1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/sched.h> 26 #include <linux/clkdev.h> 27 #include <linux/stringify.h> 28 29 #include "clk.h" 30 31 static DEFINE_SPINLOCK(enable_lock); 32 static DEFINE_MUTEX(prepare_lock); 33 34 static struct task_struct *prepare_owner; 35 static struct task_struct *enable_owner; 36 37 static int prepare_refcnt; 38 static int enable_refcnt; 39 40 static HLIST_HEAD(clk_root_list); 41 static HLIST_HEAD(clk_orphan_list); 42 static LIST_HEAD(clk_notifier_list); 43 44 /*** private data structures ***/ 45 46 struct clk_core { 47 const char *name; 48 const struct clk_ops *ops; 49 struct clk_hw *hw; 50 struct module *owner; 51 struct device *dev; 52 struct clk_core *parent; 53 const char **parent_names; 54 struct clk_core **parents; 55 u8 num_parents; 56 u8 new_parent_index; 57 unsigned long rate; 58 unsigned long req_rate; 59 unsigned long new_rate; 60 struct clk_core *new_parent; 61 struct clk_core *new_child; 62 unsigned long flags; 63 bool orphan; 64 unsigned int enable_count; 65 unsigned int prepare_count; 66 unsigned int protect_count; 67 unsigned long min_rate; 68 unsigned long max_rate; 69 unsigned long accuracy; 70 int phase; 71 struct hlist_head children; 72 struct hlist_node child_node; 73 struct hlist_head clks; 74 unsigned int notifier_count; 75 #ifdef CONFIG_DEBUG_FS 76 struct dentry *dentry; 77 struct hlist_node debug_node; 78 #endif 79 struct kref ref; 80 }; 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/clk.h> 84 85 struct clk { 86 struct clk_core *core; 87 const char *dev_id; 88 const char *con_id; 89 unsigned long min_rate; 90 unsigned long max_rate; 91 unsigned int exclusive_count; 92 struct hlist_node clks_node; 93 }; 94 95 /*** runtime pm ***/ 96 static int clk_pm_runtime_get(struct clk_core *core) 97 { 98 int ret = 0; 99 100 if (!core->dev) 101 return 0; 102 103 ret = pm_runtime_get_sync(core->dev); 104 return ret < 0 ? ret : 0; 105 } 106 107 static void clk_pm_runtime_put(struct clk_core *core) 108 { 109 if (!core->dev) 110 return; 111 112 pm_runtime_put_sync(core->dev); 113 } 114 115 /*** locking ***/ 116 static void clk_prepare_lock(void) 117 { 118 if (!mutex_trylock(&prepare_lock)) { 119 if (prepare_owner == current) { 120 prepare_refcnt++; 121 return; 122 } 123 mutex_lock(&prepare_lock); 124 } 125 WARN_ON_ONCE(prepare_owner != NULL); 126 WARN_ON_ONCE(prepare_refcnt != 0); 127 prepare_owner = current; 128 prepare_refcnt = 1; 129 } 130 131 static void clk_prepare_unlock(void) 132 { 133 WARN_ON_ONCE(prepare_owner != current); 134 WARN_ON_ONCE(prepare_refcnt == 0); 135 136 if (--prepare_refcnt) 137 return; 138 prepare_owner = NULL; 139 mutex_unlock(&prepare_lock); 140 } 141 142 static unsigned long clk_enable_lock(void) 143 __acquires(enable_lock) 144 { 145 unsigned long flags; 146 147 /* 148 * On UP systems, spin_trylock_irqsave() always returns true, even if 149 * we already hold the lock. So, in that case, we rely only on 150 * reference counting. 151 */ 152 if (!IS_ENABLED(CONFIG_SMP) || 153 !spin_trylock_irqsave(&enable_lock, flags)) { 154 if (enable_owner == current) { 155 enable_refcnt++; 156 __acquire(enable_lock); 157 if (!IS_ENABLED(CONFIG_SMP)) 158 local_save_flags(flags); 159 return flags; 160 } 161 spin_lock_irqsave(&enable_lock, flags); 162 } 163 WARN_ON_ONCE(enable_owner != NULL); 164 WARN_ON_ONCE(enable_refcnt != 0); 165 enable_owner = current; 166 enable_refcnt = 1; 167 return flags; 168 } 169 170 static void clk_enable_unlock(unsigned long flags) 171 __releases(enable_lock) 172 { 173 WARN_ON_ONCE(enable_owner != current); 174 WARN_ON_ONCE(enable_refcnt == 0); 175 176 if (--enable_refcnt) { 177 __release(enable_lock); 178 return; 179 } 180 enable_owner = NULL; 181 spin_unlock_irqrestore(&enable_lock, flags); 182 } 183 184 static bool clk_core_rate_is_protected(struct clk_core *core) 185 { 186 return core->protect_count; 187 } 188 189 static bool clk_core_is_prepared(struct clk_core *core) 190 { 191 bool ret = false; 192 193 /* 194 * .is_prepared is optional for clocks that can prepare 195 * fall back to software usage counter if it is missing 196 */ 197 if (!core->ops->is_prepared) 198 return core->prepare_count; 199 200 if (!clk_pm_runtime_get(core)) { 201 ret = core->ops->is_prepared(core->hw); 202 clk_pm_runtime_put(core); 203 } 204 205 return ret; 206 } 207 208 static bool clk_core_is_enabled(struct clk_core *core) 209 { 210 bool ret = false; 211 212 /* 213 * .is_enabled is only mandatory for clocks that gate 214 * fall back to software usage counter if .is_enabled is missing 215 */ 216 if (!core->ops->is_enabled) 217 return core->enable_count; 218 219 /* 220 * Check if clock controller's device is runtime active before 221 * calling .is_enabled callback. If not, assume that clock is 222 * disabled, because we might be called from atomic context, from 223 * which pm_runtime_get() is not allowed. 224 * This function is called mainly from clk_disable_unused_subtree, 225 * which ensures proper runtime pm activation of controller before 226 * taking enable spinlock, but the below check is needed if one tries 227 * to call it from other places. 228 */ 229 if (core->dev) { 230 pm_runtime_get_noresume(core->dev); 231 if (!pm_runtime_active(core->dev)) { 232 ret = false; 233 goto done; 234 } 235 } 236 237 ret = core->ops->is_enabled(core->hw); 238 done: 239 if (core->dev) 240 pm_runtime_put(core->dev); 241 242 return ret; 243 } 244 245 /*** helper functions ***/ 246 247 const char *__clk_get_name(const struct clk *clk) 248 { 249 return !clk ? NULL : clk->core->name; 250 } 251 EXPORT_SYMBOL_GPL(__clk_get_name); 252 253 const char *clk_hw_get_name(const struct clk_hw *hw) 254 { 255 return hw->core->name; 256 } 257 EXPORT_SYMBOL_GPL(clk_hw_get_name); 258 259 struct clk_hw *__clk_get_hw(struct clk *clk) 260 { 261 return !clk ? NULL : clk->core->hw; 262 } 263 EXPORT_SYMBOL_GPL(__clk_get_hw); 264 265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 266 { 267 return hw->core->num_parents; 268 } 269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 270 271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 272 { 273 return hw->core->parent ? hw->core->parent->hw : NULL; 274 } 275 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 276 277 static struct clk_core *__clk_lookup_subtree(const char *name, 278 struct clk_core *core) 279 { 280 struct clk_core *child; 281 struct clk_core *ret; 282 283 if (!strcmp(core->name, name)) 284 return core; 285 286 hlist_for_each_entry(child, &core->children, child_node) { 287 ret = __clk_lookup_subtree(name, child); 288 if (ret) 289 return ret; 290 } 291 292 return NULL; 293 } 294 295 static struct clk_core *clk_core_lookup(const char *name) 296 { 297 struct clk_core *root_clk; 298 struct clk_core *ret; 299 300 if (!name) 301 return NULL; 302 303 /* search the 'proper' clk tree first */ 304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 305 ret = __clk_lookup_subtree(name, root_clk); 306 if (ret) 307 return ret; 308 } 309 310 /* if not found, then search the orphan tree */ 311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 312 ret = __clk_lookup_subtree(name, root_clk); 313 if (ret) 314 return ret; 315 } 316 317 return NULL; 318 } 319 320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 321 u8 index) 322 { 323 if (!core || index >= core->num_parents) 324 return NULL; 325 326 if (!core->parents[index]) 327 core->parents[index] = 328 clk_core_lookup(core->parent_names[index]); 329 330 return core->parents[index]; 331 } 332 333 struct clk_hw * 334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 335 { 336 struct clk_core *parent; 337 338 parent = clk_core_get_parent_by_index(hw->core, index); 339 340 return !parent ? NULL : parent->hw; 341 } 342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 343 344 unsigned int __clk_get_enable_count(struct clk *clk) 345 { 346 return !clk ? 0 : clk->core->enable_count; 347 } 348 349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 350 { 351 unsigned long ret; 352 353 if (!core) { 354 ret = 0; 355 goto out; 356 } 357 358 ret = core->rate; 359 360 if (!core->num_parents) 361 goto out; 362 363 if (!core->parent) 364 ret = 0; 365 366 out: 367 return ret; 368 } 369 370 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 371 { 372 return clk_core_get_rate_nolock(hw->core); 373 } 374 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 375 376 static unsigned long __clk_get_accuracy(struct clk_core *core) 377 { 378 if (!core) 379 return 0; 380 381 return core->accuracy; 382 } 383 384 unsigned long __clk_get_flags(struct clk *clk) 385 { 386 return !clk ? 0 : clk->core->flags; 387 } 388 EXPORT_SYMBOL_GPL(__clk_get_flags); 389 390 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 391 { 392 return hw->core->flags; 393 } 394 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 395 396 bool clk_hw_is_prepared(const struct clk_hw *hw) 397 { 398 return clk_core_is_prepared(hw->core); 399 } 400 401 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 402 { 403 return clk_core_rate_is_protected(hw->core); 404 } 405 406 bool clk_hw_is_enabled(const struct clk_hw *hw) 407 { 408 return clk_core_is_enabled(hw->core); 409 } 410 411 bool __clk_is_enabled(struct clk *clk) 412 { 413 if (!clk) 414 return false; 415 416 return clk_core_is_enabled(clk->core); 417 } 418 EXPORT_SYMBOL_GPL(__clk_is_enabled); 419 420 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 421 unsigned long best, unsigned long flags) 422 { 423 if (flags & CLK_MUX_ROUND_CLOSEST) 424 return abs(now - rate) < abs(best - rate); 425 426 return now <= rate && now > best; 427 } 428 429 static int 430 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, 431 unsigned long flags) 432 { 433 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 434 int i, num_parents, ret; 435 unsigned long best = 0; 436 struct clk_rate_request parent_req = *req; 437 438 /* if NO_REPARENT flag set, pass through to current parent */ 439 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 440 parent = core->parent; 441 if (core->flags & CLK_SET_RATE_PARENT) { 442 ret = __clk_determine_rate(parent ? parent->hw : NULL, 443 &parent_req); 444 if (ret) 445 return ret; 446 447 best = parent_req.rate; 448 } else if (parent) { 449 best = clk_core_get_rate_nolock(parent); 450 } else { 451 best = clk_core_get_rate_nolock(core); 452 } 453 454 goto out; 455 } 456 457 /* find the parent that can provide the fastest rate <= rate */ 458 num_parents = core->num_parents; 459 for (i = 0; i < num_parents; i++) { 460 parent = clk_core_get_parent_by_index(core, i); 461 if (!parent) 462 continue; 463 464 if (core->flags & CLK_SET_RATE_PARENT) { 465 parent_req = *req; 466 ret = __clk_determine_rate(parent->hw, &parent_req); 467 if (ret) 468 continue; 469 } else { 470 parent_req.rate = clk_core_get_rate_nolock(parent); 471 } 472 473 if (mux_is_better_rate(req->rate, parent_req.rate, 474 best, flags)) { 475 best_parent = parent; 476 best = parent_req.rate; 477 } 478 } 479 480 if (!best_parent) 481 return -EINVAL; 482 483 out: 484 if (best_parent) 485 req->best_parent_hw = best_parent->hw; 486 req->best_parent_rate = best; 487 req->rate = best; 488 489 return 0; 490 } 491 492 struct clk *__clk_lookup(const char *name) 493 { 494 struct clk_core *core = clk_core_lookup(name); 495 496 return !core ? NULL : core->hw->clk; 497 } 498 499 static void clk_core_get_boundaries(struct clk_core *core, 500 unsigned long *min_rate, 501 unsigned long *max_rate) 502 { 503 struct clk *clk_user; 504 505 *min_rate = core->min_rate; 506 *max_rate = core->max_rate; 507 508 hlist_for_each_entry(clk_user, &core->clks, clks_node) 509 *min_rate = max(*min_rate, clk_user->min_rate); 510 511 hlist_for_each_entry(clk_user, &core->clks, clks_node) 512 *max_rate = min(*max_rate, clk_user->max_rate); 513 } 514 515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 516 unsigned long max_rate) 517 { 518 hw->core->min_rate = min_rate; 519 hw->core->max_rate = max_rate; 520 } 521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 522 523 /* 524 * Helper for finding best parent to provide a given frequency. This can be used 525 * directly as a determine_rate callback (e.g. for a mux), or from a more 526 * complex clock that may combine a mux with other operations. 527 */ 528 int __clk_mux_determine_rate(struct clk_hw *hw, 529 struct clk_rate_request *req) 530 { 531 return clk_mux_determine_rate_flags(hw, req, 0); 532 } 533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 534 535 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 536 struct clk_rate_request *req) 537 { 538 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 539 } 540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 541 542 /*** clk api ***/ 543 544 static void clk_core_rate_unprotect(struct clk_core *core) 545 { 546 lockdep_assert_held(&prepare_lock); 547 548 if (!core) 549 return; 550 551 if (WARN_ON(core->protect_count == 0)) 552 return; 553 554 if (--core->protect_count > 0) 555 return; 556 557 clk_core_rate_unprotect(core->parent); 558 } 559 560 static int clk_core_rate_nuke_protect(struct clk_core *core) 561 { 562 int ret; 563 564 lockdep_assert_held(&prepare_lock); 565 566 if (!core) 567 return -EINVAL; 568 569 if (core->protect_count == 0) 570 return 0; 571 572 ret = core->protect_count; 573 core->protect_count = 1; 574 clk_core_rate_unprotect(core); 575 576 return ret; 577 } 578 579 /** 580 * clk_rate_exclusive_put - release exclusivity over clock rate control 581 * @clk: the clk over which the exclusivity is released 582 * 583 * clk_rate_exclusive_put() completes a critical section during which a clock 584 * consumer cannot tolerate any other consumer making any operation on the 585 * clock which could result in a rate change or rate glitch. Exclusive clocks 586 * cannot have their rate changed, either directly or indirectly due to changes 587 * further up the parent chain of clocks. As a result, clocks up parent chain 588 * also get under exclusive control of the calling consumer. 