv_ops) { 4359 pr_err("%s: unregistered clock: %s\n", __func__, 4360 clk->core->name); 4361 goto unlock; 4362 } 4363 /* 4364 * Assign empty clock ops for consumers that might still hold 4365 * a reference to this clock. 4366 */ 4367 flags = clk_enable_lock(); 4368 clk->core->ops = &clk_nodrv_ops; 4369 clk_enable_unlock(flags); 4370 4371 if (ops->terminate) 4372 ops->terminate(clk->core->hw); 4373 4374 if (!hlist_empty(&clk->core->children)) { 4375 struct clk_core *child; 4376 struct hlist_node *t; 4377 4378 /* Reparent all children to the orphan list. */ 4379 hlist_for_each_entry_safe(child, t, &clk->core->children, 4380 child_node) 4381 clk_core_set_parent_nolock(child, NULL); 4382 } 4383 4384 clk_core_evict_parent_cache(clk->core); 4385 4386 hlist_del_init(&clk->core->child_node); 4387 4388 if (clk->core->prepare_count) 4389 pr_warn("%s: unregistering prepared clock: %s\n", 4390 __func__, clk->core->name); 4391 4392 if (clk->core->protect_count) 4393 pr_warn("%s: unregistering protected clock: %s\n", 4394 __func__, clk->core->name); 4395 4396 kref_put(&clk->core->ref, __clk_release); 4397 free_clk(clk); 4398 unlock: 4399 clk_prepare_unlock(); 4400 } 4401 EXPORT_SYMBOL_GPL(clk_unregister); 4402 4403 /** 4404 * clk_hw_unregister - unregister a currently registered clk_hw 4405 * @hw: hardware-specific clock data to unregister 4406 */ 4407 void clk_hw_unregister(struct clk_hw *hw) 4408 { 4409 clk_unregister(hw->clk); 4410 } 4411 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4412 4413 static void devm_clk_unregister_cb(struct device *dev, void *res) 4414 { 4415 clk_unregister(*(struct clk **)res); 4416 } 4417 4418 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4419 { 4420 clk_hw_unregister(*(struct clk_hw **)res); 4421 } 4422 4423 /** 4424 * devm_clk_register - resource managed clk_register() 4425 * @dev: device that is registering this clock 4426 * @hw: link to hardware-specific clock data 4427 * 4428 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4429 * 4430 * Clocks returned from this function are automatically clk_unregister()ed on 4431 * driver detach. See clk_register() for more information. 4432 */ 4433 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4434 { 4435 struct clk *clk; 4436 struct clk **clkp; 4437 4438 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4439 if (!clkp) 4440 return ERR_PTR(-ENOMEM); 4441 4442 clk = clk_register(dev, hw); 4443 if (!IS_ERR(clk)) { 4444 *clkp = clk; 4445 devres_add(dev, clkp); 4446 } else { 4447 devres_free(clkp); 4448 } 4449 4450 return clk; 4451 } 4452 EXPORT_SYMBOL_GPL(devm_clk_register); 4453 4454 /** 4455 * devm_clk_hw_register - resource managed clk_hw_register() 4456 * @dev: device that is registering this clock 4457 * @hw: link to hardware-specific clock data 4458 * 4459 * Managed clk_hw_register(). Clocks registered by this function are 4460 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4461 * for more information. 4462 */ 4463 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4464 { 4465 struct clk_hw **hwp; 4466 int ret; 4467 4468 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4469 if (!hwp) 4470 return -ENOMEM; 4471 4472 ret = clk_hw_register(dev, hw); 4473 if (!ret) { 4474 *hwp = hw; 4475 devres_add(dev, hwp); 4476 } else { 4477 devres_free(hwp); 4478 } 4479 4480 return ret; 4481 } 4482 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4483 4484 static void devm_clk_release(struct device *dev, void *res) 4485 { 4486 clk_put(*(struct clk **)res); 4487 } 4488 4489 /** 4490 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4491 * @dev: device that is registering this clock 4492 * @hw: clk_hw associated with the clk being consumed 4493 * @con_id: connection ID string on device 4494 * 4495 * Managed clk_hw_get_clk(). Clocks got with this function are 4496 * automatically clk_put() on driver detach. See clk_put() 4497 * for more information. 