1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk-provider.h> 14 #include <linux/clk/clk-conf.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/spinlock.h> 18 #include <linux/err.h> 19 #include <linux/list.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/sched.h> 25 #include <linux/clkdev.h> 26 27 #include "clk.h" 28 29 static DEFINE_SPINLOCK(enable_lock); 30 static DEFINE_MUTEX(prepare_lock); 31 32 static struct task_struct *prepare_owner; 33 static struct task_struct *enable_owner; 34 35 static int prepare_refcnt; 36 static int enable_refcnt; 37 38 static HLIST_HEAD(clk_root_list); 39 static HLIST_HEAD(clk_orphan_list); 40 static LIST_HEAD(clk_notifier_list); 41 42 /*** private data structures ***/ 43 44 struct clk_core { 45 const char *name; 46 const struct clk_ops *ops; 47 struct clk_hw *hw; 48 struct module *owner; 49 struct clk_core *parent; 50 const char **parent_names; 51 struct clk_core **parents; 52 u8 num_parents; 53 u8 new_parent_index; 54 unsigned long rate; 55 unsigned long req_rate; 56 unsigned long new_rate; 57 struct clk_core *new_parent; 58 struct clk_core *new_child; 59 unsigned long flags; 60 bool orphan; 61 unsigned int enable_count; 62 unsigned int prepare_count; 63 unsigned long min_rate; 64 unsigned long max_rate; 65 unsigned long accuracy; 66 int phase; 67 struct hlist_head children; 68 struct hlist_node child_node; 69 struct hlist_head clks; 70 unsigned int notifier_count; 71 #ifdef CONFIG_DEBUG_FS 72 struct dentry *dentry; 73 struct hlist_node debug_node; 74 #endif 75 struct kref ref; 76 }; 77 78 #define CREATE_TRACE_POINTS 79 #include <trace/events/clk.h> 80 81 struct clk { 82 struct clk_core *core; 83 const char *dev_id; 84 const char *con_id; 85 unsigned long min_rate; 86 unsigned long max_rate; 87 struct hlist_node clks_node; 88 }; 89 90 /*** locking ***/ 91 static void clk_prepare_lock(void) 92 { 93 if (!mutex_trylock(&prepare_lock)) { 94 if (prepare_owner == current) { 95 prepare_refcnt++; 96 return; 97 } 98 mutex_lock(&prepare_lock); 99 } 100 WARN_ON_ONCE(prepare_owner != NULL); 101 WARN_ON_ONCE(prepare_refcnt != 0); 102 prepare_owner = current; 103 prepare_refcnt = 1; 104 } 105 106 static void clk_prepare_unlock(void) 107 { 108 WARN_ON_ONCE(prepare_owner != current); 109 WARN_ON_ONCE(prepare_refcnt == 0); 110 111 if (--prepare_refcnt) 112 return; 113 prepare_owner = NULL; 114 mutex_unlock(&prepare_lock); 115 } 116 117 static unsigned long clk_enable_lock(void) 118 __acquires(enable_lock) 119 { 120 unsigned long flags; 121 122 if (!spin_trylock_irqsave(&enable_lock, flags)) { 123 if (enable_owner == current) { 124 enable_refcnt++; 125 __acquire(enable_lock); 126 return flags; 127 } 128 spin_lock_irqsave(&enable_lock, flags); 129 } 130 WARN_ON_ONCE(enable_owner != NULL); 131 WARN_ON_ONCE(enable_refcnt != 0); 132 enable_owner = current; 133 enable_refcnt = 1; 134 return flags; 135 } 136 137 static void clk_enable_unlock(unsigned long flags) 138 __releases(enable_lock) 139 { 140 WARN_ON_ONCE(enable_owner != current); 141 WARN_ON_ONCE(enable_refcnt == 0); 142 143 if (--enable_refcnt) { 144 __release(enable_lock); 145 return; 146 } 147 enable_owner = NULL; 148 spin_unlock_irqrestore(&enable_lock, flags); 149 } 150 151 static bool clk_core_is_prepared(struct clk_core *core) 152 { 153 /* 154 * .is_prepared is optional for clocks that can prepare 155 * fall back to software usage counter if it is missing 156 */ 157 if (!core->ops->is_prepared) 158 return core->prepare_count; 159 160 return core->ops->is_prepared(core->hw); 161 } 162 163 static bool clk_core_is_enabled(struct clk_core *core) 164 { 165 /* 166 * .is_enabled is only mandatory for clocks that gate 167 * fall back to software usage counter if .is_enabled is missing 168 */ 169 if (!core->ops->is_enabled) 170 return core->enable_count; 171 172 return core->ops->is_enabled(core->hw); 173 } 174 175 static void clk_unprepare_unused_subtree(struct clk_core *core) 176 { 177 struct clk_core *child; 178 179 lockdep_assert_held(&prepare_lock); 180 181 hlist_for_each_entry(child, &core->children, child_node) 182 clk_unprepare_unused_subtree(child); 183 184 if (core->prepare_count) 185 return; 186 187 if (core->flags & CLK_IGNORE_UNUSED) 188 return; 189 190 if (clk_core_is_prepared(core)) { 191 trace_clk_unprepare(core); 192 if (core->ops->unprepare_unused) 193 core->ops->unprepare_unused(core->hw); 194 else if (core->ops->unprepare) 195 core->ops->unprepare(core->hw); 196 trace_clk_unprepare_complete(core); 197 } 198 } 199 200 static void clk_disable_unused_subtree(struct clk_core *core) 201 { 202 struct clk_core *child; 203 unsigned long flags; 204 205 lockdep_assert_held(&prepare_lock); 206 207 hlist_for_each_entry(child, &core->children, child_node) 208 clk_disable_unused_subtree(child); 209 210 flags = clk_enable_lock(); 211 212 if (core->enable_count) 213 goto unlock_out; 214 215 if (core->flags & CLK_IGNORE_UNUSED) 216 goto unlock_out; 217 218 /* 219 * some gate clocks have special needs during the disable-unused 220 * sequence. call .disable_unused if available, otherwise fall 221 * back to .disable 222 */ 223 if (clk_core_is_enabled(core)) { 224 trace_clk_disable(core); 225 if (core->ops->disable_unused) 226 core->ops->disable_unused(core->hw); 227 else if (core->ops->disable) 228 core->ops->disable(core->hw); 229 trace_clk_disable_complete(core); 230 } 231 232 unlock_out: 233 clk_enable_unlock(flags); 234 } 235 236 static bool clk_ignore_unused; 237 static int __init clk_ignore_unused_setup(char *__unused) 238 { 239 clk_ignore_unused = true; 240 return 1; 241 } 242 __setup("clk_ignore_unused", clk_ignore_unused_setup); 243 244 static int clk_disable_unused(void) 245 { 246 struct clk_core *core; 247 248 if (clk_ignore_unused) { 249 pr_warn("clk: Not disabling unused clocks\n"); 250 return 0; 251 } 252 253 clk_prepare_lock(); 254 255 hlist_for_each_entry(core, &clk_root_list, child_node) 256 clk_disable_unused_subtree(core); 257 258 hlist_for_each_entry(core, &clk_orphan_list, child_node) 259 clk_disable_unused_subtree(core); 260 261 hlist_for_each_entry(core, &clk_root_list, child_node) 262 clk_unprepare_unused_subtree(core); 263 264 hlist_for_each_entry(core, &clk_orphan_list, child_node) 265 clk_unprepare_unused_subtree(core); 266 267 clk_prepare_unlock(); 268 269 return 0; 270 } 271 late_initcall_sync(clk_disable_unused); 272 273 /*** helper functions ***/ 274 275 const char *__clk_get_name(const struct clk *clk) 276 { 277 return !clk ? NULL : clk->core->name; 278 } 279 EXPORT_SYMBOL_GPL(__clk_get_name); 280 281 const char *clk_hw_get_name(const struct clk_hw *hw) 282 { 283 return hw->core->name; 284 } 285 EXPORT_SYMBOL_GPL(clk_hw_get_name); 286 287 struct clk_hw *__clk_get_hw(struct clk *clk) 288 { 289 return !clk ? NULL : clk->core->hw; 290 } 291 EXPORT_SYMBOL_GPL(__clk_get_hw); 292 293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 294 { 295 return hw->core->num_parents; 296 } 297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 298 299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 300 { 301 return hw->core->parent ? hw->core->parent->hw : NULL; 302 } 303 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 304 305 static struct clk_core *__clk_lookup_subtree(const char *name, 306 struct clk_core *core) 307 { 308 struct clk_core *child; 309 struct clk_core *ret; 310 311 if (!strcmp(core->name, name)) 312 return core; 313 314 hlist_for_each_entry(child, &core->children, child_node) { 315 ret = __clk_lookup_subtree(name, child); 316 if (ret) 317 return ret; 318 } 319 320 return NULL; 321 } 322 323 static struct clk_core *clk_core_lookup(const char *name) 324 { 325 struct clk_core *root_clk; 326 struct clk_core *ret; 327 328 if (!name) 329 return NULL; 330 331 /* search the 'proper' clk tree first */ 332 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 333 ret = __clk_lookup_subtree(name, root_clk); 334 if (ret) 335 return ret; 336 } 337 338 /* if not found, then search the orphan tree */ 339 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 340 ret = __clk_lookup_subtree(name, root_clk); 341 if (ret) 342 return ret; 343 } 344 345 return NULL; 346 } 347 348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 349 u8 index) 350 { 351 if (!core || index >= core->num_parents) 352 return NULL; 353 354 if (!core->parents[index]) 355 core->parents[index] = 356 clk_core_lookup(core->parent_names[index]); 357 358 return core->parents[index]; 359 } 360 361 struct clk_hw * 362 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 363 { 364 struct clk_core *parent; 365 366 parent = clk_core_get_parent_by_index(hw->core, index); 367 368 return !parent ? NULL : parent->hw; 369 } 370 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 371 372 unsigned int __clk_get_enable_count(struct clk *clk) 373 { 374 return !clk ? 0 : clk->core->enable_count; 375 } 376 377 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 378 { 379 unsigned long ret; 380 381 if (!core) { 382 ret = 0; 383 goto out; 384 } 385 386 ret = core->rate; 387 388 if (!core->num_parents) 389 goto out; 390 391 if (!core->parent) 392 ret = 0; 393 394 out: 395 return ret; 396 } 397 398 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 399 { 400 return clk_core_get_rate_nolock(hw->core); 401 } 402 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 403 404 static unsigned long __clk_get_accuracy(struct clk_core *core) 405 { 406 if (!core) 407 return 0; 408 409 return core->accuracy; 410 } 411 412 unsigned long __clk_get_flags(struct clk *clk) 413 { 414 return !clk ? 0 : clk->core->flags; 415 } 416 EXPORT_SYMBOL_GPL(__clk_get_flags); 417 418 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 419 { 420 return hw->core->flags; 421 } 422 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 423 424 bool clk_hw_is_prepared(const struct clk_hw *hw) 425 { 426 return clk_core_is_prepared(hw->core); 427 } 428 429 bool clk_hw_is_enabled(const struct clk_hw *hw) 430 { 431 return clk_core_is_enabled(hw->core); 432 } 433 434 bool __clk_is_enabled(struct clk *clk) 435 { 436 if (!clk) 437 return false; 438 439 return clk_core_is_enabled(clk->core); 440 } 441 EXPORT_SYMBOL_GPL(__clk_is_enabled); 442 443 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 444 unsigned long best, unsigned long flags) 445 { 446 if (flags & CLK_MUX_ROUND_CLOSEST) 447 return abs(now - rate) < abs(best - rate); 448 449 return now <= rate && now > best; 450 } 451 452 static int 453 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req, 454 unsigned long flags) 455 { 456 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 457 int i, num_parents, ret; 458 unsigned long best = 0; 459 struct clk_rate_request parent_req = *req; 460 461 /* if NO_REPARENT flag set, pass through to current parent */ 462 if (core->flags & CLK_SET_RATE_NO_REPARENT) { 463 parent = core->parent; 464 if (core->flags & CLK_SET_RATE_PARENT) { 465 ret = __clk_determine_rate(parent ? parent->hw : NULL, 466 &parent_req); 467 if (ret) 468 return ret; 469 470 best = parent_req.rate; 471 } else if (parent) { 472 best = clk_core_get_rate_nolock(parent); 473 } else { 474 best = clk_core_get_rate_nolock(core); 475 } 476 477 goto out; 478 } 479 480 /* find the parent that can provide the fastest rate <= rate */ 481 num_parents = core->num_parents; 482 for (i = 0; i < num_parents; i++) { 483 parent = clk_core_get_parent_by_index(core, i); 484 if (!parent) 485 continue; 486 487 if (core->flags & CLK_SET_RATE_PARENT) { 488 parent_req = *req; 489 ret = __clk_determine_rate(parent->hw, &parent_req); 490 if (ret) 491 continue; 492 } else { 493 parent_req.rate = clk_core_get_rate_nolock(parent); 494 } 495 496 if (mux_is_better_rate(req->rate, parent_req.rate, 497 best, flags)) { 498 best_parent = parent; 499 best = parent_req.rate; 500 } 501 } 502 503 if (!best_parent) 504 return -EINVAL; 505 506 out: 507 if (best_parent) 508 req->best_parent_hw = best_parent->hw; 509 req->best_parent_rate = best; 510 req->rate = best; 511 512 return 0; 513 } 514 515 struct clk *__clk_lookup(const char *name) 516 { 517 struct clk_core *core = clk_core_lookup(name); 518 519 return !core ? NULL : core->hw->clk; 520 } 521 522 static void clk_core_get_boundaries(struct clk_core *core, 523 unsigned long *min_rate, 524 unsigned long *max_rate) 525 { 526 struct clk *clk_user; 527 528 *min_rate = core->min_rate; 529 *max_rate = core->max_rate; 530 531 hlist_for_each_entry(clk_user, &core->clks, clks_node) 532 *min_rate = max(*min_rate, clk_user->min_rate); 533 534 hlist_for_each_entry(clk_user, &core->clks, clks_node) 535 *max_rate = min(*max_rate, clk_user->max_rate); 536 } 537 538 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 539 unsigned long max_rate) 540 { 541 hw->core->min_rate = min_rate; 542 hw->core->max_rate = max_rate; 543 } 544 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 545 546 /* 547 * Helper for finding best parent to provide a given frequency. This can be used 548 * directly as a determine_rate callback (e.g. for a mux), or from a more 549 * complex clock that may combine a mux with other operations. 