1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 5 * 6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/clk/clk-conf.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/err.h> 16 #include <linux/list.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sched.h> 23 #include <linux/clkdev.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /* List of registered clks that use runtime PM */ 41 static HLIST_HEAD(clk_rpm_list); 42 static DEFINE_MUTEX(clk_rpm_list_lock); 43 44 static const struct hlist_head *all_lists[] = { 45 &clk_root_list, 46 &clk_orphan_list, 47 NULL, 48 }; 49 50 /*** private data structures ***/ 51 52 struct clk_parent_map { 53 const struct clk_hw *hw; 54 struct clk_core *core; 55 const char *fw_name; 56 const char *name; 57 int index; 58 }; 59 60 struct clk_core { 61 const char *name; 62 const struct clk_ops *ops; 63 struct clk_hw *hw; 64 struct module *owner; 65 struct device *dev; 66 struct hlist_node rpm_node; 67 struct device_node *of_node; 68 struct clk_core *parent; 69 struct clk_parent_map *parents; 70 u8 num_parents; 71 u8 new_parent_index; 72 unsigned long rate; 73 unsigned long req_rate; 74 unsigned long new_rate; 75 struct clk_core *new_parent; 76 struct clk_core *new_child; 77 unsigned long flags; 78 bool orphan; 79 bool rpm_enabled; 80 unsigned int enable_count; 81 unsigned int prepare_count; 82 unsigned int protect_count; 83 unsigned long min_rate; 84 unsigned long max_rate; 85 unsigned long accuracy; 86 int phase; 87 struct clk_duty duty; 88 struct hlist_head children; 89 struct hlist_node child_node; 90 struct hlist_head clks; 91 unsigned int notifier_count; 92 #ifdef CONFIG_DEBUG_FS 93 struct dentry *dentry; 94 struct hlist_node debug_node; 95 #endif 96 struct kref ref; 97 }; 98 99 #define CREATE_TRACE_POINTS 100 #include <trace/events/clk.h> 101 102 struct clk { 103 struct clk_core *core; 104 struct device *dev; 105 const char *dev_id; 106 const char *con_id; 107 unsigned long min_rate; 108 unsigned long max_rate; 109 unsigned int exclusive_count; 110 struct hlist_node clks_node; 111 }; 112 113 /*** runtime pm ***/ 114 static int clk_pm_runtime_get(struct clk_core *core) 115 { 116 if (!core->rpm_enabled) 117 return 0; 118 119 return pm_runtime_resume_and_get(core->dev); 120 } 121 122 static void clk_pm_runtime_put(struct clk_core *core) 123 { 124 if (!core->rpm_enabled) 125 return; 126 127 pm_runtime_put_sync(core->dev); 128 } 129 130 /** 131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices 132 * 133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so 134 * that disabling unused clks avoids a deadlock where a device is runtime PM 135 * resuming/suspending and the runtime PM callback is trying to grab the 136 * prepare_lock for something like clk_prepare_enable() while 137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime 138 * PM resume/suspend the device as well. 139 * 140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on 141 * success. Otherwise the lock is released on failure. 142 * 143 * Return: 0 on success, negative errno otherwise. 144 */ 145 static int clk_pm_runtime_get_all(void) 146 { 147 int ret; 148 struct clk_core *core, *failed; 149 150 /* 151 * Grab the list lock to prevent any new clks from being registered 152 * or unregistered until clk_pm_runtime_put_all(). 153 */ 154 mutex_lock(&clk_rpm_list_lock); 155 156 /* 157 * Runtime PM "get" all the devices that are needed for the clks 158 * currently registered. Do this without holding the prepare_lock, to 159 * avoid the deadlock. 160 */ 161 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 162 ret = clk_pm_runtime_get(core); 163 if (ret) { 164 failed = core; 165 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n", 166 dev_name(failed->dev), failed->name); 167 goto err; 168 } 169 } 170 171 return 0; 172 173 err: 174 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) { 175 if (core == failed) 176 break; 177 178 clk_pm_runtime_put(core); 179 } 180 mutex_unlock(&clk_rpm_list_lock); 181 182 return ret; 183 } 184 185 /** 186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices 187 * 188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release 189 * the 'clk_rpm_list_lock'. 