4498 */ 4499 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4500 const char *con_id) 4501 { 4502 struct clk *clk; 4503 struct clk **clkp; 4504 4505 /* This should not happen because it would mean we have drivers 4506 * passing around clk_hw pointers instead of having the caller use 4507 * proper clk_get() style APIs 4508 */ 4509 WARN_ON_ONCE(dev != hw->core->dev); 4510 4511 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4512 if (!clkp) 4513 return ERR_PTR(-ENOMEM); 4514 4515 clk = clk_hw_get_clk(hw, con_id); 4516 if (!IS_ERR(clk)) { 4517 *clkp = clk; 4518 devres_add(dev, clkp); 4519 } else { 4520 devres_free(clkp); 4521 } 4522 4523 return clk; 4524 } 4525 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4526 4527 /* 4528 * clkdev helpers 4529 */ 4530 4531 void __clk_put(struct clk *clk) 4532 { 4533 struct module *owner; 4534 4535 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4536 return; 4537 4538 clk_prepare_lock(); 4539 4540 /* 4541 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4542 * given user should be balanced with calls to clk_rate_exclusive_put() 4543 * and by that same consumer 4544 */ 4545 if (WARN_ON(clk->exclusive_count)) { 4546 /* We voiced our concern, let's sanitize the situation */ 4547 clk->core->protect_count -= (clk->exclusive_count - 1); 4548 clk_core_rate_unprotect(clk->core); 4549 clk->exclusive_count = 0; 4550 } 4551 4552 hlist_del(&clk->clks_node); 4553 4554 /* If we had any boundaries on that clock, let's drop them. */ 4555 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4556 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4557 4558 owner = clk->core->owner; 4559 kref_put(&clk->core->ref, __clk_release); 4560 4561 clk_prepare_unlock(); 4562 4563 module_put(owner); 4564 4565 free_clk(clk); 4566 } 4567 4568 /*** clk rate change notifiers ***/ 4569 4570 /** 4571 * clk_notifier_register - add a clk rate change notifier 4572 * @clk: struct clk * to watch 4573 * @nb: struct notifier_block * with callback info 4574 * 4575 * Request notification when clk's rate changes. This uses an SRCU 4576 * notifier because we want it to block and notifier unregistrations are 4577 * uncommon. The callbacks associated with the notifier must not 4578 * re-enter into the clk framework by calling any top-level clk APIs; 4579 * this will cause a nested prepare_lock mutex. 4580 * 4581 * In all notification cases (pre, post and abort rate change) the original 4582 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4583 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4584 * 4585 * clk_notifier_register() must be called from non-atomic context. 4586 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4587 * allocation failure; otherwise, passes along the return value of 4588 * srcu_notifier_chain_register(). 4589 */ 4590 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4591 { 4592 struct clk_notifier *cn; 4593 int ret = -ENOMEM; 4594 4595 if (!clk || !nb) 4596 return -EINVAL; 4597 4598 clk_prepare_lock(); 4599 4600 /* search the list of notifiers for this clk */ 4601 list_for_each_entry(cn, &clk_notifier_list, node) 4602 if (cn->clk == clk) 4603 goto found; 4604 4605 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4606 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4607 if (!cn) 4608 goto out; 4609 4610 cn->clk = clk; 4611 srcu_init_notifier_head(&cn->notifier_head); 4612 4613 list_add(&cn->node, &clk_notifier_list); 4614 4615 found: 4616 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4617 4618 clk->core->notifier_count++; 4619 4620 out: 4621 clk_prepare_unlock(); 4622 4623 return ret; 4624 } 4625 EXPORT_SYMBOL_GPL(clk_notifier_register); 4626 4627 /** 4628 * clk_notifier_unregister - remove a clk rate change notifier 4629 * @clk: struct clk * 4630 * @nb: struct notifier_block * with callback info 4631 * 4632 * Request no further notification for changes to 'clk' and frees memory 4633 * allocated in clk_notifier_register. 4634 * 4635 * Returns -EINVAL if called with null arguments; otherwise, passes 4636 * along the return value of srcu_notifier_chain_unregister(). 