1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/sched.h> 26 #include <linux/clkdev.h> 27 #include <linux/stringify.h> 28 29 #include "clk.h" 30 31 static DEFINE_SPINLOCK(enable_lock); 32 static DEFINE_MUTEX(prepare_lock); 33 34 static struct task_struct *prepare_owner; 35 static struct task_struct *enable_owner; 36 37 static int prepare_refcnt; 38 static int enable_refcnt; 39 40 static HLIST_HEAD(clk_root_list); 41 static HLIST_HEAD(clk_orphan_list); 42 static LIST_HEAD(clk_notifier_list); 43 44 /*** private data structures ***/ 45 46 struct clk_core { 47 const char *name; 48 const struct clk_ops *ops; 49 struct clk_hw *hw; 50 struct module *owner; 51 struct device *dev; 52 struct clk_core *parent; 53 const char **parent_names; 54 struct clk_core **parents; 55 u8 num_parents; 56 u8 new_parent_index; 57 unsigned long rate; 58 unsigned long req_rate; 59 unsigned long new_rate; 60 struct clk_core *new_parent; 61 struct clk_core *new_child; 62 unsigned long flags; 63 bool orphan; 64 unsigned int enable_count; 65 unsigned int prepare_count; 66 unsigned int protect_count; 67 unsigned long min_rate; 68 unsigned long max_rate; 69 unsigned long accuracy; 70 int phase; 71 struct hlist_head children; 72 struct hlist_node child_node; 73 struct hlist_head clks; 74 unsigned int notifier_count; 75 #ifdef CONFIG_DEBUG_FS 76 struct dentry *dentry; 77 struct hlist_node debug_node; 78 #endif 79 struct kref ref; 80 }; 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/clk.h> 84 85 struct clk { 86 struct clk_core *core; 87 const char *dev_id; 88 const char *con_id; 89 unsigned long min_rate; 90 unsigned long max_rate; 91 unsigned int exclusive_count; 92 struct hlist_node clks_node; 93 }; 94 95 /*** runtime pm ***/ 96 static int clk_pm_runtime_get(struct clk_core *core) 97 { 98 int ret = 0; 99 100 if (!core->dev) 101 return 0; 102 103 ret = pm_runtime_get_sync(core->dev); 104 return ret < 0 ? ret : 0; 105 } 106 107 static void clk_pm_runtime_put(struct clk_core *core) 108 { 109 if (!core->dev) 110 return; 111 112 pm_runtime_put_sync(core->dev); 113 } 114 115 /*** locking ***/ 116 static void clk_prepare_lock(void) 117 { 118 if (!mutex_trylock(&prepare_lock)) { 119 if (prepare_owner == current) { 120 prepare_refcnt++; 121 return; 122 } 123 mutex_lock(&prepare_lock); 124 } 125 WARN_ON_ONCE(prepare_owner != NULL); 126 WARN_ON_ONCE(prepare_refcnt != 0); 127 prepare_owner = current; 128 prepare_refcnt = 1; 129 } 130 131 static void clk_prepare_unlock(void) 132 { 133 WARN_ON_ONCE(prepare_owner != current); 134 WARN_ON_ONCE(prepare_refcnt == 0); 135 136 if (--prepare_refcnt) 137 return; 138 prepare_owner = NULL; 139 mutex_unlock(&prepare_lock); 140 } 141 142 static unsigned long clk_enable_lock(void) 143 __acquires(enable_lock) 144 { 145 unsigned long flags; 146 147 /* 148 * On UP systems, spin_trylock_irqsave() always returns true, even if 149 * we already hold the lock. So, in that case, we rely only on 150 * reference counting. 151 */ 152 if (!IS_ENABLED(CONFIG_SMP) || 153 !spin_trylock_irqsave(&enable_lock, flags)) { 154 if (enable_owner == current) { 155 enable_refcnt++; 156 __acquire(enable_lock); 157 if (!IS_ENABLED(CONFIG_SMP)) 158 local_save_flags(flags); 159 return flags; 160 } 161 spin_lock_irqsave(&enable_lock, flags); 162 } 163 WARN_ON_ONCE(enable_owner != NULL); 164 WARN_ON_ONCE(enable_refcnt != 0); 165 enable_owner = current; 166 enable_refcnt = 1; 167 return flags; 168 } 169 170 static void clk_enable_unlock(unsigned long flags) 171 __releases(enable_lock) 172 { 173 WARN_ON_ONCE(enable_owner != current); 174 WARN_ON_ONCE(enable_refcnt == 0); 175 176 if (--enable_refcnt) { 177 __release(enable_lock); 178 return; 179 } 180 enable_owner = NULL; 181 spin_unlock_irqrestore(&enable_lock, flags); 182 } 183 184 static bool clk_core_rate_is_protected(struct clk_core *core) 185 { 186 return core->protect_count; 187 } 188 189 static bool clk_core_is_prepared(struct clk_core *core) 190 { 191 bool ret = false; 192 193 /* 194 * .is_prepared is optional for clocks that can prepare 195 * fall back to software usage counter if it is missing 196 */ 197 if (!core->ops->is_prepared) 198 return core->prepare_count; 199 200 if (!clk_pm_runtime_get(core)) { 201 ret = core->ops->is_prepared(core->hw); 202 clk_pm_runtime_put(core); 203 } 204 205 return ret; 206 } 207 208 static bool clk_core_is_enabled(struct clk_core *core) 209 { 210 bool ret = false; 211 212 /* 213 * .is_enabled is only mandatory for clocks that gate 214 * fall back to software usage counter if .is_enabled is missing 215 */ 216 if (!core->ops->is_enabled) 217 return core->enable_count; 218 219 /* 220 * Check if clock controller's device is runtime active before 221 * calling .is_enabled callback. If not, assume that clock is 222 * disabled, because we might be called from atomic context, from 223 * which pm_runtime_get() is not allowed. 224 * This function is called mainly from clk_disable_unused_subtree, 225 * which ensures proper runtime pm activation of controller before 226 * taking enable spinlock, but the below check is needed if one tries 227 * to call it from other places. 228 */ 229 if (core->dev) { 230 pm_runtime_get_noresume(core->dev); 231 if (!pm_runtime_active(core->dev)) { 232 ret = false; 233 goto done; 234 } 235 } 236 237 ret = core->ops->is_enabled(core->hw); 238 done: 239 if (core->dev) 240 pm_runtime_put(core->dev); 241 242 return ret; 243 } 244 245 /*** helper functions ***/ 246 247 const char *__clk_get_name(const struct clk *clk) 248 { 249 return !clk ? NULL : clk->core->name; 250 } 251 EXPORT_SYMBOL_GPL(__clk_get_name); 252 253 const char *clk_hw_get_name(const struct clk_hw *hw) 254 { 255 return hw->core->name; 256 } 257 EXPORT_SYMBOL_GPL(clk_hw_get_name); 258 259 struct clk_hw *__clk_get_hw(struct clk *clk) 260 { 261 return !clk ? NULL : clk->core->hw; 262 } 263 EXPORT_SYMBOL_GPL(__clk_get_hw); 264 265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 266 { 267 return hw->core->num_parents; 268 } 269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 270 271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 272 { 273 return hw->core->parent ? hw->core->parent->hw : NULL; 274 } 275 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 276 277 static struct clk_core *__clk_lookup_subtree(const char *name, 278 struct clk_core *core) 279 { 280 struct clk_core *child; 281 struct clk_core *ret; 282 283 if (!strcmp(core->name, name)) 284 return core; 285 286 hlist_for_each_entry(child, &core->children, child_node) { 287 ret = __clk_lookup_subtree(name, child); 288 if (ret) 289 return ret; 290 } 291 292 return NULL; 293 } 294 295 static struct clk_core *clk_core_lookup(const char *name) 296 { 297 struct clk_core *root_clk; 298 struct clk_core *ret; 299 300 if (!name) 301 return NULL; 302 303 /* search the 'proper' clk tree first */ 304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 305 ret = __clk_lookup_subtree(name, root_clk); 306 if (ret) 307 return ret; 308 } 309 310 /* if not found, then search the orphan tree */ 311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 return NULL; 318 } 319 320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 321 u8 index) 322 { 323 if (!core || index >= core->num_parents) 324 return NULL; 325 326 if (!core->parents[index]) 327 core->parents[index] = 328 clk_core_lookup(core->parent_names[index]); 329 330 return core->parents[index]; 331 } 332 333 struct clk_hw * 334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 335 { 336 struct clk_core *parent; 337 338 parent = clk_core_get_parent_by_index(hw->core, index); 339 340 return !parent ? NULL : parent->hw; 341 } 342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 343 344 unsigned int __clk_get_enable_count(struct clk *clk) 345 { 346 return !clk ? 0 : clk->core->enable_count; 347 } 348 349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 350 { 351 unsigned long ret; 352 353 if (!core) { 354 ret = 0; 355 goto out; 356 } 357 358 ret = core->rate; 359 360 if (!core->num_parents) 361 goto out; 362 363 if (!core->parent) 364 ret = 0; 365 366 out: 367 return ret; 368 } 369 370 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 371 { 372 return clk_core_get_rate_nolock(hw->core); 373 } 374 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 375 376 static unsigned long __clk_get_accuracy(struct clk_core *core) 377 { 378 if (!core) 379 return 0; 380 381 return core->accuracy; 382 } 383 384 unsigned long __clk_get_flags(struct clk *clk) 385 { 386 return !clk ? 0 : clk->core->flags; 387 } 388 EXPORT_SYMBOL_GPL(__clk_get_flags); 389 390 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 391 { 392 return hw->core->flags; 393 } 394 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 395 396 bool clk_hw_is_prepared(const struct clk_hw *hw) 397 { 398 return clk_core_is_prepared(hw->core); 399 } 400 401 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 402 { 403 return clk_core_rate_is_protected(hw->core); 404 } 405 406 bool clk_hw_is_enabled(const struct clk_hw *hw) 407 { 408 return clk_core_is_enabled(hw->core); 409 } 410 411 bool __clk_is_enabled(struct clk *clk) 412 { 413 if (!clk) 414 return false; 415 416 return clk_core_is_enabled(clk->core); 417 } 418 EXPORT_SYMBOL_GPL(__clk_is_enabled); 419 420 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 421 unsigned long best, unsigned long flags) 422 { 423 if (flags & CLK_MUX_ROUND_CLOSEST) 424 return abs(now - rate) < abs(best - rate); 425 426 return now <= rate && now > best; 427 } 428 429 int clk_mux_determine_rate_flags(struct clk_hw *hw, 430 struct clk_rate_request *req, 431 unsigned long flags) 432 { 433 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 434 int i, num_parents, ret; 435 unsigned long best = 0; 436 struct clk_rate_request parent_req = *req; 437 438 /* if NO_REPARENT flag set, pass through to current parent */ 439 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 440 parent = core->parent; 441 if (core->flags & CLK_SET_RATE_PARENT) { 442 ret = __clk_determine_rate(parent ? parent->hw : NULL, 443 &parent_req); 444 if (ret) 445 return ret; 446 447 best = parent_req.rate; 448 } else if (parent) { 449 best = clk_core_get_rate_nolock(parent); 450 } else { 451 best = clk_core_get_rate_nolock(core); 452 } 453 454 goto out; 455 } 456 457 /* find the parent that can provide the fastest rate <= rate */ 458 num_parents = core->num_parents; 459 for (i = 0; i < num_parents; i++) { 460 parent = clk_core_get_parent_by_index(core, i); 461 if (!parent) 462 continue; 463 464 if (core->flags & CLK_SET_RATE_PARENT) { 465 parent_req = *req; 466 ret = __clk_determine_rate(parent->hw, &parent_req); 467 if (ret) 468 continue; 469 } else { 470 parent_req.rate = clk_core_get_rate_nolock(parent); 471 } 472 473 if (mux_is_better_rate(req->rate, parent_req.rate, 474 best, flags)) { 475 best_parent = parent; 476 best = parent_req.rate; 477 } 478 } 479 480 if (!best_parent) 481 return -EINVAL; 482 483 out: 484 if (best_parent) 485 req->best_parent_hw = best_parent->hw; 486 req->best_parent_rate = best; 487 req->rate = best; 488 489 return 0; 490 } 491 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 492 493 struct clk *__clk_lookup(const char *name) 494 { 495 struct clk_core *core = clk_core_lookup(name); 496 497 return !core ? NULL : core->hw->clk; 498 } 499 500 static void clk_core_get_boundaries(struct clk_core *core, 501 unsigned long *min_rate, 502 unsigned long *max_rate) 503 { 504 struct clk *clk_user; 505 506 *min_rate = core->min_rate; 507 *max_rate = core->max_rate; 508 509 hlist_for_each_entry(clk_user, &core->clks, clks_node) 510 *min_rate = max(*min_rate, clk_user->min_rate); 511 512 hlist_for_each_entry(clk_user, &core->clks, clks_node) 513 *max_rate = min(*max_rate, clk_user->max_rate); 514 } 515 516 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 517 unsigned long max_rate) 518 { 519 hw->core->min_rate = min_rate; 520 hw->core->max_rate = max_rate; 521 } 522 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 523 524 /* 525 * Helper for finding best parent to provide a given frequency. This can be used 526 * directly as a determine_rate callback (e.g. for a mux), or from a more 527 * complex clock that may combine a mux with other operations. 528 */ 529 int __clk_mux_determine_rate(struct clk_hw *hw, 530 struct clk_rate_request *req) 531 { 532 return clk_mux_determine_rate_flags(hw, req, 0); 533 } 534 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 535 536 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 537 struct clk_rate_request *req) 538 { 539 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 540 } 541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 542 543 /*** clk api ***/ 544 545 static void clk_core_rate_unprotect(struct clk_core *core) 546 { 547 lockdep_assert_held(&prepare_lock); 548 549 if (!core) 550 return; 551 552 if (WARN_ON(core->protect_count == 0)) 553 return; 554 555 if (--core->protect_count > 0) 556 return; 557 558 clk_core_rate_unprotect(core->parent); 559 } 560 561 static int clk_core_rate_nuke_protect(struct clk_core *core) 562 { 563 int ret; 564 565 lockdep_assert_held(&prepare_lock); 566 567 if (!core) 568 return -EINVAL; 569 570 if (core->protect_count == 0) 571 return 0; 572 573 ret = core->protect_count; 574 core->protect_count = 1; 575 clk_core_rate_unprotect(core); 576 577 return ret; 578 } 579 580 /** 581 * clk_rate_exclusive_put - release exclusivity over clock rate control 582 * @clk: the clk over which the exclusivity is released 583 * 584 * clk_rate_exclusive_put() completes a critical section during which a clock 585 * consumer cannot tolerate any other consumer making any operation on the 586 * clock which could result in a rate change or rate glitch. Exclusive clocks 587 * cannot have their rate changed, either directly or indirectly due to changes 588 * further up the parent chain of clocks. As a result, clocks up parent chain 589 * also get under exclusive control of the calling consumer. 