190 */ 191 static void clk_pm_runtime_put_all(void) 192 { 193 struct clk_core *core; 194 195 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) 196 clk_pm_runtime_put(core); 197 mutex_unlock(&clk_rpm_list_lock); 198 } 199 200 static void clk_pm_runtime_init(struct clk_core *core) 201 { 202 struct device *dev = core->dev; 203 204 if (dev && pm_runtime_enabled(dev)) { 205 core->rpm_enabled = true; 206 207 mutex_lock(&clk_rpm_list_lock); 208 hlist_add_head(&core->rpm_node, &clk_rpm_list); 209 mutex_unlock(&clk_rpm_list_lock); 210 } 211 } 212 213 /*** locking ***/ 214 static void clk_prepare_lock(void) 215 { 216 if (!mutex_trylock(&prepare_lock)) { 217 if (prepare_owner == current) { 218 prepare_refcnt++; 219 return; 220 } 221 mutex_lock(&prepare_lock); 222 } 223 WARN_ON_ONCE(prepare_owner != NULL); 224 WARN_ON_ONCE(prepare_refcnt != 0); 225 prepare_owner = current; 226 prepare_refcnt = 1; 227 } 228 229 static void clk_prepare_unlock(void) 230 { 231 WARN_ON_ONCE(prepare_owner != current); 232 WARN_ON_ONCE(prepare_refcnt == 0); 233 234 if (--prepare_refcnt) 235 return; 236 prepare_owner = NULL; 237 mutex_unlock(&prepare_lock); 238 } 239 240 static unsigned long clk_enable_lock(void) 241 __acquires(enable_lock) 242 { 243 unsigned long flags; 244 245 /* 246 * On UP systems, spin_trylock_irqsave() always returns true, even if 247 * we already hold the lock. So, in that case, we rely only on 248 * reference counting. 249 */ 250 if (!IS_ENABLED(CONFIG_SMP) || 251 !spin_trylock_irqsave(&enable_lock, flags)) { 252 if (enable_owner == current) { 253 enable_refcnt++; 254 __acquire(enable_lock); 255 if (!IS_ENABLED(CONFIG_SMP)) 256 local_save_flags(flags); 257 return flags; 258 } 259 spin_lock_irqsave(&enable_lock, flags); 260 } 261 WARN_ON_ONCE(enable_owner != NULL); 262 WARN_ON_ONCE(enable_refcnt != 0); 263 enable_owner = current; 264 enable_refcnt = 1; 265 return flags; 266 } 267 268 static void clk_enable_unlock(unsigned long flags) 269 __releases(enable_lock) 270 { 271 WARN_ON_ONCE(enable_owner != current); 272 WARN_ON_ONCE(enable_refcnt == 0); 273 274 if (--enable_refcnt) { 275 __release(enable_lock); 276 return; 277 } 278 enable_owner = NULL; 279 spin_unlock_irqrestore(&enable_lock, flags); 280 } 281 282 static bool clk_core_rate_is_protected(struct clk_core *core) 283 { 284 return core->protect_count; 285 } 286 287 static bool clk_core_is_prepared(struct clk_core *core) 288 { 289 bool ret = false; 290 291 /* 292 * .is_prepared is optional for clocks that can prepare 293 * fall back to software usage counter if it is missing 294 */ 295 if (!core->ops->is_prepared) 296 return core->prepare_count; 297 298 if (!clk_pm_runtime_get(core)) { 299 ret = core->ops->is_prepared(core->hw); 300 clk_pm_runtime_put(core); 301 } 302 303 return ret; 304 } 305 306 static bool clk_core_is_enabled(struct clk_core *core) 307 { 308 bool ret = false; 309 310 /* 311 * .is_enabled is only mandatory for clocks that gate 312 * fall back to software usage counter if .is_enabled is missing 313 */ 314 if (!core->ops->is_enabled) 315 return core->enable_count; 316 317 /* 318 * Check if clock controller's device is runtime active before 319 * calling .is_enabled callback. If not, assume that clock is 320 * disabled, because we might be called from atomic context, from 321 * which pm_runtime_get() is not allowed. 322 * This function is called mainly from clk_disable_unused_subtree, 323 * which ensures proper runtime pm activation of controller before 324 * taking enable spinlock, but the below check is needed if one tries 325 * to call it from other places. 326 */ 327 if (core->rpm_enabled) { 328 pm_runtime_get_noresume(core->dev); 329 if (!pm_runtime_active(core->dev)) { 330 ret = false; 331 goto done; 332 } 333 } 334 335 /* 336 * This could be called with the enable lock held, or from atomic 337 * context. If the parent isn't enabled already, we can't do 338 * anything here. We can also assume this clock isn't enabled. 339 */ 340 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent) 341 if (!clk_core_is_enabled(core->parent)) { 342 ret = false; 343 goto done; 344 } 345 346 ret = core->ops->is_enabled(core->hw); 347 done: 348 if (core->rpm_enabled) 349 pm_runtime_put(core->dev); 350 351 return ret; 352 } 353 354 /*** helper functions ***/ 355 356 const char *__clk_get_name(const struct clk *clk) 357 { 358 return !clk ? NULL : clk->core->name; 359 } 360 EXPORT_SYMBOL_GPL(__clk_get_name); 361 362 const char *clk_hw_get_name(const struct clk_hw *hw) 363 { 364 return hw->core->name; 365 } 366 EXPORT_SYMBOL_GPL(clk_hw_get_name); 367 368 struct clk_hw *__clk_get_hw(struct clk *clk) 369 { 370 return !clk ? NULL : clk->core->hw; 371 } 372 EXPORT_SYMBOL_GPL(__clk_get_hw); 373 374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw) 