xref: /openbmc/linux/drivers/clk/clk.c (revision 4f48c303)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static const struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	if (!core->rpm_enabled)
112 		return 0;
113 
114 	return pm_runtime_resume_and_get(core->dev);
115 }
116 
117 static void clk_pm_runtime_put(struct clk_core *core)
118 {
119 	if (!core->rpm_enabled)
120 		return;
121 
122 	pm_runtime_put_sync(core->dev);
123 }
124 
125 /***           locking             ***/
126 static void clk_prepare_lock(void)
127 {
128 	if (!mutex_trylock(&prepare_lock)) {
129 		if (prepare_owner == current) {
130 			prepare_refcnt++;
131 			return;
132 		}
133 		mutex_lock(&prepare_lock);
134 	}
135 	WARN_ON_ONCE(prepare_owner != NULL);
136 	WARN_ON_ONCE(prepare_refcnt != 0);
137 	prepare_owner = current;
138 	prepare_refcnt = 1;
139 }
140 
141 static void clk_prepare_unlock(void)
142 {
143 	WARN_ON_ONCE(prepare_owner != current);
144 	WARN_ON_ONCE(prepare_refcnt == 0);
145 
146 	if (--prepare_refcnt)
147 		return;
148 	prepare_owner = NULL;
149 	mutex_unlock(&prepare_lock);
150 }
151 
152 static unsigned long clk_enable_lock(void)
153 	__acquires(enable_lock)
154 {
155 	unsigned long flags;
156 
157 	/*
158 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
159 	 * we already hold the lock. So, in that case, we rely only on
160 	 * reference counting.
161 	 */
162 	if (!IS_ENABLED(CONFIG_SMP) ||
163 	    !spin_trylock_irqsave(&enable_lock, flags)) {
164 		if (enable_owner == current) {
165 			enable_refcnt++;
166 			__acquire(enable_lock);
167 			if (!IS_ENABLED(CONFIG_SMP))
168 				local_save_flags(flags);
169 			return flags;
170 		}
171 		spin_lock_irqsave(&enable_lock, flags);
172 	}
173 	WARN_ON_ONCE(enable_owner != NULL);
174 	WARN_ON_ONCE(enable_refcnt != 0);
175 	enable_owner = current;
176 	enable_refcnt = 1;
177 	return flags;
178 }
179 
180 static void clk_enable_unlock(unsigned long flags)
181 	__releases(enable_lock)
182 {
183 	WARN_ON_ONCE(enable_owner != current);
184 	WARN_ON_ONCE(enable_refcnt == 0);
185 
186 	if (--enable_refcnt) {
187 		__release(enable_lock);
188 		return;
189 	}
190 	enable_owner = NULL;
191 	spin_unlock_irqrestore(&enable_lock, flags);
192 }
193 
194 static bool clk_core_rate_is_protected(struct clk_core *core)
195 {
196 	return core->protect_count;
197 }
198 
199 static bool clk_core_is_prepared(struct clk_core *core)
200 {
201 	bool ret = false;
202 
203 	/*
204 	 * .is_prepared is optional for clocks that can prepare
205 	 * fall back to software usage counter if it is missing
206 	 */
207 	if (!core->ops->is_prepared)
208 		return core->prepare_count;
209 
210 	if (!clk_pm_runtime_get(core)) {
211 		ret = core->ops->is_prepared(core->hw);
212 		clk_pm_runtime_put(core);
213 	}
214 
215 	return ret;
216 }
217 
218 static bool clk_core_is_enabled(struct clk_core *core)
219 {
220 	bool ret = false;
221 
222 	/*
223 	 * .is_enabled is only mandatory for clocks that gate
224 	 * fall back to software usage counter if .is_enabled is missing
225 	 */
226 	if (!core->ops->is_enabled)
227 		return core->enable_count;
228 
229 	/*
230 	 * Check if clock controller's device is runtime active before
231 	 * calling .is_enabled callback. If not, assume that clock is
232 	 * disabled, because we might be called from atomic context, from
233 	 * which pm_runtime_get() is not allowed.
234 	 * This function is called mainly from clk_disable_unused_subtree,
235 	 * which ensures proper runtime pm activation of controller before
236 	 * taking enable spinlock, but the below check is needed if one tries
237 	 * to call it from other places.
238 	 */
239 	if (core->rpm_enabled) {
240 		pm_runtime_get_noresume(core->dev);
241 		if (!pm_runtime_active(core->dev)) {
242 			ret = false;
243 			goto done;
244 		}
245 	}
246 
247 	/*
248 	 * This could be called with the enable lock held, or from atomic
249 	 * context. If the parent isn't enabled already, we can't do
250 	 * anything here. We can also assume this clock isn't enabled.
251 	 */
252 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
253 		if (!clk_core_is_enabled(core->parent)) {
254 			ret = false;
255 			goto done;
256 		}
257 
258 	ret = core->ops->is_enabled(core->hw);
259 done:
260 	if (core->rpm_enabled)
261 		pm_runtime_put(core->dev);
262 
263 	return ret;
264 }
265 
266 /***    helper functions   ***/
267 
268 const char *__clk_get_name(const struct clk *clk)
269 {
270 	return !clk ? NULL : clk->core->name;
271 }
272 EXPORT_SYMBOL_GPL(__clk_get_name);
273 
274 const char *clk_hw_get_name(const struct clk_hw *hw)
275 {
276 	return hw->core->name;
277 }
278 EXPORT_SYMBOL_GPL(clk_hw_get_name);
279 
280 struct clk_hw *__clk_get_hw(struct clk *clk)
281 {
282 	return !clk ? NULL : clk->core->hw;
283 }
284 EXPORT_SYMBOL_GPL(__clk_get_hw);
285 
286 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
287 {
288 	return hw->core->num_parents;
289 }
290 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
291 
292 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
293 {
294 	return hw->core->parent ? hw->core->parent->hw : NULL;
295 }
296 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
297 
298 static struct clk_core *__clk_lookup_subtree(const char *name,
299 					     struct clk_core *core)
300 {
301 	struct clk_core *child;
302 	struct clk_core *ret;
303 
304 	if (!strcmp(core->name, name))
305 		return core;
306 
307 	hlist_for_each_entry(child, &core->children, child_node) {
308 		ret = __clk_lookup_subtree(name, child);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	return NULL;
314 }
315 
316 static struct clk_core *clk_core_lookup(const char *name)
317 {
318 	struct clk_core *root_clk;
319 	struct clk_core *ret;
320 
321 	if (!name)
322 		return NULL;
323 
324 	/* search the 'proper' clk tree first */
325 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
326 		ret = __clk_lookup_subtree(name, root_clk);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	/* if not found, then search the orphan tree */
332 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	return NULL;
339 }
340 
341 #ifdef CONFIG_OF
342 static int of_parse_clkspec(const struct device_node *np, int index,
343 			    const char *name, struct of_phandle_args *out_args);
344 static struct clk_hw *
345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
346 #else
347 static inline int of_parse_clkspec(const struct device_node *np, int index,
348 				   const char *name,
349 				   struct of_phandle_args *out_args)
350 {
351 	return -ENOENT;
352 }
353 static inline struct clk_hw *
354 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
355 {
356 	return ERR_PTR(-ENOENT);
357 }
358 #endif
359 
360 /**
361  * clk_core_get - Find the clk_core parent of a clk
362  * @core: clk to find parent of
363  * @p_index: parent index to search for
364  *
365  * This is the preferred method for clk providers to find the parent of a
366  * clk when that parent is external to the clk controller. The parent_names
367  * array is indexed and treated as a local name matching a string in the device
368  * node's 'clock-names' property or as the 'con_id' matching the device's
369  * dev_name() in a clk_lookup. This allows clk providers to use their own
370  * namespace instead of looking for a globally unique parent string.
371  *
372  * For example the following DT snippet would allow a clock registered by the
373  * clock-controller@c001 that has a clk_init_data::parent_data array
374  * with 'xtal' in the 'name' member to find the clock provided by the
375  * clock-controller@f00abcd without needing to get the globally unique name of
376  * the xtal clk.
377  *
378  *      parent: clock-controller@f00abcd {
379  *              reg = <0xf00abcd 0xabcd>;
380  *              #clock-cells = <0>;
381  *      };
382  *
383  *      clock-controller@c001 {
384  *              reg = <0xc001 0xf00d>;
385  *              clocks = <&parent>;
386  *              clock-names = "xtal";
387  *              #clock-cells = <1>;
388  *      };
389  *
390  * Returns: -ENOENT when the provider can't be found or the clk doesn't
391  * exist in the provider or the name can't be found in the DT node or
392  * in a clkdev lookup. NULL when the provider knows about the clk but it
393  * isn't provided on this system.
394  * A valid clk_core pointer when the clk can be found in the provider.
395  */
396 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
397 {
398 	const char *name = core->parents[p_index].fw_name;
399 	int index = core->parents[p_index].index;
400 	struct clk_hw *hw = ERR_PTR(-ENOENT);
401 	struct device *dev = core->dev;
402 	const char *dev_id = dev ? dev_name(dev) : NULL;
403 	struct device_node *np = core->of_node;
404 	struct of_phandle_args clkspec;
405 
406 	if (np && (name || index >= 0) &&
407 	    !of_parse_clkspec(np, index, name, &clkspec)) {
408 		hw = of_clk_get_hw_from_clkspec(&clkspec);
409 		of_node_put(clkspec.np);
410 	} else if (name) {
411 		/*
412 		 * If the DT search above couldn't find the provider fallback to
413 		 * looking up via clkdev based clk_lookups.
414 		 */
415 		hw = clk_find_hw(dev_id, name);
416 	}
417 
418 	if (IS_ERR(hw))
419 		return ERR_CAST(hw);
420 
421 	return hw->core;
422 }
423 
424 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
425 {
426 	struct clk_parent_map *entry = &core->parents[index];
427 	struct clk_core *parent;
428 
429 	if (entry->hw) {
430 		parent = entry->hw->core;
431 	} else {
432 		parent = clk_core_get(core, index);
433 		if (PTR_ERR(parent) == -ENOENT && entry->name)
434 			parent = clk_core_lookup(entry->name);
435 	}
436 
437 	/*
438 	 * We have a direct reference but it isn't registered yet?
439 	 * Orphan it and let clk_reparent() update the orphan status
440 	 * when the parent is registered.
441 	 */
442 	if (!parent)
443 		parent = ERR_PTR(-EPROBE_DEFER);
444 
445 	/* Only cache it if it's not an error */
446 	if (!IS_ERR(parent))
447 		entry->core = parent;
448 }
449 
450 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
451 							 u8 index)
452 {
453 	if (!core || index >= core->num_parents || !core->parents)
454 		return NULL;
455 
456 	if (!core->parents[index].core)
457 		clk_core_fill_parent_index(core, index);
458 
459 	return core->parents[index].core;
460 }
461 
462 struct clk_hw *
463 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
464 {
465 	struct clk_core *parent;
466 
467 	parent = clk_core_get_parent_by_index(hw->core, index);
468 
469 	return !parent ? NULL : parent->hw;
470 }
471 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
472 
473 unsigned int __clk_get_enable_count(struct clk *clk)
474 {
475 	return !clk ? 0 : clk->core->enable_count;
476 }
477 
478 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
479 {
480 	if (!core)
481 		return 0;
482 
483 	if (!core->num_parents || core->parent)
484 		return core->rate;
485 
486 	/*
487 	 * Clk must have a parent because num_parents > 0 but the parent isn't
488 	 * known yet. Best to return 0 as the rate of this clk until we can
489 	 * properly recalc the rate based on the parent's rate.
490 	 */
491 	return 0;
492 }
493 
494 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
495 {
496 	return clk_core_get_rate_nolock(hw->core);
497 }
498 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
499 
500 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
501 {
502 	if (!core)
503 		return 0;
504 
505 	return core->accuracy;
506 }
507 
508 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
509 {
510 	return hw->core->flags;
511 }
512 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
513 
514 bool clk_hw_is_prepared(const struct clk_hw *hw)
515 {
516 	return clk_core_is_prepared(hw->core);
517 }
518 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
519 
520 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
521 {
522 	return clk_core_rate_is_protected(hw->core);
523 }
524 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
525 
526 bool clk_hw_is_enabled(const struct clk_hw *hw)
527 {
528 	return clk_core_is_enabled(hw->core);
529 }
530 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
531 
532 bool __clk_is_enabled(struct clk *clk)
533 {
534 	if (!clk)
535 		return false;
536 
537 	return clk_core_is_enabled(clk->core);
538 }
539 EXPORT_SYMBOL_GPL(__clk_is_enabled);
540 
541 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
542 			   unsigned long best, unsigned long flags)
543 {
544 	if (flags & CLK_MUX_ROUND_CLOSEST)
545 		return abs(now - rate) < abs(best - rate);
546 
547 	return now <= rate && now > best;
548 }
549 
550 static void clk_core_init_rate_req(struct clk_core * const core,
551 				   struct clk_rate_request *req,
552 				   unsigned long rate);
553 
554 static int clk_core_round_rate_nolock(struct clk_core *core,
555 				      struct clk_rate_request *req);
556 
557 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
558 {
559 	struct clk_core *tmp;
560 	unsigned int i;
561 
562 	/* Optimize for the case where the parent is already the parent. */
563 	if (core->parent == parent)
564 		return true;
565 
566 	for (i = 0; i < core->num_parents; i++) {
567 		tmp = clk_core_get_parent_by_index(core, i);
568 		if (!tmp)
569 			continue;
570 
571 		if (tmp == parent)
572 			return true;
573 	}
574 
575 	return false;
576 }
577 
578 static void
579 clk_core_forward_rate_req(struct clk_core *core,
580 			  const struct clk_rate_request *old_req,
581 			  struct clk_core *parent,
582 			  struct clk_rate_request *req,
583 			  unsigned long parent_rate)
584 {
585 	if (WARN_ON(!clk_core_has_parent(core, parent)))
586 		return;
587 
588 	clk_core_init_rate_req(parent, req, parent_rate);
589 
590 	if (req->min_rate < old_req->min_rate)
591 		req->min_rate = old_req->min_rate;
592 
593 	if (req->max_rate > old_req->max_rate)
594 		req->max_rate = old_req->max_rate;
595 }
596 
597 int clk_mux_determine_rate_flags(struct clk_hw *hw,
598 				 struct clk_rate_request *req,
599 				 unsigned long flags)
600 {
601 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
602 	int i, num_parents, ret;
603 	unsigned long best = 0;
604 
605 	/* if NO_REPARENT flag set, pass through to current parent */
606 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
607 		parent = core->parent;
608 		if (core->flags & CLK_SET_RATE_PARENT) {
609 			struct clk_rate_request parent_req;
610 
611 			if (!parent) {
612 				req->rate = 0;
613 				return 0;
614 			}
615 
616 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
617 
618 			trace_clk_rate_request_start(&parent_req);
619 
620 			ret = clk_core_round_rate_nolock(parent, &parent_req);
621 			if (ret)
622 				return ret;
623 
624 			trace_clk_rate_request_done(&parent_req);
625 
626 			best = parent_req.rate;
627 		} else if (parent) {
628 			best = clk_core_get_rate_nolock(parent);
629 		} else {
630 			best = clk_core_get_rate_nolock(core);
631 		}
632 
633 		goto out;
634 	}
635 
636 	/* find the parent that can provide the fastest rate <= rate */
637 	num_parents = core->num_parents;
638 	for (i = 0; i < num_parents; i++) {
639 		unsigned long parent_rate;
640 
641 		parent = clk_core_get_parent_by_index(core, i);
642 		if (!parent)
643 			continue;
644 
645 		if (core->flags & CLK_SET_RATE_PARENT) {
646 			struct clk_rate_request parent_req;
647 
648 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
649 
650 			trace_clk_rate_request_start(&parent_req);
651 
652 			ret = clk_core_round_rate_nolock(parent, &parent_req);
653 			if (ret)
654 				continue;
655 
656 			trace_clk_rate_request_done(&parent_req);
657 
658 			parent_rate = parent_req.rate;
659 		} else {
660 			parent_rate = clk_core_get_rate_nolock(parent);
661 		}
662 
663 		if (mux_is_better_rate(req->rate, parent_rate,
664 				       best, flags)) {
665 			best_parent = parent;
666 			best = parent_rate;
667 		}
668 	}
669 
670 	if (!best_parent)
671 		return -EINVAL;
672 
673 out:
674 	if (best_parent)
675 		req->best_parent_hw = best_parent->hw;
676 	req->best_parent_rate = best;
677 	req->rate = best;
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
682 
683 struct clk *__clk_lookup(const char *name)
684 {
685 	struct clk_core *core = clk_core_lookup(name);
686 
687 	return !core ? NULL : core->hw->clk;
688 }
689 
690 static void clk_core_get_boundaries(struct clk_core *core,
691 				    unsigned long *min_rate,
692 				    unsigned long *max_rate)
693 {
694 	struct clk *clk_user;
695 
696 	lockdep_assert_held(&prepare_lock);
697 
698 	*min_rate = core->min_rate;
699 	*max_rate = core->max_rate;
700 
701 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
702 		*min_rate = max(*min_rate, clk_user->min_rate);
703 
704 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
705 		*max_rate = min(*max_rate, clk_user->max_rate);
706 }
707 
708 /*
709  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
710  * @hw: the hw clk we want to get the range from
711  * @min_rate: pointer to the variable that will hold the minimum
712  * @max_rate: pointer to the variable that will hold the maximum
713  *
714  * Fills the @min_rate and @max_rate variables with the minimum and
715  * maximum that clock can reach.
716  */
717 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
718 			   unsigned long *max_rate)
719 {
720 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
721 }
722 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
723 
724 static bool clk_core_check_boundaries(struct clk_core *core,
725 				      unsigned long min_rate,
726 				      unsigned long max_rate)
727 {
728 	struct clk *user;
729 
730 	lockdep_assert_held(&prepare_lock);
731 
732 	if (min_rate > core->max_rate || max_rate < core->min_rate)
733 		return false;
734 
735 	hlist_for_each_entry(user, &core->clks, clks_node)
736 		if (min_rate > user->max_rate || max_rate < user->min_rate)
737 			return false;
738 
739 	return true;
740 }
741 
742 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
743 			   unsigned long max_rate)
744 {
745 	hw->core->min_rate = min_rate;
746 	hw->core->max_rate = max_rate;
747 }
748 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
749 
750 /*
751  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
752  * @hw: mux type clk to determine rate on
753  * @req: rate request, also used to return preferred parent and frequencies
754  *
755  * Helper for finding best parent to provide a given frequency. This can be used
756  * directly as a determine_rate callback (e.g. for a mux), or from a more
757  * complex clock that may combine a mux with other operations.