550 */ 551 int __clk_mux_determine_rate(struct clk_hw *hw, 552 struct clk_rate_request *req) 553 { 554 return clk_mux_determine_rate_flags(hw, req, 0); 555 } 556 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 557 558 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 559 struct clk_rate_request *req) 560 { 561 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 562 } 563 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 564 565 /*** clk api ***/ 566 567 static void clk_core_unprepare(struct clk_core *core) 568 { 569 lockdep_assert_held(&prepare_lock); 570 571 if (!core) 572 return; 573 574 if (WARN_ON(core->prepare_count == 0)) 575 return; 576 577 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL)) 578 return; 579 580 if (--core->prepare_count > 0) 581 return; 582 583 WARN_ON(core->enable_count > 0); 584 585 trace_clk_unprepare(core); 586 587 if (core->ops->unprepare) 588 core->ops->unprepare(core->hw); 589 590 trace_clk_unprepare_complete(core); 591 clk_core_unprepare(core->parent); 592 } 593 594 /** 595 * clk_unprepare - undo preparation of a clock source 596 * @clk: the clk being unprepared 597 * 598 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 599 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 600 * if the operation may sleep. One example is a clk which is accessed over 601 * I2c. In the complex case a clk gate operation may require a fast and a slow 602 * part. It is this reason that clk_unprepare and clk_disable are not mutually 603 * exclusive. In fact clk_disable must be called before clk_unprepare. 604 */ 605 void clk_unprepare(struct clk *clk) 606 { 607 if (IS_ERR_OR_NULL(clk)) 608 return; 609 610 clk_prepare_lock(); 611 clk_core_unprepare(clk->core); 612 clk_prepare_unlock(); 613 } 614 EXPORT_SYMBOL_GPL(clk_unprepare); 615 616 static int clk_core_prepare(struct clk_core *core) 617 { 618 int ret = 0; 619 620 lockdep_assert_held(&prepare_lock); 621 622 if (!core) 623 return 0; 624 625 if (core->prepare_count == 0) { 626 ret = clk_core_prepare(core->parent); 627 if (ret) 628 return ret; 629 630 trace_clk_prepare(core); 631 632 if (core->ops->prepare) 633 ret = core->ops->prepare(core->hw); 634 635 trace_clk_prepare_complete(core); 636 637 if (ret) { 638 clk_core_unprepare(core->parent); 639 return ret; 640 } 641 } 642 643 core->prepare_count++; 644 645 return 0; 646 } 647 648 /** 649 * clk_prepare - prepare a clock source 650 * @clk: the clk being prepared 651 * 652 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 653 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 654 * operation may sleep. One example is a clk which is accessed over I2c. In 655 * the complex case a clk ungate operation may require a fast and a slow part. 656 * It is this reason that clk_prepare and clk_enable are not mutually 657 * exclusive. In fact clk_prepare must be called before clk_enable. 658 * Returns 0 on success, -EERROR otherwise. 659 */ 660 int clk_prepare(struct clk *clk) 661 { 662 int ret; 663 664 if (!clk) 665 return 0; 666 667 clk_prepare_lock(); 668 ret = clk_core_prepare(clk->core); 669 clk_prepare_unlock(); 670 671 return ret; 672 } 673 EXPORT_SYMBOL_GPL(clk_prepare); 674 675 static void clk_core_disable(struct clk_core *core) 676 { 677 lockdep_assert_held(&enable_lock); 678 679 if (!core) 680 return; 681 682 if (WARN_ON(core->enable_count == 0)) 683 return; 684 685 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL)) 686 return; 687 688 if (--core->enable_count > 0) 689 return; 690 691 trace_clk_disable(core); 692 693 if (core->ops->disable) 694 core->ops->disable(core->hw); 695 696 trace_clk_disable_complete(core); 697 698 clk_core_disable(core->parent); 699 } 700 701 /** 702 * clk_disable - gate a clock 703 * @clk: the clk being gated 704 * 705 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 706 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 707 * clk if the operation is fast and will never sleep. One example is a 708 * SoC-internal clk which is controlled via simple register writes. In the 709 * complex case a clk gate operation may require a fast and a slow part. It is 710 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 711 * In fact clk_disable must be called before clk_unprepare. 712 */ 713 void clk_disable(struct clk *clk) 714 { 715 unsigned long flags; 716 717 if (IS_ERR_OR_NULL(clk)) 718 return; 719 720 flags = clk_enable_lock(); 721 clk_core_disable(clk->core); 722 clk_enable_unlock(flags); 723 } 724 EXPORT_SYMBOL_GPL(clk_disable); 725 726 static int clk_core_enable(struct clk_core *core) 727 { 728 int ret = 0; 729 730 lockdep_assert_held(&enable_lock); 731 732 if (!core) 733 return 0; 734 735 if (WARN_ON(core->prepare_count == 0)) 736 return -ESHUTDOWN; 737 738 if (core->enable_count == 0) { 739 ret = clk_core_enable(core->parent); 740 741 if (ret) 742 return ret; 743 744 trace_clk_enable(core); 745 746 if (core->ops->enable) 747 ret = core->ops->enable(core->hw); 748 749 trace_clk_enable_complete(core); 750 751 if (ret) { 752 clk_core_disable(core->parent); 753 return ret; 754 } 755 } 756 757 core->enable_count++; 758 return 0; 759 } 760 761 /** 762 * clk_enable - ungate a clock 763 * @clk: the clk being ungated 764 * 765 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 766 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 767 * if the operation will never sleep. One example is a SoC-internal clk which 768 * is controlled via simple register writes. In the complex case a clk ungate 769 * operation may require a fast and a slow part. It is this reason that 770 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 771 * must be called before clk_enable. Returns 0 on success, -EERROR 772 * otherwise. 773 */ 774 int clk_enable(struct clk *clk) 775 { 776 unsigned long flags; 777 int ret; 778 779 if (!clk) 780 return 0; 781 782 flags = clk_enable_lock(); 783 ret = clk_core_enable(clk->core); 784 clk_enable_unlock(flags); 785 786 return ret; 787 } 788 EXPORT_SYMBOL_GPL(clk_enable); 789 790 static int clk_core_round_rate_nolock(struct clk_core *core, 791 struct clk_rate_request *req) 792 { 793 struct clk_core *parent; 794 long rate; 795 796 lockdep_assert_held(&prepare_lock); 797 798 if (!core) 799 return 0; 800 801 parent = core->parent; 802 if (parent) { 803 req->best_parent_hw = parent->hw; 804 req->best_parent_rate = parent->rate; 805 } else { 806 req->best_parent_hw = NULL; 807 req->best_parent_rate = 0; 808 } 809 810 if (core->ops->determine_rate) { 811 return core->ops->determine_rate(core->hw, req); 812 } else if (core->ops->round_rate) { 813 rate = core->ops->round_rate(core->hw, req->rate, 814 &req->best_parent_rate); 815 if (rate < 0) 816 return rate; 817 818 req->rate = rate; 819 } else if (core->flags & CLK_SET_RATE_PARENT) { 820 return clk_core_round_rate_nolock(parent, req); 821 } else { 822 req->rate = core->rate; 823 } 824 825 return 0; 826 } 827 828 /** 829 * __clk_determine_rate - get the closest rate actually supported by a clock 830 * @hw: determine the rate of this clock 831 * @rate: target rate 832 * @min_rate: returned rate must be greater than this rate 833 * @max_rate: returned rate must be less than this rate 834 * 835 * Useful for clk_ops such as .set_rate and .determine_rate. 836 */ 837 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 838 { 839 if (!hw) { 840 req->rate = 0; 841 return 0; 842 } 843 844 return clk_core_round_rate_nolock(hw->core, req); 845 } 846 EXPORT_SYMBOL_GPL(__clk_determine_rate); 847 848 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 849 { 850 int ret; 851 struct clk_rate_request req; 852 853 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate); 854 req.rate = rate; 855 856 ret = clk_core_round_rate_nolock(hw->core, &req); 857 if (ret) 858 return 0; 859 860 return req.rate; 861 } 862 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 863 864 /** 865 * clk_round_rate - round the given rate for a clk 866 * @clk: the clk for which we are rounding a rate 867 * @rate: the rate which is to be rounded 868 * 869 * Takes in a rate as input and rounds it to a rate that the clk can actually 870 * use which is then returned. If clk doesn't support round_rate operation 871 * then the parent rate is returned. 872 */ 873 long clk_round_rate(struct clk *clk, unsigned long rate) 874 { 875 struct clk_rate_request req; 876 int ret; 877 878 if (!clk) 879 return 0; 880 881 clk_prepare_lock(); 882 883 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate); 884 req.rate = rate; 885 886 ret = clk_core_round_rate_nolock(clk->core, &req); 887 clk_prepare_unlock(); 888 889 if (ret) 890 return ret; 891 892 return req.rate; 893 } 894 EXPORT_SYMBOL_GPL(clk_round_rate); 895 896 /** 897 * __clk_notify - call clk notifier chain 898 * @core: clk that is changing rate 899 * @msg: clk notifier type (see include/linux/clk.h) 900 * @old_rate: old clk rate 901 * @new_rate: new clk rate 902 * 903 * Triggers a notifier call chain on the clk rate-change notification 904 * for 'clk'. Passes a pointer to the struct clk and the previous 905 * and current rates to the notifier callback. Intended to be called by 906 * internal clock code only. Returns NOTIFY_DONE from the last driver 907 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 908 * a driver returns that. 909 */ 910 static int __clk_notify(struct clk_core *core, unsigned long msg, 911 unsigned long old_rate, unsigned long new_rate) 912 { 913 struct clk_notifier *cn; 914 struct clk_notifier_data cnd; 915 int ret = NOTIFY_DONE; 916 917 cnd.old_rate = old_rate; 918 cnd.new_rate = new_rate; 919 920 list_for_each_entry(cn, &clk_notifier_list, node) { 921 if (cn->clk->core == core) { 922 cnd.clk = cn->clk; 923 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 924 &cnd); 925 } 926 } 927 928 return ret; 929 } 930 931 /** 932 * __clk_recalc_accuracies 933 * @core: first clk in the subtree 934 * 935 * Walks the subtree of clks starting with clk and recalculates accuracies as 936 * it goes. Note that if a clk does not implement the .recalc_accuracy 937 * callback then it is assumed that the clock will take on the accuracy of its 938 * parent. 