375 { 376 return hw->core->num_parents; 377 } 378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents); 379 380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw) 381 { 382 return hw->core->parent ? hw->core->parent->hw : NULL; 383 } 384 EXPORT_SYMBOL_GPL(clk_hw_get_parent); 385 386 static struct clk_core *__clk_lookup_subtree(const char *name, 387 struct clk_core *core) 388 { 389 struct clk_core *child; 390 struct clk_core *ret; 391 392 if (!strcmp(core->name, name)) 393 return core; 394 395 hlist_for_each_entry(child, &core->children, child_node) { 396 ret = __clk_lookup_subtree(name, child); 397 if (ret) 398 return ret; 399 } 400 401 return NULL; 402 } 403 404 static struct clk_core *clk_core_lookup(const char *name) 405 { 406 struct clk_core *root_clk; 407 struct clk_core *ret; 408 409 if (!name) 410 return NULL; 411 412 /* search the 'proper' clk tree first */ 413 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 414 ret = __clk_lookup_subtree(name, root_clk); 415 if (ret) 416 return ret; 417 } 418 419 /* if not found, then search the orphan tree */ 420 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 421 ret = __clk_lookup_subtree(name, root_clk); 422 if (ret) 423 return ret; 424 } 425 426 return NULL; 427 } 428 429 #ifdef CONFIG_OF 430 static int of_parse_clkspec(const struct device_node *np, int index, 431 const char *name, struct of_phandle_args *out_args); 432 static struct clk_hw * 433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec); 434 #else 435 static inline int of_parse_clkspec(const struct device_node *np, int index, 436 const char *name, 437 struct of_phandle_args *out_args) 438 { 439 return -ENOENT; 440 } 441 static inline struct clk_hw * 442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 443 { 444 return ERR_PTR(-ENOENT); 445 } 446 #endif 447 448 /** 449 * clk_core_get - Find the clk_core parent of a clk 450 * @core: clk to find parent of 451 * @p_index: parent index to search for 452 * 453 * This is the preferred method for clk providers to find the parent of a 454 * clk when that parent is external to the clk controller. The parent_names 455 * array is indexed and treated as a local name matching a string in the device 456 * node's 'clock-names' property or as the 'con_id' matching the device's 457 * dev_name() in a clk_lookup. This allows clk providers to use their own 458 * namespace instead of looking for a globally unique parent string. 459 * 460 * For example the following DT snippet would allow a clock registered by the 461 * clock-controller@c001 that has a clk_init_data::parent_data array 462 * with 'xtal' in the 'name' member to find the clock provided by the 463 * clock-controller@f00abcd without needing to get the globally unique name of 464 * the xtal clk. 465 * 466 * parent: clock-controller@f00abcd { 467 * reg = <0xf00abcd 0xabcd>; 468 * #clock-cells = <0>; 469 * }; 470 * 471 * clock-controller@c001 { 472 * reg = <0xc001 0xf00d>; 473 * clocks = <&parent>; 474 * clock-names = "xtal"; 475 * #clock-cells = <1>; 476 * }; 477 * 478 * Returns: -ENOENT when the provider can't be found or the clk doesn't 479 * exist in the provider or the name can't be found in the DT node or 480 * in a clkdev lookup. NULL when the provider knows about the clk but it 481 * isn't provided on this system. 482 * A valid clk_core pointer when the clk can be found in the provider. 483 */ 484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index) 485 { 486 const char *name = core->parents[p_index].fw_name; 487 int index = core->parents[p_index].index; 488 struct clk_hw *hw = ERR_PTR(-ENOENT); 489 struct device *dev = core->dev; 490 const char *dev_id = dev ? dev_name(dev) : NULL; 491 struct device_node *np = core->of_node; 492 struct of_phandle_args clkspec; 493 494 if (np && (name || index >= 0) && 495 !of_parse_clkspec(np, index, name, &clkspec)) { 496 hw = of_clk_get_hw_from_clkspec(&clkspec); 497 of_node_put(clkspec.np); 498 } else if (name) { 499 /* 500 * If the DT search above couldn't find the provider fallback to 501 * looking up via clkdev based clk_lookups. 502 */ 503 hw = clk_find_hw(dev_id, name); 504 } 505 506 if (IS_ERR(hw)) 507 return ERR_CAST(hw); 508 509 if (!hw) 510 return NULL; 511 512 return hw->core; 513 } 514 515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index) 516 { 517 struct clk_parent_map *entry = &core->parents[index]; 518 struct clk_core *parent; 519 520 if (entry->hw) { 521 parent = entry->hw->core; 522 } else { 523 parent = clk_core_get(core, index); 524 if (PTR_ERR(parent) == -ENOENT && entry->name) 525 parent = clk_core_lookup(entry->name); 526 } 527 528 /* 529 * We have a direct reference but it isn't registered yet? 530 * Orphan it and let clk_reparent() update the orphan status 531 * when the parent is registered. 