xref: /openbmc/linux/drivers/clk/clk.c (revision 46a73e9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	return ret < 0 ? ret : 0;
118 }
119 
120 static void clk_pm_runtime_put(struct clk_core *core)
121 {
122 	if (!core->rpm_enabled)
123 		return;
124 
125 	pm_runtime_put_sync(core->dev);
126 }
127 
128 /***           locking             ***/
129 static void clk_prepare_lock(void)
130 {
131 	if (!mutex_trylock(&prepare_lock)) {
132 		if (prepare_owner == current) {
133 			prepare_refcnt++;
134 			return;
135 		}
136 		mutex_lock(&prepare_lock);
137 	}
138 	WARN_ON_ONCE(prepare_owner != NULL);
139 	WARN_ON_ONCE(prepare_refcnt != 0);
140 	prepare_owner = current;
141 	prepare_refcnt = 1;
142 }
143 
144 static void clk_prepare_unlock(void)
145 {
146 	WARN_ON_ONCE(prepare_owner != current);
147 	WARN_ON_ONCE(prepare_refcnt == 0);
148 
149 	if (--prepare_refcnt)
150 		return;
151 	prepare_owner = NULL;
152 	mutex_unlock(&prepare_lock);
153 }
154 
155 static unsigned long clk_enable_lock(void)
156 	__acquires(enable_lock)
157 {
158 	unsigned long flags;
159 
160 	/*
161 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
162 	 * we already hold the lock. So, in that case, we rely only on
163 	 * reference counting.
164 	 */
165 	if (!IS_ENABLED(CONFIG_SMP) ||
166 	    !spin_trylock_irqsave(&enable_lock, flags)) {
167 		if (enable_owner == current) {
168 			enable_refcnt++;
169 			__acquire(enable_lock);
170 			if (!IS_ENABLED(CONFIG_SMP))
171 				local_save_flags(flags);
172 			return flags;
173 		}
174 		spin_lock_irqsave(&enable_lock, flags);
175 	}
176 	WARN_ON_ONCE(enable_owner != NULL);
177 	WARN_ON_ONCE(enable_refcnt != 0);
178 	enable_owner = current;
179 	enable_refcnt = 1;
180 	return flags;
181 }
182 
183 static void clk_enable_unlock(unsigned long flags)
184 	__releases(enable_lock)
185 {
186 	WARN_ON_ONCE(enable_owner != current);
187 	WARN_ON_ONCE(enable_refcnt == 0);
188 
189 	if (--enable_refcnt) {
190 		__release(enable_lock);
191 		return;
192 	}
193 	enable_owner = NULL;
194 	spin_unlock_irqrestore(&enable_lock, flags);
195 }
196 
197 static bool clk_core_rate_is_protected(struct clk_core *core)
198 {
199 	return core->protect_count;
200 }
201 
202 static bool clk_core_is_prepared(struct clk_core *core)
203 {
204 	bool ret = false;
205 
206 	/*
207 	 * .is_prepared is optional for clocks that can prepare
208 	 * fall back to software usage counter if it is missing
209 	 */
210 	if (!core->ops->is_prepared)
211 		return core->prepare_count;
212 
213 	if (!clk_pm_runtime_get(core)) {
214 		ret = core->ops->is_prepared(core->hw);
215 		clk_pm_runtime_put(core);
216 	}
217 
218 	return ret;
219 }
220 
221 static bool clk_core_is_enabled(struct clk_core *core)
222 {
223 	bool ret = false;
224 
225 	/*
226 	 * .is_enabled is only mandatory for clocks that gate
227 	 * fall back to software usage counter if .is_enabled is missing
228 	 */
229 	if (!core->ops->is_enabled)
230 		return core->enable_count;
231 
232 	/*
233 	 * Check if clock controller's device is runtime active before
234 	 * calling .is_enabled callback. If not, assume that clock is
235 	 * disabled, because we might be called from atomic context, from
236 	 * which pm_runtime_get() is not allowed.
237 	 * This function is called mainly from clk_disable_unused_subtree,
238 	 * which ensures proper runtime pm activation of controller before
239 	 * taking enable spinlock, but the below check is needed if one tries
240 	 * to call it from other places.
241 	 */
242 	if (core->rpm_enabled) {
243 		pm_runtime_get_noresume(core->dev);
244 		if (!pm_runtime_active(core->dev)) {
245 			ret = false;
246 			goto done;
247 		}
248 	}
249 
250 	ret = core->ops->is_enabled(core->hw);
251 done:
252 	if (core->rpm_enabled)
253 		pm_runtime_put(core->dev);
254 
255 	return ret;
256 }
257 
258 /***    helper functions   ***/
259 
260 const char *__clk_get_name(const struct clk *clk)
261 {
262 	return !clk ? NULL : clk->core->name;
263 }
264 EXPORT_SYMBOL_GPL(__clk_get_name);
265 
266 const char *clk_hw_get_name(const struct clk_hw *hw)
267 {
268 	return hw->core->name;
269 }
270 EXPORT_SYMBOL_GPL(clk_hw_get_name);
271 
272 struct clk_hw *__clk_get_hw(struct clk *clk)
273 {
274 	return !clk ? NULL : clk->core->hw;
275 }
276 EXPORT_SYMBOL_GPL(__clk_get_hw);
277 
278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
279 {
280 	return hw->core->num_parents;
281 }
282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
283 
284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
285 {
286 	return hw->core->parent ? hw->core->parent->hw : NULL;
287 }
288 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
289 
290 static struct clk_core *__clk_lookup_subtree(const char *name,
291 					     struct clk_core *core)
292 {
293 	struct clk_core *child;
294 	struct clk_core *ret;
295 
296 	if (!strcmp(core->name, name))
297 		return core;
298 
299 	hlist_for_each_entry(child, &core->children, child_node) {
300 		ret = __clk_lookup_subtree(name, child);
301 		if (ret)
302 			return ret;
303 	}
304 
305 	return NULL;
306 }
307 
308 static struct clk_core *clk_core_lookup(const char *name)
309 {
310 	struct clk_core *root_clk;
311 	struct clk_core *ret;
312 
313 	if (!name)
314 		return NULL;
315 
316 	/* search the 'proper' clk tree first */
317 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
318 		ret = __clk_lookup_subtree(name, root_clk);
319 		if (ret)
320 			return ret;
321 	}
322 
323 	/* if not found, then search the orphan tree */
324 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
325 		ret = __clk_lookup_subtree(name, root_clk);
326 		if (ret)
327 			return ret;
328 	}
329 
330 	return NULL;
331 }
332 
333 #ifdef CONFIG_OF
334 static int of_parse_clkspec(const struct device_node *np, int index,
335 			    const char *name, struct of_phandle_args *out_args);
336 static struct clk_hw *
337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
338 #else
339 static inline int of_parse_clkspec(const struct device_node *np, int index,
340 				   const char *name,
341 				   struct of_phandle_args *out_args)
342 {
343 	return -ENOENT;
344 }
345 static inline struct clk_hw *
346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
347 {
348 	return ERR_PTR(-ENOENT);
349 }
350 #endif
351 
352 /**
353  * clk_core_get - Find the clk_core parent of a clk
354  * @core: clk to find parent of
355  * @p_index: parent index to search for
356  *
357  * This is the preferred method for clk providers to find the parent of a
358  * clk when that parent is external to the clk controller. The parent_names
359  * array is indexed and treated as a local name matching a string in the device
360  * node's 'clock-names' property or as the 'con_id' matching the device's
361  * dev_name() in a clk_lookup. This allows clk providers to use their own
362  * namespace instead of looking for a globally unique parent string.
363  *
364  * For example the following DT snippet would allow a clock registered by the
365  * clock-controller@c001 that has a clk_init_data::parent_data array
366  * with 'xtal' in the 'name' member to find the clock provided by the
367  * clock-controller@f00abcd without needing to get the globally unique name of
368  * the xtal clk.
369  *
370  *      parent: clock-controller@f00abcd {
371  *              reg = <0xf00abcd 0xabcd>;
372  *              #clock-cells = <0>;
373  *      };
374  *
375  *      clock-controller@c001 {
376  *              reg = <0xc001 0xf00d>;
377  *              clocks = <&parent>;
378  *              clock-names = "xtal";
379  *              #clock-cells = <1>;
380  *      };
381  *
382  * Returns: -ENOENT when the provider can't be found or the clk doesn't
383  * exist in the provider or the name can't be found in the DT node or
384  * in a clkdev lookup. NULL when the provider knows about the clk but it
385  * isn't provided on this system.
386  * A valid clk_core pointer when the clk can be found in the provider.
387  */
388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
389 {
390 	const char *name = core->parents[p_index].fw_name;
391 	int index = core->parents[p_index].index;
392 	struct clk_hw *hw = ERR_PTR(-ENOENT);
393 	struct device *dev = core->dev;
394 	const char *dev_id = dev ? dev_name(dev) : NULL;
395 	struct device_node *np = core->of_node;
396 	struct of_phandle_args clkspec;
397 
398 	if (np && (name || index >= 0) &&
399 	    !of_parse_clkspec(np, index, name, &clkspec)) {
400 		hw = of_clk_get_hw_from_clkspec(&clkspec);
401 		of_node_put(clkspec.np);
402 	} else if (name) {
403 		/*
404 		 * If the DT search above couldn't find the provider fallback to
405 		 * looking up via clkdev based clk_lookups.
406 		 */
407 		hw = clk_find_hw(dev_id, name);
408 	}
409 
410 	if (IS_ERR(hw))
411 		return ERR_CAST(hw);
412 
413 	return hw->core;
414 }
415 
416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
417 {
418 	struct clk_parent_map *entry = &core->parents[index];
419 	struct clk_core *parent = ERR_PTR(-ENOENT);
420 
421 	if (entry->hw) {
422 		parent = entry->hw->core;
423 		/*
424 		 * We have a direct reference but it isn't registered yet?
425 		 * Orphan it and let clk_reparent() update the orphan status
426 		 * when the parent is registered.
427 		 */
428 		if (!parent)
429 			parent = ERR_PTR(-EPROBE_DEFER);
430 	} else {
431 		parent = clk_core_get(core, index);
432 		if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name)
433 			parent = clk_core_lookup(entry->name);
434 	}
435 
436 	/* Only cache it if it's not an error */
437 	if (!IS_ERR(parent))
438 		entry->core = parent;
439 }
440 
441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
442 							 u8 index)
443 {
444 	if (!core || index >= core->num_parents || !core->parents)
445 		return NULL;
446 
447 	if (!core->parents[index].core)
448 		clk_core_fill_parent_index(core, index);
449 
450 	return core->parents[index].core;
451 }
452 
453 struct clk_hw *
454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
455 {
456 	struct clk_core *parent;
457 
458 	parent = clk_core_get_parent_by_index(hw->core, index);
459 
460 	return !parent ? NULL : parent->hw;
461 }
462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
463 
464 unsigned int __clk_get_enable_count(struct clk *clk)
465 {
466 	return !clk ? 0 : clk->core->enable_count;
467 }
468 
469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
470 {
471 	if (!core)
472 		return 0;
473 
474 	if (!core->num_parents || core->parent)
475 		return core->rate;
476 
477 	/*
478 	 * Clk must have a parent because num_parents > 0 but the parent isn't
479 	 * known yet. Best to return 0 as the rate of this clk until we can
480 	 * properly recalc the rate based on the parent's rate.
481 	 */
482 	return 0;
483 }
484 
485 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
486 {
487 	return clk_core_get_rate_nolock(hw->core);
488 }
489 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
490 
491 static unsigned long __clk_get_accuracy(struct clk_core *core)
492 {
493 	if (!core)
494 		return 0;
495 
496 	return core->accuracy;
497 }
498 
499 unsigned long __clk_get_flags(struct clk *clk)
500 {
501 	return !clk ? 0 : clk->core->flags;
502 }
503 EXPORT_SYMBOL_GPL(__clk_get_flags);
504 
505 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
506 {
507 	return hw->core->flags;
508 }
509 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
510 
511 bool clk_hw_is_prepared(const struct clk_hw *hw)
512 {
513 	return clk_core_is_prepared(hw->core);
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
516 
517 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
518 {
519 	return clk_core_rate_is_protected(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
522 
523 bool clk_hw_is_enabled(const struct clk_hw *hw)
524 {
525 	return clk_core_is_enabled(hw->core);
526 }
527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
528 
529 bool __clk_is_enabled(struct clk *clk)
530 {
531 	if (!clk)
532 		return false;
533 
534 	return clk_core_is_enabled(clk->core);
535 }
536 EXPORT_SYMBOL_GPL(__clk_is_enabled);
537 
538 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
539 			   unsigned long best, unsigned long flags)
540 {
541 	if (flags & CLK_MUX_ROUND_CLOSEST)
542 		return abs(now - rate) < abs(best - rate);
543 
544 	return now <= rate && now > best;
545 }
546 
547 int clk_mux_determine_rate_flags(struct clk_hw *hw,
548 				 struct clk_rate_request *req,
549 				 unsigned long flags)
550 {
551 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
552 	int i, num_parents, ret;
553 	unsigned long best = 0;
554 	struct clk_rate_request parent_req = *req;
555 
556 	/* if NO_REPARENT flag set, pass through to current parent */
557 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
558 		parent = core->parent;
559 		if (core->flags & CLK_SET_RATE_PARENT) {
560 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
561 						   &parent_req);
562 			if (ret)
563 				return ret;
564 
565 			best = parent_req.rate;
566 		} else if (parent) {
567 			best = clk_core_get_rate_nolock(parent);
568 		} else {
569 			best = clk_core_get_rate_nolock(core);
570 		}
571 
572 		goto out;
573 	}
574 
575 	/* find the parent that can provide the fastest rate <= rate */
576 	num_parents = core->num_parents;
577 	for (i = 0; i < num_parents; i++) {
578 		parent = clk_core_get_parent_by_index(core, i);
579 		if (!parent)
580 			continue;
581 
582 		if (core->flags & CLK_SET_RATE_PARENT) {
583 			parent_req = *req;
584 			ret = __clk_determine_rate(parent->hw, &parent_req);
585 			if (ret)
586 				continue;
587 		} else {
588 			parent_req.rate = clk_core_get_rate_nolock(parent);
589 		}
590 
591 		if (mux_is_better_rate(req->rate, parent_req.rate,
592 				       best, flags)) {
593 			best_parent = parent;
594 			best = parent_req.rate;
595 		}
596 	}
597 
598 	if (!best_parent)
599 		return -EINVAL;
600 
601 out:
602 	if (best_parent)
603 		req->best_parent_hw = best_parent->hw;
604 	req->best_parent_rate = best;
605 	req->rate = best;
606 
607 	return 0;
608 }
609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
610 
611 struct clk *__clk_lookup(const char *name)
612 {
613 	struct clk_core *core = clk_core_lookup(name);
614 
615 	return !core ? NULL : core->hw->clk;
616 }
617 
618 static void clk_core_get_boundaries(struct clk_core *core,
619 				    unsigned long *min_rate,
620 				    unsigned long *max_rate)
621 {
622 	struct clk *clk_user;
623 
624 	lockdep_assert_held(&prepare_lock);
625 
626 	*min_rate = core->min_rate;
627 	*max_rate = core->max_rate;
628 
629 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
630 		*min_rate = max(*min_rate, clk_user->min_rate);
631 
632 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
633 		*max_rate = min(*max_rate, clk_user->max_rate);
634 }
635 
636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
637 			   unsigned long max_rate)
638 {
639 	hw->core->min_rate = min_rate;
640 	hw->core->max_rate = max_rate;
641 }
642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
643 
644 /*
645  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
646  * @hw: mux type clk to determine rate on
647  * @req: rate request, also used to return preferred parent and frequencies
648  *
649  * Helper for finding best parent to provide a given frequency. This can be used
650  * directly as a determine_rate callback (e.g. for a mux), or from a more
651  * complex clock that may combine a mux with other operations.
652  *
653  * Returns: 0 on success, -EERROR value on error
654  */
655 int __clk_mux_determine_rate(struct clk_hw *hw,
656 			     struct clk_rate_request *req)
657 {
658 	return clk_mux_determine_rate_flags(hw, req, 0);
659 }
660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
661 
662 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
663 				     struct clk_rate_request *req)
664 {
665 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
666 }
667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
668 
669 /***        clk api        ***/
670 
671 static void clk_core_rate_unprotect(struct clk_core *core)
672 {
673 	lockdep_assert_held(&prepare_lock);
674 
675 	if (!core)
676 		return;
677 
678 	if (WARN(core->protect_count == 0,
679 	    "%s already unprotected\n", core->name))
680 		return;
681 
682 	if (--core->protect_count > 0)
683 		return;
684 
685 	clk_core_rate_unprotect(core->parent);
686 }
687 
688 static int clk_core_rate_nuke_protect(struct clk_core *core)
689 {
690 	int ret;
691 
692 	lockdep_assert_held(&prepare_lock);
693 
694 	if (!core)
695 		return -EINVAL;
696 
697 	if (core->protect_count == 0)
698 		return 0;
699 
700 	ret = core->protect_count;
701 	core->protect_count = 1;
702 	clk_core_rate_unprotect(core);
703 
704 	return ret;
705 }
706 
707 /**
708  * clk_rate_exclusive_put - release exclusivity over clock rate control
709  * @clk: the clk over which the exclusivity is released
710  *
711  * clk_rate_exclusive_put() completes a critical section during which a clock
712  * consumer cannot tolerate any other consumer making any operation on the
713  * clock which could result in a rate change or rate glitch. Exclusive clocks
714  * cannot have their rate changed, either directly or indirectly due to changes
715  * further up the parent chain of clocks. As a result, clocks up parent chain
716  * also get under exclusive control of the calling consumer.