939 */ 940 static void __clk_recalc_accuracies(struct clk_core *core) 941 { 942 unsigned long parent_accuracy = 0; 943 struct clk_core *child; 944 945 lockdep_assert_held(&prepare_lock); 946 947 if (core->parent) 948 parent_accuracy = core->parent->accuracy; 949 950 if (core->ops->recalc_accuracy) 951 core->accuracy = core->ops->recalc_accuracy(core->hw, 952 parent_accuracy); 953 else 954 core->accuracy = parent_accuracy; 955 956 hlist_for_each_entry(child, &core->children, child_node) 957 __clk_recalc_accuracies(child); 958 } 959 960 static long clk_core_get_accuracy(struct clk_core *core) 961 { 962 unsigned long accuracy; 963 964 clk_prepare_lock(); 965 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 966 __clk_recalc_accuracies(core); 967 968 accuracy = __clk_get_accuracy(core); 969 clk_prepare_unlock(); 970 971 return accuracy; 972 } 973 974 /** 975 * clk_get_accuracy - return the accuracy of clk 976 * @clk: the clk whose accuracy is being returned 977 * 978 * Simply returns the cached accuracy of the clk, unless 979 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 980 * issued. 981 * If clk is NULL then returns 0. 982 */ 983 long clk_get_accuracy(struct clk *clk) 984 { 985 if (!clk) 986 return 0; 987 988 return clk_core_get_accuracy(clk->core); 989 } 990 EXPORT_SYMBOL_GPL(clk_get_accuracy); 991 992 static unsigned long clk_recalc(struct clk_core *core, 993 unsigned long parent_rate) 994 { 995 if (core->ops->recalc_rate) 996 return core->ops->recalc_rate(core->hw, parent_rate); 997 return parent_rate; 998 } 999 1000 /** 1001 * __clk_recalc_rates 1002 * @core: first clk in the subtree 1003 * @msg: notification type (see include/linux/clk.h) 1004 * 1005 * Walks the subtree of clks starting with clk and recalculates rates as it 1006 * goes. Note that if a clk does not implement the .recalc_rate callback then 1007 * it is assumed that the clock will take on the rate of its parent. 1008 * 1009 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1010 * if necessary. 1011 */ 1012 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg) 1013 { 1014 unsigned long old_rate; 1015 unsigned long parent_rate = 0; 1016 struct clk_core *child; 1017 1018 lockdep_assert_held(&prepare_lock); 1019 1020 old_rate = core->rate; 1021 1022 if (core->parent) 1023 parent_rate = core->parent->rate; 1024 1025 core->rate = clk_recalc(core, parent_rate); 1026 1027 /* 1028 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1029 * & ABORT_RATE_CHANGE notifiers 1030 */ 1031 if (core->notifier_count && msg) 1032 __clk_notify(core, msg, old_rate, core->rate); 1033 1034 hlist_for_each_entry(child, &core->children, child_node) 1035 __clk_recalc_rates(child, msg); 1036 } 1037 1038 static unsigned long clk_core_get_rate(struct clk_core *core) 1039 { 1040 unsigned long rate; 1041 1042 clk_prepare_lock(); 1043 1044 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1045 __clk_recalc_rates(core, 0); 1046 1047 rate = clk_core_get_rate_nolock(core); 1048 clk_prepare_unlock(); 1049 1050 return rate; 1051 } 1052 1053 /** 1054 * clk_get_rate - return the rate of clk 1055 * @clk: the clk whose rate is being returned 1056 * 1057 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1058 * is set, which means a recalc_rate will be issued. 1059 * If clk is NULL then returns 0. 1060 */ 1061 unsigned long clk_get_rate(struct clk *clk) 1062 { 1063 if (!clk) 1064 return 0; 1065 1066 return clk_core_get_rate(clk->core); 1067 } 1068 EXPORT_SYMBOL_GPL(clk_get_rate); 1069 1070 static int clk_fetch_parent_index(struct clk_core *core, 1071 struct clk_core *parent) 1072 { 1073 int i; 1074 1075 if (!parent) 1076 return -EINVAL; 1077 1078 for (i = 0; i < core->num_parents; i++) 1079 if (clk_core_get_parent_by_index(core, i) == parent) 1080 return i; 1081 1082 return -EINVAL; 1083 } 1084 1085 /* 1086 * Update the orphan status of @core and all its children. 1087 */ 1088 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 1089 { 1090 struct clk_core *child; 1091 1092 core->orphan = is_orphan; 1093 1094 hlist_for_each_entry(child, &core->children, child_node) 1095 clk_core_update_orphan_status(child, is_orphan); 1096 } 1097 1098 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 1099 { 1100 bool was_orphan = core->orphan; 1101 1102 hlist_del(&core->child_node); 1103 1104 if (new_parent) { 1105 bool becomes_orphan = new_parent->orphan; 1106 1107 /* avoid duplicate POST_RATE_CHANGE notifications */ 1108 if (new_parent->new_child == core) 1109 new_parent->new_child = NULL; 1110 1111 hlist_add_head(&core->child_node, &new_parent->children); 1112 1113 if (was_orphan != becomes_orphan) 1114 clk_core_update_orphan_status(core, becomes_orphan); 1115 } else { 1116 hlist_add_head(&core->child_node, &clk_orphan_list); 1117 if (!was_orphan) 1118 clk_core_update_orphan_status(core, true); 1119 } 1120 1121 core->parent = new_parent; 1122 } 1123 1124 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 1125 struct clk_core *parent) 1126 { 1127 unsigned long flags; 1128 struct clk_core *old_parent = core->parent; 1129 1130 /* 1131 * Migrate prepare state between parents and prevent race with 1132 * clk_enable(). 1133 * 1134 * If the clock is not prepared, then a race with 1135 * clk_enable/disable() is impossible since we already have the 1136 * prepare lock (future calls to clk_enable() need to be preceded by 1137 * a clk_prepare()). 1138 * 1139 * If the clock is prepared, migrate the prepared state to the new 1140 * parent and also protect against a race with clk_enable() by 1141 * forcing the clock and the new parent on. This ensures that all 1142 * future calls to clk_enable() are practically NOPs with respect to 1143 * hardware and software states. 1144 * 1145 * See also: Comment for clk_set_parent() below. 1146 */ 1147 if (core->prepare_count) { 1148 clk_core_prepare(parent); 1149 flags = clk_enable_lock(); 1150 clk_core_enable(parent); 1151 clk_core_enable(core); 1152 clk_enable_unlock(flags); 1153 } 1154 1155 /* update the clk tree topology */ 1156 flags = clk_enable_lock(); 1157 clk_reparent(core, parent); 1158 clk_enable_unlock(flags); 1159 1160 return old_parent; 1161 } 1162 1163 static void __clk_set_parent_after(struct clk_core *core, 1164 struct clk_core *parent, 1165 struct clk_core *old_parent) 1166 { 1167 unsigned long flags; 1168 1169 /* 1170 * Finish the migration of prepare state and undo the changes done 1171 * for preventing a race with clk_enable(). 1172 */ 1173 if (core->prepare_count) { 1174 flags = clk_enable_lock(); 1175 clk_core_disable(core); 1176 clk_core_disable(old_parent); 1177 clk_enable_unlock(flags); 1178 clk_core_unprepare(old_parent); 1179 } 1180 } 1181 1182 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 1183 u8 p_index) 1184 { 1185 unsigned long flags; 1186 int ret = 0; 1187 struct clk_core *old_parent; 1188 1189 old_parent = __clk_set_parent_before(core, parent); 1190 1191 trace_clk_set_parent(core, parent); 1192 1193 /* change clock input source */ 1194 if (parent && core->ops->set_parent) 1195 ret = core->ops->set_parent(core->hw, p_index); 1196 1197 trace_clk_set_parent_complete(core, parent); 1198 1199 if (ret) { 1200 flags = clk_enable_lock(); 1201 clk_reparent(core, old_parent); 1202 clk_enable_unlock(flags); 1203 __clk_set_parent_after(core, old_parent, parent); 1204 1205 return ret; 1206 } 1207 1208 __clk_set_parent_after(core, parent, old_parent); 1209 1210 return 0; 1211 } 1212 1213 /** 1214 * __clk_speculate_rates 1215 * @core: first clk in the subtree 1216 * @parent_rate: the "future" rate of clk's parent 1217 * 1218 * Walks the subtree of clks starting with clk, speculating rates as it 1219 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1220 * 1221 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1222 * pre-rate change notifications and returns early if no clks in the 1223 * subtree have subscribed to the notifications. Note that if a clk does not 1224 * implement the .recalc_rate callback then it is assumed that the clock will 1225 * take on the rate of its parent. 1226 */ 1227 static int __clk_speculate_rates(struct clk_core *core, 1228 unsigned long parent_rate) 1229 { 1230 struct clk_core *child; 1231 unsigned long new_rate; 1232 int ret = NOTIFY_DONE; 1233 1234 lockdep_assert_held(&prepare_lock); 1235 1236 new_rate = clk_recalc(core, parent_rate); 1237 1238 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1239 if (core->notifier_count) 1240 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 1241 1242 if (ret & NOTIFY_STOP_MASK) { 1243 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1244 __func__, core->name, ret); 1245 goto out; 1246 } 1247 1248 hlist_for_each_entry(child, &core->children, child_node) { 1249 ret = __clk_speculate_rates(child, new_rate); 1250 if (ret & NOTIFY_STOP_MASK) 1251 break; 1252 } 1253 1254 out: 1255 return ret; 1256 } 1257 1258 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 1259 struct clk_core *new_parent, u8 p_index) 1260 { 1261 struct clk_core *child; 1262 1263 core->new_rate = new_rate; 1264 core->new_parent = new_parent; 1265 core->new_parent_index = p_index; 1266 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1267 core->new_child = NULL; 1268 if (new_parent && new_parent != core->parent) 1269 new_parent->new_child = core; 1270 1271 hlist_for_each_entry(child, &core->children, child_node) { 1272 child->new_rate = clk_recalc(child, new_rate); 1273 clk_calc_subtree(child, child->new_rate, NULL, 0); 1274 } 1275 } 1276 1277 /* 1278 * calculate the new rates returning the topmost clock that has to be 1279 * changed. 1280 */ 1281 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 1282 unsigned long rate) 1283 { 1284 struct clk_core *top = core; 1285 struct clk_core *old_parent, *parent; 1286 unsigned long best_parent_rate = 0; 1287 unsigned long new_rate; 1288 unsigned long min_rate; 1289 unsigned long max_rate; 1290 int p_index = 0; 1291 long ret; 1292 1293 /* sanity */ 1294 if (IS_ERR_OR_NULL(core)) 1295 return NULL; 1296 1297 /* save parent rate, if it exists */ 1298 parent = old_parent = core->parent; 1299 if (parent) 1300 best_parent_rate = parent->rate; 1301 1302 clk_core_get_boundaries(core, &min_rate, &max_rate); 1303 1304 /* find the closest rate and parent clk/rate */ 1305 if (core->ops->determine_rate) { 1306 struct clk_rate_request req; 1307 1308 req.rate = rate; 1309 req.min_rate = min_rate; 1310 req.max_rate = max_rate; 1311 if (parent) { 1312 req.best_parent_hw = parent->hw; 1313 req.best_parent_rate = parent->rate; 1314 } else { 1315 req.best_parent_hw = NULL; 1316 req.best_parent_rate = 0; 1317 } 1318 1319 ret = core->ops->determine_rate(core->hw, &req); 1320 if (ret < 0) 1321 return NULL; 1322 1323 best_parent_rate = req.best_parent_rate; 1324 new_rate = req.rate; 1325 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 1326 } else if (core->ops->round_rate) { 1327 ret = core->ops->round_rate(core->hw, rate, 1328 &best_parent_rate); 1329 if (ret < 0) 1330 return NULL; 1331 1332 new_rate = ret; 1333 if (new_rate < min_rate || new_rate > max_rate) 1334 return NULL; 1335 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 1336 /* pass-through clock without adjustable parent */ 1337 core->new_rate = core->rate; 1338 return NULL; 1339 } else { 1340 /* pass-through clock with adjustable parent */ 1341 top = clk_calc_new_rates(parent, rate); 1342 new_rate = parent->new_rate; 1343 goto out; 1344 } 1345 1346 /* some clocks must be gated to change parent */ 1347 if (parent != old_parent && 1348 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1349 pr_debug("%s: %s not gated but wants to reparent\n", 1350 __func__, core->name); 1351 return NULL; 1352 } 1353 1354 /* try finding the new parent index */ 1355 if (parent && core->num_parents > 1) { 1356 p_index = clk_fetch_parent_index(core, parent); 1357 if (p_index < 0) { 1358 pr_debug("%s: clk %s can not be parent of clk %s\n", 1359 __func__, parent->name, core->name); 1360 return NULL; 1361 } 1362 } 1363 1364 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 1365 best_parent_rate != parent->rate) 1366 top = clk_calc_new_rates(parent, best_parent_rate); 1367 1368 out: 1369 clk_calc_subtree(core, new_rate, parent, p_index); 1370 1371 return top; 1372 } 1373 1374 /* 1375 * Notify about rate changes in a subtree. Always walk down the whole tree 1376 * so that in case of an error we can walk down the whole tree again and 1377 * abort the change. 