532 */ 533 if (!parent) 534 parent = ERR_PTR(-EPROBE_DEFER); 535 536 /* Only cache it if it's not an error */ 537 if (!IS_ERR(parent)) 538 entry->core = parent; 539 } 540 541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core, 542 u8 index) 543 { 544 if (!core || index >= core->num_parents || !core->parents) 545 return NULL; 546 547 if (!core->parents[index].core) 548 clk_core_fill_parent_index(core, index); 549 550 return core->parents[index].core; 551 } 552 553 struct clk_hw * 554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index) 555 { 556 struct clk_core *parent; 557 558 parent = clk_core_get_parent_by_index(hw->core, index); 559 560 return !parent ? NULL : parent->hw; 561 } 562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index); 563 564 unsigned int __clk_get_enable_count(struct clk *clk) 565 { 566 return !clk ? 0 : clk->core->enable_count; 567 } 568 569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core) 570 { 571 if (!core) 572 return 0; 573 574 if (!core->num_parents || core->parent) 575 return core->rate; 576 577 /* 578 * Clk must have a parent because num_parents > 0 but the parent isn't 579 * known yet. Best to return 0 as the rate of this clk until we can 580 * properly recalc the rate based on the parent's rate. 581 */ 582 return 0; 583 } 584 585 unsigned long clk_hw_get_rate(const struct clk_hw *hw) 586 { 587 return clk_core_get_rate_nolock(hw->core); 588 } 589 EXPORT_SYMBOL_GPL(clk_hw_get_rate); 590 591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core) 592 { 593 if (!core) 594 return 0; 595 596 return core->accuracy; 597 } 598 599 unsigned long clk_hw_get_flags(const struct clk_hw *hw) 600 { 601 return hw->core->flags; 602 } 603 EXPORT_SYMBOL_GPL(clk_hw_get_flags); 604 605 bool clk_hw_is_prepared(const struct clk_hw *hw) 606 { 607 return clk_core_is_prepared(hw->core); 608 } 609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared); 610 611 bool clk_hw_rate_is_protected(const struct clk_hw *hw) 612 { 613 return clk_core_rate_is_protected(hw->core); 614 } 615 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected); 616 617 bool clk_hw_is_enabled(const struct clk_hw *hw) 618 { 619 return clk_core_is_enabled(hw->core); 620 } 621 EXPORT_SYMBOL_GPL(clk_hw_is_enabled); 622 623 bool __clk_is_enabled(struct clk *clk) 624 { 625 if (!clk) 626 return false; 627 628 return clk_core_is_enabled(clk->core); 629 } 630 EXPORT_SYMBOL_GPL(__clk_is_enabled); 631 632 static bool mux_is_better_rate(unsigned long rate, unsigned long now, 633 unsigned long best, unsigned long flags) 634 { 635 if (flags & CLK_MUX_ROUND_CLOSEST) 636 return abs(now - rate) < abs(best - rate); 637 638 return now <= rate && now > best; 639 } 640 641 static void clk_core_init_rate_req(struct clk_core * const core, 642 struct clk_rate_request *req, 643 unsigned long rate); 644 645 static int clk_core_round_rate_nolock(struct clk_core *core, 646 struct clk_rate_request *req); 647 648 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent) 649 { 650 struct clk_core *tmp; 651 unsigned int i; 652 653 /* Optimize for the case where the parent is already the parent. */ 654 if (core->parent == parent) 655 return true; 656 657 for (i = 0; i < core->num_parents; i++) { 658 tmp = clk_core_get_parent_by_index(core, i); 659 if (!tmp) 660 continue; 661 662 if (tmp == parent) 663 return true; 664 } 665 666 return false; 667 } 668 669 static void 670 clk_core_forward_rate_req(struct clk_core *core, 671 const struct clk_rate_request *old_req, 672 struct clk_core *parent, 673 struct clk_rate_request *req, 674 unsigned long parent_rate) 675 { 676 if (WARN_ON(!clk_core_has_parent(core, parent))) 677 return; 678 679 clk_core_init_rate_req(parent, req, parent_rate); 680 681 if (req->min_rate < old_req->min_rate) 682 req->min_rate = old_req->min_rate; 683 684 if (req->max_rate > old_req->max_rate) 685 req->max_rate = old_req->max_rate; 686 } 687 688 static int 689 clk_core_determine_rate_no_reparent(struct clk_hw *hw, 690 struct clk_rate_request *req) 691 { 692 struct clk_core *core = hw->core; 693 struct clk_core *parent = core->parent; 694 unsigned long best; 695 int ret; 696 697 if (core->flags & CLK_SET_RATE_PARENT) { 