590 * 591 * If exlusivity is claimed more than once on clock, even by the same consumer, 592 * the rate effectively gets locked as exclusivity can't be preempted. 593 * 594 * Calls to clk_rate_exclusive_put() must be balanced with calls to 595 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 596 * error status. 597 */ 598 void clk_rate_exclusive_put(struct clk *clk) 599 { 600 if (!clk) 601 return; 602 603 clk_prepare_lock(); 604 605 /* 606 * if there is something wrong with this consumer protect count, stop 607 * here before messing with the provider 608 */ 609 if (WARN_ON(clk->exclusive_count <= 0)) 610 goto out; 611 612 clk_core_rate_unprotect(clk->core); 613 clk->exclusive_count--; 614 out: 615 clk_prepare_unlock(); 616 } 617 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 618 619 static void clk_core_rate_protect(struct clk_core *core) 620 { 621 lockdep_assert_held(&prepare_lock); 622 623 if (!core) 624 return; 625 626 if (core->protect_count == 0) 627 clk_core_rate_protect(core->parent); 628 629 core->protect_count++; 630 } 631 632 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 633 { 634 lockdep_assert_held(&prepare_lock); 635 636 if (!core) 637 return; 638 639 if (count == 0) 640 return; 641 642 clk_core_rate_protect(core); 643 core->protect_count = count; 644 } 645 646 /** 647 * clk_rate_exclusive_get - get exclusivity over the clk rate control 648 * @clk: the clk over which the exclusity of rate control is requested 649 * 650 * clk_rate_exlusive_get() begins a critical section during which a clock 651 * consumer cannot tolerate any other consumer making any operation on the 652 * clock which could result in a rate change or rate glitch. Exclusive clocks 653 * cannot have their rate changed, either directly or indirectly due to changes 654 * further up the parent chain of clocks. As a result, clocks up parent chain 655 * also get under exclusive control of the calling consumer. 656 * 657 * If exlusivity is claimed more than once on clock, even by the same consumer, 658 * the rate effectively gets locked as exclusivity can't be preempted. 659 * 660 * Calls to clk_rate_exclusive_get() should be balanced with calls to 661 * clk_rate_exclusive_put(). Calls to this function may sleep. 662 * Returns 0 on success, -EERROR otherwise 663 */ 664 int clk_rate_exclusive_get(struct clk *clk) 665 { 666 if (!clk) 667 return 0; 668 669 clk_prepare_lock(); 670 clk_core_rate_protect(clk->core); 671 clk->exclusive_count++; 672 clk_prepare_unlock(); 673 674 return 0; 675 } 676 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 677 678 static void clk_core_unprepare(struct clk_core *core) 679 { 680 lockdep_assert_held(&prepare_lock); 681 682 if (!core) 683 return; 684 685 if (WARN_ON(core->prepare_count == 0)) 686 return; 687 688 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL)) 689 return; 690 691 if (--core->prepare_count > 0) 692 return; 693 694 WARN_ON(core->enable_count > 0); 695 696 trace_clk_unprepare(core); 697 698 if (core->ops->unprepare) 699 core->ops->unprepare(core->hw); 700 701 clk_pm_runtime_put(core); 702 703 trace_clk_unprepare_complete(core); 704 clk_core_unprepare(core->parent); 705 } 706 707 static void clk_core_unprepare_lock(struct clk_core *core) 708 { 709 clk_prepare_lock(); 710 clk_core_unprepare(core); 711 clk_prepare_unlock(); 712 } 713 714 /** 715 * clk_unprepare - undo preparation of a clock source 716 * @clk: the clk being unprepared 717 * 718 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 719 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 720 * if the operation may sleep. One example is a clk which is accessed over 721 * I2c. In the complex case a clk gate operation may require a fast and a slow 722 * part. It is this reason that clk_unprepare and clk_disable are not mutually 723 * exclusive. In fact clk_disable must be called before clk_unprepare. 724 */ 725 void clk_unprepare(struct clk *clk) 726 { 727 if (IS_ERR_OR_NULL(clk)) 728 return; 729 730 clk_core_unprepare_lock(clk->core); 731 } 732 EXPORT_SYMBOL_GPL(clk_unprepare); 733 734 static int clk_core_prepare(struct clk_core *core) 735 { 736 int ret = 0; 737 738 lockdep_assert_held(&prepare_lock); 739 740 if (!core) 741 return 0; 742 743 if (core->prepare_count == 0) { 744 ret = clk_pm_runtime_get(core); 745 if (ret) 746 return ret; 747 748 ret = clk_core_prepare(core->parent); 749 if (ret) 750 goto runtime_put; 751 752 trace_clk_prepare(core); 753 754 if (core->ops->prepare) 755 ret = core->ops->prepare(core->hw); 756 757 trace_clk_prepare_complete(core); 758 759 if (ret) 760 goto unprepare; 761 } 762 763 core->prepare_count++; 764 765 return 0; 766 unprepare: 767 clk_core_unprepare(core->parent); 768 runtime_put: 769 clk_pm_runtime_put(core); 770 return ret; 771 } 772 773 static int clk_core_prepare_lock(struct clk_core *core) 774 { 775 int ret; 776 777 clk_prepare_lock(); 778 ret = clk_core_prepare(core); 779 clk_prepare_unlock(); 780 781 return ret; 782 } 783 784 /** 785 * clk_prepare - prepare a clock source 786 * @clk: the clk being prepared 787 * 788 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 789 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 790 * operation may sleep. One example is a clk which is accessed over I2c. In 791 * the complex case a clk ungate operation may require a fast and a slow part. 792 * It is this reason that clk_prepare and clk_enable are not mutually 793 * exclusive. In fact clk_prepare must be called before clk_enable. 794 * Returns 0 on success, -EERROR otherwise. 795 */ 796 int clk_prepare(struct clk *clk) 797 { 798 if (!clk) 799 return 0; 800 801 return clk_core_prepare_lock(clk->core); 802 } 803 EXPORT_SYMBOL_GPL(clk_prepare); 804 805 static void clk_core_disable(struct clk_core *core) 806 { 807 lockdep_assert_held(&enable_lock); 808 809 if (!core) 810 return; 811 812 if (WARN_ON(core->enable_count == 0)) 813 return; 814 815 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL)) 816 return; 817 818 if (--core->enable_count > 0) 819 return; 820 821 trace_clk_disable_rcuidle(core); 822 823 if (core->ops->disable) 824 core->ops->disable(core->hw); 825 826 trace_clk_disable_complete_rcuidle(core); 827 828 clk_core_disable(core->parent); 829 } 830 831 static void clk_core_disable_lock(struct clk_core *core) 832 { 833 unsigned long flags; 834 835 flags = clk_enable_lock(); 836 clk_core_disable(core); 837 clk_enable_unlock(flags); 838 } 839 840 /** 841 * clk_disable - gate a clock 842 * @clk: the clk being gated 843 * 844 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 845 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 846 * clk if the operation is fast and will never sleep. One example is a 847 * SoC-internal clk which is controlled via simple register writes. In the 848 * complex case a clk gate operation may require a fast and a slow part. It is 849 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 850 * In fact clk_disable must be called before clk_unprepare. 851 */ 852 void clk_disable(struct clk *clk) 853 { 854 if (IS_ERR_OR_NULL(clk)) 855 return; 856 857 clk_core_disable_lock(clk->core); 858 } 859 EXPORT_SYMBOL_GPL(clk_disable); 860 861 static int clk_core_enable(struct clk_core *core) 862 { 863 int ret = 0; 864 865 lockdep_assert_held(&enable_lock); 866 867 if (!core) 868 return 0; 869 870 if (WARN_ON(core->prepare_count == 0)) 871 return -ESHUTDOWN; 872 873 if (core->enable_count == 0) { 874 ret = clk_core_enable(core->parent); 875 876 if (ret) 877 return ret; 878 879 trace_clk_enable_rcuidle(core); 880 881 if (core->ops->enable) 882 ret = core->ops->enable(core->hw); 883 884 trace_clk_enable_complete_rcuidle(core); 885 886 if (ret) { 887 clk_core_disable(core->parent); 888 return ret; 889 } 890 } 891 892 core->enable_count++; 893 return 0; 894 } 895 896 static int clk_core_enable_lock(struct clk_core *core) 897 { 898 unsigned long flags; 899 int ret; 900 901 flags = clk_enable_lock(); 902 ret = clk_core_enable(core); 903 clk_enable_unlock(flags); 904 905 return ret; 906 } 907 908 /** 909 * clk_enable - ungate a clock 910 * @clk: the clk being ungated 911 * 912 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 913 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 914 * if the operation will never sleep. One example is a SoC-internal clk which 915 * is controlled via simple register writes. In the complex case a clk ungate 916 * operation may require a fast and a slow part. It is this reason that 917 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 918 * must be called before clk_enable. Returns 0 on success, -EERROR 919 * otherwise. 920 */ 921 int clk_enable(struct clk *clk) 922 { 923 if (!clk) 924 return 0; 925 926 return clk_core_enable_lock(clk->core); 927 } 928 EXPORT_SYMBOL_GPL(clk_enable); 929 930 static int clk_core_prepare_enable(struct clk_core *core) 931 { 932 int ret; 933 934 ret = clk_core_prepare_lock(core); 935 if (ret) 936 return ret; 937 938 ret = clk_core_enable_lock(core); 939 if (ret) 940 clk_core_unprepare_lock(core); 941 942 return ret; 943 } 944 945 static void clk_core_disable_unprepare(struct clk_core *core) 946 { 947 clk_core_disable_lock(core); 948 clk_core_unprepare_lock(core); 949 } 950 951 static void clk_unprepare_unused_subtree(struct clk_core *core) 952 { 953 struct clk_core *child; 954 955 lockdep_assert_held(&prepare_lock); 956 957 hlist_for_each_entry(child, &core->children, child_node) 958 clk_unprepare_unused_subtree(child); 959 960 if (core->prepare_count) 961 return; 962 963 if (core->flags & CLK_IGNORE_UNUSED) 964 return; 965 966 if (clk_pm_runtime_get(core)) 967 return; 968 969 if (clk_core_is_prepared(core)) { 970 trace_clk_unprepare(core); 971 if (core->ops->unprepare_unused) 972 core->ops->unprepare_unused(core->hw); 973 else if (core->ops->unprepare) 974 core->ops->unprepare(core->hw); 975 trace_clk_unprepare_complete(core); 976 } 977 978 clk_pm_runtime_put(core); 979 } 980 981 static void clk_disable_unused_subtree(struct clk_core *core) 982 { 983 struct clk_core *child; 984 unsigned long flags; 985 986 lockdep_assert_held(&prepare_lock); 987 988 hlist_for_each_entry(child, &core->children, child_node) 989 clk_disable_unused_subtree(child); 990 991 if (core->flags & CLK_OPS_PARENT_ENABLE) 992 clk_core_prepare_enable(core->parent); 993 994 if (clk_pm_runtime_get(core)) 995 goto unprepare_out; 996 997 flags = clk_enable_lock(); 998 999 if (core->enable_count) 1000 goto unlock_out; 1001 1002 if (core->flags & CLK_IGNORE_UNUSED) 1003 goto unlock_out; 1004 1005 /* 1006 * some gate clocks have special needs during the disable-unused 1007 * sequence. call .disable_unused if available, otherwise fall 1008 * back to .disable 1009 */ 1010 if (clk_core_is_enabled(core)) { 1011 trace_clk_disable(core); 1012 if (core->ops->disable_unused) 1013 core->ops->disable_unused(core->hw); 1014 else if (core->ops->disable) 1015 core->ops->disable(core->hw); 1016 trace_clk_disable_complete(core); 1017 } 1018 1019 unlock_out: 1020 clk_enable_unlock(flags); 1021 clk_pm_runtime_put(core); 1022 unprepare_out: 1023 if (core->flags & CLK_OPS_PARENT_ENABLE) 1024 clk_core_disable_unprepare(core->parent); 1025 } 1026 1027 static bool clk_ignore_unused; 1028 static int __init clk_ignore_unused_setup(char *__unused) 1029 { 1030 clk_ignore_unused = true; 1031 return 1; 1032 } 1033 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1034 1035 static int clk_disable_unused(void) 1036 { 1037 struct clk_core *core; 1038 1039 if (clk_ignore_unused) { 1040 pr_warn("clk: Not disabling unused clocks\n"); 1041 return 0; 1042 } 1043 1044 clk_prepare_lock(); 1045 1046 hlist_for_each_entry(core, &clk_root_list, child_node) 1047 clk_disable_unused_subtree(core); 1048 1049 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1050 clk_disable_unused_subtree(core); 1051 1052 hlist_for_each_entry(core, &clk_root_list, child_node) 1053 clk_unprepare_unused_subtree(core); 1054 1055 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1056 clk_unprepare_unused_subtree(core); 1057 1058 clk_prepare_unlock(); 1059 1060 return 0; 1061 } 1062 late_initcall_sync(clk_disable_unused); 1063 1064 static int clk_core_determine_round_nolock(struct clk_core *core, 1065 struct clk_rate_request *req) 1066 { 1067 long rate; 1068 1069 lockdep_assert_held(&prepare_lock); 1070 1071 if (!core) 1072 return 0; 1073 1074 /* 1075 * At this point, core protection will be disabled if 1076 * - if the provider is not protected at all 1077 * - if the calling consumer is the only one which has exclusivity 1078 * over the provider 1079 */ 1080 if (clk_core_rate_is_protected(core)) { 1081 req->rate = core->rate; 1082 } else if (core->ops->determine_rate) { 1083 return core->ops->determine_rate(core->hw, req); 1084 } else if (core->ops->round_rate) { 1085 rate = core->ops->round_rate(core->hw, req->rate, 1086 &req->best_parent_rate); 1087 if (rate < 0) 1088 return rate; 1089 1090 req->rate = rate; 1091 } else { 1092 return -EINVAL; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static void clk_core_init_rate_req(struct clk_core * const core, 1099 struct clk_rate_request *req) 1100 { 1101 struct clk_core *parent; 1102 1103 if (WARN_ON(!core || !req)) 1104 return; 1105 1106 parent = core->parent; 1107 if (parent) { 1108 req->best_parent_hw = parent->hw; 1109 req->best_parent_rate = parent->rate; 1110 } else { 1111 req->best_parent_hw = NULL; 1112 req->best_parent_rate = 0; 1113 } 1114 } 1115 1116 static bool clk_core_can_round(struct clk_core * const core) 1117 { 1118 if (core->ops->determine_rate || core->ops->round_rate) 1119 return true; 1120 1121 return false; 1122 } 1123 1124 static int clk_core_round_rate_nolock(struct clk_core *core, 1125 struct clk_rate_request *req) 1126 { 1127 lockdep_assert_held(&prepare_lock); 1128 1129 if (!core) { 1130 req->rate = 0; 1131 return 0; 1132 } 1133 1134 clk_core_init_rate_req(core, req); 1135 1136 if (clk_core_can_round(core)) 1137 return clk_core_determine_round_nolock(core, req); 1138 else if (core->flags & CLK_SET_RATE_PARENT) 1139 return clk_core_round_rate_nolock(core->parent, req); 1140 1141 req->rate = core->rate; 1142 return 0; 1143 } 1144 1145 /** 1146 * __clk_determine_rate - get the closest rate actually supported by a clock 1147 * @hw: determine the rate of this clock 1148 * @req: target rate request 1149 * 1150 * Useful for clk_ops such as .set_rate and .determine_rate. 1151 */ 1152 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1153 { 1154 if (!hw) { 1155 req->rate = 0; 1156 return 0; 1157 } 1158 1159 return clk_core_round_rate_nolock(hw->core, req); 1160 } 1161 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1162 1163 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1164 { 1165 int ret; 1166 struct clk_rate_request req; 1167 1168 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1169 req.rate = rate; 1170 1171 ret = clk_core_round_rate_nolock(hw->core, &req); 1172 if (ret) 1173 return 0; 1174 1175 return req.rate; 1176 } 1177 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1178 1179 /** 1180 * clk_round_rate - round the given rate for a clk 1181 * @clk: the clk for which we are rounding a rate 1182 * @rate: the rate which is to be rounded 1183 * 1184 * Takes in a rate as input and rounds it to a rate that the clk can actually 1185 * use which is then returned. If clk doesn't support round_rate operation 1186 * then the parent rate is returned. 