589 * 590 * If exlusivity is claimed more than once on clock, even by the same consumer, 591 * the rate effectively gets locked as exclusivity can't be preempted. 592 * 593 * Calls to clk_rate_exclusive_put() must be balanced with calls to 594 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 595 * error status. 596 */ 597 void clk_rate_exclusive_put(struct clk *clk) 598 { 599 if (!clk) 600 return; 601 602 clk_prepare_lock(); 603 604 /* 605 * if there is something wrong with this consumer protect count, stop 606 * here before messing with the provider 607 */ 608 if (WARN_ON(clk->exclusive_count <= 0)) 609 goto out; 610 611 clk_core_rate_unprotect(clk->core); 612 clk->exclusive_count--; 613 out: 614 clk_prepare_unlock(); 615 } 616 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 617 618 static void clk_core_rate_protect(struct clk_core *core) 619 { 620 lockdep_assert_held(&prepare_lock); 621 622 if (!core) 623 return; 624 625 if (core->protect_count == 0) 626 clk_core_rate_protect(core->parent); 627 628 core->protect_count++; 629 } 630 631 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 632 { 633 lockdep_assert_held(&prepare_lock); 634 635 if (!core) 636 return; 637 638 if (count == 0) 639 return; 640 641 clk_core_rate_protect(core); 642 core->protect_count = count; 643 } 644 645 /** 646 * clk_rate_exclusive_get - get exclusivity over the clk rate control 647 * @clk: the clk over which the exclusity of rate control is requested 648 * 649 * clk_rate_exlusive_get() begins a critical section during which a clock 650 * consumer cannot tolerate any other consumer making any operation on the 651 * clock which could result in a rate change or rate glitch. Exclusive clocks 652 * cannot have their rate changed, either directly or indirectly due to changes 653 * further up the parent chain of clocks. As a result, clocks up parent chain 654 * also get under exclusive control of the calling consumer. 655 * 656 * If exlusivity is claimed more than once on clock, even by the same consumer, 657 * the rate effectively gets locked as exclusivity can't be preempted. 658 * 659 * Calls to clk_rate_exclusive_get() should be balanced with calls to 660 * clk_rate_exclusive_put(). Calls to this function may sleep. 661 * Returns 0 on success, -EERROR otherwise 662 */ 663 int clk_rate_exclusive_get(struct clk *clk) 664 { 665 if (!clk) 666 return 0; 667 668 clk_prepare_lock(); 669 clk_core_rate_protect(clk->core); 670 clk->exclusive_count++; 671 clk_prepare_unlock(); 672 673 return 0; 674 } 675 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 676 677 static void clk_core_unprepare(struct clk_core *core) 678 { 679 lockdep_assert_held(&prepare_lock); 680 681 if (!core) 682 return; 683 684 if (WARN_ON(core->prepare_count == 0)) 685 return; 686 687 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL)) 688 return; 689 690 if (--core->prepare_count > 0) 691 return; 692 693 WARN_ON(core->enable_count > 0); 694 695 trace_clk_unprepare(core); 696 697 if (core->ops->unprepare) 698 core->ops->unprepare(core->hw); 699 700 clk_pm_runtime_put(core); 701 702 trace_clk_unprepare_complete(core); 703 clk_core_unprepare(core->parent); 704 } 705 706 static void clk_core_unprepare_lock(struct clk_core *core) 707 { 708 clk_prepare_lock(); 709 clk_core_unprepare(core); 710 clk_prepare_unlock(); 711 } 712 713 /** 714 * clk_unprepare - undo preparation of a clock source 715 * @clk: the clk being unprepared 716 * 717 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 718 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 719 * if the operation may sleep. One example is a clk which is accessed over 720 * I2c. In the complex case a clk gate operation may require a fast and a slow 721 * part. It is this reason that clk_unprepare and clk_disable are not mutually 722 * exclusive. In fact clk_disable must be called before clk_unprepare. 723 */ 724 void clk_unprepare(struct clk *clk) 725 { 726 if (IS_ERR_OR_NULL(clk)) 727 return; 728 729 clk_core_unprepare_lock(clk->core); 730 } 731 EXPORT_SYMBOL_GPL(clk_unprepare); 732 733 static int clk_core_prepare(struct clk_core *core) 734 { 735 int ret = 0; 736 737 lockdep_assert_held(&prepare_lock); 738 739 if (!core) 740 return 0; 741 742 if (core->prepare_count == 0) { 743 ret = clk_pm_runtime_get(core); 744 if (ret) 745 return ret; 746 747 ret = clk_core_prepare(core->parent); 748 if (ret) 749 goto runtime_put; 750 751 trace_clk_prepare(core); 752 753 if (core->ops->prepare) 754 ret = core->ops->prepare(core->hw); 755 756 trace_clk_prepare_complete(core); 757 758 if (ret) 759 goto unprepare; 760 } 761 762 core->prepare_count++; 763 764 return 0; 765 unprepare: 766 clk_core_unprepare(core->parent); 767 runtime_put: 768 clk_pm_runtime_put(core); 769 return ret; 770 } 771 772 static int clk_core_prepare_lock(struct clk_core *core) 773 { 774 int ret; 775 776 clk_prepare_lock(); 777 ret = clk_core_prepare(core); 778 clk_prepare_unlock(); 779 780 return ret; 781 } 782 783 /** 784 * clk_prepare - prepare a clock source 785 * @clk: the clk being prepared 786 * 787 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 788 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 789 * operation may sleep. One example is a clk which is accessed over I2c. In 790 * the complex case a clk ungate operation may require a fast and a slow part. 791 * It is this reason that clk_prepare and clk_enable are not mutually 792 * exclusive. In fact clk_prepare must be called before clk_enable. 793 * Returns 0 on success, -EERROR otherwise. 794 */ 795 int clk_prepare(struct clk *clk) 796 { 797 if (!clk) 798 return 0; 799 800 return clk_core_prepare_lock(clk->core); 801 } 802 EXPORT_SYMBOL_GPL(clk_prepare); 803 804 static void clk_core_disable(struct clk_core *core) 805 { 806 lockdep_assert_held(&enable_lock); 807 808 if (!core) 809 return; 810 811 if (WARN_ON(core->enable_count == 0)) 812 return; 813 814 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL)) 815 return; 816 817 if (--core->enable_count > 0) 818 return; 819 820 trace_clk_disable_rcuidle(core); 821 822 if (core->ops->disable) 823 core->ops->disable(core->hw); 824 825 trace_clk_disable_complete_rcuidle(core); 826 827 clk_core_disable(core->parent); 828 } 829 830 static void clk_core_disable_lock(struct clk_core *core) 831 { 832 unsigned long flags; 833 834 flags = clk_enable_lock(); 835 clk_core_disable(core); 836 clk_enable_unlock(flags); 837 } 838 839 /** 840 * clk_disable - gate a clock 841 * @clk: the clk being gated 842 * 843 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 844 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 845 * clk if the operation is fast and will never sleep. One example is a 846 * SoC-internal clk which is controlled via simple register writes. In the 847 * complex case a clk gate operation may require a fast and a slow part. It is 848 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 849 * In fact clk_disable must be called before clk_unprepare. 850 */ 851 void clk_disable(struct clk *clk) 852 { 853 if (IS_ERR_OR_NULL(clk)) 854 return; 855 856 clk_core_disable_lock(clk->core); 857 } 858 EXPORT_SYMBOL_GPL(clk_disable); 859 860 static int clk_core_enable(struct clk_core *core) 861 { 862 int ret = 0; 863 864 lockdep_assert_held(&enable_lock); 865 866 if (!core) 867 return 0; 868 869 if (WARN_ON(core->prepare_count == 0)) 870 return -ESHUTDOWN; 871 872 if (core->enable_count == 0) { 873 ret = clk_core_enable(core->parent); 874 875 if (ret) 876 return ret; 877 878 trace_clk_enable_rcuidle(core); 879 880 if (core->ops->enable) 881 ret = core->ops->enable(core->hw); 882 883 trace_clk_enable_complete_rcuidle(core); 884 885 if (ret) { 886 clk_core_disable(core->parent); 887 return ret; 888 } 889 } 890 891 core->enable_count++; 892 return 0; 893 } 894 895 static int clk_core_enable_lock(struct clk_core *core) 896 { 897 unsigned long flags; 898 int ret; 899 900 flags = clk_enable_lock(); 901 ret = clk_core_enable(core); 902 clk_enable_unlock(flags); 903 904 return ret; 905 } 906 907 /** 908 * clk_enable - ungate a clock 909 * @clk: the clk being ungated 910 * 911 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 912 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 913 * if the operation will never sleep. One example is a SoC-internal clk which 914 * is controlled via simple register writes. In the complex case a clk ungate 915 * operation may require a fast and a slow part. It is this reason that 916 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 917 * must be called before clk_enable. Returns 0 on success, -EERROR 918 * otherwise. 919 */ 920 int clk_enable(struct clk *clk) 921 { 922 if (!clk) 923 return 0; 924 925 return clk_core_enable_lock(clk->core); 926 } 927 EXPORT_SYMBOL_GPL(clk_enable); 928 929 static int clk_core_prepare_enable(struct clk_core *core) 930 { 931 int ret; 932 933 ret = clk_core_prepare_lock(core); 934 if (ret) 935 return ret; 936 937 ret = clk_core_enable_lock(core); 938 if (ret) 939 clk_core_unprepare_lock(core); 940 941 return ret; 942 } 943 944 static void clk_core_disable_unprepare(struct clk_core *core) 945 { 946 clk_core_disable_lock(core); 947 clk_core_unprepare_lock(core); 948 } 949 950 static void clk_unprepare_unused_subtree(struct clk_core *core) 951 { 952 struct clk_core *child; 953 954 lockdep_assert_held(&prepare_lock); 955 956 hlist_for_each_entry(child, &core->children, child_node) 957 clk_unprepare_unused_subtree(child); 958 959 if (core->prepare_count) 960 return; 961 962 if (core->flags & CLK_IGNORE_UNUSED) 963 return; 964 965 if (clk_pm_runtime_get(core)) 966 return; 967 968 if (clk_core_is_prepared(core)) { 969 trace_clk_unprepare(core); 970 if (core->ops->unprepare_unused) 971 core->ops->unprepare_unused(core->hw); 972 else if (core->ops->unprepare) 973 core->ops->unprepare(core->hw); 974 trace_clk_unprepare_complete(core); 975 } 976 977 clk_pm_runtime_put(core); 978 } 979 980 static void clk_disable_unused_subtree(struct clk_core *core) 981 { 982 struct clk_core *child; 983 unsigned long flags; 984 985 lockdep_assert_held(&prepare_lock); 986 987 hlist_for_each_entry(child, &core->children, child_node) 988 clk_disable_unused_subtree(child); 989 990 if (core->flags & CLK_OPS_PARENT_ENABLE) 991 clk_core_prepare_enable(core->parent); 992 993 if (clk_pm_runtime_get(core)) 994 goto unprepare_out; 995 996 flags = clk_enable_lock(); 997 998 if (core->enable_count) 999 goto unlock_out; 1000 1001 if (core->flags & CLK_IGNORE_UNUSED) 1002 goto unlock_out; 1003 1004 /* 1005 * some gate clocks have special needs during the disable-unused 1006 * sequence. call .disable_unused if available, otherwise fall 1007 * back to .disable 1008 */ 1009 if (clk_core_is_enabled(core)) { 1010 trace_clk_disable(core); 1011 if (core->ops->disable_unused) 1012 core->ops->disable_unused(core->hw); 1013 else if (core->ops->disable) 1014 core->ops->disable(core->hw); 1015 trace_clk_disable_complete(core); 1016 } 1017 1018 unlock_out: 1019 clk_enable_unlock(flags); 1020 clk_pm_runtime_put(core); 1021 unprepare_out: 1022 if (core->flags & CLK_OPS_PARENT_ENABLE) 1023 clk_core_disable_unprepare(core->parent); 1024 } 1025 1026 static bool clk_ignore_unused; 1027 static int __init clk_ignore_unused_setup(char *__unused) 1028 { 1029 clk_ignore_unused = true; 1030 return 1; 1031 } 1032 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1033 1034 static int clk_disable_unused(void) 1035 { 1036 struct clk_core *core; 1037 1038 if (clk_ignore_unused) { 1039 pr_warn("clk: Not disabling unused clocks\n"); 1040 return 0; 1041 } 1042 1043 clk_prepare_lock(); 1044 1045 hlist_for_each_entry(core, &clk_root_list, child_node) 1046 clk_disable_unused_subtree(core); 1047 1048 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1049 clk_disable_unused_subtree(core); 1050 1051 hlist_for_each_entry(core, &clk_root_list, child_node) 1052 clk_unprepare_unused_subtree(core); 1053 1054 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1055 clk_unprepare_unused_subtree(core); 1056 1057 clk_prepare_unlock(); 1058 1059 return 0; 1060 } 1061 late_initcall_sync(clk_disable_unused); 1062 1063 static int clk_core_determine_round_nolock(struct clk_core *core, 1064 struct clk_rate_request *req) 1065 { 1066 long rate; 1067 1068 lockdep_assert_held(&prepare_lock); 1069 1070 if (!core) 1071 return 0; 1072 1073 /* 1074 * At this point, core protection will be disabled if 1075 * - if the provider is not protected at all 1076 * - if the calling consumer is the only one which has exclusivity 1077 * over the provider 1078 */ 1079 if (clk_core_rate_is_protected(core)) { 1080 req->rate = core->rate; 1081 } else if (core->ops->determine_rate) { 1082 return core->ops->determine_rate(core->hw, req); 1083 } else if (core->ops->round_rate) { 1084 rate = core->ops->round_rate(core->hw, req->rate, 1085 &req->best_parent_rate); 1086 if (rate < 0) 1087 return rate; 1088 1089 req->rate = rate; 1090 } else { 1091 return -EINVAL; 1092 } 1093 1094 return 0; 1095 } 1096 1097 static void clk_core_init_rate_req(struct clk_core * const core, 1098 struct clk_rate_request *req) 1099 { 1100 struct clk_core *parent; 1101 1102 if (WARN_ON(!core || !req)) 1103 return; 1104 1105 parent = core->parent; 1106 if (parent) { 1107 req->best_parent_hw = parent->hw; 1108 req->best_parent_rate = parent->rate; 1109 } else { 1110 req->best_parent_hw = NULL; 1111 req->best_parent_rate = 0; 1112 } 1113 } 1114 1115 static bool clk_core_can_round(struct clk_core * const core) 1116 { 1117 if (core->ops->determine_rate || core->ops->round_rate) 1118 return true; 1119 1120 return false; 1121 } 1122 1123 static int clk_core_round_rate_nolock(struct clk_core *core, 1124 struct clk_rate_request *req) 1125 { 1126 lockdep_assert_held(&prepare_lock); 1127 1128 if (!core) 1129 return 0; 1130 1131 clk_core_init_rate_req(core, req); 1132 1133 if (clk_core_can_round(core)) 1134 return clk_core_determine_round_nolock(core, req); 1135 else if (core->flags & CLK_SET_RATE_PARENT) 1136 return clk_core_round_rate_nolock(core->parent, req); 1137 1138 req->rate = core->rate; 1139 return 0; 1140 } 1141 1142 /** 1143 * __clk_determine_rate - get the closest rate actually supported by a clock 1144 * @hw: determine the rate of this clock 1145 * @req: target rate request 1146 * 1147 * Useful for clk_ops such as .set_rate and .determine_rate. 1148 */ 1149 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1150 { 1151 if (!hw) { 1152 req->rate = 0; 1153 return 0; 1154 } 1155 1156 return clk_core_round_rate_nolock(hw->core, req); 1157 } 1158 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1159 1160 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1161 { 1162 int ret; 1163 struct clk_rate_request req; 1164 1165 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 1166 req.rate = rate; 1167 1168 ret = clk_core_round_rate_nolock(hw->core, &req); 1169 if (ret) 1170 return 0; 1171 1172 return req.rate; 1173 } 1174 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1175 1176 /** 1177 * clk_round_rate - round the given rate for a clk 1178 * @clk: the clk for which we are rounding a rate 1179 * @rate: the rate which is to be rounded 1180 * 1181 * Takes in a rate as input and rounds it to a rate that the clk can actually 1182 * use which is then returned. If clk doesn't support round_rate operation 1183 * then the parent rate is returned. 