698 struct clk_rate_request parent_req; 699 700 if (!parent) { 701 req->rate = 0; 702 return 0; 703 } 704 705 clk_core_forward_rate_req(core, req, parent, &parent_req, 706 req->rate); 707 708 trace_clk_rate_request_start(&parent_req); 709 710 ret = clk_core_round_rate_nolock(parent, &parent_req); 711 if (ret) 712 return ret; 713 714 trace_clk_rate_request_done(&parent_req); 715 716 best = parent_req.rate; 717 } else if (parent) { 718 best = clk_core_get_rate_nolock(parent); 719 } else { 720 best = clk_core_get_rate_nolock(core); 721 } 722 723 req->best_parent_rate = best; 724 req->rate = best; 725 726 return 0; 727 } 728 729 int clk_mux_determine_rate_flags(struct clk_hw *hw, 730 struct clk_rate_request *req, 731 unsigned long flags) 732 { 733 struct clk_core *core = hw->core, *parent, *best_parent = NULL; 734 int i, num_parents, ret; 735 unsigned long best = 0; 736 737 /* if NO_REPARENT flag set, pass through to current parent */ 738 if (core->flags & CLK_SET_RATE_NO_REPARENT) 739 return clk_core_determine_rate_no_reparent(hw, req); 740 741 /* find the parent that can provide the fastest rate <= rate */ 742 num_parents = core->num_parents; 743 for (i = 0; i < num_parents; i++) { 744 unsigned long parent_rate; 745 746 parent = clk_core_get_parent_by_index(core, i); 747 if (!parent) 748 continue; 749 750 if (core->flags & CLK_SET_RATE_PARENT) { 751 struct clk_rate_request parent_req; 752 753 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate); 754 755 trace_clk_rate_request_start(&parent_req); 756 757 ret = clk_core_round_rate_nolock(parent, &parent_req); 758 if (ret) 759 continue; 760 761 trace_clk_rate_request_done(&parent_req); 762 763 parent_rate = parent_req.rate; 764 } else { 765 parent_rate = clk_core_get_rate_nolock(parent); 766 } 767 768 if (mux_is_better_rate(req->rate, parent_rate, 769 best, flags)) { 770 best_parent = parent; 771 best = parent_rate; 772 } 773 } 774 775 if (!best_parent) 776 return -EINVAL; 777 778 req->best_parent_hw = best_parent->hw; 779 req->best_parent_rate = best; 780 req->rate = best; 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags); 785 786 struct clk *__clk_lookup(const char *name) 787 { 788 struct clk_core *core = clk_core_lookup(name); 789 790 return !core ? NULL : core->hw->clk; 791 } 792 793 static void clk_core_get_boundaries(struct clk_core *core, 794 unsigned long *min_rate, 795 unsigned long *max_rate) 796 { 797 struct clk *clk_user; 798 799 lockdep_assert_held(&prepare_lock); 800 801 *min_rate = core->min_rate; 802 *max_rate = core->max_rate; 803 804 hlist_for_each_entry(clk_user, &core->clks, clks_node) 805 *min_rate = max(*min_rate, clk_user->min_rate); 806 807 hlist_for_each_entry(clk_user, &core->clks, clks_node) 808 *max_rate = min(*max_rate, clk_user->max_rate); 809 } 810 811 /* 812 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk 813 * @hw: the hw clk we want to get the range from 814 * @min_rate: pointer to the variable that will hold the minimum 815 * @max_rate: pointer to the variable that will hold the maximum 816 * 817 * Fills the @min_rate and @max_rate variables with the minimum and 818 * maximum that clock can reach. 819 */ 820 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate, 821 unsigned long *max_rate) 822 { 823 clk_core_get_boundaries(hw->core, min_rate, max_rate); 824 } 825 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range); 826 827 static bool clk_core_check_boundaries(struct clk_core *core, 828 unsigned long min_rate, 829 unsigned long max_rate) 830 { 831 struct clk *user; 832 833 lockdep_assert_held(&prepare_lock); 834 835 if (min_rate > core->max_rate || max_rate < core->min_rate) 836 return false; 837 838 hlist_for_each_entry(user, &core->clks, clks_node) 839 if (min_rate > user->max_rate || max_rate < user->min_rate) 840 return false; 841 842 return true; 843 } 844 845 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate, 846 unsigned long max_rate) 847 { 848 hw->core->min_rate = min_rate; 849 hw->core->max_rate = max_rate; 850 } 851 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range); 852 853 /* 854 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk 855 * @hw: mux type clk to determine rate on 856 * @req: rate request, also used to return preferred parent and frequencies 857 * 858 * Helper for finding best parent to provide a given frequency. This can be used 859 * directly as a determine_rate callback (e.g. for a mux), or from a more 860 * complex clock that may combine a mux with other operations. 