1187 */ 1188 long clk_round_rate(struct clk *clk, unsigned long rate) 1189 { 1190 struct clk_rate_request req; 1191 int ret; 1192 1193 if (!clk) 1194 return 0; 1195 1196 clk_prepare_lock(); 1197 1198 if (clk->exclusive_count) 1199 clk_core_rate_unprotect(clk->core); 1200 1201 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1202 req.rate = rate; 1203 1204 ret = clk_core_round_rate_nolock(clk->core, &req); 1205 1206 if (clk->exclusive_count) 1207 clk_core_rate_protect(clk->core); 1208 1209 clk_prepare_unlock(); 1210 1211 if (ret) 1212 return ret; 1213 1214 return req.rate; 1215 } 1216 EXPORT_SYMBOL_GPL(clk_round_rate); 1217 1218 /** 1219 * __clk_notify - call clk notifier chain 1220 * @core: clk that is changing rate 1221 * @msg: clk notifier type (see include/linux/clk.h) 1222 * @old_rate: old clk rate 1223 * @new_rate: new clk rate 1224 * 1225 * Triggers a notifier call chain on the clk rate-change notification 1226 * for 'clk'. Passes a pointer to the struct clk and the previous 1227 * and current rates to the notifier callback. Intended to be called by 1228 * internal clock code only. Returns NOTIFY_DONE from the last driver 1229 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1230 * a driver returns that. 1231 */ 1232 static int __clk_notify(struct clk_core *core, unsigned long msg, 1233 unsigned long old_rate, unsigned long new_rate) 1234 { 1235 struct clk_notifier *cn; 1236 struct clk_notifier_data cnd; 1237 int ret = NOTIFY_DONE; 1238 1239 cnd.old_rate = old_rate; 1240 cnd.new_rate = new_rate; 1241 1242 list_for_each_entry(cn, &clk_notifier_list, node) { 1243 if (cn->clk->core == core) { 1244 cnd.clk = cn->clk; 1245 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1246 &cnd); 1247 if (ret & NOTIFY_STOP_MASK) 1248 return ret; 1249 } 1250 } 1251 1252 return ret; 1253 } 1254 1255 /** 1256 * __clk_recalc_accuracies 1257 * @core: first clk in the subtree 1258 * 1259 * Walks the subtree of clks starting with clk and recalculates accuracies as 1260 * it goes. Note that if a clk does not implement the .recalc_accuracy 1261 * callback then it is assumed that the clock will take on the accuracy of its 1262 * parent. 1263 */ 1264 static void __clk_recalc_accuracies(struct clk_core *core) 1265 { 1266 unsigned long parent_accuracy = 0; 1267 struct clk_core *child; 1268 1269 lockdep_assert_held(&prepare_lock); 1270 1271 if (core->parent) 1272 parent_accuracy = core->parent->accuracy; 1273 1274 if (core->ops->recalc_accuracy) 1275 core->accuracy = core->ops->recalc_accuracy(core->hw, 1276 parent_accuracy); 1277 else 1278 core->accuracy = parent_accuracy; 1279 1280 hlist_for_each_entry(child, &core->children, child_node) 1281 __clk_recalc_accuracies(child); 1282 } 1283 1284 static long clk_core_get_accuracy(struct clk_core *core) 1285 { 1286 unsigned long accuracy; 1287 1288 clk_prepare_lock(); 1289 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1290 __clk_recalc_accuracies(core); 1291 1292 accuracy = __clk_get_accuracy(core); 1293 clk_prepare_unlock(); 1294 1295 return accuracy; 1296 } 1297 1298 /** 1299 * clk_get_accuracy - return the accuracy of clk 1300 * @clk: the clk whose accuracy is being returned 1301 * 1302 * Simply returns the cached accuracy of the clk, unless 1303 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1304 * issued. 1305 * If clk is NULL then returns 0. 1306 */ 1307 long clk_get_accuracy(struct clk *clk) 1308 { 1309 if (!clk) 1310 return 0; 1311 1312 return clk_core_get_accuracy(clk->core); 1313 } 1314 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1315 1316 static unsigned long clk_recalc(struct clk_core *core, 1317 unsigned long parent_rate) 1318 { 1319 unsigned long rate = parent_rate; 1320 1321 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1322 rate = core->ops->recalc_rate(core->hw, parent_rate); 1323 clk_pm_runtime_put(core); 1324 } 1325 return rate; 1326 } 1327 1328 /** 1329 * __clk_recalc_rates 1330 * @core: first clk in the subtree 1331 * @msg: notification type (see include/linux/clk.h) 1332 * 1333 * Walks the subtree of clks starting with clk and recalculates rates as it 1334 * goes. Note that if a clk does not implement the .recalc_rate callback then 1335 * it is assumed that the clock will take on the rate of its parent. 1336 * 1337 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1338 * if necessary. 1339 */ 1340 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1341 { 1342 unsigned long old_rate; 1343 unsigned long parent_rate = 0; 1344 struct clk_core *child; 1345 1346 lockdep_assert_held(&prepare_lock); 1347 1348 old_rate = core->rate; 1349 1350 if (core->parent) 1351 parent_rate = core->parent->rate; 1352 1353 core->rate = clk_recalc(core, parent_rate); 1354 1355 /* 1356 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1357 * & ABORT_RATE_CHANGE notifiers 1358 */ 1359 if (core->notifier_count && msg) 1360 __clk_notify(core, msg, old_rate, core->rate); 1361 1362 hlist_for_each_entry(child, &core->children, child_node) 1363 __clk_recalc_rates(child, msg); 1364 } 1365 1366 static unsigned long clk_core_get_rate(struct clk_core *core) 1367 { 1368 unsigned long rate; 1369 1370 clk_prepare_lock(); 1371 1372 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1373 __clk_recalc_rates(core, 0); 1374 1375 rate = clk_core_get_rate_nolock(core); 1376 clk_prepare_unlock(); 1377 1378 return rate; 1379 } 1380 1381 /** 1382 * clk_get_rate - return the rate of clk 1383 * @clk: the clk whose rate is being returned 1384 * 1385 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1386 * is set, which means a recalc_rate will be issued. 1387 * If clk is NULL then returns 0. 1388 */ 1389 unsigned long clk_get_rate(struct clk *clk) 1390 { 1391 if (!clk) 1392 return 0; 1393 1394 return clk_core_get_rate(clk->core); 1395 } 1396 EXPORT_SYMBOL_GPL(clk_get_rate); 1397 1398 static int clk_fetch_parent_index(struct clk_core *core, 1399 struct clk_core *parent) 1400 { 1401 int i; 1402 1403 if (!parent) 1404 return -EINVAL; 1405 1406 for (i = 0; i < core->num_parents; i++) 1407 if (clk_core_get_parent_by_index(core, i) == parent) 1408 return i; 1409 1410 return -EINVAL; 1411 } 1412 1413 /* 1414 * Update the orphan status of @core and all its children. 1415 */ 1416 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1417 { 1418 struct clk_core *child; 1419 1420 core->orphan = is_orphan; 1421 1422 hlist_for_each_entry(child, &core->children, child_node) 1423 clk_core_update_orphan_status(child, is_orphan); 1424 } 1425 1426 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1427 { 1428 bool was_orphan = core->orphan; 1429 1430 hlist_del(&core->child_node); 1431 1432 if (new_parent) { 1433 bool becomes_orphan = new_parent->orphan; 1434 1435 /* avoid duplicate POST_RATE_CHANGE notifications */ 1436 if (new_parent->new_child == core) 1437 new_parent->new_child = NULL; 1438 1439 hlist_add_head(&core->child_node, &new_parent->children); 1440 1441 if (was_orphan != becomes_orphan) 1442 clk_core_update_orphan_status(core, becomes_orphan); 1443 } else { 1444 hlist_add_head(&core->child_node, &clk_orphan_list); 1445 if (!was_orphan) 1446 clk_core_update_orphan_status(core, true); 1447 } 1448 1449 core->parent = new_parent; 1450 } 1451 1452 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1453 struct clk_core *parent) 1454 { 1455 unsigned long flags; 1456 struct clk_core *old_parent = core->parent; 1457 1458 /* 1459 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1460 * 1461 * 2. Migrate prepare state between parents and prevent race with 1462 * clk_enable(). 1463 * 1464 * If the clock is not prepared, then a race with 1465 * clk_enable/disable() is impossible since we already have the 1466 * prepare lock (future calls to clk_enable() need to be preceded by 1467 * a clk_prepare()). 1468 * 1469 * If the clock is prepared, migrate the prepared state to the new 1470 * parent and also protect against a race with clk_enable() by 1471 * forcing the clock and the new parent on. This ensures that all 1472 * future calls to clk_enable() are practically NOPs with respect to 1473 * hardware and software states. 1474 * 1475 * See also: Comment for clk_set_parent() below. 1476 */ 1477 1478 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1479 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1480 clk_core_prepare_enable(old_parent); 1481 clk_core_prepare_enable(parent); 1482 } 1483 1484 /* migrate prepare count if > 0 */ 1485 if (core->prepare_count) { 1486 clk_core_prepare_enable(parent); 1487 clk_core_enable_lock(core); 1488 } 1489 1490 /* update the clk tree topology */ 1491 flags = clk_enable_lock(); 1492 clk_reparent(core, parent); 1493 clk_enable_unlock(flags); 1494 1495 return old_parent; 1496 } 1497 1498 static void __clk_set_parent_after(struct clk_core *core, 1499 struct clk_core *parent, 1500 struct clk_core *old_parent) 1501 { 1502 /* 1503 * Finish the migration of prepare state and undo the changes done 1504 * for preventing a race with clk_enable(). 1505 */ 1506 if (core->prepare_count) { 1507 clk_core_disable_lock(core); 1508 clk_core_disable_unprepare(old_parent); 1509 } 1510 1511 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1512 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1513 clk_core_disable_unprepare(parent); 1514 clk_core_disable_unprepare(old_parent); 1515 } 1516 } 1517 1518 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1519 u8 p_index) 1520 { 1521 unsigned long flags; 1522 int ret = 0; 1523 struct clk_core *old_parent; 1524 1525 old_parent = __clk_set_parent_before(core, parent); 1526 1527 trace_clk_set_parent(core, parent); 1528 1529 /* change clock input source */ 1530 if (parent && core->ops->set_parent) 1531 ret = core->ops->set_parent(core->hw, p_index); 1532 1533 trace_clk_set_parent_complete(core, parent); 1534 1535 if (ret) { 1536 flags = clk_enable_lock(); 1537 clk_reparent(core, old_parent); 1538 clk_enable_unlock(flags); 1539 __clk_set_parent_after(core, old_parent, parent); 1540 1541 return ret; 1542 } 1543 1544 __clk_set_parent_after(core, parent, old_parent); 1545 1546 return 0; 1547 } 1548 1549 /** 1550 * __clk_speculate_rates 1551 * @core: first clk in the subtree 1552 * @parent_rate: the "future" rate of clk's parent 1553 * 1554 * Walks the subtree of clks starting with clk, speculating rates as it 1555 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1556 * 1557 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1558 * pre-rate change notifications and returns early if no clks in the 1559 * subtree have subscribed to the notifications. Note that if a clk does not 1560 * implement the .recalc_rate callback then it is assumed that the clock will 1561 * take on the rate of its parent. 1562 */ 1563 static int __clk_speculate_rates(struct clk_core *core, 1564 unsigned long parent_rate) 1565 { 1566 struct clk_core *child; 1567 unsigned long new_rate; 1568 int ret = NOTIFY_DONE; 1569 1570 lockdep_assert_held(&prepare_lock); 1571 1572 new_rate = clk_recalc(core, parent_rate); 1573 1574 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1575 if (core->notifier_count) 1576 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1577 1578 if (ret & NOTIFY_STOP_MASK) { 1579 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1580 __func__, core->name, ret); 1581 goto out; 1582 } 1583 1584 hlist_for_each_entry(child, &core->children, child_node) { 1585 ret = __clk_speculate_rates(child, new_rate); 1586 if (ret & NOTIFY_STOP_MASK) 1587 break; 1588 } 1589 1590 out: 1591 return ret; 1592 } 1593 1594 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1595 struct clk_core *new_parent, u8 p_index) 1596 { 1597 struct clk_core *child; 1598 1599 core->new_rate = new_rate; 1600 core->new_parent = new_parent; 1601 core->new_parent_index = p_index; 1602 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1603 core->new_child = NULL; 1604 if (new_parent && new_parent != core->parent) 1605 new_parent->new_child = core; 1606 1607 hlist_for_each_entry(child, &core->children, child_node) { 1608 child->new_rate = clk_recalc(child, new_rate); 1609 clk_calc_subtree(child, child->new_rate, NULL, 0); 1610 } 1611 } 1612 1613 /* 1614 * calculate the new rates returning the topmost clock that has to be 1615 * changed. 