1184 */ 1185 long clk_round_rate(struct clk *clk, unsigned long rate) 1186 { 1187 struct clk_rate_request req; 1188 int ret; 1189 1190 if (!clk) 1191 return 0; 1192 1193 clk_prepare_lock(); 1194 1195 if (clk->exclusive_count) 1196 clk_core_rate_unprotect(clk->core); 1197 1198 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 1199 req.rate = rate; 1200 1201 ret = clk_core_round_rate_nolock(clk->core, &req); 1202 1203 if (clk->exclusive_count) 1204 clk_core_rate_protect(clk->core); 1205 1206 clk_prepare_unlock(); 1207 1208 if (ret) 1209 return ret; 1210 1211 return req.rate; 1212 } 1213 EXPORT_SYMBOL_GPL(clk_round_rate); 1214 1215 /** 1216 * __clk_notify - call clk notifier chain 1217 * @core: clk that is changing rate 1218 * @msg: clk notifier type (see include/linux/clk.h) 1219 * @old_rate: old clk rate 1220 * @new_rate: new clk rate 1221 * 1222 * Triggers a notifier call chain on the clk rate-change notification 1223 * for 'clk'. Passes a pointer to the struct clk and the previous 1224 * and current rates to the notifier callback. Intended to be called by 1225 * internal clock code only. Returns NOTIFY_DONE from the last driver 1226 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1227 * a driver returns that. 1228 */ 1229 static int __clk_notify(struct clk_core *core, unsigned long msg, 1230 unsigned long old_rate, unsigned long new_rate) 1231 { 1232 struct clk_notifier *cn; 1233 struct clk_notifier_data cnd; 1234 int ret = NOTIFY_DONE; 1235 1236 cnd.old_rate = old_rate; 1237 cnd.new_rate = new_rate; 1238 1239 list_for_each_entry(cn, &clk_notifier_list, node) { 1240 if (cn->clk->core == core) { 1241 cnd.clk = cn->clk; 1242 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1243 &cnd); 1244 if (ret & NOTIFY_STOP_MASK) 1245 return ret; 1246 } 1247 } 1248 1249 return ret; 1250 } 1251 1252 /** 1253 * __clk_recalc_accuracies 1254 * @core: first clk in the subtree 1255 * 1256 * Walks the subtree of clks starting with clk and recalculates accuracies as 1257 * it goes. Note that if a clk does not implement the .recalc_accuracy 1258 * callback then it is assumed that the clock will take on the accuracy of its 1259 * parent. 1260 */ 1261 static void __clk_recalc_accuracies(struct clk_core *core) 1262 { 1263 unsigned long parent_accuracy = 0; 1264 struct clk_core *child; 1265 1266 lockdep_assert_held(&prepare_lock); 1267 1268 if (core->parent) 1269 parent_accuracy = core->parent->accuracy; 1270 1271 if (core->ops->recalc_accuracy) 1272 core->accuracy = core->ops->recalc_accuracy(core->hw, 1273 parent_accuracy); 1274 else 1275 core->accuracy = parent_accuracy; 1276 1277 hlist_for_each_entry(child, &core->children, child_node) 1278 __clk_recalc_accuracies(child); 1279 } 1280 1281 static long clk_core_get_accuracy(struct clk_core *core) 1282 { 1283 unsigned long accuracy; 1284 1285 clk_prepare_lock(); 1286 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1287 __clk_recalc_accuracies(core); 1288 1289 accuracy = __clk_get_accuracy(core); 1290 clk_prepare_unlock(); 1291 1292 return accuracy; 1293 } 1294 1295 /** 1296 * clk_get_accuracy - return the accuracy of clk 1297 * @clk: the clk whose accuracy is being returned 1298 * 1299 * Simply returns the cached accuracy of the clk, unless 1300 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1301 * issued. 1302 * If clk is NULL then returns 0. 1303 */ 1304 long clk_get_accuracy(struct clk *clk) 1305 { 1306 if (!clk) 1307 return 0; 1308 1309 return clk_core_get_accuracy(clk->core); 1310 } 1311 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1312 1313 static unsigned long clk_recalc(struct clk_core *core, 1314 unsigned long parent_rate) 1315 { 1316 unsigned long rate = parent_rate; 1317 1318 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1319 rate = core->ops->recalc_rate(core->hw, parent_rate); 1320 clk_pm_runtime_put(core); 1321 } 1322 return rate; 1323 } 1324 1325 /** 1326 * __clk_recalc_rates 1327 * @core: first clk in the subtree 1328 * @msg: notification type (see include/linux/clk.h) 1329 * 1330 * Walks the subtree of clks starting with clk and recalculates rates as it 1331 * goes. Note that if a clk does not implement the .recalc_rate callback then 1332 * it is assumed that the clock will take on the rate of its parent. 1333 * 1334 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1335 * if necessary. 1336 */ 1337 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1338 { 1339 unsigned long old_rate; 1340 unsigned long parent_rate = 0; 1341 struct clk_core *child; 1342 1343 lockdep_assert_held(&prepare_lock); 1344 1345 old_rate = core->rate; 1346 1347 if (core->parent) 1348 parent_rate = core->parent->rate; 1349 1350 core->rate = clk_recalc(core, parent_rate); 1351 1352 /* 1353 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1354 * & ABORT_RATE_CHANGE notifiers 1355 */ 1356 if (core->notifier_count && msg) 1357 __clk_notify(core, msg, old_rate, core->rate); 1358 1359 hlist_for_each_entry(child, &core->children, child_node) 1360 __clk_recalc_rates(child, msg); 1361 } 1362 1363 static unsigned long clk_core_get_rate(struct clk_core *core) 1364 { 1365 unsigned long rate; 1366 1367 clk_prepare_lock(); 1368 1369 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1370 __clk_recalc_rates(core, 0); 1371 1372 rate = clk_core_get_rate_nolock(core); 1373 clk_prepare_unlock(); 1374 1375 return rate; 1376 } 1377 1378 /** 1379 * clk_get_rate - return the rate of clk 1380 * @clk: the clk whose rate is being returned 1381 * 1382 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1383 * is set, which means a recalc_rate will be issued. 1384 * If clk is NULL then returns 0. 1385 */ 1386 unsigned long clk_get_rate(struct clk *clk) 1387 { 1388 if (!clk) 1389 return 0; 1390 1391 return clk_core_get_rate(clk->core); 1392 } 1393 EXPORT_SYMBOL_GPL(clk_get_rate); 1394 1395 static int clk_fetch_parent_index(struct clk_core *core, 1396 struct clk_core *parent) 1397 { 1398 int i; 1399 1400 if (!parent) 1401 return -EINVAL; 1402 1403 for (i = 0; i < core->num_parents; i++) 1404 if (clk_core_get_parent_by_index(core, i) == parent) 1405 return i; 1406 1407 return -EINVAL; 1408 } 1409 1410 /* 1411 * Update the orphan status of @core and all its children. 1412 */ 1413 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1414 { 1415 struct clk_core *child; 1416 1417 core->orphan = is_orphan; 1418 1419 hlist_for_each_entry(child, &core->children, child_node) 1420 clk_core_update_orphan_status(child, is_orphan); 1421 } 1422 1423 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1424 { 1425 bool was_orphan = core->orphan; 1426 1427 hlist_del(&core->child_node); 1428 1429 if (new_parent) { 1430 bool becomes_orphan = new_parent->orphan; 1431 1432 /* avoid duplicate POST_RATE_CHANGE notifications */ 1433 if (new_parent->new_child == core) 1434 new_parent->new_child = NULL; 1435 1436 hlist_add_head(&core->child_node, &new_parent->children); 1437 1438 if (was_orphan != becomes_orphan) 1439 clk_core_update_orphan_status(core, becomes_orphan); 1440 } else { 1441 hlist_add_head(&core->child_node, &clk_orphan_list); 1442 if (!was_orphan) 1443 clk_core_update_orphan_status(core, true); 1444 } 1445 1446 core->parent = new_parent; 1447 } 1448 1449 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1450 struct clk_core *parent) 1451 { 1452 unsigned long flags; 1453 struct clk_core *old_parent = core->parent; 1454 1455 /* 1456 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 1457 * 1458 * 2. Migrate prepare state between parents and prevent race with 1459 * clk_enable(). 1460 * 1461 * If the clock is not prepared, then a race with 1462 * clk_enable/disable() is impossible since we already have the 1463 * prepare lock (future calls to clk_enable() need to be preceded by 1464 * a clk_prepare()). 1465 * 1466 * If the clock is prepared, migrate the prepared state to the new 1467 * parent and also protect against a race with clk_enable() by 1468 * forcing the clock and the new parent on. This ensures that all 1469 * future calls to clk_enable() are practically NOPs with respect to 1470 * hardware and software states. 1471 * 1472 * See also: Comment for clk_set_parent() below. 1473 */ 1474 1475 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 1476 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1477 clk_core_prepare_enable(old_parent); 1478 clk_core_prepare_enable(parent); 1479 } 1480 1481 /* migrate prepare count if > 0 */ 1482 if (core->prepare_count) { 1483 clk_core_prepare_enable(parent); 1484 clk_core_enable_lock(core); 1485 } 1486 1487 /* update the clk tree topology */ 1488 flags = clk_enable_lock(); 1489 clk_reparent(core, parent); 1490 clk_enable_unlock(flags); 1491 1492 return old_parent; 1493 } 1494 1495 static void __clk_set_parent_after(struct clk_core *core, 1496 struct clk_core *parent, 1497 struct clk_core *old_parent) 1498 { 1499 /* 1500 * Finish the migration of prepare state and undo the changes done 1501 * for preventing a race with clk_enable(). 1502 */ 1503 if (core->prepare_count) { 1504 clk_core_disable_lock(core); 1505 clk_core_disable_unprepare(old_parent); 1506 } 1507 1508 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 1509 if (core->flags & CLK_OPS_PARENT_ENABLE) { 1510 clk_core_disable_unprepare(parent); 1511 clk_core_disable_unprepare(old_parent); 1512 } 1513 } 1514 1515 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1516 u8 p_index) 1517 { 1518 unsigned long flags; 1519 int ret = 0; 1520 struct clk_core *old_parent; 1521 1522 old_parent = __clk_set_parent_before(core, parent); 1523 1524 trace_clk_set_parent(core, parent); 1525 1526 /* change clock input source */ 1527 if (parent && core->ops->set_parent) 1528 ret = core->ops->set_parent(core->hw, p_index); 1529 1530 trace_clk_set_parent_complete(core, parent); 1531 1532 if (ret) { 1533 flags = clk_enable_lock(); 1534 clk_reparent(core, old_parent); 1535 clk_enable_unlock(flags); 1536 __clk_set_parent_after(core, old_parent, parent); 1537 1538 return ret; 1539 } 1540 1541 __clk_set_parent_after(core, parent, old_parent); 1542 1543 return 0; 1544 } 1545 1546 /** 1547 * __clk_speculate_rates 1548 * @core: first clk in the subtree 1549 * @parent_rate: the "future" rate of clk's parent 1550 * 1551 * Walks the subtree of clks starting with clk, speculating rates as it 1552 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1553 * 1554 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1555 * pre-rate change notifications and returns early if no clks in the 1556 * subtree have subscribed to the notifications. Note that if a clk does not 1557 * implement the .recalc_rate callback then it is assumed that the clock will 1558 * take on the rate of its parent. 1559 */ 1560 static int __clk_speculate_rates(struct clk_core *core, 1561 unsigned long parent_rate) 1562 { 1563 struct clk_core *child; 1564 unsigned long new_rate; 1565 int ret = NOTIFY_DONE; 1566 1567 lockdep_assert_held(&prepare_lock); 1568 1569 new_rate = clk_recalc(core, parent_rate); 1570 1571 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1572 if (core->notifier_count) 1573 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1574 1575 if (ret & NOTIFY_STOP_MASK) { 1576 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1577 __func__, core->name, ret); 1578 goto out; 1579 } 1580 1581 hlist_for_each_entry(child, &core->children, child_node) { 1582 ret = __clk_speculate_rates(child, new_rate); 1583 if (ret & NOTIFY_STOP_MASK) 1584 break; 1585 } 1586 1587 out: 1588 return ret; 1589 } 1590 1591 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1592 struct clk_core *new_parent, u8 p_index) 1593 { 1594 struct clk_core *child; 1595 1596 core->new_rate = new_rate; 1597 core->new_parent = new_parent; 1598 core->new_parent_index = p_index; 1599 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1600 core->new_child = NULL; 1601 if (new_parent && new_parent != core->parent) 1602 new_parent->new_child = core; 1603 1604 hlist_for_each_entry(child, &core->children, child_node) { 1605 child->new_rate = clk_recalc(child, new_rate); 1606 clk_calc_subtree(child, child->new_rate, NULL, 0); 1607 } 1608 } 1609 1610 /* 1611 * calculate the new rates returning the topmost clock that has to be 1612 * changed. 