1378 */ 1379 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 1380 unsigned long event) 1381 { 1382 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 1383 int ret = NOTIFY_DONE; 1384 1385 if (core->rate == core->new_rate) 1386 return NULL; 1387 1388 if (core->notifier_count) { 1389 ret = __clk_notify(core, event, core->rate, core->new_rate); 1390 if (ret & NOTIFY_STOP_MASK) 1391 fail_clk = core; 1392 } 1393 1394 hlist_for_each_entry(child, &core->children, child_node) { 1395 /* Skip children who will be reparented to another clock */ 1396 if (child->new_parent && child->new_parent != core) 1397 continue; 1398 tmp_clk = clk_propagate_rate_change(child, event); 1399 if (tmp_clk) 1400 fail_clk = tmp_clk; 1401 } 1402 1403 /* handle the new child who might not be in core->children yet */ 1404 if (core->new_child) { 1405 tmp_clk = clk_propagate_rate_change(core->new_child, event); 1406 if (tmp_clk) 1407 fail_clk = tmp_clk; 1408 } 1409 1410 return fail_clk; 1411 } 1412 1413 /* 1414 * walk down a subtree and set the new rates notifying the rate 1415 * change on the way 1416 */ 1417 static void clk_change_rate(struct clk_core *core) 1418 { 1419 struct clk_core *child; 1420 struct hlist_node *tmp; 1421 unsigned long old_rate; 1422 unsigned long best_parent_rate = 0; 1423 bool skip_set_rate = false; 1424 struct clk_core *old_parent; 1425 1426 old_rate = core->rate; 1427 1428 if (core->new_parent) 1429 best_parent_rate = core->new_parent->rate; 1430 else if (core->parent) 1431 best_parent_rate = core->parent->rate; 1432 1433 if (core->flags & CLK_SET_RATE_UNGATE) { 1434 unsigned long flags; 1435 1436 clk_core_prepare(core); 1437 flags = clk_enable_lock(); 1438 clk_core_enable(core); 1439 clk_enable_unlock(flags); 1440 } 1441 1442 if (core->new_parent && core->new_parent != core->parent) { 1443 old_parent = __clk_set_parent_before(core, core->new_parent); 1444 trace_clk_set_parent(core, core->new_parent); 1445 1446 if (core->ops->set_rate_and_parent) { 1447 skip_set_rate = true; 1448 core->ops->set_rate_and_parent(core->hw, core->new_rate, 1449 best_parent_rate, 1450 core->new_parent_index); 1451 } else if (core->ops->set_parent) { 1452 core->ops->set_parent(core->hw, core->new_parent_index); 1453 } 1454 1455 trace_clk_set_parent_complete(core, core->new_parent); 1456 __clk_set_parent_after(core, core->new_parent, old_parent); 1457 } 1458 1459 trace_clk_set_rate(core, core->new_rate); 1460 1461 if (!skip_set_rate && core->ops->set_rate) 1462 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 1463 1464 trace_clk_set_rate_complete(core, core->new_rate); 1465 1466 core->rate = clk_recalc(core, best_parent_rate); 1467 1468 if (core->flags & CLK_SET_RATE_UNGATE) { 1469 unsigned long flags; 1470 1471 flags = clk_enable_lock(); 1472 clk_core_disable(core); 1473 clk_enable_unlock(flags); 1474 clk_core_unprepare(core); 1475 } 1476 1477 if (core->notifier_count && old_rate != core->rate) 1478 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 1479 1480 if (core->flags & CLK_RECALC_NEW_RATES) 1481 (void)clk_calc_new_rates(core, core->new_rate); 1482 1483 /* 1484 * Use safe iteration, as change_rate can actually swap parents 1485 * for certain clock types. 1486 */ 1487 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 1488 /* Skip children who will be reparented to another clock */ 1489 if (child->new_parent && child->new_parent != core) 1490 continue; 1491 clk_change_rate(child); 1492 } 1493 1494 /* handle the new child who might not be in core->children yet */ 1495 if (core->new_child) 1496 clk_change_rate(core->new_child); 1497 } 1498 1499 static int clk_core_set_rate_nolock(struct clk_core *core, 1500 unsigned long req_rate) 1501 { 1502 struct clk_core *top, *fail_clk; 1503 unsigned long rate = req_rate; 1504 int ret = 0; 1505 1506 if (!core) 1507 return 0; 1508 1509 /* bail early if nothing to do */ 1510 if (rate == clk_core_get_rate_nolock(core)) 1511 return 0; 1512 1513 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count) 1514 return -EBUSY; 1515 1516 /* calculate new rates and get the topmost changed clock */ 1517 top = clk_calc_new_rates(core, rate); 1518 if (!top) 1519 return -EINVAL; 1520 1521 /* notify that we are about to change rates */ 1522 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1523 if (fail_clk) { 1524 pr_debug("%s: failed to set %s rate\n", __func__, 1525 fail_clk->name); 1526 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1527 return -EBUSY; 1528 } 1529 1530 /* change the rates */ 1531 clk_change_rate(top); 1532 1533 core->req_rate = req_rate; 1534 1535 return ret; 1536 } 1537 1538 /** 1539 * clk_set_rate - specify a new rate for clk 1540 * @clk: the clk whose rate is being changed 1541 * @rate: the new rate for clk 1542 * 1543 * In the simplest case clk_set_rate will only adjust the rate of clk. 1544 * 1545 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1546 * propagate up to clk's parent; whether or not this happens depends on the 1547 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1548 * after calling .round_rate then upstream parent propagation is ignored. If 1549 * *parent_rate comes back with a new rate for clk's parent then we propagate 1550 * up to clk's parent and set its rate. Upward propagation will continue 1551 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1552 * .round_rate stops requesting changes to clk's parent_rate. 1553 * 1554 * Rate changes are accomplished via tree traversal that also recalculates the 1555 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1556 * 1557 * Returns 0 on success, -EERROR otherwise. 1558 */ 1559 int clk_set_rate(struct clk *clk, unsigned long rate) 1560 { 1561 int ret; 1562 1563 if (!clk) 1564 return 0; 1565 1566 /* prevent racing with updates to the clock topology */ 1567 clk_prepare_lock(); 1568 1569 ret = clk_core_set_rate_nolock(clk->core, rate); 1570 1571 clk_prepare_unlock(); 1572 1573 return ret; 1574 } 1575 EXPORT_SYMBOL_GPL(clk_set_rate); 1576 1577 /** 1578 * clk_set_rate_range - set a rate range for a clock source 1579 * @clk: clock source 1580 * @min: desired minimum clock rate in Hz, inclusive 1581 * @max: desired maximum clock rate in Hz, inclusive 1582 * 1583 * Returns success (0) or negative errno. 1584 */ 1585 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 1586 { 1587 int ret = 0; 1588 1589 if (!clk) 1590 return 0; 1591 1592 if (min > max) { 1593 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 1594 __func__, clk->core->name, clk->dev_id, clk->con_id, 1595 min, max); 1596 return -EINVAL; 1597 } 1598 1599 clk_prepare_lock(); 1600 1601 if (min != clk->min_rate || max != clk->max_rate) { 1602 clk->min_rate = min; 1603 clk->max_rate = max; 1604 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 1605 } 1606 1607 clk_prepare_unlock(); 1608 1609 return ret; 1610 } 1611 EXPORT_SYMBOL_GPL(clk_set_rate_range); 1612 1613 /** 1614 * clk_set_min_rate - set a minimum clock rate for a clock source 1615 * @clk: clock source 1616 * @rate: desired minimum clock rate in Hz, inclusive 1617 * 1618 * Returns success (0) or negative errno. 1619 */ 1620 int clk_set_min_rate(struct clk *clk, unsigned long rate) 1621 { 1622 if (!clk) 1623 return 0; 1624 1625 return clk_set_rate_range(clk, rate, clk->max_rate); 1626 } 1627 EXPORT_SYMBOL_GPL(clk_set_min_rate); 1628 1629 /** 1630 * clk_set_max_rate - set a maximum clock rate for a clock source 1631 * @clk: clock source 1632 * @rate: desired maximum clock rate in Hz, inclusive 1633 * 1634 * Returns success (0) or negative errno. 1635 */ 1636 int clk_set_max_rate(struct clk *clk, unsigned long rate) 1637 { 1638 if (!clk) 1639 return 0; 1640 1641 return clk_set_rate_range(clk, clk->min_rate, rate); 1642 } 1643 EXPORT_SYMBOL_GPL(clk_set_max_rate); 1644 1645 /** 1646 * clk_get_parent - return the parent of a clk 1647 * @clk: the clk whose parent gets returned 1648 * 1649 * Simply returns clk->parent. Returns NULL if clk is NULL. 1650 */ 1651 struct clk *clk_get_parent(struct clk *clk) 1652 { 1653 struct clk *parent; 1654 1655 if (!clk) 1656 return NULL; 1657 1658 clk_prepare_lock(); 1659 /* TODO: Create a per-user clk and change callers to call clk_put */ 1660 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 1661 clk_prepare_unlock(); 1662 1663 return parent; 1664 } 1665 EXPORT_SYMBOL_GPL(clk_get_parent); 1666 1667 static struct clk_core *__clk_init_parent(struct clk_core *core) 1668 { 1669 u8 index = 0; 1670 1671 if (core->num_parents > 1 && core->ops->get_parent) 1672 index = core->ops->get_parent(core->hw); 1673 1674 return clk_core_get_parent_by_index(core, index); 1675 } 1676 1677 static void clk_core_reparent(struct clk_core *core, 1678 struct clk_core *new_parent) 1679 { 1680 clk_reparent(core, new_parent); 1681 __clk_recalc_accuracies(core); 1682 __clk_recalc_rates(core, POST_RATE_CHANGE); 1683 } 1684 1685 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 1686 { 1687 if (!hw) 1688 return; 1689 1690 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 1691 } 1692 1693 /** 1694 * clk_has_parent - check if a clock is a possible parent for another 1695 * @clk: clock source 1696 * @parent: parent clock source 1697 * 1698 * This function can be used in drivers that need to check that a clock can be 1699 * the parent of another without actually changing the parent. 1700 * 1701 * Returns true if @parent is a possible parent for @clk, false otherwise. 1702 */ 1703 bool clk_has_parent(struct clk *clk, struct clk *parent) 1704 { 1705 struct clk_core *core, *parent_core; 1706 unsigned int i; 1707 1708 /* NULL clocks should be nops, so return success if either is NULL. */ 1709 if (!clk || !parent) 1710 return true; 1711 1712 core = clk->core; 1713 parent_core = parent->core; 1714 1715 /* Optimize for the case where the parent is already the parent. */ 1716 if (core->parent == parent_core) 1717 return true; 1718 1719 for (i = 0; i < core->num_parents; i++) 1720 if (strcmp(core->parent_names[i], parent_core->name) == 0) 1721 return true; 1722 1723 return false; 1724 } 1725 EXPORT_SYMBOL_GPL(clk_has_parent); 1726 1727 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent) 1728 { 1729 int ret = 0; 1730 int p_index = 0; 1731 unsigned long p_rate = 0; 1732 1733 if (!core) 1734 return 0; 1735 1736 /* prevent racing with updates to the clock topology */ 1737 clk_prepare_lock(); 1738 1739 if (core->parent == parent) 1740 goto out; 1741 1742 /* verify ops for for multi-parent clks */ 1743 if ((core->num_parents > 1) && (!core->ops->set_parent)) { 1744 ret = -ENOSYS; 1745 goto out; 1746 } 1747 1748 /* check that we are allowed to re-parent if the clock is in use */ 1749 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 1750 ret = -EBUSY; 1751 goto out; 1752 } 1753 1754 /* try finding the new parent index */ 1755 if (parent) { 1756 p_index = clk_fetch_parent_index(core, parent); 1757 if (p_index < 0) { 1758 pr_debug("%s: clk %s can not be parent of clk %s\n", 1759 __func__, parent->name, core->name); 1760 ret = p_index; 1761 goto out; 1762 } 1763 p_rate = parent->rate; 1764 } 1765 1766 /* propagate PRE_RATE_CHANGE notifications */ 1767 ret = __clk_speculate_rates(core, p_rate); 1768 1769 /* abort if a driver objects */ 1770 if (ret & NOTIFY_STOP_MASK) 1771 goto out; 1772 1773 /* do the re-parent */ 1774 ret = __clk_set_parent(core, parent, p_index); 1775 1776 /* propagate rate an accuracy recalculation accordingly */ 1777 if (ret) { 1778 __clk_recalc_rates(core, ABORT_RATE_CHANGE); 1779 } else { 1780 __clk_recalc_rates(core, POST_RATE_CHANGE); 1781 __clk_recalc_accuracies(core); 1782 } 1783 1784 out: 1785 clk_prepare_unlock(); 1786 1787 return ret; 1788 } 1789 1790 /** 1791 * clk_set_parent - switch the parent of a mux clk 1792 * @clk: the mux clk whose input we are switching 1793 * @parent: the new input to clk 1794 * 1795 * Re-parent clk to use parent as its new input source. If clk is in 1796 * prepared state, the clk will get enabled for the duration of this call. If 1797 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1798 * that, the reparenting is glitchy in hardware, etc), use the 1799 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1800 * 1801 * After successfully changing clk's parent clk_set_parent will update the 1802 * clk topology, sysfs topology and propagate rate recalculation via 1803 * __clk_recalc_rates. 