1616 */ 1617 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1618 unsigned long rate) 1619 { 1620 struct clk_core *top = core; 1621 struct clk_core *old_parent, *parent; 1622 unsigned long best_parent_rate = 0; 1623 unsigned long new_rate; 1624 unsigned long min_rate; 1625 unsigned long max_rate; 1626 int p_index = 0; 1627 long ret; 1628 1629 /* sanity */ 1630 if (IS_ERR_OR_NULL(core)) 1631 return NULL; 1632 1633 /* save parent rate, if it exists */ 1634 parent = old_parent = core->parent; 1635 if (parent) 1636 best_parent_rate = parent->rate; 1637 1638 clk_core_get_boundaries(core, &min_rate, &max_rate); 1639 1640 /* find the closest rate and parent clk/rate */ 1641 if (clk_core_can_round(core)) { 1642 struct clk_rate_request req; 1643 1644 req.rate = rate; 1645 req.min_rate = min_rate; 1646 req.max_rate = max_rate; 1647 1648 clk_core_init_rate_req(core, &req); 1649 1650 ret = clk_core_determine_round_nolock(core, &req); 1651 if (ret < 0) 1652 return NULL; 1653 1654 best_parent_rate = req.best_parent_rate; 1655 new_rate = req.rate; 1656 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1657 1658 if (new_rate < min_rate || new_rate > max_rate) 1659 return NULL; 1660 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1661 /* pass-through clock without adjustable parent */ 1662 core->new_rate = core->rate; 1663 return NULL; 1664 } else { 1665 /* pass-through clock with adjustable parent */ 1666 top = clk_calc_new_rates(parent, rate); 1667 new_rate = parent->new_rate; 1668 goto out; 1669 } 1670 1671 /* some clocks must be gated to change parent */ 1672 if (parent != old_parent && 1673 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1674 pr_debug("%s: %s not gated but wants to reparent\n", 1675 __func__, core->name); 1676 return NULL; 1677 } 1678 1679 /* try finding the new parent index */ 1680 if (parent && core->num_parents > 1) { 1681 p_index = clk_fetch_parent_index(core, parent); 1682 if (p_index < 0) { 1683 pr_debug("%s: clk %s can not be parent of clk %s\n", 1684 __func__, parent->name, core->name); 1685 return NULL; 1686 } 1687 } 1688 1689 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1690 best_parent_rate != parent->rate) 1691 top = clk_calc_new_rates(parent, best_parent_rate); 1692 1693 out: 1694 clk_calc_subtree(core, new_rate, parent, p_index); 1695 1696 return top; 1697 } 1698 1699 /* 1700 * Notify about rate changes in a subtree. Always walk down the whole tree 1701 * so that in case of an error we can walk down the whole tree again and 1702 * abort the change. 1703 */ 1704 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1705 unsigned long event) 1706 { 1707 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1708 int ret = NOTIFY_DONE; 1709 1710 if (core->rate == core->new_rate) 1711 return NULL; 1712 1713 if (core->notifier_count) { 1714 ret = __clk_notify(core, event, core->rate, core->new_rate); 1715 if (ret & NOTIFY_STOP_MASK) 1716 fail_clk = core; 1717 } 1718 1719 hlist_for_each_entry(child, &core->children, child_node) { 1720 /* Skip children who will be reparented to another clock */ 1721 if (child->new_parent && child->new_parent != core) 1722 continue; 1723 tmp_clk = clk_propagate_rate_change(child, event); 1724 if (tmp_clk) 1725 fail_clk = tmp_clk; 1726 } 1727 1728 /* handle the new child who might not be in core->children yet */ 1729 if (core->new_child) { 1730 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1731 if (tmp_clk) 1732 fail_clk = tmp_clk; 1733 } 1734 1735 return fail_clk; 1736 } 1737 1738 /* 1739 * walk down a subtree and set the new rates notifying the rate 1740 * change on the way 1741 */ 1742 static void clk_change_rate(struct clk_core *core) 1743 { 1744 struct clk_core *child; 1745 struct hlist_node *tmp; 1746 unsigned long old_rate; 1747 unsigned long best_parent_rate = 0; 1748 bool skip_set_rate = false; 1749 struct clk_core *old_parent; 1750 struct clk_core *parent = NULL; 1751 1752 old_rate = core->rate; 1753 1754 if (core->new_parent) { 1755 parent = core->new_parent; 1756 best_parent_rate = core->new_parent->rate; 1757 } else if (core->parent) { 1758 parent = core->parent; 1759 best_parent_rate = core->parent->rate; 1760 } 1761 1762 if (clk_pm_runtime_get(core)) 1763 return; 1764 1765 if (core->flags & CLK_SET_RATE_UNGATE) { 1766 unsigned long flags; 1767 1768 clk_core_prepare(core); 1769 flags = clk_enable_lock(); 1770 clk_core_enable(core); 1771 clk_enable_unlock(flags); 1772 } 1773 1774 if (core->new_parent && core->new_parent != core->parent) { 1775 old_parent = __clk_set_parent_before(core, core->new_parent); 1776 trace_clk_set_parent(core, core->new_parent); 1777 1778 if (core->ops->set_rate_and_parent) { 1779 skip_set_rate = true; 1780 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1781 best_parent_rate, 1782 core->new_parent_index); 1783 } else if (core->ops->set_parent) { 1784 core->ops->set_parent(core->hw, core->new_parent_index); 1785 } 1786 1787 trace_clk_set_parent_complete(core, core->new_parent); 1788 __clk_set_parent_after(core, core->new_parent, old_parent); 1789 } 1790 1791 if (core->flags & CLK_OPS_PARENT_ENABLE) 1792 clk_core_prepare_enable(parent); 1793 1794 trace_clk_set_rate(core, core->new_rate); 1795 1796 if (!skip_set_rate && core->ops->set_rate) 1797 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1798 1799 trace_clk_set_rate_complete(core, core->new_rate); 1800 1801 core->rate = clk_recalc(core, best_parent_rate); 1802 1803 if (core->flags & CLK_SET_RATE_UNGATE) { 1804 unsigned long flags; 1805 1806 flags = clk_enable_lock(); 1807 clk_core_disable(core); 1808 clk_enable_unlock(flags); 1809 clk_core_unprepare(core); 1810 } 1811 1812 if (core->flags & CLK_OPS_PARENT_ENABLE) 1813 clk_core_disable_unprepare(parent); 1814 1815 if (core->notifier_count && old_rate != core->rate) 1816 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1817 1818 if (core->flags & CLK_RECALC_NEW_RATES) 1819 (void)clk_calc_new_rates(core, core->new_rate); 1820 1821 /* 1822 * Use safe iteration, as change_rate can actually swap parents 1823 * for certain clock types. 1824 */ 1825 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1826 /* Skip children who will be reparented to another clock */ 1827 if (child->new_parent && child->new_parent != core) 1828 continue; 1829 clk_change_rate(child); 1830 } 1831 1832 /* handle the new child who might not be in core->children yet */ 1833 if (core->new_child) 1834 clk_change_rate(core->new_child); 1835 1836 clk_pm_runtime_put(core); 1837 } 1838 1839 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 1840 unsigned long req_rate) 1841 { 1842 int ret, cnt; 1843 struct clk_rate_request req; 1844 1845 lockdep_assert_held(&prepare_lock); 1846 1847 if (!core) 1848 return 0; 1849 1850 /* simulate what the rate would be if it could be freely set */ 1851 cnt = clk_core_rate_nuke_protect(core); 1852 if (cnt < 0) 1853 return cnt; 1854 1855 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 1856 req.rate = req_rate; 1857 1858 ret = clk_core_round_rate_nolock(core, &req); 1859 1860 /* restore the protection */ 1861 clk_core_rate_restore_protect(core, cnt); 1862 1863 return ret ? 0 : req.rate; 1864 } 1865 1866 static int clk_core_set_rate_nolock(struct clk_core *core, 1867 unsigned long req_rate) 1868 { 1869 struct clk_core *top, *fail_clk; 1870 unsigned long rate; 1871 int ret = 0; 1872 1873 if (!core) 1874 return 0; 1875 1876 rate = clk_core_req_round_rate_nolock(core, req_rate); 1877 1878 /* bail early if nothing to do */ 1879 if (rate == clk_core_get_rate_nolock(core)) 1880 return 0; 1881 1882 /* fail on a direct rate set of a protected provider */ 1883 if (clk_core_rate_is_protected(core)) 1884 return -EBUSY; 1885 1886 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1887 return -EBUSY; 1888 1889 /* calculate new rates and get the topmost changed clock */ 1890 top = clk_calc_new_rates(core, req_rate); 1891 if (!top) 1892 return -EINVAL; 1893 1894 ret = clk_pm_runtime_get(core); 1895 if (ret) 1896 return ret; 1897 1898 /* notify that we are about to change rates */ 1899 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1900 if (fail_clk) { 1901 pr_debug("%s: failed to set %s rate\n", __func__, 1902 fail_clk->name); 1903 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1904 ret = -EBUSY; 1905 goto err; 1906 } 1907 1908 /* change the rates */ 1909 clk_change_rate(top); 1910 1911 core->req_rate = req_rate; 1912 err: 1913 clk_pm_runtime_put(core); 1914 1915 return ret; 1916 } 1917 1918 /** 1919 * clk_set_rate - specify a new rate for clk 1920 * @clk: the clk whose rate is being changed 1921 * @rate: the new rate for clk 1922 * 1923 * In the simplest case clk_set_rate will only adjust the rate of clk. 1924 * 1925 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1926 * propagate up to clk's parent; whether or not this happens depends on the 1927 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1928 * after calling .round_rate then upstream parent propagation is ignored. If 1929 * *parent_rate comes back with a new rate for clk's parent then we propagate 1930 * up to clk's parent and set its rate. Upward propagation will continue 1931 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1932 * .round_rate stops requesting changes to clk's parent_rate. 1933 * 1934 * Rate changes are accomplished via tree traversal that also recalculates the 1935 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1936 * 1937 * Returns 0 on success, -EERROR otherwise. 1938 */ 1939 int clk_set_rate(struct clk *clk, unsigned long rate) 1940 { 1941 int ret; 1942 1943 if (!clk) 1944 return 0; 1945 1946 /* prevent racing with updates to the clock topology */ 1947 clk_prepare_lock(); 1948 1949 if (clk->exclusive_count) 1950 clk_core_rate_unprotect(clk->core); 1951 1952 ret = clk_core_set_rate_nolock(clk->core, rate); 1953 1954 if (clk->exclusive_count) 1955 clk_core_rate_protect(clk->core); 1956 1957 clk_prepare_unlock(); 1958 1959 return ret; 1960 } 1961 EXPORT_SYMBOL_GPL(clk_set_rate); 1962 1963 /** 1964 * clk_set_rate_exclusive - specify a new rate get exclusive control 1965 * @clk: the clk whose rate is being changed 1966 * @rate: the new rate for clk 1967 * 1968 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 1969 * within a critical section 1970 * 1971 * This can be used initially to ensure that at least 1 consumer is 1972 * statisfied when several consumers are competing for exclusivity over the 1973 * same clock provider. 1974 * 1975 * The exclusivity is not applied if setting the rate failed. 1976 * 1977 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1978 * clk_rate_exclusive_put(). 1979 * 1980 * Returns 0 on success, -EERROR otherwise. 1981 */ 1982 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 1983 { 1984 int ret; 1985 1986 if (!clk) 1987 return 0; 1988 1989 /* prevent racing with updates to the clock topology */ 1990 clk_prepare_lock(); 1991 1992 /* 1993 * The temporary protection removal is not here, on purpose 1994 * This function is meant to be used instead of clk_rate_protect, 1995 * so before the consumer code path protect the clock provider 1996 */ 1997 1998 ret = clk_core_set_rate_nolock(clk->core, rate); 1999 if (!ret) { 2000 clk_core_rate_protect(clk->core); 2001 clk->exclusive_count++; 2002 } 2003 2004 clk_prepare_unlock(); 2005 2006 return ret; 2007 } 2008 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2009 2010 /** 2011 * clk_set_rate_range - set a rate range for a clock source 2012 * @clk: clock source 2013 * @min: desired minimum clock rate in Hz, inclusive 2014 * @max: desired maximum clock rate in Hz, inclusive 2015 * 2016 * Returns success (0) or negative errno. 2017 */ 2018 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2019 { 2020 int ret = 0; 2021 unsigned long old_min, old_max, rate; 2022 2023 if (!clk) 2024 return 0; 2025 2026 if (min > max) { 2027 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2028 __func__, clk->core->name, clk->dev_id, clk->con_id, 2029 min, max); 2030 return -EINVAL; 2031 } 2032 2033 clk_prepare_lock(); 2034 2035 if (clk->exclusive_count) 2036 clk_core_rate_unprotect(clk->core); 2037 2038 /* Save the current values in case we need to rollback the change */ 2039 old_min = clk->min_rate; 2040 old_max = clk->max_rate; 2041 clk->min_rate = min; 2042 clk->max_rate = max; 2043 2044 rate = clk_core_get_rate_nolock(clk->core); 2045 if (rate < min || rate > max) { 2046 /* 2047 * FIXME: 2048 * We are in bit of trouble here, current rate is outside the 2049 * the requested range. We are going try to request appropriate 2050 * range boundary but there is a catch. It may fail for the 2051 * usual reason (clock broken, clock protected, etc) but also 2052 * because: 2053 * - round_rate() was not favorable and fell on the wrong 2054 * side of the boundary 2055 * - the determine_rate() callback does not really check for 2056 * this corner case when determining the rate 2057 */ 2058 2059 if (rate < min) 2060 rate = min; 2061 else 2062 rate = max; 2063 2064 ret = clk_core_set_rate_nolock(clk->core, rate); 2065 if (ret) { 2066 /* rollback the changes */ 2067 clk->min_rate = old_min; 2068 clk->max_rate = old_max; 2069 } 2070 } 2071 2072 if (clk->exclusive_count) 2073 clk_core_rate_protect(clk->core); 2074 2075 clk_prepare_unlock(); 2076 2077 return ret; 2078 } 2079 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2080 2081 /** 2082 * clk_set_min_rate - set a minimum clock rate for a clock source 2083 * @clk: clock source 2084 * @rate: desired minimum clock rate in Hz, inclusive 2085 * 2086 * Returns success (0) or negative errno. 