4637 */ 4638 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4639 { 4640 struct clk_notifier *cn; 4641 int ret = -ENOENT; 4642 4643 if (!clk || !nb) 4644 return -EINVAL; 4645 4646 clk_prepare_lock(); 4647 4648 list_for_each_entry(cn, &clk_notifier_list, node) { 4649 if (cn->clk == clk) { 4650 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4651 4652 clk->core->notifier_count--; 4653 4654 /* XXX the notifier code should handle this better */ 4655 if (!cn->notifier_head.head) { 4656 srcu_cleanup_notifier_head(&cn->notifier_head); 4657 list_del(&cn->node); 4658 kfree(cn); 4659 } 4660 break; 4661 } 4662 } 4663 4664 clk_prepare_unlock(); 4665 4666 return ret; 4667 } 4668 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4669 4670 struct clk_notifier_devres { 4671 struct clk *clk; 4672 struct notifier_block *nb; 4673 }; 4674 4675 static void devm_clk_notifier_release(struct device *dev, void *res) 4676 { 4677 struct clk_notifier_devres *devres = res; 4678 4679 clk_notifier_unregister(devres->clk, devres->nb); 4680 } 4681 4682 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4683 struct notifier_block *nb) 4684 { 4685 struct clk_notifier_devres *devres; 4686 int ret; 4687 4688 devres = devres_alloc(devm_clk_notifier_release, 4689 sizeof(*devres), GFP_KERNEL); 4690 4691 if (!devres) 4692 return -ENOMEM; 4693 4694 ret = clk_notifier_register(clk, nb); 4695 if (!ret) { 4696 devres->clk = clk; 4697 devres->nb = nb; 4698 } else { 4699 devres_free(devres); 4700 } 4701 4702 return ret; 4703 } 4704 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4705 4706 #ifdef CONFIG_OF 4707 static void clk_core_reparent_orphans(void) 4708 { 4709 clk_prepare_lock(); 4710 clk_core_reparent_orphans_nolock(); 4711 clk_prepare_unlock(); 4712 } 4713 4714 /** 4715 * struct of_clk_provider - Clock provider registration structure 4716 * @link: Entry in global list of clock providers 4717 * @node: Pointer to device tree node of clock provider 4718 * @get: Get clock callback. Returns NULL or a struct clk for the 4719 * given clock specifier 4720 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4721 * struct clk_hw for the given clock specifier 4722 * @data: context pointer to be passed into @get callback 4723 */ 4724 struct of_clk_provider { 4725 struct list_head link; 4726 4727 struct device_node *node; 4728 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4729 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4730 void *data; 4731 }; 4732 4733 extern struct of_device_id __clk_of_table; 4734 static const struct of_device_id __clk_of_table_sentinel 4735 __used __section("__clk_of_table_end"); 4736 4737 static LIST_HEAD(of_clk_providers); 4738 static DEFINE_MUTEX(of_clk_mutex); 4739 4740 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4741 void *data) 4742 { 4743 return data; 4744 } 4745 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4746 4747 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4748 { 4749 return data; 4750 } 4751 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4752 4753 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4754 { 4755 struct clk_onecell_data *clk_data = data; 4756 unsigned int idx = clkspec->args[0]; 4757 4758 if (idx >= clk_data->clk_num) { 4759 pr_err("%s: invalid clock index %u\n", __func__, idx); 4760 return ERR_PTR(-EINVAL); 4761 } 4762 4763 return clk_data->clks[idx]; 4764 } 4765 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4766 4767 struct clk_hw * 4768 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4769 { 4770 struct clk_hw_onecell_data *hw_data = data; 4771 unsigned int idx = clkspec->args[0]; 4772 4773 if (idx >= hw_data->num) { 4774 pr_err("%s: invalid index %u\n", __func__, idx); 4775 return ERR_PTR(-EINVAL); 4776 } 4777 4778 return hw_data->hws[idx]; 4779 } 4780 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4781 4782 /** 4783 * of_clk_add_provider() - Register a clock provider for a node 4784 * @np: Device node pointer associated with clock provider 4785 * @clk_src_get: callback for decoding clock 4786 * @data: context pointer for @clk_src_get callback. 