1804 * 1805 * Returns 0 on success, -EERROR otherwise. 1806 */ 1807 int clk_set_parent(struct clk *clk, struct clk *parent) 1808 { 1809 if (!clk) 1810 return 0; 1811 1812 return clk_core_set_parent(clk->core, parent ? parent->core : NULL); 1813 } 1814 EXPORT_SYMBOL_GPL(clk_set_parent); 1815 1816 /** 1817 * clk_set_phase - adjust the phase shift of a clock signal 1818 * @clk: clock signal source 1819 * @degrees: number of degrees the signal is shifted 1820 * 1821 * Shifts the phase of a clock signal by the specified 1822 * degrees. Returns 0 on success, -EERROR otherwise. 1823 * 1824 * This function makes no distinction about the input or reference 1825 * signal that we adjust the clock signal phase against. For example 1826 * phase locked-loop clock signal generators we may shift phase with 1827 * respect to feedback clock signal input, but for other cases the 1828 * clock phase may be shifted with respect to some other, unspecified 1829 * signal. 1830 * 1831 * Additionally the concept of phase shift does not propagate through 1832 * the clock tree hierarchy, which sets it apart from clock rates and 1833 * clock accuracy. A parent clock phase attribute does not have an 1834 * impact on the phase attribute of a child clock. 1835 */ 1836 int clk_set_phase(struct clk *clk, int degrees) 1837 { 1838 int ret = -EINVAL; 1839 1840 if (!clk) 1841 return 0; 1842 1843 /* sanity check degrees */ 1844 degrees %= 360; 1845 if (degrees < 0) 1846 degrees += 360; 1847 1848 clk_prepare_lock(); 1849 1850 /* bail early if nothing to do */ 1851 if (degrees == clk->core->phase) 1852 goto out; 1853 1854 trace_clk_set_phase(clk->core, degrees); 1855 1856 if (clk->core->ops->set_phase) 1857 ret = clk->core->ops->set_phase(clk->core->hw, degrees); 1858 1859 trace_clk_set_phase_complete(clk->core, degrees); 1860 1861 if (!ret) 1862 clk->core->phase = degrees; 1863 1864 out: 1865 clk_prepare_unlock(); 1866 1867 return ret; 1868 } 1869 EXPORT_SYMBOL_GPL(clk_set_phase); 1870 1871 static int clk_core_get_phase(struct clk_core *core) 1872 { 1873 int ret; 1874 1875 clk_prepare_lock(); 1876 ret = core->phase; 1877 clk_prepare_unlock(); 1878 1879 return ret; 1880 } 1881 1882 /** 1883 * clk_get_phase - return the phase shift of a clock signal 1884 * @clk: clock signal source 1885 * 1886 * Returns the phase shift of a clock node in degrees, otherwise returns 1887 * -EERROR. 1888 */ 1889 int clk_get_phase(struct clk *clk) 1890 { 1891 if (!clk) 1892 return 0; 1893 1894 return clk_core_get_phase(clk->core); 1895 } 1896 EXPORT_SYMBOL_GPL(clk_get_phase); 1897 1898 /** 1899 * clk_is_match - check if two clk's point to the same hardware clock 1900 * @p: clk compared against q 1901 * @q: clk compared against p 1902 * 1903 * Returns true if the two struct clk pointers both point to the same hardware 1904 * clock node. Put differently, returns true if struct clk *p and struct clk *q 1905 * share the same struct clk_core object. 1906 * 1907 * Returns false otherwise. Note that two NULL clks are treated as matching. 1908 */ 1909 bool clk_is_match(const struct clk *p, const struct clk *q) 1910 { 1911 /* trivial case: identical struct clk's or both NULL */ 1912 if (p == q) 1913 return true; 1914 1915 /* true if clk->core pointers match. Avoid dereferencing garbage */ 1916 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 1917 if (p->core == q->core) 1918 return true; 1919 1920 return false; 1921 } 1922 EXPORT_SYMBOL_GPL(clk_is_match); 1923 1924 /*** debugfs support ***/ 1925 1926 #ifdef CONFIG_DEBUG_FS 1927 #include <linux/debugfs.h> 1928 1929 static struct dentry *rootdir; 1930 static int inited = 0; 1931 static DEFINE_MUTEX(clk_debug_lock); 1932 static HLIST_HEAD(clk_debug_list); 1933 1934 static struct hlist_head *all_lists[] = { 1935 &clk_root_list, 1936 &clk_orphan_list, 1937 NULL, 1938 }; 1939 1940 static struct hlist_head *orphan_list[] = { 1941 &clk_orphan_list, 1942 NULL, 1943 }; 1944 1945 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 1946 int level) 1947 { 1948 if (!c) 1949 return; 1950 1951 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n", 1952 level * 3 + 1, "", 1953 30 - level * 3, c->name, 1954 c->enable_count, c->prepare_count, clk_core_get_rate(c), 1955 clk_core_get_accuracy(c), clk_core_get_phase(c)); 1956 } 1957 1958 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 1959 int level) 1960 { 1961 struct clk_core *child; 1962 1963 if (!c) 1964 return; 1965 1966 clk_summary_show_one(s, c, level); 1967 1968 hlist_for_each_entry(child, &c->children, child_node) 1969 clk_summary_show_subtree(s, child, level + 1); 1970 } 1971 1972 static int clk_summary_show(struct seq_file *s, void *data) 1973 { 1974 struct clk_core *c; 1975 struct hlist_head **lists = (struct hlist_head **)s->private; 1976 1977 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n"); 1978 seq_puts(s, "----------------------------------------------------------------------------------------\n"); 1979 1980 clk_prepare_lock(); 1981 1982 for (; *lists; lists++) 1983 hlist_for_each_entry(c, *lists, child_node) 1984 clk_summary_show_subtree(s, c, 0); 1985 1986 clk_prepare_unlock(); 1987 1988 return 0; 1989 } 1990 1991 1992 static int clk_summary_open(struct inode *inode, struct file *file) 1993 { 1994 return single_open(file, clk_summary_show, inode->i_private); 1995 } 1996 1997 static const struct file_operations clk_summary_fops = { 1998 .open = clk_summary_open, 1999 .read = seq_read, 2000 .llseek = seq_lseek, 2001 .release = single_release, 2002 }; 2003 2004 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 2005 { 2006 if (!c) 2007 return; 2008 2009 /* This should be JSON format, i.e. elements separated with a comma */ 2010 seq_printf(s, "\"%s\": { ", c->name); 2011 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 2012 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 2013 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c)); 2014 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c)); 2015 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c)); 2016 } 2017 2018 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 2019 { 2020 struct clk_core *child; 2021 2022 if (!c) 2023 return; 2024 2025 clk_dump_one(s, c, level); 2026 2027 hlist_for_each_entry(child, &c->children, child_node) { 2028 seq_printf(s, ","); 2029 clk_dump_subtree(s, child, level + 1); 2030 } 2031 2032 seq_printf(s, "}"); 2033 } 2034 2035 static int clk_dump(struct seq_file *s, void *data) 2036 { 2037 struct clk_core *c; 2038 bool first_node = true; 2039 struct hlist_head **lists = (struct hlist_head **)s->private; 2040 2041 seq_printf(s, "{"); 2042 2043 clk_prepare_lock(); 2044 2045 for (; *lists; lists++) { 2046 hlist_for_each_entry(c, *lists, child_node) { 2047 if (!first_node) 2048 seq_puts(s, ","); 2049 first_node = false; 2050 clk_dump_subtree(s, c, 0); 2051 } 2052 } 2053 2054 clk_prepare_unlock(); 2055 2056 seq_puts(s, "}\n"); 2057 return 0; 2058 } 2059 2060 2061 static int clk_dump_open(struct inode *inode, struct file *file) 2062 { 2063 return single_open(file, clk_dump, inode->i_private); 2064 } 2065 2066 static const struct file_operations clk_dump_fops = { 2067 .open = clk_dump_open, 2068 .read = seq_read, 2069 .llseek = seq_lseek, 2070 .release = single_release, 2071 }; 2072 2073 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 2074 { 2075 struct dentry *d; 2076 int ret = -ENOMEM; 2077 2078 if (!core || !pdentry) { 2079 ret = -EINVAL; 2080 goto out; 2081 } 2082 2083 d = debugfs_create_dir(core->name, pdentry); 2084 if (!d) 2085 goto out; 2086 2087 core->dentry = d; 2088 2089 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry, 2090 (u32 *)&core->rate); 2091 if (!d) 2092 goto err_out; 2093 2094 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry, 2095 (u32 *)&core->accuracy); 2096 if (!d) 2097 goto err_out; 2098 2099 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry, 2100 (u32 *)&core->phase); 2101 if (!d) 2102 goto err_out; 2103 2104 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry, 2105 (u32 *)&core->flags); 2106 if (!d) 2107 goto err_out; 2108 2109 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry, 2110 (u32 *)&core->prepare_count); 2111 if (!d) 2112 goto err_out; 2113 2114 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry, 2115 (u32 *)&core->enable_count); 2116 if (!d) 2117 goto err_out; 2118 2119 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry, 2120 (u32 *)&core->notifier_count); 2121 if (!d) 2122 goto err_out; 2123 2124 if (core->ops->debug_init) { 2125 ret = core->ops->debug_init(core->hw, core->dentry); 2126 if (ret) 2127 goto err_out; 2128 } 2129 2130 ret = 0; 2131 goto out; 2132 2133 err_out: 2134 debugfs_remove_recursive(core->dentry); 2135 core->dentry = NULL; 2136 out: 2137 return ret; 2138 } 2139 2140 /** 2141 * clk_debug_register - add a clk node to the debugfs clk directory 2142 * @core: the clk being added to the debugfs clk directory 2143 * 2144 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 2145 * initialized. Otherwise it bails out early since the debugfs clk directory 2146 * will be created lazily by clk_debug_init as part of a late_initcall. 2147 */ 2148 static int clk_debug_register(struct clk_core *core) 2149 { 2150 int ret = 0; 2151 2152 mutex_lock(&clk_debug_lock); 2153 hlist_add_head(&core->debug_node, &clk_debug_list); 2154 2155 if (!inited) 2156 goto unlock; 2157 2158 ret = clk_debug_create_one(core, rootdir); 2159 unlock: 2160 mutex_unlock(&clk_debug_lock); 2161 2162 return ret; 2163 } 2164 2165 /** 2166 * clk_debug_unregister - remove a clk node from the debugfs clk directory 2167 * @core: the clk being removed from the debugfs clk directory 2168 * 2169 * Dynamically removes a clk and all its child nodes from the 2170 * debugfs clk directory if clk->dentry points to debugfs created by 2171 * clk_debug_register in __clk_core_init. 2172 */ 2173 static void clk_debug_unregister(struct clk_core *core) 2174 { 2175 mutex_lock(&clk_debug_lock); 2176 hlist_del_init(&core->debug_node); 2177 debugfs_remove_recursive(core->dentry); 2178 core->dentry = NULL; 2179 mutex_unlock(&clk_debug_lock); 2180 } 2181 2182 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode, 2183 void *data, const struct file_operations *fops) 2184 { 2185 struct dentry *d = NULL; 2186 2187 if (hw->core->dentry) 2188 d = debugfs_create_file(name, mode, hw->core->dentry, data, 2189 fops); 2190 2191 return d; 2192 } 2193 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 2194 2195 /** 2196 * clk_debug_init - lazily populate the debugfs clk directory 2197 * 2198 * clks are often initialized very early during boot before memory can be 2199 * dynamically allocated and well before debugfs is setup. This function 2200 * populates the debugfs clk directory once at boot-time when we know that 2201 * debugfs is setup. It should only be called once at boot-time, all other clks 2202 * added dynamically will be done so with clk_debug_register. 