xref: /openbmc/linux/drivers/clk/clk.c (revision 4cff79e9)
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 #include <linux/stringify.h>
28 
29 #include "clk.h"
30 
31 static DEFINE_SPINLOCK(enable_lock);
32 static DEFINE_MUTEX(prepare_lock);
33 
34 static struct task_struct *prepare_owner;
35 static struct task_struct *enable_owner;
36 
37 static int prepare_refcnt;
38 static int enable_refcnt;
39 
40 static HLIST_HEAD(clk_root_list);
41 static HLIST_HEAD(clk_orphan_list);
42 static LIST_HEAD(clk_notifier_list);
43 
44 /***    private data structures    ***/
45 
46 struct clk_core {
47 	const char		*name;
48 	const struct clk_ops	*ops;
49 	struct clk_hw		*hw;
50 	struct module		*owner;
51 	struct device		*dev;
52 	struct clk_core		*parent;
53 	const char		**parent_names;
54 	struct clk_core		**parents;
55 	u8			num_parents;
56 	u8			new_parent_index;
57 	unsigned long		rate;
58 	unsigned long		req_rate;
59 	unsigned long		new_rate;
60 	struct clk_core		*new_parent;
61 	struct clk_core		*new_child;
62 	unsigned long		flags;
63 	bool			orphan;
64 	unsigned int		enable_count;
65 	unsigned int		prepare_count;
66 	unsigned int		protect_count;
67 	unsigned long		min_rate;
68 	unsigned long		max_rate;
69 	unsigned long		accuracy;
70 	int			phase;
71 	struct hlist_head	children;
72 	struct hlist_node	child_node;
73 	struct hlist_head	clks;
74 	unsigned int		notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 	struct dentry		*dentry;
77 	struct hlist_node	debug_node;
78 #endif
79 	struct kref		ref;
80 };
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
84 
85 struct clk {
86 	struct clk_core	*core;
87 	const char *dev_id;
88 	const char *con_id;
89 	unsigned long min_rate;
90 	unsigned long max_rate;
91 	unsigned int exclusive_count;
92 	struct hlist_node clks_node;
93 };
94 
95 /***           runtime pm          ***/
96 static int clk_pm_runtime_get(struct clk_core *core)
97 {
98 	int ret = 0;
99 
100 	if (!core->dev)
101 		return 0;
102 
103 	ret = pm_runtime_get_sync(core->dev);
104 	return ret < 0 ? ret : 0;
105 }
106 
107 static void clk_pm_runtime_put(struct clk_core *core)
108 {
109 	if (!core->dev)
110 		return;
111 
112 	pm_runtime_put_sync(core->dev);
113 }
114 
115 /***           locking             ***/
116 static void clk_prepare_lock(void)
117 {
118 	if (!mutex_trylock(&prepare_lock)) {
119 		if (prepare_owner == current) {
120 			prepare_refcnt++;
121 			return;
122 		}
123 		mutex_lock(&prepare_lock);
124 	}
125 	WARN_ON_ONCE(prepare_owner != NULL);
126 	WARN_ON_ONCE(prepare_refcnt != 0);
127 	prepare_owner = current;
128 	prepare_refcnt = 1;
129 }
130 
131 static void clk_prepare_unlock(void)
132 {
133 	WARN_ON_ONCE(prepare_owner != current);
134 	WARN_ON_ONCE(prepare_refcnt == 0);
135 
136 	if (--prepare_refcnt)
137 		return;
138 	prepare_owner = NULL;
139 	mutex_unlock(&prepare_lock);
140 }
141 
142 static unsigned long clk_enable_lock(void)
143 	__acquires(enable_lock)
144 {
145 	unsigned long flags;
146 
147 	/*
148 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 	 * we already hold the lock. So, in that case, we rely only on
150 	 * reference counting.
151 	 */
152 	if (!IS_ENABLED(CONFIG_SMP) ||
153 	    !spin_trylock_irqsave(&enable_lock, flags)) {
154 		if (enable_owner == current) {
155 			enable_refcnt++;
156 			__acquire(enable_lock);
157 			if (!IS_ENABLED(CONFIG_SMP))
158 				local_save_flags(flags);
159 			return flags;
160 		}
161 		spin_lock_irqsave(&enable_lock, flags);
162 	}
163 	WARN_ON_ONCE(enable_owner != NULL);
164 	WARN_ON_ONCE(enable_refcnt != 0);
165 	enable_owner = current;
166 	enable_refcnt = 1;
167 	return flags;
168 }
169 
170 static void clk_enable_unlock(unsigned long flags)
171 	__releases(enable_lock)
172 {
173 	WARN_ON_ONCE(enable_owner != current);
174 	WARN_ON_ONCE(enable_refcnt == 0);
175 
176 	if (--enable_refcnt) {
177 		__release(enable_lock);
178 		return;
179 	}
180 	enable_owner = NULL;
181 	spin_unlock_irqrestore(&enable_lock, flags);
182 }
183 
184 static bool clk_core_rate_is_protected(struct clk_core *core)
185 {
186 	return core->protect_count;
187 }
188 
189 static bool clk_core_is_prepared(struct clk_core *core)
190 {
191 	bool ret = false;
192 
193 	/*
194 	 * .is_prepared is optional for clocks that can prepare
195 	 * fall back to software usage counter if it is missing
196 	 */
197 	if (!core->ops->is_prepared)
198 		return core->prepare_count;
199 
200 	if (!clk_pm_runtime_get(core)) {
201 		ret = core->ops->is_prepared(core->hw);
202 		clk_pm_runtime_put(core);
203 	}
204 
205 	return ret;
206 }
207 
208 static bool clk_core_is_enabled(struct clk_core *core)
209 {
210 	bool ret = false;
211 
212 	/*
213 	 * .is_enabled is only mandatory for clocks that gate
214 	 * fall back to software usage counter if .is_enabled is missing
215 	 */
216 	if (!core->ops->is_enabled)
217 		return core->enable_count;
218 
219 	/*
220 	 * Check if clock controller's device is runtime active before
221 	 * calling .is_enabled callback. If not, assume that clock is
222 	 * disabled, because we might be called from atomic context, from
223 	 * which pm_runtime_get() is not allowed.
224 	 * This function is called mainly from clk_disable_unused_subtree,
225 	 * which ensures proper runtime pm activation of controller before
226 	 * taking enable spinlock, but the below check is needed if one tries
227 	 * to call it from other places.
228 	 */
229 	if (core->dev) {
230 		pm_runtime_get_noresume(core->dev);
231 		if (!pm_runtime_active(core->dev)) {
232 			ret = false;
233 			goto done;
234 		}
235 	}
236 
237 	ret = core->ops->is_enabled(core->hw);
238 done:
239 	if (core->dev)
240 		pm_runtime_put(core->dev);
241 
242 	return ret;
243 }
244 
245 /***    helper functions   ***/
246 
247 const char *__clk_get_name(const struct clk *clk)
248 {
249 	return !clk ? NULL : clk->core->name;
250 }
251 EXPORT_SYMBOL_GPL(__clk_get_name);
252 
253 const char *clk_hw_get_name(const struct clk_hw *hw)
254 {
255 	return hw->core->name;
256 }
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
258 
259 struct clk_hw *__clk_get_hw(struct clk *clk)
260 {
261 	return !clk ? NULL : clk->core->hw;
262 }
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
264 
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
266 {
267 	return hw->core->num_parents;
268 }
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
270 
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
272 {
273 	return hw->core->parent ? hw->core->parent->hw : NULL;
274 }
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
276 
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 					     struct clk_core *core)
279 {
280 	struct clk_core *child;
281 	struct clk_core *ret;
282 
283 	if (!strcmp(core->name, name))
284 		return core;
285 
286 	hlist_for_each_entry(child, &core->children, child_node) {
287 		ret = __clk_lookup_subtree(name, child);
288 		if (ret)
289 			return ret;
290 	}
291 
292 	return NULL;
293 }
294 
295 static struct clk_core *clk_core_lookup(const char *name)
296 {
297 	struct clk_core *root_clk;
298 	struct clk_core *ret;
299 
300 	if (!name)
301 		return NULL;
302 
303 	/* search the 'proper' clk tree first */
304 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 		ret = __clk_lookup_subtree(name, root_clk);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	/* if not found, then search the orphan tree */
311 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 		ret = __clk_lookup_subtree(name, root_clk);
313 		if (ret)
314 			return ret;
315 	}
316 
317 	return NULL;
318 }
319 
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
321 							 u8 index)
322 {
323 	if (!core || index >= core->num_parents)
324 		return NULL;
325 
326 	if (!core->parents[index])
327 		core->parents[index] =
328 				clk_core_lookup(core->parent_names[index]);
329 
330 	return core->parents[index];
331 }
332 
333 struct clk_hw *
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
335 {
336 	struct clk_core *parent;
337 
338 	parent = clk_core_get_parent_by_index(hw->core, index);
339 
340 	return !parent ? NULL : parent->hw;
341 }
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
343 
344 unsigned int __clk_get_enable_count(struct clk *clk)
345 {
346 	return !clk ? 0 : clk->core->enable_count;
347 }
348 
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
350 {
351 	unsigned long ret;
352 
353 	if (!core) {
354 		ret = 0;
355 		goto out;
356 	}
357 
358 	ret = core->rate;
359 
360 	if (!core->num_parents)
361 		goto out;
362 
363 	if (!core->parent)
364 		ret = 0;
365 
366 out:
367 	return ret;
368 }
369 
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
371 {
372 	return clk_core_get_rate_nolock(hw->core);
373 }
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
375 
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
377 {
378 	if (!core)
379 		return 0;
380 
381 	return core->accuracy;
382 }
383 
384 unsigned long __clk_get_flags(struct clk *clk)
385 {
386 	return !clk ? 0 : clk->core->flags;
387 }
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
389 
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
391 {
392 	return hw->core->flags;
393 }
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
395 
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
397 {
398 	return clk_core_is_prepared(hw->core);
399 }
400 
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
402 {
403 	return clk_core_rate_is_protected(hw->core);
404 }
405 
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
407 {
408 	return clk_core_is_enabled(hw->core);
409 }
410 
411 bool __clk_is_enabled(struct clk *clk)
412 {
413 	if (!clk)
414 		return false;
415 
416 	return clk_core_is_enabled(clk->core);
417 }
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
419 
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 			   unsigned long best, unsigned long flags)
422 {
423 	if (flags & CLK_MUX_ROUND_CLOSEST)
424 		return abs(now - rate) < abs(best - rate);
425 
426 	return now <= rate && now > best;
427 }
428 
429 int clk_mux_determine_rate_flags(struct clk_hw *hw,
430 				 struct clk_rate_request *req,
431 				 unsigned long flags)
432 {
433 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 	int i, num_parents, ret;
435 	unsigned long best = 0;
436 	struct clk_rate_request parent_req = *req;
437 
438 	/* if NO_REPARENT flag set, pass through to current parent */
439 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 		parent = core->parent;
441 		if (core->flags & CLK_SET_RATE_PARENT) {
442 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
443 						   &parent_req);
444 			if (ret)
445 				return ret;
446 
447 			best = parent_req.rate;
448 		} else if (parent) {
449 			best = clk_core_get_rate_nolock(parent);
450 		} else {
451 			best = clk_core_get_rate_nolock(core);
452 		}
453 
454 		goto out;
455 	}
456 
457 	/* find the parent that can provide the fastest rate <= rate */
458 	num_parents = core->num_parents;
459 	for (i = 0; i < num_parents; i++) {
460 		parent = clk_core_get_parent_by_index(core, i);
461 		if (!parent)
462 			continue;
463 
464 		if (core->flags & CLK_SET_RATE_PARENT) {
465 			parent_req = *req;
466 			ret = __clk_determine_rate(parent->hw, &parent_req);
467 			if (ret)
468 				continue;
469 		} else {
470 			parent_req.rate = clk_core_get_rate_nolock(parent);
471 		}
472 
473 		if (mux_is_better_rate(req->rate, parent_req.rate,
474 				       best, flags)) {
475 			best_parent = parent;
476 			best = parent_req.rate;
477 		}
478 	}
479 
480 	if (!best_parent)
481 		return -EINVAL;
482 
483 out:
484 	if (best_parent)
485 		req->best_parent_hw = best_parent->hw;
486 	req->best_parent_rate = best;
487 	req->rate = best;
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
492 
493 struct clk *__clk_lookup(const char *name)
494 {
495 	struct clk_core *core = clk_core_lookup(name);
496 
497 	return !core ? NULL : core->hw->clk;
498 }
499 
500 static void clk_core_get_boundaries(struct clk_core *core,
501 				    unsigned long *min_rate,
502 				    unsigned long *max_rate)
503 {
504 	struct clk *clk_user;
505 
506 	*min_rate = core->min_rate;
507 	*max_rate = core->max_rate;
508 
509 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
510 		*min_rate = max(*min_rate, clk_user->min_rate);
511 
512 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
513 		*max_rate = min(*max_rate, clk_user->max_rate);
514 }
515 
516 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
517 			   unsigned long max_rate)
518 {
519 	hw->core->min_rate = min_rate;
520 	hw->core->max_rate = max_rate;
521 }
522 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
523 
524 /*
525  * Helper for finding best parent to provide a given frequency. This can be used
526  * directly as a determine_rate callback (e.g. for a mux), or from a more
527  * complex clock that may combine a mux with other operations.
528  */
529 int __clk_mux_determine_rate(struct clk_hw *hw,
530 			     struct clk_rate_request *req)
531 {
532 	return clk_mux_determine_rate_flags(hw, req, 0);
533 }
534 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
535 
536 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
537 				     struct clk_rate_request *req)
538 {
539 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
540 }
541 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
542 
543 /***        clk api        ***/
544 
545 static void clk_core_rate_unprotect(struct clk_core *core)
546 {
547 	lockdep_assert_held(&prepare_lock);
548 
549 	if (!core)
550 		return;
551 
552 	if (WARN_ON(core->protect_count == 0))
553 		return;
554 
555 	if (--core->protect_count > 0)
556 		return;
557 
558 	clk_core_rate_unprotect(core->parent);
559 }
560 
561 static int clk_core_rate_nuke_protect(struct clk_core *core)
562 {
563 	int ret;
564 
565 	lockdep_assert_held(&prepare_lock);
566 
567 	if (!core)
568 		return -EINVAL;
569 
570 	if (core->protect_count == 0)
571 		return 0;
572 
573 	ret = core->protect_count;
574 	core->protect_count = 1;
575 	clk_core_rate_unprotect(core);
576 
577 	return ret;
578 }
579 
580 /**
581  * clk_rate_exclusive_put - release exclusivity over clock rate control
582  * @clk: the clk over which the exclusivity is released
583  *
584  * clk_rate_exclusive_put() completes a critical section during which a clock
585  * consumer cannot tolerate any other consumer making any operation on the
586  * clock which could result in a rate change or rate glitch. Exclusive clocks
587  * cannot have their rate changed, either directly or indirectly due to changes
588  * further up the parent chain of clocks. As a result, clocks up parent chain
589  * also get under exclusive control of the calling consumer.