4787 * 4788 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4789 */ 4790 int of_clk_add_provider(struct device_node *np, 4791 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4792 void *data), 4793 void *data) 4794 { 4795 struct of_clk_provider *cp; 4796 int ret; 4797 4798 if (!np) 4799 return 0; 4800 4801 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4802 if (!cp) 4803 return -ENOMEM; 4804 4805 cp->node = of_node_get(np); 4806 cp->data = data; 4807 cp->get = clk_src_get; 4808 4809 mutex_lock(&of_clk_mutex); 4810 list_add(&cp->link, &of_clk_providers); 4811 mutex_unlock(&of_clk_mutex); 4812 pr_debug("Added clock from %pOF\n", np); 4813 4814 clk_core_reparent_orphans(); 4815 4816 ret = of_clk_set_defaults(np, true); 4817 if (ret < 0) 4818 of_clk_del_provider(np); 4819 4820 fwnode_dev_initialized(&np->fwnode, true); 4821 4822 return ret; 4823 } 4824 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4825 4826 /** 4827 * of_clk_add_hw_provider() - Register a clock provider for a node 4828 * @np: Device node pointer associated with clock provider 4829 * @get: callback for decoding clk_hw 4830 * @data: context pointer for @get callback. 4831 */ 4832 int of_clk_add_hw_provider(struct device_node *np, 4833 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4834 void *data), 4835 void *data) 4836 { 4837 struct of_clk_provider *cp; 4838 int ret; 4839 4840 if (!np) 4841 return 0; 4842 4843 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4844 if (!cp) 4845 return -ENOMEM; 4846 4847 cp->node = of_node_get(np); 4848 cp->data = data; 4849 cp->get_hw = get; 4850 4851 mutex_lock(&of_clk_mutex); 4852 list_add(&cp->link, &of_clk_providers); 4853 mutex_unlock(&of_clk_mutex); 4854 pr_debug("Added clk_hw provider from %pOF\n", np); 4855 4856 clk_core_reparent_orphans(); 4857 4858 ret = of_clk_set_defaults(np, true); 4859 if (ret < 0) 4860 of_clk_del_provider(np); 4861 4862 fwnode_dev_initialized(&np->fwnode, true); 4863 4864 return ret; 4865 } 4866 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 4867 4868 static void devm_of_clk_release_provider(struct device *dev, void *res) 4869 { 4870 of_clk_del_provider(*(struct device_node **)res); 4871 } 4872 4873 /* 4874 * We allow a child device to use its parent device as the clock provider node 4875 * for cases like MFD sub-devices where the child device driver wants to use 4876 * devm_*() APIs but not list the device in DT as a sub-node. 4877 */ 4878 static struct device_node *get_clk_provider_node(struct device *dev) 4879 { 4880 struct device_node *np, *parent_np; 4881 4882 np = dev->of_node; 4883 parent_np = dev->parent ? dev->parent->of_node : NULL; 4884 4885 if (!of_property_present(np, "#clock-cells")) 4886 if (of_property_present(parent_np, "#clock-cells")) 4887 np = parent_np; 4888 4889 return np; 4890 } 4891 4892 /** 4893 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 4894 * @dev: Device acting as the clock provider (used for DT node and lifetime) 4895 * @get: callback for decoding clk_hw 4896 * @data: context pointer for @get callback 4897 * 4898 * Registers clock provider for given device's node. If the device has no DT 4899 * node or if the device node lacks of clock provider information (#clock-cells) 4900 * then the parent device's node is scanned for this information. If parent node 4901 * has the #clock-cells then it is used in registration. Provider is 4902 * automatically released at device exit. 4903 * 4904 * Return: 0 on success or an errno on failure. 4905 */ 4906 int devm_of_clk_add_hw_provider(struct device *dev, 4907 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4908 void *data), 4909 void *data) 4910 { 4911 struct device_node **ptr, *np; 4912 int ret; 4913 4914 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 4915 GFP_KERNEL); 4916 if (!ptr) 4917 return -ENOMEM; 4918 4919 np = get_clk_provider_node(dev); 4920 ret = of_clk_add_hw_provider(np, get, data); 4921 if (!ret) { 4922 *ptr = np; 4923 devres_add(dev, ptr); 4924 } else { 4925 devres_free(ptr); 4926 } 4927 4928 return ret; 4929 } 4930 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 4931 4932 /** 4933 * of_clk_del_provider() - Remove a previously registered clock provider 4934 * @np: Device node pointer associated with clock provider 4935 */ 4936 void of_clk_del_provider(struct device_node *np) 4937 { 4938 struct of_clk_provider *cp; 4939 4940 if (!np) 4941 return; 4942 4943 mutex_lock(&of_clk_mutex); 4944 list_for_each_entry(cp, &of_clk_providers, link) { 4945 if (cp->node == np) { 4946 list_del(&cp->link); 4947 fwnode_dev_initialized(&np->fwnode, false); 4948 of_node_put(cp->node); 4949 kfree(cp); 4950 break; 4951 } 4952 } 4953 mutex_unlock(&of_clk_mutex); 4954 } 4955 EXPORT_SYMBOL_GPL(of_clk_del_provider); 4956 4957 /** 4958 