2203 */ 2204 static int __init clk_debug_init(void) 2205 { 2206 struct clk_core *core; 2207 struct dentry *d; 2208 2209 rootdir = debugfs_create_dir("clk", NULL); 2210 2211 if (!rootdir) 2212 return -ENOMEM; 2213 2214 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 2215 &clk_summary_fops); 2216 if (!d) 2217 return -ENOMEM; 2218 2219 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 2220 &clk_dump_fops); 2221 if (!d) 2222 return -ENOMEM; 2223 2224 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 2225 &orphan_list, &clk_summary_fops); 2226 if (!d) 2227 return -ENOMEM; 2228 2229 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 2230 &orphan_list, &clk_dump_fops); 2231 if (!d) 2232 return -ENOMEM; 2233 2234 mutex_lock(&clk_debug_lock); 2235 hlist_for_each_entry(core, &clk_debug_list, debug_node) 2236 clk_debug_create_one(core, rootdir); 2237 2238 inited = 1; 2239 mutex_unlock(&clk_debug_lock); 2240 2241 return 0; 2242 } 2243 late_initcall(clk_debug_init); 2244 #else 2245 static inline int clk_debug_register(struct clk_core *core) { return 0; } 2246 static inline void clk_debug_reparent(struct clk_core *core, 2247 struct clk_core *new_parent) 2248 { 2249 } 2250 static inline void clk_debug_unregister(struct clk_core *core) 2251 { 2252 } 2253 #endif 2254 2255 /** 2256 * __clk_core_init - initialize the data structures in a struct clk_core 2257 * @core: clk_core being initialized 2258 * 2259 * Initializes the lists in struct clk_core, queries the hardware for the 2260 * parent and rate and sets them both. 2261 */ 2262 static int __clk_core_init(struct clk_core *core) 2263 { 2264 int i, ret = 0; 2265 struct clk_core *orphan; 2266 struct hlist_node *tmp2; 2267 unsigned long rate; 2268 2269 if (!core) 2270 return -EINVAL; 2271 2272 clk_prepare_lock(); 2273 2274 /* check to see if a clock with this name is already registered */ 2275 if (clk_core_lookup(core->name)) { 2276 pr_debug("%s: clk %s already initialized\n", 2277 __func__, core->name); 2278 ret = -EEXIST; 2279 goto out; 2280 } 2281 2282 /* check that clk_ops are sane. See Documentation/clk.txt */ 2283 if (core->ops->set_rate && 2284 !((core->ops->round_rate || core->ops->determine_rate) && 2285 core->ops->recalc_rate)) { 2286 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 2287 __func__, core->name); 2288 ret = -EINVAL; 2289 goto out; 2290 } 2291 2292 if (core->ops->set_parent && !core->ops->get_parent) { 2293 pr_err("%s: %s must implement .get_parent & .set_parent\n", 2294 __func__, core->name); 2295 ret = -EINVAL; 2296 goto out; 2297 } 2298 2299 if (core->num_parents > 1 && !core->ops->get_parent) { 2300 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 2301 __func__, core->name); 2302 ret = -EINVAL; 2303 goto out; 2304 } 2305 2306 if (core->ops->set_rate_and_parent && 2307 !(core->ops->set_parent && core->ops->set_rate)) { 2308 pr_err("%s: %s must implement .set_parent & .set_rate\n", 2309 __func__, core->name); 2310 ret = -EINVAL; 2311 goto out; 2312 } 2313 2314 /* throw a WARN if any entries in parent_names are NULL */ 2315 for (i = 0; i < core->num_parents; i++) 2316 WARN(!core->parent_names[i], 2317 "%s: invalid NULL in %s's .parent_names\n", 2318 __func__, core->name); 2319 2320 core->parent = __clk_init_parent(core); 2321 2322 /* 2323 * Populate core->parent if parent has already been clk_core_init'd. If 2324 * parent has not yet been clk_core_init'd then place clk in the orphan 2325 * list. If clk doesn't have any parents then place it in the root 2326 * clk list. 2327 * 2328 * Every time a new clk is clk_init'd then we walk the list of orphan 2329 * clocks and re-parent any that are children of the clock currently 2330 * being clk_init'd. 2331 */ 2332 if (core->parent) { 2333 hlist_add_head(&core->child_node, 2334 &core->parent->children); 2335 core->orphan = core->parent->orphan; 2336 } else if (!core->num_parents) { 2337 hlist_add_head(&core->child_node, &clk_root_list); 2338 core->orphan = false; 2339 } else { 2340 hlist_add_head(&core->child_node, &clk_orphan_list); 2341 core->orphan = true; 2342 } 2343 2344 /* 2345 * Set clk's accuracy. The preferred method is to use 2346 * .recalc_accuracy. For simple clocks and lazy developers the default 2347 * fallback is to use the parent's accuracy. If a clock doesn't have a 2348 * parent (or is orphaned) then accuracy is set to zero (perfect 2349 * clock). 2350 */ 2351 if (core->ops->recalc_accuracy) 2352 core->accuracy = core->ops->recalc_accuracy(core->hw, 2353 __clk_get_accuracy(core->parent)); 2354 else if (core->parent) 2355 core->accuracy = core->parent->accuracy; 2356 else 2357 core->accuracy = 0; 2358 2359 /* 2360 * Set clk's phase. 2361 * Since a phase is by definition relative to its parent, just 2362 * query the current clock phase, or just assume it's in phase. 2363 */ 2364 if (core->ops->get_phase) 2365 core->phase = core->ops->get_phase(core->hw); 2366 else 2367 core->phase = 0; 2368 2369 /* 2370 * Set clk's rate. The preferred method is to use .recalc_rate. For 2371 * simple clocks and lazy developers the default fallback is to use the 2372 * parent's rate. If a clock doesn't have a parent (or is orphaned) 2373 * then rate is set to zero. 2374 */ 2375 if (core->ops->recalc_rate) 2376 rate = core->ops->recalc_rate(core->hw, 2377 clk_core_get_rate_nolock(core->parent)); 2378 else if (core->parent) 2379 rate = core->parent->rate; 2380 else 2381 rate = 0; 2382 core->rate = core->req_rate = rate; 2383 2384 /* 2385 * walk the list of orphan clocks and reparent any that newly finds a 2386 * parent. 2387 */ 2388 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 2389 struct clk_core *parent = __clk_init_parent(orphan); 2390 2391 if (parent) 2392 clk_core_reparent(orphan, parent); 2393 } 2394 2395 /* 2396 * optional platform-specific magic 2397 * 2398 * The .init callback is not used by any of the basic clock types, but 2399 * exists for weird hardware that must perform initialization magic. 2400 * Please consider other ways of solving initialization problems before 2401 * using this callback, as its use is discouraged. 2402 */ 2403 if (core->ops->init) 2404 core->ops->init(core->hw); 2405 2406 if (core->flags & CLK_IS_CRITICAL) { 2407 unsigned long flags; 2408 2409 clk_core_prepare(core); 2410 2411 flags = clk_enable_lock(); 2412 clk_core_enable(core); 2413 clk_enable_unlock(flags); 2414 } 2415 2416 kref_init(&core->ref); 2417 out: 2418 clk_prepare_unlock(); 2419 2420 if (!ret) 2421 clk_debug_register(core); 2422 2423 return ret; 2424 } 2425 2426 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id, 2427 const char *con_id) 2428 { 2429 struct clk *clk; 2430 2431 /* This is to allow this function to be chained to others */ 2432 if (IS_ERR_OR_NULL(hw)) 2433 return (struct clk *) hw; 2434 2435 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 2436 if (!clk) 2437 return ERR_PTR(-ENOMEM); 2438 2439 clk->core = hw->core; 2440 clk->dev_id = dev_id; 2441 clk->con_id = con_id; 2442 clk->max_rate = ULONG_MAX; 2443 2444 clk_prepare_lock(); 2445 hlist_add_head(&clk->clks_node, &hw->core->clks); 2446 clk_prepare_unlock(); 2447 2448 return clk; 2449 } 2450 2451 void __clk_free_clk(struct clk *clk) 2452 { 2453 clk_prepare_lock(); 2454 hlist_del(&clk->clks_node); 2455 clk_prepare_unlock(); 2456 2457 kfree(clk); 2458 } 2459 2460 /** 2461 * clk_register - allocate a new clock, register it and return an opaque cookie 2462 * @dev: device that is registering this clock 2463 * @hw: link to hardware-specific clock data 2464 * 2465 * clk_register is the primary interface for populating the clock tree with new 2466 * clock nodes. It returns a pointer to the newly allocated struct clk which 2467 * cannot be dereferenced by driver code but may be used in conjunction with the 2468 * rest of the clock API. In the event of an error clk_register will return an 2469 * error code; drivers must test for an error code after calling clk_register. 2470 */ 2471 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 2472 { 2473 int i, ret; 2474 struct clk_core *core; 2475 2476 core = kzalloc(sizeof(*core), GFP_KERNEL); 2477 if (!core) { 2478 ret = -ENOMEM; 2479 goto fail_out; 2480 } 2481 2482 core->name = kstrdup_const(hw->init->name, GFP_KERNEL); 2483 if (!core->name) { 2484 ret = -ENOMEM; 2485 goto fail_name; 2486 } 2487 core->ops = hw->init->ops; 2488 if (dev && dev->driver) 2489 core->owner = dev->driver->owner; 2490 core->hw = hw; 2491 core->flags = hw->init->flags; 2492 core->num_parents = hw->init->num_parents; 2493 core->min_rate = 0; 2494 core->max_rate = ULONG_MAX; 2495 hw->core = core; 2496 2497 /* allocate local copy in case parent_names is __initdata */ 2498 core->parent_names = kcalloc(core->num_parents, sizeof(char *), 2499 GFP_KERNEL); 2500 2501 if (!core->parent_names) { 2502 ret = -ENOMEM; 2503 goto fail_parent_names; 2504 } 2505 2506 2507 /* copy each string name in case parent_names is __initdata */ 2508 for (i = 0; i < core->num_parents; i++) { 2509 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i], 2510 GFP_KERNEL); 2511 if (!core->parent_names[i]) { 2512 ret = -ENOMEM; 2513 goto fail_parent_names_copy; 2514 } 2515 } 2516 2517 /* avoid unnecessary string look-ups of clk_core's possible parents. */ 2518 core->parents = kcalloc(core->num_parents, sizeof(*core->parents), 2519 GFP_KERNEL); 2520 if (!core->parents) { 2521 ret = -ENOMEM; 2522 goto fail_parents; 2523 }; 2524 2525 INIT_HLIST_HEAD(&core->clks); 2526 2527 hw->clk = __clk_create_clk(hw, NULL, NULL); 2528 if (IS_ERR(hw->clk)) { 2529 ret = PTR_ERR(hw->clk); 2530 goto fail_parents; 2531 } 2532 2533 ret = __clk_core_init(core); 2534 if (!ret) 2535 return hw->clk; 2536 2537 __clk_free_clk(hw->clk); 2538 hw->clk = NULL; 2539 2540 fail_parents: 2541 kfree(core->parents); 2542 fail_parent_names_copy: 2543 while (--i >= 0) 2544 kfree_const(core->parent_names[i]); 2545 kfree(core->parent_names); 2546 fail_parent_names: 2547 kfree_const(core->name); 2548 fail_name: 2549 kfree(core); 2550 fail_out: 2551 return ERR_PTR(ret); 2552 } 2553 EXPORT_SYMBOL_GPL(clk_register); 2554 2555 /** 2556 * clk_hw_register - register a clk_hw and return an error code 2557 * @dev: device that is registering this clock 2558 * @hw: link to hardware-specific clock data 2559 * 2560 * clk_hw_register is the primary interface for populating the clock tree with 2561 * new clock nodes. It returns an integer equal to zero indicating success or 2562 * less than zero indicating failure. Drivers must test for an error code after 2563 * calling clk_hw_register(). 2564 */ 2565 int clk_hw_register(struct device *dev, struct clk_hw *hw) 2566 { 2567 return PTR_ERR_OR_ZERO(clk_register(dev, hw)); 2568 } 2569 EXPORT_SYMBOL_GPL(clk_hw_register); 2570 2571 /* Free memory allocated for a clock. */ 2572 static void __clk_release(struct kref *ref) 2573 { 2574 struct clk_core *core = container_of(ref, struct clk_core, ref); 2575 int i = core->num_parents; 2576 2577 lockdep_assert_held(&prepare_lock); 2578 2579 kfree(core->parents); 2580 while (--i >= 0) 2581 kfree_const(core->parent_names[i]); 2582 2583 kfree(core->parent_names); 2584 kfree_const(core->name); 2585 kfree(core); 2586 } 2587 2588 /* 2589 * Empty clk_ops for unregistered clocks. These are used temporarily 2590 * after clk_unregister() was called on a clock and until last clock 2591 * consumer calls clk_put() and the struct clk object is freed. 