590  *
591  * If exlusivity is claimed more than once on clock, even by the same consumer,
592  * the rate effectively gets locked as exclusivity can't be preempted.
593  *
594  * Calls to clk_rate_exclusive_put() must be balanced with calls to
595  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
596  * error status.
597  */
598 void clk_rate_exclusive_put(struct clk *clk)
599 {
600 	if (!clk)
601 		return;
602 
603 	clk_prepare_lock();
604 
605 	/*
606 	 * if there is something wrong with this consumer protect count, stop
607 	 * here before messing with the provider
608 	 */
609 	if (WARN_ON(clk->exclusive_count <= 0))
610 		goto out;
611 
612 	clk_core_rate_unprotect(clk->core);
613 	clk->exclusive_count--;
614 out:
615 	clk_prepare_unlock();
616 }
617 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
618 
619 static void clk_core_rate_protect(struct clk_core *core)
620 {
621 	lockdep_assert_held(&prepare_lock);
622 
623 	if (!core)
624 		return;
625 
626 	if (core->protect_count == 0)
627 		clk_core_rate_protect(core->parent);
628 
629 	core->protect_count++;
630 }
631 
632 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
633 {
634 	lockdep_assert_held(&prepare_lock);
635 
636 	if (!core)
637 		return;
638 
639 	if (count == 0)
640 		return;
641 
642 	clk_core_rate_protect(core);
643 	core->protect_count = count;
644 }
645 
646 /**
647  * clk_rate_exclusive_get - get exclusivity over the clk rate control
648  * @clk: the clk over which the exclusity of rate control is requested
649  *
650  * clk_rate_exlusive_get() begins a critical section during which a clock
651  * consumer cannot tolerate any other consumer making any operation on the
652  * clock which could result in a rate change or rate glitch. Exclusive clocks
653  * cannot have their rate changed, either directly or indirectly due to changes
654  * further up the parent chain of clocks. As a result, clocks up parent chain
655  * also get under exclusive control of the calling consumer.
656  *
657  * If exlusivity is claimed more than once on clock, even by the same consumer,
658  * the rate effectively gets locked as exclusivity can't be preempted.
659  *
660  * Calls to clk_rate_exclusive_get() should be balanced with calls to
661  * clk_rate_exclusive_put(). Calls to this function may sleep.
662  * Returns 0 on success, -EERROR otherwise
663  */
664 int clk_rate_exclusive_get(struct clk *clk)
665 {
666 	if (!clk)
667 		return 0;
668 
669 	clk_prepare_lock();
670 	clk_core_rate_protect(clk->core);
671 	clk->exclusive_count++;
672 	clk_prepare_unlock();
673 
674 	return 0;
675 }
676 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
677 
678 static void clk_core_unprepare(struct clk_core *core)
679 {
680 	lockdep_assert_held(&prepare_lock);
681 
682 	if (!core)
683 		return;
684 
685 	if (WARN_ON(core->prepare_count == 0))
686 		return;
687 
688 	if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
689 		return;
690 
691 	if (--core->prepare_count > 0)
692 		return;
693 
694 	WARN_ON(core->enable_count > 0);
695 
696 	trace_clk_unprepare(core);
697 
698 	if (core->ops->unprepare)
699 		core->ops->unprepare(core->hw);
700 
701 	clk_pm_runtime_put(core);
702 
703 	trace_clk_unprepare_complete(core);
704 	clk_core_unprepare(core->parent);
705 }
706 
707 static void clk_core_unprepare_lock(struct clk_core *core)
708 {
709 	clk_prepare_lock();
710 	clk_core_unprepare(core);
711 	clk_prepare_unlock();
712 }
713 
714 /**
715  * clk_unprepare - undo preparation of a clock source
716  * @clk: the clk being unprepared
717  *
718  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
719  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
720  * if the operation may sleep.  One example is a clk which is accessed over
721  * I2c.  In the complex case a clk gate operation may require a fast and a slow
722  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
723  * exclusive.  In fact clk_disable must be called before clk_unprepare.
724  */
725 void clk_unprepare(struct clk *clk)
726 {
727 	if (IS_ERR_OR_NULL(clk))
728 		return;
729 
730 	clk_core_unprepare_lock(clk->core);
731 }
732 EXPORT_SYMBOL_GPL(clk_unprepare);
733 
734 static int clk_core_prepare(struct clk_core *core)
735 {
736 	int ret = 0;
737 
738 	lockdep_assert_held(&prepare_lock);
739 
740 	if (!core)
741 		return 0;
742 
743 	if (core->prepare_count == 0) {
744 		ret = clk_pm_runtime_get(core);
745 		if (ret)
746 			return ret;
747 
748 		ret = clk_core_prepare(core->parent);
749 		if (ret)
750 			goto runtime_put;
751 
752 		trace_clk_prepare(core);
753 
754 		if (core->ops->prepare)
755 			ret = core->ops->prepare(core->hw);
756 
757 		trace_clk_prepare_complete(core);
758 
759 		if (ret)
760 			goto unprepare;
761 	}
762 
763 	core->prepare_count++;
764 
765 	return 0;
766 unprepare:
767 	clk_core_unprepare(core->parent);
768 runtime_put:
769 	clk_pm_runtime_put(core);
770 	return ret;
771 }
772 
773 static int clk_core_prepare_lock(struct clk_core *core)
774 {
775 	int ret;
776 
777 	clk_prepare_lock();
778 	ret = clk_core_prepare(core);
779 	clk_prepare_unlock();
780 
781 	return ret;
782 }
783 
784 /**
785  * clk_prepare - prepare a clock source
786  * @clk: the clk being prepared
787  *
788  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
789  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
790  * operation may sleep.  One example is a clk which is accessed over I2c.  In
791  * the complex case a clk ungate operation may require a fast and a slow part.
792  * It is this reason that clk_prepare and clk_enable are not mutually
793  * exclusive.  In fact clk_prepare must be called before clk_enable.
794  * Returns 0 on success, -EERROR otherwise.
795  */
796 int clk_prepare(struct clk *clk)
797 {
798 	if (!clk)
799 		return 0;
800 
801 	return clk_core_prepare_lock(clk->core);
802 }
803 EXPORT_SYMBOL_GPL(clk_prepare);
804 
805 static void clk_core_disable(struct clk_core *core)
806 {
807 	lockdep_assert_held(&enable_lock);
808 
809 	if (!core)
810 		return;
811 
812 	if (WARN_ON(core->enable_count == 0))
813 		return;
814 
815 	if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
816 		return;
817 
818 	if (--core->enable_count > 0)
819 		return;
820 
821 	trace_clk_disable_rcuidle(core);
822 
823 	if (core->ops->disable)
824 		core->ops->disable(core->hw);
825 
826 	trace_clk_disable_complete_rcuidle(core);
827 
828 	clk_core_disable(core->parent);
829 }
830 
831 static void clk_core_disable_lock(struct clk_core *core)
832 {
833 	unsigned long flags;
834 
835 	flags = clk_enable_lock();
836 	clk_core_disable(core);
837 	clk_enable_unlock(flags);
838 }
839 
840 /**
841  * clk_disable - gate a clock
842  * @clk: the clk being gated
843  *
844  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
845  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
846  * clk if the operation is fast and will never sleep.  One example is a
847  * SoC-internal clk which is controlled via simple register writes.  In the
848  * complex case a clk gate operation may require a fast and a slow part.  It is
849  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
850  * In fact clk_disable must be called before clk_unprepare.
851  */
852 void clk_disable(struct clk *clk)
853 {
854 	if (IS_ERR_OR_NULL(clk))
855 		return;
856 
857 	clk_core_disable_lock(clk->core);
858 }
859 EXPORT_SYMBOL_GPL(clk_disable);
860 
861 static int clk_core_enable(struct clk_core *core)
862 {
863 	int ret = 0;
864 
865 	lockdep_assert_held(&enable_lock);
866 
867 	if (!core)
868 		return 0;
869 
870 	if (WARN_ON(core->prepare_count == 0))
871 		return -ESHUTDOWN;
872 
873 	if (core->enable_count == 0) {
874 		ret = clk_core_enable(core->parent);
875 
876 		if (ret)
877 			return ret;
878 
879 		trace_clk_enable_rcuidle(core);
880 
881 		if (core->ops->enable)
882 			ret = core->ops->enable(core->hw);
883 
884 		trace_clk_enable_complete_rcuidle(core);
885 
886 		if (ret) {
887 			clk_core_disable(core->parent);
888 			return ret;
889 		}
890 	}
891 
892 	core->enable_count++;
893 	return 0;
894 }
895 
896 static int clk_core_enable_lock(struct clk_core *core)
897 {
898 	unsigned long flags;
899 	int ret;
900 
901 	flags = clk_enable_lock();
902 	ret = clk_core_enable(core);
903 	clk_enable_unlock(flags);
904 
905 	return ret;
906 }
907 
908 /**
909  * clk_enable - ungate a clock
910  * @clk: the clk being ungated
911  *
912  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
913  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
914  * if the operation will never sleep.  One example is a SoC-internal clk which
915  * is controlled via simple register writes.  In the complex case a clk ungate
916  * operation may require a fast and a slow part.  It is this reason that
917  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
918  * must be called before clk_enable.  Returns 0 on success, -EERROR
919  * otherwise.
920  */
921 int clk_enable(struct clk *clk)
922 {
923 	if (!clk)
924 		return 0;
925 
926 	return clk_core_enable_lock(clk->core);
927 }
928 EXPORT_SYMBOL_GPL(clk_enable);
929 
930 static int clk_core_prepare_enable(struct clk_core *core)
931 {
932 	int ret;
933 
934 	ret = clk_core_prepare_lock(core);
935 	if (ret)
936 		return ret;
937 
938 	ret = clk_core_enable_lock(core);
939 	if (ret)
940 		clk_core_unprepare_lock(core);
941 
942 	return ret;
943 }
944 
945 static void clk_core_disable_unprepare(struct clk_core *core)
946 {
947 	clk_core_disable_lock(core);
948 	clk_core_unprepare_lock(core);
949 }
950 
951 static void clk_unprepare_unused_subtree(struct clk_core *core)
952 {
953 	struct clk_core *child;
954 
955 	lockdep_assert_held(&prepare_lock);
956 
957 	hlist_for_each_entry(child, &core->children, child_node)
958 		clk_unprepare_unused_subtree(child);
959 
960 	if (core->prepare_count)
961 		return;
962 
963 	if (core->flags & CLK_IGNORE_UNUSED)
964 		return;
965 
966 	if (clk_pm_runtime_get(core))
967 		return;
968 
969 	if (clk_core_is_prepared(core)) {
970 		trace_clk_unprepare(core);
971 		if (core->ops->unprepare_unused)
972 			core->ops->unprepare_unused(core->hw);
973 		else if (core->ops->unprepare)
974 			core->ops->unprepare(core->hw);
975 		trace_clk_unprepare_complete(core);
976 	}
977 
978 	clk_pm_runtime_put(core);
979 }
980 
981 static void clk_disable_unused_subtree(struct clk_core *core)
982 {
983 	struct clk_core *child;
984 	unsigned long flags;
985 
986 	lockdep_assert_held(&prepare_lock);
987 
988 	hlist_for_each_entry(child, &core->children, child_node)
989 		clk_disable_unused_subtree(child);
990 
991 	if (core->flags & CLK_OPS_PARENT_ENABLE)
992 		clk_core_prepare_enable(core->parent);
993 
994 	if (clk_pm_runtime_get(core))
995 		goto unprepare_out;
996 
997 	flags = clk_enable_lock();
998 
999 	if (core->enable_count)
1000 		goto unlock_out;
1001 
1002 	if (core->flags & CLK_IGNORE_UNUSED)
1003 		goto unlock_out;
1004 
1005 	/*
1006 	 * some gate clocks have special needs during the disable-unused
1007 	 * sequence.  call .disable_unused if available, otherwise fall
1008 	 * back to .disable
1009 	 */
1010 	if (clk_core_is_enabled(core)) {
1011 		trace_clk_disable(core);
1012 		if (core->ops->disable_unused)
1013 			core->ops->disable_unused(core->hw);
1014 		else if (core->ops->disable)
1015 			core->ops->disable(core->hw);
1016 		trace_clk_disable_complete(core);
1017 	}
1018 
1019 unlock_out:
1020 	clk_enable_unlock(flags);
1021 	clk_pm_runtime_put(core);
1022 unprepare_out:
1023 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1024 		clk_core_disable_unprepare(core->parent);
1025 }
1026 
1027 static bool clk_ignore_unused;
1028 static int __init clk_ignore_unused_setup(char *__unused)
1029 {
1030 	clk_ignore_unused = true;
1031 	return 1;
1032 }
1033 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1034 
1035 static int clk_disable_unused(void)
1036 {
1037 	struct clk_core *core;
1038 
1039 	if (clk_ignore_unused) {
1040 		pr_warn("clk: Not disabling unused clocks\n");
1041 		return 0;
1042 	}
1043 
1044 	clk_prepare_lock();
1045 
1046 	hlist_for_each_entry(core, &clk_root_list, child_node)
1047 		clk_disable_unused_subtree(core);
1048 
1049 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1050 		clk_disable_unused_subtree(core);
1051 
1052 	hlist_for_each_entry(core, &clk_root_list, child_node)
1053 		clk_unprepare_unused_subtree(core);
1054 
1055 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1056 		clk_unprepare_unused_subtree(core);
1057 
1058 	clk_prepare_unlock();
1059 
1060 	return 0;
1061 }
1062 late_initcall_sync(clk_disable_unused);
1063 
1064 static int clk_core_determine_round_nolock(struct clk_core *core,
1065 					   struct clk_rate_request *req)
1066 {
1067 	long rate;
1068 
1069 	lockdep_assert_held(&prepare_lock);
1070 
1071 	if (!core)
1072 		return 0;
1073 
1074 	/*
1075 	 * At this point, core protection will be disabled if
1076 	 * - if the provider is not protected at all
1077 	 * - if the calling consumer is the only one which has exclusivity
1078 	 *   over the provider
1079 	 */
1080 	if (clk_core_rate_is_protected(core)) {
1081 		req->rate = core->rate;
1082 	} else if (core->ops->determine_rate) {
1083 		return core->ops->determine_rate(core->hw, req);
1084 	} else if (core->ops->round_rate) {
1085 		rate = core->ops->round_rate(core->hw, req->rate,
1086 					     &req->best_parent_rate);
1087 		if (rate < 0)
1088 			return rate;
1089 
1090 		req->rate = rate;
1091 	} else {
1092 		return -EINVAL;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 static void clk_core_init_rate_req(struct clk_core * const core,
1099 				   struct clk_rate_request *req)
1100 {
1101 	struct clk_core *parent;
1102 
1103 	if (WARN_ON(!core || !req))
1104 		return;
1105 
1106 	parent = core->parent;
1107 	if (parent) {
1108 		req->best_parent_hw = parent->hw;
1109 		req->best_parent_rate = parent->rate;
1110 	} else {
1111 		req->best_parent_hw = NULL;
1112 		req->best_parent_rate = 0;
1113 	}
1114 }
1115 
1116 static bool clk_core_can_round(struct clk_core * const core)
1117 {
1118 	if (core->ops->determine_rate || core->ops->round_rate)
1119 		return true;
1120 
1121 	return false;
1122 }
1123 
1124 static int clk_core_round_rate_nolock(struct clk_core *core,
1125 				      struct clk_rate_request *req)
1126 {
1127 	lockdep_assert_held(&prepare_lock);
1128 
1129 	if (!core) {
1130 		req->rate = 0;
1131 		return 0;
1132 	}
1133 
1134 	clk_core_init_rate_req(core, req);
1135 
1136 	if (clk_core_can_round(core))
1137 		return clk_core_determine_round_nolock(core, req);
1138 	else if (core->flags & CLK_SET_RATE_PARENT)
1139 		return clk_core_round_rate_nolock(core->parent, req);
1140 
1141 	req->rate = core->rate;
1142 	return 0;
1143 }
1144 
1145 /**
1146  * __clk_determine_rate - get the closest rate actually supported by a clock
1147  * @hw: determine the rate of this clock
1148  * @req: target rate request
1149  *
1150  * Useful for clk_ops such as .set_rate and .determine_rate.