861 * 862 * Returns: 0 on success, -EERROR value on error 863 */ 864 int __clk_mux_determine_rate(struct clk_hw *hw, 865 struct clk_rate_request *req) 866 { 867 return clk_mux_determine_rate_flags(hw, req, 0); 868 } 869 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 870 871 int __clk_mux_determine_rate_closest(struct clk_hw *hw, 872 struct clk_rate_request *req) 873 { 874 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST); 875 } 876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest); 877 878 /* 879 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent 880 * @hw: mux type clk to determine rate on 881 * @req: rate request, also used to return preferred frequency 882 * 883 * Helper for finding best parent rate to provide a given frequency. 884 * This can be used directly as a determine_rate callback (e.g. for a 885 * mux), or from a more complex clock that may combine a mux with other 886 * operations. 887 * 888 * Returns: 0 on success, -EERROR value on error 889 */ 890 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw, 891 struct clk_rate_request *req) 892 { 893 return clk_core_determine_rate_no_reparent(hw, req); 894 } 895 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent); 896 897 /*** clk api ***/ 898 899 static void clk_core_rate_unprotect(struct clk_core *core) 900 { 901 lockdep_assert_held(&prepare_lock); 902 903 if (!core) 904 return; 905 906 if (WARN(core->protect_count == 0, 907 "%s already unprotected\n", core->name)) 908 return; 909 910 if (--core->protect_count > 0) 911 return; 912 913 clk_core_rate_unprotect(core->parent); 914 } 915 916 static int clk_core_rate_nuke_protect(struct clk_core *core) 917 { 918 int ret; 919 920 lockdep_assert_held(&prepare_lock); 921 922 if (!core) 923 return -EINVAL; 924 925 if (core->protect_count == 0) 926 return 0; 927 928 ret = core->protect_count; 929 core->protect_count = 1; 930 clk_core_rate_unprotect(core); 931 932 return ret; 933 } 934 935 /** 936 * clk_rate_exclusive_put - release exclusivity over clock rate control 937 * @clk: the clk over which the exclusivity is released 938 * 939 * clk_rate_exclusive_put() completes a critical section during which a clock 940 * consumer cannot tolerate any other consumer making any operation on the 941 * clock which could result in a rate change or rate glitch. Exclusive clocks 942 * cannot have their rate changed, either directly or indirectly due to changes 943 * further up the parent chain of clocks. As a result, clocks up parent chain 944 * also get under exclusive control of the calling consumer. 945 * 946 * If exlusivity is claimed more than once on clock, even by the same consumer, 947 * the rate effectively gets locked as exclusivity can't be preempted. 948 * 949 * Calls to clk_rate_exclusive_put() must be balanced with calls to 950 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return 951 * error status. 952 */ 953 void clk_rate_exclusive_put(struct clk *clk) 954 { 955 if (!clk) 956 return; 957 958 clk_prepare_lock(); 959 960 /* 961 * if there is something wrong with this consumer protect count, stop 962 * here before messing with the provider 963 */ 964 if (WARN_ON(clk->exclusive_count <= 0)) 965 goto out; 966 967 clk_core_rate_unprotect(clk->core); 968 clk->exclusive_count--; 969 out: 970 clk_prepare_unlock(); 971 } 972 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put); 973 974 static void clk_core_rate_protect(struct clk_core *core) 975 { 976 lockdep_assert_held(&prepare_lock); 977 978 if (!core) 979 return; 980 981 if (core->protect_count == 0) 982 clk_core_rate_protect(core->parent); 983 984 core->protect_count++; 985 } 986 987 static void clk_core_rate_restore_protect(struct clk_core *core, int count) 988 { 989 lockdep_assert_held(&prepare_lock); 990 991 if (!core) 992 return; 993 994 if (count == 0) 995 return; 996 997 clk_core_rate_protect(core); 998 core->protect_count = count; 999 } 1000 1001 /** 1002 * clk_rate_exclusive_get - get exclusivity over the clk rate control 1003 * @clk: the clk over which the exclusity of rate control is requested 1004 * 1005 * clk_rate_exclusive_get() begins a critical section during which a clock 1006 * consumer cannot tolerate any other consumer making any operation on the 1007 * clock which could result in a rate change or rate glitch. Exclusive clocks 1008 * cannot have their rate changed, either directly or indirectly due to changes 1009 * further up the parent chain of clocks. As a result, clocks up parent chain 1010 * also get under exclusive control of the calling consumer. 