2087 */ 2088 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2089 { 2090 if (!clk) 2091 return 0; 2092 2093 return clk_set_rate_range(clk, rate, clk->max_rate); 2094 } 2095 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2096 2097 /** 2098 * clk_set_max_rate - set a maximum clock rate for a clock source 2099 * @clk: clock source 2100 * @rate: desired maximum clock rate in Hz, inclusive 2101 * 2102 * Returns success (0) or negative errno. 2103 */ 2104 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2105 { 2106 if (!clk) 2107 return 0; 2108 2109 return clk_set_rate_range(clk, clk->min_rate, rate); 2110 } 2111 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2112 2113 /** 2114 * clk_get_parent - return the parent of a clk 2115 * @clk: the clk whose parent gets returned 2116 * 2117 * Simply returns clk->parent. Returns NULL if clk is NULL. 2118 */ 2119 struct clk *clk_get_parent(struct clk *clk) 2120 { 2121 struct clk *parent; 2122 2123 if (!clk) 2124 return NULL; 2125 2126 clk_prepare_lock(); 2127 /* TODO: Create a per-user clk and change callers to call clk_put */ 2128 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2129 clk_prepare_unlock(); 2130 2131 return parent; 2132 } 2133 EXPORT_SYMBOL_GPL(clk_get_parent); 2134 2135 static struct clk_core *__clk_init_parent(struct clk_core *core) 2136 { 2137 u8 index = 0; 2138 2139 if (core->num_parents > 1 && core->ops->get_parent) 2140 index = core->ops->get_parent(core->hw); 2141 2142 return clk_core_get_parent_by_index(core, index); 2143 } 2144 2145 static void clk_core_reparent(struct clk_core *core, 2146 struct clk_core *new_parent) 2147 { 2148 clk_reparent(core, new_parent); 2149 __clk_recalc_accuracies(core); 2150 __clk_recalc_rates(core, POST_RATE_CHANGE); 2151 } 2152 2153 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2154 { 2155 if (!hw) 2156 return; 2157 2158 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2159 } 2160 2161 /** 2162 * clk_has_parent - check if a clock is a possible parent for another 2163 * @clk: clock source 2164 * @parent: parent clock source 2165 * 2166 * This function can be used in drivers that need to check that a clock can be 2167 * the parent of another without actually changing the parent. 2168 * 2169 * Returns true if @parent is a possible parent for @clk, false otherwise. 2170 */ 2171 bool clk_has_parent(struct clk *clk, struct clk *parent) 2172 { 2173 struct clk_core *core, *parent_core; 2174 unsigned int i; 2175 2176 /* NULL clocks should be nops, so return success if either is NULL. */ 2177 if (!clk || !parent) 2178 return true; 2179 2180 core = clk->core; 2181 parent_core = parent->core; 2182 2183 /* Optimize for the case where the parent is already the parent. */ 2184 if (core->parent == parent_core) 2185 return true; 2186 2187 for (i = 0; i < core->num_parents; i++) 2188 if (strcmp(core->parent_names[i], parent_core->name) == 0) 2189 return true; 2190 2191 return false; 2192 } 2193 EXPORT_SYMBOL_GPL(clk_has_parent); 2194 2195 static int clk_core_set_parent_nolock(struct clk_core *core, 2196 struct clk_core *parent) 2197 { 2198 int ret = 0; 2199 int p_index = 0; 2200 unsigned long p_rate = 0; 2201 2202 lockdep_assert_held(&prepare_lock); 2203 2204 if (!core) 2205 return 0; 2206 2207 if (core->parent == parent) 2208 return 0; 2209 2210 /* verify ops for for multi-parent clks */ 2211 if (core->num_parents > 1 && !core->ops->set_parent) 2212 return -EPERM; 2213 2214 /* check that we are allowed to re-parent if the clock is in use */ 2215 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2216 return -EBUSY; 2217 2218 if (clk_core_rate_is_protected(core)) 2219 return -EBUSY; 2220 2221 /* try finding the new parent index */ 2222 if (parent) { 2223 p_index = clk_fetch_parent_index(core, parent); 2224 if (p_index < 0) { 2225 pr_debug("%s: clk %s can not be parent of clk %s\n", 2226 __func__, parent->name, core->name); 2227 return p_index; 2228 } 2229 p_rate = parent->rate; 2230 } 2231 2232 ret = clk_pm_runtime_get(core); 2233 if (ret) 2234 return ret; 2235 2236 /* propagate PRE_RATE_CHANGE notifications */ 2237 ret = __clk_speculate_rates(core, p_rate); 2238 2239 /* abort if a driver objects */ 2240 if (ret & NOTIFY_STOP_MASK) 2241 goto runtime_put; 2242 2243 /* do the re-parent */ 2244 ret = __clk_set_parent(core, parent, p_index); 2245 2246 /* propagate rate an accuracy recalculation accordingly */ 2247 if (ret) { 2248 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2249 } else { 2250 __clk_recalc_rates(core, POST_RATE_CHANGE); 2251 __clk_recalc_accuracies(core); 2252 } 2253 2254 runtime_put: 2255 clk_pm_runtime_put(core); 2256 2257 return ret; 2258 } 2259 2260 /** 2261 * clk_set_parent - switch the parent of a mux clk 2262 * @clk: the mux clk whose input we are switching 2263 * @parent: the new input to clk 2264 * 2265 * Re-parent clk to use parent as its new input source. If clk is in 2266 * prepared state, the clk will get enabled for the duration of this call. If 2267 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2268 * that, the reparenting is glitchy in hardware, etc), use the 2269 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2270 * 2271 * After successfully changing clk's parent clk_set_parent will update the 2272 * clk topology, sysfs topology and propagate rate recalculation via 2273 * __clk_recalc_rates. 2274 * 2275 * Returns 0 on success, -EERROR otherwise. 2276 */ 2277 int clk_set_parent(struct clk *clk, struct clk *parent) 2278 { 2279 int ret; 2280 2281 if (!clk) 2282 return 0; 2283 2284 clk_prepare_lock(); 2285 2286 if (clk->exclusive_count) 2287 clk_core_rate_unprotect(clk->core); 2288 2289 ret = clk_core_set_parent_nolock(clk->core, 2290 parent ? parent->core : NULL); 2291 2292 if (clk->exclusive_count) 2293 clk_core_rate_protect(clk->core); 2294 2295 clk_prepare_unlock(); 2296 2297 return ret; 2298 } 2299 EXPORT_SYMBOL_GPL(clk_set_parent); 2300 2301 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2302 { 2303 int ret = -EINVAL; 2304 2305 lockdep_assert_held(&prepare_lock); 2306 2307 if (!core) 2308 return 0; 2309 2310 if (clk_core_rate_is_protected(core)) 2311 return -EBUSY; 2312 2313 trace_clk_set_phase(core, degrees); 2314 2315 if (core->ops->set_phase) { 2316 ret = core->ops->set_phase(core->hw, degrees); 2317 if (!ret) 2318 core->phase = degrees; 2319 } 2320 2321 trace_clk_set_phase_complete(core, degrees); 2322 2323 return ret; 2324 } 2325 2326 /** 2327 * clk_set_phase - adjust the phase shift of a clock signal 2328 * @clk: clock signal source 2329 * @degrees: number of degrees the signal is shifted 2330 * 2331 * Shifts the phase of a clock signal by the specified 2332 * degrees. Returns 0 on success, -EERROR otherwise. 2333 * 2334 * This function makes no distinction about the input or reference 2335 * signal that we adjust the clock signal phase against. For example 2336 * phase locked-loop clock signal generators we may shift phase with 2337 * respect to feedback clock signal input, but for other cases the 2338 * clock phase may be shifted with respect to some other, unspecified 2339 * signal. 2340 * 2341 * Additionally the concept of phase shift does not propagate through 2342 * the clock tree hierarchy, which sets it apart from clock rates and 2343 * clock accuracy. A parent clock phase attribute does not have an 2344 * impact on the phase attribute of a child clock. 2345 */ 2346 int clk_set_phase(struct clk *clk, int degrees) 2347 { 2348 int ret; 2349 2350 if (!clk) 2351 return 0; 2352 2353 /* sanity check degrees */ 2354 degrees %= 360; 2355 if (degrees < 0) 2356 degrees += 360; 2357 2358 clk_prepare_lock(); 2359 2360 if (clk->exclusive_count) 2361 clk_core_rate_unprotect(clk->core); 2362 2363 ret = clk_core_set_phase_nolock(clk->core, degrees); 2364 2365 if (clk->exclusive_count) 2366 clk_core_rate_protect(clk->core); 2367 2368 clk_prepare_unlock(); 2369 2370 return ret; 2371 } 2372 EXPORT_SYMBOL_GPL(clk_set_phase); 2373 2374 static int clk_core_get_phase(struct clk_core *core) 2375 { 2376 int ret; 2377 2378 clk_prepare_lock(); 2379 /* Always try to update cached phase if possible */ 2380 if (core->ops->get_phase) 2381 core->phase = core->ops->get_phase(core->hw); 2382 ret = core->phase; 2383 clk_prepare_unlock(); 2384 2385 return ret; 2386 } 2387 2388 /** 2389 * clk_get_phase - return the phase shift of a clock signal 2390 * @clk: clock signal source 2391 * 2392 * Returns the phase shift of a clock node in degrees, otherwise returns 2393 * -EERROR. 2394 */ 2395 int clk_get_phase(struct clk *clk) 2396 { 2397 if (!clk) 2398 return 0; 2399 2400 return clk_core_get_phase(clk->core); 2401 } 2402 EXPORT_SYMBOL_GPL(clk_get_phase); 2403 2404 /** 2405 * clk_is_match - check if two clk's point to the same hardware clock 2406 * @p: clk compared against q 2407 * @q: clk compared against p 2408 * 2409 * Returns true if the two struct clk pointers both point to the same hardware 2410 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2411 * share the same struct clk_core object. 2412 * 2413 * Returns false otherwise. Note that two NULL clks are treated as matching. 2414 */ 2415 bool clk_is_match(const struct clk *p, const struct clk *q) 2416 { 2417 /* trivial case: identical struct clk's or both NULL */ 2418 if (p == q) 2419 return true; 2420 2421 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2422 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2423 if (p->core == q->core) 2424 return true; 2425 2426 return false; 2427 } 2428 EXPORT_SYMBOL_GPL(clk_is_match); 2429 2430 /*** debugfs support ***/ 2431 2432 #ifdef CONFIG_DEBUG_FS 2433 #include <linux/debugfs.h> 2434 2435 static struct dentry *rootdir; 2436 static int inited = 0; 2437 static DEFINE_MUTEX(clk_debug_lock); 2438 static HLIST_HEAD(clk_debug_list); 2439 2440 static struct hlist_head *all_lists[] = { 2441 &clk_root_list, 2442 &clk_orphan_list, 2443 NULL, 2444 }; 2445 2446 static struct hlist_head *orphan_list[] = { 2447 &clk_orphan_list, 2448 NULL, 2449 }; 2450 2451 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2452 int level) 2453 { 2454 if (!c) 2455 return; 2456 2457 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n", 2458 level * 3 + 1, "", 2459 30 - level * 3, c->name, 2460 c->enable_count, c->prepare_count, c->protect_count, 2461 clk_core_get_rate(c), clk_core_get_accuracy(c), 2462 clk_core_get_phase(c)); 2463 } 2464 2465 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2466 int level) 2467 { 2468 struct clk_core *child; 2469 2470 if (!c) 2471 return; 2472 2473 clk_summary_show_one(s, c, level); 2474 2475 hlist_for_each_entry(child, &c->children, child_node) 2476 clk_summary_show_subtree(s, child, level + 1); 2477 } 2478 2479 static int clk_summary_show(struct seq_file *s, void *data) 2480 { 2481 struct clk_core *c; 2482 struct hlist_head **lists = (struct hlist_head **)s->private; 2483 2484 seq_puts(s, " enable prepare protect \n"); 2485 seq_puts(s, " clock count count count rate accuracy phase\n"); 2486 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2487 2488 clk_prepare_lock(); 2489 2490 for (; *lists; lists++) 2491 hlist_for_each_entry(c, *lists, child_node) 2492 clk_summary_show_subtree(s, c, 0); 2493 2494 clk_prepare_unlock(); 2495 2496 return 0; 2497 } 2498 DEFINE_SHOW_ATTRIBUTE(clk_summary); 2499 2500 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2501 { 2502 if (!c) 2503 return; 2504 2505 /* This should be JSON format, i.e. elements separated with a comma */ 2506 seq_printf(s, "\"%s\": { ", c->name); 2507 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2508 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2509 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2510 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2511 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2512 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2513 } 2514 2515 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2516 { 2517 struct clk_core *child; 2518 2519 if (!c) 2520 return; 2521 2522 clk_dump_one(s, c, level); 2523 2524 hlist_for_each_entry(child, &c->children, child_node) { 2525 seq_putc(s, ','); 2526 clk_dump_subtree(s, child, level + 1); 2527 } 2528 2529 seq_putc(s, '}'); 2530 } 2531 2532 static int clk_dump_show(struct seq_file *s, void *data) 2533 { 2534 struct clk_core *c; 2535 bool first_node = true; 2536 struct hlist_head **lists = (struct hlist_head **)s->private; 2537 2538 seq_putc(s, '{'); 2539 clk_prepare_lock(); 2540 2541 for (; *lists; lists++) { 2542 hlist_for_each_entry(c, *lists, child_node) { 2543 if (!first_node) 2544 seq_putc(s, ','); 2545 first_node = false; 2546 clk_dump_subtree(s, c, 0); 2547 } 2548 } 2549 2550 clk_prepare_unlock(); 2551 2552 seq_puts(s, "}\n"); 2553 return 0; 2554 } 2555 DEFINE_SHOW_ATTRIBUTE(clk_dump); 2556 2557 static const struct { 2558 unsigned long flag; 2559 const char *name; 2560 } clk_flags[] = { 2561 #define ENTRY(f) { f, __stringify(f) } 2562 ENTRY(CLK_SET_RATE_GATE), 2563 ENTRY(CLK_SET_PARENT_GATE), 2564 ENTRY(CLK_SET_RATE_PARENT), 2565 ENTRY(CLK_IGNORE_UNUSED), 2566 ENTRY(CLK_IS_BASIC), 2567 ENTRY(CLK_GET_RATE_NOCACHE), 2568 ENTRY(CLK_SET_RATE_NO_REPARENT), 2569 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2570 ENTRY(CLK_RECALC_NEW_RATES), 2571 ENTRY(CLK_SET_RATE_UNGATE), 2572 ENTRY(CLK_IS_CRITICAL), 2573 ENTRY(CLK_OPS_PARENT_ENABLE), 2574 #undef ENTRY 2575 }; 2576 2577 static int clk_flags_show(struct seq_file *s, void *data) 2578 { 2579 struct clk_core *core = s->private; 2580 unsigned long flags = core->flags; 2581 unsigned int i; 2582 2583 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2584 if (flags & clk_flags[i].flag) { 2585 seq_printf(s, "%s\n", clk_flags[i].name); 2586 flags &= ~clk_flags[i].flag; 2587 } 2588 } 2589 if (flags) { 2590 /* Unknown flags */ 2591 seq_printf(s, "0x%lx\n", flags); 2592 } 2593 2594 return 0; 2595 } 2596 DEFINE_SHOW_ATTRIBUTE(clk_flags); 