717  *
718  * If exlusivity is claimed more than once on clock, even by the same consumer,
719  * the rate effectively gets locked as exclusivity can't be preempted.
720  *
721  * Calls to clk_rate_exclusive_put() must be balanced with calls to
722  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
723  * error status.
724  */
725 void clk_rate_exclusive_put(struct clk *clk)
726 {
727 	if (!clk)
728 		return;
729 
730 	clk_prepare_lock();
731 
732 	/*
733 	 * if there is something wrong with this consumer protect count, stop
734 	 * here before messing with the provider
735 	 */
736 	if (WARN_ON(clk->exclusive_count <= 0))
737 		goto out;
738 
739 	clk_core_rate_unprotect(clk->core);
740 	clk->exclusive_count--;
741 out:
742 	clk_prepare_unlock();
743 }
744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
745 
746 static void clk_core_rate_protect(struct clk_core *core)
747 {
748 	lockdep_assert_held(&prepare_lock);
749 
750 	if (!core)
751 		return;
752 
753 	if (core->protect_count == 0)
754 		clk_core_rate_protect(core->parent);
755 
756 	core->protect_count++;
757 }
758 
759 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
760 {
761 	lockdep_assert_held(&prepare_lock);
762 
763 	if (!core)
764 		return;
765 
766 	if (count == 0)
767 		return;
768 
769 	clk_core_rate_protect(core);
770 	core->protect_count = count;
771 }
772 
773 /**
774  * clk_rate_exclusive_get - get exclusivity over the clk rate control
775  * @clk: the clk over which the exclusity of rate control is requested
776  *
777  * clk_rate_exlusive_get() begins a critical section during which a clock
778  * consumer cannot tolerate any other consumer making any operation on the
779  * clock which could result in a rate change or rate glitch. Exclusive clocks
780  * cannot have their rate changed, either directly or indirectly due to changes
781  * further up the parent chain of clocks. As a result, clocks up parent chain
782  * also get under exclusive control of the calling consumer.
783  *
784  * If exlusivity is claimed more than once on clock, even by the same consumer,
785  * the rate effectively gets locked as exclusivity can't be preempted.
786  *
787  * Calls to clk_rate_exclusive_get() should be balanced with calls to
788  * clk_rate_exclusive_put(). Calls to this function may sleep.
789  * Returns 0 on success, -EERROR otherwise
790  */
791 int clk_rate_exclusive_get(struct clk *clk)
792 {
793 	if (!clk)
794 		return 0;
795 
796 	clk_prepare_lock();
797 	clk_core_rate_protect(clk->core);
798 	clk->exclusive_count++;
799 	clk_prepare_unlock();
800 
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
804 
805 static void clk_core_unprepare(struct clk_core *core)
806 {
807 	lockdep_assert_held(&prepare_lock);
808 
809 	if (!core)
810 		return;
811 
812 	if (WARN(core->prepare_count == 0,
813 	    "%s already unprepared\n", core->name))
814 		return;
815 
816 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
817 	    "Unpreparing critical %s\n", core->name))
818 		return;
819 
820 	if (core->flags & CLK_SET_RATE_GATE)
821 		clk_core_rate_unprotect(core);
822 
823 	if (--core->prepare_count > 0)
824 		return;
825 
826 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
827 
828 	trace_clk_unprepare(core);
829 
830 	if (core->ops->unprepare)
831 		core->ops->unprepare(core->hw);
832 
833 	clk_pm_runtime_put(core);
834 
835 	trace_clk_unprepare_complete(core);
836 	clk_core_unprepare(core->parent);
837 }
838 
839 static void clk_core_unprepare_lock(struct clk_core *core)
840 {
841 	clk_prepare_lock();
842 	clk_core_unprepare(core);
843 	clk_prepare_unlock();
844 }
845 
846 /**
847  * clk_unprepare - undo preparation of a clock source
848  * @clk: the clk being unprepared
849  *
850  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
851  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
852  * if the operation may sleep.  One example is a clk which is accessed over
853  * I2c.  In the complex case a clk gate operation may require a fast and a slow
854  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
855  * exclusive.  In fact clk_disable must be called before clk_unprepare.
856  */
857 void clk_unprepare(struct clk *clk)
858 {
859 	if (IS_ERR_OR_NULL(clk))
860 		return;
861 
862 	clk_core_unprepare_lock(clk->core);
863 }
864 EXPORT_SYMBOL_GPL(clk_unprepare);
865 
866 static int clk_core_prepare(struct clk_core *core)
867 {
868 	int ret = 0;
869 
870 	lockdep_assert_held(&prepare_lock);
871 
872 	if (!core)
873 		return 0;
874 
875 	if (core->prepare_count == 0) {
876 		ret = clk_pm_runtime_get(core);
877 		if (ret)
878 			return ret;
879 
880 		ret = clk_core_prepare(core->parent);
881 		if (ret)
882 			goto runtime_put;
883 
884 		trace_clk_prepare(core);
885 
886 		if (core->ops->prepare)
887 			ret = core->ops->prepare(core->hw);
888 
889 		trace_clk_prepare_complete(core);
890 
891 		if (ret)
892 			goto unprepare;
893 	}
894 
895 	core->prepare_count++;
896 
897 	/*
898 	 * CLK_SET_RATE_GATE is a special case of clock protection
899 	 * Instead of a consumer claiming exclusive rate control, it is
900 	 * actually the provider which prevents any consumer from making any
901 	 * operation which could result in a rate change or rate glitch while
902 	 * the clock is prepared.
903 	 */
904 	if (core->flags & CLK_SET_RATE_GATE)
905 		clk_core_rate_protect(core);
906 
907 	return 0;
908 unprepare:
909 	clk_core_unprepare(core->parent);
910 runtime_put:
911 	clk_pm_runtime_put(core);
912 	return ret;
913 }
914 
915 static int clk_core_prepare_lock(struct clk_core *core)
916 {
917 	int ret;
918 
919 	clk_prepare_lock();
920 	ret = clk_core_prepare(core);
921 	clk_prepare_unlock();
922 
923 	return ret;
924 }
925 
926 /**
927  * clk_prepare - prepare a clock source
928  * @clk: the clk being prepared
929  *
930  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
931  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
932  * operation may sleep.  One example is a clk which is accessed over I2c.  In
933  * the complex case a clk ungate operation may require a fast and a slow part.
934  * It is this reason that clk_prepare and clk_enable are not mutually
935  * exclusive.  In fact clk_prepare must be called before clk_enable.
936  * Returns 0 on success, -EERROR otherwise.
937  */
938 int clk_prepare(struct clk *clk)
939 {
940 	if (!clk)
941 		return 0;
942 
943 	return clk_core_prepare_lock(clk->core);
944 }
945 EXPORT_SYMBOL_GPL(clk_prepare);
946 
947 static void clk_core_disable(struct clk_core *core)
948 {
949 	lockdep_assert_held(&enable_lock);
950 
951 	if (!core)
952 		return;
953 
954 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
955 		return;
956 
957 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
958 	    "Disabling critical %s\n", core->name))
959 		return;
960 
961 	if (--core->enable_count > 0)
962 		return;
963 
964 	trace_clk_disable_rcuidle(core);
965 
966 	if (core->ops->disable)
967 		core->ops->disable(core->hw);
968 
969 	trace_clk_disable_complete_rcuidle(core);
970 
971 	clk_core_disable(core->parent);
972 }
973 
974 static void clk_core_disable_lock(struct clk_core *core)
975 {
976 	unsigned long flags;
977 
978 	flags = clk_enable_lock();
979 	clk_core_disable(core);
980 	clk_enable_unlock(flags);
981 }
982 
983 /**
984  * clk_disable - gate a clock
985  * @clk: the clk being gated
986  *
987  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
988  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
989  * clk if the operation is fast and will never sleep.  One example is a
990  * SoC-internal clk which is controlled via simple register writes.  In the
991  * complex case a clk gate operation may require a fast and a slow part.  It is
992  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
993  * In fact clk_disable must be called before clk_unprepare.
994  */
995 void clk_disable(struct clk *clk)
996 {
997 	if (IS_ERR_OR_NULL(clk))
998 		return;
999 
1000 	clk_core_disable_lock(clk->core);
1001 }
1002 EXPORT_SYMBOL_GPL(clk_disable);
1003 
1004 static int clk_core_enable(struct clk_core *core)
1005 {
1006 	int ret = 0;
1007 
1008 	lockdep_assert_held(&enable_lock);
1009 
1010 	if (!core)
1011 		return 0;
1012 
1013 	if (WARN(core->prepare_count == 0,
1014 	    "Enabling unprepared %s\n", core->name))
1015 		return -ESHUTDOWN;
1016 
1017 	if (core->enable_count == 0) {
1018 		ret = clk_core_enable(core->parent);
1019 
1020 		if (ret)
1021 			return ret;
1022 
1023 		trace_clk_enable_rcuidle(core);
1024 
1025 		if (core->ops->enable)
1026 			ret = core->ops->enable(core->hw);
1027 
1028 		trace_clk_enable_complete_rcuidle(core);
1029 
1030 		if (ret) {
1031 			clk_core_disable(core->parent);
1032 			return ret;
1033 		}
1034 	}
1035 
1036 	core->enable_count++;
1037 	return 0;
1038 }
1039 
1040 static int clk_core_enable_lock(struct clk_core *core)
1041 {
1042 	unsigned long flags;
1043 	int ret;
1044 
1045 	flags = clk_enable_lock();
1046 	ret = clk_core_enable(core);
1047 	clk_enable_unlock(flags);
1048 
1049 	return ret;
1050 }
1051 
1052 /**
1053  * clk_gate_restore_context - restore context for poweroff
1054  * @hw: the clk_hw pointer of clock whose state is to be restored
1055  *
1056  * The clock gate restore context function enables or disables
1057  * the gate clocks based on the enable_count. This is done in cases
1058  * where the clock context is lost and based on the enable_count
1059  * the clock either needs to be enabled/disabled. This
1060  * helps restore the state of gate clocks.
1061  */
1062 void clk_gate_restore_context(struct clk_hw *hw)
1063 {
1064 	struct clk_core *core = hw->core;
1065 
1066 	if (core->enable_count)
1067 		core->ops->enable(hw);
1068 	else
1069 		core->ops->disable(hw);
1070 }
1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1072 
1073 static int clk_core_save_context(struct clk_core *core)
1074 {
1075 	struct clk_core *child;
1076 	int ret = 0;
1077 
1078 	hlist_for_each_entry(child, &core->children, child_node) {
1079 		ret = clk_core_save_context(child);
1080 		if (ret < 0)
1081 			return ret;
1082 	}
1083 
1084 	if (core->ops && core->ops->save_context)
1085 		ret = core->ops->save_context(core->hw);
1086 
1087 	return ret;
1088 }
1089 
1090 static void clk_core_restore_context(struct clk_core *core)
1091 {
1092 	struct clk_core *child;
1093 
1094 	if (core->ops && core->ops->restore_context)
1095 		core->ops->restore_context(core->hw);
1096 
1097 	hlist_for_each_entry(child, &core->children, child_node)
1098 		clk_core_restore_context(child);
1099 }
1100 
1101 /**
1102  * clk_save_context - save clock context for poweroff
1103  *
1104  * Saves the context of the clock register for powerstates in which the
1105  * contents of the registers will be lost. Occurs deep within the suspend
1106  * code.  Returns 0 on success.
1107  */
1108 int clk_save_context(void)
1109 {
1110 	struct clk_core *clk;
1111 	int ret;
1112 
1113 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1114 		ret = clk_core_save_context(clk);
1115 		if (ret < 0)
1116 			return ret;
1117 	}
1118 
1119 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1120 		ret = clk_core_save_context(clk);
1121 		if (ret < 0)
1122 			return ret;
1123 	}
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(clk_save_context);
1128 
1129 /**
1130  * clk_restore_context - restore clock context after poweroff
1131  *
1132  * Restore the saved clock context upon resume.
1133  *
1134  */
1135 void clk_restore_context(void)
1136 {
1137 	struct clk_core *core;
1138 
1139 	hlist_for_each_entry(core, &clk_root_list, child_node)
1140 		clk_core_restore_context(core);
1141 
1142 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1143 		clk_core_restore_context(core);
1144 }
1145 EXPORT_SYMBOL_GPL(clk_restore_context);
1146 
1147 /**
1148  * clk_enable - ungate a clock
1149  * @clk: the clk being ungated
1150  *
1151  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1152  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1153  * if the operation will never sleep.  One example is a SoC-internal clk which
1154  * is controlled via simple register writes.  In the complex case a clk ungate
1155  * operation may require a fast and a slow part.  It is this reason that
1156  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1157  * must be called before clk_enable.  Returns 0 on success, -EERROR
1158  * otherwise.
1159  */
1160 int clk_enable(struct clk *clk)
1161 {
1162 	if (!clk)
1163 		return 0;
1164 
1165 	return clk_core_enable_lock(clk->core);
1166 }
1167 EXPORT_SYMBOL_GPL(clk_enable);
1168 
1169 static int clk_core_prepare_enable(struct clk_core *core)
1170 {
1171 	int ret;
1172 
1173 	ret = clk_core_prepare_lock(core);
1174 	if (ret)
1175 		return ret;
1176 
1177 	ret = clk_core_enable_lock(core);
1178 	if (ret)
1179 		clk_core_unprepare_lock(core);
1180 
1181 	return ret;
1182 }
1183 
1184 static void clk_core_disable_unprepare(struct clk_core *core)
1185 {
1186 	clk_core_disable_lock(core);
1187 	clk_core_unprepare_lock(core);
1188 }
1189 
1190 static void clk_unprepare_unused_subtree(struct clk_core *core)
1191 {
1192 	struct clk_core *child;
1193 
1194 	lockdep_assert_held(&prepare_lock);
1195 
1196 	hlist_for_each_entry(child, &core->children, child_node)
1197 		clk_unprepare_unused_subtree(child);
1198 
1199 	if (core->prepare_count)
1200 		return;
1201 
1202 	if (core->flags & CLK_IGNORE_UNUSED)
1203 		return;
1204 
1205 	if (clk_pm_runtime_get(core))
1206 		return;
1207 
1208 	if (clk_core_is_prepared(core)) {
1209 		trace_clk_unprepare(core);
1210 		if (core->ops->unprepare_unused)
1211 			core->ops->unprepare_unused(core->hw);
1212 		else if (core->ops->unprepare)
1213 			core->ops->unprepare(core->hw);
1214 		trace_clk_unprepare_complete(core);
1215 	}
1216 
1217 	clk_pm_runtime_put(core);
1218 }
1219 
1220 static void clk_disable_unused_subtree(struct clk_core *core)
1221 {
1222 	struct clk_core *child;
1223 	unsigned long flags;
1224 
1225 	lockdep_assert_held(&prepare_lock);
1226 
1227 	hlist_for_each_entry(child, &core->children, child_node)
1228 		clk_disable_unused_subtree(child);
1229 
1230 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1231 		clk_core_prepare_enable(core->parent);
1232 
1233 	if (clk_pm_runtime_get(core))
1234 		goto unprepare_out;
1235 
1236 	flags = clk_enable_lock();
1237 
1238 	if (core->enable_count)
1239 		goto unlock_out;
1240 
1241 	if (core->flags & CLK_IGNORE_UNUSED)
1242 		goto unlock_out;
1243 
1244 	/*
1245 	 * some gate clocks have special needs during the disable-unused
1246 	 * sequence.  call .disable_unused if available, otherwise fall
1247 	 * back to .disable
1248 	 */
1249 	if (clk_core_is_enabled(core)) {
1250 		trace_clk_disable(core);
1251 		if (core->ops->disable_unused)
1252 			core->ops->disable_unused(core->hw);
1253 		else if (core->ops->disable)
1254 			core->ops->disable(core->hw);
1255 		trace_clk_disable_complete(core);
1256 	}
1257 
1258 unlock_out:
1259 	clk_enable_unlock(flags);
1260 	clk_pm_runtime_put(core);
1261 unprepare_out:
1262 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1263 		clk_core_disable_unprepare(core->parent);
1264 }
1265 
1266 static bool clk_ignore_unused;
1267 static int __init clk_ignore_unused_setup(char *__unused)
1268 {
1269 	clk_ignore_unused = true;
1270 	return 1;
1271 }
1272 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1273 
1274 static int clk_disable_unused(void)
1275 {
1276 	struct clk_core *core;
1277 
1278 	if (clk_ignore_unused) {
1279 		pr_warn("clk: Not disabling unused clocks\n");
1280 		return 0;
1281 	}
1282 
1283 	clk_prepare_lock();
1284 
1285 	hlist_for_each_entry(core, &clk_root_list, child_node)
1286 		clk_disable_unused_subtree(core);
1287 
1288 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1289 		clk_disable_unused_subtree(core);
1290 
1291 	hlist_for_each_entry(core, &clk_root_list, child_node)
1292 		clk_unprepare_unused_subtree(core);
1293 
1294 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1295 		clk_unprepare_unused_subtree(core);
1296 
1297 	clk_prepare_unlock();
1298 
1299 	return 0;
1300 }
1301 late_initcall_sync(clk_disable_unused);
1302 
1303 static int clk_core_determine_round_nolock(struct clk_core *core,
1304 					   struct clk_rate_request *req)
1305 {
1306 	long rate;
1307 
1308 	lockdep_assert_held(&prepare_lock);
1309 
1310 	if (!core)
1311 		return 0;
1312 
1313 	/*
1314 	 * At this point, core protection will be disabled if
1315 	 * - if the provider is not protected at all
1316 	 * - if the calling consumer is the only one which has exclusivity
1317 	 *   over the provider
1318 	 */
1319 	if (clk_core_rate_is_protected(core)) {
1320 		req->rate = core->rate;
1321 	} else if (core->ops->determine_rate) {
1322 		return core->ops->determine_rate(core->hw, req);
1323 	} else if (core->ops->round_rate) {
1324 		rate = core->ops->round_rate(core->hw, req->rate,
1325 					     &req->best_parent_rate);
1326 		if (rate < 0)
1327 			return rate;
1328 
1329 		req->rate = rate;
1330 	} else {
1331 		return -EINVAL;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static void clk_core_init_rate_req(struct clk_core * const core,
1338 				   struct clk_rate_request *req)
1339 {
1340 	struct clk_core *parent;
1341 
1342 	if (WARN_ON(!core || !req))
1343 		return;
1344 
1345 	parent = core->parent;
1346 	if (parent) {
1347 		req->best_parent_hw = parent->hw;
1348 		req->best_parent_rate = parent->rate;
1349 	} else {
1350 		req->best_parent_hw = NULL;
1351 		req->best_parent_rate = 0;
1352 	}
1353 }
1354 
1355 static bool clk_core_can_round(struct clk_core * const core)
1356 {
1357 	return core->ops->determine_rate || core->ops->round_rate;
1358 }
1359 
1360 static int clk_core_round_rate_nolock(struct clk_core *core,
1361 				      struct clk_rate_request *req)
1362 {
1363 	lockdep_assert_held(&prepare_lock);
1364 
1365 	if (!core) {
1366 		req->rate = 0;
1367 		return 0;
1368 	}
1369 
1370 	clk_core_init_rate_req(core, req);
1371 
1372 	if (clk_core_can_round(core))
1373 		return clk_core_determine_round_nolock(core, req);
1374 	else if (core->flags & CLK_SET_RATE_PARENT)
1375 		return clk_core_round_rate_nolock(core->parent, req);
1376 
1377 	req->rate = core->rate;
1378 	return 0;
1379 }
1380 
1381 /**
1382  * __clk_determine_rate - get the closest rate actually supported by a clock
1383  * @hw: determine the rate of this clock
1384  * @req: target rate request
1385  *
1386  * Useful for clk_ops such as .set_rate and .determine_rate.