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 4959 * @np: device node to parse clock specifier from 4960 * @index: index of phandle to parse clock out of. If index < 0, @name is used 4961 * @name: clock name to find and parse. If name is NULL, the index is used 4962 * @out_args: Result of parsing the clock specifier 4963 * 4964 * Parses a device node's "clocks" and "clock-names" properties to find the 4965 * phandle and cells for the index or name that is desired. The resulting clock 4966 * specifier is placed into @out_args, or an errno is returned when there's a 4967 * parsing error. The @index argument is ignored if @name is non-NULL. 4968 * 4969 * Example: 4970 * 4971 * phandle1: clock-controller@1 { 4972 * #clock-cells = <2>; 4973 * } 4974 * 4975 * phandle2: clock-controller@2 { 4976 * #clock-cells = <1>; 4977 * } 4978 * 4979 * clock-consumer@3 { 4980 * clocks = <&phandle1 1 2 &phandle2 3>; 4981 * clock-names = "name1", "name2"; 4982 * } 4983 * 4984 * To get a device_node for `clock-controller@2' node you may call this 4985 * function a few different ways: 4986 * 4987 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 4988 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 4989 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 4990 * 4991 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 4992 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 4993 * the "clock-names" property of @np. 4994 */ 4995 static int of_parse_clkspec(const struct device_node *np, int index, 4996 const char *name, struct of_phandle_args *out_args) 4997 { 4998 int ret = -ENOENT; 4999 5000 /* Walk up the tree of devices looking for a clock property that matches */ 5001 while (np) { 5002 /* 5003 * For named clocks, first look up the name in the 5004 * "clock-names" property. If it cannot be found, then index 5005 * will be an error code and of_parse_phandle_with_args() will 5006 * return -EINVAL. 5007 */ 5008 if (name) 5009 index = of_property_match_string(np, "clock-names", name); 5010 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5011 index, out_args); 5012 if (!ret) 5013 break; 5014 if (name && index >= 0) 5015 break; 5016 5017 /* 5018 * No matching clock found on this node. If the parent node 5019 * has a "clock-ranges" property, then we can try one of its 5020 * clocks. 5021 */ 5022 np = np->parent; 5023 if (np && !of_get_property(np, "clock-ranges", NULL)) 5024 break; 5025 index = 0; 5026 } 5027 5028 return ret; 5029 } 5030 5031 static struct clk_hw * 5032 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5033 struct of_phandle_args *clkspec) 5034 { 5035 struct clk *clk; 5036 5037 if (provider->get_hw) 5038 return provider->get_hw(clkspec, provider->data); 5039 5040 clk = provider->get(clkspec, provider->data); 5041 if (IS_ERR(clk)) 5042 return ERR_CAST(clk); 5043 return __clk_get_hw(clk); 5044 } 5045 5046 static struct clk_hw * 5047 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5048 { 5049 struct of_clk_provider *provider; 5050 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5051 5052 if (!clkspec) 5053 return ERR_PTR(-EINVAL); 5054 5055 mutex_lock(&of_clk_mutex); 5056 list_for_each_entry(provider, &of_clk_providers, link) { 5057 if (provider->node == clkspec->np) { 5058 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5059 if (!IS_ERR(hw)) 5060 break; 5061 } 5062 } 5063 mutex_unlock(&of_clk_mutex); 5064 5065 return hw; 5066 } 5067 5068 /** 5069 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5070 * @clkspec: pointer to a clock specifier data structure 5071 * 5072 * This function looks up a struct clk from the registered list of clock 5073 * providers, an input is a clock specifier data structure as returned 5074 * from the of_parse_phandle_with_args() function call. 5075 */ 5076 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5077 { 5078 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5079 5080 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5081 } 5082 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5083 5084 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5085 const char *con_id) 5086 { 5087 int ret; 5088 struct clk_hw *hw; 5089 struct of_phandle_args clkspec; 5090 5091 