1613 */ 1614 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1615 unsigned long rate) 1616 { 1617 struct clk_core *top = core; 1618 struct clk_core *old_parent, *parent; 1619 unsigned long best_parent_rate = 0; 1620 unsigned long new_rate; 1621 unsigned long min_rate; 1622 unsigned long max_rate; 1623 int p_index = 0; 1624 long ret; 1625 1626 /* sanity */ 1627 if (IS_ERR_OR_NULL(core)) 1628 return NULL; 1629 1630 /* save parent rate, if it exists */ 1631 parent = old_parent = core->parent; 1632 if (parent) 1633 best_parent_rate = parent->rate; 1634 1635 clk_core_get_boundaries(core, &min_rate, &max_rate); 1636 1637 /* find the closest rate and parent clk/rate */ 1638 if (clk_core_can_round(core)) { 1639 struct clk_rate_request req; 1640 1641 req.rate = rate; 1642 req.min_rate = min_rate; 1643 req.max_rate = max_rate; 1644 1645 clk_core_init_rate_req(core, &req); 1646 1647 ret = clk_core_determine_round_nolock(core, &req); 1648 if (ret < 0) 1649 return NULL; 1650 1651 best_parent_rate = req.best_parent_rate; 1652 new_rate = req.rate; 1653 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1654 1655 if (new_rate < min_rate || new_rate > max_rate) 1656 return NULL; 1657 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1658 /* pass-through clock without adjustable parent */ 1659 core->new_rate = core->rate; 1660 return NULL; 1661 } else { 1662 /* pass-through clock with adjustable parent */ 1663 top = clk_calc_new_rates(parent, rate); 1664 new_rate = parent->new_rate; 1665 goto out; 1666 } 1667 1668 /* some clocks must be gated to change parent */ 1669 if (parent != old_parent && 1670 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1671 pr_debug("%s: %s not gated but wants to reparent\n", 1672 __func__, core->name); 1673 return NULL; 1674 } 1675 1676 /* try finding the new parent index */ 1677 if (parent && core->num_parents > 1) { 1678 p_index = clk_fetch_parent_index(core, parent); 1679 if (p_index < 0) { 1680 pr_debug("%s: clk %s can not be parent of clk %s\n", 1681 __func__, parent->name, core->name); 1682 return NULL; 1683 } 1684 } 1685 1686 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1687 best_parent_rate != parent->rate) 1688 top = clk_calc_new_rates(parent, best_parent_rate); 1689 1690 out: 1691 clk_calc_subtree(core, new_rate, parent, p_index); 1692 1693 return top; 1694 } 1695 1696 /* 1697 * Notify about rate changes in a subtree. Always walk down the whole tree 1698 * so that in case of an error we can walk down the whole tree again and 1699 * abort the change. 1700 */ 1701 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1702 unsigned long event) 1703 { 1704 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1705 int ret = NOTIFY_DONE; 1706 1707 if (core->rate == core->new_rate) 1708 return NULL; 1709 1710 if (core->notifier_count) { 1711 ret = __clk_notify(core, event, core->rate, core->new_rate); 1712 if (ret & NOTIFY_STOP_MASK) 1713 fail_clk = core; 1714 } 1715 1716 hlist_for_each_entry(child, &core->children, child_node) { 1717 /* Skip children who will be reparented to another clock */ 1718 if (child->new_parent && child->new_parent != core) 1719 continue; 1720 tmp_clk = clk_propagate_rate_change(child, event); 1721 if (tmp_clk) 1722 fail_clk = tmp_clk; 1723 } 1724 1725 /* handle the new child who might not be in core->children yet */ 1726 if (core->new_child) { 1727 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1728 if (tmp_clk) 1729 fail_clk = tmp_clk; 1730 } 1731 1732 return fail_clk; 1733 } 1734 1735 /* 1736 * walk down a subtree and set the new rates notifying the rate 1737 * change on the way 1738 */ 1739 static void clk_change_rate(struct clk_core *core) 1740 { 1741 struct clk_core *child; 1742 struct hlist_node *tmp; 1743 unsigned long old_rate; 1744 unsigned long best_parent_rate = 0; 1745 bool skip_set_rate = false; 1746 struct clk_core *old_parent; 1747 struct clk_core *parent = NULL; 1748 1749 old_rate = core->rate; 1750 1751 if (core->new_parent) { 1752 parent = core->new_parent; 1753 best_parent_rate = core->new_parent->rate; 1754 } else if (core->parent) { 1755 parent = core->parent; 1756 best_parent_rate = core->parent->rate; 1757 } 1758 1759 if (clk_pm_runtime_get(core)) 1760 return; 1761 1762 if (core->flags & CLK_SET_RATE_UNGATE) { 1763 unsigned long flags; 1764 1765 clk_core_prepare(core); 1766 flags = clk_enable_lock(); 1767 clk_core_enable(core); 1768 clk_enable_unlock(flags); 1769 } 1770 1771 if (core->new_parent && core->new_parent != core->parent) { 1772 old_parent = __clk_set_parent_before(core, core->new_parent); 1773 trace_clk_set_parent(core, core->new_parent); 1774 1775 if (core->ops->set_rate_and_parent) { 1776 skip_set_rate = true; 1777 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1778 best_parent_rate, 1779 core->new_parent_index); 1780 } else if (core->ops->set_parent) { 1781 core->ops->set_parent(core->hw, core->new_parent_index); 1782 } 1783 1784 trace_clk_set_parent_complete(core, core->new_parent); 1785 __clk_set_parent_after(core, core->new_parent, old_parent); 1786 } 1787 1788 if (core->flags & CLK_OPS_PARENT_ENABLE) 1789 clk_core_prepare_enable(parent); 1790 1791 trace_clk_set_rate(core, core->new_rate); 1792 1793 if (!skip_set_rate && core->ops->set_rate) 1794 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1795 1796 trace_clk_set_rate_complete(core, core->new_rate); 1797 1798 core->rate = clk_recalc(core, best_parent_rate); 1799 1800 if (core->flags & CLK_SET_RATE_UNGATE) { 1801 unsigned long flags; 1802 1803 flags = clk_enable_lock(); 1804 clk_core_disable(core); 1805 clk_enable_unlock(flags); 1806 clk_core_unprepare(core); 1807 } 1808 1809 if (core->flags & CLK_OPS_PARENT_ENABLE) 1810 clk_core_disable_unprepare(parent); 1811 1812 if (core->notifier_count && old_rate != core->rate) 1813 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1814 1815 if (core->flags & CLK_RECALC_NEW_RATES) 1816 (void)clk_calc_new_rates(core, core->new_rate); 1817 1818 /* 1819 * Use safe iteration, as change_rate can actually swap parents 1820 * for certain clock types. 1821 */ 1822 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1823 /* Skip children who will be reparented to another clock */ 1824 if (child->new_parent && child->new_parent != core) 1825 continue; 1826 clk_change_rate(child); 1827 } 1828 1829 /* handle the new child who might not be in core->children yet */ 1830 if (core->new_child) 1831 clk_change_rate(core->new_child); 1832 1833 clk_pm_runtime_put(core); 1834 } 1835 1836 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 1837 unsigned long req_rate) 1838 { 1839 int ret, cnt; 1840 struct clk_rate_request req; 1841 1842 lockdep_assert_held(&prepare_lock); 1843 1844 if (!core) 1845 return 0; 1846 1847 /* simulate what the rate would be if it could be freely set */ 1848 cnt = clk_core_rate_nuke_protect(core); 1849 if (cnt < 0) 1850 return cnt; 1851 1852 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate); 1853 req.rate = req_rate; 1854 1855 ret = clk_core_round_rate_nolock(core, &req); 1856 1857 /* restore the protection */ 1858 clk_core_rate_restore_protect(core, cnt); 1859 1860 return ret ? 0 : req.rate; 1861 } 1862 1863 static int clk_core_set_rate_nolock(struct clk_core *core, 1864 unsigned long req_rate) 1865 { 1866 struct clk_core *top, *fail_clk; 1867 unsigned long rate; 1868 int ret = 0; 1869 1870 if (!core) 1871 return 0; 1872 1873 rate = clk_core_req_round_rate_nolock(core, req_rate); 1874 1875 /* bail early if nothing to do */ 1876 if (rate == clk_core_get_rate_nolock(core)) 1877 return 0; 1878 1879 /* fail on a direct rate set of a protected provider */ 1880 if (clk_core_rate_is_protected(core)) 1881 return -EBUSY; 1882 1883 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1884 return -EBUSY; 1885 1886 /* calculate new rates and get the topmost changed clock */ 1887 top = clk_calc_new_rates(core, req_rate); 1888 if (!top) 1889 return -EINVAL; 1890 1891 ret = clk_pm_runtime_get(core); 1892 if (ret) 1893 return ret; 1894 1895 /* notify that we are about to change rates */ 1896 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1897 if (fail_clk) { 1898 pr_debug("%s: failed to set %s rate\n", __func__, 1899 fail_clk->name); 1900 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1901 ret = -EBUSY; 1902 goto err; 1903 } 1904 1905 /* change the rates */ 1906 clk_change_rate(top); 1907 1908 core->req_rate = req_rate; 1909 err: 1910 clk_pm_runtime_put(core); 1911 1912 return ret; 1913 } 1914 1915 /** 1916 * clk_set_rate - specify a new rate for clk 1917 * @clk: the clk whose rate is being changed 1918 * @rate: the new rate for clk 1919 * 1920 * In the simplest case clk_set_rate will only adjust the rate of clk. 1921 * 1922 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1923 * propagate up to clk's parent; whether or not this happens depends on the 1924 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1925 * after calling .round_rate then upstream parent propagation is ignored. If 1926 * *parent_rate comes back with a new rate for clk's parent then we propagate 1927 * up to clk's parent and set its rate. Upward propagation will continue 1928 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1929 * .round_rate stops requesting changes to clk's parent_rate. 1930 * 1931 * Rate changes are accomplished via tree traversal that also recalculates the 1932 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1933 * 1934 * Returns 0 on success, -EERROR otherwise. 1935 */ 1936 int clk_set_rate(struct clk *clk, unsigned long rate) 1937 { 1938 int ret; 1939 1940 if (!clk) 1941 return 0; 1942 1943 /* prevent racing with updates to the clock topology */ 1944 clk_prepare_lock(); 1945 1946 if (clk->exclusive_count) 1947 clk_core_rate_unprotect(clk->core); 1948 1949 ret = clk_core_set_rate_nolock(clk->core, rate); 1950 1951 if (clk->exclusive_count) 1952 clk_core_rate_protect(clk->core); 1953 1954 clk_prepare_unlock(); 1955 1956 return ret; 1957 } 1958 EXPORT_SYMBOL_GPL(clk_set_rate); 1959 1960 /** 1961 * clk_set_rate_exclusive - specify a new rate get exclusive control 1962 * @clk: the clk whose rate is being changed 1963 * @rate: the new rate for clk 1964 * 1965 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 1966 * within a critical section 1967 * 1968 * This can be used initially to ensure that at least 1 consumer is 1969 * statisfied when several consumers are competing for exclusivity over the 1970 * same clock provider. 1971 * 1972 * The exclusivity is not applied if setting the rate failed. 1973 * 1974 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1975 * clk_rate_exclusive_put(). 1976 * 1977 * Returns 0 on success, -EERROR otherwise. 1978 */ 1979 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 1980 { 1981 int ret; 1982 1983 if (!clk) 1984 return 0; 1985 1986 /* prevent racing with updates to the clock topology */ 1987 clk_prepare_lock(); 1988 1989 /* 1990 * The temporary protection removal is not here, on purpose 1991 * This function is meant to be used instead of clk_rate_protect, 1992 * so before the consumer code path protect the clock provider 1993 */ 1994 1995 ret = clk_core_set_rate_nolock(clk->core, rate); 1996 if (!ret) { 1997 clk_core_rate_protect(clk->core); 1998 clk->exclusive_count++; 1999 } 2000 2001 clk_prepare_unlock(); 2002 2003 return ret; 2004 } 2005 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2006 2007 /** 2008 * clk_set_rate_range - set a rate range for a clock source 2009 * @clk: clock source 2010 * @min: desired minimum clock rate in Hz, inclusive 2011 * @max: desired maximum clock rate in Hz, inclusive 2012 * 2013 * Returns success (0) or negative errno. 2014 */ 2015 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2016 { 2017 int ret = 0; 2018 unsigned long old_min, old_max, rate; 2019 2020 if (!clk) 2021 return 0; 2022 2023 if (min > max) { 2024 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2025 __func__, clk->core->name, clk->dev_id, clk->con_id, 2026 min, max); 2027 return -EINVAL; 2028 } 2029 2030 clk_prepare_lock(); 2031 2032 if (clk->exclusive_count) 2033 clk_core_rate_unprotect(clk->core); 2034 2035 /* Save the current values in case we need to rollback the change */ 2036 old_min = clk->min_rate; 2037 old_max = clk->max_rate; 2038 clk->min_rate = min; 2039 clk->max_rate = max; 2040 2041 rate = clk_core_get_rate_nolock(clk->core); 2042 if (rate < min || rate > max) { 2043 /* 2044 * FIXME: 2045 * We are in bit of trouble here, current rate is outside the 2046 * the requested range. We are going try to request appropriate 2047 * range boundary but there is a catch. It may fail for the 2048 * usual reason (clock broken, clock protected, etc) but also 2049 * because: 2050 * - round_rate() was not favorable and fell on the wrong 2051 * side of the boundary 2052 * - the determine_rate() callback does not really check for 2053 * this corner case when determining the rate 2054 */ 2055 2056 if (rate < min) 2057 rate = min; 2058 else 2059 rate = max; 2060 2061 ret = clk_core_set_rate_nolock(clk->core, rate); 2062 if (ret) { 2063 /* rollback the changes */ 2064 clk->min_rate = old_min; 2065 clk->max_rate = old_max; 2066 } 2067 } 2068 2069 if (clk->exclusive_count) 2070 clk_core_rate_protect(clk->core); 2071 2072 clk_prepare_unlock(); 2073 2074 return ret; 2075 } 2076 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2077 2078 /** 2079 * clk_set_min_rate - set a minimum clock rate for a clock source 2080 * @clk: clock source 2081 * @rate: desired minimum clock rate in Hz, inclusive 2082 * 2083 * Returns success (0) or negative errno. 2084 */ 2085 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2086 { 2087 if (!clk) 2088 return 0; 2089 2090 return clk_set_rate_range(clk, rate, clk->max_rate); 2091 } 2092 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2093 2094 /** 2095 * clk_set_max_rate - set a maximum clock rate for a clock source 2096 * @clk: clock source 2097 * @rate: desired maximum clock rate in Hz, inclusive 2098 * 2099 * Returns success (0) or negative errno. 