758  *
759  * Returns: 0 on success, -EERROR value on error
760  */
761 int __clk_mux_determine_rate(struct clk_hw *hw,
762 			     struct clk_rate_request *req)
763 {
764 	return clk_mux_determine_rate_flags(hw, req, 0);
765 }
766 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
767 
768 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
769 				     struct clk_rate_request *req)
770 {
771 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
772 }
773 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
774 
775 /***        clk api        ***/
776 
777 static void clk_core_rate_unprotect(struct clk_core *core)
778 {
779 	lockdep_assert_held(&prepare_lock);
780 
781 	if (!core)
782 		return;
783 
784 	if (WARN(core->protect_count == 0,
785 	    "%s already unprotected\n", core->name))
786 		return;
787 
788 	if (--core->protect_count > 0)
789 		return;
790 
791 	clk_core_rate_unprotect(core->parent);
792 }
793 
794 static int clk_core_rate_nuke_protect(struct clk_core *core)
795 {
796 	int ret;
797 
798 	lockdep_assert_held(&prepare_lock);
799 
800 	if (!core)
801 		return -EINVAL;
802 
803 	if (core->protect_count == 0)
804 		return 0;
805 
806 	ret = core->protect_count;
807 	core->protect_count = 1;
808 	clk_core_rate_unprotect(core);
809 
810 	return ret;
811 }
812 
813 /**
814  * clk_rate_exclusive_put - release exclusivity over clock rate control
815  * @clk: the clk over which the exclusivity is released
816  *
817  * clk_rate_exclusive_put() completes a critical section during which a clock
818  * consumer cannot tolerate any other consumer making any operation on the
819  * clock which could result in a rate change or rate glitch. Exclusive clocks
820  * cannot have their rate changed, either directly or indirectly due to changes
821  * further up the parent chain of clocks. As a result, clocks up parent chain
822  * also get under exclusive control of the calling consumer.
823  *
824  * If exlusivity is claimed more than once on clock, even by the same consumer,
825  * the rate effectively gets locked as exclusivity can't be preempted.
826  *
827  * Calls to clk_rate_exclusive_put() must be balanced with calls to
828  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
829  * error status.
830  */
831 void clk_rate_exclusive_put(struct clk *clk)
832 {
833 	if (!clk)
834 		return;
835 
836 	clk_prepare_lock();
837 
838 	/*
839 	 * if there is something wrong with this consumer protect count, stop
840 	 * here before messing with the provider
841 	 */
842 	if (WARN_ON(clk->exclusive_count <= 0))
843 		goto out;
844 
845 	clk_core_rate_unprotect(clk->core);
846 	clk->exclusive_count--;
847 out:
848 	clk_prepare_unlock();
849 }
850 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
851 
852 static void clk_core_rate_protect(struct clk_core *core)
853 {
854 	lockdep_assert_held(&prepare_lock);
855 
856 	if (!core)
857 		return;
858 
859 	if (core->protect_count == 0)
860 		clk_core_rate_protect(core->parent);
861 
862 	core->protect_count++;
863 }
864 
865 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
866 {
867 	lockdep_assert_held(&prepare_lock);
868 
869 	if (!core)
870 		return;
871 
872 	if (count == 0)
873 		return;
874 
875 	clk_core_rate_protect(core);
876 	core->protect_count = count;
877 }
878 
879 /**
880  * clk_rate_exclusive_get - get exclusivity over the clk rate control
881  * @clk: the clk over which the exclusity of rate control is requested
882  *
883  * clk_rate_exclusive_get() begins a critical section during which a clock
884  * consumer cannot tolerate any other consumer making any operation on the
885  * clock which could result in a rate change or rate glitch. Exclusive clocks
886  * cannot have their rate changed, either directly or indirectly due to changes
887  * further up the parent chain of clocks. As a result, clocks up parent chain
888  * also get under exclusive control of the calling consumer.
889  *
890  * If exlusivity is claimed more than once on clock, even by the same consumer,
891  * the rate effectively gets locked as exclusivity can't be preempted.
892  *
893  * Calls to clk_rate_exclusive_get() should be balanced with calls to
894  * clk_rate_exclusive_put(). Calls to this function may sleep.
895  * Returns 0 on success, -EERROR otherwise
896  */
897 int clk_rate_exclusive_get(struct clk *clk)
898 {
899 	if (!clk)
900 		return 0;
901 
902 	clk_prepare_lock();
903 	clk_core_rate_protect(clk->core);
904 	clk->exclusive_count++;
905 	clk_prepare_unlock();
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
910 
911 static void clk_core_unprepare(struct clk_core *core)
912 {
913 	lockdep_assert_held(&prepare_lock);
914 
915 	if (!core)
916 		return;
917 
918 	if (WARN(core->prepare_count == 0,
919 	    "%s already unprepared\n", core->name))
920 		return;
921 
922 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
923 	    "Unpreparing critical %s\n", core->name))
924 		return;
925 
926 	if (core->flags & CLK_SET_RATE_GATE)
927 		clk_core_rate_unprotect(core);
928 
929 	if (--core->prepare_count > 0)
930 		return;
931 
932 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
933 
934 	trace_clk_unprepare(core);
935 
936 	if (core->ops->unprepare)
937 		core->ops->unprepare(core->hw);
938 
939 	trace_clk_unprepare_complete(core);
940 	clk_core_unprepare(core->parent);
941 	clk_pm_runtime_put(core);
942 }
943 
944 static void clk_core_unprepare_lock(struct clk_core *core)
945 {
946 	clk_prepare_lock();
947 	clk_core_unprepare(core);
948 	clk_prepare_unlock();
949 }
950 
951 /**
952  * clk_unprepare - undo preparation of a clock source
953  * @clk: the clk being unprepared
954  *
955  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
956  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
957  * if the operation may sleep.  One example is a clk which is accessed over
958  * I2c.  In the complex case a clk gate operation may require a fast and a slow
959  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
960  * exclusive.  In fact clk_disable must be called before clk_unprepare.
961  */
962 void clk_unprepare(struct clk *clk)
963 {
964 	if (IS_ERR_OR_NULL(clk))
965 		return;
966 
967 	clk_core_unprepare_lock(clk->core);
968 }
969 EXPORT_SYMBOL_GPL(clk_unprepare);
970 
971 static int clk_core_prepare(struct clk_core *core)
972 {
973 	int ret = 0;
974 
975 	lockdep_assert_held(&prepare_lock);
976 
977 	if (!core)
978 		return 0;
979 
980 	if (core->prepare_count == 0) {
981 		ret = clk_pm_runtime_get(core);
982 		if (ret)
983 			return ret;
984 
985 		ret = clk_core_prepare(core->parent);
986 		if (ret)
987 			goto runtime_put;
988 
989 		trace_clk_prepare(core);
990 
991 		if (core->ops->prepare)
992 			ret = core->ops->prepare(core->hw);
993 
994 		trace_clk_prepare_complete(core);
995 
996 		if (ret)
997 			goto unprepare;
998 	}
999 
1000 	core->prepare_count++;
1001 
1002 	/*
1003 	 * CLK_SET_RATE_GATE is a special case of clock protection
1004 	 * Instead of a consumer claiming exclusive rate control, it is
1005 	 * actually the provider which prevents any consumer from making any
1006 	 * operation which could result in a rate change or rate glitch while
1007 	 * the clock is prepared.
1008 	 */
1009 	if (core->flags & CLK_SET_RATE_GATE)
1010 		clk_core_rate_protect(core);
1011 
1012 	return 0;
1013 unprepare:
1014 	clk_core_unprepare(core->parent);
1015 runtime_put:
1016 	clk_pm_runtime_put(core);
1017 	return ret;
1018 }
1019 
1020 static int clk_core_prepare_lock(struct clk_core *core)
1021 {
1022 	int ret;
1023 
1024 	clk_prepare_lock();
1025 	ret = clk_core_prepare(core);
1026 	clk_prepare_unlock();
1027 
1028 	return ret;
1029 }
1030 
1031 /**
1032  * clk_prepare - prepare a clock source
1033  * @clk: the clk being prepared
1034  *
1035  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1036  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1037  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1038  * the complex case a clk ungate operation may require a fast and a slow part.
1039  * It is this reason that clk_prepare and clk_enable are not mutually
1040  * exclusive.  In fact clk_prepare must be called before clk_enable.
1041  * Returns 0 on success, -EERROR otherwise.
1042  */
1043 int clk_prepare(struct clk *clk)
1044 {
1045 	if (!clk)
1046 		return 0;
1047 
1048 	return clk_core_prepare_lock(clk->core);
1049 }
1050 EXPORT_SYMBOL_GPL(clk_prepare);
1051 
1052 static void clk_core_disable(struct clk_core *core)
1053 {
1054 	lockdep_assert_held(&enable_lock);
1055 
1056 	if (!core)
1057 		return;
1058 
1059 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1060 		return;
1061 
1062 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1063 	    "Disabling critical %s\n", core->name))
1064 		return;
1065 
1066 	if (--core->enable_count > 0)
1067 		return;
1068 
1069 	trace_clk_disable(core);
1070 
1071 	if (core->ops->disable)
1072 		core->ops->disable(core->hw);
1073 
1074 	trace_clk_disable_complete(core);
1075 
1076 	clk_core_disable(core->parent);
1077 }
1078 
1079 static void clk_core_disable_lock(struct clk_core *core)
1080 {
1081 	unsigned long flags;
1082 
1083 	flags = clk_enable_lock();
1084 	clk_core_disable(core);
1085 	clk_enable_unlock(flags);
1086 }
1087 
1088 /**
1089  * clk_disable - gate a clock
1090  * @clk: the clk being gated
1091  *
1092  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1093  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1094  * clk if the operation is fast and will never sleep.  One example is a
1095  * SoC-internal clk which is controlled via simple register writes.  In the
1096  * complex case a clk gate operation may require a fast and a slow part.  It is
1097  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1098  * In fact clk_disable must be called before clk_unprepare.
1099  */
1100 void clk_disable(struct clk *clk)
1101 {
1102 	if (IS_ERR_OR_NULL(clk))
1103 		return;
1104 
1105 	clk_core_disable_lock(clk->core);
1106 }
1107 EXPORT_SYMBOL_GPL(clk_disable);
1108 
1109 static int clk_core_enable(struct clk_core *core)
1110 {
1111 	int ret = 0;
1112 
1113 	lockdep_assert_held(&enable_lock);
1114 
1115 	if (!core)
1116 		return 0;
1117 
1118 	if (WARN(core->prepare_count == 0,
1119 	    "Enabling unprepared %s\n", core->name))
1120 		return -ESHUTDOWN;
1121 
1122 	if (core->enable_count == 0) {
1123 		ret = clk_core_enable(core->parent);
1124 
1125 		if (ret)
1126 			return ret;
1127 
1128 		trace_clk_enable(core);
1129 
1130 		if (core->ops->enable)
1131 			ret = core->ops->enable(core->hw);
1132 
1133 		trace_clk_enable_complete(core);
1134 
1135 		if (ret) {
1136 			clk_core_disable(core->parent);
1137 			return ret;
1138 		}
1139 	}
1140 
1141 	core->enable_count++;
1142 	return 0;
1143 }
1144 
1145 static int clk_core_enable_lock(struct clk_core *core)
1146 {
1147 	unsigned long flags;
1148 	int ret;
1149 
1150 	flags = clk_enable_lock();
1151 	ret = clk_core_enable(core);
1152 	clk_enable_unlock(flags);
1153 
1154 	return ret;
1155 }
1156 
1157 /**
1158  * clk_gate_restore_context - restore context for poweroff
1159  * @hw: the clk_hw pointer of clock whose state is to be restored
1160  *
1161  * The clock gate restore context function enables or disables
1162  * the gate clocks based on the enable_count. This is done in cases
1163  * where the clock context is lost and based on the enable_count
1164  * the clock either needs to be enabled/disabled. This
1165  * helps restore the state of gate clocks.
1166  */
1167 void clk_gate_restore_context(struct clk_hw *hw)
1168 {
1169 	struct clk_core *core = hw->core;
1170 
1171 	if (core->enable_count)
1172 		core->ops->enable(hw);
1173 	else
1174 		core->ops->disable(hw);
1175 }
1176 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1177 
1178 static int clk_core_save_context(struct clk_core *core)
1179 {
1180 	struct clk_core *child;
1181 	int ret = 0;
1182 
1183 	hlist_for_each_entry(child, &core->children, child_node) {
1184 		ret = clk_core_save_context(child);
1185 		if (ret < 0)
1186 			return ret;
1187 	}
1188 
1189 	if (core->ops && core->ops->save_context)
1190 		ret = core->ops->save_context(core->hw);
1191 
1192 	return ret;
1193 }
1194 
1195 static void clk_core_restore_context(struct clk_core *core)
1196 {
1197 	struct clk_core *child;
1198 
1199 	if (core->ops && core->ops->restore_context)
1200 		core->ops->restore_context(core->hw);
1201 
1202 	hlist_for_each_entry(child, &core->children, child_node)
1203 		clk_core_restore_context(child);
1204 }
1205 
1206 /**
1207  * clk_save_context - save clock context for poweroff
1208  *
1209  * Saves the context of the clock register for powerstates in which the
1210  * contents of the registers will be lost. Occurs deep within the suspend
1211  * code.  Returns 0 on success.
1212  */
1213 int clk_save_context(void)
1214 {
1215 	struct clk_core *clk;
1216 	int ret;
1217 
1218 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1219 		ret = clk_core_save_context(clk);
1220 		if (ret < 0)
1221 			return ret;
1222 	}
1223 
1224 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1225 		ret = clk_core_save_context(clk);
1226 		if (ret < 0)
1227 			return ret;
1228 	}
1229 
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(clk_save_context);
1233 
1234 /**
1235  * clk_restore_context - restore clock context after poweroff
1236  *
1237  * Restore the saved clock context upon resume.
1238  *
1239  */
1240 void clk_restore_context(void)
1241 {
1242 	struct clk_core *core;
1243 
1244 	hlist_for_each_entry(core, &clk_root_list, child_node)
1245 		clk_core_restore_context(core);
1246 
1247 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1248 		clk_core_restore_context(core);
1249 }
1250 EXPORT_SYMBOL_GPL(clk_restore_context);
1251 
1252 /**
1253  * clk_enable - ungate a clock
1254  * @clk: the clk being ungated
1255  *
1256  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1257  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1258  * if the operation will never sleep.  One example is a SoC-internal clk which
1259  * is controlled via simple register writes.  In the complex case a clk ungate
1260  * operation may require a fast and a slow part.  It is this reason that
1261  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1262  * must be called before clk_enable.  Returns 0 on success, -EERROR
1263  * otherwise.
1264  */
1265 int clk_enable(struct clk *clk)
1266 {
1267 	if (!clk)
1268 		return 0;
1269 
1270 	return clk_core_enable_lock(clk->core);
1271 }
1272 EXPORT_SYMBOL_GPL(clk_enable);
1273 
1274 /**
1275  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1276  * @clk: clock source
1277  *
1278  * Returns true if clk_prepare() implicitly enables the clock, effectively
1279  * making clk_enable()/clk_disable() no-ops, false otherwise.
1280  *
1281  * This is of interest mainly to power management code where actually
1282  * disabling the clock also requires unpreparing it to have any material
1283  * effect.
1284  *
1285  * Regardless of the value returned here, the caller must always invoke
1286  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1287  * to be right.
1288  */
1289 bool clk_is_enabled_when_prepared(struct clk *clk)
1290 {
1291 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1292 }
1293 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1294 
1295 static int clk_core_prepare_enable(struct clk_core *core)
1296 {
1297 	int ret;
1298 
1299 	ret = clk_core_prepare_lock(core);
1300 	if (ret)
1301 		return ret;
1302 
1303 	ret = clk_core_enable_lock(core);
1304 	if (ret)
1305 		clk_core_unprepare_lock(core);
1306 
1307 	return ret;
1308 }
1309 
1310 static void clk_core_disable_unprepare(struct clk_core *core)
1311 {
1312 	clk_core_disable_lock(core);
1313 	clk_core_unprepare_lock(core);
1314 }
1315 
1316 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1317 {
1318 	struct clk_core *child;
1319 
1320 	lockdep_assert_held(&prepare_lock);
1321 
1322 	hlist_for_each_entry(child, &core->children, child_node)
1323 		clk_unprepare_unused_subtree(child);
1324 
1325 	if (core->prepare_count)
1326 		return;
1327 
1328 	if (core->flags & CLK_IGNORE_UNUSED)
1329 		return;
1330 
1331 	if (clk_pm_runtime_get(core))
1332 		return;
1333 
1334 	if (clk_core_is_prepared(core)) {
1335 		trace_clk_unprepare(core);
1336 		if (core->ops->unprepare_unused)
1337 			core->ops->unprepare_unused(core->hw);
1338 		else if (core->ops->unprepare)
1339 			core->ops->unprepare(core->hw);
1340 		trace_clk_unprepare_complete(core);
1341 	}
1342 
1343 	clk_pm_runtime_put(core);
1344 }
1345 
1346 static void __init clk_disable_unused_subtree(struct clk_core *core)
1347 {
1348 	struct clk_core *child;
1349 	unsigned long flags;
1350 
1351 	lockdep_assert_held(&prepare_lock);
1352 
1353 	hlist_for_each_entry(child, &core->children, child_node)
1354 		clk_disable_unused_subtree(child);
1355 
1356 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1357 		clk_core_prepare_enable(core->parent);
1358 
1359 	if (clk_pm_runtime_get(core))
1360 		goto unprepare_out;
1361 
1362 	flags = clk_enable_lock();
1363 
1364 	if (core->enable_count)
1365 		goto unlock_out;
1366 
1367 	if (core->flags & CLK_IGNORE_UNUSED)
1368 		goto unlock_out;
1369 
1370 	/*
1371 	 * some gate clocks have special needs during the disable-unused
1372 	 * sequence.  call .disable_unused if available, otherwise fall
1373 	 * back to .disable
1374 	 */
1375 	if (clk_core_is_enabled(core)) {
1376 		trace_clk_disable(core);
1377 		if (core->ops->disable_unused)
1378 			core->ops->disable_unused(core->hw);
1379 		else if (core->ops->disable)
1380 			core->ops->disable(core->hw);
1381 		trace_clk_disable_complete(core);
1382 	}
1383 
1384 unlock_out:
1385 	clk_enable_unlock(flags);
1386 	clk_pm_runtime_put(core);
1387 unprepare_out:
1388 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1389 		clk_core_disable_unprepare(core->parent);
1390 }
1391 
1392 static bool clk_ignore_unused __initdata;
1393 static int __init clk_ignore_unused_setup(char *__unused)
1394 {
1395 	clk_ignore_unused = true;
1396 	return 1;
1397 }
1398 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1399 
1400 static int __init clk_disable_unused(void)
1401 {
1402 	struct clk_core *core;
1403 
1404 	if (clk_ignore_unused) {
1405 		pr_warn("clk: Not disabling unused clocks\n");
1406 		return 0;
1407 	}
1408 
1409 	pr_info("clk: Disabling unused clocks\n");
1410 
1411 	clk_prepare_lock();
1412 
1413 	hlist_for_each_entry(core, &clk_root_list, child_node)
1414 		clk_disable_unused_subtree(core);
1415 
1416 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1417 		clk_disable_unused_subtree(core);
1418 
1419 	hlist_for_each_entry(core, &clk_root_list, child_node)
1420 		clk_unprepare_unused_subtree(core);
1421 
1422 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1423 		clk_unprepare_unused_subtree(core);
1424 
1425 	clk_prepare_unlock();
1426 
1427 	return 0;
1428 }
1429 late_initcall_sync(clk_disable_unused);
1430 
1431 static int clk_core_determine_round_nolock(struct clk_core *core,
1432 					   struct clk_rate_request *req)
1433 {
1434 	long rate;
1435 
1436 	lockdep_assert_held(&prepare_lock);
1437 
1438 	if (!core)
1439 		return 0;
1440 
1441 	/*
1442 	 * Some clock providers hand-craft their clk_rate_requests and
1443 	 * might not fill min_rate and max_rate.
1444 	 *
1445 	 * If it's the case, clamping the rate is equivalent to setting
1446 	 * the rate to 0 which is bad. Skip the clamping but complain so
1447 	 * that it gets fixed, hopefully.