1151  */
1152 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1153 {
1154 	if (!hw) {
1155 		req->rate = 0;
1156 		return 0;
1157 	}
1158 
1159 	return clk_core_round_rate_nolock(hw->core, req);
1160 }
1161 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1162 
1163 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1164 {
1165 	int ret;
1166 	struct clk_rate_request req;
1167 
1168 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1169 	req.rate = rate;
1170 
1171 	ret = clk_core_round_rate_nolock(hw->core, &req);
1172 	if (ret)
1173 		return 0;
1174 
1175 	return req.rate;
1176 }
1177 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1178 
1179 /**
1180  * clk_round_rate - round the given rate for a clk
1181  * @clk: the clk for which we are rounding a rate
1182  * @rate: the rate which is to be rounded
1183  *
1184  * Takes in a rate as input and rounds it to a rate that the clk can actually
1185  * use which is then returned.  If clk doesn't support round_rate operation
1186  * then the parent rate is returned.
1187  */
1188 long clk_round_rate(struct clk *clk, unsigned long rate)
1189 {
1190 	struct clk_rate_request req;
1191 	int ret;
1192 
1193 	if (!clk)
1194 		return 0;
1195 
1196 	clk_prepare_lock();
1197 
1198 	if (clk->exclusive_count)
1199 		clk_core_rate_unprotect(clk->core);
1200 
1201 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1202 	req.rate = rate;
1203 
1204 	ret = clk_core_round_rate_nolock(clk->core, &req);
1205 
1206 	if (clk->exclusive_count)
1207 		clk_core_rate_protect(clk->core);
1208 
1209 	clk_prepare_unlock();
1210 
1211 	if (ret)
1212 		return ret;
1213 
1214 	return req.rate;
1215 }
1216 EXPORT_SYMBOL_GPL(clk_round_rate);
1217 
1218 /**
1219  * __clk_notify - call clk notifier chain
1220  * @core: clk that is changing rate
1221  * @msg: clk notifier type (see include/linux/clk.h)
1222  * @old_rate: old clk rate
1223  * @new_rate: new clk rate
1224  *
1225  * Triggers a notifier call chain on the clk rate-change notification
1226  * for 'clk'.  Passes a pointer to the struct clk and the previous
1227  * and current rates to the notifier callback.  Intended to be called by
1228  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1229  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1230  * a driver returns that.
1231  */
1232 static int __clk_notify(struct clk_core *core, unsigned long msg,
1233 		unsigned long old_rate, unsigned long new_rate)
1234 {
1235 	struct clk_notifier *cn;
1236 	struct clk_notifier_data cnd;
1237 	int ret = NOTIFY_DONE;
1238 
1239 	cnd.old_rate = old_rate;
1240 	cnd.new_rate = new_rate;
1241 
1242 	list_for_each_entry(cn, &clk_notifier_list, node) {
1243 		if (cn->clk->core == core) {
1244 			cnd.clk = cn->clk;
1245 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1246 					&cnd);
1247 			if (ret & NOTIFY_STOP_MASK)
1248 				return ret;
1249 		}
1250 	}
1251 
1252 	return ret;
1253 }
1254 
1255 /**
1256  * __clk_recalc_accuracies
1257  * @core: first clk in the subtree
1258  *
1259  * Walks the subtree of clks starting with clk and recalculates accuracies as
1260  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1261  * callback then it is assumed that the clock will take on the accuracy of its
1262  * parent.
1263  */
1264 static void __clk_recalc_accuracies(struct clk_core *core)
1265 {
1266 	unsigned long parent_accuracy = 0;
1267 	struct clk_core *child;
1268 
1269 	lockdep_assert_held(&prepare_lock);
1270 
1271 	if (core->parent)
1272 		parent_accuracy = core->parent->accuracy;
1273 
1274 	if (core->ops->recalc_accuracy)
1275 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1276 							  parent_accuracy);
1277 	else
1278 		core->accuracy = parent_accuracy;
1279 
1280 	hlist_for_each_entry(child, &core->children, child_node)
1281 		__clk_recalc_accuracies(child);
1282 }
1283 
1284 static long clk_core_get_accuracy(struct clk_core *core)
1285 {
1286 	unsigned long accuracy;
1287 
1288 	clk_prepare_lock();
1289 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1290 		__clk_recalc_accuracies(core);
1291 
1292 	accuracy = __clk_get_accuracy(core);
1293 	clk_prepare_unlock();
1294 
1295 	return accuracy;
1296 }
1297 
1298 /**
1299  * clk_get_accuracy - return the accuracy of clk
1300  * @clk: the clk whose accuracy is being returned
1301  *
1302  * Simply returns the cached accuracy of the clk, unless
1303  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1304  * issued.
1305  * If clk is NULL then returns 0.
1306  */
1307 long clk_get_accuracy(struct clk *clk)
1308 {
1309 	if (!clk)
1310 		return 0;
1311 
1312 	return clk_core_get_accuracy(clk->core);
1313 }
1314 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1315 
1316 static unsigned long clk_recalc(struct clk_core *core,
1317 				unsigned long parent_rate)
1318 {
1319 	unsigned long rate = parent_rate;
1320 
1321 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1322 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1323 		clk_pm_runtime_put(core);
1324 	}
1325 	return rate;
1326 }
1327 
1328 /**
1329  * __clk_recalc_rates
1330  * @core: first clk in the subtree
1331  * @msg: notification type (see include/linux/clk.h)
1332  *
1333  * Walks the subtree of clks starting with clk and recalculates rates as it
1334  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1335  * it is assumed that the clock will take on the rate of its parent.
1336  *
1337  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1338  * if necessary.
1339  */
1340 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1341 {
1342 	unsigned long old_rate;
1343 	unsigned long parent_rate = 0;
1344 	struct clk_core *child;
1345 
1346 	lockdep_assert_held(&prepare_lock);
1347 
1348 	old_rate = core->rate;
1349 
1350 	if (core->parent)
1351 		parent_rate = core->parent->rate;
1352 
1353 	core->rate = clk_recalc(core, parent_rate);
1354 
1355 	/*
1356 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1357 	 * & ABORT_RATE_CHANGE notifiers
1358 	 */
1359 	if (core->notifier_count && msg)
1360 		__clk_notify(core, msg, old_rate, core->rate);
1361 
1362 	hlist_for_each_entry(child, &core->children, child_node)
1363 		__clk_recalc_rates(child, msg);
1364 }
1365 
1366 static unsigned long clk_core_get_rate(struct clk_core *core)
1367 {
1368 	unsigned long rate;
1369 
1370 	clk_prepare_lock();
1371 
1372 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1373 		__clk_recalc_rates(core, 0);
1374 
1375 	rate = clk_core_get_rate_nolock(core);
1376 	clk_prepare_unlock();
1377 
1378 	return rate;
1379 }
1380 
1381 /**
1382  * clk_get_rate - return the rate of clk
1383  * @clk: the clk whose rate is being returned
1384  *
1385  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1386  * is set, which means a recalc_rate will be issued.
1387  * If clk is NULL then returns 0.
1388  */
1389 unsigned long clk_get_rate(struct clk *clk)
1390 {
1391 	if (!clk)
1392 		return 0;
1393 
1394 	return clk_core_get_rate(clk->core);
1395 }
1396 EXPORT_SYMBOL_GPL(clk_get_rate);
1397 
1398 static int clk_fetch_parent_index(struct clk_core *core,
1399 				  struct clk_core *parent)
1400 {
1401 	int i;
1402 
1403 	if (!parent)
1404 		return -EINVAL;
1405 
1406 	for (i = 0; i < core->num_parents; i++)
1407 		if (clk_core_get_parent_by_index(core, i) == parent)
1408 			return i;
1409 
1410 	return -EINVAL;
1411 }
1412 
1413 /*
1414  * Update the orphan status of @core and all its children.
1415  */
1416 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1417 {
1418 	struct clk_core *child;
1419 
1420 	core->orphan = is_orphan;
1421 
1422 	hlist_for_each_entry(child, &core->children, child_node)
1423 		clk_core_update_orphan_status(child, is_orphan);
1424 }
1425 
1426 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1427 {
1428 	bool was_orphan = core->orphan;
1429 
1430 	hlist_del(&core->child_node);
1431 
1432 	if (new_parent) {
1433 		bool becomes_orphan = new_parent->orphan;
1434 
1435 		/* avoid duplicate POST_RATE_CHANGE notifications */
1436 		if (new_parent->new_child == core)
1437 			new_parent->new_child = NULL;
1438 
1439 		hlist_add_head(&core->child_node, &new_parent->children);
1440 
1441 		if (was_orphan != becomes_orphan)
1442 			clk_core_update_orphan_status(core, becomes_orphan);
1443 	} else {
1444 		hlist_add_head(&core->child_node, &clk_orphan_list);
1445 		if (!was_orphan)
1446 			clk_core_update_orphan_status(core, true);
1447 	}
1448 
1449 	core->parent = new_parent;
1450 }
1451 
1452 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1453 					   struct clk_core *parent)
1454 {
1455 	unsigned long flags;
1456 	struct clk_core *old_parent = core->parent;
1457 
1458 	/*
1459 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1460 	 *
1461 	 * 2. Migrate prepare state between parents and prevent race with
1462 	 * clk_enable().
1463 	 *
1464 	 * If the clock is not prepared, then a race with
1465 	 * clk_enable/disable() is impossible since we already have the
1466 	 * prepare lock (future calls to clk_enable() need to be preceded by
1467 	 * a clk_prepare()).
1468 	 *
1469 	 * If the clock is prepared, migrate the prepared state to the new
1470 	 * parent and also protect against a race with clk_enable() by
1471 	 * forcing the clock and the new parent on.  This ensures that all
1472 	 * future calls to clk_enable() are practically NOPs with respect to
1473 	 * hardware and software states.
1474 	 *
1475 	 * See also: Comment for clk_set_parent() below.
1476 	 */
1477 
1478 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1479 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1480 		clk_core_prepare_enable(old_parent);
1481 		clk_core_prepare_enable(parent);
1482 	}
1483 
1484 	/* migrate prepare count if > 0 */
1485 	if (core->prepare_count) {
1486 		clk_core_prepare_enable(parent);
1487 		clk_core_enable_lock(core);
1488 	}
1489 
1490 	/* update the clk tree topology */
1491 	flags = clk_enable_lock();
1492 	clk_reparent(core, parent);
1493 	clk_enable_unlock(flags);
1494 
1495 	return old_parent;
1496 }
1497 
1498 static void __clk_set_parent_after(struct clk_core *core,
1499 				   struct clk_core *parent,
1500 				   struct clk_core *old_parent)
1501 {
1502 	/*
1503 	 * Finish the migration of prepare state and undo the changes done
1504 	 * for preventing a race with clk_enable().
1505 	 */
1506 	if (core->prepare_count) {
1507 		clk_core_disable_lock(core);
1508 		clk_core_disable_unprepare(old_parent);
1509 	}
1510 
1511 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1512 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1513 		clk_core_disable_unprepare(parent);
1514 		clk_core_disable_unprepare(old_parent);
1515 	}
1516 }
1517 
1518 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1519 			    u8 p_index)
1520 {
1521 	unsigned long flags;
1522 	int ret = 0;
1523 	struct clk_core *old_parent;
1524 
1525 	old_parent = __clk_set_parent_before(core, parent);
1526 
1527 	trace_clk_set_parent(core, parent);
1528 
1529 	/* change clock input source */
1530 	if (parent && core->ops->set_parent)
1531 		ret = core->ops->set_parent(core->hw, p_index);
1532 
1533 	trace_clk_set_parent_complete(core, parent);
1534 
1535 	if (ret) {
1536 		flags = clk_enable_lock();
1537 		clk_reparent(core, old_parent);
1538 		clk_enable_unlock(flags);
1539 		__clk_set_parent_after(core, old_parent, parent);
1540 
1541 		return ret;
1542 	}
1543 
1544 	__clk_set_parent_after(core, parent, old_parent);
1545 
1546 	return 0;
1547 }
1548 
1549 /**
1550  * __clk_speculate_rates
1551  * @core: first clk in the subtree
1552  * @parent_rate: the "future" rate of clk's parent
1553  *
1554  * Walks the subtree of clks starting with clk, speculating rates as it
1555  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1556  *
1557  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1558  * pre-rate change notifications and returns early if no clks in the
1559  * subtree have subscribed to the notifications.  Note that if a clk does not
1560  * implement the .recalc_rate callback then it is assumed that the clock will
1561  * take on the rate of its parent.
1562  */
1563 static int __clk_speculate_rates(struct clk_core *core,
1564 				 unsigned long parent_rate)
1565 {
1566 	struct clk_core *child;
1567 	unsigned long new_rate;
1568 	int ret = NOTIFY_DONE;
1569 
1570 	lockdep_assert_held(&prepare_lock);
1571 
1572 	new_rate = clk_recalc(core, parent_rate);
1573 
1574 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1575 	if (core->notifier_count)
1576 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1577 
1578 	if (ret & NOTIFY_STOP_MASK) {
1579 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1580 				__func__, core->name, ret);
1581 		goto out;
1582 	}
1583 
1584 	hlist_for_each_entry(child, &core->children, child_node) {
1585 		ret = __clk_speculate_rates(child, new_rate);
1586 		if (ret & NOTIFY_STOP_MASK)
1587 			break;
1588 	}
1589 
1590 out:
1591 	return ret;
1592 }
1593 
1594 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1595 			     struct clk_core *new_parent, u8 p_index)
1596 {
1597 	struct clk_core *child;
1598 
1599 	core->new_rate = new_rate;
1600 	core->new_parent = new_parent;
1601 	core->new_parent_index = p_index;
1602 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1603 	core->new_child = NULL;
1604 	if (new_parent && new_parent != core->parent)
1605 		new_parent->new_child = core;
1606 
1607 	hlist_for_each_entry(child, &core->children, child_node) {
1608 		child->new_rate = clk_recalc(child, new_rate);
1609 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1610 	}
1611 }
1612 
1613 /*
1614  * calculate the new rates returning the topmost clock that has to be
1615  * changed.