2100 */ 2101 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2102 { 2103 if (!clk) 2104 return 0; 2105 2106 return clk_set_rate_range(clk, clk->min_rate, rate); 2107 } 2108 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2109 2110 /** 2111 * clk_get_parent - return the parent of a clk 2112 * @clk: the clk whose parent gets returned 2113 * 2114 * Simply returns clk->parent. Returns NULL if clk is NULL. 2115 */ 2116 struct clk *clk_get_parent(struct clk *clk) 2117 { 2118 struct clk *parent; 2119 2120 if (!clk) 2121 return NULL; 2122 2123 clk_prepare_lock(); 2124 /* TODO: Create a per-user clk and change callers to call clk_put */ 2125 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2126 clk_prepare_unlock(); 2127 2128 return parent; 2129 } 2130 EXPORT_SYMBOL_GPL(clk_get_parent); 2131 2132 static struct clk_core *__clk_init_parent(struct clk_core *core) 2133 { 2134 u8 index = 0; 2135 2136 if (core->num_parents > 1 && core->ops->get_parent) 2137 index = core->ops->get_parent(core->hw); 2138 2139 return clk_core_get_parent_by_index(core, index); 2140 } 2141 2142 static void clk_core_reparent(struct clk_core *core, 2143 struct clk_core *new_parent) 2144 { 2145 clk_reparent(core, new_parent); 2146 __clk_recalc_accuracies(core); 2147 __clk_recalc_rates(core, POST_RATE_CHANGE); 2148 } 2149 2150 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2151 { 2152 if (!hw) 2153 return; 2154 2155 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2156 } 2157 2158 /** 2159 * clk_has_parent - check if a clock is a possible parent for another 2160 * @clk: clock source 2161 * @parent: parent clock source 2162 * 2163 * This function can be used in drivers that need to check that a clock can be 2164 * the parent of another without actually changing the parent. 2165 * 2166 * Returns true if @parent is a possible parent for @clk, false otherwise. 2167 */ 2168 bool clk_has_parent(struct clk *clk, struct clk *parent) 2169 { 2170 struct clk_core *core, *parent_core; 2171 unsigned int i; 2172 2173 /* NULL clocks should be nops, so return success if either is NULL. */ 2174 if (!clk || !parent) 2175 return true; 2176 2177 core = clk->core; 2178 parent_core = parent->core; 2179 2180 /* Optimize for the case where the parent is already the parent. */ 2181 if (core->parent == parent_core) 2182 return true; 2183 2184 for (i = 0; i < core->num_parents; i++) 2185 if (strcmp(core->parent_names[i], parent_core->name) == 0) 2186 return true; 2187 2188 return false; 2189 } 2190 EXPORT_SYMBOL_GPL(clk_has_parent); 2191 2192 static int clk_core_set_parent_nolock(struct clk_core *core, 2193 struct clk_core *parent) 2194 { 2195 int ret = 0; 2196 int p_index = 0; 2197 unsigned long p_rate = 0; 2198 2199 lockdep_assert_held(&prepare_lock); 2200 2201 if (!core) 2202 return 0; 2203 2204 if (core->parent == parent) 2205 return 0; 2206 2207 /* verify ops for for multi-parent clks */ 2208 if (core->num_parents > 1 && !core->ops->set_parent) 2209 return -EPERM; 2210 2211 /* check that we are allowed to re-parent if the clock is in use */ 2212 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2213 return -EBUSY; 2214 2215 if (clk_core_rate_is_protected(core)) 2216 return -EBUSY; 2217 2218 /* try finding the new parent index */ 2219 if (parent) { 2220 p_index = clk_fetch_parent_index(core, parent); 2221 if (p_index < 0) { 2222 pr_debug("%s: clk %s can not be parent of clk %s\n", 2223 __func__, parent->name, core->name); 2224 return p_index; 2225 } 2226 p_rate = parent->rate; 2227 } 2228 2229 ret = clk_pm_runtime_get(core); 2230 if (ret) 2231 return ret; 2232 2233 /* propagate PRE_RATE_CHANGE notifications */ 2234 ret = __clk_speculate_rates(core, p_rate); 2235 2236 /* abort if a driver objects */ 2237 if (ret & NOTIFY_STOP_MASK) 2238 goto runtime_put; 2239 2240 /* do the re-parent */ 2241 ret = __clk_set_parent(core, parent, p_index); 2242 2243 /* propagate rate an accuracy recalculation accordingly */ 2244 if (ret) { 2245 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 2246 } else { 2247 __clk_recalc_rates(core, POST_RATE_CHANGE); 2248 __clk_recalc_accuracies(core); 2249 } 2250 2251 runtime_put: 2252 clk_pm_runtime_put(core); 2253 2254 return ret; 2255 } 2256 2257 /** 2258 * clk_set_parent - switch the parent of a mux clk 2259 * @clk: the mux clk whose input we are switching 2260 * @parent: the new input to clk 2261 * 2262 * Re-parent clk to use parent as its new input source. If clk is in 2263 * prepared state, the clk will get enabled for the duration of this call. If 2264 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2265 * that, the reparenting is glitchy in hardware, etc), use the 2266 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2267 * 2268 * After successfully changing clk's parent clk_set_parent will update the 2269 * clk topology, sysfs topology and propagate rate recalculation via 2270 * __clk_recalc_rates. 2271 * 2272 * Returns 0 on success, -EERROR otherwise. 2273 */ 2274 int clk_set_parent(struct clk *clk, struct clk *parent) 2275 { 2276 int ret; 2277 2278 if (!clk) 2279 return 0; 2280 2281 clk_prepare_lock(); 2282 2283 if (clk->exclusive_count) 2284 clk_core_rate_unprotect(clk->core); 2285 2286 ret = clk_core_set_parent_nolock(clk->core, 2287 parent ? parent->core : NULL); 2288 2289 if (clk->exclusive_count) 2290 clk_core_rate_protect(clk->core); 2291 2292 clk_prepare_unlock(); 2293 2294 return ret; 2295 } 2296 EXPORT_SYMBOL_GPL(clk_set_parent); 2297 2298 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2299 { 2300 int ret = -EINVAL; 2301 2302 lockdep_assert_held(&prepare_lock); 2303 2304 if (!core) 2305 return 0; 2306 2307 if (clk_core_rate_is_protected(core)) 2308 return -EBUSY; 2309 2310 trace_clk_set_phase(core, degrees); 2311 2312 if (core->ops->set_phase) 2313 ret = core->ops->set_phase(core->hw, degrees); 2314 2315 trace_clk_set_phase_complete(core, degrees); 2316 2317 return ret; 2318 } 2319 2320 /** 2321 * clk_set_phase - adjust the phase shift of a clock signal 2322 * @clk: clock signal source 2323 * @degrees: number of degrees the signal is shifted 2324 * 2325 * Shifts the phase of a clock signal by the specified 2326 * degrees. Returns 0 on success, -EERROR otherwise. 2327 * 2328 * This function makes no distinction about the input or reference 2329 * signal that we adjust the clock signal phase against. For example 2330 * phase locked-loop clock signal generators we may shift phase with 2331 * respect to feedback clock signal input, but for other cases the 2332 * clock phase may be shifted with respect to some other, unspecified 2333 * signal. 2334 * 2335 * Additionally the concept of phase shift does not propagate through 2336 * the clock tree hierarchy, which sets it apart from clock rates and 2337 * clock accuracy. A parent clock phase attribute does not have an 2338 * impact on the phase attribute of a child clock. 2339 */ 2340 int clk_set_phase(struct clk *clk, int degrees) 2341 { 2342 int ret; 2343 2344 if (!clk) 2345 return 0; 2346 2347 /* sanity check degrees */ 2348 degrees %= 360; 2349 if (degrees < 0) 2350 degrees += 360; 2351 2352 clk_prepare_lock(); 2353 2354 if (clk->exclusive_count) 2355 clk_core_rate_unprotect(clk->core); 2356 2357 ret = clk_core_set_phase_nolock(clk->core, degrees); 2358 2359 if (clk->exclusive_count) 2360 clk_core_rate_protect(clk->core); 2361 2362 clk_prepare_unlock(); 2363 2364 return ret; 2365 } 2366 EXPORT_SYMBOL_GPL(clk_set_phase); 2367 2368 static int clk_core_get_phase(struct clk_core *core) 2369 { 2370 int ret; 2371 2372 clk_prepare_lock(); 2373 ret = core->phase; 2374 clk_prepare_unlock(); 2375 2376 return ret; 2377 } 2378 2379 /** 2380 * clk_get_phase - return the phase shift of a clock signal 2381 * @clk: clock signal source 2382 * 2383 * Returns the phase shift of a clock node in degrees, otherwise returns 2384 * -EERROR. 2385 */ 2386 int clk_get_phase(struct clk *clk) 2387 { 2388 if (!clk) 2389 return 0; 2390 2391 return clk_core_get_phase(clk->core); 2392 } 2393 EXPORT_SYMBOL_GPL(clk_get_phase); 2394 2395 /** 2396 * clk_is_match - check if two clk's point to the same hardware clock 2397 * @p: clk compared against q 2398 * @q: clk compared against p 2399 * 2400 * Returns true if the two struct clk pointers both point to the same hardware 2401 * clock node. Put differently, returns true if struct clk *p and struct clk *q 2402 * share the same struct clk_core object. 2403 * 2404 * Returns false otherwise. Note that two NULL clks are treated as matching. 2405 */ 2406 bool clk_is_match(const struct clk *p, const struct clk *q) 2407 { 2408 /* trivial case: identical struct clk's or both NULL */ 2409 if (p == q) 2410 return true; 2411 2412 /* true if clk->core pointers match. Avoid dereferencing garbage */ 2413 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 2414 if (p->core == q->core) 2415 return true; 2416 2417 return false; 2418 } 2419 EXPORT_SYMBOL_GPL(clk_is_match); 2420 2421 /*** debugfs support ***/ 2422 2423 #ifdef CONFIG_DEBUG_FS 2424 #include <linux/debugfs.h> 2425 2426 static struct dentry *rootdir; 2427 static int inited = 0; 2428 static DEFINE_MUTEX(clk_debug_lock); 2429 static HLIST_HEAD(clk_debug_list); 2430 2431 static struct hlist_head *all_lists[] = { 2432 &clk_root_list, 2433 &clk_orphan_list, 2434 NULL, 2435 }; 2436 2437 static struct hlist_head *orphan_list[] = { 2438 &clk_orphan_list, 2439 NULL, 2440 }; 2441 2442 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 2443 int level) 2444 { 2445 if (!c) 2446 return; 2447 2448 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n", 2449 level * 3 + 1, "", 2450 30 - level * 3, c->name, 2451 c->enable_count, c->prepare_count, c->protect_count, 2452 clk_core_get_rate(c), clk_core_get_accuracy(c), 2453 clk_core_get_phase(c)); 2454 } 2455 2456 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 2457 int level) 2458 { 2459 struct clk_core *child; 2460 2461 if (!c) 2462 return; 2463 2464 clk_summary_show_one(s, c, level); 2465 2466 hlist_for_each_entry(child, &c->children, child_node) 2467 clk_summary_show_subtree(s, child, level + 1); 2468 } 2469 2470 static int clk_summary_show(struct seq_file *s, void *data) 2471 { 2472 struct clk_core *c; 2473 struct hlist_head **lists = (struct hlist_head **)s->private; 2474 2475 seq_puts(s, " enable prepare protect \n"); 2476 seq_puts(s, " clock count count count rate accuracy phase\n"); 2477 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 2478 2479 clk_prepare_lock(); 2480 2481 for (; *lists; lists++) 2482 hlist_for_each_entry(c, *lists, child_node) 2483 clk_summary_show_subtree(s, c, 0); 2484 2485 clk_prepare_unlock(); 2486 2487 return 0; 2488 } 2489 2490 2491 static int clk_summary_open(struct inode *inode, struct file *file) 2492 { 2493 return single_open(file, clk_summary_show, inode->i_private); 2494 } 2495 2496 static const struct file_operations clk_summary_fops = { 2497 .open = clk_summary_open, 2498 .read = seq_read, 2499 .llseek = seq_lseek, 2500 .release = single_release, 2501 }; 2502 2503 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2504 { 2505 if (!c) 2506 return; 2507 2508 /* This should be JSON format, i.e. elements separated with a comma */ 2509 seq_printf(s, "\"%s\": { ", c->name); 2510 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2511 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2512 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 2513 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2514 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2515 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2516 } 2517 2518 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2519 { 2520 struct clk_core *child; 2521 2522 if (!c) 2523 return; 2524 2525 clk_dump_one(s, c, level); 2526 2527 hlist_for_each_entry(child, &c->children, child_node) { 2528 seq_putc(s, ','); 2529 clk_dump_subtree(s, child, level + 1); 2530 } 2531 2532 seq_putc(s, '}'); 2533 } 2534 2535 static int clk_dump(struct seq_file *s, void *data) 2536 { 2537 struct clk_core *c; 2538 bool first_node = true; 2539 struct hlist_head **lists = (struct hlist_head **)s->private; 2540 2541 seq_putc(s, '{'); 2542 clk_prepare_lock(); 2543 2544 for (; *lists; lists++) { 2545 hlist_for_each_entry(c, *lists, child_node) { 2546 if (!first_node) 2547 seq_putc(s, ','); 2548 first_node = false; 2549 clk_dump_subtree(s, c, 0); 2550 } 2551 } 2552 2553 clk_prepare_unlock(); 2554 2555 seq_puts(s, "}\n"); 2556 return 0; 2557 } 2558 2559 2560 static int clk_dump_open(struct inode *inode, struct file *file) 2561 { 2562 return single_open(file, clk_dump, inode->i_private); 2563 } 2564 2565 static const struct file_operations clk_dump_fops = { 2566 .open = clk_dump_open, 2567 .read = seq_read, 2568 .llseek = seq_lseek, 2569 .release = single_release, 2570 }; 2571 2572 static const struct { 2573 unsigned long flag; 2574 const char *name; 2575 } clk_flags[] = { 2576 #define ENTRY(f) { f, __stringify(f) } 2577 ENTRY(CLK_SET_RATE_GATE), 2578 ENTRY(CLK_SET_PARENT_GATE), 2579 ENTRY(CLK_SET_RATE_PARENT), 2580 ENTRY(CLK_IGNORE_UNUSED), 2581 ENTRY(CLK_IS_BASIC), 2582 ENTRY(CLK_GET_RATE_NOCACHE), 2583 ENTRY(CLK_SET_RATE_NO_REPARENT), 2584 ENTRY(CLK_GET_ACCURACY_NOCACHE), 2585 ENTRY(CLK_RECALC_NEW_RATES), 2586 ENTRY(CLK_SET_RATE_UNGATE), 2587 ENTRY(CLK_IS_CRITICAL), 2588 ENTRY(CLK_OPS_PARENT_ENABLE), 2589 #undef ENTRY 2590 }; 2591 2592 static int clk_flags_dump(struct seq_file *s, void *data) 2593 { 2594 struct clk_core *core = s->private; 2595 unsigned long flags = core->flags; 2596 unsigned int i; 2597 2598 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 2599 if (flags & clk_flags[i].flag) { 2600 seq_printf(s, "%s\n", clk_flags[i].name); 2601 flags &= ~clk_flags[i].flag; 2602 } 2603 } 2604 if (flags) { 2605 /* Unknown flags */ 2606 seq_printf(s, "0x%lx\n", flags); 2607 } 2608 2609 return 0; 2610 } 2611 2612 static int clk_flags_open(struct inode *inode, struct file *file) 2613 { 2614 return single_open(file, clk_flags_dump, inode->i_private); 