2597 2598 static int possible_parents_show(struct seq_file *s, void *data) 2599 { 2600 struct clk_core *core = s->private; 2601 int i; 2602 2603 for (i = 0; i < core->num_parents - 1; i++) 2604 seq_printf(s, "%s ", core->parent_names[i]); 2605 2606 seq_printf(s, "%s\n", core->parent_names[i]); 2607 2608 return 0; 2609 } 2610 DEFINE_SHOW_ATTRIBUTE(possible_parents); 2611 2612 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2613 { 2614 struct dentry *d; 2615 int ret = -ENOMEM; 2616 2617 if (!core || !pdentry) { 2618 ret = -EINVAL; 2619 goto out; 2620 } 2621 2622 d = debugfs_create_dir(core->name, pdentry); 2623 if (!d) 2624 goto out; 2625 2626 core->dentry = d; 2627 2628 d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate); 2629 if (!d) 2630 goto err_out; 2631 2632 d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry, 2633 &core->accuracy); 2634 if (!d) 2635 goto err_out; 2636 2637 d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase); 2638 if (!d) 2639 goto err_out; 2640 2641 d = debugfs_create_file("clk_flags", 0444, core->dentry, core, 2642 &clk_flags_fops); 2643 if (!d) 2644 goto err_out; 2645 2646 d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry, 2647 &core->prepare_count); 2648 if (!d) 2649 goto err_out; 2650 2651 d = debugfs_create_u32("clk_enable_count", 0444, core->dentry, 2652 &core->enable_count); 2653 if (!d) 2654 goto err_out; 2655 2656 d = debugfs_create_u32("clk_protect_count", 0444, core->dentry, 2657 &core->protect_count); 2658 if (!d) 2659 goto err_out; 2660 2661 d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry, 2662 &core->notifier_count); 2663 if (!d) 2664 goto err_out; 2665 2666 if (core->num_parents > 1) { 2667 d = debugfs_create_file("clk_possible_parents", 0444, 2668 core->dentry, core, &possible_parents_fops); 2669 if (!d) 2670 goto err_out; 2671 } 2672 2673 if (core->ops->debug_init) { 2674 ret = core->ops->debug_init(core->hw, core->dentry); 2675 if (ret) 2676 goto err_out; 2677 } 2678 2679 ret = 0; 2680 goto out; 2681 2682 err_out: 2683 debugfs_remove_recursive(core->dentry); 2684 core->dentry = NULL; 2685 out: 2686 return ret; 2687 } 2688 2689 /** 2690 * clk_debug_register - add a clk node to the debugfs clk directory 2691 * @core: the clk being added to the debugfs clk directory 2692 * 2693 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2694 * initialized. Otherwise it bails out early since the debugfs clk directory 2695 * will be created lazily by clk_debug_init as part of a late_initcall. 2696 */ 2697 static int clk_debug_register(struct clk_core *core) 2698 { 2699 int ret = 0; 2700 2701 mutex_lock(&clk_debug_lock); 2702 hlist_add_head(&core->debug_node, &clk_debug_list); 2703 if (inited) 2704 ret = clk_debug_create_one(core, rootdir); 2705 mutex_unlock(&clk_debug_lock); 2706 2707 return ret; 2708 } 2709 2710 /** 2711 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2712 * @core: the clk being removed from the debugfs clk directory 2713 * 2714 * Dynamically removes a clk and all its child nodes from the 2715 * debugfs clk directory if clk->dentry points to debugfs created by 2716 * clk_debug_register in __clk_core_init. 2717 */ 2718 static void clk_debug_unregister(struct clk_core *core) 2719 { 2720 mutex_lock(&clk_debug_lock); 2721 hlist_del_init(&core->debug_node); 2722 debugfs_remove_recursive(core->dentry); 2723 core->dentry = NULL; 2724 mutex_unlock(&clk_debug_lock); 2725 } 2726 2727 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2728 void *data, const struct file_operations *fops) 2729 { 2730 struct dentry *d = NULL; 2731 2732 if (hw->core->dentry) 2733 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2734 fops); 2735 2736 return d; 2737 } 2738 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2739 2740 /** 2741 * clk_debug_init - lazily populate the debugfs clk directory 2742 * 2743 * clks are often initialized very early during boot before memory can be 2744 * dynamically allocated and well before debugfs is setup. This function 2745 * populates the debugfs clk directory once at boot-time when we know that 2746 * debugfs is setup. It should only be called once at boot-time, all other clks 2747 * added dynamically will be done so with clk_debug_register. 2748 */ 2749 static int __init clk_debug_init(void) 2750 { 2751 struct clk_core *core; 2752 struct dentry *d; 2753 2754 rootdir = debugfs_create_dir("clk", NULL); 2755 2756 if (!rootdir) 2757 return -ENOMEM; 2758 2759 d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 2760 &clk_summary_fops); 2761 if (!d) 2762 return -ENOMEM; 2763 2764 d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 2765 &clk_dump_fops); 2766 if (!d) 2767 return -ENOMEM; 2768 2769 d = debugfs_create_file("clk_orphan_summary", 0444, rootdir, 2770 &orphan_list, &clk_summary_fops); 2771 if (!d) 2772 return -ENOMEM; 2773 2774 d = debugfs_create_file("clk_orphan_dump", 0444, rootdir, 2775 &orphan_list, &clk_dump_fops); 2776 if (!d) 2777 return -ENOMEM; 2778 2779 mutex_lock(&clk_debug_lock); 2780 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2781 clk_debug_create_one(core, rootdir); 2782 2783 inited = 1; 2784 mutex_unlock(&clk_debug_lock); 2785 2786 return 0; 2787 } 2788 late_initcall(clk_debug_init); 2789 #else 2790 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2791 static inline void clk_debug_reparent(struct clk_core *core, 2792 struct clk_core *new_parent) 2793 { 2794 } 2795 static inline void clk_debug_unregister(struct clk_core *core) 2796 { 2797 } 2798 #endif 2799 2800 /** 2801 * __clk_core_init - initialize the data structures in a struct clk_core 2802 * @core: clk_core being initialized 2803 * 2804 * Initializes the lists in struct clk_core, queries the hardware for the 2805 * parent and rate and sets them both. 2806 */ 2807 static int __clk_core_init(struct clk_core *core) 2808 { 2809 int i, ret; 2810 struct clk_core *orphan; 2811 struct hlist_node *tmp2; 2812 unsigned long rate; 2813 2814 if (!core) 2815 return -EINVAL; 2816 2817 clk_prepare_lock(); 2818 2819 ret = clk_pm_runtime_get(core); 2820 if (ret) 2821 goto unlock; 2822 2823 /* check to see if a clock with this name is already registered */ 2824 if (clk_core_lookup(core->name)) { 2825 pr_debug("%s: clk %s already initialized\n", 2826 __func__, core->name); 2827 ret = -EEXIST; 2828 goto out; 2829 } 2830 2831 /* check that clk_ops are sane. See Documentation/clk.txt */ 2832 if (core->ops->set_rate && 2833 !((core->ops->round_rate || core->ops->determine_rate) && 2834 core->ops->recalc_rate)) { 2835 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2836 __func__, core->name); 2837 ret = -EINVAL; 2838 goto out; 2839 } 2840 2841 if (core->ops->set_parent && !core->ops->get_parent) { 2842 pr_err("%s: %s must implement .get_parent & .set_parent\n", 2843 __func__, core->name); 2844 ret = -EINVAL; 2845 goto out; 2846 } 2847 2848 if (core->num_parents > 1 && !core->ops->get_parent) { 2849 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 2850 __func__, core->name); 2851 ret = -EINVAL; 2852 goto out; 2853 } 2854 2855 if (core->ops->set_rate_and_parent && 2856 !(core->ops->set_parent && core->ops->set_rate)) { 2857 pr_err("%s: %s must implement .set_parent & .set_rate\n", 2858 __func__, core->name); 2859 ret = -EINVAL; 2860 goto out; 2861 } 2862 2863 /* throw a WARN if any entries in parent_names are NULL */ 2864 for (i = 0; i < core->num_parents; i++) 2865 WARN(!core->parent_names[i], 2866 "%s: invalid NULL in %s's .parent_names\n", 2867 __func__, core->name); 2868 2869 core->parent = __clk_init_parent(core); 2870 2871 /* 2872 * Populate core->parent if parent has already been clk_core_init'd. If 2873 * parent has not yet been clk_core_init'd then place clk in the orphan 2874 * list. If clk doesn't have any parents then place it in the root 2875 * clk list. 2876 * 2877 * Every time a new clk is clk_init'd then we walk the list of orphan 2878 * clocks and re-parent any that are children of the clock currently 2879 * being clk_init'd. 2880 */ 2881 if (core->parent) { 2882 hlist_add_head(&core->child_node, 2883 &core->parent->children); 2884 core->orphan = core->parent->orphan; 2885 } else if (!core->num_parents) { 2886 hlist_add_head(&core->child_node, &clk_root_list); 2887 core->orphan = false; 2888 } else { 2889 hlist_add_head(&core->child_node, &clk_orphan_list); 2890 core->orphan = true; 2891 } 2892 2893 /* 2894 * optional platform-specific magic 2895 * 2896 * The .init callback is not used by any of the basic clock types, but 2897 * exists for weird hardware that must perform initialization magic. 2898 * Please consider other ways of solving initialization problems before 2899 * using this callback, as its use is discouraged. 2900 */ 2901 if (core->ops->init) 2902 core->ops->init(core->hw); 2903 2904 /* 2905 * Set clk's accuracy. The preferred method is to use 2906 * .recalc_accuracy. For simple clocks and lazy developers the default 2907 * fallback is to use the parent's accuracy. If a clock doesn't have a 2908 * parent (or is orphaned) then accuracy is set to zero (perfect 2909 * clock). 2910 */ 2911 if (core->ops->recalc_accuracy) 2912 core->accuracy = core->ops->recalc_accuracy(core->hw, 2913 __clk_get_accuracy(core->parent)); 2914 else if (core->parent) 2915 core->accuracy = core->parent->accuracy; 2916 else 2917 core->accuracy = 0; 2918 2919 /* 2920 * Set clk's phase. 2921 * Since a phase is by definition relative to its parent, just 2922 * query the current clock phase, or just assume it's in phase. 2923 */ 2924 if (core->ops->get_phase) 2925 core->phase = core->ops->get_phase(core->hw); 2926 else 2927 core->phase = 0; 2928 2929 /* 2930 * Set clk's rate. The preferred method is to use .recalc_rate. For 2931 * simple clocks and lazy developers the default fallback is to use the 2932 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2933 * then rate is set to zero. 2934 */ 2935 if (core->ops->recalc_rate) 2936 rate = core->ops->recalc_rate(core->hw, 2937 clk_core_get_rate_nolock(core->parent)); 2938 else if (core->parent) 2939 rate = core->parent->rate; 2940 else 2941 rate = 0; 2942 core->rate = core->req_rate = rate; 2943 2944 /* 2945 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 2946 * don't get accidentally disabled when walking the orphan tree and 2947 * reparenting clocks 2948 */ 2949 if (core->flags & CLK_IS_CRITICAL) { 2950 unsigned long flags; 2951 2952 clk_core_prepare(core); 2953 2954 flags = clk_enable_lock(); 2955 clk_core_enable(core); 2956 clk_enable_unlock(flags); 2957 } 2958 2959 /* 2960 * walk the list of orphan clocks and reparent any that newly finds a 2961 * parent. 2962 */ 2963 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2964 struct clk_core *parent = __clk_init_parent(orphan); 2965 2966 /* 2967 * We need to use __clk_set_parent_before() and _after() to 2968 * to properly migrate any prepare/enable count of the orphan 2969 * clock. This is important for CLK_IS_CRITICAL clocks, which 2970 * are enabled during init but might not have a parent yet. 2971 */ 2972 if (parent) { 2973 /* update the clk tree topology */ 2974 __clk_set_parent_before(orphan, parent); 2975 __clk_set_parent_after(orphan, parent, NULL); 2976 __clk_recalc_accuracies(orphan); 2977 __clk_recalc_rates(orphan, 0); 2978 } 2979 } 2980 2981 kref_init(&core->ref); 2982 out: 2983 clk_pm_runtime_put(core); 2984 unlock: 2985 clk_prepare_unlock(); 2986 2987 if (!ret) 2988 clk_debug_register(core); 2989 2990 return ret; 2991 } 2992 2993 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2994 const char *con_id) 2995 { 2996 struct clk *clk; 2997 2998 /* This is to allow this function to be chained to others */ 2999 if (IS_ERR_OR_NULL(hw)) 3000 return ERR_CAST(hw); 3001 3002 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3003 if (!clk) 3004 return ERR_PTR(-ENOMEM); 3005 3006 clk->core = hw->core; 3007 clk->dev_id = dev_id; 3008 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3009 clk->max_rate = ULONG_MAX; 3010 3011 clk_prepare_lock(); 3012 hlist_add_head(&clk->clks_node, &hw->core->clks); 3013 clk_prepare_unlock(); 3014 3015 return clk; 3016 } 3017 3018 void __clk_free_clk(struct clk *clk) 3019 { 3020 clk_prepare_lock(); 3021 hlist_del(&clk->clks_node); 3022 clk_prepare_unlock(); 3023 3024 kfree_const(clk->con_id); 3025 kfree(clk); 3026 } 3027 3028 /** 3029 * clk_register - allocate a new clock, register it and return an opaque cookie 3030 * @dev: device that is registering this clock 3031 * @hw: link to hardware-specific clock data 3032 * 3033 * clk_register is the primary interface for populating the clock tree with new 3034 * clock nodes. It returns a pointer to the newly allocated struct clk which 3035 * cannot be dereferenced by driver code but may be used in conjunction with the 3036 * rest of the clock API. In the event of an error clk_register will return an 3037 * error code; drivers must test for an error code after calling clk_register. 