1387  */
1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1389 {
1390 	if (!hw) {
1391 		req->rate = 0;
1392 		return 0;
1393 	}
1394 
1395 	return clk_core_round_rate_nolock(hw->core, req);
1396 }
1397 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1398 
1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1400 {
1401 	int ret;
1402 	struct clk_rate_request req;
1403 
1404 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1405 	req.rate = rate;
1406 
1407 	ret = clk_core_round_rate_nolock(hw->core, &req);
1408 	if (ret)
1409 		return 0;
1410 
1411 	return req.rate;
1412 }
1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1414 
1415 /**
1416  * clk_round_rate - round the given rate for a clk
1417  * @clk: the clk for which we are rounding a rate
1418  * @rate: the rate which is to be rounded
1419  *
1420  * Takes in a rate as input and rounds it to a rate that the clk can actually
1421  * use which is then returned.  If clk doesn't support round_rate operation
1422  * then the parent rate is returned.
1423  */
1424 long clk_round_rate(struct clk *clk, unsigned long rate)
1425 {
1426 	struct clk_rate_request req;
1427 	int ret;
1428 
1429 	if (!clk)
1430 		return 0;
1431 
1432 	clk_prepare_lock();
1433 
1434 	if (clk->exclusive_count)
1435 		clk_core_rate_unprotect(clk->core);
1436 
1437 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1438 	req.rate = rate;
1439 
1440 	ret = clk_core_round_rate_nolock(clk->core, &req);
1441 
1442 	if (clk->exclusive_count)
1443 		clk_core_rate_protect(clk->core);
1444 
1445 	clk_prepare_unlock();
1446 
1447 	if (ret)
1448 		return ret;
1449 
1450 	return req.rate;
1451 }
1452 EXPORT_SYMBOL_GPL(clk_round_rate);
1453 
1454 /**
1455  * __clk_notify - call clk notifier chain
1456  * @core: clk that is changing rate
1457  * @msg: clk notifier type (see include/linux/clk.h)
1458  * @old_rate: old clk rate
1459  * @new_rate: new clk rate
1460  *
1461  * Triggers a notifier call chain on the clk rate-change notification
1462  * for 'clk'.  Passes a pointer to the struct clk and the previous
1463  * and current rates to the notifier callback.  Intended to be called by
1464  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1465  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1466  * a driver returns that.
1467  */
1468 static int __clk_notify(struct clk_core *core, unsigned long msg,
1469 		unsigned long old_rate, unsigned long new_rate)
1470 {
1471 	struct clk_notifier *cn;
1472 	struct clk_notifier_data cnd;
1473 	int ret = NOTIFY_DONE;
1474 
1475 	cnd.old_rate = old_rate;
1476 	cnd.new_rate = new_rate;
1477 
1478 	list_for_each_entry(cn, &clk_notifier_list, node) {
1479 		if (cn->clk->core == core) {
1480 			cnd.clk = cn->clk;
1481 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1482 					&cnd);
1483 			if (ret & NOTIFY_STOP_MASK)
1484 				return ret;
1485 		}
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  * __clk_recalc_accuracies
1493  * @core: first clk in the subtree
1494  *
1495  * Walks the subtree of clks starting with clk and recalculates accuracies as
1496  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1497  * callback then it is assumed that the clock will take on the accuracy of its
1498  * parent.
1499  */
1500 static void __clk_recalc_accuracies(struct clk_core *core)
1501 {
1502 	unsigned long parent_accuracy = 0;
1503 	struct clk_core *child;
1504 
1505 	lockdep_assert_held(&prepare_lock);
1506 
1507 	if (core->parent)
1508 		parent_accuracy = core->parent->accuracy;
1509 
1510 	if (core->ops->recalc_accuracy)
1511 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1512 							  parent_accuracy);
1513 	else
1514 		core->accuracy = parent_accuracy;
1515 
1516 	hlist_for_each_entry(child, &core->children, child_node)
1517 		__clk_recalc_accuracies(child);
1518 }
1519 
1520 static long clk_core_get_accuracy(struct clk_core *core)
1521 {
1522 	unsigned long accuracy;
1523 
1524 	clk_prepare_lock();
1525 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1526 		__clk_recalc_accuracies(core);
1527 
1528 	accuracy = __clk_get_accuracy(core);
1529 	clk_prepare_unlock();
1530 
1531 	return accuracy;
1532 }
1533 
1534 /**
1535  * clk_get_accuracy - return the accuracy of clk
1536  * @clk: the clk whose accuracy is being returned
1537  *
1538  * Simply returns the cached accuracy of the clk, unless
1539  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1540  * issued.
1541  * If clk is NULL then returns 0.
1542  */
1543 long clk_get_accuracy(struct clk *clk)
1544 {
1545 	if (!clk)
1546 		return 0;
1547 
1548 	return clk_core_get_accuracy(clk->core);
1549 }
1550 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1551 
1552 static unsigned long clk_recalc(struct clk_core *core,
1553 				unsigned long parent_rate)
1554 {
1555 	unsigned long rate = parent_rate;
1556 
1557 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1558 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1559 		clk_pm_runtime_put(core);
1560 	}
1561 	return rate;
1562 }
1563 
1564 /**
1565  * __clk_recalc_rates
1566  * @core: first clk in the subtree
1567  * @msg: notification type (see include/linux/clk.h)
1568  *
1569  * Walks the subtree of clks starting with clk and recalculates rates as it
1570  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1571  * it is assumed that the clock will take on the rate of its parent.
1572  *
1573  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1574  * if necessary.
1575  */
1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1577 {
1578 	unsigned long old_rate;
1579 	unsigned long parent_rate = 0;
1580 	struct clk_core *child;
1581 
1582 	lockdep_assert_held(&prepare_lock);
1583 
1584 	old_rate = core->rate;
1585 
1586 	if (core->parent)
1587 		parent_rate = core->parent->rate;
1588 
1589 	core->rate = clk_recalc(core, parent_rate);
1590 
1591 	/*
1592 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1593 	 * & ABORT_RATE_CHANGE notifiers
1594 	 */
1595 	if (core->notifier_count && msg)
1596 		__clk_notify(core, msg, old_rate, core->rate);
1597 
1598 	hlist_for_each_entry(child, &core->children, child_node)
1599 		__clk_recalc_rates(child, msg);
1600 }
1601 
1602 static unsigned long clk_core_get_rate(struct clk_core *core)
1603 {
1604 	unsigned long rate;
1605 
1606 	clk_prepare_lock();
1607 
1608 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1609 		__clk_recalc_rates(core, 0);
1610 
1611 	rate = clk_core_get_rate_nolock(core);
1612 	clk_prepare_unlock();
1613 
1614 	return rate;
1615 }
1616 
1617 /**
1618  * clk_get_rate - return the rate of clk
1619  * @clk: the clk whose rate is being returned
1620  *
1621  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1622  * is set, which means a recalc_rate will be issued.
1623  * If clk is NULL then returns 0.
1624  */
1625 unsigned long clk_get_rate(struct clk *clk)
1626 {
1627 	if (!clk)
1628 		return 0;
1629 
1630 	return clk_core_get_rate(clk->core);
1631 }
1632 EXPORT_SYMBOL_GPL(clk_get_rate);
1633 
1634 static int clk_fetch_parent_index(struct clk_core *core,
1635 				  struct clk_core *parent)
1636 {
1637 	int i;
1638 
1639 	if (!parent)
1640 		return -EINVAL;
1641 
1642 	for (i = 0; i < core->num_parents; i++) {
1643 		/* Found it first try! */
1644 		if (core->parents[i].core == parent)
1645 			return i;
1646 
1647 		/* Something else is here, so keep looking */
1648 		if (core->parents[i].core)
1649 			continue;
1650 
1651 		/* Maybe core hasn't been cached but the hw is all we know? */
1652 		if (core->parents[i].hw) {
1653 			if (core->parents[i].hw == parent->hw)
1654 				break;
1655 
1656 			/* Didn't match, but we're expecting a clk_hw */
1657 			continue;
1658 		}
1659 
1660 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1661 		if (parent == clk_core_get(core, i))
1662 			break;
1663 
1664 		/* Fallback to comparing globally unique names */
1665 		if (core->parents[i].name &&
1666 		    !strcmp(parent->name, core->parents[i].name))
1667 			break;
1668 	}
1669 
1670 	if (i == core->num_parents)
1671 		return -EINVAL;
1672 
1673 	core->parents[i].core = parent;
1674 	return i;
1675 }
1676 
1677 /*
1678  * Update the orphan status of @core and all its children.
1679  */
1680 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1681 {
1682 	struct clk_core *child;
1683 
1684 	core->orphan = is_orphan;
1685 
1686 	hlist_for_each_entry(child, &core->children, child_node)
1687 		clk_core_update_orphan_status(child, is_orphan);
1688 }
1689 
1690 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1691 {
1692 	bool was_orphan = core->orphan;
1693 
1694 	hlist_del(&core->child_node);
1695 
1696 	if (new_parent) {
1697 		bool becomes_orphan = new_parent->orphan;
1698 
1699 		/* avoid duplicate POST_RATE_CHANGE notifications */
1700 		if (new_parent->new_child == core)
1701 			new_parent->new_child = NULL;
1702 
1703 		hlist_add_head(&core->child_node, &new_parent->children);
1704 
1705 		if (was_orphan != becomes_orphan)
1706 			clk_core_update_orphan_status(core, becomes_orphan);
1707 	} else {
1708 		hlist_add_head(&core->child_node, &clk_orphan_list);
1709 		if (!was_orphan)
1710 			clk_core_update_orphan_status(core, true);
1711 	}
1712 
1713 	core->parent = new_parent;
1714 }
1715 
1716 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1717 					   struct clk_core *parent)
1718 {
1719 	unsigned long flags;
1720 	struct clk_core *old_parent = core->parent;
1721 
1722 	/*
1723 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1724 	 *
1725 	 * 2. Migrate prepare state between parents and prevent race with
1726 	 * clk_enable().
1727 	 *
1728 	 * If the clock is not prepared, then a race with
1729 	 * clk_enable/disable() is impossible since we already have the
1730 	 * prepare lock (future calls to clk_enable() need to be preceded by
1731 	 * a clk_prepare()).
1732 	 *
1733 	 * If the clock is prepared, migrate the prepared state to the new
1734 	 * parent and also protect against a race with clk_enable() by
1735 	 * forcing the clock and the new parent on.  This ensures that all
1736 	 * future calls to clk_enable() are practically NOPs with respect to
1737 	 * hardware and software states.
1738 	 *
1739 	 * See also: Comment for clk_set_parent() below.
1740 	 */
1741 
1742 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1743 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1744 		clk_core_prepare_enable(old_parent);
1745 		clk_core_prepare_enable(parent);
1746 	}
1747 
1748 	/* migrate prepare count if > 0 */
1749 	if (core->prepare_count) {
1750 		clk_core_prepare_enable(parent);
1751 		clk_core_enable_lock(core);
1752 	}
1753 
1754 	/* update the clk tree topology */
1755 	flags = clk_enable_lock();
1756 	clk_reparent(core, parent);
1757 	clk_enable_unlock(flags);
1758 
1759 	return old_parent;
1760 }
1761 
1762 static void __clk_set_parent_after(struct clk_core *core,
1763 				   struct clk_core *parent,
1764 				   struct clk_core *old_parent)
1765 {
1766 	/*
1767 	 * Finish the migration of prepare state and undo the changes done
1768 	 * for preventing a race with clk_enable().
1769 	 */
1770 	if (core->prepare_count) {
1771 		clk_core_disable_lock(core);
1772 		clk_core_disable_unprepare(old_parent);
1773 	}
1774 
1775 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1776 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1777 		clk_core_disable_unprepare(parent);
1778 		clk_core_disable_unprepare(old_parent);
1779 	}
1780 }
1781 
1782 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1783 			    u8 p_index)
1784 {
1785 	unsigned long flags;
1786 	int ret = 0;
1787 	struct clk_core *old_parent;
1788 
1789 	old_parent = __clk_set_parent_before(core, parent);
1790 
1791 	trace_clk_set_parent(core, parent);
1792 
1793 	/* change clock input source */
1794 	if (parent && core->ops->set_parent)
1795 		ret = core->ops->set_parent(core->hw, p_index);
1796 
1797 	trace_clk_set_parent_complete(core, parent);
1798 
1799 	if (ret) {
1800 		flags = clk_enable_lock();
1801 		clk_reparent(core, old_parent);
1802 		clk_enable_unlock(flags);
1803 		__clk_set_parent_after(core, old_parent, parent);
1804 
1805 		return ret;
1806 	}
1807 
1808 	__clk_set_parent_after(core, parent, old_parent);
1809 
1810 	return 0;
1811 }
1812 
1813 /**
1814  * __clk_speculate_rates
1815  * @core: first clk in the subtree
1816  * @parent_rate: the "future" rate of clk's parent
1817  *
1818  * Walks the subtree of clks starting with clk, speculating rates as it
1819  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1820  *
1821  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1822  * pre-rate change notifications and returns early if no clks in the
1823  * subtree have subscribed to the notifications.  Note that if a clk does not
1824  * implement the .recalc_rate callback then it is assumed that the clock will
1825  * take on the rate of its parent.
1826  */
1827 static int __clk_speculate_rates(struct clk_core *core,
1828 				 unsigned long parent_rate)
1829 {
1830 	struct clk_core *child;
1831 	unsigned long new_rate;
1832 	int ret = NOTIFY_DONE;
1833 
1834 	lockdep_assert_held(&prepare_lock);
1835 
1836 	new_rate = clk_recalc(core, parent_rate);
1837 
1838 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1839 	if (core->notifier_count)
1840 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1841 
1842 	if (ret & NOTIFY_STOP_MASK) {
1843 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1844 				__func__, core->name, ret);
1845 		goto out;
1846 	}
1847 
1848 	hlist_for_each_entry(child, &core->children, child_node) {
1849 		ret = __clk_speculate_rates(child, new_rate);
1850 		if (ret & NOTIFY_STOP_MASK)
1851 			break;
1852 	}
1853 
1854 out:
1855 	return ret;
1856 }
1857 
1858 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1859 			     struct clk_core *new_parent, u8 p_index)
1860 {
1861 	struct clk_core *child;
1862 
1863 	core->new_rate = new_rate;
1864 	core->new_parent = new_parent;
1865 	core->new_parent_index = p_index;
1866 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1867 	core->new_child = NULL;
1868 	if (new_parent && new_parent != core->parent)
1869 		new_parent->new_child = core;
1870 
1871 	hlist_for_each_entry(child, &core->children, child_node) {
1872 		child->new_rate = clk_recalc(child, new_rate);
1873 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1874 	}
1875 }
1876 
1877 /*
1878  * calculate the new rates returning the topmost clock that has to be
1879  * changed.