1011 * 1012 * If exlusivity is claimed more than once on clock, even by the same consumer, 1013 * the rate effectively gets locked as exclusivity can't be preempted. 1014 * 1015 * Calls to clk_rate_exclusive_get() should be balanced with calls to 1016 * clk_rate_exclusive_put(). Calls to this function may sleep. 1017 * Returns 0 on success, -EERROR otherwise 1018 */ 1019 int clk_rate_exclusive_get(struct clk *clk) 1020 { 1021 if (!clk) 1022 return 0; 1023 1024 clk_prepare_lock(); 1025 clk_core_rate_protect(clk->core); 1026 clk->exclusive_count++; 1027 clk_prepare_unlock(); 1028 1029 return 0; 1030 } 1031 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get); 1032 1033 static void clk_core_unprepare(struct clk_core *core) 1034 { 1035 lockdep_assert_held(&prepare_lock); 1036 1037 if (!core) 1038 return; 1039 1040 if (WARN(core->prepare_count == 0, 1041 "%s already unprepared\n", core->name)) 1042 return; 1043 1044 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL, 1045 "Unpreparing critical %s\n", core->name)) 1046 return; 1047 1048 if (core->flags & CLK_SET_RATE_GATE) 1049 clk_core_rate_unprotect(core); 1050 1051 if (--core->prepare_count > 0) 1052 return; 1053 1054 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name); 1055 1056 trace_clk_unprepare(core); 1057 1058 if (core->ops->unprepare) 1059 core->ops->unprepare(core->hw); 1060 1061 trace_clk_unprepare_complete(core); 1062 clk_core_unprepare(core->parent); 1063 clk_pm_runtime_put(core); 1064 } 1065 1066 static void clk_core_unprepare_lock(struct clk_core *core) 1067 { 1068 clk_prepare_lock(); 1069 clk_core_unprepare(core); 1070 clk_prepare_unlock(); 1071 } 1072 1073 /** 1074 * clk_unprepare - undo preparation of a clock source 1075 * @clk: the clk being unprepared 1076 * 1077 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 1078 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 1079 * if the operation may sleep. One example is a clk which is accessed over 1080 * I2c. In the complex case a clk gate operation may require a fast and a slow 1081 * part. It is this reason that clk_unprepare and clk_disable are not mutually 1082 * exclusive. In fact clk_disable must be called before clk_unprepare. 1083 */ 1084 void clk_unprepare(struct clk *clk) 1085 { 1086 if (IS_ERR_OR_NULL(clk)) 1087 return; 1088 1089 clk_core_unprepare_lock(clk->core); 1090 } 1091 EXPORT_SYMBOL_GPL(clk_unprepare); 1092 1093 static int clk_core_prepare(struct clk_core *core) 1094 { 1095 int ret = 0; 1096 1097 lockdep_assert_held(&prepare_lock); 1098 1099 if (!core) 1100 return 0; 1101 1102 if (core->prepare_count == 0) { 1103 ret = clk_pm_runtime_get(core); 1104 if (ret) 1105 return ret; 1106 1107 ret = clk_core_prepare(core->parent); 1108 if (ret) 1109 goto runtime_put; 1110 1111 trace_clk_prepare(core); 1112 1113 if (core->ops->prepare) 1114 ret = core->ops->prepare(core->hw); 1115 1116 trace_clk_prepare_complete(core); 1117 1118 if (ret) 1119 goto unprepare; 1120 } 1121 1122 core->prepare_count++; 1123 1124 /* 1125 * CLK_SET_RATE_GATE is a special case of clock protection 1126 * Instead of a consumer claiming exclusive rate control, it is 1127 * actually the provider which prevents any consumer from making any 1128 * operation which could result in a rate change or rate glitch while 1129 * the clock is prepared. 1130 */ 1131 if (core->flags & CLK_SET_RATE_GATE) 1132 clk_core_rate_protect(core); 1133 1134 return 0; 1135 unprepare: 1136 clk_core_unprepare(core->parent); 1137 runtime_put: 1138 clk_pm_runtime_put(core); 1139 return ret; 1140 } 1141 1142 static int clk_core_prepare_lock(struct clk_core *core) 1143 { 1144 int ret; 1145 1146 clk_prepare_lock(); 1147 ret = clk_core_prepare(core); 1148 clk_prepare_unlock(); 1149 1150 return ret; 1151 } 1152 1153 /** 1154 * clk_prepare - prepare a clock source 1155 * @clk: the clk being prepared 1156 * 1157 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 1158 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 1159 * operation may sleep. One example is a clk which is accessed over I2c. In 1160 * the complex case a clk ungate operation may require a fast and a slow part. 1161 * It is this reason that clk_prepare and clk_enable are not mutually 1162 * exclusive. In fact clk_prepare must be called before clk_enable. 1163 * Returns 0 on success, -EERROR otherwise. 