1448 	 */
1449 	if (!req->min_rate && !req->max_rate)
1450 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1451 			__func__, core->name);
1452 	else
1453 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1454 
1455 	/*
1456 	 * At this point, core protection will be disabled
1457 	 * - if the provider is not protected at all
1458 	 * - if the calling consumer is the only one which has exclusivity
1459 	 *   over the provider
1460 	 */
1461 	if (clk_core_rate_is_protected(core)) {
1462 		req->rate = core->rate;
1463 	} else if (core->ops->determine_rate) {
1464 		return core->ops->determine_rate(core->hw, req);
1465 	} else if (core->ops->round_rate) {
1466 		rate = core->ops->round_rate(core->hw, req->rate,
1467 					     &req->best_parent_rate);
1468 		if (rate < 0)
1469 			return rate;
1470 
1471 		req->rate = rate;
1472 	} else {
1473 		return -EINVAL;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static void clk_core_init_rate_req(struct clk_core * const core,
1480 				   struct clk_rate_request *req,
1481 				   unsigned long rate)
1482 {
1483 	struct clk_core *parent;
1484 
1485 	if (WARN_ON(!req))
1486 		return;
1487 
1488 	memset(req, 0, sizeof(*req));
1489 	req->max_rate = ULONG_MAX;
1490 
1491 	if (!core)
1492 		return;
1493 
1494 	req->core = core;
1495 	req->rate = rate;
1496 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1497 
1498 	parent = core->parent;
1499 	if (parent) {
1500 		req->best_parent_hw = parent->hw;
1501 		req->best_parent_rate = parent->rate;
1502 	} else {
1503 		req->best_parent_hw = NULL;
1504 		req->best_parent_rate = 0;
1505 	}
1506 }
1507 
1508 /**
1509  * clk_hw_init_rate_request - Initializes a clk_rate_request
1510  * @hw: the clk for which we want to submit a rate request
1511  * @req: the clk_rate_request structure we want to initialise
1512  * @rate: the rate which is to be requested
1513  *
1514  * Initializes a clk_rate_request structure to submit to
1515  * __clk_determine_rate() or similar functions.
1516  */
1517 void clk_hw_init_rate_request(const struct clk_hw *hw,
1518 			      struct clk_rate_request *req,
1519 			      unsigned long rate)
1520 {
1521 	if (WARN_ON(!hw || !req))
1522 		return;
1523 
1524 	clk_core_init_rate_req(hw->core, req, rate);
1525 }
1526 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1527 
1528 /**
1529  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1530  * @hw: the original clock that got the rate request
1531  * @old_req: the original clk_rate_request structure we want to forward
1532  * @parent: the clk we want to forward @old_req to
1533  * @req: the clk_rate_request structure we want to initialise
1534  * @parent_rate: The rate which is to be requested to @parent
1535  *
1536  * Initializes a clk_rate_request structure to submit to a clock parent
1537  * in __clk_determine_rate() or similar functions.
1538  */
1539 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1540 				 const struct clk_rate_request *old_req,
1541 				 const struct clk_hw *parent,
1542 				 struct clk_rate_request *req,
1543 				 unsigned long parent_rate)
1544 {
1545 	if (WARN_ON(!hw || !old_req || !parent || !req))
1546 		return;
1547 
1548 	clk_core_forward_rate_req(hw->core, old_req,
1549 				  parent->core, req,
1550 				  parent_rate);
1551 }
1552 
1553 static bool clk_core_can_round(struct clk_core * const core)
1554 {
1555 	return core->ops->determine_rate || core->ops->round_rate;
1556 }
1557 
1558 static int clk_core_round_rate_nolock(struct clk_core *core,
1559 				      struct clk_rate_request *req)
1560 {
1561 	int ret;
1562 
1563 	lockdep_assert_held(&prepare_lock);
1564 
1565 	if (!core) {
1566 		req->rate = 0;
1567 		return 0;
1568 	}
1569 
1570 	if (clk_core_can_round(core))
1571 		return clk_core_determine_round_nolock(core, req);
1572 
1573 	if (core->flags & CLK_SET_RATE_PARENT) {
1574 		struct clk_rate_request parent_req;
1575 
1576 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1577 
1578 		trace_clk_rate_request_start(&parent_req);
1579 
1580 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1581 		if (ret)
1582 			return ret;
1583 
1584 		trace_clk_rate_request_done(&parent_req);
1585 
1586 		req->best_parent_rate = parent_req.rate;
1587 		req->rate = parent_req.rate;
1588 
1589 		return 0;
1590 	}
1591 
1592 	req->rate = core->rate;
1593 	return 0;
1594 }
1595 
1596 /**
1597  * __clk_determine_rate - get the closest rate actually supported by a clock
1598  * @hw: determine the rate of this clock
1599  * @req: target rate request
1600  *
1601  * Useful for clk_ops such as .set_rate and .determine_rate.
1602  */
1603 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1604 {
1605 	if (!hw) {
1606 		req->rate = 0;
1607 		return 0;
1608 	}
1609 
1610 	return clk_core_round_rate_nolock(hw->core, req);
1611 }
1612 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1613 
1614 /**
1615  * clk_hw_round_rate() - round the given rate for a hw clk
1616  * @hw: the hw clk for which we are rounding a rate
1617  * @rate: the rate which is to be rounded
1618  *
1619  * Takes in a rate as input and rounds it to a rate that the clk can actually
1620  * use.
1621  *
1622  * Context: prepare_lock must be held.
1623  *          For clk providers to call from within clk_ops such as .round_rate,
1624  *          .determine_rate.
1625  *
1626  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1627  *         else returns the parent rate.
1628  */
1629 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1630 {
1631 	int ret;
1632 	struct clk_rate_request req;
1633 
1634 	clk_core_init_rate_req(hw->core, &req, rate);
1635 
1636 	trace_clk_rate_request_start(&req);
1637 
1638 	ret = clk_core_round_rate_nolock(hw->core, &req);
1639 	if (ret)
1640 		return 0;
1641 
1642 	trace_clk_rate_request_done(&req);
1643 
1644 	return req.rate;
1645 }
1646 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1647 
1648 /**
1649  * clk_round_rate - round the given rate for a clk
1650  * @clk: the clk for which we are rounding a rate
1651  * @rate: the rate which is to be rounded
1652  *
1653  * Takes in a rate as input and rounds it to a rate that the clk can actually
1654  * use which is then returned.  If clk doesn't support round_rate operation
1655  * then the parent rate is returned.
1656  */
1657 long clk_round_rate(struct clk *clk, unsigned long rate)
1658 {
1659 	struct clk_rate_request req;
1660 	int ret;
1661 
1662 	if (!clk)
1663 		return 0;
1664 
1665 	clk_prepare_lock();
1666 
1667 	if (clk->exclusive_count)
1668 		clk_core_rate_unprotect(clk->core);
1669 
1670 	clk_core_init_rate_req(clk->core, &req, rate);
1671 
1672 	trace_clk_rate_request_start(&req);
1673 
1674 	ret = clk_core_round_rate_nolock(clk->core, &req);
1675 
1676 	trace_clk_rate_request_done(&req);
1677 
1678 	if (clk->exclusive_count)
1679 		clk_core_rate_protect(clk->core);
1680 
1681 	clk_prepare_unlock();
1682 
1683 	if (ret)
1684 		return ret;
1685 
1686 	return req.rate;
1687 }
1688 EXPORT_SYMBOL_GPL(clk_round_rate);
1689 
1690 /**
1691  * __clk_notify - call clk notifier chain
1692  * @core: clk that is changing rate
1693  * @msg: clk notifier type (see include/linux/clk.h)
1694  * @old_rate: old clk rate
1695  * @new_rate: new clk rate
1696  *
1697  * Triggers a notifier call chain on the clk rate-change notification
1698  * for 'clk'.  Passes a pointer to the struct clk and the previous
1699  * and current rates to the notifier callback.  Intended to be called by
1700  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1701  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1702  * a driver returns that.
1703  */
1704 static int __clk_notify(struct clk_core *core, unsigned long msg,
1705 		unsigned long old_rate, unsigned long new_rate)
1706 {
1707 	struct clk_notifier *cn;
1708 	struct clk_notifier_data cnd;
1709 	int ret = NOTIFY_DONE;
1710 
1711 	cnd.old_rate = old_rate;
1712 	cnd.new_rate = new_rate;
1713 
1714 	list_for_each_entry(cn, &clk_notifier_list, node) {
1715 		if (cn->clk->core == core) {
1716 			cnd.clk = cn->clk;
1717 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1718 					&cnd);
1719 			if (ret & NOTIFY_STOP_MASK)
1720 				return ret;
1721 		}
1722 	}
1723 
1724 	return ret;
1725 }
1726 
1727 /**
1728  * __clk_recalc_accuracies
1729  * @core: first clk in the subtree
1730  *
1731  * Walks the subtree of clks starting with clk and recalculates accuracies as
1732  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1733  * callback then it is assumed that the clock will take on the accuracy of its
1734  * parent.
1735  */
1736 static void __clk_recalc_accuracies(struct clk_core *core)
1737 {
1738 	unsigned long parent_accuracy = 0;
1739 	struct clk_core *child;
1740 
1741 	lockdep_assert_held(&prepare_lock);
1742 
1743 	if (core->parent)
1744 		parent_accuracy = core->parent->accuracy;
1745 
1746 	if (core->ops->recalc_accuracy)
1747 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1748 							  parent_accuracy);
1749 	else
1750 		core->accuracy = parent_accuracy;
1751 
1752 	hlist_for_each_entry(child, &core->children, child_node)
1753 		__clk_recalc_accuracies(child);
1754 }
1755 
1756 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1757 {
1758 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1759 		__clk_recalc_accuracies(core);
1760 
1761 	return clk_core_get_accuracy_no_lock(core);
1762 }
1763 
1764 /**
1765  * clk_get_accuracy - return the accuracy of clk
1766  * @clk: the clk whose accuracy is being returned
1767  *
1768  * Simply returns the cached accuracy of the clk, unless
1769  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1770  * issued.
1771  * If clk is NULL then returns 0.
1772  */
1773 long clk_get_accuracy(struct clk *clk)
1774 {
1775 	long accuracy;
1776 
1777 	if (!clk)
1778 		return 0;
1779 
1780 	clk_prepare_lock();
1781 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1782 	clk_prepare_unlock();
1783 
1784 	return accuracy;
1785 }
1786 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1787 
1788 static unsigned long clk_recalc(struct clk_core *core,
1789 				unsigned long parent_rate)
1790 {
1791 	unsigned long rate = parent_rate;
1792 
1793 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1794 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1795 		clk_pm_runtime_put(core);
1796 	}
1797 	return rate;
1798 }
1799 
1800 /**
1801  * __clk_recalc_rates
1802  * @core: first clk in the subtree
1803  * @update_req: Whether req_rate should be updated with the new rate
1804  * @msg: notification type (see include/linux/clk.h)
1805  *
1806  * Walks the subtree of clks starting with clk and recalculates rates as it
1807  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1808  * it is assumed that the clock will take on the rate of its parent.
1809  *
1810  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1811  * if necessary.
1812  */
1813 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1814 			       unsigned long msg)
1815 {
1816 	unsigned long old_rate;
1817 	unsigned long parent_rate = 0;
1818 	struct clk_core *child;
1819 
1820 	lockdep_assert_held(&prepare_lock);
1821 
1822 	old_rate = core->rate;
1823 
1824 	if (core->parent)
1825 		parent_rate = core->parent->rate;
1826 
1827 	core->rate = clk_recalc(core, parent_rate);
1828 	if (update_req)
1829 		core->req_rate = core->rate;
1830 
1831 	/*
1832 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1833 	 * & ABORT_RATE_CHANGE notifiers
1834 	 */
1835 	if (core->notifier_count && msg)
1836 		__clk_notify(core, msg, old_rate, core->rate);
1837 
1838 	hlist_for_each_entry(child, &core->children, child_node)
1839 		__clk_recalc_rates(child, update_req, msg);
1840 }
1841 
1842 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1843 {
1844 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1845 		__clk_recalc_rates(core, false, 0);
1846 
1847 	return clk_core_get_rate_nolock(core);
1848 }
1849 
1850 /**
1851  * clk_get_rate - return the rate of clk
1852  * @clk: the clk whose rate is being returned
1853  *
1854  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1855  * is set, which means a recalc_rate will be issued. Can be called regardless of
1856  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1857  * 0.
1858  */
1859 unsigned long clk_get_rate(struct clk *clk)
1860 {
1861 	unsigned long rate;
1862 
1863 	if (!clk)
1864 		return 0;
1865 
1866 	clk_prepare_lock();
1867 	rate = clk_core_get_rate_recalc(clk->core);
1868 	clk_prepare_unlock();
1869 
1870 	return rate;
1871 }
1872 EXPORT_SYMBOL_GPL(clk_get_rate);
1873 
1874 static int clk_fetch_parent_index(struct clk_core *core,
1875 				  struct clk_core *parent)
1876 {
1877 	int i;
1878 
1879 	if (!parent)
1880 		return -EINVAL;
1881 
1882 	for (i = 0; i < core->num_parents; i++) {
1883 		/* Found it first try! */
1884 		if (core->parents[i].core == parent)
1885 			return i;
1886 
1887 		/* Something else is here, so keep looking */
1888 		if (core->parents[i].core)
1889 			continue;
1890 
1891 		/* Maybe core hasn't been cached but the hw is all we know? */
1892 		if (core->parents[i].hw) {
1893 			if (core->parents[i].hw == parent->hw)
1894 				break;
1895 
1896 			/* Didn't match, but we're expecting a clk_hw */
1897 			continue;
1898 		}
1899 
1900 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1901 		if (parent == clk_core_get(core, i))
1902 			break;
1903 
1904 		/* Fallback to comparing globally unique names */
1905 		if (core->parents[i].name &&
1906 		    !strcmp(parent->name, core->parents[i].name))
1907 			break;
1908 	}
1909 
1910 	if (i == core->num_parents)
1911 		return -EINVAL;
1912 
1913 	core->parents[i].core = parent;
1914 	return i;
1915 }
1916 
1917 /**
1918  * clk_hw_get_parent_index - return the index of the parent clock
1919  * @hw: clk_hw associated with the clk being consumed
1920  *
1921  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1922  * clock does not have a current parent.
1923  */
1924 int clk_hw_get_parent_index(struct clk_hw *hw)
1925 {
1926 	struct clk_hw *parent = clk_hw_get_parent(hw);
1927 
1928 	if (WARN_ON(parent == NULL))
1929 		return -EINVAL;
1930 
1931 	return clk_fetch_parent_index(hw->core, parent->core);
1932 }
1933 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1934 
1935 /*
1936  * Update the orphan status of @core and all its children.
1937  */
1938 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1939 {
1940 	struct clk_core *child;
1941 
1942 	core->orphan = is_orphan;
1943 
1944 	hlist_for_each_entry(child, &core->children, child_node)
1945 		clk_core_update_orphan_status(child, is_orphan);
1946 }
1947 
1948 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1949 {
1950 	bool was_orphan = core->orphan;
1951 
1952 	hlist_del(&core->child_node);
1953 
1954 	if (new_parent) {
1955 		bool becomes_orphan = new_parent->orphan;
1956 
1957 		/* avoid duplicate POST_RATE_CHANGE notifications */
1958 		if (new_parent->new_child == core)
1959 			new_parent->new_child = NULL;
1960 
1961 		hlist_add_head(&core->child_node, &new_parent->children);
1962 
1963 		if (was_orphan != becomes_orphan)
1964 			clk_core_update_orphan_status(core, becomes_orphan);
1965 	} else {
1966 		hlist_add_head(&core->child_node, &clk_orphan_list);
1967 		if (!was_orphan)
1968 			clk_core_update_orphan_status(core, true);
1969 	}
1970 
1971 	core->parent = new_parent;
1972 }
1973 
1974 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1975 					   struct clk_core *parent)
1976 {
1977 	unsigned long flags;
1978 	struct clk_core *old_parent = core->parent;
1979 
1980 	/*
1981 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1982 	 *
1983 	 * 2. Migrate prepare state between parents and prevent race with
1984 	 * clk_enable().
1985 	 *
1986 	 * If the clock is not prepared, then a race with
1987 	 * clk_enable/disable() is impossible since we already have the
1988 	 * prepare lock (future calls to clk_enable() need to be preceded by
1989 	 * a clk_prepare()).
1990 	 *
1991 	 * If the clock is prepared, migrate the prepared state to the new
1992 	 * parent and also protect against a race with clk_enable() by
1993 	 * forcing the clock and the new parent on.  This ensures that all
1994 	 * future calls to clk_enable() are practically NOPs with respect to
1995 	 * hardware and software states.
1996 	 *
1997 	 * See also: Comment for clk_set_parent() below.
1998 	 */
1999 
2000 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2001 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2002 		clk_core_prepare_enable(old_parent);
2003 		clk_core_prepare_enable(parent);
2004 	}
2005 
2006 	/* migrate prepare count if > 0 */
2007 	if (core->prepare_count) {
2008 		clk_core_prepare_enable(parent);
2009 		clk_core_enable_lock(core);
2010 	}
2011 
2012 	/* update the clk tree topology */
2013 	flags = clk_enable_lock();
2014 	clk_reparent(core, parent);
2015 	clk_enable_unlock(flags);
2016 
2017 	return old_parent;
2018 }
2019 
2020 static void __clk_set_parent_after(struct clk_core *core,
2021 				   struct clk_core *parent,
2022 				   struct clk_core *old_parent)
2023 {
2024 	/*
2025 	 * Finish the migration of prepare state and undo the changes done
2026 	 * for preventing a race with clk_enable().
2027 	 */
2028 	if (core->prepare_count) {
2029 		clk_core_disable_lock(core);
2030 		clk_core_disable_unprepare(old_parent);
2031 	}
2032 
2033 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2034 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2035 		clk_core_disable_unprepare(parent);
2036 		clk_core_disable_unprepare(old_parent);
2037 	}
2038 }
2039 
2040 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2041 			    u8 p_index)
2042 {
2043 	unsigned long flags;
2044 	int ret = 0;
2045 	struct clk_core *old_parent;
2046 
2047 	old_parent = __clk_set_parent_before(core, parent);
2048 
2049 	trace_clk_set_parent(core, parent);
2050 
2051 	/* change clock input source */
2052 	if (parent && core->ops->set_parent)
2053 		ret = core->ops->set_parent(core->hw, p_index);
2054 
2055 	trace_clk_set_parent_complete(core, parent);
2056 
2057 	if (ret) {
2058 		flags = clk_enable_lock();
2059 		clk_reparent(core, old_parent);
2060 		clk_enable_unlock(flags);
2061 
2062 		__clk_set_parent_after(core, old_parent, parent);
2063 
2064 		return ret;
2065 	}
2066 
2067 	__clk_set_parent_after(core, parent, old_parent);
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * __clk_speculate_rates
2074  * @core: first clk in the subtree
2075  * @parent_rate: the "future" rate of clk's parent
2076  *
2077  * Walks the subtree of clks starting with clk, speculating rates as it
2078  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2079  *
2080  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2081  * pre-rate change notifications and returns early if no clks in the
2082  * subtree have subscribed to the notifications.  Note that if a clk does not
2083  * implement the .recalc_rate callback then it is assumed that the clock will
2084  * take on the rate of its parent.