3038 */ 3039 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3040 { 3041 int i, ret; 3042 struct clk_core *core; 3043 3044 core = kzalloc(sizeof(*core), GFP_KERNEL); 3045 if (!core) { 3046 ret = -ENOMEM; 3047 goto fail_out; 3048 } 3049 3050 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3051 if (!core->name) { 3052 ret = -ENOMEM; 3053 goto fail_name; 3054 } 3055 3056 if (WARN_ON(!hw->init->ops)) { 3057 ret = -EINVAL; 3058 goto fail_ops; 3059 } 3060 core->ops = hw->init->ops; 3061 3062 if (dev && pm_runtime_enabled(dev)) 3063 core->dev = dev; 3064 if (dev && dev->driver) 3065 core->owner = dev->driver->owner; 3066 core->hw = hw; 3067 core->flags = hw->init->flags; 3068 core->num_parents = hw->init->num_parents; 3069 core->min_rate = 0; 3070 core->max_rate = ULONG_MAX; 3071 hw->core = core; 3072 3073 /* allocate local copy in case parent_names is __initdata */ 3074 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 3075 GFP_KERNEL); 3076 3077 if (!core->parent_names) { 3078 ret = -ENOMEM; 3079 goto fail_parent_names; 3080 } 3081 3082 3083 /* copy each string name in case parent_names is __initdata */ 3084 for (i = 0; i < core->num_parents; i++) { 3085 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 3086 GFP_KERNEL); 3087 if (!core->parent_names[i]) { 3088 ret = -ENOMEM; 3089 goto fail_parent_names_copy; 3090 } 3091 } 3092 3093 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 3094 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 3095 GFP_KERNEL); 3096 if (!core->parents) { 3097 ret = -ENOMEM; 3098 goto fail_parents; 3099 }; 3100 3101 INIT_HLIST_HEAD(&core->clks); 3102 3103 hw->clk = __clk_create_clk(hw, NULL, NULL); 3104 if (IS_ERR(hw->clk)) { 3105 ret = PTR_ERR(hw->clk); 3106 goto fail_parents; 3107 } 3108 3109 ret = __clk_core_init(core); 3110 if (!ret) 3111 return hw->clk; 3112 3113 __clk_free_clk(hw->clk); 3114 hw->clk = NULL; 3115 3116 fail_parents: 3117 kfree(core->parents); 3118 fail_parent_names_copy: 3119 while (--i >= 0) 3120 kfree_const(core->parent_names[i]); 3121 kfree(core->parent_names); 3122 fail_parent_names: 3123 fail_ops: 3124 kfree_const(core->name); 3125 fail_name: 3126 kfree(core); 3127 fail_out: 3128 return ERR_PTR(ret); 3129 } 3130 EXPORT_SYMBOL_GPL(clk_register); 3131 3132 /** 3133 * clk_hw_register - register a clk_hw and return an error code 3134 * @dev: device that is registering this clock 3135 * @hw: link to hardware-specific clock data 3136 * 3137 * clk_hw_register is the primary interface for populating the clock tree with 3138 * new clock nodes. It returns an integer equal to zero indicating success or 3139 * less than zero indicating failure. Drivers must test for an error code after 3140 * calling clk_hw_register(). 3141 */ 3142 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3143 { 3144 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 3145 } 3146 EXPORT_SYMBOL_GPL(clk_hw_register); 3147 3148 /* Free memory allocated for a clock. */ 3149 static void __clk_release(struct kref *ref) 3150 { 3151 struct clk_core *core = container_of(ref, struct clk_core, ref); 3152 int i = core->num_parents; 3153 3154 lockdep_assert_held(&prepare_lock); 3155 3156 kfree(core->parents); 3157 while (--i >= 0) 3158 kfree_const(core->parent_names[i]); 3159 3160 kfree(core->parent_names); 3161 kfree_const(core->name); 3162 kfree(core); 3163 } 3164 3165 /* 3166 * Empty clk_ops for unregistered clocks. These are used temporarily 3167 * after clk_unregister() was called on a clock and until last clock 3168 * consumer calls clk_put() and the struct clk object is freed. 3169 */ 3170 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3171 { 3172 return -ENXIO; 3173 } 3174 3175 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3176 { 3177 WARN_ON_ONCE(1); 3178 } 3179 3180 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3181 unsigned long parent_rate) 3182 { 3183 return -ENXIO; 3184 } 3185 3186 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3187 { 3188 return -ENXIO; 3189 } 3190 3191 static const struct clk_ops clk_nodrv_ops = { 3192 .enable = clk_nodrv_prepare_enable, 3193 .disable = clk_nodrv_disable_unprepare, 3194 .prepare = clk_nodrv_prepare_enable, 3195 .unprepare = clk_nodrv_disable_unprepare, 3196 .set_rate = clk_nodrv_set_rate, 3197 .set_parent = clk_nodrv_set_parent, 3198 }; 3199 3200 /** 3201 * clk_unregister - unregister a currently registered clock 3202 * @clk: clock to unregister 3203 */ 3204 void clk_unregister(struct clk *clk) 3205 { 3206 unsigned long flags; 3207 3208 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3209 return; 3210 3211 clk_debug_unregister(clk->core); 3212 3213 clk_prepare_lock(); 3214 3215 if (clk->core->ops == &clk_nodrv_ops) { 3216 pr_err("%s: unregistered clock: %s\n", __func__, 3217 clk->core->name); 3218 goto unlock; 3219 } 3220 /* 3221 * Assign empty clock ops for consumers that might still hold 3222 * a reference to this clock. 3223 */ 3224 flags = clk_enable_lock(); 3225 clk->core->ops = &clk_nodrv_ops; 3226 clk_enable_unlock(flags); 3227 3228 if (!hlist_empty(&clk->core->children)) { 3229 struct clk_core *child; 3230 struct hlist_node *t; 3231 3232 /* Reparent all children to the orphan list. */ 3233 hlist_for_each_entry_safe(child, t, &clk->core->children, 3234 child_node) 3235 clk_core_set_parent_nolock(child, NULL); 3236 } 3237 3238 hlist_del_init(&clk->core->child_node); 3239 3240 if (clk->core->prepare_count) 3241 pr_warn("%s: unregistering prepared clock: %s\n", 3242 __func__, clk->core->name); 3243 3244 if (clk->core->protect_count) 3245 pr_warn("%s: unregistering protected clock: %s\n", 3246 __func__, clk->core->name); 3247 3248 kref_put(&clk->core->ref, __clk_release); 3249 unlock: 3250 clk_prepare_unlock(); 3251 } 3252 EXPORT_SYMBOL_GPL(clk_unregister); 3253 3254 /** 3255 * clk_hw_unregister - unregister a currently registered clk_hw 3256 * @hw: hardware-specific clock data to unregister 3257 */ 3258 void clk_hw_unregister(struct clk_hw *hw) 3259 { 3260 clk_unregister(hw->clk); 3261 } 3262 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3263 3264 static void devm_clk_release(struct device *dev, void *res) 3265 { 3266 clk_unregister(*(struct clk **)res); 3267 } 3268 3269 static void devm_clk_hw_release(struct device *dev, void *res) 3270 { 3271 clk_hw_unregister(*(struct clk_hw **)res); 3272 } 3273 3274 /** 3275 * devm_clk_register - resource managed clk_register() 3276 * @dev: device that is registering this clock 3277 * @hw: link to hardware-specific clock data 3278 * 3279 * Managed clk_register(). Clocks returned from this function are 3280 * automatically clk_unregister()ed on driver detach. See clk_register() for 3281 * more information. 3282 */ 3283 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3284 { 3285 struct clk *clk; 3286 struct clk **clkp; 3287 3288 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3289 if (!clkp) 3290 return ERR_PTR(-ENOMEM); 3291 3292 clk = clk_register(dev, hw); 3293 if (!IS_ERR(clk)) { 3294 *clkp = clk; 3295 devres_add(dev, clkp); 3296 } else { 3297 devres_free(clkp); 3298 } 3299 3300 return clk; 3301 } 3302 EXPORT_SYMBOL_GPL(devm_clk_register); 3303 3304 /** 3305 * devm_clk_hw_register - resource managed clk_hw_register() 3306 * @dev: device that is registering this clock 3307 * @hw: link to hardware-specific clock data 3308 * 3309 * Managed clk_hw_register(). Clocks registered by this function are 3310 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3311 * for more information. 3312 */ 3313 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3314 { 3315 struct clk_hw **hwp; 3316 int ret; 3317 3318 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3319 if (!hwp) 3320 return -ENOMEM; 3321 3322 ret = clk_hw_register(dev, hw); 3323 if (!ret) { 3324 *hwp = hw; 3325 devres_add(dev, hwp); 3326 } else { 3327 devres_free(hwp); 3328 } 3329 3330 return ret; 3331 } 3332 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3333 3334 static int devm_clk_match(struct device *dev, void *res, void *data) 3335 { 3336 struct clk *c = res; 3337 if (WARN_ON(!c)) 3338 return 0; 3339 return c == data; 3340 } 3341 3342 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3343 { 3344 struct clk_hw *hw = res; 3345 3346 if (WARN_ON(!hw)) 3347 return 0; 3348 return hw == data; 3349 } 3350 3351 /** 3352 * devm_clk_unregister - resource managed clk_unregister() 3353 * @clk: clock to unregister 3354 * 3355 * Deallocate a clock allocated with devm_clk_register(). Normally 3356 * this function will not need to be called and the resource management 3357 * code will ensure that the resource is freed. 3358 */ 3359 void devm_clk_unregister(struct device *dev, struct clk *clk) 3360 { 3361 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3362 } 3363 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3364 3365 /** 3366 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3367 * @dev: device that is unregistering the hardware-specific clock data 3368 * @hw: link to hardware-specific clock data 3369 * 3370 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3371 * this function will not need to be called and the resource management 3372 * code will ensure that the resource is freed. 3373 */ 3374 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3375 { 3376 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3377 hw)); 3378 } 3379 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3380 3381 /* 3382 * clkdev helpers 3383 */ 3384 int __clk_get(struct clk *clk) 3385 { 3386 struct clk_core *core = !clk ? NULL : clk->core; 3387 3388 if (core) { 3389 if (!try_module_get(core->owner)) 3390 return 0; 3391 3392 kref_get(&core->ref); 3393 } 3394 return 1; 3395 } 3396 3397 void __clk_put(struct clk *clk) 3398 { 3399 struct module *owner; 3400 3401 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3402 return; 3403 3404 clk_prepare_lock(); 3405 3406 /* 3407 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3408 * given user should be balanced with calls to clk_rate_exclusive_put() 3409 * and by that same consumer 3410 */ 3411 if (WARN_ON(clk->exclusive_count)) { 3412 /* We voiced our concern, let's sanitize the situation */ 3413 clk->core->protect_count -= (clk->exclusive_count - 1); 3414 clk_core_rate_unprotect(clk->core); 3415 clk->exclusive_count = 0; 3416 } 3417 3418 hlist_del(&clk->clks_node); 3419 if (clk->min_rate > clk->core->req_rate || 3420 clk->max_rate < clk->core->req_rate) 3421 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3422 3423 owner = clk->core->owner; 3424 kref_put(&clk->core->ref, __clk_release); 3425 3426 clk_prepare_unlock(); 3427 3428 module_put(owner); 3429 3430 kfree(clk); 3431 } 3432 3433 /*** clk rate change notifiers ***/ 3434 3435 /** 3436 * clk_notifier_register - add a clk rate change notifier 3437 * @clk: struct clk * to watch 3438 * @nb: struct notifier_block * with callback info 3439 * 3440 * Request notification when clk's rate changes. This uses an SRCU 3441 * notifier because we want it to block and notifier unregistrations are 3442 * uncommon. The callbacks associated with the notifier must not 3443 * re-enter into the clk framework by calling any top-level clk APIs; 3444 * this will cause a nested prepare_lock mutex. 3445 * 3446 * In all notification cases (pre, post and abort rate change) the original 3447 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3448 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3449 * 3450 * clk_notifier_register() must be called from non-atomic context. 3451 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3452 * allocation failure; otherwise, passes along the return value of 3453 * srcu_notifier_chain_register(). 3454 */ 3455 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3456 { 3457 struct clk_notifier *cn; 3458 int ret = -ENOMEM; 3459 3460 if (!clk || !nb) 3461 return -EINVAL; 3462 3463 clk_prepare_lock(); 3464 3465 /* search the list of notifiers for this clk */ 3466 list_for_each_entry(cn, &clk_notifier_list, node) 3467 if (cn->clk == clk) 3468 break; 3469 3470 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3471 if (cn->clk != clk) { 3472 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3473 if (!cn) 3474 goto out; 3475 3476 cn->clk = clk; 3477 srcu_init_notifier_head(&cn->notifier_head); 3478 3479 list_add(&cn->node, &clk_notifier_list); 3480 } 3481 3482 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3483 3484 clk->core->notifier_count++; 3485 3486 out: 3487 clk_prepare_unlock(); 3488 3489 return ret; 3490 } 3491 EXPORT_SYMBOL_GPL(clk_notifier_register); 3492 3493 /** 3494 * clk_notifier_unregister - remove a clk rate change notifier 3495 * @clk: struct clk * 3496 * @nb: struct notifier_block * with callback info 3497 * 3498 * Request no further notification for changes to 'clk' and frees memory 3499 * allocated in clk_notifier_register. 3500 * 3501 * Returns -EINVAL if called with null arguments; otherwise, passes 3502 * along the return value of srcu_notifier_chain_unregister(). 3503 */ 3504 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3505 { 3506 struct clk_notifier *cn = NULL; 3507 int ret = -EINVAL; 3508 3509 if (!clk || !nb) 3510 return -EINVAL; 3511 3512 clk_prepare_lock(); 3513 3514 list_for_each_entry(cn, &clk_notifier_list, node) 3515 if (cn->clk == clk) 3516 break; 3517 3518 if (cn->clk == clk) { 3519 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3520 3521 clk->core->notifier_count--; 3522 3523 /* XXX the notifier code should handle this better */ 3524 if (!cn->notifier_head.head) { 3525 srcu_cleanup_notifier_head(&cn->notifier_head); 3526 list_del(&cn->node); 3527 kfree(cn); 3528 } 3529 3530 } else { 3531 ret = -ENOENT; 3532 } 3533 3534 clk_prepare_unlock(); 3535 3536 return ret; 3537 } 3538 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3539 3540 #ifdef CONFIG_OF 3541 /** 3542 * struct of_clk_provider - Clock provider registration structure 3543 * @link: Entry in global list of clock providers 3544 * @node: Pointer to device tree node of clock provider 3545 * @get: Get clock callback. Returns NULL or a struct clk for the 3546 * given clock specifier 3547 * @data: context pointer to be passed into @get callback 3548 */ 3549 struct of_clk_provider { 3550 struct list_head link; 3551 3552 struct device_node *node; 3553 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3554 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3555 void *data; 3556 }; 3557 3558 static const struct of_device_id __clk_of_table_sentinel 3559 __used __section(__clk_of_table_end); 3560 3561 static LIST_HEAD(of_clk_providers); 3562 static DEFINE_MUTEX(of_clk_mutex); 3563 3564 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3565 void *data) 3566 { 3567 return data; 3568 } 3569 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3570 3571 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3572 { 3573 return data; 3574 } 3575 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3576 3577 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3578 { 3579 struct clk_onecell_data *clk_data = data; 3580 unsigned int idx = clkspec->args[0]; 3581 3582 if (idx >= clk_data->clk_num) { 3583 pr_err("%s: invalid clock index %u\n", __func__, idx); 3584 return ERR_PTR(-EINVAL); 3585 } 3586 3587 return clk_data->clks[idx]; 3588 } 3589 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3590 3591 struct clk_hw * 3592 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3593 { 3594 struct clk_hw_onecell_data *hw_data = data; 3595 unsigned int idx = clkspec->args[0]; 3596 3597 if (idx >= hw_data->num) { 3598 pr_err("%s: invalid index %u\n", __func__, idx); 3599 return ERR_PTR(-EINVAL); 3600 } 3601 3602 return hw_data->hws[idx]; 3603 } 3604 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3605 3606 /** 3607 * of_clk_add_provider() - Register a clock provider for a node 3608 * @np: Device node pointer associated with clock provider 3609 * @clk_src_get: callback for decoding clock 3610 * @data: context pointer for @clk_src_get callback. 