1616  */
1617 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1618 					   unsigned long rate)
1619 {
1620 	struct clk_core *top = core;
1621 	struct clk_core *old_parent, *parent;
1622 	unsigned long best_parent_rate = 0;
1623 	unsigned long new_rate;
1624 	unsigned long min_rate;
1625 	unsigned long max_rate;
1626 	int p_index = 0;
1627 	long ret;
1628 
1629 	/* sanity */
1630 	if (IS_ERR_OR_NULL(core))
1631 		return NULL;
1632 
1633 	/* save parent rate, if it exists */
1634 	parent = old_parent = core->parent;
1635 	if (parent)
1636 		best_parent_rate = parent->rate;
1637 
1638 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1639 
1640 	/* find the closest rate and parent clk/rate */
1641 	if (clk_core_can_round(core)) {
1642 		struct clk_rate_request req;
1643 
1644 		req.rate = rate;
1645 		req.min_rate = min_rate;
1646 		req.max_rate = max_rate;
1647 
1648 		clk_core_init_rate_req(core, &req);
1649 
1650 		ret = clk_core_determine_round_nolock(core, &req);
1651 		if (ret < 0)
1652 			return NULL;
1653 
1654 		best_parent_rate = req.best_parent_rate;
1655 		new_rate = req.rate;
1656 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1657 
1658 		if (new_rate < min_rate || new_rate > max_rate)
1659 			return NULL;
1660 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1661 		/* pass-through clock without adjustable parent */
1662 		core->new_rate = core->rate;
1663 		return NULL;
1664 	} else {
1665 		/* pass-through clock with adjustable parent */
1666 		top = clk_calc_new_rates(parent, rate);
1667 		new_rate = parent->new_rate;
1668 		goto out;
1669 	}
1670 
1671 	/* some clocks must be gated to change parent */
1672 	if (parent != old_parent &&
1673 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1674 		pr_debug("%s: %s not gated but wants to reparent\n",
1675 			 __func__, core->name);
1676 		return NULL;
1677 	}
1678 
1679 	/* try finding the new parent index */
1680 	if (parent && core->num_parents > 1) {
1681 		p_index = clk_fetch_parent_index(core, parent);
1682 		if (p_index < 0) {
1683 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1684 				 __func__, parent->name, core->name);
1685 			return NULL;
1686 		}
1687 	}
1688 
1689 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1690 	    best_parent_rate != parent->rate)
1691 		top = clk_calc_new_rates(parent, best_parent_rate);
1692 
1693 out:
1694 	clk_calc_subtree(core, new_rate, parent, p_index);
1695 
1696 	return top;
1697 }
1698 
1699 /*
1700  * Notify about rate changes in a subtree. Always walk down the whole tree
1701  * so that in case of an error we can walk down the whole tree again and
1702  * abort the change.
1703  */
1704 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1705 						  unsigned long event)
1706 {
1707 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1708 	int ret = NOTIFY_DONE;
1709 
1710 	if (core->rate == core->new_rate)
1711 		return NULL;
1712 
1713 	if (core->notifier_count) {
1714 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1715 		if (ret & NOTIFY_STOP_MASK)
1716 			fail_clk = core;
1717 	}
1718 
1719 	hlist_for_each_entry(child, &core->children, child_node) {
1720 		/* Skip children who will be reparented to another clock */
1721 		if (child->new_parent && child->new_parent != core)
1722 			continue;
1723 		tmp_clk = clk_propagate_rate_change(child, event);
1724 		if (tmp_clk)
1725 			fail_clk = tmp_clk;
1726 	}
1727 
1728 	/* handle the new child who might not be in core->children yet */
1729 	if (core->new_child) {
1730 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1731 		if (tmp_clk)
1732 			fail_clk = tmp_clk;
1733 	}
1734 
1735 	return fail_clk;
1736 }
1737 
1738 /*
1739  * walk down a subtree and set the new rates notifying the rate
1740  * change on the way
1741  */
1742 static void clk_change_rate(struct clk_core *core)
1743 {
1744 	struct clk_core *child;
1745 	struct hlist_node *tmp;
1746 	unsigned long old_rate;
1747 	unsigned long best_parent_rate = 0;
1748 	bool skip_set_rate = false;
1749 	struct clk_core *old_parent;
1750 	struct clk_core *parent = NULL;
1751 
1752 	old_rate = core->rate;
1753 
1754 	if (core->new_parent) {
1755 		parent = core->new_parent;
1756 		best_parent_rate = core->new_parent->rate;
1757 	} else if (core->parent) {
1758 		parent = core->parent;
1759 		best_parent_rate = core->parent->rate;
1760 	}
1761 
1762 	if (clk_pm_runtime_get(core))
1763 		return;
1764 
1765 	if (core->flags & CLK_SET_RATE_UNGATE) {
1766 		unsigned long flags;
1767 
1768 		clk_core_prepare(core);
1769 		flags = clk_enable_lock();
1770 		clk_core_enable(core);
1771 		clk_enable_unlock(flags);
1772 	}
1773 
1774 	if (core->new_parent && core->new_parent != core->parent) {
1775 		old_parent = __clk_set_parent_before(core, core->new_parent);
1776 		trace_clk_set_parent(core, core->new_parent);
1777 
1778 		if (core->ops->set_rate_and_parent) {
1779 			skip_set_rate = true;
1780 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1781 					best_parent_rate,
1782 					core->new_parent_index);
1783 		} else if (core->ops->set_parent) {
1784 			core->ops->set_parent(core->hw, core->new_parent_index);
1785 		}
1786 
1787 		trace_clk_set_parent_complete(core, core->new_parent);
1788 		__clk_set_parent_after(core, core->new_parent, old_parent);
1789 	}
1790 
1791 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1792 		clk_core_prepare_enable(parent);
1793 
1794 	trace_clk_set_rate(core, core->new_rate);
1795 
1796 	if (!skip_set_rate && core->ops->set_rate)
1797 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1798 
1799 	trace_clk_set_rate_complete(core, core->new_rate);
1800 
1801 	core->rate = clk_recalc(core, best_parent_rate);
1802 
1803 	if (core->flags & CLK_SET_RATE_UNGATE) {
1804 		unsigned long flags;
1805 
1806 		flags = clk_enable_lock();
1807 		clk_core_disable(core);
1808 		clk_enable_unlock(flags);
1809 		clk_core_unprepare(core);
1810 	}
1811 
1812 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1813 		clk_core_disable_unprepare(parent);
1814 
1815 	if (core->notifier_count && old_rate != core->rate)
1816 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1817 
1818 	if (core->flags & CLK_RECALC_NEW_RATES)
1819 		(void)clk_calc_new_rates(core, core->new_rate);
1820 
1821 	/*
1822 	 * Use safe iteration, as change_rate can actually swap parents
1823 	 * for certain clock types.
1824 	 */
1825 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1826 		/* Skip children who will be reparented to another clock */
1827 		if (child->new_parent && child->new_parent != core)
1828 			continue;
1829 		clk_change_rate(child);
1830 	}
1831 
1832 	/* handle the new child who might not be in core->children yet */
1833 	if (core->new_child)
1834 		clk_change_rate(core->new_child);
1835 
1836 	clk_pm_runtime_put(core);
1837 }
1838 
1839 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1840 						     unsigned long req_rate)
1841 {
1842 	int ret, cnt;
1843 	struct clk_rate_request req;
1844 
1845 	lockdep_assert_held(&prepare_lock);
1846 
1847 	if (!core)
1848 		return 0;
1849 
1850 	/* simulate what the rate would be if it could be freely set */
1851 	cnt = clk_core_rate_nuke_protect(core);
1852 	if (cnt < 0)
1853 		return cnt;
1854 
1855 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1856 	req.rate = req_rate;
1857 
1858 	ret = clk_core_round_rate_nolock(core, &req);
1859 
1860 	/* restore the protection */
1861 	clk_core_rate_restore_protect(core, cnt);
1862 
1863 	return ret ? 0 : req.rate;
1864 }
1865 
1866 static int clk_core_set_rate_nolock(struct clk_core *core,
1867 				    unsigned long req_rate)
1868 {
1869 	struct clk_core *top, *fail_clk;
1870 	unsigned long rate;
1871 	int ret = 0;
1872 
1873 	if (!core)
1874 		return 0;
1875 
1876 	rate = clk_core_req_round_rate_nolock(core, req_rate);
1877 
1878 	/* bail early if nothing to do */
1879 	if (rate == clk_core_get_rate_nolock(core))
1880 		return 0;
1881 
1882 	/* fail on a direct rate set of a protected provider */
1883 	if (clk_core_rate_is_protected(core))
1884 		return -EBUSY;
1885 
1886 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1887 		return -EBUSY;
1888 
1889 	/* calculate new rates and get the topmost changed clock */
1890 	top = clk_calc_new_rates(core, req_rate);
1891 	if (!top)
1892 		return -EINVAL;
1893 
1894 	ret = clk_pm_runtime_get(core);
1895 	if (ret)
1896 		return ret;
1897 
1898 	/* notify that we are about to change rates */
1899 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1900 	if (fail_clk) {
1901 		pr_debug("%s: failed to set %s rate\n", __func__,
1902 				fail_clk->name);
1903 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1904 		ret = -EBUSY;
1905 		goto err;
1906 	}
1907 
1908 	/* change the rates */
1909 	clk_change_rate(top);
1910 
1911 	core->req_rate = req_rate;
1912 err:
1913 	clk_pm_runtime_put(core);
1914 
1915 	return ret;
1916 }
1917 
1918 /**
1919  * clk_set_rate - specify a new rate for clk
1920  * @clk: the clk whose rate is being changed
1921  * @rate: the new rate for clk
1922  *
1923  * In the simplest case clk_set_rate will only adjust the rate of clk.
1924  *
1925  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1926  * propagate up to clk's parent; whether or not this happens depends on the
1927  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1928  * after calling .round_rate then upstream parent propagation is ignored.  If
1929  * *parent_rate comes back with a new rate for clk's parent then we propagate
1930  * up to clk's parent and set its rate.  Upward propagation will continue
1931  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1932  * .round_rate stops requesting changes to clk's parent_rate.
1933  *
1934  * Rate changes are accomplished via tree traversal that also recalculates the
1935  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1936  *
1937  * Returns 0 on success, -EERROR otherwise.
1938  */
1939 int clk_set_rate(struct clk *clk, unsigned long rate)
1940 {
1941 	int ret;
1942 
1943 	if (!clk)
1944 		return 0;
1945 
1946 	/* prevent racing with updates to the clock topology */
1947 	clk_prepare_lock();
1948 
1949 	if (clk->exclusive_count)
1950 		clk_core_rate_unprotect(clk->core);
1951 
1952 	ret = clk_core_set_rate_nolock(clk->core, rate);
1953 
1954 	if (clk->exclusive_count)
1955 		clk_core_rate_protect(clk->core);
1956 
1957 	clk_prepare_unlock();
1958 
1959 	return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(clk_set_rate);
1962 
1963 /**
1964  * clk_set_rate_exclusive - specify a new rate get exclusive control
1965  * @clk: the clk whose rate is being changed
1966  * @rate: the new rate for clk
1967  *
1968  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1969  * within a critical section
1970  *
1971  * This can be used initially to ensure that at least 1 consumer is
1972  * statisfied when several consumers are competing for exclusivity over the
1973  * same clock provider.
1974  *
1975  * The exclusivity is not applied if setting the rate failed.
1976  *
1977  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1978  * clk_rate_exclusive_put().
1979  *
1980  * Returns 0 on success, -EERROR otherwise.
1981  */
1982 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1983 {
1984 	int ret;
1985 
1986 	if (!clk)
1987 		return 0;
1988 
1989 	/* prevent racing with updates to the clock topology */
1990 	clk_prepare_lock();
1991 
1992 	/*
1993 	 * The temporary protection removal is not here, on purpose
1994 	 * This function is meant to be used instead of clk_rate_protect,
1995 	 * so before the consumer code path protect the clock provider
1996 	 */
1997 
1998 	ret = clk_core_set_rate_nolock(clk->core, rate);
1999 	if (!ret) {
2000 		clk_core_rate_protect(clk->core);
2001 		clk->exclusive_count++;
2002 	}
2003 
2004 	clk_prepare_unlock();
2005 
2006 	return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2009 
2010 /**
2011  * clk_set_rate_range - set a rate range for a clock source
2012  * @clk: clock source
2013  * @min: desired minimum clock rate in Hz, inclusive
2014  * @max: desired maximum clock rate in Hz, inclusive
2015  *
2016  * Returns success (0) or negative errno.
2017  */
2018 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2019 {
2020 	int ret = 0;
2021 	unsigned long old_min, old_max, rate;
2022 
2023 	if (!clk)
2024 		return 0;
2025 
2026 	if (min > max) {
2027 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2028 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2029 		       min, max);
2030 		return -EINVAL;
2031 	}
2032 
2033 	clk_prepare_lock();
2034 
2035 	if (clk->exclusive_count)
2036 		clk_core_rate_unprotect(clk->core);
2037 
2038 	/* Save the current values in case we need to rollback the change */
2039 	old_min = clk->min_rate;
2040 	old_max = clk->max_rate;
2041 	clk->min_rate = min;
2042 	clk->max_rate = max;
2043 
2044 	rate = clk_core_get_rate_nolock(clk->core);
2045 	if (rate < min || rate > max) {
2046 		/*
2047 		 * FIXME:
2048 		 * We are in bit of trouble here, current rate is outside the
2049 		 * the requested range. We are going try to request appropriate
2050 		 * range boundary but there is a catch. It may fail for the
2051 		 * usual reason (clock broken, clock protected, etc) but also
2052 		 * because:
2053 		 * - round_rate() was not favorable and fell on the wrong
2054 		 *   side of the boundary
2055 		 * - the determine_rate() callback does not really check for
2056 		 *   this corner case when determining the rate
2057 		 */
2058 
2059 		if (rate < min)
2060 			rate = min;
2061 		else
2062 			rate = max;
2063 
2064 		ret = clk_core_set_rate_nolock(clk->core, rate);
2065 		if (ret) {
2066 			/* rollback the changes */
2067 			clk->min_rate = old_min;
2068 			clk->max_rate = old_max;
2069 		}
2070 	}
2071 
2072 	if (clk->exclusive_count)
2073 		clk_core_rate_protect(clk->core);
2074 
2075 	clk_prepare_unlock();
2076 
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2080 
2081 /**
2082  * clk_set_min_rate - set a minimum clock rate for a clock source
2083  * @clk: clock source
2084  * @rate: desired minimum clock rate in Hz, inclusive
2085  *
2086  * Returns success (0) or negative errno.