2085  */
2086 static int __clk_speculate_rates(struct clk_core *core,
2087 				 unsigned long parent_rate)
2088 {
2089 	struct clk_core *child;
2090 	unsigned long new_rate;
2091 	int ret = NOTIFY_DONE;
2092 
2093 	lockdep_assert_held(&prepare_lock);
2094 
2095 	new_rate = clk_recalc(core, parent_rate);
2096 
2097 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2098 	if (core->notifier_count)
2099 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2100 
2101 	if (ret & NOTIFY_STOP_MASK) {
2102 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2103 				__func__, core->name, ret);
2104 		goto out;
2105 	}
2106 
2107 	hlist_for_each_entry(child, &core->children, child_node) {
2108 		ret = __clk_speculate_rates(child, new_rate);
2109 		if (ret & NOTIFY_STOP_MASK)
2110 			break;
2111 	}
2112 
2113 out:
2114 	return ret;
2115 }
2116 
2117 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2118 			     struct clk_core *new_parent, u8 p_index)
2119 {
2120 	struct clk_core *child;
2121 
2122 	core->new_rate = new_rate;
2123 	core->new_parent = new_parent;
2124 	core->new_parent_index = p_index;
2125 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2126 	core->new_child = NULL;
2127 	if (new_parent && new_parent != core->parent)
2128 		new_parent->new_child = core;
2129 
2130 	hlist_for_each_entry(child, &core->children, child_node) {
2131 		child->new_rate = clk_recalc(child, new_rate);
2132 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2133 	}
2134 }
2135 
2136 /*
2137  * calculate the new rates returning the topmost clock that has to be
2138  * changed.
2139  */
2140 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2141 					   unsigned long rate)
2142 {
2143 	struct clk_core *top = core;
2144 	struct clk_core *old_parent, *parent;
2145 	unsigned long best_parent_rate = 0;
2146 	unsigned long new_rate;
2147 	unsigned long min_rate;
2148 	unsigned long max_rate;
2149 	int p_index = 0;
2150 	long ret;
2151 
2152 	/* sanity */
2153 	if (IS_ERR_OR_NULL(core))
2154 		return NULL;
2155 
2156 	/* save parent rate, if it exists */
2157 	parent = old_parent = core->parent;
2158 	if (parent)
2159 		best_parent_rate = parent->rate;
2160 
2161 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2162 
2163 	/* find the closest rate and parent clk/rate */
2164 	if (clk_core_can_round(core)) {
2165 		struct clk_rate_request req;
2166 
2167 		clk_core_init_rate_req(core, &req, rate);
2168 
2169 		trace_clk_rate_request_start(&req);
2170 
2171 		ret = clk_core_determine_round_nolock(core, &req);
2172 		if (ret < 0)
2173 			return NULL;
2174 
2175 		trace_clk_rate_request_done(&req);
2176 
2177 		best_parent_rate = req.best_parent_rate;
2178 		new_rate = req.rate;
2179 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2180 
2181 		if (new_rate < min_rate || new_rate > max_rate)
2182 			return NULL;
2183 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2184 		/* pass-through clock without adjustable parent */
2185 		core->new_rate = core->rate;
2186 		return NULL;
2187 	} else {
2188 		/* pass-through clock with adjustable parent */
2189 		top = clk_calc_new_rates(parent, rate);
2190 		new_rate = parent->new_rate;
2191 		goto out;
2192 	}
2193 
2194 	/* some clocks must be gated to change parent */
2195 	if (parent != old_parent &&
2196 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2197 		pr_debug("%s: %s not gated but wants to reparent\n",
2198 			 __func__, core->name);
2199 		return NULL;
2200 	}
2201 
2202 	/* try finding the new parent index */
2203 	if (parent && core->num_parents > 1) {
2204 		p_index = clk_fetch_parent_index(core, parent);
2205 		if (p_index < 0) {
2206 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2207 				 __func__, parent->name, core->name);
2208 			return NULL;
2209 		}
2210 	}
2211 
2212 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2213 	    best_parent_rate != parent->rate)
2214 		top = clk_calc_new_rates(parent, best_parent_rate);
2215 
2216 out:
2217 	clk_calc_subtree(core, new_rate, parent, p_index);
2218 
2219 	return top;
2220 }
2221 
2222 /*
2223  * Notify about rate changes in a subtree. Always walk down the whole tree
2224  * so that in case of an error we can walk down the whole tree again and
2225  * abort the change.
2226  */
2227 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2228 						  unsigned long event)
2229 {
2230 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2231 	int ret = NOTIFY_DONE;
2232 
2233 	if (core->rate == core->new_rate)
2234 		return NULL;
2235 
2236 	if (core->notifier_count) {
2237 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2238 		if (ret & NOTIFY_STOP_MASK)
2239 			fail_clk = core;
2240 	}
2241 
2242 	hlist_for_each_entry(child, &core->children, child_node) {
2243 		/* Skip children who will be reparented to another clock */
2244 		if (child->new_parent && child->new_parent != core)
2245 			continue;
2246 		tmp_clk = clk_propagate_rate_change(child, event);
2247 		if (tmp_clk)
2248 			fail_clk = tmp_clk;
2249 	}
2250 
2251 	/* handle the new child who might not be in core->children yet */
2252 	if (core->new_child) {
2253 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2254 		if (tmp_clk)
2255 			fail_clk = tmp_clk;
2256 	}
2257 
2258 	return fail_clk;
2259 }
2260 
2261 /*
2262  * walk down a subtree and set the new rates notifying the rate
2263  * change on the way
2264  */
2265 static void clk_change_rate(struct clk_core *core)
2266 {
2267 	struct clk_core *child;
2268 	struct hlist_node *tmp;
2269 	unsigned long old_rate;
2270 	unsigned long best_parent_rate = 0;
2271 	bool skip_set_rate = false;
2272 	struct clk_core *old_parent;
2273 	struct clk_core *parent = NULL;
2274 
2275 	old_rate = core->rate;
2276 
2277 	if (core->new_parent) {
2278 		parent = core->new_parent;
2279 		best_parent_rate = core->new_parent->rate;
2280 	} else if (core->parent) {
2281 		parent = core->parent;
2282 		best_parent_rate = core->parent->rate;
2283 	}
2284 
2285 	if (clk_pm_runtime_get(core))
2286 		return;
2287 
2288 	if (core->flags & CLK_SET_RATE_UNGATE) {
2289 		clk_core_prepare(core);
2290 		clk_core_enable_lock(core);
2291 	}
2292 
2293 	if (core->new_parent && core->new_parent != core->parent) {
2294 		old_parent = __clk_set_parent_before(core, core->new_parent);
2295 		trace_clk_set_parent(core, core->new_parent);
2296 
2297 		if (core->ops->set_rate_and_parent) {
2298 			skip_set_rate = true;
2299 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2300 					best_parent_rate,
2301 					core->new_parent_index);
2302 		} else if (core->ops->set_parent) {
2303 			core->ops->set_parent(core->hw, core->new_parent_index);
2304 		}
2305 
2306 		trace_clk_set_parent_complete(core, core->new_parent);
2307 		__clk_set_parent_after(core, core->new_parent, old_parent);
2308 	}
2309 
2310 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2311 		clk_core_prepare_enable(parent);
2312 
2313 	trace_clk_set_rate(core, core->new_rate);
2314 
2315 	if (!skip_set_rate && core->ops->set_rate)
2316 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2317 
2318 	trace_clk_set_rate_complete(core, core->new_rate);
2319 
2320 	core->rate = clk_recalc(core, best_parent_rate);
2321 
2322 	if (core->flags & CLK_SET_RATE_UNGATE) {
2323 		clk_core_disable_lock(core);
2324 		clk_core_unprepare(core);
2325 	}
2326 
2327 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2328 		clk_core_disable_unprepare(parent);
2329 
2330 	if (core->notifier_count && old_rate != core->rate)
2331 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2332 
2333 	if (core->flags & CLK_RECALC_NEW_RATES)
2334 		(void)clk_calc_new_rates(core, core->new_rate);
2335 
2336 	/*
2337 	 * Use safe iteration, as change_rate can actually swap parents
2338 	 * for certain clock types.
2339 	 */
2340 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2341 		/* Skip children who will be reparented to another clock */
2342 		if (child->new_parent && child->new_parent != core)
2343 			continue;
2344 		clk_change_rate(child);
2345 	}
2346 
2347 	/* handle the new child who might not be in core->children yet */
2348 	if (core->new_child)
2349 		clk_change_rate(core->new_child);
2350 
2351 	clk_pm_runtime_put(core);
2352 }
2353 
2354 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2355 						     unsigned long req_rate)
2356 {
2357 	int ret, cnt;
2358 	struct clk_rate_request req;
2359 
2360 	lockdep_assert_held(&prepare_lock);
2361 
2362 	if (!core)
2363 		return 0;
2364 
2365 	/* simulate what the rate would be if it could be freely set */
2366 	cnt = clk_core_rate_nuke_protect(core);
2367 	if (cnt < 0)
2368 		return cnt;
2369 
2370 	clk_core_init_rate_req(core, &req, req_rate);
2371 
2372 	trace_clk_rate_request_start(&req);
2373 
2374 	ret = clk_core_round_rate_nolock(core, &req);
2375 
2376 	trace_clk_rate_request_done(&req);
2377 
2378 	/* restore the protection */
2379 	clk_core_rate_restore_protect(core, cnt);
2380 
2381 	return ret ? 0 : req.rate;
2382 }
2383 
2384 static int clk_core_set_rate_nolock(struct clk_core *core,
2385 				    unsigned long req_rate)
2386 {
2387 	struct clk_core *top, *fail_clk;
2388 	unsigned long rate;
2389 	int ret;
2390 
2391 	if (!core)
2392 		return 0;
2393 
2394 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2395 
2396 	/* bail early if nothing to do */
2397 	if (rate == clk_core_get_rate_nolock(core))
2398 		return 0;
2399 
2400 	/* fail on a direct rate set of a protected provider */
2401 	if (clk_core_rate_is_protected(core))
2402 		return -EBUSY;
2403 
2404 	/* calculate new rates and get the topmost changed clock */
2405 	top = clk_calc_new_rates(core, req_rate);
2406 	if (!top)
2407 		return -EINVAL;
2408 
2409 	ret = clk_pm_runtime_get(core);
2410 	if (ret)
2411 		return ret;
2412 
2413 	/* notify that we are about to change rates */
2414 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2415 	if (fail_clk) {
2416 		pr_debug("%s: failed to set %s rate\n", __func__,
2417 				fail_clk->name);
2418 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2419 		ret = -EBUSY;
2420 		goto err;
2421 	}
2422 
2423 	/* change the rates */
2424 	clk_change_rate(top);
2425 
2426 	core->req_rate = req_rate;
2427 err:
2428 	clk_pm_runtime_put(core);
2429 
2430 	return ret;
2431 }
2432 
2433 /**
2434  * clk_set_rate - specify a new rate for clk
2435  * @clk: the clk whose rate is being changed
2436  * @rate: the new rate for clk
2437  *
2438  * In the simplest case clk_set_rate will only adjust the rate of clk.
2439  *
2440  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2441  * propagate up to clk's parent; whether or not this happens depends on the
2442  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2443  * after calling .round_rate then upstream parent propagation is ignored.  If
2444  * *parent_rate comes back with a new rate for clk's parent then we propagate
2445  * up to clk's parent and set its rate.  Upward propagation will continue
2446  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2447  * .round_rate stops requesting changes to clk's parent_rate.
2448  *
2449  * Rate changes are accomplished via tree traversal that also recalculates the
2450  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2451  *
2452  * Returns 0 on success, -EERROR otherwise.
2453  */
2454 int clk_set_rate(struct clk *clk, unsigned long rate)
2455 {
2456 	int ret;
2457 
2458 	if (!clk)
2459 		return 0;
2460 
2461 	/* prevent racing with updates to the clock topology */
2462 	clk_prepare_lock();
2463 
2464 	if (clk->exclusive_count)
2465 		clk_core_rate_unprotect(clk->core);
2466 
2467 	ret = clk_core_set_rate_nolock(clk->core, rate);
2468 
2469 	if (clk->exclusive_count)
2470 		clk_core_rate_protect(clk->core);
2471 
2472 	clk_prepare_unlock();
2473 
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL_GPL(clk_set_rate);
2477 
2478 /**
2479  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2480  * @clk: the clk whose rate is being changed
2481  * @rate: the new rate for clk
2482  *
2483  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2484  * within a critical section
2485  *
2486  * This can be used initially to ensure that at least 1 consumer is
2487  * satisfied when several consumers are competing for exclusivity over the
2488  * same clock provider.
2489  *
2490  * The exclusivity is not applied if setting the rate failed.
2491  *
2492  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2493  * clk_rate_exclusive_put().
2494  *
2495  * Returns 0 on success, -EERROR otherwise.
2496  */
2497 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2498 {
2499 	int ret;
2500 
2501 	if (!clk)
2502 		return 0;
2503 
2504 	/* prevent racing with updates to the clock topology */
2505 	clk_prepare_lock();
2506 
2507 	/*
2508 	 * The temporary protection removal is not here, on purpose
2509 	 * This function is meant to be used instead of clk_rate_protect,
2510 	 * so before the consumer code path protect the clock provider
2511 	 */
2512 
2513 	ret = clk_core_set_rate_nolock(clk->core, rate);
2514 	if (!ret) {
2515 		clk_core_rate_protect(clk->core);
2516 		clk->exclusive_count++;
2517 	}
2518 
2519 	clk_prepare_unlock();
2520 
2521 	return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2524 
2525 static int clk_set_rate_range_nolock(struct clk *clk,
2526 				     unsigned long min,
2527 				     unsigned long max)
2528 {
2529 	int ret = 0;
2530 	unsigned long old_min, old_max, rate;
2531 
2532 	lockdep_assert_held(&prepare_lock);
2533 
2534 	if (!clk)
2535 		return 0;
2536 
2537 	trace_clk_set_rate_range(clk->core, min, max);
2538 
2539 	if (min > max) {
2540 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2541 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2542 		       min, max);
2543 		return -EINVAL;
2544 	}
2545 
2546 	if (clk->exclusive_count)
2547 		clk_core_rate_unprotect(clk->core);
2548 
2549 	/* Save the current values in case we need to rollback the change */
2550 	old_min = clk->min_rate;
2551 	old_max = clk->max_rate;
2552 	clk->min_rate = min;
2553 	clk->max_rate = max;
2554 
2555 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2556 		ret = -EINVAL;
2557 		goto out;
2558 	}
2559 
2560 	rate = clk->core->req_rate;
2561 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2562 		rate = clk_core_get_rate_recalc(clk->core);
2563 
2564 	/*
2565 	 * Since the boundaries have been changed, let's give the
2566 	 * opportunity to the provider to adjust the clock rate based on
2567 	 * the new boundaries.
2568 	 *
2569 	 * We also need to handle the case where the clock is currently
2570 	 * outside of the boundaries. Clamping the last requested rate
2571 	 * to the current minimum and maximum will also handle this.
2572 	 *
2573 	 * FIXME:
2574 	 * There is a catch. It may fail for the usual reason (clock
2575 	 * broken, clock protected, etc) but also because:
2576 	 * - round_rate() was not favorable and fell on the wrong
2577 	 *   side of the boundary
2578 	 * - the determine_rate() callback does not really check for
2579 	 *   this corner case when determining the rate
2580 	 */
2581 	rate = clamp(rate, min, max);
2582 	ret = clk_core_set_rate_nolock(clk->core, rate);
2583 	if (ret) {
2584 		/* rollback the changes */
2585 		clk->min_rate = old_min;
2586 		clk->max_rate = old_max;
2587 	}
2588 
2589 out:
2590 	if (clk->exclusive_count)
2591 		clk_core_rate_protect(clk->core);
2592 
2593 	return ret;
2594 }
2595 
2596 /**
2597  * clk_set_rate_range - set a rate range for a clock source
2598  * @clk: clock source
2599  * @min: desired minimum clock rate in Hz, inclusive
2600  * @max: desired maximum clock rate in Hz, inclusive
2601  *
2602  * Return: 0 for success or negative errno on failure.
2603  */
2604 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2605 {
2606 	int ret;
2607 
2608 	if (!clk)
2609 		return 0;
2610 
2611 	clk_prepare_lock();
2612 
2613 	ret = clk_set_rate_range_nolock(clk, min, max);
2614 
2615 	clk_prepare_unlock();
2616 
2617 	return ret;
2618 }
2619 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2620 
2621 /**
2622  * clk_set_min_rate - set a minimum clock rate for a clock source
2623  * @clk: clock source
2624  * @rate: desired minimum clock rate in Hz, inclusive
2625  *
2626  * Returns success (0) or negative errno.
2627  */
2628 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2629 {
2630 	if (!clk)
2631 		return 0;
2632 
2633 	trace_clk_set_min_rate(clk->core, rate);
2634 
2635 	return clk_set_rate_range(clk, rate, clk->max_rate);
2636 }
2637 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2638 
2639 /**
2640  * clk_set_max_rate - set a maximum clock rate for a clock source
2641  * @clk: clock source
2642  * @rate: desired maximum clock rate in Hz, inclusive
2643  *
2644  * Returns success (0) or negative errno.
2645  */
2646 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2647 {
2648 	if (!clk)
2649 		return 0;
2650 
2651 	trace_clk_set_max_rate(clk->core, rate);
2652 
2653 	return clk_set_rate_range(clk, clk->min_rate, rate);
2654 }
2655 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2656 
2657 /**
2658  * clk_get_parent - return the parent of a clk
2659  * @clk: the clk whose parent gets returned
2660  *
2661  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2662  */
2663 struct clk *clk_get_parent(struct clk *clk)
2664 {
2665 	struct clk *parent;
2666 
2667 	if (!clk)
2668 		return NULL;
2669 
2670 	clk_prepare_lock();
2671 	/* TODO: Create a per-user clk and change callers to call clk_put */
2672 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2673 	clk_prepare_unlock();
2674 
2675 	return parent;
2676 }
2677 EXPORT_SYMBOL_GPL(clk_get_parent);
2678 
2679 static struct clk_core *__clk_init_parent(struct clk_core *core)
2680 {
2681 	u8 index = 0;
2682 
2683 	if (core->num_parents > 1 && core->ops->get_parent)
2684 		index = core->ops->get_parent(core->hw);
2685 
2686 	return clk_core_get_parent_by_index(core, index);
2687 }
2688 
2689 static void clk_core_reparent(struct clk_core *core,
2690 				  struct clk_core *new_parent)
2691 {
2692 	clk_reparent(core, new_parent);
2693 	__clk_recalc_accuracies(core);
2694 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2695 }
2696 
2697 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2698 {
2699 	if (!hw)
2700 		return;
2701 
2702 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2703 }
2704 
2705 /**
2706  * clk_has_parent - check if a clock is a possible parent for another
2707  * @clk: clock source
2708  * @parent: parent clock source
2709  *
2710  * This function can be used in drivers that need to check that a clock can be
2711  * the parent of another without actually changing the parent.
2712  *
2713  * Returns true if @parent is a possible parent for @clk, false otherwise.