2592 */ 2593 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2594 { 2595 return -ENXIO; 2596 } 2597 2598 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2599 { 2600 WARN_ON_ONCE(1); 2601 } 2602 2603 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2604 unsigned long parent_rate) 2605 { 2606 return -ENXIO; 2607 } 2608 2609 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2610 { 2611 return -ENXIO; 2612 } 2613 2614 static const struct clk_ops clk_nodrv_ops = { 2615 .enable = clk_nodrv_prepare_enable, 2616 .disable = clk_nodrv_disable_unprepare, 2617 .prepare = clk_nodrv_prepare_enable, 2618 .unprepare = clk_nodrv_disable_unprepare, 2619 .set_rate = clk_nodrv_set_rate, 2620 .set_parent = clk_nodrv_set_parent, 2621 }; 2622 2623 /** 2624 * clk_unregister - unregister a currently registered clock 2625 * @clk: clock to unregister 2626 */ 2627 void clk_unregister(struct clk *clk) 2628 { 2629 unsigned long flags; 2630 2631 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2632 return; 2633 2634 clk_debug_unregister(clk->core); 2635 2636 clk_prepare_lock(); 2637 2638 if (clk->core->ops == &clk_nodrv_ops) { 2639 pr_err("%s: unregistered clock: %s\n", __func__, 2640 clk->core->name); 2641 goto unlock; 2642 } 2643 /* 2644 * Assign empty clock ops for consumers that might still hold 2645 * a reference to this clock. 2646 */ 2647 flags = clk_enable_lock(); 2648 clk->core->ops = &clk_nodrv_ops; 2649 clk_enable_unlock(flags); 2650 2651 if (!hlist_empty(&clk->core->children)) { 2652 struct clk_core *child; 2653 struct hlist_node *t; 2654 2655 /* Reparent all children to the orphan list. */ 2656 hlist_for_each_entry_safe(child, t, &clk->core->children, 2657 child_node) 2658 clk_core_set_parent(child, NULL); 2659 } 2660 2661 hlist_del_init(&clk->core->child_node); 2662 2663 if (clk->core->prepare_count) 2664 pr_warn("%s: unregistering prepared clock: %s\n", 2665 __func__, clk->core->name); 2666 kref_put(&clk->core->ref, __clk_release); 2667 unlock: 2668 clk_prepare_unlock(); 2669 } 2670 EXPORT_SYMBOL_GPL(clk_unregister); 2671 2672 /** 2673 * clk_hw_unregister - unregister a currently registered clk_hw 2674 * @hw: hardware-specific clock data to unregister 2675 */ 2676 void clk_hw_unregister(struct clk_hw *hw) 2677 { 2678 clk_unregister(hw->clk); 2679 } 2680 EXPORT_SYMBOL_GPL(clk_hw_unregister); 2681 2682 static void devm_clk_release(struct device *dev, void *res) 2683 { 2684 clk_unregister(*(struct clk **)res); 2685 } 2686 2687 static void devm_clk_hw_release(struct device *dev, void *res) 2688 { 2689 clk_hw_unregister(*(struct clk_hw **)res); 2690 } 2691 2692 /** 2693 * devm_clk_register - resource managed clk_register() 2694 * @dev: device that is registering this clock 2695 * @hw: link to hardware-specific clock data 2696 * 2697 * Managed clk_register(). Clocks returned from this function are 2698 * automatically clk_unregister()ed on driver detach. See clk_register() for 2699 * more information. 2700 */ 2701 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2702 { 2703 struct clk *clk; 2704 struct clk **clkp; 2705 2706 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2707 if (!clkp) 2708 return ERR_PTR(-ENOMEM); 2709 2710 clk = clk_register(dev, hw); 2711 if (!IS_ERR(clk)) { 2712 *clkp = clk; 2713 devres_add(dev, clkp); 2714 } else { 2715 devres_free(clkp); 2716 } 2717 2718 return clk; 2719 } 2720 EXPORT_SYMBOL_GPL(devm_clk_register); 2721 2722 /** 2723 * devm_clk_hw_register - resource managed clk_hw_register() 2724 * @dev: device that is registering this clock 2725 * @hw: link to hardware-specific clock data 2726 * 2727 * Managed clk_hw_register(). Clocks registered by this function are 2728 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 2729 * for more information. 2730 */ 2731 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 2732 { 2733 struct clk_hw **hwp; 2734 int ret; 2735 2736 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL); 2737 if (!hwp) 2738 return -ENOMEM; 2739 2740 ret = clk_hw_register(dev, hw); 2741 if (!ret) { 2742 *hwp = hw; 2743 devres_add(dev, hwp); 2744 } else { 2745 devres_free(hwp); 2746 } 2747 2748 return ret; 2749 } 2750 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 2751 2752 static int devm_clk_match(struct device *dev, void *res, void *data) 2753 { 2754 struct clk *c = res; 2755 if (WARN_ON(!c)) 2756 return 0; 2757 return c == data; 2758 } 2759 2760 static int devm_clk_hw_match(struct device *dev, void *res, void *data) 2761 { 2762 struct clk_hw *hw = res; 2763 2764 if (WARN_ON(!hw)) 2765 return 0; 2766 return hw == data; 2767 } 2768 2769 /** 2770 * devm_clk_unregister - resource managed clk_unregister() 2771 * @clk: clock to unregister 2772 * 2773 * Deallocate a clock allocated with devm_clk_register(). Normally 2774 * this function will not need to be called and the resource management 2775 * code will ensure that the resource is freed. 2776 */ 2777 void devm_clk_unregister(struct device *dev, struct clk *clk) 2778 { 2779 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2780 } 2781 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2782 2783 /** 2784 * devm_clk_hw_unregister - resource managed clk_hw_unregister() 2785 * @dev: device that is unregistering the hardware-specific clock data 2786 * @hw: link to hardware-specific clock data 2787 * 2788 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally 2789 * this function will not need to be called and the resource management 2790 * code will ensure that the resource is freed. 2791 */ 2792 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw) 2793 { 2794 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match, 2795 hw)); 2796 } 2797 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister); 2798 2799 /* 2800 * clkdev helpers 2801 */ 2802 int __clk_get(struct clk *clk) 2803 { 2804 struct clk_core *core = !clk ? NULL : clk->core; 2805 2806 if (core) { 2807 if (!try_module_get(core->owner)) 2808 return 0; 2809 2810 kref_get(&core->ref); 2811 } 2812 return 1; 2813 } 2814 2815 void __clk_put(struct clk *clk) 2816 { 2817 struct module *owner; 2818 2819 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2820 return; 2821 2822 clk_prepare_lock(); 2823 2824 hlist_del(&clk->clks_node); 2825 if (clk->min_rate > clk->core->req_rate || 2826 clk->max_rate < clk->core->req_rate) 2827 clk_core_set_rate_nolock(clk->core, clk->core->req_rate); 2828 2829 owner = clk->core->owner; 2830 kref_put(&clk->core->ref, __clk_release); 2831 2832 clk_prepare_unlock(); 2833 2834 module_put(owner); 2835 2836 kfree(clk); 2837 } 2838 2839 /*** clk rate change notifiers ***/ 2840 2841 /** 2842 * clk_notifier_register - add a clk rate change notifier 2843 * @clk: struct clk * to watch 2844 * @nb: struct notifier_block * with callback info 2845 * 2846 * Request notification when clk's rate changes. This uses an SRCU 2847 * notifier because we want it to block and notifier unregistrations are 2848 * uncommon. The callbacks associated with the notifier must not 2849 * re-enter into the clk framework by calling any top-level clk APIs; 2850 * this will cause a nested prepare_lock mutex. 2851 * 2852 * In all notification cases (pre, post and abort rate change) the original 2853 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 2854 * and the new frequency is passed via struct clk_notifier_data.new_rate. 2855 * 2856 * clk_notifier_register() must be called from non-atomic context. 2857 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2858 * allocation failure; otherwise, passes along the return value of 2859 * srcu_notifier_chain_register(). 2860 */ 2861 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2862 { 2863 struct clk_notifier *cn; 2864 int ret = -ENOMEM; 2865 2866 if (!clk || !nb) 2867 return -EINVAL; 2868 2869 clk_prepare_lock(); 2870 2871 /* search the list of notifiers for this clk */ 2872 list_for_each_entry(cn, &clk_notifier_list, node) 2873 if (cn->clk == clk) 2874 break; 2875 2876 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2877 if (cn->clk != clk) { 2878 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2879 if (!cn) 2880 goto out; 2881 2882 cn->clk = clk; 2883 srcu_init_notifier_head(&cn->notifier_head); 2884 2885 list_add(&cn->node, &clk_notifier_list); 2886 } 2887 2888 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2889 2890 clk->core->notifier_count++; 2891 2892 out: 2893 clk_prepare_unlock(); 2894 2895 return ret; 2896 } 2897 EXPORT_SYMBOL_GPL(clk_notifier_register); 2898 2899 /** 2900 * clk_notifier_unregister - remove a clk rate change notifier 2901 * @clk: struct clk * 2902 * @nb: struct notifier_block * with callback info 2903 * 2904 * Request no further notification for changes to 'clk' and frees memory 2905 * allocated in clk_notifier_register. 2906 * 2907 * Returns -EINVAL if called with null arguments; otherwise, passes 2908 * along the return value of srcu_notifier_chain_unregister(). 2909 */ 2910 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2911 { 2912 struct clk_notifier *cn = NULL; 2913 int ret = -EINVAL; 2914 2915 if (!clk || !nb) 2916 return -EINVAL; 2917 2918 clk_prepare_lock(); 2919 2920 list_for_each_entry(cn, &clk_notifier_list, node) 2921 if (cn->clk == clk) 2922 break; 2923 2924 if (cn->clk == clk) { 2925 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2926 2927 clk->core->notifier_count--; 2928 2929 /* XXX the notifier code should handle this better */ 2930 if (!cn->notifier_head.head) { 2931 srcu_cleanup_notifier_head(&cn->notifier_head); 2932 list_del(&cn->node); 2933 kfree(cn); 2934 } 2935 2936 } else { 2937 ret = -ENOENT; 2938 } 2939 2940 clk_prepare_unlock(); 2941 2942 return ret; 2943 } 2944 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2945 2946 #ifdef CONFIG_OF 2947 /** 2948 * struct of_clk_provider - Clock provider registration structure 2949 * @link: Entry in global list of clock providers 2950 * @node: Pointer to device tree node of clock provider 2951 * @get: Get clock callback. Returns NULL or a struct clk for the 2952 * given clock specifier 2953 * @data: context pointer to be passed into @get callback 2954 */ 2955 struct of_clk_provider { 2956 struct list_head link; 2957 2958 struct device_node *node; 2959 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2960 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 2961 void *data; 2962 }; 2963 2964 static const struct of_device_id __clk_of_table_sentinel 2965 __used __section(__clk_of_table_end); 2966 2967 static LIST_HEAD(of_clk_providers); 2968 static DEFINE_MUTEX(of_clk_mutex); 2969 2970 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2971 void *data) 2972 { 2973 return data; 2974 } 2975 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2976 2977 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 2978 { 2979 return data; 2980 } 2981 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 2982 2983 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2984 { 2985 struct clk_onecell_data *clk_data = data; 2986 unsigned int idx = clkspec->args[0]; 2987 2988 if (idx >= clk_data->clk_num) { 2989 pr_err("%s: invalid clock index %u\n", __func__, idx); 2990 return ERR_PTR(-EINVAL); 2991 } 2992 2993 return clk_data->clks[idx]; 2994 } 2995 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2996 2997 struct clk_hw * 2998 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 2999 { 3000 struct clk_hw_onecell_data *hw_data = data; 3001 unsigned int idx = clkspec->args[0]; 3002 3003 if (idx >= hw_data->num) { 3004 pr_err("%s: invalid index %u\n", __func__, idx); 3005 return ERR_PTR(-EINVAL); 3006 } 3007 3008 return hw_data->hws[idx]; 3009 } 3010 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 3011 3012 /** 3013 * of_clk_add_provider() - Register a clock provider for a node 3014 * @np: Device node pointer associated with clock provider 3015 * @clk_src_get: callback for decoding clock 3016 * @data: context pointer for @clk_src_get callback. 