2087  */
2088 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2089 {
2090 	if (!clk)
2091 		return 0;
2092 
2093 	return clk_set_rate_range(clk, rate, clk->max_rate);
2094 }
2095 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2096 
2097 /**
2098  * clk_set_max_rate - set a maximum clock rate for a clock source
2099  * @clk: clock source
2100  * @rate: desired maximum clock rate in Hz, inclusive
2101  *
2102  * Returns success (0) or negative errno.
2103  */
2104 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2105 {
2106 	if (!clk)
2107 		return 0;
2108 
2109 	return clk_set_rate_range(clk, clk->min_rate, rate);
2110 }
2111 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2112 
2113 /**
2114  * clk_get_parent - return the parent of a clk
2115  * @clk: the clk whose parent gets returned
2116  *
2117  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2118  */
2119 struct clk *clk_get_parent(struct clk *clk)
2120 {
2121 	struct clk *parent;
2122 
2123 	if (!clk)
2124 		return NULL;
2125 
2126 	clk_prepare_lock();
2127 	/* TODO: Create a per-user clk and change callers to call clk_put */
2128 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2129 	clk_prepare_unlock();
2130 
2131 	return parent;
2132 }
2133 EXPORT_SYMBOL_GPL(clk_get_parent);
2134 
2135 static struct clk_core *__clk_init_parent(struct clk_core *core)
2136 {
2137 	u8 index = 0;
2138 
2139 	if (core->num_parents > 1 && core->ops->get_parent)
2140 		index = core->ops->get_parent(core->hw);
2141 
2142 	return clk_core_get_parent_by_index(core, index);
2143 }
2144 
2145 static void clk_core_reparent(struct clk_core *core,
2146 				  struct clk_core *new_parent)
2147 {
2148 	clk_reparent(core, new_parent);
2149 	__clk_recalc_accuracies(core);
2150 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2151 }
2152 
2153 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2154 {
2155 	if (!hw)
2156 		return;
2157 
2158 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2159 }
2160 
2161 /**
2162  * clk_has_parent - check if a clock is a possible parent for another
2163  * @clk: clock source
2164  * @parent: parent clock source
2165  *
2166  * This function can be used in drivers that need to check that a clock can be
2167  * the parent of another without actually changing the parent.
2168  *
2169  * Returns true if @parent is a possible parent for @clk, false otherwise.
2170  */
2171 bool clk_has_parent(struct clk *clk, struct clk *parent)
2172 {
2173 	struct clk_core *core, *parent_core;
2174 	unsigned int i;
2175 
2176 	/* NULL clocks should be nops, so return success if either is NULL. */
2177 	if (!clk || !parent)
2178 		return true;
2179 
2180 	core = clk->core;
2181 	parent_core = parent->core;
2182 
2183 	/* Optimize for the case where the parent is already the parent. */
2184 	if (core->parent == parent_core)
2185 		return true;
2186 
2187 	for (i = 0; i < core->num_parents; i++)
2188 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
2189 			return true;
2190 
2191 	return false;
2192 }
2193 EXPORT_SYMBOL_GPL(clk_has_parent);
2194 
2195 static int clk_core_set_parent_nolock(struct clk_core *core,
2196 				      struct clk_core *parent)
2197 {
2198 	int ret = 0;
2199 	int p_index = 0;
2200 	unsigned long p_rate = 0;
2201 
2202 	lockdep_assert_held(&prepare_lock);
2203 
2204 	if (!core)
2205 		return 0;
2206 
2207 	if (core->parent == parent)
2208 		return 0;
2209 
2210 	/* verify ops for for multi-parent clks */
2211 	if (core->num_parents > 1 && !core->ops->set_parent)
2212 		return -EPERM;
2213 
2214 	/* check that we are allowed to re-parent if the clock is in use */
2215 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2216 		return -EBUSY;
2217 
2218 	if (clk_core_rate_is_protected(core))
2219 		return -EBUSY;
2220 
2221 	/* try finding the new parent index */
2222 	if (parent) {
2223 		p_index = clk_fetch_parent_index(core, parent);
2224 		if (p_index < 0) {
2225 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2226 					__func__, parent->name, core->name);
2227 			return p_index;
2228 		}
2229 		p_rate = parent->rate;
2230 	}
2231 
2232 	ret = clk_pm_runtime_get(core);
2233 	if (ret)
2234 		return ret;
2235 
2236 	/* propagate PRE_RATE_CHANGE notifications */
2237 	ret = __clk_speculate_rates(core, p_rate);
2238 
2239 	/* abort if a driver objects */
2240 	if (ret & NOTIFY_STOP_MASK)
2241 		goto runtime_put;
2242 
2243 	/* do the re-parent */
2244 	ret = __clk_set_parent(core, parent, p_index);
2245 
2246 	/* propagate rate an accuracy recalculation accordingly */
2247 	if (ret) {
2248 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2249 	} else {
2250 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2251 		__clk_recalc_accuracies(core);
2252 	}
2253 
2254 runtime_put:
2255 	clk_pm_runtime_put(core);
2256 
2257 	return ret;
2258 }
2259 
2260 /**
2261  * clk_set_parent - switch the parent of a mux clk
2262  * @clk: the mux clk whose input we are switching
2263  * @parent: the new input to clk
2264  *
2265  * Re-parent clk to use parent as its new input source.  If clk is in
2266  * prepared state, the clk will get enabled for the duration of this call. If
2267  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2268  * that, the reparenting is glitchy in hardware, etc), use the
2269  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2270  *
2271  * After successfully changing clk's parent clk_set_parent will update the
2272  * clk topology, sysfs topology and propagate rate recalculation via
2273  * __clk_recalc_rates.
2274  *
2275  * Returns 0 on success, -EERROR otherwise.
2276  */
2277 int clk_set_parent(struct clk *clk, struct clk *parent)
2278 {
2279 	int ret;
2280 
2281 	if (!clk)
2282 		return 0;
2283 
2284 	clk_prepare_lock();
2285 
2286 	if (clk->exclusive_count)
2287 		clk_core_rate_unprotect(clk->core);
2288 
2289 	ret = clk_core_set_parent_nolock(clk->core,
2290 					 parent ? parent->core : NULL);
2291 
2292 	if (clk->exclusive_count)
2293 		clk_core_rate_protect(clk->core);
2294 
2295 	clk_prepare_unlock();
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(clk_set_parent);
2300 
2301 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2302 {
2303 	int ret = -EINVAL;
2304 
2305 	lockdep_assert_held(&prepare_lock);
2306 
2307 	if (!core)
2308 		return 0;
2309 
2310 	if (clk_core_rate_is_protected(core))
2311 		return -EBUSY;
2312 
2313 	trace_clk_set_phase(core, degrees);
2314 
2315 	if (core->ops->set_phase) {
2316 		ret = core->ops->set_phase(core->hw, degrees);
2317 		if (!ret)
2318 			core->phase = degrees;
2319 	}
2320 
2321 	trace_clk_set_phase_complete(core, degrees);
2322 
2323 	return ret;
2324 }
2325 
2326 /**
2327  * clk_set_phase - adjust the phase shift of a clock signal
2328  * @clk: clock signal source
2329  * @degrees: number of degrees the signal is shifted
2330  *
2331  * Shifts the phase of a clock signal by the specified
2332  * degrees. Returns 0 on success, -EERROR otherwise.
2333  *
2334  * This function makes no distinction about the input or reference
2335  * signal that we adjust the clock signal phase against. For example
2336  * phase locked-loop clock signal generators we may shift phase with
2337  * respect to feedback clock signal input, but for other cases the
2338  * clock phase may be shifted with respect to some other, unspecified
2339  * signal.
2340  *
2341  * Additionally the concept of phase shift does not propagate through
2342  * the clock tree hierarchy, which sets it apart from clock rates and
2343  * clock accuracy. A parent clock phase attribute does not have an
2344  * impact on the phase attribute of a child clock.
2345  */
2346 int clk_set_phase(struct clk *clk, int degrees)
2347 {
2348 	int ret;
2349 
2350 	if (!clk)
2351 		return 0;
2352 
2353 	/* sanity check degrees */
2354 	degrees %= 360;
2355 	if (degrees < 0)
2356 		degrees += 360;
2357 
2358 	clk_prepare_lock();
2359 
2360 	if (clk->exclusive_count)
2361 		clk_core_rate_unprotect(clk->core);
2362 
2363 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2364 
2365 	if (clk->exclusive_count)
2366 		clk_core_rate_protect(clk->core);
2367 
2368 	clk_prepare_unlock();
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(clk_set_phase);
2373 
2374 static int clk_core_get_phase(struct clk_core *core)
2375 {
2376 	int ret;
2377 
2378 	clk_prepare_lock();
2379 	/* Always try to update cached phase if possible */
2380 	if (core->ops->get_phase)
2381 		core->phase = core->ops->get_phase(core->hw);
2382 	ret = core->phase;
2383 	clk_prepare_unlock();
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * clk_get_phase - return the phase shift of a clock signal
2390  * @clk: clock signal source
2391  *
2392  * Returns the phase shift of a clock node in degrees, otherwise returns
2393  * -EERROR.
2394  */
2395 int clk_get_phase(struct clk *clk)
2396 {
2397 	if (!clk)
2398 		return 0;
2399 
2400 	return clk_core_get_phase(clk->core);
2401 }
2402 EXPORT_SYMBOL_GPL(clk_get_phase);
2403 
2404 /**
2405  * clk_is_match - check if two clk's point to the same hardware clock
2406  * @p: clk compared against q
2407  * @q: clk compared against p
2408  *
2409  * Returns true if the two struct clk pointers both point to the same hardware
2410  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2411  * share the same struct clk_core object.
2412  *
2413  * Returns false otherwise. Note that two NULL clks are treated as matching.
2414  */
2415 bool clk_is_match(const struct clk *p, const struct clk *q)
2416 {
2417 	/* trivial case: identical struct clk's or both NULL */
2418 	if (p == q)
2419 		return true;
2420 
2421 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2422 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2423 		if (p->core == q->core)
2424 			return true;
2425 
2426 	return false;
2427 }
2428 EXPORT_SYMBOL_GPL(clk_is_match);
2429 
2430 /***        debugfs support        ***/
2431 
2432 #ifdef CONFIG_DEBUG_FS
2433 #include <linux/debugfs.h>
2434 
2435 static struct dentry *rootdir;
2436 static int inited = 0;
2437 static DEFINE_MUTEX(clk_debug_lock);
2438 static HLIST_HEAD(clk_debug_list);
2439 
2440 static struct hlist_head *all_lists[] = {
2441 	&clk_root_list,
2442 	&clk_orphan_list,
2443 	NULL,
2444 };
2445 
2446 static struct hlist_head *orphan_list[] = {
2447 	&clk_orphan_list,
2448 	NULL,
2449 };
2450 
2451 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2452 				 int level)
2453 {
2454 	if (!c)
2455 		return;
2456 
2457 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2458 		   level * 3 + 1, "",
2459 		   30 - level * 3, c->name,
2460 		   c->enable_count, c->prepare_count, c->protect_count,
2461 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2462 		   clk_core_get_phase(c));
2463 }
2464 
2465 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2466 				     int level)
2467 {
2468 	struct clk_core *child;
2469 
2470 	if (!c)
2471 		return;
2472 
2473 	clk_summary_show_one(s, c, level);
2474 
2475 	hlist_for_each_entry(child, &c->children, child_node)
2476 		clk_summary_show_subtree(s, child, level + 1);
2477 }
2478 
2479 static int clk_summary_show(struct seq_file *s, void *data)
2480 {
2481 	struct clk_core *c;
2482 	struct hlist_head **lists = (struct hlist_head **)s->private;
2483 
2484 	seq_puts(s, "                                 enable  prepare  protect                               \n");
2485 	seq_puts(s, "   clock                          count    count    count        rate   accuracy   phase\n");
2486 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2487 
2488 	clk_prepare_lock();
2489 
2490 	for (; *lists; lists++)
2491 		hlist_for_each_entry(c, *lists, child_node)
2492 			clk_summary_show_subtree(s, c, 0);
2493 
2494 	clk_prepare_unlock();
2495 
2496 	return 0;
2497 }
2498 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2499 
2500 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2501 {
2502 	if (!c)
2503 		return;
2504 
2505 	/* This should be JSON format, i.e. elements separated with a comma */
2506 	seq_printf(s, "\"%s\": { ", c->name);
2507 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2508 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2509 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2510 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2511 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2512 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2513 }
2514 
2515 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2516 {
2517 	struct clk_core *child;
2518 
2519 	if (!c)
2520 		return;
2521 
2522 	clk_dump_one(s, c, level);
2523 
2524 	hlist_for_each_entry(child, &c->children, child_node) {
2525 		seq_putc(s, ',');
2526 		clk_dump_subtree(s, child, level + 1);
2527 	}
2528 
2529 	seq_putc(s, '}');
2530 }
2531 
2532 static int clk_dump_show(struct seq_file *s, void *data)
2533 {
2534 	struct clk_core *c;
2535 	bool first_node = true;
2536 	struct hlist_head **lists = (struct hlist_head **)s->private;
2537 
2538 	seq_putc(s, '{');
2539 	clk_prepare_lock();
2540 
2541 	for (; *lists; lists++) {
2542 		hlist_for_each_entry(c, *lists, child_node) {
2543 			if (!first_node)
2544 				seq_putc(s, ',');
2545 			first_node = false;
2546 			clk_dump_subtree(s, c, 0);
2547 		}
2548 	}
2549 
2550 	clk_prepare_unlock();
2551 
2552 	seq_puts(s, "}\n");
2553 	return 0;
2554 }
2555 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2556 
2557 static const struct {
2558 	unsigned long flag;
2559 	const char *name;
2560 } clk_flags[] = {
2561 #define ENTRY(f) { f, __stringify(f) }
2562 	ENTRY(CLK_SET_RATE_GATE),
2563 	ENTRY(CLK_SET_PARENT_GATE),
2564 	ENTRY(CLK_SET_RATE_PARENT),
2565 	ENTRY(CLK_IGNORE_UNUSED),
2566 	ENTRY(CLK_IS_BASIC),
2567 	ENTRY(CLK_GET_RATE_NOCACHE),
2568 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2569 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2570 	ENTRY(CLK_RECALC_NEW_RATES),
2571 	ENTRY(CLK_SET_RATE_UNGATE),
2572 	ENTRY(CLK_IS_CRITICAL),
2573 	ENTRY(CLK_OPS_PARENT_ENABLE),
2574 #undef ENTRY
2575 };
2576 
2577 static int clk_flags_show(struct seq_file *s, void *data)
2578 {
2579 	struct clk_core *core = s->private;
2580 	unsigned long flags = core->flags;
2581 	unsigned int i;
2582 
2583 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2584 		if (flags & clk_flags[i].flag) {
2585 			seq_printf(s, "%s\n", clk_flags[i].name);
2586 			flags &= ~clk_flags[i].flag;
2587 		}
2588 	}
2589 	if (flags) {
2590 		/* Unknown flags */
2591 		seq_printf(s, "0x%lx\n", flags);
2592 	}
2593 
2594 	return 0;
2595 }
2596 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2597 
2598 static int possible_parents_show(struct seq_file *s, void *data)
2599 {
2600 	struct clk_core *core = s->private;
2601 	int i;
2602 
2603 	for (i = 0; i < core->num_parents - 1; i++)
2604 		seq_printf(s, "%s ", core->parent_names[i]);
2605 
2606 	seq_printf(s, "%s\n", core->parent_names[i]);
2607 
2608 	return 0;
2609 }
2610 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2611 
2612 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2613 {
2614 	struct dentry *d;
2615 	int ret = -ENOMEM;
2616 
2617 	if (!core || !pdentry) {
2618 		ret = -EINVAL;
2619 		goto out;
2620 	}
2621 
2622 	d = debugfs_create_dir(core->name, pdentry);
2623 	if (!d)
2624 		goto out;
2625 
2626 	core->dentry = d;
2627 
2628 	d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate);
2629 	if (!d)
2630 		goto err_out;
2631 
2632 	d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry,
2633 				 &core->accuracy);
2634 	if (!d)
2635 		goto err_out;
2636 
2637 	d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase);
2638 	if (!d)
2639 		goto err_out;
2640 
2641 	d = debugfs_create_file("clk_flags", 0444, core->dentry, core,
2642 				&clk_flags_fops);
2643 	if (!d)
2644 		goto err_out;
2645 
2646 	d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry,
2647 			       &core->prepare_count);
2648 	if (!d)
2649 		goto err_out;
2650 
2651 	d = debugfs_create_u32("clk_enable_count", 0444, core->dentry,
2652 			       &core->enable_count);
2653 	if (!d)
2654 		goto err_out;
2655 
2656 	d = debugfs_create_u32("clk_protect_count", 0444, core->dentry,
2657 			       &core->protect_count);
2658 	if (!d)
2659 		goto err_out;
2660 
2661 	d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry,
2662 			       &core->notifier_count);
2663 	if (!d)
2664 		goto err_out;
2665 
2666 	if (core->num_parents > 1) {
2667 		d = debugfs_create_file("clk_possible_parents", 0444,
2668 				core->dentry, core, &possible_parents_fops);
2669 		if (!d)
2670 			goto err_out;
2671 	}
2672 
2673 	if (core->ops->debug_init) {
2674 		ret = core->ops->debug_init(core->hw, core->dentry);
2675 		if (ret)
2676 			goto err_out;
2677 	}
2678 
2679 	ret = 0;
2680 	goto out;
2681 
2682 err_out:
2683 	debugfs_remove_recursive(core->dentry);
2684 	core->dentry = NULL;
2685 out:
2686 	return ret;
2687 }
2688 
2689 /**
2690  * clk_debug_register - add a clk node to the debugfs clk directory
2691  * @core: the clk being added to the debugfs clk directory
2692  *
2693  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2694  * initialized.  Otherwise it bails out early since the debugfs clk directory
2695  * will be created lazily by clk_debug_init as part of a late_initcall.