1880  */
1881 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1882 					   unsigned long rate)
1883 {
1884 	struct clk_core *top = core;
1885 	struct clk_core *old_parent, *parent;
1886 	unsigned long best_parent_rate = 0;
1887 	unsigned long new_rate;
1888 	unsigned long min_rate;
1889 	unsigned long max_rate;
1890 	int p_index = 0;
1891 	long ret;
1892 
1893 	/* sanity */
1894 	if (IS_ERR_OR_NULL(core))
1895 		return NULL;
1896 
1897 	/* save parent rate, if it exists */
1898 	parent = old_parent = core->parent;
1899 	if (parent)
1900 		best_parent_rate = parent->rate;
1901 
1902 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1903 
1904 	/* find the closest rate and parent clk/rate */
1905 	if (clk_core_can_round(core)) {
1906 		struct clk_rate_request req;
1907 
1908 		req.rate = rate;
1909 		req.min_rate = min_rate;
1910 		req.max_rate = max_rate;
1911 
1912 		clk_core_init_rate_req(core, &req);
1913 
1914 		ret = clk_core_determine_round_nolock(core, &req);
1915 		if (ret < 0)
1916 			return NULL;
1917 
1918 		best_parent_rate = req.best_parent_rate;
1919 		new_rate = req.rate;
1920 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1921 
1922 		if (new_rate < min_rate || new_rate > max_rate)
1923 			return NULL;
1924 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1925 		/* pass-through clock without adjustable parent */
1926 		core->new_rate = core->rate;
1927 		return NULL;
1928 	} else {
1929 		/* pass-through clock with adjustable parent */
1930 		top = clk_calc_new_rates(parent, rate);
1931 		new_rate = parent->new_rate;
1932 		goto out;
1933 	}
1934 
1935 	/* some clocks must be gated to change parent */
1936 	if (parent != old_parent &&
1937 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1938 		pr_debug("%s: %s not gated but wants to reparent\n",
1939 			 __func__, core->name);
1940 		return NULL;
1941 	}
1942 
1943 	/* try finding the new parent index */
1944 	if (parent && core->num_parents > 1) {
1945 		p_index = clk_fetch_parent_index(core, parent);
1946 		if (p_index < 0) {
1947 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1948 				 __func__, parent->name, core->name);
1949 			return NULL;
1950 		}
1951 	}
1952 
1953 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1954 	    best_parent_rate != parent->rate)
1955 		top = clk_calc_new_rates(parent, best_parent_rate);
1956 
1957 out:
1958 	clk_calc_subtree(core, new_rate, parent, p_index);
1959 
1960 	return top;
1961 }
1962 
1963 /*
1964  * Notify about rate changes in a subtree. Always walk down the whole tree
1965  * so that in case of an error we can walk down the whole tree again and
1966  * abort the change.
1967  */
1968 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1969 						  unsigned long event)
1970 {
1971 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1972 	int ret = NOTIFY_DONE;
1973 
1974 	if (core->rate == core->new_rate)
1975 		return NULL;
1976 
1977 	if (core->notifier_count) {
1978 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1979 		if (ret & NOTIFY_STOP_MASK)
1980 			fail_clk = core;
1981 	}
1982 
1983 	hlist_for_each_entry(child, &core->children, child_node) {
1984 		/* Skip children who will be reparented to another clock */
1985 		if (child->new_parent && child->new_parent != core)
1986 			continue;
1987 		tmp_clk = clk_propagate_rate_change(child, event);
1988 		if (tmp_clk)
1989 			fail_clk = tmp_clk;
1990 	}
1991 
1992 	/* handle the new child who might not be in core->children yet */
1993 	if (core->new_child) {
1994 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1995 		if (tmp_clk)
1996 			fail_clk = tmp_clk;
1997 	}
1998 
1999 	return fail_clk;
2000 }
2001 
2002 /*
2003  * walk down a subtree and set the new rates notifying the rate
2004  * change on the way
2005  */
2006 static void clk_change_rate(struct clk_core *core)
2007 {
2008 	struct clk_core *child;
2009 	struct hlist_node *tmp;
2010 	unsigned long old_rate;
2011 	unsigned long best_parent_rate = 0;
2012 	bool skip_set_rate = false;
2013 	struct clk_core *old_parent;
2014 	struct clk_core *parent = NULL;
2015 
2016 	old_rate = core->rate;
2017 
2018 	if (core->new_parent) {
2019 		parent = core->new_parent;
2020 		best_parent_rate = core->new_parent->rate;
2021 	} else if (core->parent) {
2022 		parent = core->parent;
2023 		best_parent_rate = core->parent->rate;
2024 	}
2025 
2026 	if (clk_pm_runtime_get(core))
2027 		return;
2028 
2029 	if (core->flags & CLK_SET_RATE_UNGATE) {
2030 		unsigned long flags;
2031 
2032 		clk_core_prepare(core);
2033 		flags = clk_enable_lock();
2034 		clk_core_enable(core);
2035 		clk_enable_unlock(flags);
2036 	}
2037 
2038 	if (core->new_parent && core->new_parent != core->parent) {
2039 		old_parent = __clk_set_parent_before(core, core->new_parent);
2040 		trace_clk_set_parent(core, core->new_parent);
2041 
2042 		if (core->ops->set_rate_and_parent) {
2043 			skip_set_rate = true;
2044 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2045 					best_parent_rate,
2046 					core->new_parent_index);
2047 		} else if (core->ops->set_parent) {
2048 			core->ops->set_parent(core->hw, core->new_parent_index);
2049 		}
2050 
2051 		trace_clk_set_parent_complete(core, core->new_parent);
2052 		__clk_set_parent_after(core, core->new_parent, old_parent);
2053 	}
2054 
2055 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2056 		clk_core_prepare_enable(parent);
2057 
2058 	trace_clk_set_rate(core, core->new_rate);
2059 
2060 	if (!skip_set_rate && core->ops->set_rate)
2061 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2062 
2063 	trace_clk_set_rate_complete(core, core->new_rate);
2064 
2065 	core->rate = clk_recalc(core, best_parent_rate);
2066 
2067 	if (core->flags & CLK_SET_RATE_UNGATE) {
2068 		unsigned long flags;
2069 
2070 		flags = clk_enable_lock();
2071 		clk_core_disable(core);
2072 		clk_enable_unlock(flags);
2073 		clk_core_unprepare(core);
2074 	}
2075 
2076 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2077 		clk_core_disable_unprepare(parent);
2078 
2079 	if (core->notifier_count && old_rate != core->rate)
2080 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2081 
2082 	if (core->flags & CLK_RECALC_NEW_RATES)
2083 		(void)clk_calc_new_rates(core, core->new_rate);
2084 
2085 	/*
2086 	 * Use safe iteration, as change_rate can actually swap parents
2087 	 * for certain clock types.
2088 	 */
2089 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2090 		/* Skip children who will be reparented to another clock */
2091 		if (child->new_parent && child->new_parent != core)
2092 			continue;
2093 		clk_change_rate(child);
2094 	}
2095 
2096 	/* handle the new child who might not be in core->children yet */
2097 	if (core->new_child)
2098 		clk_change_rate(core->new_child);
2099 
2100 	clk_pm_runtime_put(core);
2101 }
2102 
2103 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2104 						     unsigned long req_rate)
2105 {
2106 	int ret, cnt;
2107 	struct clk_rate_request req;
2108 
2109 	lockdep_assert_held(&prepare_lock);
2110 
2111 	if (!core)
2112 		return 0;
2113 
2114 	/* simulate what the rate would be if it could be freely set */
2115 	cnt = clk_core_rate_nuke_protect(core);
2116 	if (cnt < 0)
2117 		return cnt;
2118 
2119 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2120 	req.rate = req_rate;
2121 
2122 	ret = clk_core_round_rate_nolock(core, &req);
2123 
2124 	/* restore the protection */
2125 	clk_core_rate_restore_protect(core, cnt);
2126 
2127 	return ret ? 0 : req.rate;
2128 }
2129 
2130 static int clk_core_set_rate_nolock(struct clk_core *core,
2131 				    unsigned long req_rate)
2132 {
2133 	struct clk_core *top, *fail_clk;
2134 	unsigned long rate;
2135 	int ret = 0;
2136 
2137 	if (!core)
2138 		return 0;
2139 
2140 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2141 
2142 	/* bail early if nothing to do */
2143 	if (rate == clk_core_get_rate_nolock(core))
2144 		return 0;
2145 
2146 	/* fail on a direct rate set of a protected provider */
2147 	if (clk_core_rate_is_protected(core))
2148 		return -EBUSY;
2149 
2150 	/* calculate new rates and get the topmost changed clock */
2151 	top = clk_calc_new_rates(core, req_rate);
2152 	if (!top)
2153 		return -EINVAL;
2154 
2155 	ret = clk_pm_runtime_get(core);
2156 	if (ret)
2157 		return ret;
2158 
2159 	/* notify that we are about to change rates */
2160 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2161 	if (fail_clk) {
2162 		pr_debug("%s: failed to set %s rate\n", __func__,
2163 				fail_clk->name);
2164 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2165 		ret = -EBUSY;
2166 		goto err;
2167 	}
2168 
2169 	/* change the rates */
2170 	clk_change_rate(top);
2171 
2172 	core->req_rate = req_rate;
2173 err:
2174 	clk_pm_runtime_put(core);
2175 
2176 	return ret;
2177 }
2178 
2179 /**
2180  * clk_set_rate - specify a new rate for clk
2181  * @clk: the clk whose rate is being changed
2182  * @rate: the new rate for clk
2183  *
2184  * In the simplest case clk_set_rate will only adjust the rate of clk.
2185  *
2186  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2187  * propagate up to clk's parent; whether or not this happens depends on the
2188  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2189  * after calling .round_rate then upstream parent propagation is ignored.  If
2190  * *parent_rate comes back with a new rate for clk's parent then we propagate
2191  * up to clk's parent and set its rate.  Upward propagation will continue
2192  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2193  * .round_rate stops requesting changes to clk's parent_rate.
2194  *
2195  * Rate changes are accomplished via tree traversal that also recalculates the
2196  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2197  *
2198  * Returns 0 on success, -EERROR otherwise.
2199  */
2200 int clk_set_rate(struct clk *clk, unsigned long rate)
2201 {
2202 	int ret;
2203 
2204 	if (!clk)
2205 		return 0;
2206 
2207 	/* prevent racing with updates to the clock topology */
2208 	clk_prepare_lock();
2209 
2210 	if (clk->exclusive_count)
2211 		clk_core_rate_unprotect(clk->core);
2212 
2213 	ret = clk_core_set_rate_nolock(clk->core, rate);
2214 
2215 	if (clk->exclusive_count)
2216 		clk_core_rate_protect(clk->core);
2217 
2218 	clk_prepare_unlock();
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(clk_set_rate);
2223 
2224 /**
2225  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2226  * @clk: the clk whose rate is being changed
2227  * @rate: the new rate for clk
2228  *
2229  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2230  * within a critical section
2231  *
2232  * This can be used initially to ensure that at least 1 consumer is
2233  * satisfied when several consumers are competing for exclusivity over the
2234  * same clock provider.
2235  *
2236  * The exclusivity is not applied if setting the rate failed.
2237  *
2238  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2239  * clk_rate_exclusive_put().
2240  *
2241  * Returns 0 on success, -EERROR otherwise.
2242  */
2243 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2244 {
2245 	int ret;
2246 
2247 	if (!clk)
2248 		return 0;
2249 
2250 	/* prevent racing with updates to the clock topology */
2251 	clk_prepare_lock();
2252 
2253 	/*
2254 	 * The temporary protection removal is not here, on purpose
2255 	 * This function is meant to be used instead of clk_rate_protect,
2256 	 * so before the consumer code path protect the clock provider
2257 	 */
2258 
2259 	ret = clk_core_set_rate_nolock(clk->core, rate);
2260 	if (!ret) {
2261 		clk_core_rate_protect(clk->core);
2262 		clk->exclusive_count++;
2263 	}
2264 
2265 	clk_prepare_unlock();
2266 
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2270 
2271 /**
2272  * clk_set_rate_range - set a rate range for a clock source
2273  * @clk: clock source
2274  * @min: desired minimum clock rate in Hz, inclusive
2275  * @max: desired maximum clock rate in Hz, inclusive
2276  *
2277  * Returns success (0) or negative errno.
2278  */
2279 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2280 {
2281 	int ret = 0;
2282 	unsigned long old_min, old_max, rate;
2283 
2284 	if (!clk)
2285 		return 0;
2286 
2287 	if (min > max) {
2288 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2289 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2290 		       min, max);
2291 		return -EINVAL;
2292 	}
2293 
2294 	clk_prepare_lock();
2295 
2296 	if (clk->exclusive_count)
2297 		clk_core_rate_unprotect(clk->core);
2298 
2299 	/* Save the current values in case we need to rollback the change */
2300 	old_min = clk->min_rate;
2301 	old_max = clk->max_rate;
2302 	clk->min_rate = min;
2303 	clk->max_rate = max;
2304 
2305 	rate = clk_core_get_rate_nolock(clk->core);
2306 	if (rate < min || rate > max) {
2307 		/*
2308 		 * FIXME:
2309 		 * We are in bit of trouble here, current rate is outside the
2310 		 * the requested range. We are going try to request appropriate
2311 		 * range boundary but there is a catch. It may fail for the
2312 		 * usual reason (clock broken, clock protected, etc) but also
2313 		 * because:
2314 		 * - round_rate() was not favorable and fell on the wrong
2315 		 *   side of the boundary
2316 		 * - the determine_rate() callback does not really check for
2317 		 *   this corner case when determining the rate
2318 		 */
2319 
2320 		if (rate < min)
2321 			rate = min;
2322 		else
2323 			rate = max;
2324 
2325 		ret = clk_core_set_rate_nolock(clk->core, rate);
2326 		if (ret) {
2327 			/* rollback the changes */
2328 			clk->min_rate = old_min;
2329 			clk->max_rate = old_max;
2330 		}
2331 	}
2332 
2333 	if (clk->exclusive_count)
2334 		clk_core_rate_protect(clk->core);
2335 
2336 	clk_prepare_unlock();
2337 
2338 	return ret;
2339 }
2340 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2341 
2342 /**
2343  * clk_set_min_rate - set a minimum clock rate for a clock source
2344  * @clk: clock source
2345  * @rate: desired minimum clock rate in Hz, inclusive
2346  *
2347  * Returns success (0) or negative errno.
2348  */
2349 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2350 {
2351 	if (!clk)
2352 		return 0;
2353 
2354 	return clk_set_rate_range(clk, rate, clk->max_rate);
2355 }
2356 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2357 
2358 /**
2359  * clk_set_max_rate - set a maximum clock rate for a clock source
2360  * @clk: clock source
2361  * @rate: desired maximum clock rate in Hz, inclusive
2362  *
2363  * Returns success (0) or negative errno.
2364  */
2365 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2366 {
2367 	if (!clk)
2368 		return 0;
2369 
2370 	return clk_set_rate_range(clk, clk->min_rate, rate);
2371 }
2372 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2373 
2374 /**
2375  * clk_get_parent - return the parent of a clk
2376  * @clk: the clk whose parent gets returned
2377  *
2378  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2379  */
2380 struct clk *clk_get_parent(struct clk *clk)
2381 {
2382 	struct clk *parent;
2383 
2384 	if (!clk)
2385 		return NULL;
2386 
2387 	clk_prepare_lock();
2388 	/* TODO: Create a per-user clk and change callers to call clk_put */
2389 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2390 	clk_prepare_unlock();
2391 
2392 	return parent;
2393 }
2394 EXPORT_SYMBOL_GPL(clk_get_parent);
2395 
2396 static struct clk_core *__clk_init_parent(struct clk_core *core)
2397 {
2398 	u8 index = 0;
2399 
2400 	if (core->num_parents > 1 && core->ops->get_parent)
2401 		index = core->ops->get_parent(core->hw);
2402 
2403 	return clk_core_get_parent_by_index(core, index);
2404 }
2405 
2406 static void clk_core_reparent(struct clk_core *core,
2407 				  struct clk_core *new_parent)
2408 {
2409 	clk_reparent(core, new_parent);
2410 	__clk_recalc_accuracies(core);
2411 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2412 }
2413 
2414 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2415 {
2416 	if (!hw)
2417 		return;
2418 
2419 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2420 }
2421 
2422 /**
2423  * clk_has_parent - check if a clock is a possible parent for another
2424  * @clk: clock source
2425  * @parent: parent clock source
2426  *
2427  * This function can be used in drivers that need to check that a clock can be
2428  * the parent of another without actually changing the parent.
2429  *
2430  * Returns true if @parent is a possible parent for @clk, false otherwise.