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5092 if (ret) 5093 return ERR_PTR(ret); 5094 5095 hw = of_clk_get_hw_from_clkspec(&clkspec); 5096 of_node_put(clkspec.np); 5097 5098 return hw; 5099 } 5100 5101 static struct clk *__of_clk_get(struct device_node *np, 5102 int index, const char *dev_id, 5103 const char *con_id) 5104 { 5105 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5106 5107 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5108 } 5109 5110 struct clk *of_clk_get(struct device_node *np, int index) 5111 { 5112 return __of_clk_get(np, index, np->full_name, NULL); 5113 } 5114 EXPORT_SYMBOL(of_clk_get); 5115 5116 /** 5117 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5118 * @np: pointer to clock consumer node 5119 * @name: name of consumer's clock input, or NULL for the first clock reference 5120 * 5121 * This function parses the clocks and clock-names properties, 5122 * and uses them to look up the struct clk from the registered list of clock 5123 * providers. 5124 */ 5125 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5126 { 5127 if (!np) 5128 return ERR_PTR(-ENOENT); 5129 5130 return __of_clk_get(np, 0, np->full_name, name); 5131 } 5132 EXPORT_SYMBOL(of_clk_get_by_name); 5133 5134 /** 5135 * of_clk_get_parent_count() - Count the number of clocks a device node has 5136 * @np: device node to count 5137 * 5138 * Returns: The number of clocks that are possible parents of this node 5139 */ 5140 unsigned int of_clk_get_parent_count(const struct device_node *np) 5141 { 5142 int count; 5143 5144 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5145 if (count < 0) 5146 return 0; 5147 5148 return count; 5149 } 5150 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5151 5152 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5153 { 5154 struct of_phandle_args clkspec; 5155 struct property *prop; 5156 const char *clk_name; 5157 const __be32 *vp; 5158 u32 pv; 5159 int rc; 5160 int count; 5161 struct clk *clk; 5162 5163 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5164 &clkspec); 5165 if (rc) 5166 return NULL; 5167 5168 index = clkspec.args_count ? clkspec.args[0] : 0; 5169 count = 0; 5170 5171 /* if there is an indices property, use it to transfer the index 5172 * specified into an array offset for the clock-output-names property. 5173 */ 5174 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5175 if (index == pv) { 5176 index = count; 5177 break; 5178 } 5179 count++; 5180 } 5181 /* We went off the end of 'clock-indices' without finding it */ 5182 if (prop && !vp) 5183 return NULL; 5184 5185 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5186 index, 5187 &clk_name) < 0) { 5188 /* 5189 * Best effort to get the name if the clock has been 5190 * registered with the framework. If the clock isn't 5191 * registered, we return the node name as the name of 5192 * the clock as long as #clock-cells = 0. 5193 */ 5194 clk = of_clk_get_from_provider(&clkspec); 5195 if (IS_ERR(clk)) { 5196 if (clkspec.args_count == 0) 5197 clk_name = clkspec.np->name; 5198 else 5199 clk_name = NULL; 5200 } else { 5201 clk_name = __clk_get_name(clk); 5202 clk_put(clk); 5203 } 5204 } 5205 5206 5207 of_node_put(clkspec.np); 5208 return clk_name; 5209 } 5210 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5211 5212 /** 5213 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5214 * number of parents 5215 * @np: Device node pointer associated with clock provider 5216 * @parents: pointer to char array that hold the parents' names 5217 * @size: size of the @parents array 5218 * 5219 * Return: number of parents for the clock node. 5220 */ 5221 int of_clk_parent_fill(struct device_node *np, const char **parents, 5222 unsigned int size) 5223 { 5224 unsigned int i = 0; 5225 5226 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5227 i++; 5228 5229 return i; 5230 } 5231 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5232 5233 struct clock_provider { 5234 void (*clk_init_cb)(struct device_node *); 5235 struct device_node *np; 5236 struct list_head node; 5237 }; 5238 5239 /* 5240 * This function looks for a parent clock. If there is one, then it 5241 * checks that the provider for this parent clock was initialized, in 5242 * this case the parent clock will be ready. 