2696  */
2697 static int clk_debug_register(struct clk_core *core)
2698 {
2699 	int ret = 0;
2700 
2701 	mutex_lock(&clk_debug_lock);
2702 	hlist_add_head(&core->debug_node, &clk_debug_list);
2703 	if (inited)
2704 		ret = clk_debug_create_one(core, rootdir);
2705 	mutex_unlock(&clk_debug_lock);
2706 
2707 	return ret;
2708 }
2709 
2710  /**
2711  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2712  * @core: the clk being removed from the debugfs clk directory
2713  *
2714  * Dynamically removes a clk and all its child nodes from the
2715  * debugfs clk directory if clk->dentry points to debugfs created by
2716  * clk_debug_register in __clk_core_init.
2717  */
2718 static void clk_debug_unregister(struct clk_core *core)
2719 {
2720 	mutex_lock(&clk_debug_lock);
2721 	hlist_del_init(&core->debug_node);
2722 	debugfs_remove_recursive(core->dentry);
2723 	core->dentry = NULL;
2724 	mutex_unlock(&clk_debug_lock);
2725 }
2726 
2727 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2728 				void *data, const struct file_operations *fops)
2729 {
2730 	struct dentry *d = NULL;
2731 
2732 	if (hw->core->dentry)
2733 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2734 					fops);
2735 
2736 	return d;
2737 }
2738 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2739 
2740 /**
2741  * clk_debug_init - lazily populate the debugfs clk directory
2742  *
2743  * clks are often initialized very early during boot before memory can be
2744  * dynamically allocated and well before debugfs is setup. This function
2745  * populates the debugfs clk directory once at boot-time when we know that
2746  * debugfs is setup. It should only be called once at boot-time, all other clks
2747  * added dynamically will be done so with clk_debug_register.
2748  */
2749 static int __init clk_debug_init(void)
2750 {
2751 	struct clk_core *core;
2752 	struct dentry *d;
2753 
2754 	rootdir = debugfs_create_dir("clk", NULL);
2755 
2756 	if (!rootdir)
2757 		return -ENOMEM;
2758 
2759 	d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2760 				&clk_summary_fops);
2761 	if (!d)
2762 		return -ENOMEM;
2763 
2764 	d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2765 				&clk_dump_fops);
2766 	if (!d)
2767 		return -ENOMEM;
2768 
2769 	d = debugfs_create_file("clk_orphan_summary", 0444, rootdir,
2770 				&orphan_list, &clk_summary_fops);
2771 	if (!d)
2772 		return -ENOMEM;
2773 
2774 	d = debugfs_create_file("clk_orphan_dump", 0444, rootdir,
2775 				&orphan_list, &clk_dump_fops);
2776 	if (!d)
2777 		return -ENOMEM;
2778 
2779 	mutex_lock(&clk_debug_lock);
2780 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2781 		clk_debug_create_one(core, rootdir);
2782 
2783 	inited = 1;
2784 	mutex_unlock(&clk_debug_lock);
2785 
2786 	return 0;
2787 }
2788 late_initcall(clk_debug_init);
2789 #else
2790 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2791 static inline void clk_debug_reparent(struct clk_core *core,
2792 				      struct clk_core *new_parent)
2793 {
2794 }
2795 static inline void clk_debug_unregister(struct clk_core *core)
2796 {
2797 }
2798 #endif
2799 
2800 /**
2801  * __clk_core_init - initialize the data structures in a struct clk_core
2802  * @core:	clk_core being initialized
2803  *
2804  * Initializes the lists in struct clk_core, queries the hardware for the
2805  * parent and rate and sets them both.
2806  */
2807 static int __clk_core_init(struct clk_core *core)
2808 {
2809 	int i, ret;
2810 	struct clk_core *orphan;
2811 	struct hlist_node *tmp2;
2812 	unsigned long rate;
2813 
2814 	if (!core)
2815 		return -EINVAL;
2816 
2817 	clk_prepare_lock();
2818 
2819 	ret = clk_pm_runtime_get(core);
2820 	if (ret)
2821 		goto unlock;
2822 
2823 	/* check to see if a clock with this name is already registered */
2824 	if (clk_core_lookup(core->name)) {
2825 		pr_debug("%s: clk %s already initialized\n",
2826 				__func__, core->name);
2827 		ret = -EEXIST;
2828 		goto out;
2829 	}
2830 
2831 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2832 	if (core->ops->set_rate &&
2833 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2834 	      core->ops->recalc_rate)) {
2835 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2836 		       __func__, core->name);
2837 		ret = -EINVAL;
2838 		goto out;
2839 	}
2840 
2841 	if (core->ops->set_parent && !core->ops->get_parent) {
2842 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2843 		       __func__, core->name);
2844 		ret = -EINVAL;
2845 		goto out;
2846 	}
2847 
2848 	if (core->num_parents > 1 && !core->ops->get_parent) {
2849 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2850 		       __func__, core->name);
2851 		ret = -EINVAL;
2852 		goto out;
2853 	}
2854 
2855 	if (core->ops->set_rate_and_parent &&
2856 			!(core->ops->set_parent && core->ops->set_rate)) {
2857 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2858 				__func__, core->name);
2859 		ret = -EINVAL;
2860 		goto out;
2861 	}
2862 
2863 	/* throw a WARN if any entries in parent_names are NULL */
2864 	for (i = 0; i < core->num_parents; i++)
2865 		WARN(!core->parent_names[i],
2866 				"%s: invalid NULL in %s's .parent_names\n",
2867 				__func__, core->name);
2868 
2869 	core->parent = __clk_init_parent(core);
2870 
2871 	/*
2872 	 * Populate core->parent if parent has already been clk_core_init'd. If
2873 	 * parent has not yet been clk_core_init'd then place clk in the orphan
2874 	 * list.  If clk doesn't have any parents then place it in the root
2875 	 * clk list.
2876 	 *
2877 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2878 	 * clocks and re-parent any that are children of the clock currently
2879 	 * being clk_init'd.
2880 	 */
2881 	if (core->parent) {
2882 		hlist_add_head(&core->child_node,
2883 				&core->parent->children);
2884 		core->orphan = core->parent->orphan;
2885 	} else if (!core->num_parents) {
2886 		hlist_add_head(&core->child_node, &clk_root_list);
2887 		core->orphan = false;
2888 	} else {
2889 		hlist_add_head(&core->child_node, &clk_orphan_list);
2890 		core->orphan = true;
2891 	}
2892 
2893 	/*
2894 	 * optional platform-specific magic
2895 	 *
2896 	 * The .init callback is not used by any of the basic clock types, but
2897 	 * exists for weird hardware that must perform initialization magic.
2898 	 * Please consider other ways of solving initialization problems before
2899 	 * using this callback, as its use is discouraged.
2900 	 */
2901 	if (core->ops->init)
2902 		core->ops->init(core->hw);
2903 
2904 	/*
2905 	 * Set clk's accuracy.  The preferred method is to use
2906 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2907 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2908 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2909 	 * clock).
2910 	 */
2911 	if (core->ops->recalc_accuracy)
2912 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2913 					__clk_get_accuracy(core->parent));
2914 	else if (core->parent)
2915 		core->accuracy = core->parent->accuracy;
2916 	else
2917 		core->accuracy = 0;
2918 
2919 	/*
2920 	 * Set clk's phase.
2921 	 * Since a phase is by definition relative to its parent, just
2922 	 * query the current clock phase, or just assume it's in phase.
2923 	 */
2924 	if (core->ops->get_phase)
2925 		core->phase = core->ops->get_phase(core->hw);
2926 	else
2927 		core->phase = 0;
2928 
2929 	/*
2930 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2931 	 * simple clocks and lazy developers the default fallback is to use the
2932 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2933 	 * then rate is set to zero.
2934 	 */
2935 	if (core->ops->recalc_rate)
2936 		rate = core->ops->recalc_rate(core->hw,
2937 				clk_core_get_rate_nolock(core->parent));
2938 	else if (core->parent)
2939 		rate = core->parent->rate;
2940 	else
2941 		rate = 0;
2942 	core->rate = core->req_rate = rate;
2943 
2944 	/*
2945 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2946 	 * don't get accidentally disabled when walking the orphan tree and
2947 	 * reparenting clocks
2948 	 */
2949 	if (core->flags & CLK_IS_CRITICAL) {
2950 		unsigned long flags;
2951 
2952 		clk_core_prepare(core);
2953 
2954 		flags = clk_enable_lock();
2955 		clk_core_enable(core);
2956 		clk_enable_unlock(flags);
2957 	}
2958 
2959 	/*
2960 	 * walk the list of orphan clocks and reparent any that newly finds a
2961 	 * parent.
2962 	 */
2963 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2964 		struct clk_core *parent = __clk_init_parent(orphan);
2965 
2966 		/*
2967 		 * We need to use __clk_set_parent_before() and _after() to
2968 		 * to properly migrate any prepare/enable count of the orphan
2969 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
2970 		 * are enabled during init but might not have a parent yet.
2971 		 */
2972 		if (parent) {
2973 			/* update the clk tree topology */
2974 			__clk_set_parent_before(orphan, parent);
2975 			__clk_set_parent_after(orphan, parent, NULL);
2976 			__clk_recalc_accuracies(orphan);
2977 			__clk_recalc_rates(orphan, 0);
2978 		}
2979 	}
2980 
2981 	kref_init(&core->ref);
2982 out:
2983 	clk_pm_runtime_put(core);
2984 unlock:
2985 	clk_prepare_unlock();
2986 
2987 	if (!ret)
2988 		clk_debug_register(core);
2989 
2990 	return ret;
2991 }
2992 
2993 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2994 			     const char *con_id)
2995 {
2996 	struct clk *clk;
2997 
2998 	/* This is to allow this function to be chained to others */
2999 	if (IS_ERR_OR_NULL(hw))
3000 		return ERR_CAST(hw);
3001 
3002 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3003 	if (!clk)
3004 		return ERR_PTR(-ENOMEM);
3005 
3006 	clk->core = hw->core;
3007 	clk->dev_id = dev_id;
3008 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3009 	clk->max_rate = ULONG_MAX;
3010 
3011 	clk_prepare_lock();
3012 	hlist_add_head(&clk->clks_node, &hw->core->clks);
3013 	clk_prepare_unlock();
3014 
3015 	return clk;
3016 }
3017 
3018 void __clk_free_clk(struct clk *clk)
3019 {
3020 	clk_prepare_lock();
3021 	hlist_del(&clk->clks_node);
3022 	clk_prepare_unlock();
3023 
3024 	kfree_const(clk->con_id);
3025 	kfree(clk);
3026 }
3027 
3028 /**
3029  * clk_register - allocate a new clock, register it and return an opaque cookie
3030  * @dev: device that is registering this clock
3031  * @hw: link to hardware-specific clock data
3032  *
3033  * clk_register is the primary interface for populating the clock tree with new
3034  * clock nodes.  It returns a pointer to the newly allocated struct clk which
3035  * cannot be dereferenced by driver code but may be used in conjunction with the
3036  * rest of the clock API.  In the event of an error clk_register will return an
3037  * error code; drivers must test for an error code after calling clk_register.