3017 */ 3018 int of_clk_add_provider(struct device_node *np, 3019 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 3020 void *data), 3021 void *data) 3022 { 3023 struct of_clk_provider *cp; 3024 int ret; 3025 3026 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 3027 if (!cp) 3028 return -ENOMEM; 3029 3030 cp->node = of_node_get(np); 3031 cp->data = data; 3032 cp->get = clk_src_get; 3033 3034 mutex_lock(&of_clk_mutex); 3035 list_add(&cp->link, &of_clk_providers); 3036 mutex_unlock(&of_clk_mutex); 3037 pr_debug("Added clock from %s\n", np->full_name); 3038 3039 ret = of_clk_set_defaults(np, true); 3040 if (ret < 0) 3041 of_clk_del_provider(np); 3042 3043 return ret; 3044 } 3045 EXPORT_SYMBOL_GPL(of_clk_add_provider); 3046 3047 /** 3048 * of_clk_add_hw_provider() - Register a clock provider for a node 3049 * @np: Device node pointer associated with clock provider 3050 * @get: callback for decoding clk_hw 3051 * @data: context pointer for @get callback. 3052 */ 3053 int of_clk_add_hw_provider(struct device_node *np, 3054 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 3055 void *data), 3056 void *data) 3057 { 3058 struct of_clk_provider *cp; 3059 int ret; 3060 3061 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 3062 if (!cp) 3063 return -ENOMEM; 3064 3065 cp->node = of_node_get(np); 3066 cp->data = data; 3067 cp->get_hw = get; 3068 3069 mutex_lock(&of_clk_mutex); 3070 list_add(&cp->link, &of_clk_providers); 3071 mutex_unlock(&of_clk_mutex); 3072 pr_debug("Added clk_hw provider from %s\n", np->full_name); 3073 3074 ret = of_clk_set_defaults(np, true); 3075 if (ret < 0) 3076 of_clk_del_provider(np); 3077 3078 return ret; 3079 } 3080 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 3081 3082 /** 3083 * of_clk_del_provider() - Remove a previously registered clock provider 3084 * @np: Device node pointer associated with clock provider 3085 */ 3086 void of_clk_del_provider(struct device_node *np) 3087 { 3088 struct of_clk_provider *cp; 3089 3090 mutex_lock(&of_clk_mutex); 3091 list_for_each_entry(cp, &of_clk_providers, link) { 3092 if (cp->node == np) { 3093 list_del(&cp->link); 3094 of_node_put(cp->node); 3095 kfree(cp); 3096 break; 3097 } 3098 } 3099 mutex_unlock(&of_clk_mutex); 3100 } 3101 EXPORT_SYMBOL_GPL(of_clk_del_provider); 3102 3103 static struct clk_hw * 3104 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 3105 struct of_phandle_args *clkspec) 3106 { 3107 struct clk *clk; 3108 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 3109 3110 if (provider->get_hw) { 3111 hw = provider->get_hw(clkspec, provider->data); 3112 } else if (provider->get) { 3113 clk = provider->get(clkspec, provider->data); 3114 if (!IS_ERR(clk)) 3115 hw = __clk_get_hw(clk); 3116 else 3117 hw = ERR_CAST(clk); 3118 } 3119 3120 return hw; 3121 } 3122 3123 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec, 3124 const char *dev_id, const char *con_id) 3125 { 3126 struct of_clk_provider *provider; 3127 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 3128 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 3129 3130 if (!clkspec) 3131 return ERR_PTR(-EINVAL); 3132 3133 /* Check if we have such a provider in our array */ 3134 mutex_lock(&of_clk_mutex); 3135 list_for_each_entry(provider, &of_clk_providers, link) { 3136 if (provider->node == clkspec->np) 3137 hw = __of_clk_get_hw_from_provider(provider, clkspec); 3138 if (!IS_ERR(hw)) { 3139 clk = __clk_create_clk(hw, dev_id, con_id); 3140 3141 if (!IS_ERR(clk) && !__clk_get(clk)) { 3142 __clk_free_clk(clk); 3143 clk = ERR_PTR(-ENOENT); 3144 } 3145 3146 break; 3147 } 3148 } 3149 mutex_unlock(&of_clk_mutex); 3150 3151 return clk; 3152 } 3153 3154 /** 3155 * of_clk_get_from_provider() - Lookup a clock from a clock provider 3156 * @clkspec: pointer to a clock specifier data structure 3157 * 3158 * This function looks up a struct clk from the registered list of clock 3159 * providers, an input is a clock specifier data structure as returned 3160 * from the of_parse_phandle_with_args() function call. 3161 */ 3162 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 3163 { 3164 return __of_clk_get_from_provider(clkspec, NULL, __func__); 3165 } 3166 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 3167 3168 /** 3169 * of_clk_get_parent_count() - Count the number of clocks a device node has 3170 * @np: device node to count 3171 * 3172 * Returns: The number of clocks that are possible parents of this node 3173 */ 3174 unsigned int of_clk_get_parent_count(struct device_node *np) 3175 { 3176 int count; 3177 3178 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 3179 if (count < 0) 3180 return 0; 3181 3182 return count; 3183 } 3184 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 3185 3186 const char *of_clk_get_parent_name(struct device_node *np, int index) 3187 { 3188 struct of_phandle_args clkspec; 3189 struct property *prop; 3190 const char *clk_name; 3191 const __be32 *vp; 3192 u32 pv; 3193 int rc; 3194 int count; 3195 struct clk *clk; 3196 3197 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 3198 &clkspec); 3199 if (rc) 3200 return NULL; 3201 3202 index = clkspec.args_count ? clkspec.args[0] : 0; 3203 count = 0; 3204 3205 /* if there is an indices property, use it to transfer the index 3206 * specified into an array offset for the clock-output-names property. 3207 */ 3208 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 3209 if (index == pv) { 3210 index = count; 3211 break; 3212 } 3213 count++; 3214 } 3215 /* We went off the end of 'clock-indices' without finding it */ 3216 if (prop && !vp) 3217 return NULL; 3218 3219 if (of_property_read_string_index(clkspec.np, "clock-output-names", 3220 index, 3221 &clk_name) < 0) { 3222 /* 3223 * Best effort to get the name if the clock has been 3224 * registered with the framework. If the clock isn't 3225 * registered, we return the node name as the name of 3226 * the clock as long as #clock-cells = 0. 3227 */ 3228 clk = of_clk_get_from_provider(&clkspec); 3229 if (IS_ERR(clk)) { 3230 if (clkspec.args_count == 0) 3231 clk_name = clkspec.np->name; 3232 else 3233 clk_name = NULL; 3234 } else { 3235 clk_name = __clk_get_name(clk); 3236 clk_put(clk); 3237 } 3238 } 3239 3240 3241 of_node_put(clkspec.np); 3242 return clk_name; 3243 } 3244 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 3245 3246 /** 3247 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 3248 * number of parents 3249 * @np: Device node pointer associated with clock provider 3250 * @parents: pointer to char array that hold the parents' names 3251 * @size: size of the @parents array 3252 * 3253 * Return: number of parents for the clock node. 3254 */ 3255 int of_clk_parent_fill(struct device_node *np, const char **parents, 3256 unsigned int size) 3257 { 3258 unsigned int i = 0; 3259 3260 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 3261 i++; 3262 3263 return i; 3264 } 3265 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 3266 3267 struct clock_provider { 3268 of_clk_init_cb_t clk_init_cb; 3269 struct device_node *np; 3270 struct list_head node; 3271 }; 3272 3273 /* 3274 * This function looks for a parent clock. If there is one, then it 3275 * checks that the provider for this parent clock was initialized, in 3276 * this case the parent clock will be ready. 3277 */ 3278 static int parent_ready(struct device_node *np) 3279 { 3280 int i = 0; 3281 3282 while (true) { 3283 struct clk *clk = of_clk_get(np, i); 3284 3285 /* this parent is ready we can check the next one */ 3286 if (!IS_ERR(clk)) { 3287 clk_put(clk); 3288 i++; 3289 continue; 3290 } 3291 3292 /* at least one parent is not ready, we exit now */ 3293 if (PTR_ERR(clk) == -EPROBE_DEFER) 3294 return 0; 3295 3296 /* 3297 * Here we make assumption that the device tree is 3298 * written correctly. So an error means that there is 3299 * no more parent. As we didn't exit yet, then the 3300 * previous parent are ready. If there is no clock 3301 * parent, no need to wait for them, then we can 3302 * consider their absence as being ready 3303 */ 3304 return 1; 3305 } 3306 } 3307 3308 /** 3309 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 3310 * @np: Device node pointer associated with clock provider 3311 * @index: clock index 3312 * @flags: pointer to clk_core->flags 3313 * 3314 * Detects if the clock-critical property exists and, if so, sets the 3315 * corresponding CLK_IS_CRITICAL flag. 3316 * 3317 * Do not use this function. It exists only for legacy Device Tree 3318 * bindings, such as the one-clock-per-node style that are outdated. 3319 * Those bindings typically put all clock data into .dts and the Linux 3320 * driver has no clock data, thus making it impossible to set this flag 3321 * correctly from the driver. Only those drivers may call 3322 * of_clk_detect_critical from their setup functions. 3323 * 3324 * Return: error code or zero on success 3325 */ 3326 int of_clk_detect_critical(struct device_node *np, 3327 int index, unsigned long *flags) 3328 { 3329 struct property *prop; 3330 const __be32 *cur; 3331 uint32_t idx; 3332 3333 if (!np || !flags) 3334 return -EINVAL; 3335 3336 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 3337 if (index == idx) 3338 *flags |= CLK_IS_CRITICAL; 3339 3340 return 0; 3341 } 3342 3343 /** 3344 * of_clk_init() - Scan and init clock providers from the DT 3345 * @matches: array of compatible values and init functions for providers. 3346 * 3347 * This function scans the device tree for matching clock providers 3348 * and calls their initialization functions. It also does it by trying 3349 * to follow the dependencies. 3350 */ 3351 void __init of_clk_init(const struct of_device_id *matches) 3352 { 3353 const struct of_device_id *match; 3354 struct device_node *np; 3355 struct clock_provider *clk_provider, *next; 3356 bool is_init_done; 3357 bool force = false; 3358 LIST_HEAD(clk_provider_list); 3359 3360 if (!matches) 3361 matches = &__clk_of_table; 3362 3363 /* First prepare the list of the clocks providers */ 3364 for_each_matching_node_and_match(np, matches, &match) { 3365 struct clock_provider *parent; 3366 3367 if (!of_device_is_available(np)) 3368 continue; 3369 3370 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 3371 if (!parent) { 3372 list_for_each_entry_safe(clk_provider, next, 3373 &clk_provider_list, node) { 3374 list_del(&clk_provider->node); 3375 of_node_put(clk_provider->np); 3376 kfree(clk_provider); 3377 } 3378 of_node_put(np); 3379 return; 3380 } 3381 3382 parent->clk_init_cb = match->data; 3383 parent->np = of_node_get(np); 3384 list_add_tail(&parent->node, &clk_provider_list); 3385 } 3386 3387 while (!list_empty(&clk_provider_list)) { 3388 is_init_done = false; 3389 list_for_each_entry_safe(clk_provider, next, 3390 &clk_provider_list, node) { 3391 if (force || parent_ready(clk_provider->np)) { 3392 3393 clk_provider->clk_init_cb(clk_provider->np); 3394 of_clk_set_defaults(clk_provider->np, true); 3395 3396 list_del(&clk_provider->node); 3397 of_node_put(clk_provider->np); 3398 kfree(clk_provider); 3399 is_init_done = true; 3400 } 3401 } 3402 3403 /* 3404 * We didn't manage to initialize any of the 3405 * remaining providers during the last loop, so now we 3406 * initialize all the remaining ones unconditionally 3407 * in case the clock parent was not mandatory 3408 */ 3409 if (!is_init_done) 3410 force = true; 3411 } 3412 } 3413 #endif 3414