2615 } 2616 2617 static const struct file_operations clk_flags_fops = { 2618 .open = clk_flags_open, 2619 .read = seq_read, 2620 .llseek = seq_lseek, 2621 .release = single_release, 2622 }; 2623 2624 static int possible_parents_dump(struct seq_file *s, void *data) 2625 { 2626 struct clk_core *core = s->private; 2627 int i; 2628 2629 for (i = 0; i < core->num_parents - 1; i++) 2630 seq_printf(s, "%s ", core->parent_names[i]); 2631 2632 seq_printf(s, "%s\n", core->parent_names[i]); 2633 2634 return 0; 2635 } 2636 2637 static int possible_parents_open(struct inode *inode, struct file *file) 2638 { 2639 return single_open(file, possible_parents_dump, inode->i_private); 2640 } 2641 2642 static const struct file_operations possible_parents_fops = { 2643 .open = possible_parents_open, 2644 .read = seq_read, 2645 .llseek = seq_lseek, 2646 .release = single_release, 2647 }; 2648 2649 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2650 { 2651 struct dentry *d; 2652 int ret = -ENOMEM; 2653 2654 if (!core || !pdentry) { 2655 ret = -EINVAL; 2656 goto out; 2657 } 2658 2659 d = debugfs_create_dir(core->name, pdentry); 2660 if (!d) 2661 goto out; 2662 2663 core->dentry = d; 2664 2665 d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate); 2666 if (!d) 2667 goto err_out; 2668 2669 d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry, 2670 &core->accuracy); 2671 if (!d) 2672 goto err_out; 2673 2674 d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase); 2675 if (!d) 2676 goto err_out; 2677 2678 d = debugfs_create_file("clk_flags", 0444, core->dentry, core, 2679 &clk_flags_fops); 2680 if (!d) 2681 goto err_out; 2682 2683 d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry, 2684 &core->prepare_count); 2685 if (!d) 2686 goto err_out; 2687 2688 d = debugfs_create_u32("clk_enable_count", 0444, core->dentry, 2689 &core->enable_count); 2690 if (!d) 2691 goto err_out; 2692 2693 d = debugfs_create_u32("clk_protect_count", 0444, core->dentry, 2694 &core->protect_count); 2695 if (!d) 2696 goto err_out; 2697 2698 d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry, 2699 &core->notifier_count); 2700 if (!d) 2701 goto err_out; 2702 2703 if (core->num_parents > 1) { 2704 d = debugfs_create_file("clk_possible_parents", 0444, 2705 core->dentry, core, &possible_parents_fops); 2706 if (!d) 2707 goto err_out; 2708 } 2709 2710 if (core->ops->debug_init) { 2711 ret = core->ops->debug_init(core->hw, core->dentry); 2712 if (ret) 2713 goto err_out; 2714 } 2715 2716 ret = 0; 2717 goto out; 2718 2719 err_out: 2720 debugfs_remove_recursive(core->dentry); 2721 core->dentry = NULL; 2722 out: 2723 return ret; 2724 } 2725 2726 /** 2727 * clk_debug_register - add a clk node to the debugfs clk directory 2728 * @core: the clk being added to the debugfs clk directory 2729 * 2730 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2731 * initialized. Otherwise it bails out early since the debugfs clk directory 2732 * will be created lazily by clk_debug_init as part of a late_initcall. 2733 */ 2734 static int clk_debug_register(struct clk_core *core) 2735 { 2736 int ret = 0; 2737 2738 mutex_lock(&clk_debug_lock); 2739 hlist_add_head(&core->debug_node, &clk_debug_list); 2740 if (inited) 2741 ret = clk_debug_create_one(core, rootdir); 2742 mutex_unlock(&clk_debug_lock); 2743 2744 return ret; 2745 } 2746 2747 /** 2748 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2749 * @core: the clk being removed from the debugfs clk directory 2750 * 2751 * Dynamically removes a clk and all its child nodes from the 2752 * debugfs clk directory if clk->dentry points to debugfs created by 2753 * clk_debug_register in __clk_core_init. 2754 */ 2755 static void clk_debug_unregister(struct clk_core *core) 2756 { 2757 mutex_lock(&clk_debug_lock); 2758 hlist_del_init(&core->debug_node); 2759 debugfs_remove_recursive(core->dentry); 2760 core->dentry = NULL; 2761 mutex_unlock(&clk_debug_lock); 2762 } 2763 2764 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2765 void *data, const struct file_operations *fops) 2766 { 2767 struct dentry *d = NULL; 2768 2769 if (hw->core->dentry) 2770 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2771 fops); 2772 2773 return d; 2774 } 2775 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2776 2777 /** 2778 * clk_debug_init - lazily populate the debugfs clk directory 2779 * 2780 * clks are often initialized very early during boot before memory can be 2781 * dynamically allocated and well before debugfs is setup. This function 2782 * populates the debugfs clk directory once at boot-time when we know that 2783 * debugfs is setup. It should only be called once at boot-time, all other clks 2784 * added dynamically will be done so with clk_debug_register. 2785 */ 2786 static int __init clk_debug_init(void) 2787 { 2788 struct clk_core *core; 2789 struct dentry *d; 2790 2791 rootdir = debugfs_create_dir("clk", NULL); 2792 2793 if (!rootdir) 2794 return -ENOMEM; 2795 2796 d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 2797 &clk_summary_fops); 2798 if (!d) 2799 return -ENOMEM; 2800 2801 d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 2802 &clk_dump_fops); 2803 if (!d) 2804 return -ENOMEM; 2805 2806 d = debugfs_create_file("clk_orphan_summary", 0444, rootdir, 2807 &orphan_list, &clk_summary_fops); 2808 if (!d) 2809 return -ENOMEM; 2810 2811 d = debugfs_create_file("clk_orphan_dump", 0444, rootdir, 2812 &orphan_list, &clk_dump_fops); 2813 if (!d) 2814 return -ENOMEM; 2815 2816 mutex_lock(&clk_debug_lock); 2817 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2818 clk_debug_create_one(core, rootdir); 2819 2820 inited = 1; 2821 mutex_unlock(&clk_debug_lock); 2822 2823 return 0; 2824 } 2825 late_initcall(clk_debug_init); 2826 #else 2827 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2828 static inline void clk_debug_reparent(struct clk_core *core, 2829 struct clk_core *new_parent) 2830 { 2831 } 2832 static inline void clk_debug_unregister(struct clk_core *core) 2833 { 2834 } 2835 #endif 2836 2837 /** 2838 * __clk_core_init - initialize the data structures in a struct clk_core 2839 * @core: clk_core being initialized 2840 * 2841 * Initializes the lists in struct clk_core, queries the hardware for the 2842 * parent and rate and sets them both. 2843 */ 2844 static int __clk_core_init(struct clk_core *core) 2845 { 2846 int i, ret; 2847 struct clk_core *orphan; 2848 struct hlist_node *tmp2; 2849 unsigned long rate; 2850 2851 if (!core) 2852 return -EINVAL; 2853 2854 clk_prepare_lock(); 2855 2856 ret = clk_pm_runtime_get(core); 2857 if (ret) 2858 goto unlock; 2859 2860 /* check to see if a clock with this name is already registered */ 2861 if (clk_core_lookup(core->name)) { 2862 pr_debug("%s: clk %s already initialized\n", 2863 __func__, core->name); 2864 ret = -EEXIST; 2865 goto out; 2866 } 2867 2868 /* check that clk_ops are sane. See Documentation/clk.txt */ 2869 if (core->ops->set_rate && 2870 !((core->ops->round_rate || core->ops->determine_rate) && 2871 core->ops->recalc_rate)) { 2872 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2873 __func__, core->name); 2874 ret = -EINVAL; 2875 goto out; 2876 } 2877 2878 if (core->ops->set_parent && !core->ops->get_parent) { 2879 pr_err("%s: %s must implement .get_parent & .set_parent\n", 2880 __func__, core->name); 2881 ret = -EINVAL; 2882 goto out; 2883 } 2884 2885 if (core->num_parents > 1 && !core->ops->get_parent) { 2886 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 2887 __func__, core->name); 2888 ret = -EINVAL; 2889 goto out; 2890 } 2891 2892 if (core->ops->set_rate_and_parent && 2893 !(core->ops->set_parent && core->ops->set_rate)) { 2894 pr_err("%s: %s must implement .set_parent & .set_rate\n", 2895 __func__, core->name); 2896 ret = -EINVAL; 2897 goto out; 2898 } 2899 2900 /* throw a WARN if any entries in parent_names are NULL */ 2901 for (i = 0; i < core->num_parents; i++) 2902 WARN(!core->parent_names[i], 2903 "%s: invalid NULL in %s's .parent_names\n", 2904 __func__, core->name); 2905 2906 core->parent = __clk_init_parent(core); 2907 2908 /* 2909 * Populate core->parent if parent has already been clk_core_init'd. If 2910 * parent has not yet been clk_core_init'd then place clk in the orphan 2911 * list. If clk doesn't have any parents then place it in the root 2912 * clk list. 2913 * 2914 * Every time a new clk is clk_init'd then we walk the list of orphan 2915 * clocks and re-parent any that are children of the clock currently 2916 * being clk_init'd. 2917 */ 2918 if (core->parent) { 2919 hlist_add_head(&core->child_node, 2920 &core->parent->children); 2921 core->orphan = core->parent->orphan; 2922 } else if (!core->num_parents) { 2923 hlist_add_head(&core->child_node, &clk_root_list); 2924 core->orphan = false; 2925 } else { 2926 hlist_add_head(&core->child_node, &clk_orphan_list); 2927 core->orphan = true; 2928 } 2929 2930 /* 2931 * Set clk's accuracy. The preferred method is to use 2932 * .recalc_accuracy. For simple clocks and lazy developers the default 2933 * fallback is to use the parent's accuracy. If a clock doesn't have a 2934 * parent (or is orphaned) then accuracy is set to zero (perfect 2935 * clock). 2936 */ 2937 if (core->ops->recalc_accuracy) 2938 core->accuracy = core->ops->recalc_accuracy(core->hw, 2939 __clk_get_accuracy(core->parent)); 2940 else if (core->parent) 2941 core->accuracy = core->parent->accuracy; 2942 else 2943 core->accuracy = 0; 2944 2945 /* 2946 * Set clk's phase. 2947 * Since a phase is by definition relative to its parent, just 2948 * query the current clock phase, or just assume it's in phase. 2949 */ 2950 if (core->ops->get_phase) 2951 core->phase = core->ops->get_phase(core->hw); 2952 else 2953 core->phase = 0; 2954 2955 /* 2956 * Set clk's rate. The preferred method is to use .recalc_rate. For 2957 * simple clocks and lazy developers the default fallback is to use the 2958 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2959 * then rate is set to zero. 2960 */ 2961 if (core->ops->recalc_rate) 2962 rate = core->ops->recalc_rate(core->hw, 2963 clk_core_get_rate_nolock(core->parent)); 2964 else if (core->parent) 2965 rate = core->parent->rate; 2966 else 2967 rate = 0; 2968 core->rate = core->req_rate = rate; 2969 2970 /* 2971 * walk the list of orphan clocks and reparent any that newly finds a 2972 * parent. 2973 */ 2974 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2975 struct clk_core *parent = __clk_init_parent(orphan); 2976 unsigned long flags; 2977 2978 /* 2979 * we could call __clk_set_parent, but that would result in a 2980 * redundant call to the .set_rate op, if it exists 2981 */ 2982 if (parent) { 2983 /* update the clk tree topology */ 2984 flags = clk_enable_lock(); 2985 clk_reparent(orphan, parent); 2986 clk_enable_unlock(flags); 2987 __clk_recalc_accuracies(orphan); 2988 __clk_recalc_rates(orphan, 0); 2989 } 2990 } 2991 2992 /* 2993 * optional platform-specific magic 2994 * 2995 * The .init callback is not used by any of the basic clock types, but 2996 * exists for weird hardware that must perform initialization magic. 2997 * Please consider other ways of solving initialization problems before 2998 * using this callback, as its use is discouraged. 2999 */ 3000 if (core->ops->init) 3001 core->ops->init(core->hw); 3002 3003 if (core->flags & CLK_IS_CRITICAL) { 3004 unsigned long flags; 3005 3006 clk_core_prepare(core); 3007 3008 flags = clk_enable_lock(); 3009 clk_core_enable(core); 3010 clk_enable_unlock(flags); 3011 } 3012 3013 kref_init(&core->ref); 3014 out: 3015 clk_pm_runtime_put(core); 3016 unlock: 3017 clk_prepare_unlock(); 3018 3019 if (!ret) 3020 clk_debug_register(core); 3021 3022 return ret; 3023 } 3024 3025 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 3026 const char *con_id) 3027 { 3028 struct clk *clk; 3029 3030 /* This is to allow this function to be chained to others */ 3031 if (IS_ERR_OR_NULL(hw)) 3032 return ERR_CAST(hw); 3033 3034 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 3035 if (!clk) 3036 return ERR_PTR(-ENOMEM); 3037 3038 clk->core = hw->core; 3039 clk->dev_id = dev_id; 3040 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 3041 clk->max_rate = ULONG_MAX; 3042 3043 clk_prepare_lock(); 3044 hlist_add_head(&clk->clks_node, &hw->core->clks); 3045 clk_prepare_unlock(); 3046 3047 return clk; 3048 } 3049 3050 void __clk_free_clk(struct clk *clk) 3051 { 3052 clk_prepare_lock(); 3053 hlist_del(&clk->clks_node); 3054 clk_prepare_unlock(); 3055 3056 kfree_const(clk->con_id); 3057 kfree(clk); 3058 } 3059 3060 /** 3061 * clk_register - allocate a new clock, register it and return an opaque cookie 3062 * @dev: device that is registering this clock 3063 * @hw: link to hardware-specific clock data 3064 * 3065 * clk_register is the primary interface for populating the clock tree with new 3066 * clock nodes. It returns a pointer to the newly allocated struct clk which 3067 * cannot be dereferenced by driver code but may be used in conjunction with the 3068 * rest of the clock API. In the event of an error clk_register will return an 3069 * error code; drivers must test for an error code after calling clk_register. 