2431  */
2432 bool clk_has_parent(struct clk *clk, struct clk *parent)
2433 {
2434 	struct clk_core *core, *parent_core;
2435 	int i;
2436 
2437 	/* NULL clocks should be nops, so return success if either is NULL. */
2438 	if (!clk || !parent)
2439 		return true;
2440 
2441 	core = clk->core;
2442 	parent_core = parent->core;
2443 
2444 	/* Optimize for the case where the parent is already the parent. */
2445 	if (core->parent == parent_core)
2446 		return true;
2447 
2448 	for (i = 0; i < core->num_parents; i++)
2449 		if (!strcmp(core->parents[i].name, parent_core->name))
2450 			return true;
2451 
2452 	return false;
2453 }
2454 EXPORT_SYMBOL_GPL(clk_has_parent);
2455 
2456 static int clk_core_set_parent_nolock(struct clk_core *core,
2457 				      struct clk_core *parent)
2458 {
2459 	int ret = 0;
2460 	int p_index = 0;
2461 	unsigned long p_rate = 0;
2462 
2463 	lockdep_assert_held(&prepare_lock);
2464 
2465 	if (!core)
2466 		return 0;
2467 
2468 	if (core->parent == parent)
2469 		return 0;
2470 
2471 	/* verify ops for multi-parent clks */
2472 	if (core->num_parents > 1 && !core->ops->set_parent)
2473 		return -EPERM;
2474 
2475 	/* check that we are allowed to re-parent if the clock is in use */
2476 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2477 		return -EBUSY;
2478 
2479 	if (clk_core_rate_is_protected(core))
2480 		return -EBUSY;
2481 
2482 	/* try finding the new parent index */
2483 	if (parent) {
2484 		p_index = clk_fetch_parent_index(core, parent);
2485 		if (p_index < 0) {
2486 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2487 					__func__, parent->name, core->name);
2488 			return p_index;
2489 		}
2490 		p_rate = parent->rate;
2491 	}
2492 
2493 	ret = clk_pm_runtime_get(core);
2494 	if (ret)
2495 		return ret;
2496 
2497 	/* propagate PRE_RATE_CHANGE notifications */
2498 	ret = __clk_speculate_rates(core, p_rate);
2499 
2500 	/* abort if a driver objects */
2501 	if (ret & NOTIFY_STOP_MASK)
2502 		goto runtime_put;
2503 
2504 	/* do the re-parent */
2505 	ret = __clk_set_parent(core, parent, p_index);
2506 
2507 	/* propagate rate an accuracy recalculation accordingly */
2508 	if (ret) {
2509 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2510 	} else {
2511 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2512 		__clk_recalc_accuracies(core);
2513 	}
2514 
2515 runtime_put:
2516 	clk_pm_runtime_put(core);
2517 
2518 	return ret;
2519 }
2520 
2521 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2522 {
2523 	return clk_core_set_parent_nolock(hw->core, parent->core);
2524 }
2525 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2526 
2527 /**
2528  * clk_set_parent - switch the parent of a mux clk
2529  * @clk: the mux clk whose input we are switching
2530  * @parent: the new input to clk
2531  *
2532  * Re-parent clk to use parent as its new input source.  If clk is in
2533  * prepared state, the clk will get enabled for the duration of this call. If
2534  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2535  * that, the reparenting is glitchy in hardware, etc), use the
2536  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2537  *
2538  * After successfully changing clk's parent clk_set_parent will update the
2539  * clk topology, sysfs topology and propagate rate recalculation via
2540  * __clk_recalc_rates.
2541  *
2542  * Returns 0 on success, -EERROR otherwise.
2543  */
2544 int clk_set_parent(struct clk *clk, struct clk *parent)
2545 {
2546 	int ret;
2547 
2548 	if (!clk)
2549 		return 0;
2550 
2551 	clk_prepare_lock();
2552 
2553 	if (clk->exclusive_count)
2554 		clk_core_rate_unprotect(clk->core);
2555 
2556 	ret = clk_core_set_parent_nolock(clk->core,
2557 					 parent ? parent->core : NULL);
2558 
2559 	if (clk->exclusive_count)
2560 		clk_core_rate_protect(clk->core);
2561 
2562 	clk_prepare_unlock();
2563 
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL_GPL(clk_set_parent);
2567 
2568 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2569 {
2570 	int ret = -EINVAL;
2571 
2572 	lockdep_assert_held(&prepare_lock);
2573 
2574 	if (!core)
2575 		return 0;
2576 
2577 	if (clk_core_rate_is_protected(core))
2578 		return -EBUSY;
2579 
2580 	trace_clk_set_phase(core, degrees);
2581 
2582 	if (core->ops->set_phase) {
2583 		ret = core->ops->set_phase(core->hw, degrees);
2584 		if (!ret)
2585 			core->phase = degrees;
2586 	}
2587 
2588 	trace_clk_set_phase_complete(core, degrees);
2589 
2590 	return ret;
2591 }
2592 
2593 /**
2594  * clk_set_phase - adjust the phase shift of a clock signal
2595  * @clk: clock signal source
2596  * @degrees: number of degrees the signal is shifted
2597  *
2598  * Shifts the phase of a clock signal by the specified
2599  * degrees. Returns 0 on success, -EERROR otherwise.
2600  *
2601  * This function makes no distinction about the input or reference
2602  * signal that we adjust the clock signal phase against. For example
2603  * phase locked-loop clock signal generators we may shift phase with
2604  * respect to feedback clock signal input, but for other cases the
2605  * clock phase may be shifted with respect to some other, unspecified
2606  * signal.
2607  *
2608  * Additionally the concept of phase shift does not propagate through
2609  * the clock tree hierarchy, which sets it apart from clock rates and
2610  * clock accuracy. A parent clock phase attribute does not have an
2611  * impact on the phase attribute of a child clock.
2612  */
2613 int clk_set_phase(struct clk *clk, int degrees)
2614 {
2615 	int ret;
2616 
2617 	if (!clk)
2618 		return 0;
2619 
2620 	/* sanity check degrees */
2621 	degrees %= 360;
2622 	if (degrees < 0)
2623 		degrees += 360;
2624 
2625 	clk_prepare_lock();
2626 
2627 	if (clk->exclusive_count)
2628 		clk_core_rate_unprotect(clk->core);
2629 
2630 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2631 
2632 	if (clk->exclusive_count)
2633 		clk_core_rate_protect(clk->core);
2634 
2635 	clk_prepare_unlock();
2636 
2637 	return ret;
2638 }
2639 EXPORT_SYMBOL_GPL(clk_set_phase);
2640 
2641 static int clk_core_get_phase(struct clk_core *core)
2642 {
2643 	int ret;
2644 
2645 	clk_prepare_lock();
2646 	/* Always try to update cached phase if possible */
2647 	if (core->ops->get_phase)
2648 		core->phase = core->ops->get_phase(core->hw);
2649 	ret = core->phase;
2650 	clk_prepare_unlock();
2651 
2652 	return ret;
2653 }
2654 
2655 /**
2656  * clk_get_phase - return the phase shift of a clock signal
2657  * @clk: clock signal source
2658  *
2659  * Returns the phase shift of a clock node in degrees, otherwise returns
2660  * -EERROR.
2661  */
2662 int clk_get_phase(struct clk *clk)
2663 {
2664 	if (!clk)
2665 		return 0;
2666 
2667 	return clk_core_get_phase(clk->core);
2668 }
2669 EXPORT_SYMBOL_GPL(clk_get_phase);
2670 
2671 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2672 {
2673 	/* Assume a default value of 50% */
2674 	core->duty.num = 1;
2675 	core->duty.den = 2;
2676 }
2677 
2678 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2679 
2680 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2681 {
2682 	struct clk_duty *duty = &core->duty;
2683 	int ret = 0;
2684 
2685 	if (!core->ops->get_duty_cycle)
2686 		return clk_core_update_duty_cycle_parent_nolock(core);
2687 
2688 	ret = core->ops->get_duty_cycle(core->hw, duty);
2689 	if (ret)
2690 		goto reset;
2691 
2692 	/* Don't trust the clock provider too much */
2693 	if (duty->den == 0 || duty->num > duty->den) {
2694 		ret = -EINVAL;
2695 		goto reset;
2696 	}
2697 
2698 	return 0;
2699 
2700 reset:
2701 	clk_core_reset_duty_cycle_nolock(core);
2702 	return ret;
2703 }
2704 
2705 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2706 {
2707 	int ret = 0;
2708 
2709 	if (core->parent &&
2710 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2711 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2712 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2713 	} else {
2714 		clk_core_reset_duty_cycle_nolock(core);
2715 	}
2716 
2717 	return ret;
2718 }
2719 
2720 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2721 						 struct clk_duty *duty);
2722 
2723 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2724 					  struct clk_duty *duty)
2725 {
2726 	int ret;
2727 
2728 	lockdep_assert_held(&prepare_lock);
2729 
2730 	if (clk_core_rate_is_protected(core))
2731 		return -EBUSY;
2732 
2733 	trace_clk_set_duty_cycle(core, duty);
2734 
2735 	if (!core->ops->set_duty_cycle)
2736 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2737 
2738 	ret = core->ops->set_duty_cycle(core->hw, duty);
2739 	if (!ret)
2740 		memcpy(&core->duty, duty, sizeof(*duty));
2741 
2742 	trace_clk_set_duty_cycle_complete(core, duty);
2743 
2744 	return ret;
2745 }
2746 
2747 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2748 						 struct clk_duty *duty)
2749 {
2750 	int ret = 0;
2751 
2752 	if (core->parent &&
2753 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2754 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2755 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2756 	}
2757 
2758 	return ret;
2759 }
2760 
2761 /**
2762  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2763  * @clk: clock signal source
2764  * @num: numerator of the duty cycle ratio to be applied
2765  * @den: denominator of the duty cycle ratio to be applied
2766  *
2767  * Apply the duty cycle ratio if the ratio is valid and the clock can
2768  * perform this operation
2769  *
2770  * Returns (0) on success, a negative errno otherwise.
2771  */
2772 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2773 {
2774 	int ret;
2775 	struct clk_duty duty;
2776 
2777 	if (!clk)
2778 		return 0;
2779 
2780 	/* sanity check the ratio */
2781 	if (den == 0 || num > den)
2782 		return -EINVAL;
2783 
2784 	duty.num = num;
2785 	duty.den = den;
2786 
2787 	clk_prepare_lock();
2788 
2789 	if (clk->exclusive_count)
2790 		clk_core_rate_unprotect(clk->core);
2791 
2792 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2793 
2794 	if (clk->exclusive_count)
2795 		clk_core_rate_protect(clk->core);
2796 
2797 	clk_prepare_unlock();
2798 
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2802 
2803 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2804 					  unsigned int scale)
2805 {
2806 	struct clk_duty *duty = &core->duty;
2807 	int ret;
2808 
2809 	clk_prepare_lock();
2810 
2811 	ret = clk_core_update_duty_cycle_nolock(core);
2812 	if (!ret)
2813 		ret = mult_frac(scale, duty->num, duty->den);
2814 
2815 	clk_prepare_unlock();
2816 
2817 	return ret;
2818 }
2819 
2820 /**
2821  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2822  * @clk: clock signal source
2823  * @scale: scaling factor to be applied to represent the ratio as an integer
2824  *
2825  * Returns the duty cycle ratio of a clock node multiplied by the provided
2826  * scaling factor, or negative errno on error.
2827  */
2828 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2829 {
2830 	if (!clk)
2831 		return 0;
2832 
2833 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2834 }
2835 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2836 
2837 /**
2838  * clk_is_match - check if two clk's point to the same hardware clock
2839  * @p: clk compared against q
2840  * @q: clk compared against p
2841  *
2842  * Returns true if the two struct clk pointers both point to the same hardware
2843  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2844  * share the same struct clk_core object.
2845  *
2846  * Returns false otherwise. Note that two NULL clks are treated as matching.
2847  */
2848 bool clk_is_match(const struct clk *p, const struct clk *q)
2849 {
2850 	/* trivial case: identical struct clk's or both NULL */
2851 	if (p == q)
2852 		return true;
2853 
2854 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2855 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2856 		if (p->core == q->core)
2857 			return true;
2858 
2859 	return false;
2860 }
2861 EXPORT_SYMBOL_GPL(clk_is_match);
2862 
2863 /***        debugfs support        ***/
2864 
2865 #ifdef CONFIG_DEBUG_FS
2866 #include <linux/debugfs.h>
2867 
2868 static struct dentry *rootdir;
2869 static int inited = 0;
2870 static DEFINE_MUTEX(clk_debug_lock);
2871 static HLIST_HEAD(clk_debug_list);
2872 
2873 static struct hlist_head *orphan_list[] = {
2874 	&clk_orphan_list,
2875 	NULL,
2876 };
2877 
2878 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2879 				 int level)
2880 {
2881 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2882 		   level * 3 + 1, "",
2883 		   30 - level * 3, c->name,
2884 		   c->enable_count, c->prepare_count, c->protect_count,
2885 		   clk_core_get_rate(c), clk_core_get_accuracy(c),
2886 		   clk_core_get_phase(c),
2887 		   clk_core_get_scaled_duty_cycle(c, 100000));
2888 }
2889 
2890 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2891 				     int level)
2892 {
2893 	struct clk_core *child;
2894 
2895 	clk_summary_show_one(s, c, level);
2896 
2897 	hlist_for_each_entry(child, &c->children, child_node)
2898 		clk_summary_show_subtree(s, child, level + 1);
2899 }
2900 
2901 static int clk_summary_show(struct seq_file *s, void *data)
2902 {
2903 	struct clk_core *c;
2904 	struct hlist_head **lists = (struct hlist_head **)s->private;
2905 
2906 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2907 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2908 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2909 
2910 	clk_prepare_lock();
2911 
2912 	for (; *lists; lists++)
2913 		hlist_for_each_entry(c, *lists, child_node)
2914 			clk_summary_show_subtree(s, c, 0);
2915 
2916 	clk_prepare_unlock();
2917 
2918 	return 0;
2919 }
2920 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2921 
2922 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2923 {
2924 	unsigned long min_rate, max_rate;
2925 
2926 	clk_core_get_boundaries(c, &min_rate, &max_rate);
2927 
2928 	/* This should be JSON format, i.e. elements separated with a comma */
2929 	seq_printf(s, "\"%s\": { ", c->name);
2930 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2931 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2932 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2933 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2934 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2935 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2936 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2937 	seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2938 	seq_printf(s, "\"duty_cycle\": %u",
2939 		   clk_core_get_scaled_duty_cycle(c, 100000));
2940 }
2941 
2942 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2943 {
2944 	struct clk_core *child;
2945 
2946 	clk_dump_one(s, c, level);
2947 
2948 	hlist_for_each_entry(child, &c->children, child_node) {
2949 		seq_putc(s, ',');
2950 		clk_dump_subtree(s, child, level + 1);
2951 	}
2952 
2953 	seq_putc(s, '}');
2954 }
2955 
2956 static int clk_dump_show(struct seq_file *s, void *data)
2957 {
2958 	struct clk_core *c;
2959 	bool first_node = true;
2960 	struct hlist_head **lists = (struct hlist_head **)s->private;
2961 
2962 	seq_putc(s, '{');
2963 	clk_prepare_lock();
2964 
2965 	for (; *lists; lists++) {
2966 		hlist_for_each_entry(c, *lists, child_node) {
2967 			if (!first_node)
2968 				seq_putc(s, ',');
2969 			first_node = false;
2970 			clk_dump_subtree(s, c, 0);
2971 		}
2972 	}
2973 
2974 	clk_prepare_unlock();
2975 
2976 	seq_puts(s, "}\n");
2977 	return 0;
2978 }
2979 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2980 
2981 static const struct {
2982 	unsigned long flag;
2983 	const char *name;
2984 } clk_flags[] = {
2985 #define ENTRY(f) { f, #f }
2986 	ENTRY(CLK_SET_RATE_GATE),
2987 	ENTRY(CLK_SET_PARENT_GATE),
2988 	ENTRY(CLK_SET_RATE_PARENT),
2989 	ENTRY(CLK_IGNORE_UNUSED),
2990 	ENTRY(CLK_GET_RATE_NOCACHE),
2991 	ENTRY(CLK_SET_RATE_NO_REPARENT),
2992 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
2993 	ENTRY(CLK_RECALC_NEW_RATES),
2994 	ENTRY(CLK_SET_RATE_UNGATE),
2995 	ENTRY(CLK_IS_CRITICAL),
2996 	ENTRY(CLK_OPS_PARENT_ENABLE),
2997 	ENTRY(CLK_DUTY_CYCLE_PARENT),
2998 #undef ENTRY
2999 };
3000 
3001 static int clk_flags_show(struct seq_file *s, void *data)
3002 {
3003 	struct clk_core *core = s->private;
3004 	unsigned long flags = core->flags;
3005 	unsigned int i;
3006 
3007 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3008 		if (flags & clk_flags[i].flag) {
3009 			seq_printf(s, "%s\n", clk_flags[i].name);
3010 			flags &= ~clk_flags[i].flag;
3011 		}
3012 	}
3013 	if (flags) {
3014 		/* Unknown flags */
3015 		seq_printf(s, "0x%lx\n", flags);
3016 	}
3017 
3018 	return 0;
3019 }
3020 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3021 
3022 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3023 				 unsigned int i, char terminator)
3024 {
3025 	struct clk_core *parent;
3026 
3027 	/*
3028 	 * Go through the following options to fetch a parent's name.
3029 	 *
3030 	 * 1. Fetch the registered parent clock and use its name
3031 	 * 2. Use the global (fallback) name if specified
3032 	 * 3. Use the local fw_name if provided
3033 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3034 	 *
3035 	 * This may still fail in some cases, such as when the parent is
3036 	 * specified directly via a struct clk_hw pointer, but it isn't
3037 	 * registered (yet).