3038  */
3039 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3040 {
3041 	int i, ret;
3042 	struct clk_core *core;
3043 
3044 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3045 	if (!core) {
3046 		ret = -ENOMEM;
3047 		goto fail_out;
3048 	}
3049 
3050 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3051 	if (!core->name) {
3052 		ret = -ENOMEM;
3053 		goto fail_name;
3054 	}
3055 
3056 	if (WARN_ON(!hw->init->ops)) {
3057 		ret = -EINVAL;
3058 		goto fail_ops;
3059 	}
3060 	core->ops = hw->init->ops;
3061 
3062 	if (dev && pm_runtime_enabled(dev))
3063 		core->dev = dev;
3064 	if (dev && dev->driver)
3065 		core->owner = dev->driver->owner;
3066 	core->hw = hw;
3067 	core->flags = hw->init->flags;
3068 	core->num_parents = hw->init->num_parents;
3069 	core->min_rate = 0;
3070 	core->max_rate = ULONG_MAX;
3071 	hw->core = core;
3072 
3073 	/* allocate local copy in case parent_names is __initdata */
3074 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3075 					GFP_KERNEL);
3076 
3077 	if (!core->parent_names) {
3078 		ret = -ENOMEM;
3079 		goto fail_parent_names;
3080 	}
3081 
3082 
3083 	/* copy each string name in case parent_names is __initdata */
3084 	for (i = 0; i < core->num_parents; i++) {
3085 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3086 						GFP_KERNEL);
3087 		if (!core->parent_names[i]) {
3088 			ret = -ENOMEM;
3089 			goto fail_parent_names_copy;
3090 		}
3091 	}
3092 
3093 	/* avoid unnecessary string look-ups of clk_core's possible parents. */
3094 	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3095 				GFP_KERNEL);
3096 	if (!core->parents) {
3097 		ret = -ENOMEM;
3098 		goto fail_parents;
3099 	};
3100 
3101 	INIT_HLIST_HEAD(&core->clks);
3102 
3103 	hw->clk = __clk_create_clk(hw, NULL, NULL);
3104 	if (IS_ERR(hw->clk)) {
3105 		ret = PTR_ERR(hw->clk);
3106 		goto fail_parents;
3107 	}
3108 
3109 	ret = __clk_core_init(core);
3110 	if (!ret)
3111 		return hw->clk;
3112 
3113 	__clk_free_clk(hw->clk);
3114 	hw->clk = NULL;
3115 
3116 fail_parents:
3117 	kfree(core->parents);
3118 fail_parent_names_copy:
3119 	while (--i >= 0)
3120 		kfree_const(core->parent_names[i]);
3121 	kfree(core->parent_names);
3122 fail_parent_names:
3123 fail_ops:
3124 	kfree_const(core->name);
3125 fail_name:
3126 	kfree(core);
3127 fail_out:
3128 	return ERR_PTR(ret);
3129 }
3130 EXPORT_SYMBOL_GPL(clk_register);
3131 
3132 /**
3133  * clk_hw_register - register a clk_hw and return an error code
3134  * @dev: device that is registering this clock
3135  * @hw: link to hardware-specific clock data
3136  *
3137  * clk_hw_register is the primary interface for populating the clock tree with
3138  * new clock nodes. It returns an integer equal to zero indicating success or
3139  * less than zero indicating failure. Drivers must test for an error code after
3140  * calling clk_hw_register().
3141  */
3142 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3143 {
3144 	return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3145 }
3146 EXPORT_SYMBOL_GPL(clk_hw_register);
3147 
3148 /* Free memory allocated for a clock. */
3149 static void __clk_release(struct kref *ref)
3150 {
3151 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3152 	int i = core->num_parents;
3153 
3154 	lockdep_assert_held(&prepare_lock);
3155 
3156 	kfree(core->parents);
3157 	while (--i >= 0)
3158 		kfree_const(core->parent_names[i]);
3159 
3160 	kfree(core->parent_names);
3161 	kfree_const(core->name);
3162 	kfree(core);
3163 }
3164 
3165 /*
3166  * Empty clk_ops for unregistered clocks. These are used temporarily
3167  * after clk_unregister() was called on a clock and until last clock
3168  * consumer calls clk_put() and the struct clk object is freed.
3169  */
3170 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3171 {
3172 	return -ENXIO;
3173 }
3174 
3175 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3176 {
3177 	WARN_ON_ONCE(1);
3178 }
3179 
3180 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3181 					unsigned long parent_rate)
3182 {
3183 	return -ENXIO;
3184 }
3185 
3186 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3187 {
3188 	return -ENXIO;
3189 }
3190 
3191 static const struct clk_ops clk_nodrv_ops = {
3192 	.enable		= clk_nodrv_prepare_enable,
3193 	.disable	= clk_nodrv_disable_unprepare,
3194 	.prepare	= clk_nodrv_prepare_enable,
3195 	.unprepare	= clk_nodrv_disable_unprepare,
3196 	.set_rate	= clk_nodrv_set_rate,
3197 	.set_parent	= clk_nodrv_set_parent,
3198 };
3199 
3200 /**
3201  * clk_unregister - unregister a currently registered clock
3202  * @clk: clock to unregister
3203  */
3204 void clk_unregister(struct clk *clk)
3205 {
3206 	unsigned long flags;
3207 
3208 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3209 		return;
3210 
3211 	clk_debug_unregister(clk->core);
3212 
3213 	clk_prepare_lock();
3214 
3215 	if (clk->core->ops == &clk_nodrv_ops) {
3216 		pr_err("%s: unregistered clock: %s\n", __func__,
3217 		       clk->core->name);
3218 		goto unlock;
3219 	}
3220 	/*
3221 	 * Assign empty clock ops for consumers that might still hold
3222 	 * a reference to this clock.
3223 	 */
3224 	flags = clk_enable_lock();
3225 	clk->core->ops = &clk_nodrv_ops;
3226 	clk_enable_unlock(flags);
3227 
3228 	if (!hlist_empty(&clk->core->children)) {
3229 		struct clk_core *child;
3230 		struct hlist_node *t;
3231 
3232 		/* Reparent all children to the orphan list. */
3233 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3234 					  child_node)
3235 			clk_core_set_parent_nolock(child, NULL);
3236 	}
3237 
3238 	hlist_del_init(&clk->core->child_node);
3239 
3240 	if (clk->core->prepare_count)
3241 		pr_warn("%s: unregistering prepared clock: %s\n",
3242 					__func__, clk->core->name);
3243 
3244 	if (clk->core->protect_count)
3245 		pr_warn("%s: unregistering protected clock: %s\n",
3246 					__func__, clk->core->name);
3247 
3248 	kref_put(&clk->core->ref, __clk_release);
3249 unlock:
3250 	clk_prepare_unlock();
3251 }
3252 EXPORT_SYMBOL_GPL(clk_unregister);
3253 
3254 /**
3255  * clk_hw_unregister - unregister a currently registered clk_hw
3256  * @hw: hardware-specific clock data to unregister
3257  */
3258 void clk_hw_unregister(struct clk_hw *hw)
3259 {
3260 	clk_unregister(hw->clk);
3261 }
3262 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3263 
3264 static void devm_clk_release(struct device *dev, void *res)
3265 {
3266 	clk_unregister(*(struct clk **)res);
3267 }
3268 
3269 static void devm_clk_hw_release(struct device *dev, void *res)
3270 {
3271 	clk_hw_unregister(*(struct clk_hw **)res);
3272 }
3273 
3274 /**
3275  * devm_clk_register - resource managed clk_register()
3276  * @dev: device that is registering this clock
3277  * @hw: link to hardware-specific clock data
3278  *
3279  * Managed clk_register(). Clocks returned from this function are
3280  * automatically clk_unregister()ed on driver detach. See clk_register() for
3281  * more information.
3282  */
3283 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3284 {
3285 	struct clk *clk;
3286 	struct clk **clkp;
3287 
3288 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3289 	if (!clkp)
3290 		return ERR_PTR(-ENOMEM);
3291 
3292 	clk = clk_register(dev, hw);
3293 	if (!IS_ERR(clk)) {
3294 		*clkp = clk;
3295 		devres_add(dev, clkp);
3296 	} else {
3297 		devres_free(clkp);
3298 	}
3299 
3300 	return clk;
3301 }
3302 EXPORT_SYMBOL_GPL(devm_clk_register);
3303 
3304 /**
3305  * devm_clk_hw_register - resource managed clk_hw_register()
3306  * @dev: device that is registering this clock
3307  * @hw: link to hardware-specific clock data
3308  *
3309  * Managed clk_hw_register(). Clocks registered by this function are
3310  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3311  * for more information.
3312  */
3313 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3314 {
3315 	struct clk_hw **hwp;
3316 	int ret;
3317 
3318 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3319 	if (!hwp)
3320 		return -ENOMEM;
3321 
3322 	ret = clk_hw_register(dev, hw);
3323 	if (!ret) {
3324 		*hwp = hw;
3325 		devres_add(dev, hwp);
3326 	} else {
3327 		devres_free(hwp);
3328 	}
3329 
3330 	return ret;
3331 }
3332 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3333 
3334 static int devm_clk_match(struct device *dev, void *res, void *data)
3335 {
3336 	struct clk *c = res;
3337 	if (WARN_ON(!c))
3338 		return 0;
3339 	return c == data;
3340 }
3341 
3342 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3343 {
3344 	struct clk_hw *hw = res;
3345 
3346 	if (WARN_ON(!hw))
3347 		return 0;
3348 	return hw == data;
3349 }
3350 
3351 /**
3352  * devm_clk_unregister - resource managed clk_unregister()
3353  * @clk: clock to unregister
3354  *
3355  * Deallocate a clock allocated with devm_clk_register(). Normally
3356  * this function will not need to be called and the resource management
3357  * code will ensure that the resource is freed.
3358  */
3359 void devm_clk_unregister(struct device *dev, struct clk *clk)
3360 {
3361 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3362 }
3363 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3364 
3365 /**
3366  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3367  * @dev: device that is unregistering the hardware-specific clock data
3368  * @hw: link to hardware-specific clock data
3369  *
3370  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3371  * this function will not need to be called and the resource management
3372  * code will ensure that the resource is freed.
3373  */
3374 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3375 {
3376 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3377 				hw));
3378 }
3379 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3380 
3381 /*
3382  * clkdev helpers
3383  */
3384 int __clk_get(struct clk *clk)
3385 {
3386 	struct clk_core *core = !clk ? NULL : clk->core;
3387 
3388 	if (core) {
3389 		if (!try_module_get(core->owner))
3390 			return 0;
3391 
3392 		kref_get(&core->ref);
3393 	}
3394 	return 1;
3395 }
3396 
3397 void __clk_put(struct clk *clk)
3398 {
3399 	struct module *owner;
3400 
3401 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3402 		return;
3403 
3404 	clk_prepare_lock();
3405 
3406 	/*
3407 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3408 	 * given user should be balanced with calls to clk_rate_exclusive_put()
3409 	 * and by that same consumer
3410 	 */
3411 	if (WARN_ON(clk->exclusive_count)) {
3412 		/* We voiced our concern, let's sanitize the situation */
3413 		clk->core->protect_count -= (clk->exclusive_count - 1);
3414 		clk_core_rate_unprotect(clk->core);
3415 		clk->exclusive_count = 0;
3416 	}
3417 
3418 	hlist_del(&clk->clks_node);
3419 	if (clk->min_rate > clk->core->req_rate ||
3420 	    clk->max_rate < clk->core->req_rate)
3421 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3422 
3423 	owner = clk->core->owner;
3424 	kref_put(&clk->core->ref, __clk_release);
3425 
3426 	clk_prepare_unlock();
3427 
3428 	module_put(owner);
3429 
3430 	kfree(clk);
3431 }
3432 
3433 /***        clk rate change notifiers        ***/
3434 
3435 /**
3436  * clk_notifier_register - add a clk rate change notifier
3437  * @clk: struct clk * to watch
3438  * @nb: struct notifier_block * with callback info
3439  *
3440  * Request notification when clk's rate changes.  This uses an SRCU
3441  * notifier because we want it to block and notifier unregistrations are
3442  * uncommon.  The callbacks associated with the notifier must not
3443  * re-enter into the clk framework by calling any top-level clk APIs;
3444  * this will cause a nested prepare_lock mutex.
3445  *
3446  * In all notification cases (pre, post and abort rate change) the original
3447  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3448  * and the new frequency is passed via struct clk_notifier_data.new_rate.
3449  *
3450  * clk_notifier_register() must be called from non-atomic context.
3451  * Returns -EINVAL if called with null arguments, -ENOMEM upon
3452  * allocation failure; otherwise, passes along the return value of
3453  * srcu_notifier_chain_register().
3454  */
3455 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3456 {
3457 	struct clk_notifier *cn;
3458 	int ret = -ENOMEM;
3459 
3460 	if (!clk || !nb)
3461 		return -EINVAL;
3462 
3463 	clk_prepare_lock();
3464 
3465 	/* search the list of notifiers for this clk */
3466 	list_for_each_entry(cn, &clk_notifier_list, node)
3467 		if (cn->clk == clk)
3468 			break;
3469 
3470 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
3471 	if (cn->clk != clk) {
3472 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3473 		if (!cn)
3474 			goto out;
3475 
3476 		cn->clk = clk;
3477 		srcu_init_notifier_head(&cn->notifier_head);
3478 
3479 		list_add(&cn->node, &clk_notifier_list);
3480 	}
3481 
3482 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3483 
3484 	clk->core->notifier_count++;
3485 
3486 out:
3487 	clk_prepare_unlock();
3488 
3489 	return ret;
3490 }
3491 EXPORT_SYMBOL_GPL(clk_notifier_register);
3492 
3493 /**
3494  * clk_notifier_unregister - remove a clk rate change notifier
3495  * @clk: struct clk *
3496  * @nb: struct notifier_block * with callback info
3497  *
3498  * Request no further notification for changes to 'clk' and frees memory
3499  * allocated in clk_notifier_register.
3500  *
3501  * Returns -EINVAL if called with null arguments; otherwise, passes
3502  * along the return value of srcu_notifier_chain_unregister().
3503  */
3504 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3505 {
3506 	struct clk_notifier *cn = NULL;
3507 	int ret = -EINVAL;
3508 
3509 	if (!clk || !nb)
3510 		return -EINVAL;
3511 
3512 	clk_prepare_lock();
3513 
3514 	list_for_each_entry(cn, &clk_notifier_list, node)
3515 		if (cn->clk == clk)
3516 			break;
3517 
3518 	if (cn->clk == clk) {
3519 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3520 
3521 		clk->core->notifier_count--;
3522 
3523 		/* XXX the notifier code should handle this better */
3524 		if (!cn->notifier_head.head) {
3525 			srcu_cleanup_notifier_head(&cn->notifier_head);
3526 			list_del(&cn->node);
3527 			kfree(cn);
3528 		}
3529 
3530 	} else {
3531 		ret = -ENOENT;
3532 	}
3533 
3534 	clk_prepare_unlock();
3535 
3536 	return ret;
3537 }
3538 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3539 
3540 #ifdef CONFIG_OF
3541 /**
3542  * struct of_clk_provider - Clock provider registration structure
3543  * @link: Entry in global list of clock providers
3544  * @node: Pointer to device tree node of clock provider
3545  * @get: Get clock callback.  Returns NULL or a struct clk for the
3546  *       given clock specifier
3547  * @data: context pointer to be passed into @get callback
3548  */
3549 struct of_clk_provider {
3550 	struct list_head link;
3551 
3552 	struct device_node *node;
3553 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3554 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3555 	void *data;
3556 };
3557 
3558 static const struct of_device_id __clk_of_table_sentinel
3559 	__used __section(__clk_of_table_end);
3560 
3561 static LIST_HEAD(of_clk_providers);
3562 static DEFINE_MUTEX(of_clk_mutex);
3563 
3564 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3565 				     void *data)
3566 {
3567 	return data;
3568 }
3569 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3570 
3571 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3572 {
3573 	return data;
3574 }
3575 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3576 
3577 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3578 {
3579 	struct clk_onecell_data *clk_data = data;
3580 	unsigned int idx = clkspec->args[0];
3581 
3582 	if (idx >= clk_data->clk_num) {
3583 		pr_err("%s: invalid clock index %u\n", __func__, idx);
3584 		return ERR_PTR(-EINVAL);
3585 	}
3586 
3587 	return clk_data->clks[idx];
3588 }
3589 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3590 
3591 struct clk_hw *
3592 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3593 {
3594 	struct clk_hw_onecell_data *hw_data = data;
3595 	unsigned int idx = clkspec->args[0];
3596 
3597 	if (idx >= hw_data->num) {
3598 		pr_err("%s: invalid index %u\n", __func__, idx);
3599 		return ERR_PTR(-EINVAL);
3600 	}
3601 
3602 	return hw_data->hws[idx];
3603 }
3604 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3605 
3606 /**
3607  * of_clk_add_provider() - Register a clock provider for a node
3608  * @np: Device node pointer associated with clock provider
3609  * @clk_src_get: callback for decoding clock
3610  * @data: context pointer for @clk_src_get callback.