3070 */ 3071 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 3072 { 3073 int i, ret; 3074 struct clk_core *core; 3075 3076 core = kzalloc(sizeof(*core), GFP_KERNEL); 3077 if (!core) { 3078 ret = -ENOMEM; 3079 goto fail_out; 3080 } 3081 3082 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 3083 if (!core->name) { 3084 ret = -ENOMEM; 3085 goto fail_name; 3086 } 3087 3088 if (WARN_ON(!hw->init->ops)) { 3089 ret = -EINVAL; 3090 goto fail_ops; 3091 } 3092 core->ops = hw->init->ops; 3093 3094 if (dev && pm_runtime_enabled(dev)) 3095 core->dev = dev; 3096 if (dev && dev->driver) 3097 core->owner = dev->driver->owner; 3098 core->hw = hw; 3099 core->flags = hw->init->flags; 3100 core->num_parents = hw->init->num_parents; 3101 core->min_rate = 0; 3102 core->max_rate = ULONG_MAX; 3103 hw->core = core; 3104 3105 /* allocate local copy in case parent_names is __initdata */ 3106 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 3107 GFP_KERNEL); 3108 3109 if (!core->parent_names) { 3110 ret = -ENOMEM; 3111 goto fail_parent_names; 3112 } 3113 3114 3115 /* copy each string name in case parent_names is __initdata */ 3116 for (i = 0; i < core->num_parents; i++) { 3117 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 3118 GFP_KERNEL); 3119 if (!core->parent_names[i]) { 3120 ret = -ENOMEM; 3121 goto fail_parent_names_copy; 3122 } 3123 } 3124 3125 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 3126 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 3127 GFP_KERNEL); 3128 if (!core->parents) { 3129 ret = -ENOMEM; 3130 goto fail_parents; 3131 }; 3132 3133 INIT_HLIST_HEAD(&core->clks); 3134 3135 hw->clk = __clk_create_clk(hw, NULL, NULL); 3136 if (IS_ERR(hw->clk)) { 3137 ret = PTR_ERR(hw->clk); 3138 goto fail_parents; 3139 } 3140 3141 ret = __clk_core_init(core); 3142 if (!ret) 3143 return hw->clk; 3144 3145 __clk_free_clk(hw->clk); 3146 hw->clk = NULL; 3147 3148 fail_parents: 3149 kfree(core->parents); 3150 fail_parent_names_copy: 3151 while (--i >= 0) 3152 kfree_const(core->parent_names[i]); 3153 kfree(core->parent_names); 3154 fail_parent_names: 3155 fail_ops: 3156 kfree_const(core->name); 3157 fail_name: 3158 kfree(core); 3159 fail_out: 3160 return ERR_PTR(ret); 3161 } 3162 EXPORT_SYMBOL_GPL(clk_register); 3163 3164 /** 3165 * clk_hw_register - register a clk_hw and return an error code 3166 * @dev: device that is registering this clock 3167 * @hw: link to hardware-specific clock data 3168 * 3169 * clk_hw_register is the primary interface for populating the clock tree with 3170 * new clock nodes. It returns an integer equal to zero indicating success or 3171 * less than zero indicating failure. Drivers must test for an error code after 3172 * calling clk_hw_register(). 3173 */ 3174 int clk_hw_register(struct device *dev, struct clk_hw *hw) 3175 { 3176 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 3177 } 3178 EXPORT_SYMBOL_GPL(clk_hw_register); 3179 3180 /* Free memory allocated for a clock. */ 3181 static void __clk_release(struct kref *ref) 3182 { 3183 struct clk_core *core = container_of(ref, struct clk_core, ref); 3184 int i = core->num_parents; 3185 3186 lockdep_assert_held(&prepare_lock); 3187 3188 kfree(core->parents); 3189 while (--i >= 0) 3190 kfree_const(core->parent_names[i]); 3191 3192 kfree(core->parent_names); 3193 kfree_const(core->name); 3194 kfree(core); 3195 } 3196 3197 /* 3198 * Empty clk_ops for unregistered clocks. These are used temporarily 3199 * after clk_unregister() was called on a clock and until last clock 3200 * consumer calls clk_put() and the struct clk object is freed. 3201 */ 3202 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 3203 { 3204 return -ENXIO; 3205 } 3206 3207 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 3208 { 3209 WARN_ON_ONCE(1); 3210 } 3211 3212 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 3213 unsigned long parent_rate) 3214 { 3215 return -ENXIO; 3216 } 3217 3218 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 3219 { 3220 return -ENXIO; 3221 } 3222 3223 static const struct clk_ops clk_nodrv_ops = { 3224 .enable = clk_nodrv_prepare_enable, 3225 .disable = clk_nodrv_disable_unprepare, 3226 .prepare = clk_nodrv_prepare_enable, 3227 .unprepare = clk_nodrv_disable_unprepare, 3228 .set_rate = clk_nodrv_set_rate, 3229 .set_parent = clk_nodrv_set_parent, 3230 }; 3231 3232 /** 3233 * clk_unregister - unregister a currently registered clock 3234 * @clk: clock to unregister 3235 */ 3236 void clk_unregister(struct clk *clk) 3237 { 3238 unsigned long flags; 3239 3240 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3241 return; 3242 3243 clk_debug_unregister(clk->core); 3244 3245 clk_prepare_lock(); 3246 3247 if (clk->core->ops == &clk_nodrv_ops) { 3248 pr_err("%s: unregistered clock: %s\n", __func__, 3249 clk->core->name); 3250 goto unlock; 3251 } 3252 /* 3253 * Assign empty clock ops for consumers that might still hold 3254 * a reference to this clock. 3255 */ 3256 flags = clk_enable_lock(); 3257 clk->core->ops = &clk_nodrv_ops; 3258 clk_enable_unlock(flags); 3259 3260 if (!hlist_empty(&clk->core->children)) { 3261 struct clk_core *child; 3262 struct hlist_node *t; 3263 3264 /* Reparent all children to the orphan list. */ 3265 hlist_for_each_entry_safe(child, t, &clk->core->children, 3266 child_node) 3267 clk_core_set_parent_nolock(child, NULL); 3268 } 3269 3270 hlist_del_init(&clk->core->child_node); 3271 3272 if (clk->core->prepare_count) 3273 pr_warn("%s: unregistering prepared clock: %s\n", 3274 __func__, clk->core->name); 3275 3276 if (clk->core->protect_count) 3277 pr_warn("%s: unregistering protected clock: %s\n", 3278 __func__, clk->core->name); 3279 3280 kref_put(&clk->core->ref, __clk_release); 3281 unlock: 3282 clk_prepare_unlock(); 3283 } 3284 EXPORT_SYMBOL_GPL(clk_unregister); 3285 3286 /** 3287 * clk_hw_unregister - unregister a currently registered clk_hw 3288 * @hw: hardware-specific clock data to unregister 3289 */ 3290 void clk_hw_unregister(struct clk_hw *hw) 3291 { 3292 clk_unregister(hw->clk); 3293 } 3294 EXPORT_SYMBOL_GPL(clk_hw_unregister); 3295 3296 static void devm_clk_release(struct device *dev, void *res) 3297 { 3298 clk_unregister(*(struct clk **)res); 3299 } 3300 3301 static void devm_clk_hw_release(struct device *dev, void *res) 3302 { 3303 clk_hw_unregister(*(struct clk_hw **)res); 3304 } 3305 3306 /** 3307 * devm_clk_register - resource managed clk_register() 3308 * @dev: device that is registering this clock 3309 * @hw: link to hardware-specific clock data 3310 * 3311 * Managed clk_register(). Clocks returned from this function are 3312 * automatically clk_unregister()ed on driver detach. See clk_register() for 3313 * more information. 3314 */ 3315 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 3316 { 3317 struct clk *clk; 3318 struct clk **clkp; 3319 3320 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 3321 if (!clkp) 3322 return ERR_PTR(-ENOMEM); 3323 3324 clk = clk_register(dev, hw); 3325 if (!IS_ERR(clk)) { 3326 *clkp = clk; 3327 devres_add(dev, clkp); 3328 } else { 3329 devres_free(clkp); 3330 } 3331 3332 return clk; 3333 } 3334 EXPORT_SYMBOL_GPL(devm_clk_register); 3335 3336 /** 3337 * devm_clk_hw_register - resource managed clk_hw_register() 3338 * @dev: device that is registering this clock 3339 * @hw: link to hardware-specific clock data 3340 * 3341 * Managed clk_hw_register(). Clocks registered by this function are 3342 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 3343 * for more information. 3344 */ 3345 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 3346 { 3347 struct clk_hw **hwp; 3348 int ret; 3349 3350 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 3351 if (!hwp) 3352 return -ENOMEM; 3353 3354 ret = clk_hw_register(dev, hw); 3355 if (!ret) { 3356 *hwp = hw; 3357 devres_add(dev, hwp); 3358 } else { 3359 devres_free(hwp); 3360 } 3361 3362 return ret; 3363 } 3364 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 3365 3366 static int devm_clk_match(struct device *dev, void *res, void *data) 3367 { 3368 struct clk *c = res; 3369 if (WARN_ON(!c)) 3370 return 0; 3371 return c == data; 3372 } 3373 3374 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 3375 { 3376 struct clk_hw *hw = res; 3377 3378 if (WARN_ON(!hw)) 3379 return 0; 3380 return hw == data; 3381 } 3382 3383 /** 3384 * devm_clk_unregister - resource managed clk_unregister() 3385 * @clk: clock to unregister 3386 * 3387 * Deallocate a clock allocated with devm_clk_register(). Normally 3388 * this function will not need to be called and the resource management 3389 * code will ensure that the resource is freed. 3390 */ 3391 void devm_clk_unregister(struct device *dev, struct clk *clk) 3392 { 3393 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 3394 } 3395 EXPORT_SYMBOL_GPL(devm_clk_unregister); 3396 3397 /** 3398 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 3399 * @dev: device that is unregistering the hardware-specific clock data 3400 * @hw: link to hardware-specific clock data 3401 * 3402 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 3403 * this function will not need to be called and the resource management 3404 * code will ensure that the resource is freed. 3405 */ 3406 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 3407 { 3408 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 3409 hw)); 3410 } 3411 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 3412 3413 /* 3414 * clkdev helpers 3415 */ 3416 int __clk_get(struct clk *clk) 3417 { 3418 struct clk_core *core = !clk ? NULL : clk->core; 3419 3420 if (core) { 3421 if (!try_module_get(core->owner)) 3422 return 0; 3423 3424 kref_get(&core->ref); 3425 } 3426 return 1; 3427 } 3428 3429 void __clk_put(struct clk *clk) 3430 { 3431 struct module *owner; 3432 3433 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 3434 return; 3435 3436 clk_prepare_lock(); 3437 3438 /* 3439 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 3440 * given user should be balanced with calls to clk_rate_exclusive_put() 3441 * and by that same consumer 3442 */ 3443 if (WARN_ON(clk->exclusive_count)) { 3444 /* We voiced our concern, let's sanitize the situation */ 3445 clk->core->protect_count -= (clk->exclusive_count - 1); 3446 clk_core_rate_unprotect(clk->core); 3447 clk->exclusive_count = 0; 3448 } 3449 3450 hlist_del(&clk->clks_node); 3451 if (clk->min_rate > clk->core->req_rate || 3452 clk->max_rate < clk->core->req_rate) 3453 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 3454 3455 owner = clk->core->owner; 3456 kref_put(&clk->core->ref, __clk_release); 3457 3458 clk_prepare_unlock(); 3459 3460 module_put(owner); 3461 3462 kfree(clk); 3463 } 3464 3465 /*** clk rate change notifiers ***/ 3466 3467 /** 3468 * clk_notifier_register - add a clk rate change notifier 3469 * @clk: struct clk * to watch 3470 * @nb: struct notifier_block * with callback info 3471 * 3472 * Request notification when clk's rate changes. This uses an SRCU 3473 * notifier because we want it to block and notifier unregistrations are 3474 * uncommon. The callbacks associated with the notifier must not 3475 * re-enter into the clk framework by calling any top-level clk APIs; 3476 * this will cause a nested prepare_lock mutex. 3477 * 3478 * In all notification cases (pre, post and abort rate change) the original 3479 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 3480 * and the new frequency is passed via struct clk_notifier_data.new_rate. 3481 * 3482 * clk_notifier_register() must be called from non-atomic context. 3483 * Returns -EINVAL if called with null arguments, -ENOMEM upon 3484 * allocation failure; otherwise, passes along the return value of 3485 * srcu_notifier_chain_register(). 3486 */ 3487 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 3488 { 3489 struct clk_notifier *cn; 3490 int ret = -ENOMEM; 3491 3492 if (!clk || !nb) 3493 return -EINVAL; 3494 3495 clk_prepare_lock(); 3496 3497 /* search the list of notifiers for this clk */ 3498 list_for_each_entry(cn, &clk_notifier_list, node) 3499 if (cn->clk == clk) 3500 break; 3501 3502 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 3503 if (cn->clk != clk) { 3504 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 3505 if (!cn) 3506 goto out; 3507 3508 cn->clk = clk; 3509 srcu_init_notifier_head(&cn->notifier_head); 3510 3511 list_add(&cn->node, &clk_notifier_list); 3512 } 3513 3514 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 3515 3516 clk->core->notifier_count++; 3517 3518 out: 3519 clk_prepare_unlock(); 3520 3521 return ret; 3522 } 3523 EXPORT_SYMBOL_GPL(clk_notifier_register); 3524 3525 /** 3526 * clk_notifier_unregister - remove a clk rate change notifier 3527 * @clk: struct clk * 3528 * @nb: struct notifier_block * with callback info 3529 * 3530 * Request no further notification for changes to 'clk' and frees memory 3531 * allocated in clk_notifier_register. 3532 * 3533 * Returns -EINVAL if called with null arguments; otherwise, passes 3534 * along the return value of srcu_notifier_chain_unregister(). 3535 */ 3536 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 3537 { 3538 struct clk_notifier *cn = NULL; 3539 int ret = -EINVAL; 3540 3541 if (!clk || !nb) 3542 return -EINVAL; 3543 3544 clk_prepare_lock(); 3545 3546 list_for_each_entry(cn, &clk_notifier_list, node) 3547 if (cn->clk == clk) 3548 break; 3549 3550 if (cn->clk == clk) { 3551 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 3552 3553 clk->core->notifier_count--; 3554 3555 /* XXX the notifier code should handle this better */ 3556 if (!cn->notifier_head.head) { 3557 srcu_cleanup_notifier_head(&cn->notifier_head); 3558 list_del(&cn->node); 3559 kfree(cn); 3560 } 3561 3562 } else { 3563 ret = -ENOENT; 3564 } 3565 3566 clk_prepare_unlock(); 3567 3568 return ret; 3569 } 3570 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 3571 3572 #ifdef CONFIG_OF 3573 /** 3574 * struct of_clk_provider - Clock provider registration structure 3575 * @link: Entry in global list of clock providers 3576 * @node: Pointer to device tree node of clock provider 3577 * @get: Get clock callback. Returns NULL or a struct clk for the 3578 * given clock specifier 3579 * @data: context pointer to be passed into @get callback 3580 */ 3581 struct of_clk_provider { 3582 struct list_head link; 3583 3584 struct device_node *node; 3585 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 3586 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 3587 void *data; 3588 }; 3589 3590 static const struct of_device_id __clk_of_table_sentinel 3591 __used __section(__clk_of_table_end); 3592 3593 static LIST_HEAD(of_clk_providers); 3594 static DEFINE_MUTEX(of_clk_mutex); 3595 3596 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 3597 void *data) 3598 { 3599 return data; 3600 } 3601 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 3602 3603 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 3604 { 3605 return data; 3606 } 3607 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 3608 3609 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 3610 { 3611 struct clk_onecell_data *clk_data = data; 3612 unsigned int idx = clkspec->args[0]; 3613 3614 if (idx >= clk_data->clk_num) { 3615 pr_err("%s: invalid clock index %u\n", __func__, idx); 3616 return ERR_PTR(-EINVAL); 3617 } 3618 3619 return clk_data->clks[idx]; 3620 } 3621 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 3622 3623 struct clk_hw * 3624 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 3625 { 3626 struct clk_hw_onecell_data *hw_data = data; 3627 unsigned int idx = clkspec->args[0]; 3628 3629 if (idx >= hw_data->num) { 3630 pr_err("%s: invalid index %u\n", __func__, idx); 3631 return ERR_PTR(-EINVAL); 3632 } 3633 3634 return hw_data->hws[idx]; 3635 } 3636 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3637 3638 /** 3639 * of_clk_add_provider() - Register a clock provider for a node 3640 * @np: Device node pointer associated with clock provider 3641 * @clk_src_get: callback for decoding clock 3642 * @data: context pointer for @clk_src_get callback. 