3611 */ 3612 int of_clk_add_provider(struct device_node *np, 3613 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3614 void *data), 3615 void *data) 3616 { 3617 struct of_clk_provider *cp; 3618 int ret; 3619 3620 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3621 if (!cp) 3622 return -ENOMEM; 3623 3624 cp->node = of_node_get(np); 3625 cp->data = data; 3626 cp->get = clk_src_get; 3627 3628 mutex_lock(&of_clk_mutex); 3629 list_add(&cp->link, &of_clk_providers); 3630 mutex_unlock(&of_clk_mutex); 3631 pr_debug("Added clock from %pOF\n", np); 3632 3633 ret = of_clk_set_defaults(np, true); 3634 if (ret < 0) 3635 of_clk_del_provider(np); 3636 3637 return ret; 3638 } 3639 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3640 3641 /** 3642 * of_clk_add_hw_provider() - Register a clock provider for a node 3643 * @np: Device node pointer associated with clock provider 3644 * @get: callback for decoding clk_hw 3645 * @data: context pointer for @get callback. 3646 */ 3647 int of_clk_add_hw_provider(struct device_node *np, 3648 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3649 void *data), 3650 void *data) 3651 { 3652 struct of_clk_provider *cp; 3653 int ret; 3654 3655 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3656 if (!cp) 3657 return -ENOMEM; 3658 3659 cp->node = of_node_get(np); 3660 cp->data = data; 3661 cp->get_hw = get; 3662 3663 mutex_lock(&of_clk_mutex); 3664 list_add(&cp->link, &of_clk_providers); 3665 mutex_unlock(&of_clk_mutex); 3666 pr_debug("Added clk_hw provider from %pOF\n", np); 3667 3668 ret = of_clk_set_defaults(np, true); 3669 if (ret < 0) 3670 of_clk_del_provider(np); 3671 3672 return ret; 3673 } 3674 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3675 3676 static void devm_of_clk_release_provider(struct device *dev, void *res) 3677 { 3678 of_clk_del_provider(*(struct device_node **)res); 3679 } 3680 3681 int devm_of_clk_add_hw_provider(struct device *dev, 3682 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3683 void *data), 3684 void *data) 3685 { 3686 struct device_node **ptr, *np; 3687 int ret; 3688 3689 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 3690 GFP_KERNEL); 3691 if (!ptr) 3692 return -ENOMEM; 3693 3694 np = dev->of_node; 3695 ret = of_clk_add_hw_provider(np, get, data); 3696 if (!ret) { 3697 *ptr = np; 3698 devres_add(dev, ptr); 3699 } else { 3700 devres_free(ptr); 3701 } 3702 3703 return ret; 3704 } 3705 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 3706 3707 /** 3708 * of_clk_del_provider() - Remove a previously registered clock provider 3709 * @np: Device node pointer associated with clock provider 3710 */ 3711 void of_clk_del_provider(struct device_node *np) 3712 { 3713 struct of_clk_provider *cp; 3714 3715 mutex_lock(&of_clk_mutex); 3716 list_for_each_entry(cp, &of_clk_providers, link) { 3717 if (cp->node == np) { 3718 list_del(&cp->link); 3719 of_node_put(cp->node); 3720 kfree(cp); 3721 break; 3722 } 3723 } 3724 mutex_unlock(&of_clk_mutex); 3725 } 3726 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3727 3728 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 3729 { 3730 struct device_node **np = res; 3731 3732 if (WARN_ON(!np || !*np)) 3733 return 0; 3734 3735 return *np == data; 3736 } 3737 3738 void devm_of_clk_del_provider(struct device *dev) 3739 { 3740 int ret; 3741 3742 ret = devres_release(dev, devm_of_clk_release_provider, 3743 devm_clk_provider_match, dev->of_node); 3744 3745 WARN_ON(ret); 3746 } 3747 EXPORT_SYMBOL(devm_of_clk_del_provider); 3748 3749 static struct clk_hw * 3750 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 3751 struct of_phandle_args *clkspec) 3752 { 3753 struct clk *clk; 3754 3755 if (provider->get_hw) 3756 return provider->get_hw(clkspec, provider->data); 3757 3758 clk = provider->get(clkspec, provider->data); 3759 if (IS_ERR(clk)) 3760 return ERR_CAST(clk); 3761 return __clk_get_hw(clk); 3762 } 3763 3764 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3765 const char *dev_id, const char *con_id) 3766 { 3767 struct of_clk_provider *provider; 3768 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3769 struct clk_hw *hw; 3770 3771 if (!clkspec) 3772 return ERR_PTR(-EINVAL); 3773 3774 /* Check if we have such a provider in our array */ 3775 mutex_lock(&of_clk_mutex); 3776 list_for_each_entry(provider, &of_clk_providers, link) { 3777 if (provider->node == clkspec->np) { 3778 hw = __of_clk_get_hw_from_provider(provider, clkspec); 3779 clk = __clk_create_clk(hw, dev_id, con_id); 3780 } 3781 3782 if (!IS_ERR(clk)) { 3783 if (!__clk_get(clk)) { 3784 __clk_free_clk(clk); 3785 clk = ERR_PTR(-ENOENT); 3786 } 3787 3788 break; 3789 } 3790 } 3791 mutex_unlock(&of_clk_mutex); 3792 3793 return clk; 3794 } 3795 3796 /** 3797 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3798 * @clkspec: pointer to a clock specifier data structure 3799 * 3800 * This function looks up a struct clk from the registered list of clock 3801 * providers, an input is a clock specifier data structure as returned 3802 * from the of_parse_phandle_with_args() function call. 3803 */ 3804 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3805 { 3806 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3807 } 3808 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 3809 3810 /** 3811 * of_clk_get_parent_count() - Count the number of clocks a device node has 3812 * @np: device node to count 3813 * 3814 * Returns: The number of clocks that are possible parents of this node 3815 */ 3816 unsigned int of_clk_get_parent_count(struct device_node *np) 3817 { 3818 int count; 3819 3820 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3821 if (count < 0) 3822 return 0; 3823 3824 return count; 3825 } 3826 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3827 3828 const char *of_clk_get_parent_name(struct device_node *np, int index) 3829 { 3830 struct of_phandle_args clkspec; 3831 struct property *prop; 3832 const char *clk_name; 3833 const __be32 *vp; 3834 u32 pv; 3835 int rc; 3836 int count; 3837 struct clk *clk; 3838 3839 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3840 &clkspec); 3841 if (rc) 3842 return NULL; 3843 3844 index = clkspec.args_count ? clkspec.args[0] : 0; 3845 count = 0; 3846 3847 /* if there is an indices property, use it to transfer the index 3848 * specified into an array offset for the clock-output-names property. 3849 */ 3850 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3851 if (index == pv) { 3852 index = count; 3853 break; 3854 } 3855 count++; 3856 } 3857 /* We went off the end of 'clock-indices' without finding it */ 3858 if (prop && !vp) 3859 return NULL; 3860 3861 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3862 index, 3863 &clk_name) < 0) { 3864 /* 3865 * Best effort to get the name if the clock has been 3866 * registered with the framework. If the clock isn't 3867 * registered, we return the node name as the name of 3868 * the clock as long as #clock-cells = 0. 3869 */ 3870 clk = of_clk_get_from_provider(&clkspec); 3871 if (IS_ERR(clk)) { 3872 if (clkspec.args_count == 0) 3873 clk_name = clkspec.np->name; 3874 else 3875 clk_name = NULL; 3876 } else { 3877 clk_name = __clk_get_name(clk); 3878 clk_put(clk); 3879 } 3880 } 3881 3882 3883 of_node_put(clkspec.np); 3884 return clk_name; 3885 } 3886 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3887 3888 /** 3889 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3890 * number of parents 3891 * @np: Device node pointer associated with clock provider 3892 * @parents: pointer to char array that hold the parents' names 3893 * @size: size of the @parents array 3894 * 3895 * Return: number of parents for the clock node. 3896 */ 3897 int of_clk_parent_fill(struct device_node *np, const char **parents, 3898 unsigned int size) 3899 { 3900 unsigned int i = 0; 3901 3902 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3903 i++; 3904 3905 return i; 3906 } 3907 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3908 3909 struct clock_provider { 3910 of_clk_init_cb_t clk_init_cb; 3911 struct device_node *np; 3912 struct list_head node; 3913 }; 3914 3915 /* 3916 * This function looks for a parent clock. If there is one, then it 3917 * checks that the provider for this parent clock was initialized, in 3918 * this case the parent clock will be ready. 3919 */ 3920 static int parent_ready(struct device_node *np) 3921 { 3922 int i = 0; 3923 3924 while (true) { 3925 struct clk *clk = of_clk_get(np, i); 3926 3927 /* this parent is ready we can check the next one */ 3928 if (!IS_ERR(clk)) { 3929 clk_put(clk); 3930 i++; 3931 continue; 3932 } 3933 3934 /* at least one parent is not ready, we exit now */ 3935 if (PTR_ERR(clk) == -EPROBE_DEFER) 3936 return 0; 3937 3938 /* 3939 * Here we make assumption that the device tree is 3940 * written correctly. So an error means that there is 3941 * no more parent. As we didn't exit yet, then the 3942 * previous parent are ready. If there is no clock 3943 * parent, no need to wait for them, then we can 3944 * consider their absence as being ready 3945 */ 3946 return 1; 3947 } 3948 } 3949 3950 /** 3951 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 3952 * @np: Device node pointer associated with clock provider 3953 * @index: clock index 3954 * @flags: pointer to top-level framework flags 3955 * 3956 * Detects if the clock-critical property exists and, if so, sets the 3957 * corresponding CLK_IS_CRITICAL flag. 3958 * 3959 * Do not use this function. It exists only for legacy Device Tree 3960 * bindings, such as the one-clock-per-node style that are outdated. 3961 * Those bindings typically put all clock data into .dts and the Linux 3962 * driver has no clock data, thus making it impossible to set this flag 3963 * correctly from the driver. Only those drivers may call 3964 * of_clk_detect_critical from their setup functions. 3965 * 3966 * Return: error code or zero on success 3967 */ 3968 int of_clk_detect_critical(struct device_node *np, 3969 int index, unsigned long *flags) 3970 { 3971 struct property *prop; 3972 const __be32 *cur; 3973 uint32_t idx; 3974 3975 if (!np || !flags) 3976 return -EINVAL; 3977 3978 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 3979 if (index == idx) 3980 *flags |= CLK_IS_CRITICAL; 3981 3982 return 0; 3983 } 3984 3985 /** 3986 * of_clk_init() - Scan and init clock providers from the DT 3987 * @matches: array of compatible values and init functions for providers. 3988 * 3989 * This function scans the device tree for matching clock providers 3990 * and calls their initialization functions. It also does it by trying 3991 * to follow the dependencies. 3992 */ 3993 void __init of_clk_init(const struct of_device_id *matches) 3994 { 3995 const struct of_device_id *match; 3996 struct device_node *np; 3997 struct clock_provider *clk_provider, *next; 3998 bool is_init_done; 3999 bool force = false; 4000 LIST_HEAD(clk_provider_list); 4001 4002 if (!matches) 4003 matches = &__clk_of_table; 4004 4005 /* First prepare the list of the clocks providers */ 4006 for_each_matching_node_and_match(np, matches, &match) { 4007 struct clock_provider *parent; 4008 4009 if (!of_device_is_available(np)) 4010 continue; 4011 4012 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4013 if (!parent) { 4014 list_for_each_entry_safe(clk_provider, next, 4015 &clk_provider_list, node) { 4016 list_del(&clk_provider->node); 4017 of_node_put(clk_provider->np); 4018 kfree(clk_provider); 4019 } 4020 of_node_put(np); 4021 return; 4022 } 4023 4024 parent->clk_init_cb = match->data; 4025 parent->np = of_node_get(np); 4026 list_add_tail(&parent->node, &clk_provider_list); 4027 } 4028 4029 while (!list_empty(&clk_provider_list)) { 4030 is_init_done = false; 4031 list_for_each_entry_safe(clk_provider, next, 4032 &clk_provider_list, node) { 4033 if (force || parent_ready(clk_provider->np)) { 4034 4035 /* Don't populate platform devices */ 4036 of_node_set_flag(clk_provider->np, 4037 OF_POPULATED); 4038 4039 clk_provider->clk_init_cb(clk_provider->np); 4040 of_clk_set_defaults(clk_provider->np, true); 4041 4042 list_del(&clk_provider->node); 4043 of_node_put(clk_provider->np); 4044 kfree(clk_provider); 4045 is_init_done = true; 4046 } 4047 } 4048 4049 /* 4050 * We didn't manage to initialize any of the 4051 * remaining providers during the last loop, so now we 4052 * initialize all the remaining ones unconditionally 4053 * in case the clock parent was not mandatory 4054 */ 4055 if (!is_init_done) 4056 force = true; 4057 } 4058 } 4059 #endif 4060