3611  */
3612 int of_clk_add_provider(struct device_node *np,
3613 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3614 						   void *data),
3615 			void *data)
3616 {
3617 	struct of_clk_provider *cp;
3618 	int ret;
3619 
3620 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3621 	if (!cp)
3622 		return -ENOMEM;
3623 
3624 	cp->node = of_node_get(np);
3625 	cp->data = data;
3626 	cp->get = clk_src_get;
3627 
3628 	mutex_lock(&of_clk_mutex);
3629 	list_add(&cp->link, &of_clk_providers);
3630 	mutex_unlock(&of_clk_mutex);
3631 	pr_debug("Added clock from %pOF\n", np);
3632 
3633 	ret = of_clk_set_defaults(np, true);
3634 	if (ret < 0)
3635 		of_clk_del_provider(np);
3636 
3637 	return ret;
3638 }
3639 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3640 
3641 /**
3642  * of_clk_add_hw_provider() - Register a clock provider for a node
3643  * @np: Device node pointer associated with clock provider
3644  * @get: callback for decoding clk_hw
3645  * @data: context pointer for @get callback.
3646  */
3647 int of_clk_add_hw_provider(struct device_node *np,
3648 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3649 						 void *data),
3650 			   void *data)
3651 {
3652 	struct of_clk_provider *cp;
3653 	int ret;
3654 
3655 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3656 	if (!cp)
3657 		return -ENOMEM;
3658 
3659 	cp->node = of_node_get(np);
3660 	cp->data = data;
3661 	cp->get_hw = get;
3662 
3663 	mutex_lock(&of_clk_mutex);
3664 	list_add(&cp->link, &of_clk_providers);
3665 	mutex_unlock(&of_clk_mutex);
3666 	pr_debug("Added clk_hw provider from %pOF\n", np);
3667 
3668 	ret = of_clk_set_defaults(np, true);
3669 	if (ret < 0)
3670 		of_clk_del_provider(np);
3671 
3672 	return ret;
3673 }
3674 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3675 
3676 static void devm_of_clk_release_provider(struct device *dev, void *res)
3677 {
3678 	of_clk_del_provider(*(struct device_node **)res);
3679 }
3680 
3681 int devm_of_clk_add_hw_provider(struct device *dev,
3682 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3683 					      void *data),
3684 			void *data)
3685 {
3686 	struct device_node **ptr, *np;
3687 	int ret;
3688 
3689 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3690 			   GFP_KERNEL);
3691 	if (!ptr)
3692 		return -ENOMEM;
3693 
3694 	np = dev->of_node;
3695 	ret = of_clk_add_hw_provider(np, get, data);
3696 	if (!ret) {
3697 		*ptr = np;
3698 		devres_add(dev, ptr);
3699 	} else {
3700 		devres_free(ptr);
3701 	}
3702 
3703 	return ret;
3704 }
3705 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3706 
3707 /**
3708  * of_clk_del_provider() - Remove a previously registered clock provider
3709  * @np: Device node pointer associated with clock provider
3710  */
3711 void of_clk_del_provider(struct device_node *np)
3712 {
3713 	struct of_clk_provider *cp;
3714 
3715 	mutex_lock(&of_clk_mutex);
3716 	list_for_each_entry(cp, &of_clk_providers, link) {
3717 		if (cp->node == np) {
3718 			list_del(&cp->link);
3719 			of_node_put(cp->node);
3720 			kfree(cp);
3721 			break;
3722 		}
3723 	}
3724 	mutex_unlock(&of_clk_mutex);
3725 }
3726 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3727 
3728 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3729 {
3730 	struct device_node **np = res;
3731 
3732 	if (WARN_ON(!np || !*np))
3733 		return 0;
3734 
3735 	return *np == data;
3736 }
3737 
3738 void devm_of_clk_del_provider(struct device *dev)
3739 {
3740 	int ret;
3741 
3742 	ret = devres_release(dev, devm_of_clk_release_provider,
3743 			     devm_clk_provider_match, dev->of_node);
3744 
3745 	WARN_ON(ret);
3746 }
3747 EXPORT_SYMBOL(devm_of_clk_del_provider);
3748 
3749 static struct clk_hw *
3750 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3751 			      struct of_phandle_args *clkspec)
3752 {
3753 	struct clk *clk;
3754 
3755 	if (provider->get_hw)
3756 		return provider->get_hw(clkspec, provider->data);
3757 
3758 	clk = provider->get(clkspec, provider->data);
3759 	if (IS_ERR(clk))
3760 		return ERR_CAST(clk);
3761 	return __clk_get_hw(clk);
3762 }
3763 
3764 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3765 				       const char *dev_id, const char *con_id)
3766 {
3767 	struct of_clk_provider *provider;
3768 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3769 	struct clk_hw *hw;
3770 
3771 	if (!clkspec)
3772 		return ERR_PTR(-EINVAL);
3773 
3774 	/* Check if we have such a provider in our array */
3775 	mutex_lock(&of_clk_mutex);
3776 	list_for_each_entry(provider, &of_clk_providers, link) {
3777 		if (provider->node == clkspec->np) {
3778 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
3779 			clk = __clk_create_clk(hw, dev_id, con_id);
3780 		}
3781 
3782 		if (!IS_ERR(clk)) {
3783 			if (!__clk_get(clk)) {
3784 				__clk_free_clk(clk);
3785 				clk = ERR_PTR(-ENOENT);
3786 			}
3787 
3788 			break;
3789 		}
3790 	}
3791 	mutex_unlock(&of_clk_mutex);
3792 
3793 	return clk;
3794 }
3795 
3796 /**
3797  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3798  * @clkspec: pointer to a clock specifier data structure
3799  *
3800  * This function looks up a struct clk from the registered list of clock
3801  * providers, an input is a clock specifier data structure as returned
3802  * from the of_parse_phandle_with_args() function call.
3803  */
3804 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3805 {
3806 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3807 }
3808 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3809 
3810 /**
3811  * of_clk_get_parent_count() - Count the number of clocks a device node has
3812  * @np: device node to count
3813  *
3814  * Returns: The number of clocks that are possible parents of this node
3815  */
3816 unsigned int of_clk_get_parent_count(struct device_node *np)
3817 {
3818 	int count;
3819 
3820 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3821 	if (count < 0)
3822 		return 0;
3823 
3824 	return count;
3825 }
3826 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3827 
3828 const char *of_clk_get_parent_name(struct device_node *np, int index)
3829 {
3830 	struct of_phandle_args clkspec;
3831 	struct property *prop;
3832 	const char *clk_name;
3833 	const __be32 *vp;
3834 	u32 pv;
3835 	int rc;
3836 	int count;
3837 	struct clk *clk;
3838 
3839 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3840 					&clkspec);
3841 	if (rc)
3842 		return NULL;
3843 
3844 	index = clkspec.args_count ? clkspec.args[0] : 0;
3845 	count = 0;
3846 
3847 	/* if there is an indices property, use it to transfer the index
3848 	 * specified into an array offset for the clock-output-names property.
3849 	 */
3850 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3851 		if (index == pv) {
3852 			index = count;
3853 			break;
3854 		}
3855 		count++;
3856 	}
3857 	/* We went off the end of 'clock-indices' without finding it */
3858 	if (prop && !vp)
3859 		return NULL;
3860 
3861 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3862 					  index,
3863 					  &clk_name) < 0) {
3864 		/*
3865 		 * Best effort to get the name if the clock has been
3866 		 * registered with the framework. If the clock isn't
3867 		 * registered, we return the node name as the name of
3868 		 * the clock as long as #clock-cells = 0.
3869 		 */
3870 		clk = of_clk_get_from_provider(&clkspec);
3871 		if (IS_ERR(clk)) {
3872 			if (clkspec.args_count == 0)
3873 				clk_name = clkspec.np->name;
3874 			else
3875 				clk_name = NULL;
3876 		} else {
3877 			clk_name = __clk_get_name(clk);
3878 			clk_put(clk);
3879 		}
3880 	}
3881 
3882 
3883 	of_node_put(clkspec.np);
3884 	return clk_name;
3885 }
3886 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3887 
3888 /**
3889  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3890  * number of parents
3891  * @np: Device node pointer associated with clock provider
3892  * @parents: pointer to char array that hold the parents' names
3893  * @size: size of the @parents array
3894  *
3895  * Return: number of parents for the clock node.
3896  */
3897 int of_clk_parent_fill(struct device_node *np, const char **parents,
3898 		       unsigned int size)
3899 {
3900 	unsigned int i = 0;
3901 
3902 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3903 		i++;
3904 
3905 	return i;
3906 }
3907 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3908 
3909 struct clock_provider {
3910 	of_clk_init_cb_t clk_init_cb;
3911 	struct device_node *np;
3912 	struct list_head node;
3913 };
3914 
3915 /*
3916  * This function looks for a parent clock. If there is one, then it
3917  * checks that the provider for this parent clock was initialized, in
3918  * this case the parent clock will be ready.
3919  */
3920 static int parent_ready(struct device_node *np)
3921 {
3922 	int i = 0;
3923 
3924 	while (true) {
3925 		struct clk *clk = of_clk_get(np, i);
3926 
3927 		/* this parent is ready we can check the next one */
3928 		if (!IS_ERR(clk)) {
3929 			clk_put(clk);
3930 			i++;
3931 			continue;
3932 		}
3933 
3934 		/* at least one parent is not ready, we exit now */
3935 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3936 			return 0;
3937 
3938 		/*
3939 		 * Here we make assumption that the device tree is
3940 		 * written correctly. So an error means that there is
3941 		 * no more parent. As we didn't exit yet, then the
3942 		 * previous parent are ready. If there is no clock
3943 		 * parent, no need to wait for them, then we can
3944 		 * consider their absence as being ready
3945 		 */
3946 		return 1;
3947 	}
3948 }
3949 
3950 /**
3951  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3952  * @np: Device node pointer associated with clock provider
3953  * @index: clock index
3954  * @flags: pointer to top-level framework flags
3955  *
3956  * Detects if the clock-critical property exists and, if so, sets the
3957  * corresponding CLK_IS_CRITICAL flag.
3958  *
3959  * Do not use this function. It exists only for legacy Device Tree
3960  * bindings, such as the one-clock-per-node style that are outdated.
3961  * Those bindings typically put all clock data into .dts and the Linux
3962  * driver has no clock data, thus making it impossible to set this flag
3963  * correctly from the driver. Only those drivers may call
3964  * of_clk_detect_critical from their setup functions.
3965  *
3966  * Return: error code or zero on success
3967  */
3968 int of_clk_detect_critical(struct device_node *np,
3969 					  int index, unsigned long *flags)
3970 {
3971 	struct property *prop;
3972 	const __be32 *cur;
3973 	uint32_t idx;
3974 
3975 	if (!np || !flags)
3976 		return -EINVAL;
3977 
3978 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3979 		if (index == idx)
3980 			*flags |= CLK_IS_CRITICAL;
3981 
3982 	return 0;
3983 }
3984 
3985 /**
3986  * of_clk_init() - Scan and init clock providers from the DT
3987  * @matches: array of compatible values and init functions for providers.
3988  *
3989  * This function scans the device tree for matching clock providers
3990  * and calls their initialization functions. It also does it by trying
3991  * to follow the dependencies.
3992  */
3993 void __init of_clk_init(const struct of_device_id *matches)
3994 {
3995 	const struct of_device_id *match;
3996 	struct device_node *np;
3997 	struct clock_provider *clk_provider, *next;
3998 	bool is_init_done;
3999 	bool force = false;
4000 	LIST_HEAD(clk_provider_list);
4001 
4002 	if (!matches)
4003 		matches = &__clk_of_table;
4004 
4005 	/* First prepare the list of the clocks providers */
4006 	for_each_matching_node_and_match(np, matches, &match) {
4007 		struct clock_provider *parent;
4008 
4009 		if (!of_device_is_available(np))
4010 			continue;
4011 
4012 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4013 		if (!parent) {
4014 			list_for_each_entry_safe(clk_provider, next,
4015 						 &clk_provider_list, node) {
4016 				list_del(&clk_provider->node);
4017 				of_node_put(clk_provider->np);
4018 				kfree(clk_provider);
4019 			}
4020 			of_node_put(np);
4021 			return;
4022 		}
4023 
4024 		parent->clk_init_cb = match->data;
4025 		parent->np = of_node_get(np);
4026 		list_add_tail(&parent->node, &clk_provider_list);
4027 	}
4028 
4029 	while (!list_empty(&clk_provider_list)) {
4030 		is_init_done = false;
4031 		list_for_each_entry_safe(clk_provider, next,
4032 					&clk_provider_list, node) {
4033 			if (force || parent_ready(clk_provider->np)) {
4034 
4035 				/* Don't populate platform devices */
4036 				of_node_set_flag(clk_provider->np,
4037 						 OF_POPULATED);
4038 
4039 				clk_provider->clk_init_cb(clk_provider->np);
4040 				of_clk_set_defaults(clk_provider->np, true);
4041 
4042 				list_del(&clk_provider->node);
4043 				of_node_put(clk_provider->np);
4044 				kfree(clk_provider);
4045 				is_init_done = true;
4046 			}
4047 		}
4048 
4049 		/*
4050 		 * We didn't manage to initialize any of the
4051 		 * remaining providers during the last loop, so now we
4052 		 * initialize all the remaining ones unconditionally
4053 		 * in case the clock parent was not mandatory
4054 		 */
4055 		if (!is_init_done)
4056 			force = true;
4057 	}
4058 }
4059 #endif
4060