3643 */ 3644 int of_clk_add_provider(struct device_node *np, 3645 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3646 void *data), 3647 void *data) 3648 { 3649 struct of_clk_provider *cp; 3650 int ret; 3651 3652 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3653 if (!cp) 3654 return -ENOMEM; 3655 3656 cp->node = of_node_get(np); 3657 cp->data = data; 3658 cp->get = clk_src_get; 3659 3660 mutex_lock(&of_clk_mutex); 3661 list_add(&cp->link, &of_clk_providers); 3662 mutex_unlock(&of_clk_mutex); 3663 pr_debug("Added clock from %pOF\n", np); 3664 3665 ret = of_clk_set_defaults(np, true); 3666 if (ret < 0) 3667 of_clk_del_provider(np); 3668 3669 return ret; 3670 } 3671 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3672 3673 /** 3674 * of_clk_add_hw_provider() - Register a clock provider for a node 3675 * @np: Device node pointer associated with clock provider 3676 * @get: callback for decoding clk_hw 3677 * @data: context pointer for @get callback. 3678 */ 3679 int of_clk_add_hw_provider(struct device_node *np, 3680 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3681 void *data), 3682 void *data) 3683 { 3684 struct of_clk_provider *cp; 3685 int ret; 3686 3687 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3688 if (!cp) 3689 return -ENOMEM; 3690 3691 cp->node = of_node_get(np); 3692 cp->data = data; 3693 cp->get_hw = get; 3694 3695 mutex_lock(&of_clk_mutex); 3696 list_add(&cp->link, &of_clk_providers); 3697 mutex_unlock(&of_clk_mutex); 3698 pr_debug("Added clk_hw provider from %pOF\n", np); 3699 3700 ret = of_clk_set_defaults(np, true); 3701 if (ret < 0) 3702 of_clk_del_provider(np); 3703 3704 return ret; 3705 } 3706 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3707 3708 static void devm_of_clk_release_provider(struct device *dev, void *res) 3709 { 3710 of_clk_del_provider(*(struct device_node **)res); 3711 } 3712 3713 int devm_of_clk_add_hw_provider(struct device *dev, 3714 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3715 void *data), 3716 void *data) 3717 { 3718 struct device_node **ptr, *np; 3719 int ret; 3720 3721 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 3722 GFP_KERNEL); 3723 if (!ptr) 3724 return -ENOMEM; 3725 3726 np = dev->of_node; 3727 ret = of_clk_add_hw_provider(np, get, data); 3728 if (!ret) { 3729 *ptr = np; 3730 devres_add(dev, ptr); 3731 } else { 3732 devres_free(ptr); 3733 } 3734 3735 return ret; 3736 } 3737 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 3738 3739 /** 3740 * of_clk_del_provider() - Remove a previously registered clock provider 3741 * @np: Device node pointer associated with clock provider 3742 */ 3743 void of_clk_del_provider(struct device_node *np) 3744 { 3745 struct of_clk_provider *cp; 3746 3747 mutex_lock(&of_clk_mutex); 3748 list_for_each_entry(cp, &of_clk_providers, link) { 3749 if (cp->node == np) { 3750 list_del(&cp->link); 3751 of_node_put(cp->node); 3752 kfree(cp); 3753 break; 3754 } 3755 } 3756 mutex_unlock(&of_clk_mutex); 3757 } 3758 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3759 3760 static int devm_clk_provider_match(struct device *dev, void *res, void *data) 3761 { 3762 struct device_node **np = res; 3763 3764 if (WARN_ON(!np || !*np)) 3765 return 0; 3766 3767 return *np == data; 3768 } 3769 3770 void devm_of_clk_del_provider(struct device *dev) 3771 { 3772 int ret; 3773 3774 ret = devres_release(dev, devm_of_clk_release_provider, 3775 devm_clk_provider_match, dev->of_node); 3776 3777 WARN_ON(ret); 3778 } 3779 EXPORT_SYMBOL(devm_of_clk_del_provider); 3780 3781 static struct clk_hw * 3782 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 3783 struct of_phandle_args *clkspec) 3784 { 3785 struct clk *clk; 3786 3787 if (provider->get_hw) 3788 return provider->get_hw(clkspec, provider->data); 3789 3790 clk = provider->get(clkspec, provider->data); 3791 if (IS_ERR(clk)) 3792 return ERR_CAST(clk); 3793 return __clk_get_hw(clk); 3794 } 3795 3796 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3797 const char *dev_id, const char *con_id) 3798 { 3799 struct of_clk_provider *provider; 3800 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3801 struct clk_hw *hw; 3802 3803 if (!clkspec) 3804 return ERR_PTR(-EINVAL); 3805 3806 /* Check if we have such a provider in our array */ 3807 mutex_lock(&of_clk_mutex); 3808 list_for_each_entry(provider, &of_clk_providers, link) { 3809 if (provider->node == clkspec->np) { 3810 hw = __of_clk_get_hw_from_provider(provider, clkspec); 3811 clk = __clk_create_clk(hw, dev_id, con_id); 3812 } 3813 3814 if (!IS_ERR(clk)) { 3815 if (!__clk_get(clk)) { 3816 __clk_free_clk(clk); 3817 clk = ERR_PTR(-ENOENT); 3818 } 3819 3820 break; 3821 } 3822 } 3823 mutex_unlock(&of_clk_mutex); 3824 3825 return clk; 3826 } 3827 3828 /** 3829 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3830 * @clkspec: pointer to a clock specifier data structure 3831 * 3832 * This function looks up a struct clk from the registered list of clock 3833 * providers, an input is a clock specifier data structure as returned 3834 * from the of_parse_phandle_with_args() function call. 3835 */ 3836 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3837 { 3838 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3839 } 3840 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 3841 3842 /** 3843 * of_clk_get_parent_count() - Count the number of clocks a device node has 3844 * @np: device node to count 3845 * 3846 * Returns: The number of clocks that are possible parents of this node 3847 */ 3848 unsigned int of_clk_get_parent_count(struct device_node *np) 3849 { 3850 int count; 3851 3852 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3853 if (count < 0) 3854 return 0; 3855 3856 return count; 3857 } 3858 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3859 3860 const char *of_clk_get_parent_name(struct device_node *np, int index) 3861 { 3862 struct of_phandle_args clkspec; 3863 struct property *prop; 3864 const char *clk_name; 3865 const __be32 *vp; 3866 u32 pv; 3867 int rc; 3868 int count; 3869 struct clk *clk; 3870 3871 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3872 &clkspec); 3873 if (rc) 3874 return NULL; 3875 3876 index = clkspec.args_count ? clkspec.args[0] : 0; 3877 count = 0; 3878 3879 /* if there is an indices property, use it to transfer the index 3880 * specified into an array offset for the clock-output-names property. 3881 */ 3882 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3883 if (index == pv) { 3884 index = count; 3885 break; 3886 } 3887 count++; 3888 } 3889 /* We went off the end of 'clock-indices' without finding it */ 3890 if (prop && !vp) 3891 return NULL; 3892 3893 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3894 index, 3895 &clk_name) < 0) { 3896 /* 3897 * Best effort to get the name if the clock has been 3898 * registered with the framework. If the clock isn't 3899 * registered, we return the node name as the name of 3900 * the clock as long as #clock-cells = 0. 3901 */ 3902 clk = of_clk_get_from_provider(&clkspec); 3903 if (IS_ERR(clk)) { 3904 if (clkspec.args_count == 0) 3905 clk_name = clkspec.np->name; 3906 else 3907 clk_name = NULL; 3908 } else { 3909 clk_name = __clk_get_name(clk); 3910 clk_put(clk); 3911 } 3912 } 3913 3914 3915 of_node_put(clkspec.np); 3916 return clk_name; 3917 } 3918 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3919 3920 /** 3921 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3922 * number of parents 3923 * @np: Device node pointer associated with clock provider 3924 * @parents: pointer to char array that hold the parents' names 3925 * @size: size of the @parents array 3926 * 3927 * Return: number of parents for the clock node. 3928 */ 3929 int of_clk_parent_fill(struct device_node *np, const char **parents, 3930 unsigned int size) 3931 { 3932 unsigned int i = 0; 3933 3934 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3935 i++; 3936 3937 return i; 3938 } 3939 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3940 3941 struct clock_provider { 3942 of_clk_init_cb_t clk_init_cb; 3943 struct device_node *np; 3944 struct list_head node; 3945 }; 3946 3947 /* 3948 * This function looks for a parent clock. If there is one, then it 3949 * checks that the provider for this parent clock was initialized, in 3950 * this case the parent clock will be ready. 3951 */ 3952 static int parent_ready(struct device_node *np) 3953 { 3954 int i = 0; 3955 3956 while (true) { 3957 struct clk *clk = of_clk_get(np, i); 3958 3959 /* this parent is ready we can check the next one */ 3960 if (!IS_ERR(clk)) { 3961 clk_put(clk); 3962 i++; 3963 continue; 3964 } 3965 3966 /* at least one parent is not ready, we exit now */ 3967 if (PTR_ERR(clk) == -EPROBE_DEFER) 3968 return 0; 3969 3970 /* 3971 * Here we make assumption that the device tree is 3972 * written correctly. So an error means that there is 3973 * no more parent. As we didn't exit yet, then the 3974 * previous parent are ready. If there is no clock 3975 * parent, no need to wait for them, then we can 3976 * consider their absence as being ready 3977 */ 3978 return 1; 3979 } 3980 } 3981 3982 /** 3983 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 3984 * @np: Device node pointer associated with clock provider 3985 * @index: clock index 3986 * @flags: pointer to top-level framework flags 3987 * 3988 * Detects if the clock-critical property exists and, if so, sets the 3989 * corresponding CLK_IS_CRITICAL flag. 3990 * 3991 * Do not use this function. It exists only for legacy Device Tree 3992 * bindings, such as the one-clock-per-node style that are outdated. 3993 * Those bindings typically put all clock data into .dts and the Linux 3994 * driver has no clock data, thus making it impossible to set this flag 3995 * correctly from the driver. Only those drivers may call 3996 * of_clk_detect_critical from their setup functions. 3997 * 3998 * Return: error code or zero on success 3999 */ 4000 int of_clk_detect_critical(struct device_node *np, 4001 int index, unsigned long *flags) 4002 { 4003 struct property *prop; 4004 const __be32 *cur; 4005 uint32_t idx; 4006 4007 if (!np || !flags) 4008 return -EINVAL; 4009 4010 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 4011 if (index == idx) 4012 *flags |= CLK_IS_CRITICAL; 4013 4014 return 0; 4015 } 4016 4017 /** 4018 * of_clk_init() - Scan and init clock providers from the DT 4019 * @matches: array of compatible values and init functions for providers. 4020 * 4021 * This function scans the device tree for matching clock providers 4022 * and calls their initialization functions. It also does it by trying 4023 * to follow the dependencies. 4024 */ 4025 void __init of_clk_init(const struct of_device_id *matches) 4026 { 4027 const struct of_device_id *match; 4028 struct device_node *np; 4029 struct clock_provider *clk_provider, *next; 4030 bool is_init_done; 4031 bool force = false; 4032 LIST_HEAD(clk_provider_list); 4033 4034 if (!matches) 4035 matches = &__clk_of_table; 4036 4037 /* First prepare the list of the clocks providers */ 4038 for_each_matching_node_and_match(np, matches, &match) { 4039 struct clock_provider *parent; 4040 4041 if (!of_device_is_available(np)) 4042 continue; 4043 4044 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 4045 if (!parent) { 4046 list_for_each_entry_safe(clk_provider, next, 4047 &clk_provider_list, node) { 4048 list_del(&clk_provider->node); 4049 of_node_put(clk_provider->np); 4050 kfree(clk_provider); 4051 } 4052 of_node_put(np); 4053 return; 4054 } 4055 4056 parent->clk_init_cb = match->data; 4057 parent->np = of_node_get(np); 4058 list_add_tail(&parent->node, &clk_provider_list); 4059 } 4060 4061 while (!list_empty(&clk_provider_list)) { 4062 is_init_done = false; 4063 list_for_each_entry_safe(clk_provider, next, 4064 &clk_provider_list, node) { 4065 if (force || parent_ready(clk_provider->np)) { 4066 4067 /* Don't populate platform devices */ 4068 of_node_set_flag(clk_provider->np, 4069 OF_POPULATED); 4070 4071 clk_provider->clk_init_cb(clk_provider->np); 4072 of_clk_set_defaults(clk_provider->np, true); 4073 4074 list_del(&clk_provider->node); 4075 of_node_put(clk_provider->np); 4076 kfree(clk_provider); 4077 is_init_done = true; 4078 } 4079 } 4080 4081 /* 4082 * We didn't manage to initialize any of the 4083 * remaining providers during the last loop, so now we 4084 * initialize all the remaining ones unconditionally 4085 * in case the clock parent was not mandatory 4086 */ 4087 if (!is_init_done) 4088 force = true; 4089 } 4090 } 4091 #endif 4092