3038 	 */
3039 	parent = clk_core_get_parent_by_index(core, i);
3040 	if (parent)
3041 		seq_puts(s, parent->name);
3042 	else if (core->parents[i].name)
3043 		seq_puts(s, core->parents[i].name);
3044 	else if (core->parents[i].fw_name)
3045 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3046 	else if (core->parents[i].index >= 0)
3047 		seq_puts(s,
3048 			 of_clk_get_parent_name(core->of_node,
3049 						core->parents[i].index));
3050 	else
3051 		seq_puts(s, "(missing)");
3052 
3053 	seq_putc(s, terminator);
3054 }
3055 
3056 static int possible_parents_show(struct seq_file *s, void *data)
3057 {
3058 	struct clk_core *core = s->private;
3059 	int i;
3060 
3061 	for (i = 0; i < core->num_parents - 1; i++)
3062 		possible_parent_show(s, core, i, ' ');
3063 
3064 	possible_parent_show(s, core, i, '\n');
3065 
3066 	return 0;
3067 }
3068 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3069 
3070 static int current_parent_show(struct seq_file *s, void *data)
3071 {
3072 	struct clk_core *core = s->private;
3073 
3074 	if (core->parent)
3075 		seq_printf(s, "%s\n", core->parent->name);
3076 
3077 	return 0;
3078 }
3079 DEFINE_SHOW_ATTRIBUTE(current_parent);
3080 
3081 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3082 {
3083 	struct clk_core *core = s->private;
3084 	struct clk_duty *duty = &core->duty;
3085 
3086 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3087 
3088 	return 0;
3089 }
3090 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3091 
3092 static int clk_min_rate_show(struct seq_file *s, void *data)
3093 {
3094 	struct clk_core *core = s->private;
3095 	unsigned long min_rate, max_rate;
3096 
3097 	clk_prepare_lock();
3098 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3099 	clk_prepare_unlock();
3100 	seq_printf(s, "%lu\n", min_rate);
3101 
3102 	return 0;
3103 }
3104 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3105 
3106 static int clk_max_rate_show(struct seq_file *s, void *data)
3107 {
3108 	struct clk_core *core = s->private;
3109 	unsigned long min_rate, max_rate;
3110 
3111 	clk_prepare_lock();
3112 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3113 	clk_prepare_unlock();
3114 	seq_printf(s, "%lu\n", max_rate);
3115 
3116 	return 0;
3117 }
3118 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3119 
3120 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3121 {
3122 	struct dentry *root;
3123 
3124 	if (!core || !pdentry)
3125 		return;
3126 
3127 	root = debugfs_create_dir(core->name, pdentry);
3128 	core->dentry = root;
3129 
3130 	debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
3131 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3132 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3133 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3134 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3135 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3136 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3137 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3138 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3139 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3140 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3141 			    &clk_duty_cycle_fops);
3142 
3143 	if (core->num_parents > 0)
3144 		debugfs_create_file("clk_parent", 0444, root, core,
3145 				    &current_parent_fops);
3146 
3147 	if (core->num_parents > 1)
3148 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3149 				    &possible_parents_fops);
3150 
3151 	if (core->ops->debug_init)
3152 		core->ops->debug_init(core->hw, core->dentry);
3153 }
3154 
3155 /**
3156  * clk_debug_register - add a clk node to the debugfs clk directory
3157  * @core: the clk being added to the debugfs clk directory
3158  *
3159  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3160  * initialized.  Otherwise it bails out early since the debugfs clk directory
3161  * will be created lazily by clk_debug_init as part of a late_initcall.
3162  */
3163 static void clk_debug_register(struct clk_core *core)
3164 {
3165 	mutex_lock(&clk_debug_lock);
3166 	hlist_add_head(&core->debug_node, &clk_debug_list);
3167 	if (inited)
3168 		clk_debug_create_one(core, rootdir);
3169 	mutex_unlock(&clk_debug_lock);
3170 }
3171 
3172  /**
3173  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3174  * @core: the clk being removed from the debugfs clk directory
3175  *
3176  * Dynamically removes a clk and all its child nodes from the
3177  * debugfs clk directory if clk->dentry points to debugfs created by
3178  * clk_debug_register in __clk_core_init.
3179  */
3180 static void clk_debug_unregister(struct clk_core *core)
3181 {
3182 	mutex_lock(&clk_debug_lock);
3183 	hlist_del_init(&core->debug_node);
3184 	debugfs_remove_recursive(core->dentry);
3185 	core->dentry = NULL;
3186 	mutex_unlock(&clk_debug_lock);
3187 }
3188 
3189 /**
3190  * clk_debug_init - lazily populate the debugfs clk directory
3191  *
3192  * clks are often initialized very early during boot before memory can be
3193  * dynamically allocated and well before debugfs is setup. This function
3194  * populates the debugfs clk directory once at boot-time when we know that
3195  * debugfs is setup. It should only be called once at boot-time, all other clks
3196  * added dynamically will be done so with clk_debug_register.
3197  */
3198 static int __init clk_debug_init(void)
3199 {
3200 	struct clk_core *core;
3201 
3202 	rootdir = debugfs_create_dir("clk", NULL);
3203 
3204 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3205 			    &clk_summary_fops);
3206 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3207 			    &clk_dump_fops);
3208 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3209 			    &clk_summary_fops);
3210 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3211 			    &clk_dump_fops);
3212 
3213 	mutex_lock(&clk_debug_lock);
3214 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3215 		clk_debug_create_one(core, rootdir);
3216 
3217 	inited = 1;
3218 	mutex_unlock(&clk_debug_lock);
3219 
3220 	return 0;
3221 }
3222 late_initcall(clk_debug_init);
3223 #else
3224 static inline void clk_debug_register(struct clk_core *core) { }
3225 static inline void clk_debug_reparent(struct clk_core *core,
3226 				      struct clk_core *new_parent)
3227 {
3228 }
3229 static inline void clk_debug_unregister(struct clk_core *core)
3230 {
3231 }
3232 #endif
3233 
3234 /**
3235  * __clk_core_init - initialize the data structures in a struct clk_core
3236  * @core:	clk_core being initialized
3237  *
3238  * Initializes the lists in struct clk_core, queries the hardware for the
3239  * parent and rate and sets them both.
3240  */
3241 static int __clk_core_init(struct clk_core *core)
3242 {
3243 	int ret;
3244 	struct clk_core *orphan;
3245 	struct hlist_node *tmp2;
3246 	unsigned long rate;
3247 
3248 	if (!core)
3249 		return -EINVAL;
3250 
3251 	clk_prepare_lock();
3252 
3253 	ret = clk_pm_runtime_get(core);
3254 	if (ret)
3255 		goto unlock;
3256 
3257 	/* check to see if a clock with this name is already registered */
3258 	if (clk_core_lookup(core->name)) {
3259 		pr_debug("%s: clk %s already initialized\n",
3260 				__func__, core->name);
3261 		ret = -EEXIST;
3262 		goto out;
3263 	}
3264 
3265 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3266 	if (core->ops->set_rate &&
3267 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3268 	      core->ops->recalc_rate)) {
3269 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3270 		       __func__, core->name);
3271 		ret = -EINVAL;
3272 		goto out;
3273 	}
3274 
3275 	if (core->ops->set_parent && !core->ops->get_parent) {
3276 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3277 		       __func__, core->name);
3278 		ret = -EINVAL;
3279 		goto out;
3280 	}
3281 
3282 	if (core->num_parents > 1 && !core->ops->get_parent) {
3283 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3284 		       __func__, core->name);
3285 		ret = -EINVAL;
3286 		goto out;
3287 	}
3288 
3289 	if (core->ops->set_rate_and_parent &&
3290 			!(core->ops->set_parent && core->ops->set_rate)) {
3291 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3292 				__func__, core->name);
3293 		ret = -EINVAL;
3294 		goto out;
3295 	}
3296 
3297 	core->parent = __clk_init_parent(core);
3298 
3299 	/*
3300 	 * Populate core->parent if parent has already been clk_core_init'd. If
3301 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3302 	 * list.  If clk doesn't have any parents then place it in the root
3303 	 * clk list.
3304 	 *
3305 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3306 	 * clocks and re-parent any that are children of the clock currently
3307 	 * being clk_init'd.
3308 	 */
3309 	if (core->parent) {
3310 		hlist_add_head(&core->child_node,
3311 				&core->parent->children);
3312 		core->orphan = core->parent->orphan;
3313 	} else if (!core->num_parents) {
3314 		hlist_add_head(&core->child_node, &clk_root_list);
3315 		core->orphan = false;
3316 	} else {
3317 		hlist_add_head(&core->child_node, &clk_orphan_list);
3318 		core->orphan = true;
3319 	}
3320 
3321 	/*
3322 	 * optional platform-specific magic
3323 	 *
3324 	 * The .init callback is not used by any of the basic clock types, but
3325 	 * exists for weird hardware that must perform initialization magic.
3326 	 * Please consider other ways of solving initialization problems before
3327 	 * using this callback, as its use is discouraged.
3328 	 */
3329 	if (core->ops->init)
3330 		core->ops->init(core->hw);
3331 
3332 	/*
3333 	 * Set clk's accuracy.  The preferred method is to use
3334 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3335 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3336 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3337 	 * clock).
3338 	 */
3339 	if (core->ops->recalc_accuracy)
3340 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3341 					__clk_get_accuracy(core->parent));
3342 	else if (core->parent)
3343 		core->accuracy = core->parent->accuracy;
3344 	else
3345 		core->accuracy = 0;
3346 
3347 	/*
3348 	 * Set clk's phase.
3349 	 * Since a phase is by definition relative to its parent, just
3350 	 * query the current clock phase, or just assume it's in phase.
3351 	 */
3352 	if (core->ops->get_phase)
3353 		core->phase = core->ops->get_phase(core->hw);
3354 	else
3355 		core->phase = 0;
3356 
3357 	/*
3358 	 * Set clk's duty cycle.
3359 	 */
3360 	clk_core_update_duty_cycle_nolock(core);
3361 
3362 	/*
3363 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3364 	 * simple clocks and lazy developers the default fallback is to use the
3365 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3366 	 * then rate is set to zero.
3367 	 */
3368 	if (core->ops->recalc_rate)
3369 		rate = core->ops->recalc_rate(core->hw,
3370 				clk_core_get_rate_nolock(core->parent));
3371 	else if (core->parent)
3372 		rate = core->parent->rate;
3373 	else
3374 		rate = 0;
3375 	core->rate = core->req_rate = rate;
3376 
3377 	/*
3378 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3379 	 * don't get accidentally disabled when walking the orphan tree and
3380 	 * reparenting clocks
3381 	 */
3382 	if (core->flags & CLK_IS_CRITICAL) {
3383 		unsigned long flags;
3384 
3385 		clk_core_prepare(core);
3386 
3387 		flags = clk_enable_lock();
3388 		clk_core_enable(core);
3389 		clk_enable_unlock(flags);
3390 	}
3391 
3392 	/*
3393 	 * walk the list of orphan clocks and reparent any that newly finds a
3394 	 * parent.
3395 	 */
3396 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3397 		struct clk_core *parent = __clk_init_parent(orphan);
3398 
3399 		/*
3400 		 * We need to use __clk_set_parent_before() and _after() to
3401 		 * to properly migrate any prepare/enable count of the orphan
3402 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3403 		 * are enabled during init but might not have a parent yet.
3404 		 */
3405 		if (parent) {
3406 			/* update the clk tree topology */
3407 			__clk_set_parent_before(orphan, parent);
3408 			__clk_set_parent_after(orphan, parent, NULL);
3409 			__clk_recalc_accuracies(orphan);
3410 			__clk_recalc_rates(orphan, 0);
3411 		}
3412 	}
3413 
3414 	kref_init(&core->ref);
3415 out:
3416 	clk_pm_runtime_put(core);
3417 unlock:
3418 	clk_prepare_unlock();
3419 
3420 	if (!ret)
3421 		clk_debug_register(core);
3422 
3423 	return ret;
3424 }
3425 
3426 /**
3427  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3428  * @core: clk to add consumer to
3429  * @clk: consumer to link to a clk
3430  */
3431 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3432 {
3433 	clk_prepare_lock();
3434 	hlist_add_head(&clk->clks_node, &core->clks);
3435 	clk_prepare_unlock();
3436 }
3437 
3438 /**
3439  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3440  * @clk: consumer to unlink
3441  */
3442 static void clk_core_unlink_consumer(struct clk *clk)
3443 {
3444 	lockdep_assert_held(&prepare_lock);
3445 	hlist_del(&clk->clks_node);
3446 }
3447 
3448 /**
3449  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3450  * @core: clk to allocate a consumer for
3451  * @dev_id: string describing device name
3452  * @con_id: connection ID string on device
3453  *
3454  * Returns: clk consumer left unlinked from the consumer list
3455  */
3456 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3457 			     const char *con_id)
3458 {
3459 	struct clk *clk;
3460 
3461 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3462 	if (!clk)
3463 		return ERR_PTR(-ENOMEM);
3464 
3465 	clk->core = core;
3466 	clk->dev_id = dev_id;
3467 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3468 	clk->max_rate = ULONG_MAX;
3469 
3470 	return clk;
3471 }
3472 
3473 /**
3474  * free_clk - Free a clk consumer
3475  * @clk: clk consumer to free
3476  *
3477  * Note, this assumes the clk has been unlinked from the clk_core consumer
3478  * list.
3479  */
3480 static void free_clk(struct clk *clk)
3481 {
3482 	kfree_const(clk->con_id);
3483 	kfree(clk);
3484 }
3485 
3486 /**
3487  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3488  * a clk_hw
3489  * @dev: clk consumer device
3490  * @hw: clk_hw associated with the clk being consumed
3491  * @dev_id: string describing device name
3492  * @con_id: connection ID string on device
3493  *
3494  * This is the main function used to create a clk pointer for use by clk
3495  * consumers. It connects a consumer to the clk_core and clk_hw structures
3496  * used by the framework and clk provider respectively.
3497  */
3498 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3499 			      const char *dev_id, const char *con_id)
3500 {
3501 	struct clk *clk;
3502 	struct clk_core *core;
3503 
3504 	/* This is to allow this function to be chained to others */
3505 	if (IS_ERR_OR_NULL(hw))
3506 		return ERR_CAST(hw);
3507 
3508 	core = hw->core;
3509 	clk = alloc_clk(core, dev_id, con_id);
3510 	if (IS_ERR(clk))
3511 		return clk;
3512 	clk->dev = dev;
3513 
3514 	if (!try_module_get(core->owner)) {
3515 		free_clk(clk);
3516 		return ERR_PTR(-ENOENT);
3517 	}
3518 
3519 	kref_get(&core->ref);
3520 	clk_core_link_consumer(core, clk);
3521 
3522 	return clk;
3523 }
3524 
3525 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3526 {
3527 	const char *dst;
3528 
3529 	if (!src) {
3530 		if (must_exist)
3531 			return -EINVAL;
3532 		return 0;
3533 	}
3534 
3535 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3536 	if (!dst)
3537 		return -ENOMEM;
3538 
3539 	return 0;
3540 }
3541 
3542 static int clk_core_populate_parent_map(struct clk_core *core,
3543 					const struct clk_init_data *init)
3544 {
3545 	u8 num_parents = init->num_parents;
3546 	const char * const *parent_names = init->parent_names;
3547 	const struct clk_hw **parent_hws = init->parent_hws;
3548 	const struct clk_parent_data *parent_data = init->parent_data;
3549 	int i, ret = 0;
3550 	struct clk_parent_map *parents, *parent;
3551 
3552 	if (!num_parents)
3553 		return 0;
3554 
3555 	/*
3556 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3557 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3558 	 */
3559 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3560 	core->parents = parents;
3561 	if (!parents)
3562 		return -ENOMEM;
3563 
3564 	/* Copy everything over because it might be __initdata */
3565 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3566 		parent->index = -1;
3567 		if (parent_names) {
3568 			/* throw a WARN if any entries are NULL */
3569 			WARN(!parent_names[i],
3570 				"%s: invalid NULL in %s's .parent_names\n",
3571 				__func__, core->name);
3572 			ret = clk_cpy_name(&parent->name, parent_names[i],
3573 					   true);
3574 		} else if (parent_data) {
3575 			parent->hw = parent_data[i].hw;
3576 			parent->index = parent_data[i].index;
3577 			ret = clk_cpy_name(&parent->fw_name,
3578 					   parent_data[i].fw_name, false);
3579 			if (!ret)
3580 				ret = clk_cpy_name(&parent->name,
3581 						   parent_data[i].name,
3582 						   false);
3583 		} else if (parent_hws) {
3584 			parent->hw = parent_hws[i];
3585 		} else {
3586 			ret = -EINVAL;
3587 			WARN(1, "Must specify parents if num_parents > 0\n");
3588 		}
3589 
3590 		if (ret) {
3591 			do {
3592 				kfree_const(parents[i].name);
3593 				kfree_const(parents[i].fw_name);
3594 			} while (--i >= 0);
3595 			kfree(parents);
3596 
3597 			return ret;
3598 		}
3599 	}
3600 
3601 	return 0;
3602 }
3603 
3604 static void clk_core_free_parent_map(struct clk_core *core)
3605 {
3606 	int i = core->num_parents;
3607 
3608 	if (!core->num_parents)
3609 		return;
3610 
3611 	while (--i >= 0) {
3612 		kfree_const(core->parents[i].name);
3613 		kfree_const(core->parents[i].fw_name);
3614 	}
3615 
3616 	kfree(core->parents);
3617 }
3618 
3619 static struct clk *
3620 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3621 {
3622 	int ret;
3623 	struct clk_core *core;
3624 	const struct clk_init_data *init = hw->init;
3625 
3626 	/*
3627 	 * The init data is not supposed to be used outside of registration path.
3628 	 * Set it to NULL so that provider drivers can't use it either and so that
3629 	 * we catch use of hw->init early on in the core.
3630 	 */
3631 	hw->init = NULL;
3632 
3633 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3634 	if (!core) {
3635 		ret = -ENOMEM;
3636 		goto fail_out;
3637 	}
3638 
3639 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3640 	if (!core->name) {
3641 		ret = -ENOMEM;
3642 		goto fail_name;
3643 	}
3644 
3645 	if (WARN_ON(!init->ops)) {
3646 		ret = -EINVAL;
3647 		goto fail_ops;
3648 	}
3649 	core->ops = init->ops;
3650 
3651 	if (dev && pm_runtime_enabled(dev))
3652 		core->rpm_enabled = true;
3653 	core->dev = dev;
3654 	core->of_node = np;
3655 	if (dev && dev->driver)
3656 		core->owner = dev->driver->owner;
3657 	core->hw = hw;
3658 	core->flags = init->flags;
3659 	core->num_parents = init->num_parents;
3660 	core->min_rate = 0;
3661 	core->max_rate = ULONG_MAX;
3662 	hw->core = core;
3663 
3664 	ret = clk_core_populate_parent_map(core, init);
3665 	if (ret)
3666 		goto fail_parents;
3667 
3668 	INIT_HLIST_HEAD(&core->clks);
3669 
3670 	/*
3671 	 * Don't call clk_hw_create_clk() here because that would pin the
3672 	 * provider module to itself and prevent it from ever being removed.