2714  */
2715 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2716 {
2717 	/* NULL clocks should be nops, so return success if either is NULL. */
2718 	if (!clk || !parent)
2719 		return true;
2720 
2721 	return clk_core_has_parent(clk->core, parent->core);
2722 }
2723 EXPORT_SYMBOL_GPL(clk_has_parent);
2724 
2725 static int clk_core_set_parent_nolock(struct clk_core *core,
2726 				      struct clk_core *parent)
2727 {
2728 	int ret = 0;
2729 	int p_index = 0;
2730 	unsigned long p_rate = 0;
2731 
2732 	lockdep_assert_held(&prepare_lock);
2733 
2734 	if (!core)
2735 		return 0;
2736 
2737 	if (core->parent == parent)
2738 		return 0;
2739 
2740 	/* verify ops for multi-parent clks */
2741 	if (core->num_parents > 1 && !core->ops->set_parent)
2742 		return -EPERM;
2743 
2744 	/* check that we are allowed to re-parent if the clock is in use */
2745 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2746 		return -EBUSY;
2747 
2748 	if (clk_core_rate_is_protected(core))
2749 		return -EBUSY;
2750 
2751 	/* try finding the new parent index */
2752 	if (parent) {
2753 		p_index = clk_fetch_parent_index(core, parent);
2754 		if (p_index < 0) {
2755 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2756 					__func__, parent->name, core->name);
2757 			return p_index;
2758 		}
2759 		p_rate = parent->rate;
2760 	}
2761 
2762 	ret = clk_pm_runtime_get(core);
2763 	if (ret)
2764 		return ret;
2765 
2766 	/* propagate PRE_RATE_CHANGE notifications */
2767 	ret = __clk_speculate_rates(core, p_rate);
2768 
2769 	/* abort if a driver objects */
2770 	if (ret & NOTIFY_STOP_MASK)
2771 		goto runtime_put;
2772 
2773 	/* do the re-parent */
2774 	ret = __clk_set_parent(core, parent, p_index);
2775 
2776 	/* propagate rate an accuracy recalculation accordingly */
2777 	if (ret) {
2778 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2779 	} else {
2780 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2781 		__clk_recalc_accuracies(core);
2782 	}
2783 
2784 runtime_put:
2785 	clk_pm_runtime_put(core);
2786 
2787 	return ret;
2788 }
2789 
2790 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2791 {
2792 	return clk_core_set_parent_nolock(hw->core, parent->core);
2793 }
2794 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2795 
2796 /**
2797  * clk_set_parent - switch the parent of a mux clk
2798  * @clk: the mux clk whose input we are switching
2799  * @parent: the new input to clk
2800  *
2801  * Re-parent clk to use parent as its new input source.  If clk is in
2802  * prepared state, the clk will get enabled for the duration of this call. If
2803  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2804  * that, the reparenting is glitchy in hardware, etc), use the
2805  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2806  *
2807  * After successfully changing clk's parent clk_set_parent will update the
2808  * clk topology, sysfs topology and propagate rate recalculation via
2809  * __clk_recalc_rates.
2810  *
2811  * Returns 0 on success, -EERROR otherwise.
2812  */
2813 int clk_set_parent(struct clk *clk, struct clk *parent)
2814 {
2815 	int ret;
2816 
2817 	if (!clk)
2818 		return 0;
2819 
2820 	clk_prepare_lock();
2821 
2822 	if (clk->exclusive_count)
2823 		clk_core_rate_unprotect(clk->core);
2824 
2825 	ret = clk_core_set_parent_nolock(clk->core,
2826 					 parent ? parent->core : NULL);
2827 
2828 	if (clk->exclusive_count)
2829 		clk_core_rate_protect(clk->core);
2830 
2831 	clk_prepare_unlock();
2832 
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(clk_set_parent);
2836 
2837 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2838 {
2839 	int ret = -EINVAL;
2840 
2841 	lockdep_assert_held(&prepare_lock);
2842 
2843 	if (!core)
2844 		return 0;
2845 
2846 	if (clk_core_rate_is_protected(core))
2847 		return -EBUSY;
2848 
2849 	trace_clk_set_phase(core, degrees);
2850 
2851 	if (core->ops->set_phase) {
2852 		ret = core->ops->set_phase(core->hw, degrees);
2853 		if (!ret)
2854 			core->phase = degrees;
2855 	}
2856 
2857 	trace_clk_set_phase_complete(core, degrees);
2858 
2859 	return ret;
2860 }
2861 
2862 /**
2863  * clk_set_phase - adjust the phase shift of a clock signal
2864  * @clk: clock signal source
2865  * @degrees: number of degrees the signal is shifted
2866  *
2867  * Shifts the phase of a clock signal by the specified
2868  * degrees. Returns 0 on success, -EERROR otherwise.
2869  *
2870  * This function makes no distinction about the input or reference
2871  * signal that we adjust the clock signal phase against. For example
2872  * phase locked-loop clock signal generators we may shift phase with
2873  * respect to feedback clock signal input, but for other cases the
2874  * clock phase may be shifted with respect to some other, unspecified
2875  * signal.
2876  *
2877  * Additionally the concept of phase shift does not propagate through
2878  * the clock tree hierarchy, which sets it apart from clock rates and
2879  * clock accuracy. A parent clock phase attribute does not have an
2880  * impact on the phase attribute of a child clock.
2881  */
2882 int clk_set_phase(struct clk *clk, int degrees)
2883 {
2884 	int ret;
2885 
2886 	if (!clk)
2887 		return 0;
2888 
2889 	/* sanity check degrees */
2890 	degrees %= 360;
2891 	if (degrees < 0)
2892 		degrees += 360;
2893 
2894 	clk_prepare_lock();
2895 
2896 	if (clk->exclusive_count)
2897 		clk_core_rate_unprotect(clk->core);
2898 
2899 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2900 
2901 	if (clk->exclusive_count)
2902 		clk_core_rate_protect(clk->core);
2903 
2904 	clk_prepare_unlock();
2905 
2906 	return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(clk_set_phase);
2909 
2910 static int clk_core_get_phase(struct clk_core *core)
2911 {
2912 	int ret;
2913 
2914 	lockdep_assert_held(&prepare_lock);
2915 	if (!core->ops->get_phase)
2916 		return 0;
2917 
2918 	/* Always try to update cached phase if possible */
2919 	ret = core->ops->get_phase(core->hw);
2920 	if (ret >= 0)
2921 		core->phase = ret;
2922 
2923 	return ret;
2924 }
2925 
2926 /**
2927  * clk_get_phase - return the phase shift of a clock signal
2928  * @clk: clock signal source
2929  *
2930  * Returns the phase shift of a clock node in degrees, otherwise returns
2931  * -EERROR.
2932  */
2933 int clk_get_phase(struct clk *clk)
2934 {
2935 	int ret;
2936 
2937 	if (!clk)
2938 		return 0;
2939 
2940 	clk_prepare_lock();
2941 	ret = clk_core_get_phase(clk->core);
2942 	clk_prepare_unlock();
2943 
2944 	return ret;
2945 }
2946 EXPORT_SYMBOL_GPL(clk_get_phase);
2947 
2948 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2949 {
2950 	/* Assume a default value of 50% */
2951 	core->duty.num = 1;
2952 	core->duty.den = 2;
2953 }
2954 
2955 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2956 
2957 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2958 {
2959 	struct clk_duty *duty = &core->duty;
2960 	int ret = 0;
2961 
2962 	if (!core->ops->get_duty_cycle)
2963 		return clk_core_update_duty_cycle_parent_nolock(core);
2964 
2965 	ret = core->ops->get_duty_cycle(core->hw, duty);
2966 	if (ret)
2967 		goto reset;
2968 
2969 	/* Don't trust the clock provider too much */
2970 	if (duty->den == 0 || duty->num > duty->den) {
2971 		ret = -EINVAL;
2972 		goto reset;
2973 	}
2974 
2975 	return 0;
2976 
2977 reset:
2978 	clk_core_reset_duty_cycle_nolock(core);
2979 	return ret;
2980 }
2981 
2982 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2983 {
2984 	int ret = 0;
2985 
2986 	if (core->parent &&
2987 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2988 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2989 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2990 	} else {
2991 		clk_core_reset_duty_cycle_nolock(core);
2992 	}
2993 
2994 	return ret;
2995 }
2996 
2997 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2998 						 struct clk_duty *duty);
2999 
3000 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3001 					  struct clk_duty *duty)
3002 {
3003 	int ret;
3004 
3005 	lockdep_assert_held(&prepare_lock);
3006 
3007 	if (clk_core_rate_is_protected(core))
3008 		return -EBUSY;
3009 
3010 	trace_clk_set_duty_cycle(core, duty);
3011 
3012 	if (!core->ops->set_duty_cycle)
3013 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3014 
3015 	ret = core->ops->set_duty_cycle(core->hw, duty);
3016 	if (!ret)
3017 		memcpy(&core->duty, duty, sizeof(*duty));
3018 
3019 	trace_clk_set_duty_cycle_complete(core, duty);
3020 
3021 	return ret;
3022 }
3023 
3024 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3025 						 struct clk_duty *duty)
3026 {
3027 	int ret = 0;
3028 
3029 	if (core->parent &&
3030 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3031 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3032 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3033 	}
3034 
3035 	return ret;
3036 }
3037 
3038 /**
3039  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3040  * @clk: clock signal source
3041  * @num: numerator of the duty cycle ratio to be applied
3042  * @den: denominator of the duty cycle ratio to be applied
3043  *
3044  * Apply the duty cycle ratio if the ratio is valid and the clock can
3045  * perform this operation
3046  *
3047  * Returns (0) on success, a negative errno otherwise.
3048  */
3049 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3050 {
3051 	int ret;
3052 	struct clk_duty duty;
3053 
3054 	if (!clk)
3055 		return 0;
3056 
3057 	/* sanity check the ratio */
3058 	if (den == 0 || num > den)
3059 		return -EINVAL;
3060 
3061 	duty.num = num;
3062 	duty.den = den;
3063 
3064 	clk_prepare_lock();
3065 
3066 	if (clk->exclusive_count)
3067 		clk_core_rate_unprotect(clk->core);
3068 
3069 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3070 
3071 	if (clk->exclusive_count)
3072 		clk_core_rate_protect(clk->core);
3073 
3074 	clk_prepare_unlock();
3075 
3076 	return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3079 
3080 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3081 					  unsigned int scale)
3082 {
3083 	struct clk_duty *duty = &core->duty;
3084 	int ret;
3085 
3086 	clk_prepare_lock();
3087 
3088 	ret = clk_core_update_duty_cycle_nolock(core);
3089 	if (!ret)
3090 		ret = mult_frac(scale, duty->num, duty->den);
3091 
3092 	clk_prepare_unlock();
3093 
3094 	return ret;
3095 }
3096 
3097 /**
3098  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3099  * @clk: clock signal source
3100  * @scale: scaling factor to be applied to represent the ratio as an integer
3101  *
3102  * Returns the duty cycle ratio of a clock node multiplied by the provided
3103  * scaling factor, or negative errno on error.
3104  */
3105 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3106 {
3107 	if (!clk)
3108 		return 0;
3109 
3110 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3111 }
3112 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3113 
3114 /**
3115  * clk_is_match - check if two clk's point to the same hardware clock
3116  * @p: clk compared against q
3117  * @q: clk compared against p
3118  *
3119  * Returns true if the two struct clk pointers both point to the same hardware
3120  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3121  * share the same struct clk_core object.
3122  *
3123  * Returns false otherwise. Note that two NULL clks are treated as matching.
3124  */
3125 bool clk_is_match(const struct clk *p, const struct clk *q)
3126 {
3127 	/* trivial case: identical struct clk's or both NULL */
3128 	if (p == q)
3129 		return true;
3130 
3131 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3132 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3133 		if (p->core == q->core)
3134 			return true;
3135 
3136 	return false;
3137 }
3138 EXPORT_SYMBOL_GPL(clk_is_match);
3139 
3140 /***        debugfs support        ***/
3141 
3142 #ifdef CONFIG_DEBUG_FS
3143 #include <linux/debugfs.h>
3144 
3145 static struct dentry *rootdir;
3146 static int inited = 0;
3147 static DEFINE_MUTEX(clk_debug_lock);
3148 static HLIST_HEAD(clk_debug_list);
3149 
3150 static struct hlist_head *orphan_list[] = {
3151 	&clk_orphan_list,
3152 	NULL,
3153 };
3154 
3155 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3156 				 int level)
3157 {
3158 	int phase;
3159 
3160 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3161 		   level * 3 + 1, "",
3162 		   30 - level * 3, c->name,
3163 		   c->enable_count, c->prepare_count, c->protect_count,
3164 		   clk_core_get_rate_recalc(c),
3165 		   clk_core_get_accuracy_recalc(c));
3166 
3167 	phase = clk_core_get_phase(c);
3168 	if (phase >= 0)
3169 		seq_printf(s, "%5d", phase);
3170 	else
3171 		seq_puts(s, "-----");
3172 
3173 	seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3174 
3175 	if (c->ops->is_enabled)
3176 		seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3177 	else if (!c->ops->enable)
3178 		seq_printf(s, " %9c\n", 'Y');
3179 	else
3180 		seq_printf(s, " %9c\n", '?');
3181 }
3182 
3183 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3184 				     int level)
3185 {
3186 	struct clk_core *child;
3187 
3188 	clk_pm_runtime_get(c);
3189 	clk_summary_show_one(s, c, level);
3190 	clk_pm_runtime_put(c);
3191 
3192 	hlist_for_each_entry(child, &c->children, child_node)
3193 		clk_summary_show_subtree(s, child, level + 1);
3194 }
3195 
3196 static int clk_summary_show(struct seq_file *s, void *data)
3197 {
3198 	struct clk_core *c;
3199 	struct hlist_head **lists = s->private;
3200 
3201 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware\n");
3202 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable\n");
3203 	seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3204 
3205 	clk_prepare_lock();
3206 
3207 	for (; *lists; lists++)
3208 		hlist_for_each_entry(c, *lists, child_node)
3209 			clk_summary_show_subtree(s, c, 0);
3210 
3211 	clk_prepare_unlock();
3212 
3213 	return 0;
3214 }
3215 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3216 
3217 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3218 {
3219 	int phase;
3220 	unsigned long min_rate, max_rate;
3221 
3222 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3223 
3224 	/* This should be JSON format, i.e. elements separated with a comma */
3225 	seq_printf(s, "\"%s\": { ", c->name);
3226 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3227 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3228 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3229 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3230 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3231 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3232 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3233 	phase = clk_core_get_phase(c);
3234 	if (phase >= 0)
3235 		seq_printf(s, "\"phase\": %d,", phase);
3236 	seq_printf(s, "\"duty_cycle\": %u",
3237 		   clk_core_get_scaled_duty_cycle(c, 100000));
3238 }
3239 
3240 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3241 {
3242 	struct clk_core *child;
3243 
3244 	clk_dump_one(s, c, level);
3245 
3246 	hlist_for_each_entry(child, &c->children, child_node) {
3247 		seq_putc(s, ',');
3248 		clk_dump_subtree(s, child, level + 1);
3249 	}
3250 
3251 	seq_putc(s, '}');
3252 }
3253 
3254 static int clk_dump_show(struct seq_file *s, void *data)
3255 {
3256 	struct clk_core *c;
3257 	bool first_node = true;
3258 	struct hlist_head **lists = s->private;
3259 
3260 	seq_putc(s, '{');
3261 	clk_prepare_lock();
3262 
3263 	for (; *lists; lists++) {
3264 		hlist_for_each_entry(c, *lists, child_node) {
3265 			if (!first_node)
3266 				seq_putc(s, ',');
3267 			first_node = false;
3268 			clk_dump_subtree(s, c, 0);
3269 		}
3270 	}
3271 
3272 	clk_prepare_unlock();
3273 
3274 	seq_puts(s, "}\n");
3275 	return 0;
3276 }
3277 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3278 
3279 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3280 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3281 /*
3282  * This can be dangerous, therefore don't provide any real compile time
3283  * configuration option for this feature.
3284  * People who want to use this will need to modify the source code directly.
3285  */
3286 static int clk_rate_set(void *data, u64 val)
3287 {
3288 	struct clk_core *core = data;
3289 	int ret;
3290 
3291 	clk_prepare_lock();
3292 	ret = clk_core_set_rate_nolock(core, val);
3293 	clk_prepare_unlock();
3294 
3295 	return ret;
3296 }
3297 
3298 #define clk_rate_mode	0644
3299 
3300 static int clk_prepare_enable_set(void *data, u64 val)
3301 {
3302 	struct clk_core *core = data;
3303 	int ret = 0;
3304 
3305 	if (val)
3306 		ret = clk_prepare_enable(core->hw->clk);
3307 	else
3308 		clk_disable_unprepare(core->hw->clk);
3309 
3310 	return ret;
3311 }
3312 
3313 static int clk_prepare_enable_get(void *data, u64 *val)
3314 {
3315 	struct clk_core *core = data;
3316 
3317 	*val = core->enable_count && core->prepare_count;
3318 	return 0;
3319 }
3320 
3321 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3322 			 clk_prepare_enable_set, "%llu\n");
3323 
3324 #else
3325 #define clk_rate_set	NULL
3326 #define clk_rate_mode	0444
3327 #endif
3328 
3329 static int clk_rate_get(void *data, u64 *val)
3330 {
3331 	struct clk_core *core = data;
3332 
3333 	clk_prepare_lock();
3334 	*val = clk_core_get_rate_recalc(core);
3335 	clk_prepare_unlock();
3336 
3337 	return 0;
3338 }
3339 
3340 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3341 
3342 static const struct {
3343 	unsigned long flag;
3344 	const char *name;
3345 } clk_flags[] = {
3346 #define ENTRY(f) { f, #f }
3347 	ENTRY(CLK_SET_RATE_GATE),
3348 	ENTRY(CLK_SET_PARENT_GATE),
3349 	ENTRY(CLK_SET_RATE_PARENT),
3350 	ENTRY(CLK_IGNORE_UNUSED),
3351 	ENTRY(CLK_GET_RATE_NOCACHE),
3352 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3353 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3354 	ENTRY(CLK_RECALC_NEW_RATES),
3355 	ENTRY(CLK_SET_RATE_UNGATE),
3356 	ENTRY(CLK_IS_CRITICAL),
3357 	ENTRY(CLK_OPS_PARENT_ENABLE),
3358 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3359 #undef ENTRY
3360 };
3361 
3362 static int clk_flags_show(struct seq_file *s, void *data)
3363 {
3364 	struct clk_core *core = s->private;
3365 	unsigned long flags = core->flags;
3366 	unsigned int i;
3367 
3368 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3369 		if (flags & clk_flags[i].flag) {
3370 			seq_printf(s, "%s\n", clk_flags[i].name);
3371 			flags &= ~clk_flags[i].flag;
3372 		}
3373 	}
3374 	if (flags) {
3375 		/* Unknown flags */
3376 		seq_printf(s, "0x%lx\n", flags);
3377 	}
3378 
3379 	return 0;
3380 }
3381 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3382 
3383 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3384 				 unsigned int i, char terminator)
3385 {
3386 	struct clk_core *parent;
3387 
3388 	/*
3389 	 * Go through the following options to fetch a parent's name.
3390 	 *
3391 	 * 1. Fetch the registered parent clock and use its name
3392 	 * 2. Use the global (fallback) name if specified
3393 	 * 3. Use the local fw_name if provided
3394 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3395 	 *
3396 	 * This may still fail in some cases, such as when the parent is
3397 	 * specified directly via a struct clk_hw pointer, but it isn't
3398 	 * registered (yet).