5243 */ 5244 static int parent_ready(struct device_node *np) 5245 { 5246 int i = 0; 5247 5248 while (true) { 5249 struct clk *clk = of_clk_get(np, i); 5250 5251 /* this parent is ready we can check the next one */ 5252 if (!IS_ERR(clk)) { 5253 clk_put(clk); 5254 i++; 5255 continue; 5256 } 5257 5258 /* at least one parent is not ready, we exit now */ 5259 if (PTR_ERR(clk) == -EPROBE_DEFER) 5260 return 0; 5261 5262 /* 5263 * Here we make assumption that the device tree is 5264 * written correctly. So an error means that there is 5265 * no more parent. As we didn't exit yet, then the 5266 * previous parent are ready. If there is no clock 5267 * parent, no need to wait for them, then we can 5268 * consider their absence as being ready 5269 */ 5270 return 1; 5271 } 5272 } 5273 5274 /** 5275 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5276 * @np: Device node pointer associated with clock provider 5277 * @index: clock index 5278 * @flags: pointer to top-level framework flags 5279 * 5280 * Detects if the clock-critical property exists and, if so, sets the 5281 * corresponding CLK_IS_CRITICAL flag. 5282 * 5283 * Do not use this function. It exists only for legacy Device Tree 5284 * bindings, such as the one-clock-per-node style that are outdated. 5285 * Those bindings typically put all clock data into .dts and the Linux 5286 * driver has no clock data, thus making it impossible to set this flag 5287 * correctly from the driver. Only those drivers may call 5288 * of_clk_detect_critical from their setup functions. 5289 * 5290 * Return: error code or zero on success 5291 */ 5292 int of_clk_detect_critical(struct device_node *np, int index, 5293 unsigned long *flags) 5294 { 5295 struct property *prop; 5296 const __be32 *cur; 5297 uint32_t idx; 5298 5299 if (!np || !flags) 5300 return -EINVAL; 5301 5302 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5303 if (index == idx) 5304 *flags |= CLK_IS_CRITICAL; 5305 5306 return 0; 5307 } 5308 5309 /** 5310 * of_clk_init() - Scan and init clock providers from the DT 5311 * @matches: array of compatible values and init functions for providers. 5312 * 5313 * This function scans the device tree for matching clock providers 5314 * and calls their initialization functions. It also does it by trying 5315 * to follow the dependencies. 5316 */ 5317 void __init of_clk_init(const struct of_device_id *matches) 5318 { 5319 const struct of_device_id *match; 5320 struct device_node *np; 5321 struct clock_provider *clk_provider, *next; 5322 bool is_init_done; 5323 bool force = false; 5324 LIST_HEAD(clk_provider_list); 5325 5326 if (!matches) 5327 matches = &__clk_of_table; 5328 5329 /* First prepare the list of the clocks providers */ 5330 for_each_matching_node_and_match(np, matches, &match) { 5331 struct clock_provider *parent; 5332 5333 if (!of_device_is_available(np)) 5334 continue; 5335 5336 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5337 if (!parent) { 5338 list_for_each_entry_safe(clk_provider, next, 5339 &clk_provider_list, node) { 5340 list_del(&clk_provider->node); 5341 of_node_put(clk_provider->np); 5342 kfree(clk_provider); 5343 } 5344 of_node_put(np); 5345 return; 5346 } 5347 5348 parent->clk_init_cb = match->data; 5349 parent->np = of_node_get(np); 5350 list_add_tail(&parent->node, &clk_provider_list); 5351 } 5352 5353 while (!list_empty(&clk_provider_list)) { 5354 is_init_done = false; 5355 list_for_each_entry_safe(clk_provider, next, 5356 &clk_provider_list, node) { 5357 if (force || parent_ready(clk_provider->np)) { 5358 5359 /* Don't populate platform devices */ 5360 of_node_set_flag(clk_provider->np, 5361 OF_POPULATED); 5362 5363 clk_provider->clk_init_cb(clk_provider->np); 5364 of_clk_set_defaults(clk_provider->np, true); 5365 5366 list_del(&clk_provider->node); 5367 of_node_put(clk_provider->np); 5368 kfree(clk_provider); 5369 is_init_done = true; 5370 } 5371 } 5372 5373 /* 5374 * We didn't manage to initialize any of the 5375 * remaining providers during the last loop, so now we 5376 * initialize all the remaining ones unconditionally 5377 * in case the clock parent was not mandatory 5378 */ 5379 if (!is_init_done) 5380 force = true; 5381 } 5382 } 5383 #endif 5384