3673 	 */
3674 	hw->clk = alloc_clk(core, NULL, NULL);
3675 	if (IS_ERR(hw->clk)) {
3676 		ret = PTR_ERR(hw->clk);
3677 		goto fail_create_clk;
3678 	}
3679 
3680 	clk_core_link_consumer(hw->core, hw->clk);
3681 
3682 	ret = __clk_core_init(core);
3683 	if (!ret)
3684 		return hw->clk;
3685 
3686 	clk_prepare_lock();
3687 	clk_core_unlink_consumer(hw->clk);
3688 	clk_prepare_unlock();
3689 
3690 	free_clk(hw->clk);
3691 	hw->clk = NULL;
3692 
3693 fail_create_clk:
3694 	clk_core_free_parent_map(core);
3695 fail_parents:
3696 fail_ops:
3697 	kfree_const(core->name);
3698 fail_name:
3699 	kfree(core);
3700 fail_out:
3701 	return ERR_PTR(ret);
3702 }
3703 
3704 /**
3705  * clk_register - allocate a new clock, register it and return an opaque cookie
3706  * @dev: device that is registering this clock
3707  * @hw: link to hardware-specific clock data
3708  *
3709  * clk_register is the *deprecated* interface for populating the clock tree with
3710  * new clock nodes. Use clk_hw_register() instead.
3711  *
3712  * Returns: a pointer to the newly allocated struct clk which
3713  * cannot be dereferenced by driver code but may be used in conjunction with the
3714  * rest of the clock API.  In the event of an error clk_register will return an
3715  * error code; drivers must test for an error code after calling clk_register.
3716  */
3717 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3718 {
3719 	return __clk_register(dev, dev_of_node(dev), hw);
3720 }
3721 EXPORT_SYMBOL_GPL(clk_register);
3722 
3723 /**
3724  * clk_hw_register - register a clk_hw and return an error code
3725  * @dev: device that is registering this clock
3726  * @hw: link to hardware-specific clock data
3727  *
3728  * clk_hw_register is the primary interface for populating the clock tree with
3729  * new clock nodes. It returns an integer equal to zero indicating success or
3730  * less than zero indicating failure. Drivers must test for an error code after
3731  * calling clk_hw_register().
3732  */
3733 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3734 {
3735 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw));
3736 }
3737 EXPORT_SYMBOL_GPL(clk_hw_register);
3738 
3739 /*
3740  * of_clk_hw_register - register a clk_hw and return an error code
3741  * @node: device_node of device that is registering this clock
3742  * @hw: link to hardware-specific clock data
3743  *
3744  * of_clk_hw_register() is the primary interface for populating the clock tree
3745  * with new clock nodes when a struct device is not available, but a struct
3746  * device_node is. It returns an integer equal to zero indicating success or
3747  * less than zero indicating failure. Drivers must test for an error code after
3748  * calling of_clk_hw_register().
3749  */
3750 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3751 {
3752 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3753 }
3754 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3755 
3756 /* Free memory allocated for a clock. */
3757 static void __clk_release(struct kref *ref)
3758 {
3759 	struct clk_core *core = container_of(ref, struct clk_core, ref);
3760 
3761 	lockdep_assert_held(&prepare_lock);
3762 
3763 	clk_core_free_parent_map(core);
3764 	kfree_const(core->name);
3765 	kfree(core);
3766 }
3767 
3768 /*
3769  * Empty clk_ops for unregistered clocks. These are used temporarily
3770  * after clk_unregister() was called on a clock and until last clock
3771  * consumer calls clk_put() and the struct clk object is freed.
3772  */
3773 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3774 {
3775 	return -ENXIO;
3776 }
3777 
3778 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3779 {
3780 	WARN_ON_ONCE(1);
3781 }
3782 
3783 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3784 					unsigned long parent_rate)
3785 {
3786 	return -ENXIO;
3787 }
3788 
3789 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3790 {
3791 	return -ENXIO;
3792 }
3793 
3794 static const struct clk_ops clk_nodrv_ops = {
3795 	.enable		= clk_nodrv_prepare_enable,
3796 	.disable	= clk_nodrv_disable_unprepare,
3797 	.prepare	= clk_nodrv_prepare_enable,
3798 	.unprepare	= clk_nodrv_disable_unprepare,
3799 	.set_rate	= clk_nodrv_set_rate,
3800 	.set_parent	= clk_nodrv_set_parent,
3801 };
3802 
3803 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3804 						struct clk_core *target)
3805 {
3806 	int i;
3807 	struct clk_core *child;
3808 
3809 	for (i = 0; i < root->num_parents; i++)
3810 		if (root->parents[i].core == target)
3811 			root->parents[i].core = NULL;
3812 
3813 	hlist_for_each_entry(child, &root->children, child_node)
3814 		clk_core_evict_parent_cache_subtree(child, target);
3815 }
3816 
3817 /* Remove this clk from all parent caches */
3818 static void clk_core_evict_parent_cache(struct clk_core *core)
3819 {
3820 	struct hlist_head **lists;
3821 	struct clk_core *root;
3822 
3823 	lockdep_assert_held(&prepare_lock);
3824 
3825 	for (lists = all_lists; *lists; lists++)
3826 		hlist_for_each_entry(root, *lists, child_node)
3827 			clk_core_evict_parent_cache_subtree(root, core);
3828 
3829 }
3830 
3831 /**
3832  * clk_unregister - unregister a currently registered clock
3833  * @clk: clock to unregister
3834  */
3835 void clk_unregister(struct clk *clk)
3836 {
3837 	unsigned long flags;
3838 
3839 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3840 		return;
3841 
3842 	clk_debug_unregister(clk->core);
3843 
3844 	clk_prepare_lock();
3845 
3846 	if (clk->core->ops == &clk_nodrv_ops) {
3847 		pr_err("%s: unregistered clock: %s\n", __func__,
3848 		       clk->core->name);
3849 		goto unlock;
3850 	}
3851 	/*
3852 	 * Assign empty clock ops for consumers that might still hold
3853 	 * a reference to this clock.
3854 	 */
3855 	flags = clk_enable_lock();
3856 	clk->core->ops = &clk_nodrv_ops;
3857 	clk_enable_unlock(flags);
3858 
3859 	if (!hlist_empty(&clk->core->children)) {
3860 		struct clk_core *child;
3861 		struct hlist_node *t;
3862 
3863 		/* Reparent all children to the orphan list. */
3864 		hlist_for_each_entry_safe(child, t, &clk->core->children,
3865 					  child_node)
3866 			clk_core_set_parent_nolock(child, NULL);
3867 	}
3868 
3869 	clk_core_evict_parent_cache(clk->core);
3870 
3871 	hlist_del_init(&clk->core->child_node);
3872 
3873 	if (clk->core->prepare_count)
3874 		pr_warn("%s: unregistering prepared clock: %s\n",
3875 					__func__, clk->core->name);
3876 
3877 	if (clk->core->protect_count)
3878 		pr_warn("%s: unregistering protected clock: %s\n",
3879 					__func__, clk->core->name);
3880 
3881 	kref_put(&clk->core->ref, __clk_release);
3882 unlock:
3883 	clk_prepare_unlock();
3884 }
3885 EXPORT_SYMBOL_GPL(clk_unregister);
3886 
3887 /**
3888  * clk_hw_unregister - unregister a currently registered clk_hw
3889  * @hw: hardware-specific clock data to unregister
3890  */
3891 void clk_hw_unregister(struct clk_hw *hw)
3892 {
3893 	clk_unregister(hw->clk);
3894 }
3895 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3896 
3897 static void devm_clk_release(struct device *dev, void *res)
3898 {
3899 	clk_unregister(*(struct clk **)res);
3900 }
3901 
3902 static void devm_clk_hw_release(struct device *dev, void *res)
3903 {
3904 	clk_hw_unregister(*(struct clk_hw **)res);
3905 }
3906 
3907 /**
3908  * devm_clk_register - resource managed clk_register()
3909  * @dev: device that is registering this clock
3910  * @hw: link to hardware-specific clock data
3911  *
3912  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
3913  *
3914  * Clocks returned from this function are automatically clk_unregister()ed on
3915  * driver detach. See clk_register() for more information.
3916  */
3917 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3918 {
3919 	struct clk *clk;
3920 	struct clk **clkp;
3921 
3922 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3923 	if (!clkp)
3924 		return ERR_PTR(-ENOMEM);
3925 
3926 	clk = clk_register(dev, hw);
3927 	if (!IS_ERR(clk)) {
3928 		*clkp = clk;
3929 		devres_add(dev, clkp);
3930 	} else {
3931 		devres_free(clkp);
3932 	}
3933 
3934 	return clk;
3935 }
3936 EXPORT_SYMBOL_GPL(devm_clk_register);
3937 
3938 /**
3939  * devm_clk_hw_register - resource managed clk_hw_register()
3940  * @dev: device that is registering this clock
3941  * @hw: link to hardware-specific clock data
3942  *
3943  * Managed clk_hw_register(). Clocks registered by this function are
3944  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3945  * for more information.
3946  */
3947 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3948 {
3949 	struct clk_hw **hwp;
3950 	int ret;
3951 
3952 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3953 	if (!hwp)
3954 		return -ENOMEM;
3955 
3956 	ret = clk_hw_register(dev, hw);
3957 	if (!ret) {
3958 		*hwp = hw;
3959 		devres_add(dev, hwp);
3960 	} else {
3961 		devres_free(hwp);
3962 	}
3963 
3964 	return ret;
3965 }
3966 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3967 
3968 static int devm_clk_match(struct device *dev, void *res, void *data)
3969 {
3970 	struct clk *c = res;
3971 	if (WARN_ON(!c))
3972 		return 0;
3973 	return c == data;
3974 }
3975 
3976 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3977 {
3978 	struct clk_hw *hw = res;
3979 
3980 	if (WARN_ON(!hw))
3981 		return 0;
3982 	return hw == data;
3983 }
3984 
3985 /**
3986  * devm_clk_unregister - resource managed clk_unregister()
3987  * @clk: clock to unregister
3988  *
3989  * Deallocate a clock allocated with devm_clk_register(). Normally
3990  * this function will not need to be called and the resource management
3991  * code will ensure that the resource is freed.
3992  */
3993 void devm_clk_unregister(struct device *dev, struct clk *clk)
3994 {
3995 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3996 }
3997 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3998 
3999 /**
4000  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4001  * @dev: device that is unregistering the hardware-specific clock data
4002  * @hw: link to hardware-specific clock data
4003  *
4004  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4005  * this function will not need to be called and the resource management
4006  * code will ensure that the resource is freed.
4007  */
4008 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4009 {
4010 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4011 				hw));
4012 }
4013 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4014 
4015 /*
4016  * clkdev helpers
4017  */
4018 
4019 void __clk_put(struct clk *clk)
4020 {
4021 	struct module *owner;
4022 
4023 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4024 		return;
4025 
4026 	clk_prepare_lock();
4027 
4028 	/*
4029 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4030 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4031 	 * and by that same consumer
4032 	 */
4033 	if (WARN_ON(clk->exclusive_count)) {
4034 		/* We voiced our concern, let's sanitize the situation */
4035 		clk->core->protect_count -= (clk->exclusive_count - 1);
4036 		clk_core_rate_unprotect(clk->core);
4037 		clk->exclusive_count = 0;
4038 	}
4039 
4040 	hlist_del(&clk->clks_node);
4041 	if (clk->min_rate > clk->core->req_rate ||
4042 	    clk->max_rate < clk->core->req_rate)
4043 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4044 
4045 	owner = clk->core->owner;
4046 	kref_put(&clk->core->ref, __clk_release);
4047 
4048 	clk_prepare_unlock();
4049 
4050 	module_put(owner);
4051 
4052 	free_clk(clk);
4053 }
4054 
4055 /***        clk rate change notifiers        ***/
4056 
4057 /**
4058  * clk_notifier_register - add a clk rate change notifier
4059  * @clk: struct clk * to watch
4060  * @nb: struct notifier_block * with callback info
4061  *
4062  * Request notification when clk's rate changes.  This uses an SRCU
4063  * notifier because we want it to block and notifier unregistrations are
4064  * uncommon.  The callbacks associated with the notifier must not
4065  * re-enter into the clk framework by calling any top-level clk APIs;
4066  * this will cause a nested prepare_lock mutex.
4067  *
4068  * In all notification cases (pre, post and abort rate change) the original
4069  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4070  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4071  *
4072  * clk_notifier_register() must be called from non-atomic context.
4073  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4074  * allocation failure; otherwise, passes along the return value of
4075  * srcu_notifier_chain_register().
4076  */
4077 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4078 {
4079 	struct clk_notifier *cn;
4080 	int ret = -ENOMEM;
4081 
4082 	if (!clk || !nb)
4083 		return -EINVAL;
4084 
4085 	clk_prepare_lock();
4086 
4087 	/* search the list of notifiers for this clk */
4088 	list_for_each_entry(cn, &clk_notifier_list, node)
4089 		if (cn->clk == clk)
4090 			break;
4091 
4092 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4093 	if (cn->clk != clk) {
4094 		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4095 		if (!cn)
4096 			goto out;
4097 
4098 		cn->clk = clk;
4099 		srcu_init_notifier_head(&cn->notifier_head);
4100 
4101 		list_add(&cn->node, &clk_notifier_list);
4102 	}
4103 
4104 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4105 
4106 	clk->core->notifier_count++;
4107 
4108 out:
4109 	clk_prepare_unlock();
4110 
4111 	return ret;
4112 }
4113 EXPORT_SYMBOL_GPL(clk_notifier_register);
4114 
4115 /**
4116  * clk_notifier_unregister - remove a clk rate change notifier
4117  * @clk: struct clk *
4118  * @nb: struct notifier_block * with callback info
4119  *
4120  * Request no further notification for changes to 'clk' and frees memory
4121  * allocated in clk_notifier_register.
4122  *
4123  * Returns -EINVAL if called with null arguments; otherwise, passes
4124  * along the return value of srcu_notifier_chain_unregister().
4125  */
4126 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4127 {
4128 	struct clk_notifier *cn = NULL;
4129 	int ret = -EINVAL;
4130 
4131 	if (!clk || !nb)
4132 		return -EINVAL;
4133 
4134 	clk_prepare_lock();
4135 
4136 	list_for_each_entry(cn, &clk_notifier_list, node)
4137 		if (cn->clk == clk)
4138 			break;
4139 
4140 	if (cn->clk == clk) {
4141 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4142 
4143 		clk->core->notifier_count--;
4144 
4145 		/* XXX the notifier code should handle this better */
4146 		if (!cn->notifier_head.head) {
4147 			srcu_cleanup_notifier_head(&cn->notifier_head);
4148 			list_del(&cn->node);
4149 			kfree(cn);
4150 		}
4151 
4152 	} else {
4153 		ret = -ENOENT;
4154 	}
4155 
4156 	clk_prepare_unlock();
4157 
4158 	return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4161 
4162 #ifdef CONFIG_OF
4163 /**
4164  * struct of_clk_provider - Clock provider registration structure
4165  * @link: Entry in global list of clock providers
4166  * @node: Pointer to device tree node of clock provider
4167  * @get: Get clock callback.  Returns NULL or a struct clk for the
4168  *       given clock specifier
4169  * @data: context pointer to be passed into @get callback
4170  */
4171 struct of_clk_provider {
4172 	struct list_head link;
4173 
4174 	struct device_node *node;
4175 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4176 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4177 	void *data;
4178 };
4179 
4180 extern struct of_device_id __clk_of_table;
4181 static const struct of_device_id __clk_of_table_sentinel
4182 	__used __section(__clk_of_table_end);
4183 
4184 static LIST_HEAD(of_clk_providers);
4185 static DEFINE_MUTEX(of_clk_mutex);
4186 
4187 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4188 				     void *data)
4189 {
4190 	return data;
4191 }
4192 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4193 
4194 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4195 {
4196 	return data;
4197 }
4198 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4199 
4200 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4201 {
4202 	struct clk_onecell_data *clk_data = data;
4203 	unsigned int idx = clkspec->args[0];
4204 
4205 	if (idx >= clk_data->clk_num) {
4206 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4207 		return ERR_PTR(-EINVAL);
4208 	}
4209 
4210 	return clk_data->clks[idx];
4211 }
4212 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4213 
4214 struct clk_hw *
4215 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4216 {
4217 	struct clk_hw_onecell_data *hw_data = data;
4218 	unsigned int idx = clkspec->args[0];
4219 
4220 	if (idx >= hw_data->num) {
4221 		pr_err("%s: invalid index %u\n", __func__, idx);
4222 		return ERR_PTR(-EINVAL);
4223 	}
4224 
4225 	return hw_data->hws[idx];
4226 }
4227 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4228 
4229 /**
4230  * of_clk_add_provider() - Register a clock provider for a node
4231  * @np: Device node pointer associated with clock provider
4232  * @clk_src_get: callback for decoding clock
4233  * @data: context pointer for @clk_src_get callback.