3399 	 */
3400 	parent = clk_core_get_parent_by_index(core, i);
3401 	if (parent)
3402 		seq_puts(s, parent->name);
3403 	else if (core->parents[i].name)
3404 		seq_puts(s, core->parents[i].name);
3405 	else if (core->parents[i].fw_name)
3406 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3407 	else if (core->parents[i].index >= 0)
3408 		seq_puts(s,
3409 			 of_clk_get_parent_name(core->of_node,
3410 						core->parents[i].index));
3411 	else
3412 		seq_puts(s, "(missing)");
3413 
3414 	seq_putc(s, terminator);
3415 }
3416 
3417 static int possible_parents_show(struct seq_file *s, void *data)
3418 {
3419 	struct clk_core *core = s->private;
3420 	int i;
3421 
3422 	for (i = 0; i < core->num_parents - 1; i++)
3423 		possible_parent_show(s, core, i, ' ');
3424 
3425 	possible_parent_show(s, core, i, '\n');
3426 
3427 	return 0;
3428 }
3429 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3430 
3431 static int current_parent_show(struct seq_file *s, void *data)
3432 {
3433 	struct clk_core *core = s->private;
3434 
3435 	if (core->parent)
3436 		seq_printf(s, "%s\n", core->parent->name);
3437 
3438 	return 0;
3439 }
3440 DEFINE_SHOW_ATTRIBUTE(current_parent);
3441 
3442 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3443 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3444 				    size_t count, loff_t *ppos)
3445 {
3446 	struct seq_file *s = file->private_data;
3447 	struct clk_core *core = s->private;
3448 	struct clk_core *parent;
3449 	u8 idx;
3450 	int err;
3451 
3452 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3453 	if (err < 0)
3454 		return err;
3455 
3456 	parent = clk_core_get_parent_by_index(core, idx);
3457 	if (!parent)
3458 		return -ENOENT;
3459 
3460 	clk_prepare_lock();
3461 	err = clk_core_set_parent_nolock(core, parent);
3462 	clk_prepare_unlock();
3463 	if (err)
3464 		return err;
3465 
3466 	return count;
3467 }
3468 
3469 static const struct file_operations current_parent_rw_fops = {
3470 	.open		= current_parent_open,
3471 	.write		= current_parent_write,
3472 	.read		= seq_read,
3473 	.llseek		= seq_lseek,
3474 	.release	= single_release,
3475 };
3476 #endif
3477 
3478 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3479 {
3480 	struct clk_core *core = s->private;
3481 	struct clk_duty *duty = &core->duty;
3482 
3483 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3484 
3485 	return 0;
3486 }
3487 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3488 
3489 static int clk_min_rate_show(struct seq_file *s, void *data)
3490 {
3491 	struct clk_core *core = s->private;
3492 	unsigned long min_rate, max_rate;
3493 
3494 	clk_prepare_lock();
3495 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3496 	clk_prepare_unlock();
3497 	seq_printf(s, "%lu\n", min_rate);
3498 
3499 	return 0;
3500 }
3501 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3502 
3503 static int clk_max_rate_show(struct seq_file *s, void *data)
3504 {
3505 	struct clk_core *core = s->private;
3506 	unsigned long min_rate, max_rate;
3507 
3508 	clk_prepare_lock();
3509 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3510 	clk_prepare_unlock();
3511 	seq_printf(s, "%lu\n", max_rate);
3512 
3513 	return 0;
3514 }
3515 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3516 
3517 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3518 {
3519 	struct dentry *root;
3520 
3521 	if (!core || !pdentry)
3522 		return;
3523 
3524 	root = debugfs_create_dir(core->name, pdentry);
3525 	core->dentry = root;
3526 
3527 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3528 			    &clk_rate_fops);
3529 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3530 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3531 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3532 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3533 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3534 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3535 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3536 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3537 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3538 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3539 			    &clk_duty_cycle_fops);
3540 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3541 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3542 			    &clk_prepare_enable_fops);
3543 
3544 	if (core->num_parents > 1)
3545 		debugfs_create_file("clk_parent", 0644, root, core,
3546 				    &current_parent_rw_fops);
3547 	else
3548 #endif
3549 	if (core->num_parents > 0)
3550 		debugfs_create_file("clk_parent", 0444, root, core,
3551 				    &current_parent_fops);
3552 
3553 	if (core->num_parents > 1)
3554 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3555 				    &possible_parents_fops);
3556 
3557 	if (core->ops->debug_init)
3558 		core->ops->debug_init(core->hw, core->dentry);
3559 }
3560 
3561 /**
3562  * clk_debug_register - add a clk node to the debugfs clk directory
3563  * @core: the clk being added to the debugfs clk directory
3564  *
3565  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3566  * initialized.  Otherwise it bails out early since the debugfs clk directory
3567  * will be created lazily by clk_debug_init as part of a late_initcall.
3568  */
3569 static void clk_debug_register(struct clk_core *core)
3570 {
3571 	mutex_lock(&clk_debug_lock);
3572 	hlist_add_head(&core->debug_node, &clk_debug_list);
3573 	if (inited)
3574 		clk_debug_create_one(core, rootdir);
3575 	mutex_unlock(&clk_debug_lock);
3576 }
3577 
3578  /**
3579  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3580  * @core: the clk being removed from the debugfs clk directory
3581  *
3582  * Dynamically removes a clk and all its child nodes from the
3583  * debugfs clk directory if clk->dentry points to debugfs created by
3584  * clk_debug_register in __clk_core_init.
3585  */
3586 static void clk_debug_unregister(struct clk_core *core)
3587 {
3588 	mutex_lock(&clk_debug_lock);
3589 	hlist_del_init(&core->debug_node);
3590 	debugfs_remove_recursive(core->dentry);
3591 	core->dentry = NULL;
3592 	mutex_unlock(&clk_debug_lock);
3593 }
3594 
3595 /**
3596  * clk_debug_init - lazily populate the debugfs clk directory
3597  *
3598  * clks are often initialized very early during boot before memory can be
3599  * dynamically allocated and well before debugfs is setup. This function
3600  * populates the debugfs clk directory once at boot-time when we know that
3601  * debugfs is setup. It should only be called once at boot-time, all other clks
3602  * added dynamically will be done so with clk_debug_register.
3603  */
3604 static int __init clk_debug_init(void)
3605 {
3606 	struct clk_core *core;
3607 
3608 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3609 	pr_warn("\n");
3610 	pr_warn("********************************************************************\n");
3611 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3612 	pr_warn("**                                                                **\n");
3613 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3614 	pr_warn("**                                                                **\n");
3615 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3616 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3617 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3618 	pr_warn("**                                                                **\n");
3619 	pr_warn("** If you see this message and you are not debugging the          **\n");
3620 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3621 	pr_warn("**                                                                **\n");
3622 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3623 	pr_warn("********************************************************************\n");
3624 #endif
3625 
3626 	rootdir = debugfs_create_dir("clk", NULL);
3627 
3628 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3629 			    &clk_summary_fops);
3630 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3631 			    &clk_dump_fops);
3632 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3633 			    &clk_summary_fops);
3634 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3635 			    &clk_dump_fops);
3636 
3637 	mutex_lock(&clk_debug_lock);
3638 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3639 		clk_debug_create_one(core, rootdir);
3640 
3641 	inited = 1;
3642 	mutex_unlock(&clk_debug_lock);
3643 
3644 	return 0;
3645 }
3646 late_initcall(clk_debug_init);
3647 #else
3648 static inline void clk_debug_register(struct clk_core *core) { }
3649 static inline void clk_debug_unregister(struct clk_core *core)
3650 {
3651 }
3652 #endif
3653 
3654 static void clk_core_reparent_orphans_nolock(void)
3655 {
3656 	struct clk_core *orphan;
3657 	struct hlist_node *tmp2;
3658 
3659 	/*
3660 	 * walk the list of orphan clocks and reparent any that newly finds a
3661 	 * parent.
3662 	 */
3663 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3664 		struct clk_core *parent = __clk_init_parent(orphan);
3665 
3666 		/*
3667 		 * We need to use __clk_set_parent_before() and _after() to
3668 		 * properly migrate any prepare/enable count of the orphan
3669 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3670 		 * are enabled during init but might not have a parent yet.
3671 		 */
3672 		if (parent) {
3673 			/* update the clk tree topology */
3674 			__clk_set_parent_before(orphan, parent);
3675 			__clk_set_parent_after(orphan, parent, NULL);
3676 			__clk_recalc_accuracies(orphan);
3677 			__clk_recalc_rates(orphan, true, 0);
3678 
3679 			/*
3680 			 * __clk_init_parent() will set the initial req_rate to
3681 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3682 			 * is an orphan when it's registered.
3683 			 *
3684 			 * 'req_rate' is used by clk_set_rate_range() and
3685 			 * clk_put() to trigger a clk_set_rate() call whenever
3686 			 * the boundaries are modified. Let's make sure
3687 			 * 'req_rate' is set to something non-zero so that
3688 			 * clk_set_rate_range() doesn't drop the frequency.
3689 			 */
3690 			orphan->req_rate = orphan->rate;
3691 		}
3692 	}
3693 }
3694 
3695 /**
3696  * __clk_core_init - initialize the data structures in a struct clk_core
3697  * @core:	clk_core being initialized
3698  *
3699  * Initializes the lists in struct clk_core, queries the hardware for the
3700  * parent and rate and sets them both.
3701  */
3702 static int __clk_core_init(struct clk_core *core)
3703 {
3704 	int ret;
3705 	struct clk_core *parent;
3706 	unsigned long rate;
3707 	int phase;
3708 
3709 	clk_prepare_lock();
3710 
3711 	/*
3712 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3713 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3714 	 * being NULL as the clk not being registered yet. This is crucial so
3715 	 * that clks aren't parented until their parent is fully registered.
3716 	 */
3717 	core->hw->core = core;
3718 
3719 	ret = clk_pm_runtime_get(core);
3720 	if (ret)
3721 		goto unlock;
3722 
3723 	/* check to see if a clock with this name is already registered */
3724 	if (clk_core_lookup(core->name)) {
3725 		pr_debug("%s: clk %s already initialized\n",
3726 				__func__, core->name);
3727 		ret = -EEXIST;
3728 		goto out;
3729 	}
3730 
3731 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3732 	if (core->ops->set_rate &&
3733 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3734 	      core->ops->recalc_rate)) {
3735 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3736 		       __func__, core->name);
3737 		ret = -EINVAL;
3738 		goto out;
3739 	}
3740 
3741 	if (core->ops->set_parent && !core->ops->get_parent) {
3742 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3743 		       __func__, core->name);
3744 		ret = -EINVAL;
3745 		goto out;
3746 	}
3747 
3748 	if (core->num_parents > 1 && !core->ops->get_parent) {
3749 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3750 		       __func__, core->name);
3751 		ret = -EINVAL;
3752 		goto out;
3753 	}
3754 
3755 	if (core->ops->set_rate_and_parent &&
3756 			!(core->ops->set_parent && core->ops->set_rate)) {
3757 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3758 				__func__, core->name);
3759 		ret = -EINVAL;
3760 		goto out;
3761 	}
3762 
3763 	/*
3764 	 * optional platform-specific magic
3765 	 *
3766 	 * The .init callback is not used by any of the basic clock types, but
3767 	 * exists for weird hardware that must perform initialization magic for
3768 	 * CCF to get an accurate view of clock for any other callbacks. It may
3769 	 * also be used needs to perform dynamic allocations. Such allocation
3770 	 * must be freed in the terminate() callback.
3771 	 * This callback shall not be used to initialize the parameters state,
3772 	 * such as rate, parent, etc ...
3773 	 *
3774 	 * If it exist, this callback should called before any other callback of
3775 	 * the clock
3776 	 */
3777 	if (core->ops->init) {
3778 		ret = core->ops->init(core->hw);
3779 		if (ret)
3780 			goto out;
3781 	}
3782 
3783 	parent = core->parent = __clk_init_parent(core);
3784 
3785 	/*
3786 	 * Populate core->parent if parent has already been clk_core_init'd. If
3787 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3788 	 * list.  If clk doesn't have any parents then place it in the root
3789 	 * clk list.
3790 	 *
3791 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3792 	 * clocks and re-parent any that are children of the clock currently
3793 	 * being clk_init'd.
3794 	 */
3795 	if (parent) {
3796 		hlist_add_head(&core->child_node, &parent->children);
3797 		core->orphan = parent->orphan;
3798 	} else if (!core->num_parents) {
3799 		hlist_add_head(&core->child_node, &clk_root_list);
3800 		core->orphan = false;
3801 	} else {
3802 		hlist_add_head(&core->child_node, &clk_orphan_list);
3803 		core->orphan = true;
3804 	}
3805 
3806 	/*
3807 	 * Set clk's accuracy.  The preferred method is to use
3808 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3809 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3810 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3811 	 * clock).
3812 	 */
3813 	if (core->ops->recalc_accuracy)
3814 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3815 					clk_core_get_accuracy_no_lock(parent));
3816 	else if (parent)
3817 		core->accuracy = parent->accuracy;
3818 	else
3819 		core->accuracy = 0;
3820 
3821 	/*
3822 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3823 	 * Since a phase is by definition relative to its parent, just
3824 	 * query the current clock phase, or just assume it's in phase.
3825 	 */
3826 	phase = clk_core_get_phase(core);
3827 	if (phase < 0) {
3828 		ret = phase;
3829 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3830 			core->name);
3831 		goto out;
3832 	}
3833 
3834 	/*
3835 	 * Set clk's duty cycle.
3836 	 */
3837 	clk_core_update_duty_cycle_nolock(core);
3838 
3839 	/*
3840 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3841 	 * simple clocks and lazy developers the default fallback is to use the
3842 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3843 	 * then rate is set to zero.
3844 	 */
3845 	if (core->ops->recalc_rate)
3846 		rate = core->ops->recalc_rate(core->hw,
3847 				clk_core_get_rate_nolock(parent));
3848 	else if (parent)
3849 		rate = parent->rate;
3850 	else
3851 		rate = 0;
3852 	core->rate = core->req_rate = rate;
3853 
3854 	/*
3855 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3856 	 * don't get accidentally disabled when walking the orphan tree and
3857 	 * reparenting clocks
3858 	 */
3859 	if (core->flags & CLK_IS_CRITICAL) {
3860 		ret = clk_core_prepare(core);
3861 		if (ret) {
3862 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3863 			       __func__, core->name);
3864 			goto out;
3865 		}
3866 
3867 		ret = clk_core_enable_lock(core);
3868 		if (ret) {
3869 			pr_warn("%s: critical clk '%s' failed to enable\n",
3870 			       __func__, core->name);
3871 			clk_core_unprepare(core);
3872 			goto out;
3873 		}
3874 	}
3875 
3876 	clk_core_reparent_orphans_nolock();
3877 
3878 	kref_init(&core->ref);
3879 out:
3880 	clk_pm_runtime_put(core);
3881 unlock:
3882 	if (ret) {
3883 		hlist_del_init(&core->child_node);
3884 		core->hw->core = NULL;
3885 	}
3886 
3887 	clk_prepare_unlock();
3888 
3889 	if (!ret)
3890 		clk_debug_register(core);
3891 
3892 	return ret;
3893 }
3894 
3895 /**
3896  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3897  * @core: clk to add consumer to
3898  * @clk: consumer to link to a clk
3899  */
3900 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3901 {
3902 	clk_prepare_lock();
3903 	hlist_add_head(&clk->clks_node, &core->clks);
3904 	clk_prepare_unlock();
3905 }
3906 
3907 /**
3908  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3909  * @clk: consumer to unlink
3910  */
3911 static void clk_core_unlink_consumer(struct clk *clk)
3912 {
3913 	lockdep_assert_held(&prepare_lock);
3914 	hlist_del(&clk->clks_node);
3915 }
3916 
3917 /**
3918  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3919  * @core: clk to allocate a consumer for
3920  * @dev_id: string describing device name
3921  * @con_id: connection ID string on device
3922  *
3923  * Returns: clk consumer left unlinked from the consumer list
3924  */
3925 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3926 			     const char *con_id)
3927 {
3928 	struct clk *clk;
3929 
3930 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3931 	if (!clk)
3932 		return ERR_PTR(-ENOMEM);
3933 
3934 	clk->core = core;
3935 	clk->dev_id = dev_id;
3936 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3937 	clk->max_rate = ULONG_MAX;
3938 
3939 	return clk;
3940 }
3941 
3942 /**
3943  * free_clk - Free a clk consumer
3944  * @clk: clk consumer to free
3945  *
3946  * Note, this assumes the clk has been unlinked from the clk_core consumer
3947  * list.
3948  */
3949 static void free_clk(struct clk *clk)
3950 {
3951 	kfree_const(clk->con_id);
3952 	kfree(clk);
3953 }
3954 
3955 /**
3956  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3957  * a clk_hw
3958  * @dev: clk consumer device
3959  * @hw: clk_hw associated with the clk being consumed
3960  * @dev_id: string describing device name
3961  * @con_id: connection ID string on device
3962  *
3963  * This is the main function used to create a clk pointer for use by clk
3964  * consumers. It connects a consumer to the clk_core and clk_hw structures
3965  * used by the framework and clk provider respectively.
3966  */
3967 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3968 			      const char *dev_id, const char *con_id)
3969 {
3970 	struct clk *clk;
3971 	struct clk_core *core;
3972 
3973 	/* This is to allow this function to be chained to others */
3974 	if (IS_ERR_OR_NULL(hw))
3975 		return ERR_CAST(hw);
3976 
3977 	core = hw->core;
3978 	clk = alloc_clk(core, dev_id, con_id);
3979 	if (IS_ERR(clk))
3980 		return clk;
3981 	clk->dev = dev;
3982 
3983 	if (!try_module_get(core->owner)) {
3984 		free_clk(clk);
3985 		return ERR_PTR(-ENOENT);
3986 	}
3987 
3988 	kref_get(&core->ref);
3989 	clk_core_link_consumer(core, clk);
3990 
3991 	return clk;
3992 }
3993 
3994 /**
3995  * clk_hw_get_clk - get clk consumer given an clk_hw
3996  * @hw: clk_hw associated with the clk being consumed
3997  * @con_id: connection ID string on device
3998  *
3999  * Returns: new clk consumer
4000  * This is the function to be used by providers which need
4001  * to get a consumer clk and act on the clock element
4002  * Calls to this function must be balanced with calls clk_put()
4003  */
4004 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4005 {
4006 	struct device *dev = hw->core->dev;
4007 	const char *name = dev ? dev_name(dev) : NULL;
4008 
4009 	return clk_hw_create_clk(dev, hw, name, con_id);
4010 }
4011 EXPORT_SYMBOL(clk_hw_get_clk);
4012 
4013 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4014 {
4015 	const char *dst;
4016 
4017 	if (!src) {
4018 		if (must_exist)
4019 			return -EINVAL;
4020 		return 0;
4021 	}
4022 
4023 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4024 	if (!dst)
4025 		return -ENOMEM;
4026 
4027 	return 0;
4028 }
4029 
4030 static int clk_core_populate_parent_map(struct clk_core *core,
4031 					const struct clk_init_data *init)
4032 {
4033 	u8 num_parents = init->num_parents;
4034 	const char * const *parent_names = init->parent_names;
4035 	const struct clk_hw **parent_hws = init->parent_hws;
4036 	const struct clk_parent_data *parent_data = init->parent_data;
4037 	int i, ret = 0;
4038 	struct clk_parent_map *parents, *parent;
4039 
4040 	if (!num_parents)
4041 		return 0;
4042 
4043 	/*
4044 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4045 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4046 	 */
4047 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4048 	core->parents = parents;
4049 	if (!parents)
4050 		return -ENOMEM;
4051 
4052 	/* Copy everything over because it might be __initdata */
4053 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4054 		parent->index = -1;
4055 		if (parent_names) {
4056 			/* throw a WARN if any entries are NULL */
4057 			WARN(!parent_names[i],
4058 				"%s: invalid NULL in %s's .parent_names\n",
4059 				__func__, core->name);
4060 			ret = clk_cpy_name(&parent->name, parent_names[i],
4061 					   true);
4062 		} else if (parent_data) {
4063 			parent->hw = parent_data[i].hw;
4064 			parent->index = parent_data[i].index;
4065 			ret = clk_cpy_name(&parent->fw_name,
4066 					   parent_data[i].fw_name, false);
4067 			if (!ret)
4068 				ret = clk_cpy_name(&parent->name,
4069 						   parent_data[i].name,
4070 						   false);
4071 		} else if (parent_hws) {
4072 			parent->hw = parent_hws[i];
4073 		} else {
4074 			ret = -EINVAL;
4075 			WARN(1, "Must specify parents if num_parents > 0\n");
4076 		}
4077 
4078 		if (ret) {
4079 			do {
4080 				kfree_const(parents[i].name);
4081 				kfree_const(parents[i].fw_name);
4082 			} while (--i >= 0);
4083 			kfree(parents);
4084 
4085 			return ret;
4086 		}
4087 	}
4088 
4089 	return 0;
4090 }
4091 
4092 static void clk_core_free_parent_map(struct clk_core *core)
4093 {
4094 	int i = core->num_parents;
4095 
4096 	if (!core->num_parents)
4097 		return;
4098 
4099 	while (--i >= 0) {
4100 		kfree_const(core->parents[i].name);
4101 		kfree_const(core->parents[i].fw_name);
4102 	}
4103 
4104 	kfree(core->parents);
4105 }
4106 
4107 static struct clk *
4108 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4109 {
4110 	int ret;
4111 	struct clk_core *core;
4112 	const struct clk_init_data *init = hw->init;
4113 
4114 	/*
4115 	 * The init data is not supposed to be used outside of registration path.