4234  *
4235  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4236  */
4237 int of_clk_add_provider(struct device_node *np,
4238 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4239 						   void *data),
4240 			void *data)
4241 {
4242 	struct of_clk_provider *cp;
4243 	int ret;
4244 
4245 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4246 	if (!cp)
4247 		return -ENOMEM;
4248 
4249 	cp->node = of_node_get(np);
4250 	cp->data = data;
4251 	cp->get = clk_src_get;
4252 
4253 	mutex_lock(&of_clk_mutex);
4254 	list_add(&cp->link, &of_clk_providers);
4255 	mutex_unlock(&of_clk_mutex);
4256 	pr_debug("Added clock from %pOF\n", np);
4257 
4258 	ret = of_clk_set_defaults(np, true);
4259 	if (ret < 0)
4260 		of_clk_del_provider(np);
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4265 
4266 /**
4267  * of_clk_add_hw_provider() - Register a clock provider for a node
4268  * @np: Device node pointer associated with clock provider
4269  * @get: callback for decoding clk_hw
4270  * @data: context pointer for @get callback.
4271  */
4272 int of_clk_add_hw_provider(struct device_node *np,
4273 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4274 						 void *data),
4275 			   void *data)
4276 {
4277 	struct of_clk_provider *cp;
4278 	int ret;
4279 
4280 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4281 	if (!cp)
4282 		return -ENOMEM;
4283 
4284 	cp->node = of_node_get(np);
4285 	cp->data = data;
4286 	cp->get_hw = get;
4287 
4288 	mutex_lock(&of_clk_mutex);
4289 	list_add(&cp->link, &of_clk_providers);
4290 	mutex_unlock(&of_clk_mutex);
4291 	pr_debug("Added clk_hw provider from %pOF\n", np);
4292 
4293 	ret = of_clk_set_defaults(np, true);
4294 	if (ret < 0)
4295 		of_clk_del_provider(np);
4296 
4297 	return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4300 
4301 static void devm_of_clk_release_provider(struct device *dev, void *res)
4302 {
4303 	of_clk_del_provider(*(struct device_node **)res);
4304 }
4305 
4306 /*
4307  * We allow a child device to use its parent device as the clock provider node
4308  * for cases like MFD sub-devices where the child device driver wants to use
4309  * devm_*() APIs but not list the device in DT as a sub-node.
4310  */
4311 static struct device_node *get_clk_provider_node(struct device *dev)
4312 {
4313 	struct device_node *np, *parent_np;
4314 
4315 	np = dev->of_node;
4316 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4317 
4318 	if (!of_find_property(np, "#clock-cells", NULL))
4319 		if (of_find_property(parent_np, "#clock-cells", NULL))
4320 			np = parent_np;
4321 
4322 	return np;
4323 }
4324 
4325 /**
4326  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4327  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4328  * @get: callback for decoding clk_hw
4329  * @data: context pointer for @get callback
4330  *
4331  * Registers clock provider for given device's node. If the device has no DT
4332  * node or if the device node lacks of clock provider information (#clock-cells)
4333  * then the parent device's node is scanned for this information. If parent node
4334  * has the #clock-cells then it is used in registration. Provider is
4335  * automatically released at device exit.
4336  *
4337  * Return: 0 on success or an errno on failure.
4338  */
4339 int devm_of_clk_add_hw_provider(struct device *dev,
4340 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4341 					      void *data),
4342 			void *data)
4343 {
4344 	struct device_node **ptr, *np;
4345 	int ret;
4346 
4347 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4348 			   GFP_KERNEL);
4349 	if (!ptr)
4350 		return -ENOMEM;
4351 
4352 	np = get_clk_provider_node(dev);
4353 	ret = of_clk_add_hw_provider(np, get, data);
4354 	if (!ret) {
4355 		*ptr = np;
4356 		devres_add(dev, ptr);
4357 	} else {
4358 		devres_free(ptr);
4359 	}
4360 
4361 	return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4364 
4365 /**
4366  * of_clk_del_provider() - Remove a previously registered clock provider
4367  * @np: Device node pointer associated with clock provider
4368  */
4369 void of_clk_del_provider(struct device_node *np)
4370 {
4371 	struct of_clk_provider *cp;
4372 
4373 	mutex_lock(&of_clk_mutex);
4374 	list_for_each_entry(cp, &of_clk_providers, link) {
4375 		if (cp->node == np) {
4376 			list_del(&cp->link);
4377 			of_node_put(cp->node);
4378 			kfree(cp);
4379 			break;
4380 		}
4381 	}
4382 	mutex_unlock(&of_clk_mutex);
4383 }
4384 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4385 
4386 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4387 {
4388 	struct device_node **np = res;
4389 
4390 	if (WARN_ON(!np || !*np))
4391 		return 0;
4392 
4393 	return *np == data;
4394 }
4395 
4396 /**
4397  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4398  * @dev: Device to whose lifetime the clock provider was bound
4399  */
4400 void devm_of_clk_del_provider(struct device *dev)
4401 {
4402 	int ret;
4403 	struct device_node *np = get_clk_provider_node(dev);
4404 
4405 	ret = devres_release(dev, devm_of_clk_release_provider,
4406 			     devm_clk_provider_match, np);
4407 
4408 	WARN_ON(ret);
4409 }
4410 EXPORT_SYMBOL(devm_of_clk_del_provider);
4411 
4412 /**
4413  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4414  * @np: device node to parse clock specifier from
4415  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4416  * @name: clock name to find and parse. If name is NULL, the index is used
4417  * @out_args: Result of parsing the clock specifier
4418  *
4419  * Parses a device node's "clocks" and "clock-names" properties to find the
4420  * phandle and cells for the index or name that is desired. The resulting clock
4421  * specifier is placed into @out_args, or an errno is returned when there's a
4422  * parsing error. The @index argument is ignored if @name is non-NULL.
4423  *
4424  * Example:
4425  *
4426  * phandle1: clock-controller@1 {
4427  *	#clock-cells = <2>;
4428  * }
4429  *
4430  * phandle2: clock-controller@2 {
4431  *	#clock-cells = <1>;
4432  * }
4433  *
4434  * clock-consumer@3 {
4435  *	clocks = <&phandle1 1 2 &phandle2 3>;
4436  *	clock-names = "name1", "name2";
4437  * }
4438  *
4439  * To get a device_node for `clock-controller@2' node you may call this
4440  * function a few different ways:
4441  *
4442  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4443  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4444  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4445  *
4446  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4447  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4448  * the "clock-names" property of @np.
4449  */
4450 static int of_parse_clkspec(const struct device_node *np, int index,
4451 			    const char *name, struct of_phandle_args *out_args)
4452 {
4453 	int ret = -ENOENT;
4454 
4455 	/* Walk up the tree of devices looking for a clock property that matches */
4456 	while (np) {
4457 		/*
4458 		 * For named clocks, first look up the name in the
4459 		 * "clock-names" property.  If it cannot be found, then index
4460 		 * will be an error code and of_parse_phandle_with_args() will
4461 		 * return -EINVAL.
4462 		 */
4463 		if (name)
4464 			index = of_property_match_string(np, "clock-names", name);
4465 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4466 						 index, out_args);
4467 		if (!ret)
4468 			break;
4469 		if (name && index >= 0)
4470 			break;
4471 
4472 		/*
4473 		 * No matching clock found on this node.  If the parent node
4474 		 * has a "clock-ranges" property, then we can try one of its
4475 		 * clocks.
4476 		 */
4477 		np = np->parent;
4478 		if (np && !of_get_property(np, "clock-ranges", NULL))
4479 			break;
4480 		index = 0;
4481 	}
4482 
4483 	return ret;
4484 }
4485 
4486 static struct clk_hw *
4487 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4488 			      struct of_phandle_args *clkspec)
4489 {
4490 	struct clk *clk;
4491 
4492 	if (provider->get_hw)
4493 		return provider->get_hw(clkspec, provider->data);
4494 
4495 	clk = provider->get(clkspec, provider->data);
4496 	if (IS_ERR(clk))
4497 		return ERR_CAST(clk);
4498 	return __clk_get_hw(clk);
4499 }
4500 
4501 static struct clk_hw *
4502 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4503 {
4504 	struct of_clk_provider *provider;
4505 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4506 
4507 	if (!clkspec)
4508 		return ERR_PTR(-EINVAL);
4509 
4510 	mutex_lock(&of_clk_mutex);
4511 	list_for_each_entry(provider, &of_clk_providers, link) {
4512 		if (provider->node == clkspec->np) {
4513 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4514 			if (!IS_ERR(hw))
4515 				break;
4516 		}
4517 	}
4518 	mutex_unlock(&of_clk_mutex);
4519 
4520 	return hw;
4521 }
4522 
4523 /**
4524  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4525  * @clkspec: pointer to a clock specifier data structure
4526  *
4527  * This function looks up a struct clk from the registered list of clock
4528  * providers, an input is a clock specifier data structure as returned
4529  * from the of_parse_phandle_with_args() function call.
4530  */
4531 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4532 {
4533 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4534 
4535 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4536 }
4537 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4538 
4539 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4540 			     const char *con_id)
4541 {
4542 	int ret;
4543 	struct clk_hw *hw;
4544 	struct of_phandle_args clkspec;
4545 
4546 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4547 	if (ret)
4548 		return ERR_PTR(ret);
4549 
4550 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4551 	of_node_put(clkspec.np);
4552 
4553 	return hw;
4554 }
4555 
4556 static struct clk *__of_clk_get(struct device_node *np,
4557 				int index, const char *dev_id,
4558 				const char *con_id)
4559 {
4560 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4561 
4562 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4563 }
4564 
4565 struct clk *of_clk_get(struct device_node *np, int index)
4566 {
4567 	return __of_clk_get(np, index, np->full_name, NULL);
4568 }
4569 EXPORT_SYMBOL(of_clk_get);
4570 
4571 /**
4572  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4573  * @np: pointer to clock consumer node
4574  * @name: name of consumer's clock input, or NULL for the first clock reference
4575  *
4576  * This function parses the clocks and clock-names properties,
4577  * and uses them to look up the struct clk from the registered list of clock
4578  * providers.
4579  */
4580 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4581 {
4582 	if (!np)
4583 		return ERR_PTR(-ENOENT);
4584 
4585 	return __of_clk_get(np, 0, np->full_name, name);
4586 }
4587 EXPORT_SYMBOL(of_clk_get_by_name);
4588 
4589 /**
4590  * of_clk_get_parent_count() - Count the number of clocks a device node has
4591  * @np: device node to count
4592  *
4593  * Returns: The number of clocks that are possible parents of this node
4594  */
4595 unsigned int of_clk_get_parent_count(struct device_node *np)
4596 {
4597 	int count;
4598 
4599 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4600 	if (count < 0)
4601 		return 0;
4602 
4603 	return count;
4604 }
4605 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4606 
4607 const char *of_clk_get_parent_name(struct device_node *np, int index)
4608 {
4609 	struct of_phandle_args clkspec;
4610 	struct property *prop;
4611 	const char *clk_name;
4612 	const __be32 *vp;
4613 	u32 pv;
4614 	int rc;
4615 	int count;
4616 	struct clk *clk;
4617 
4618 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4619 					&clkspec);
4620 	if (rc)
4621 		return NULL;
4622 
4623 	index = clkspec.args_count ? clkspec.args[0] : 0;
4624 	count = 0;
4625 
4626 	/* if there is an indices property, use it to transfer the index
4627 	 * specified into an array offset for the clock-output-names property.
4628 	 */
4629 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4630 		if (index == pv) {
4631 			index = count;
4632 			break;
4633 		}
4634 		count++;
4635 	}
4636 	/* We went off the end of 'clock-indices' without finding it */
4637 	if (prop && !vp)
4638 		return NULL;
4639 
4640 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4641 					  index,
4642 					  &clk_name) < 0) {
4643 		/*
4644 		 * Best effort to get the name if the clock has been
4645 		 * registered with the framework. If the clock isn't
4646 		 * registered, we return the node name as the name of
4647 		 * the clock as long as #clock-cells = 0.
4648 		 */
4649 		clk = of_clk_get_from_provider(&clkspec);
4650 		if (IS_ERR(clk)) {
4651 			if (clkspec.args_count == 0)
4652 				clk_name = clkspec.np->name;
4653 			else
4654 				clk_name = NULL;
4655 		} else {
4656 			clk_name = __clk_get_name(clk);
4657 			clk_put(clk);
4658 		}
4659 	}
4660 
4661 
4662 	of_node_put(clkspec.np);
4663 	return clk_name;
4664 }
4665 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4666 
4667 /**
4668  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4669  * number of parents
4670  * @np: Device node pointer associated with clock provider
4671  * @parents: pointer to char array that hold the parents' names
4672  * @size: size of the @parents array
4673  *
4674  * Return: number of parents for the clock node.
4675  */
4676 int of_clk_parent_fill(struct device_node *np, const char **parents,
4677 		       unsigned int size)
4678 {
4679 	unsigned int i = 0;
4680 
4681 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4682 		i++;
4683 
4684 	return i;
4685 }
4686 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4687 
4688 struct clock_provider {
4689 	void (*clk_init_cb)(struct device_node *);
4690 	struct device_node *np;
4691 	struct list_head node;
4692 };
4693 
4694 /*
4695  * This function looks for a parent clock. If there is one, then it
4696  * checks that the provider for this parent clock was initialized, in
4697  * this case the parent clock will be ready.
4698  */
4699 static int parent_ready(struct device_node *np)
4700 {
4701 	int i = 0;
4702 
4703 	while (true) {
4704 		struct clk *clk = of_clk_get(np, i);
4705 
4706 		/* this parent is ready we can check the next one */
4707 		if (!IS_ERR(clk)) {
4708 			clk_put(clk);
4709 			i++;
4710 			continue;
4711 		}
4712 
4713 		/* at least one parent is not ready, we exit now */
4714 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4715 			return 0;
4716 
4717 		/*
4718 		 * Here we make assumption that the device tree is
4719 		 * written correctly. So an error means that there is
4720 		 * no more parent. As we didn't exit yet, then the
4721 		 * previous parent are ready. If there is no clock
4722 		 * parent, no need to wait for them, then we can
4723 		 * consider their absence as being ready
4724 		 */
4725 		return 1;
4726 	}
4727 }
4728 
4729 /**
4730  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4731  * @np: Device node pointer associated with clock provider
4732  * @index: clock index
4733  * @flags: pointer to top-level framework flags
4734  *
4735  * Detects if the clock-critical property exists and, if so, sets the
4736  * corresponding CLK_IS_CRITICAL flag.
4737  *
4738  * Do not use this function. It exists only for legacy Device Tree
4739  * bindings, such as the one-clock-per-node style that are outdated.
4740  * Those bindings typically put all clock data into .dts and the Linux
4741  * driver has no clock data, thus making it impossible to set this flag
4742  * correctly from the driver. Only those drivers may call
4743  * of_clk_detect_critical from their setup functions.
4744  *
4745  * Return: error code or zero on success
4746  */
4747 int of_clk_detect_critical(struct device_node *np,
4748 					  int index, unsigned long *flags)
4749 {
4750 	struct property *prop;
4751 	const __be32 *cur;
4752 	uint32_t idx;
4753 
4754 	if (!np || !flags)
4755 		return -EINVAL;
4756 
4757 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4758 		if (index == idx)
4759 			*flags |= CLK_IS_CRITICAL;
4760 
4761 	return 0;
4762 }
4763 
4764 /**
4765  * of_clk_init() - Scan and init clock providers from the DT
4766  * @matches: array of compatible values and init functions for providers.
4767  *
4768  * This function scans the device tree for matching clock providers
4769  * and calls their initialization functions. It also does it by trying
4770  * to follow the dependencies.
4771  */
4772 void __init of_clk_init(const struct of_device_id *matches)
4773 {
4774 	const struct of_device_id *match;
4775 	struct device_node *np;
4776 	struct clock_provider *clk_provider, *next;
4777 	bool is_init_done;
4778 	bool force = false;
4779 	LIST_HEAD(clk_provider_list);
4780 
4781 	if (!matches)
4782 		matches = &__clk_of_table;
4783 
4784 	/* First prepare the list of the clocks providers */
4785 	for_each_matching_node_and_match(np, matches, &match) {
4786 		struct clock_provider *parent;
4787 
4788 		if (!of_device_is_available(np))
4789 			continue;
4790 
4791 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4792 		if (!parent) {
4793 			list_for_each_entry_safe(clk_provider, next,
4794 						 &clk_provider_list, node) {
4795 				list_del(&clk_provider->node);
4796 				of_node_put(clk_provider->np);
4797 				kfree(clk_provider);
4798 			}
4799 			of_node_put(np);
4800 			return;
4801 		}
4802 
4803 		parent->clk_init_cb = match->data;
4804 		parent->np = of_node_get(np);
4805 		list_add_tail(&parent->node, &clk_provider_list);
4806 	}
4807 
4808 	while (!list_empty(&clk_provider_list)) {
4809 		is_init_done = false;
4810 		list_for_each_entry_safe(clk_provider, next,
4811 					&clk_provider_list, node) {
4812 			if (force || parent_ready(clk_provider->np)) {
4813 
4814 				/* Don't populate platform devices */
4815 				of_node_set_flag(clk_provider->np,
4816 						 OF_POPULATED);
4817 
4818 				clk_provider->clk_init_cb(clk_provider->np);
4819 				of_clk_set_defaults(clk_provider->np, true);
4820 
4821 				list_del(&clk_provider->node);
4822 				of_node_put(clk_provider->np);
4823 				kfree(clk_provider);
4824 				is_init_done = true;
4825 			}
4826 		}
4827 
4828 		/*
4829 		 * We didn't manage to initialize any of the
4830 		 * remaining providers during the last loop, so now we
4831 		 * initialize all the remaining ones unconditionally
4832 		 * in case the clock parent was not mandatory
4833 		 */
4834 		if (!is_init_done)
4835 			force = true;
4836 	}
4837 }
4838 #endif
4839