4116 	 * Set it to NULL so that provider drivers can't use it either and so that
4117 	 * we catch use of hw->init early on in the core.
4118 	 */
4119 	hw->init = NULL;
4120 
4121 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4122 	if (!core) {
4123 		ret = -ENOMEM;
4124 		goto fail_out;
4125 	}
4126 
4127 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4128 	if (!core->name) {
4129 		ret = -ENOMEM;
4130 		goto fail_name;
4131 	}
4132 
4133 	if (WARN_ON(!init->ops)) {
4134 		ret = -EINVAL;
4135 		goto fail_ops;
4136 	}
4137 	core->ops = init->ops;
4138 
4139 	if (dev && pm_runtime_enabled(dev))
4140 		core->rpm_enabled = true;
4141 	core->dev = dev;
4142 	core->of_node = np;
4143 	if (dev && dev->driver)
4144 		core->owner = dev->driver->owner;
4145 	core->hw = hw;
4146 	core->flags = init->flags;
4147 	core->num_parents = init->num_parents;
4148 	core->min_rate = 0;
4149 	core->max_rate = ULONG_MAX;
4150 
4151 	ret = clk_core_populate_parent_map(core, init);
4152 	if (ret)
4153 		goto fail_parents;
4154 
4155 	INIT_HLIST_HEAD(&core->clks);
4156 
4157 	/*
4158 	 * Don't call clk_hw_create_clk() here because that would pin the
4159 	 * provider module to itself and prevent it from ever being removed.
4160 	 */
4161 	hw->clk = alloc_clk(core, NULL, NULL);
4162 	if (IS_ERR(hw->clk)) {
4163 		ret = PTR_ERR(hw->clk);
4164 		goto fail_create_clk;
4165 	}
4166 
4167 	clk_core_link_consumer(core, hw->clk);
4168 
4169 	ret = __clk_core_init(core);
4170 	if (!ret)
4171 		return hw->clk;
4172 
4173 	clk_prepare_lock();
4174 	clk_core_unlink_consumer(hw->clk);
4175 	clk_prepare_unlock();
4176 
4177 	free_clk(hw->clk);
4178 	hw->clk = NULL;
4179 
4180 fail_create_clk:
4181 	clk_core_free_parent_map(core);
4182 fail_parents:
4183 fail_ops:
4184 	kfree_const(core->name);
4185 fail_name:
4186 	kfree(core);
4187 fail_out:
4188 	return ERR_PTR(ret);
4189 }
4190 
4191 /**
4192  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4193  * @dev: Device to get device node of
4194  *
4195  * Return: device node pointer of @dev, or the device node pointer of
4196  * @dev->parent if dev doesn't have a device node, or NULL if neither
4197  * @dev or @dev->parent have a device node.
4198  */
4199 static struct device_node *dev_or_parent_of_node(struct device *dev)
4200 {
4201 	struct device_node *np;
4202 
4203 	if (!dev)
4204 		return NULL;
4205 
4206 	np = dev_of_node(dev);
4207 	if (!np)
4208 		np = dev_of_node(dev->parent);
4209 
4210 	return np;
4211 }
4212 
4213 /**
4214  * clk_register - allocate a new clock, register it and return an opaque cookie
4215  * @dev: device that is registering this clock
4216  * @hw: link to hardware-specific clock data
4217  *
4218  * clk_register is the *deprecated* interface for populating the clock tree with
4219  * new clock nodes. Use clk_hw_register() instead.
4220  *
4221  * Returns: a pointer to the newly allocated struct clk which
4222  * cannot be dereferenced by driver code but may be used in conjunction with the
4223  * rest of the clock API.  In the event of an error clk_register will return an
4224  * error code; drivers must test for an error code after calling clk_register.
4225  */
4226 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4227 {
4228 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4229 }
4230 EXPORT_SYMBOL_GPL(clk_register);
4231 
4232 /**
4233  * clk_hw_register - register a clk_hw and return an error code
4234  * @dev: device that is registering this clock
4235  * @hw: link to hardware-specific clock data
4236  *
4237  * clk_hw_register is the primary interface for populating the clock tree with
4238  * new clock nodes. It returns an integer equal to zero indicating success or
4239  * less than zero indicating failure. Drivers must test for an error code after
4240  * calling clk_hw_register().
4241  */
4242 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4243 {
4244 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4245 			       hw));
4246 }
4247 EXPORT_SYMBOL_GPL(clk_hw_register);
4248 
4249 /*
4250  * of_clk_hw_register - register a clk_hw and return an error code
4251  * @node: device_node of device that is registering this clock
4252  * @hw: link to hardware-specific clock data
4253  *
4254  * of_clk_hw_register() is the primary interface for populating the clock tree
4255  * with new clock nodes when a struct device is not available, but a struct
4256  * device_node is. It returns an integer equal to zero indicating success or
4257  * less than zero indicating failure. Drivers must test for an error code after
4258  * calling of_clk_hw_register().
4259  */
4260 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4261 {
4262 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4263 }
4264 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4265 
4266 /* Free memory allocated for a clock. */
4267 static void __clk_release(struct kref *ref)
4268 {
4269 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4270 
4271 	lockdep_assert_held(&prepare_lock);
4272 
4273 	clk_core_free_parent_map(core);
4274 	kfree_const(core->name);
4275 	kfree(core);
4276 }
4277 
4278 /*
4279  * Empty clk_ops for unregistered clocks. These are used temporarily
4280  * after clk_unregister() was called on a clock and until last clock
4281  * consumer calls clk_put() and the struct clk object is freed.
4282  */
4283 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4284 {
4285 	return -ENXIO;
4286 }
4287 
4288 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4289 {
4290 	WARN_ON_ONCE(1);
4291 }
4292 
4293 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4294 					unsigned long parent_rate)
4295 {
4296 	return -ENXIO;
4297 }
4298 
4299 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4300 {
4301 	return -ENXIO;
4302 }
4303 
4304 static const struct clk_ops clk_nodrv_ops = {
4305 	.enable		= clk_nodrv_prepare_enable,
4306 	.disable	= clk_nodrv_disable_unprepare,
4307 	.prepare	= clk_nodrv_prepare_enable,
4308 	.unprepare	= clk_nodrv_disable_unprepare,
4309 	.set_rate	= clk_nodrv_set_rate,
4310 	.set_parent	= clk_nodrv_set_parent,
4311 };
4312 
4313 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4314 						const struct clk_core *target)
4315 {
4316 	int i;
4317 	struct clk_core *child;
4318 
4319 	for (i = 0; i < root->num_parents; i++)
4320 		if (root->parents[i].core == target)
4321 			root->parents[i].core = NULL;
4322 
4323 	hlist_for_each_entry(child, &root->children, child_node)
4324 		clk_core_evict_parent_cache_subtree(child, target);
4325 }
4326 
4327 /* Remove this clk from all parent caches */
4328 static void clk_core_evict_parent_cache(struct clk_core *core)
4329 {
4330 	const struct hlist_head **lists;
4331 	struct clk_core *root;
4332 
4333 	lockdep_assert_held(&prepare_lock);
4334 
4335 	for (lists = all_lists; *lists; lists++)
4336 		hlist_for_each_entry(root, *lists, child_node)
4337 			clk_core_evict_parent_cache_subtree(root, core);
4338 
4339 }
4340 
4341 /**
4342  * clk_unregister - unregister a currently registered clock
4343  * @clk: clock to unregister
4344  */
4345 void clk_unregister(struct clk *clk)
4346 {
4347 	unsigned long flags;
4348 	const struct clk_ops *ops;
4349 
4350 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4351 		return;
4352 
4353 	clk_debug_unregister(clk->core);
4354 
4355 	clk_prepare_lock();
4356 
4357 	ops = clk->core->ops;
4358 	if (ops == &clk_nodrv_ops) {
4359 		pr_err("%s: unregistered clock: %s\n", __func__,
4360 		       clk->core->name);
4361 		goto unlock;
4362 	}
4363 	/*
4364 	 * Assign empty clock ops for consumers that might still hold
4365 	 * a reference to this clock.
4366 	 */
4367 	flags = clk_enable_lock();
4368 	clk->core->ops = &clk_nodrv_ops;
4369 	clk_enable_unlock(flags);
4370 
4371 	if (ops->terminate)
4372 		ops->terminate(clk->core->hw);
4373 
4374 	if (!hlist_empty(&clk->core->children)) {
4375 		struct clk_core *child;
4376 		struct hlist_node *t;
4377 
4378 		/* Reparent all children to the orphan list. */
4379 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4380 					  child_node)
4381 			clk_core_set_parent_nolock(child, NULL);
4382 	}
4383 
4384 	clk_core_evict_parent_cache(clk->core);
4385 
4386 	hlist_del_init(&clk->core->child_node);
4387 
4388 	if (clk->core->prepare_count)
4389 		pr_warn("%s: unregistering prepared clock: %s\n",
4390 					__func__, clk->core->name);
4391 
4392 	if (clk->core->protect_count)
4393 		pr_warn("%s: unregistering protected clock: %s\n",
4394 					__func__, clk->core->name);
4395 
4396 	kref_put(&clk->core->ref, __clk_release);
4397 	free_clk(clk);
4398 unlock:
4399 	clk_prepare_unlock();
4400 }
4401 EXPORT_SYMBOL_GPL(clk_unregister);
4402 
4403 /**
4404  * clk_hw_unregister - unregister a currently registered clk_hw
4405  * @hw: hardware-specific clock data to unregister
4406  */
4407 void clk_hw_unregister(struct clk_hw *hw)
4408 {
4409 	clk_unregister(hw->clk);
4410 }
4411 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4412 
4413 static void devm_clk_unregister_cb(struct device *dev, void *res)
4414 {
4415 	clk_unregister(*(struct clk **)res);
4416 }
4417 
4418 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4419 {
4420 	clk_hw_unregister(*(struct clk_hw **)res);
4421 }
4422 
4423 /**
4424  * devm_clk_register - resource managed clk_register()
4425  * @dev: device that is registering this clock
4426  * @hw: link to hardware-specific clock data
4427  *
4428  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4429  *
4430  * Clocks returned from this function are automatically clk_unregister()ed on
4431  * driver detach. See clk_register() for more information.
4432  */
4433 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4434 {
4435 	struct clk *clk;
4436 	struct clk **clkp;
4437 
4438 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4439 	if (!clkp)
4440 		return ERR_PTR(-ENOMEM);
4441 
4442 	clk = clk_register(dev, hw);
4443 	if (!IS_ERR(clk)) {
4444 		*clkp = clk;
4445 		devres_add(dev, clkp);
4446 	} else {
4447 		devres_free(clkp);
4448 	}
4449 
4450 	return clk;
4451 }
4452 EXPORT_SYMBOL_GPL(devm_clk_register);
4453 
4454 /**
4455  * devm_clk_hw_register - resource managed clk_hw_register()
4456  * @dev: device that is registering this clock
4457  * @hw: link to hardware-specific clock data
4458  *
4459  * Managed clk_hw_register(). Clocks registered by this function are
4460  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4461  * for more information.
4462  */
4463 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4464 {
4465 	struct clk_hw **hwp;
4466 	int ret;
4467 
4468 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4469 	if (!hwp)
4470 		return -ENOMEM;
4471 
4472 	ret = clk_hw_register(dev, hw);
4473 	if (!ret) {
4474 		*hwp = hw;
4475 		devres_add(dev, hwp);
4476 	} else {
4477 		devres_free(hwp);
4478 	}
4479 
4480 	return ret;
4481 }
4482 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4483 
4484 static void devm_clk_release(struct device *dev, void *res)
4485 {
4486 	clk_put(*(struct clk **)res);
4487 }
4488 
4489 /**
4490  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4491  * @dev: device that is registering this clock
4492  * @hw: clk_hw associated with the clk being consumed
4493  * @con_id: connection ID string on device
4494  *
4495  * Managed clk_hw_get_clk(). Clocks got with this function are
4496  * automatically clk_put() on driver detach. See clk_put()
4497  * for more information.
4498  */
4499 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4500 				const char *con_id)
4501 {
4502 	struct clk *clk;
4503 	struct clk **clkp;
4504 
4505 	/* This should not happen because it would mean we have drivers
4506 	 * passing around clk_hw pointers instead of having the caller use
4507 	 * proper clk_get() style APIs
4508 	 */
4509 	WARN_ON_ONCE(dev != hw->core->dev);
4510 
4511 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4512 	if (!clkp)
4513 		return ERR_PTR(-ENOMEM);
4514 
4515 	clk = clk_hw_get_clk(hw, con_id);
4516 	if (!IS_ERR(clk)) {
4517 		*clkp = clk;
4518 		devres_add(dev, clkp);
4519 	} else {
4520 		devres_free(clkp);
4521 	}
4522 
4523 	return clk;
4524 }
4525 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4526 
4527 /*
4528  * clkdev helpers
4529  */
4530 
4531 void __clk_put(struct clk *clk)
4532 {
4533 	struct module *owner;
4534 
4535 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4536 		return;
4537 
4538 	clk_prepare_lock();
4539 
4540 	/*
4541 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4542 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4543 	 * and by that same consumer
4544 	 */
4545 	if (WARN_ON(clk->exclusive_count)) {
4546 		/* We voiced our concern, let's sanitize the situation */
4547 		clk->core->protect_count -= (clk->exclusive_count - 1);
4548 		clk_core_rate_unprotect(clk->core);
4549 		clk->exclusive_count = 0;
4550 	}
4551 
4552 	hlist_del(&clk->clks_node);
4553 
4554 	/* If we had any boundaries on that clock, let's drop them. */
4555 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4556 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4557 
4558 	owner = clk->core->owner;
4559 	kref_put(&clk->core->ref, __clk_release);
4560 
4561 	clk_prepare_unlock();
4562 
4563 	module_put(owner);
4564 
4565 	free_clk(clk);
4566 }
4567 
4568 /***        clk rate change notifiers        ***/
4569 
4570 /**
4571  * clk_notifier_register - add a clk rate change notifier
4572  * @clk: struct clk * to watch
4573  * @nb: struct notifier_block * with callback info
4574  *
4575  * Request notification when clk's rate changes.  This uses an SRCU
4576  * notifier because we want it to block and notifier unregistrations are
4577  * uncommon.  The callbacks associated with the notifier must not
4578  * re-enter into the clk framework by calling any top-level clk APIs;
4579  * this will cause a nested prepare_lock mutex.
4580  *
4581  * In all notification cases (pre, post and abort rate change) the original
4582  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4583  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4584  *
4585  * clk_notifier_register() must be called from non-atomic context.
4586  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4587  * allocation failure; otherwise, passes along the return value of
4588  * srcu_notifier_chain_register().
4589  */
4590 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4591 {
4592 	struct clk_notifier *cn;
4593 	int ret = -ENOMEM;
4594 
4595 	if (!clk || !nb)
4596 		return -EINVAL;
4597 
4598 	clk_prepare_lock();
4599 
4600 	/* search the list of notifiers for this clk */
4601 	list_for_each_entry(cn, &clk_notifier_list, node)
4602 		if (cn->clk == clk)
4603 			goto found;
4604 
4605 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4606 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4607 	if (!cn)
4608 		goto out;
4609 
4610 	cn->clk = clk;
4611 	srcu_init_notifier_head(&cn->notifier_head);
4612 
4613 	list_add(&cn->node, &clk_notifier_list);
4614 
4615 found:
4616 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4617 
4618 	clk->core->notifier_count++;
4619 
4620 out:
4621 	clk_prepare_unlock();
4622 
4623 	return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(clk_notifier_register);
4626 
4627 /**
4628  * clk_notifier_unregister - remove a clk rate change notifier
4629  * @clk: struct clk *
4630  * @nb: struct notifier_block * with callback info
4631  *
4632  * Request no further notification for changes to 'clk' and frees memory
4633  * allocated in clk_notifier_register.
4634  *
4635  * Returns -EINVAL if called with null arguments; otherwise, passes
4636  * along the return value of srcu_notifier_chain_unregister().
4637  */
4638 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4639 {
4640 	struct clk_notifier *cn;
4641 	int ret = -ENOENT;
4642 
4643 	if (!clk || !nb)
4644 		return -EINVAL;
4645 
4646 	clk_prepare_lock();
4647 
4648 	list_for_each_entry(cn, &clk_notifier_list, node) {
4649 		if (cn->clk == clk) {
4650 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4651 
4652 			clk->core->notifier_count--;
4653 
4654 			/* XXX the notifier code should handle this better */
4655 			if (!cn->notifier_head.head) {
4656 				srcu_cleanup_notifier_head(&cn->notifier_head);
4657 				list_del(&cn->node);
4658 				kfree(cn);
4659 			}
4660 			break;
4661 		}
4662 	}
4663 
4664 	clk_prepare_unlock();
4665 
4666 	return ret;
4667 }
4668 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4669 
4670 struct clk_notifier_devres {
4671 	struct clk *clk;
4672 	struct notifier_block *nb;
4673 };
4674 
4675 static void devm_clk_notifier_release(struct device *dev, void *res)
4676 {
4677 	struct clk_notifier_devres *devres = res;
4678 
4679 	clk_notifier_unregister(devres->clk, devres->nb);
4680 }
4681 
4682 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4683 			       struct notifier_block *nb)
4684 {
4685 	struct clk_notifier_devres *devres;
4686 	int ret;
4687 
4688 	devres = devres_alloc(devm_clk_notifier_release,
4689 			      sizeof(*devres), GFP_KERNEL);
4690 
4691 	if (!devres)
4692 		return -ENOMEM;
4693 
4694 	ret = clk_notifier_register(clk, nb);
4695 	if (!ret) {
4696 		devres->clk = clk;
4697 		devres->nb = nb;
4698 	} else {
4699 		devres_free(devres);
4700 	}
4701 
4702 	return ret;
4703 }
4704 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4705 
4706 #ifdef CONFIG_OF
4707 static void clk_core_reparent_orphans(void)
4708 {
4709 	clk_prepare_lock();
4710 	clk_core_reparent_orphans_nolock();
4711 	clk_prepare_unlock();
4712 }
4713 
4714 /**
4715  * struct of_clk_provider - Clock provider registration structure
4716  * @link: Entry in global list of clock providers
4717  * @node: Pointer to device tree node of clock provider
4718  * @get: Get clock callback.  Returns NULL or a struct clk for the
4719  *       given clock specifier
4720  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4721  *       struct clk_hw for the given clock specifier
4722  * @data: context pointer to be passed into @get callback
4723  */
4724 struct of_clk_provider {
4725 	struct list_head link;
4726 
4727 	struct device_node *node;
4728 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4729 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4730 	void *data;
4731 };
4732 
4733 extern struct of_device_id __clk_of_table;
4734 static const struct of_device_id __clk_of_table_sentinel
4735 	__used __section("__clk_of_table_end");
4736 
4737 static LIST_HEAD(of_clk_providers);
4738 static DEFINE_MUTEX(of_clk_mutex);
4739 
4740 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4741 				     void *data)
4742 {
4743 	return data;
4744 }
4745 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4746 
4747 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4748 {
4749 	return data;
4750 }
4751 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4752 
4753 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4754 {
4755 	struct clk_onecell_data *clk_data = data;
4756 	unsigned int idx = clkspec->args[0];
4757 
4758 	if (idx >= clk_data->clk_num) {
4759 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4760 		return ERR_PTR(-EINVAL);
4761 	}
4762 
4763 	return clk_data->clks[idx];
4764 }
4765 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4766 
4767 struct clk_hw *
4768 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4769 {
4770 	struct clk_hw_onecell_data *hw_data = data;
4771 	unsigned int idx = clkspec->args[0];
4772 
4773 	if (idx >= hw_data->num) {
4774 		pr_err("%s: invalid index %u\n", __func__, idx);
4775 		return ERR_PTR(-EINVAL);
4776 	}
4777 
4778 	return hw_data->hws[idx];
4779 }
4780 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4781 
4782 /**
4783  * of_clk_add_provider() - Register a clock provider for a node
4784  * @np: Device node pointer associated with clock provider
4785  * @clk_src_get: callback for decoding clock
4786  * @data: context pointer for @clk_src_get callback.
4787  *
4788  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4789  */
4790 int of_clk_add_provider(struct device_node *np,
4791 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4792 						   void *data),
4793 			void *data)
4794 {
4795 	struct of_clk_provider *cp;
4796 	int ret;
4797 
4798 	if (!np)
4799 		return 0;
4800 
4801 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4802 	if (!cp)
4803 		return -ENOMEM;
4804 
4805 	cp->node = of_node_get(np);
4806 	cp->data = data;
4807 	cp->get = clk_src_get;
4808 
4809 	mutex_lock(&of_clk_mutex);
4810 	list_add(&cp->link, &of_clk_providers);
4811 	mutex_unlock(&of_clk_mutex);
4812 	pr_debug("Added clock from %pOF\n", np);
4813 
4814 	clk_core_reparent_orphans();
4815 
4816 	ret = of_clk_set_defaults(np, true);
4817 	if (ret < 0)
4818 		of_clk_del_provider(np);
4819 
4820 	fwnode_dev_initialized(&np->fwnode, true);
4821 
4822 	return ret;
4823 }
4824 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4825 
4826 /**
4827  * of_clk_add_hw_provider() - Register a clock provider for a node
4828  * @np: Device node pointer associated with clock provider
4829  * @get: callback for decoding clk_hw
4830  * @data: context pointer for @get callback.
4831  */
4832 int of_clk_add_hw_provider(struct device_node *np,
4833 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4834 						 void *data),
4835 			   void *data)
4836 {
4837 	struct of_clk_provider *cp;
4838 	int ret;
4839 
4840 	if (!np)
4841 		return 0;
4842 
4843 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4844 	if (!cp)
4845 		return -ENOMEM;
4846 
4847 	cp->node = of_node_get(np);
4848 	cp->data = data;
4849 	cp->get_hw = get;
4850 
4851 	mutex_lock(&of_clk_mutex);
4852 	list_add(&cp->link, &of_clk_providers);
4853 	mutex_unlock(&of_clk_mutex);
4854 	pr_debug("Added clk_hw provider from %pOF\n", np);
4855 
4856 	clk_core_reparent_orphans();
4857 
4858 	ret = of_clk_set_defaults(np, true);
4859 	if (ret < 0)
4860 		of_clk_del_provider(np);
4861 
4862 	fwnode_dev_initialized(&np->fwnode, true);
4863 
4864 	return ret;
4865 }
4866 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4867 
4868 static void devm_of_clk_release_provider(struct device *dev, void *res)
4869 {
4870 	of_clk_del_provider(*(struct device_node **)res);
4871 }
4872 
4873 /*
4874  * We allow a child device to use its parent device as the clock provider node
4875  * for cases like MFD sub-devices where the child device driver wants to use
4876  * devm_*() APIs but not list the device in DT as a sub-node.
4877  */
4878 static struct device_node *get_clk_provider_node(struct device *dev)
4879 {
4880 	struct device_node *np, *parent_np;
4881 
4882 	np = dev->of_node;
4883 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4884 
4885 	if (!of_property_present(np, "#clock-cells"))
4886 		if (of_property_present(parent_np, "#clock-cells"))
4887 			np = parent_np;
4888 
4889 	return np;
4890 }
4891 
4892 /**
4893  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4894  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4895  * @get: callback for decoding clk_hw
4896  * @data: context pointer for @get callback
4897  *
4898  * Registers clock provider for given device's node. If the device has no DT
4899  * node or if the device node lacks of clock provider information (#clock-cells)
4900  * then the parent device's node is scanned for this information. If parent node
4901  * has the #clock-cells then it is used in registration. Provider is
4902  * automatically released at device exit.
4903  *
4904  * Return: 0 on success or an errno on failure.
4905  */
4906 int devm_of_clk_add_hw_provider(struct device *dev,
4907 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4908 					      void *data),
4909 			void *data)
4910 {
4911 	struct device_node **ptr, *np;
4912 	int ret;
4913 
4914 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4915 			   GFP_KERNEL);
4916 	if (!ptr)
4917 		return -ENOMEM;
4918 
4919 	np = get_clk_provider_node(dev);
4920 	ret = of_clk_add_hw_provider(np, get, data);
4921 	if (!ret) {
4922 		*ptr = np;
4923 		devres_add(dev, ptr);
4924 	} else {
4925 		devres_free(ptr);
4926 	}
4927 
4928 	return ret;
4929 }
4930 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4931 
4932 /**
4933  * of_clk_del_provider() - Remove a previously registered clock provider
4934  * @np: Device node pointer associated with clock provider
4935  */
4936 void of_clk_del_provider(struct device_node *np)
4937 {
4938 	struct of_clk_provider *cp;
4939 
4940 	if (!np)
4941 		return;
4942 
4943 	mutex_lock(&of_clk_mutex);
4944 	list_for_each_entry(cp, &of_clk_providers, link) {
4945 		if (cp->node == np) {
4946 			list_del(&cp->link);
4947 			fwnode_dev_initialized(&np->fwnode, false);
4948 			of_node_put(cp->node);
4949 			kfree(cp);
4950 			break;
4951 		}
4952 	}
4953 	mutex_unlock(&of_clk_mutex);
4954 }
4955 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4956 
4957 /**
4958  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4959  * @np: device node to parse clock specifier from
4960  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4961  * @name: clock name to find and parse. If name is NULL, the index is used
4962  * @out_args: Result of parsing the clock specifier
4963  *
4964  * Parses a device node's "clocks" and "clock-names" properties to find the
4965  * phandle and cells for the index or name that is desired. The resulting clock
4966  * specifier is placed into @out_args, or an errno is returned when there's a
4967  * parsing error. The @index argument is ignored if @name is non-NULL.
4968  *
4969  * Example:
4970  *
4971  * phandle1: clock-controller@1 {
4972  *	#clock-cells = <2>;
4973  * }
4974  *
4975  * phandle2: clock-controller@2 {
4976  *	#clock-cells = <1>;
4977  * }
4978  *
4979  * clock-consumer@3 {
4980  *	clocks = <&phandle1 1 2 &phandle2 3>;
4981  *	clock-names = "name1", "name2";
4982  * }
4983  *
4984  * To get a device_node for `clock-controller@2' node you may call this
4985  * function a few different ways:
4986  *
4987  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4988  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4989  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4990  *
4991  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4992  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4993  * the "clock-names" property of @np.
4994  */
4995 static int of_parse_clkspec(const struct device_node *np, int index,
4996 			    const char *name, struct of_phandle_args *out_args)
4997 {
4998 	int ret = -ENOENT;
4999 
5000 	/* Walk up the tree of devices looking for a clock property that matches */
5001 	while (np) {
5002 		/*
5003 		 * For named clocks, first look up the name in the
5004 		 * "clock-names" property.  If it cannot be found, then index
5005 		 * will be an error code and of_parse_phandle_with_args() will
5006 		 * return -EINVAL.
5007 		 */
5008 		if (name)
5009 			index = of_property_match_string(np, "clock-names", name);
5010 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5011 						 index, out_args);
5012 		if (!ret)
5013 			break;
5014 		if (name && index >= 0)
5015 			break;
5016 
5017 		/*
5018 		 * No matching clock found on this node.  If the parent node
5019 		 * has a "clock-ranges" property, then we can try one of its
5020 		 * clocks.
5021 		 */
5022 		np = np->parent;
5023 		if (np && !of_get_property(np, "clock-ranges", NULL))
5024 			break;
5025 		index = 0;
5026 	}
5027 
5028 	return ret;
5029 }
5030 
5031 static struct clk_hw *
5032 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5033 			      struct of_phandle_args *clkspec)
5034 {
5035 	struct clk *clk;
5036 
5037 	if (provider->get_hw)
5038 		return provider->get_hw(clkspec, provider->data);
5039 
5040 	clk = provider->get(clkspec, provider->data);
5041 	if (IS_ERR(clk))
5042 		return ERR_CAST(clk);
5043 	return __clk_get_hw(clk);
5044 }
5045 
5046 static struct clk_hw *
5047 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5048 {
5049 	struct of_clk_provider *provider;
5050 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5051 
5052 	if (!clkspec)
5053 		return ERR_PTR(-EINVAL);
5054 
5055 	mutex_lock(&of_clk_mutex);
5056 	list_for_each_entry(provider, &of_clk_providers, link) {
5057 		if (provider->node == clkspec->np) {
5058 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5059 			if (!IS_ERR(hw))
5060 				break;
5061 		}
5062 	}
5063 	mutex_unlock(&of_clk_mutex);
5064 
5065 	return hw;
5066 }
5067 
5068 /**
5069  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5070  * @clkspec: pointer to a clock specifier data structure
5071  *
5072  * This function looks up a struct clk from the registered list of clock
5073  * providers, an input is a clock specifier data structure as returned
5074  * from the of_parse_phandle_with_args() function call.
5075  */
5076 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5077 {
5078 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5079 
5080 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5081 }
5082 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5083 
5084 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5085 			     const char *con_id)
5086 {
5087 	int ret;
5088 	struct clk_hw *hw;
5089 	struct of_phandle_args clkspec;
5090 
5091 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5092 	if (ret)
5093 		return ERR_PTR(ret);
5094 
5095 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5096 	of_node_put(clkspec.np);
5097 
5098 	return hw;
5099 }
5100 
5101 static struct clk *__of_clk_get(struct device_node *np,
5102 				int index, const char *dev_id,
5103 				const char *con_id)
5104 {
5105 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5106 
5107 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5108 }
5109 
5110 struct clk *of_clk_get(struct device_node *np, int index)
5111 {
5112 	return __of_clk_get(np, index, np->full_name, NULL);
5113 }
5114 EXPORT_SYMBOL(of_clk_get);
5115 
5116 /**
5117  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5118  * @np: pointer to clock consumer node
5119  * @name: name of consumer's clock input, or NULL for the first clock reference
5120  *
5121  * This function parses the clocks and clock-names properties,
5122  * and uses them to look up the struct clk from the registered list of clock
5123  * providers.
5124  */
5125 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5126 {
5127 	if (!np)
5128 		return ERR_PTR(-ENOENT);
5129 
5130 	return __of_clk_get(np, 0, np->full_name, name);
5131 }
5132 EXPORT_SYMBOL(of_clk_get_by_name);
5133 
5134 /**
5135  * of_clk_get_parent_count() - Count the number of clocks a device node has
5136  * @np: device node to count
5137  *
5138  * Returns: The number of clocks that are possible parents of this node
5139  */
5140 unsigned int of_clk_get_parent_count(const struct device_node *np)
5141 {
5142 	int count;
5143 
5144 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5145 	if (count < 0)
5146 		return 0;
5147 
5148 	return count;
5149 }
5150 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5151 
5152 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5153 {
5154 	struct of_phandle_args clkspec;
5155 	struct property *prop;
5156 	const char *clk_name;
5157 	const __be32 *vp;
5158 	u32 pv;
5159 	int rc;
5160 	int count;
5161 	struct clk *clk;
5162 
5163 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5164 					&clkspec);
5165 	if (rc)
5166 		return NULL;
5167 
5168 	index = clkspec.args_count ? clkspec.args[0] : 0;
5169 	count = 0;
5170 
5171 	/* if there is an indices property, use it to transfer the index
5172 	 * specified into an array offset for the clock-output-names property.
5173 	 */
5174 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5175 		if (index == pv) {
5176 			index = count;
5177 			break;
5178 		}
5179 		count++;
5180 	}
5181 	/* We went off the end of 'clock-indices' without finding it */
5182 	if (prop && !vp)
5183 		return NULL;
5184 
5185 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5186 					  index,
5187 					  &clk_name) < 0) {
5188 		/*
5189 		 * Best effort to get the name if the clock has been
5190 		 * registered with the framework. If the clock isn't
5191 		 * registered, we return the node name as the name of
5192 		 * the clock as long as #clock-cells = 0.
5193 		 */
5194 		clk = of_clk_get_from_provider(&clkspec);
5195 		if (IS_ERR(clk)) {
5196 			if (clkspec.args_count == 0)
5197 				clk_name = clkspec.np->name;
5198 			else
5199 				clk_name = NULL;
5200 		} else {
5201 			clk_name = __clk_get_name(clk);
5202 			clk_put(clk);
5203 		}
5204 	}
5205 
5206 
5207 	of_node_put(clkspec.np);
5208 	return clk_name;
5209 }
5210 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5211 
5212 /**
5213  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5214  * number of parents
5215  * @np: Device node pointer associated with clock provider
5216  * @parents: pointer to char array that hold the parents' names
5217  * @size: size of the @parents array
5218  *
5219  * Return: number of parents for the clock node.
5220  */
5221 int of_clk_parent_fill(struct device_node *np, const char **parents,
5222 		       unsigned int size)
5223 {
5224 	unsigned int i = 0;
5225 
5226 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5227 		i++;
5228 
5229 	return i;
5230 }
5231 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5232 
5233 struct clock_provider {
5234 	void (*clk_init_cb)(struct device_node *);
5235 	struct device_node *np;
5236 	struct list_head node;
5237 };
5238 
5239 /*
5240  * This function looks for a parent clock. If there is one, then it
5241  * checks that the provider for this parent clock was initialized, in
5242  * this case the parent clock will be ready.
5243  */
5244 static int parent_ready(struct device_node *np)
5245 {
5246 	int i = 0;
5247 
5248 	while (true) {
5249 		struct clk *clk = of_clk_get(np, i);
5250 
5251 		/* this parent is ready we can check the next one */
5252 		if (!IS_ERR(clk)) {
5253 			clk_put(clk);
5254 			i++;
5255 			continue;
5256 		}
5257 
5258 		/* at least one parent is not ready, we exit now */
5259 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5260 			return 0;
5261 
5262 		/*
5263 		 * Here we make assumption that the device tree is
5264 		 * written correctly. So an error means that there is
5265 		 * no more parent. As we didn't exit yet, then the
5266 		 * previous parent are ready. If there is no clock
5267 		 * parent, no need to wait for them, then we can
5268 		 * consider their absence as being ready
5269 		 */
5270 		return 1;
5271 	}
5272 }
5273 
5274 /**
5275  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5276  * @np: Device node pointer associated with clock provider
5277  * @index: clock index
5278  * @flags: pointer to top-level framework flags
5279  *
5280  * Detects if the clock-critical property exists and, if so, sets the
5281  * corresponding CLK_IS_CRITICAL flag.
5282  *
5283  * Do not use this function. It exists only for legacy Device Tree
5284  * bindings, such as the one-clock-per-node style that are outdated.
5285  * Those bindings typically put all clock data into .dts and the Linux
5286  * driver has no clock data, thus making it impossible to set this flag
5287  * correctly from the driver. Only those drivers may call
5288  * of_clk_detect_critical from their setup functions.
5289  *
5290  * Return: error code or zero on success
5291  */
5292 int of_clk_detect_critical(struct device_node *np, int index,
5293 			   unsigned long *flags)
5294 {
5295 	struct property *prop;
5296 	const __be32 *cur;
5297 	uint32_t idx;
5298 
5299 	if (!np || !flags)
5300 		return -EINVAL;
5301 
5302 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5303 		if (index == idx)
5304 			*flags |= CLK_IS_CRITICAL;
5305 
5306 	return 0;
5307 }
5308 
5309 /**
5310  * of_clk_init() - Scan and init clock providers from the DT
5311  * @matches: array of compatible values and init functions for providers.
5312  *
5313  * This function scans the device tree for matching clock providers
5314  * and calls their initialization functions. It also does it by trying
5315  * to follow the dependencies.
5316  */
5317 void __init of_clk_init(const struct of_device_id *matches)
5318 {
5319 	const struct of_device_id *match;
5320 	struct device_node *np;
5321 	struct clock_provider *clk_provider, *next;
5322 	bool is_init_done;
5323 	bool force = false;
5324 	LIST_HEAD(clk_provider_list);
5325 
5326 	if (!matches)
5327 		matches = &__clk_of_table;
5328 
5329 	/* First prepare the list of the clocks providers */
5330 	for_each_matching_node_and_match(np, matches, &match) {
5331 		struct clock_provider *parent;
5332 
5333 		if (!of_device_is_available(np))
5334 			continue;
5335 
5336 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5337 		if (!parent) {
5338 			list_for_each_entry_safe(clk_provider, next,
5339 						 &clk_provider_list, node) {
5340 				list_del(&clk_provider->node);
5341 				of_node_put(clk_provider->np);
5342 				kfree(clk_provider);
5343 			}
5344 			of_node_put(np);
5345 			return;
5346 		}
5347 
5348 		parent->clk_init_cb = match->data;
5349 		parent->np = of_node_get(np);
5350 		list_add_tail(&parent->node, &clk_provider_list);
5351 	}
5352 
5353 	while (!list_empty(&clk_provider_list)) {
5354 		is_init_done = false;
5355 		list_for_each_entry_safe(clk_provider, next,
5356 					&clk_provider_list, node) {
5357 			if (force || parent_ready(clk_provider->np)) {
5358 
5359 				/* Don't populate platform devices */
5360 				of_node_set_flag(clk_provider->np,
5361 						 OF_POPULATED);
5362 
5363 				clk_provider->clk_init_cb(clk_provider->np);
5364 				of_clk_set_defaults(clk_provider->np, true);
5365 
5366 				list_del(&clk_provider->node);
5367 				of_node_put(clk_provider->np);
5368 				kfree(clk_provider);
5369 				is_init_done = true;
5370 			}
5371 		}
5372 
5373 		/*
5374 		 * We didn't manage to initialize any of the
5375 		 * remaining providers during the last loop, so now we
5376 		 * initialize all the remaining ones unconditionally
5377 		 * in case the clock parent was not mandatory
5378 		 */
5379 		if (!is_init_done)
5380 			force = true;
5381 	}
5382 }
5383 #endif
5384