1164 */ 1165 int clk_prepare(struct clk *clk) 1166 { 1167 if (!clk) 1168 return 0; 1169 1170 return clk_core_prepare_lock(clk->core); 1171 } 1172 EXPORT_SYMBOL_GPL(clk_prepare); 1173 1174 static void clk_core_disable(struct clk_core *core) 1175 { 1176 lockdep_assert_held(&enable_lock); 1177 1178 if (!core) 1179 return; 1180 1181 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name)) 1182 return; 1183 1184 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL, 1185 "Disabling critical %s\n", core->name)) 1186 return; 1187 1188 if (--core->enable_count > 0) 1189 return; 1190 1191 trace_clk_disable(core); 1192 1193 if (core->ops->disable) 1194 core->ops->disable(core->hw); 1195 1196 trace_clk_disable_complete(core); 1197 1198 clk_core_disable(core->parent); 1199 } 1200 1201 static void clk_core_disable_lock(struct clk_core *core) 1202 { 1203 unsigned long flags; 1204 1205 flags = clk_enable_lock(); 1206 clk_core_disable(core); 1207 clk_enable_unlock(flags); 1208 } 1209 1210 /** 1211 * clk_disable - gate a clock 1212 * @clk: the clk being gated 1213 * 1214 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 1215 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 1216 * clk if the operation is fast and will never sleep. One example is a 1217 * SoC-internal clk which is controlled via simple register writes. In the 1218 * complex case a clk gate operation may require a fast and a slow part. It is 1219 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 1220 * In fact clk_disable must be called before clk_unprepare. 1221 */ 1222 void clk_disable(struct clk *clk) 1223 { 1224 if (IS_ERR_OR_NULL(clk)) 1225 return; 1226 1227 clk_core_disable_lock(clk->core); 1228 } 1229 EXPORT_SYMBOL_GPL(clk_disable); 1230 1231 static int clk_core_enable(struct clk_core *core) 1232 { 1233 int ret = 0; 1234 1235 lockdep_assert_held(&enable_lock); 1236 1237 if (!core) 1238 return 0; 1239 1240 if (WARN(core->prepare_count == 0, 1241 "Enabling unprepared %s\n", core->name)) 1242 return -ESHUTDOWN; 1243 1244 if (core->enable_count == 0) { 1245 ret = clk_core_enable(core->parent); 1246 1247 if (ret) 1248 return ret; 1249 1250 trace_clk_enable(core); 1251 1252 if (core->ops->enable) 1253 ret = core->ops->enable(core->hw); 1254 1255 trace_clk_enable_complete(core); 1256 1257 if (ret) { 1258 clk_core_disable(core->parent); 1259 return ret; 1260 } 1261 } 1262 1263 core->enable_count++; 1264 return 0; 1265 } 1266 1267 static int clk_core_enable_lock(struct clk_core *core) 1268 { 1269 unsigned long flags; 1270 int ret; 1271 1272 flags = clk_enable_lock(); 1273 ret = clk_core_enable(core); 1274 clk_enable_unlock(flags); 1275 1276 return ret; 1277 } 1278 1279 /** 1280 * clk_gate_restore_context - restore context for poweroff 1281 * @hw: the clk_hw pointer of clock whose state is to be restored 1282 * 1283 * The clock gate restore context function enables or disables 1284 * the gate clocks based on the enable_count. This is done in cases 1285 * where the clock context is lost and based on the enable_count 1286 * the clock either needs to be enabled/disabled. This 1287 * helps restore the state of gate clocks. 1288 */ 1289 void clk_gate_restore_context(struct clk_hw *hw) 1290 { 1291 struct clk_core *core = hw->core; 1292 1293 if (core->enable_count) 1294 core->ops->enable(hw); 1295 else 1296 core->ops->disable(hw); 1297 } 1298 EXPORT_SYMBOL_GPL(clk_gate_restore_context); 1299 1300 static int clk_core_save_context(struct clk_core *core) 1301 { 1302 struct clk_core *child; 1303 int ret = 0; 1304 1305 hlist_for_each_entry(child, &core->children, child_node) { 1306 ret = clk_core_save_context(child); 1307 if (ret < 0) 1308 return ret; 1309 } 1310 1311 if (core->ops && core->ops->save_context) 1312 ret = core->ops->save_context(core->hw); 1313 1314 return ret; 1315 } 1316 1317 static void clk_core_restore_context(struct clk_core *core) 1318 { 1319 struct clk_core *child; 1320 1321 if (core->ops && core->ops->restore_context) 1322 core->ops->restore_context(core->hw); 1323 1324 hlist_for_each_entry(child, &core->children, child_node) 1325 clk_core_restore_context(child); 1326 } 1327 1328 /** 1329 * clk_save_context - save clock context for poweroff 1330 * 1331 * Saves the context of the clock register for powerstates in which the 1332 * contents of the registers will be lost. Occurs deep within the suspend 1333 * code. Returns 0 on success. 1334 */ 1335 int clk_save_context(void) 1336 { 1337 struct clk_core *clk; 1338 int ret; 1339 1340 hlist_for_each_entry(clk, &clk_root_list, child_node) { 1341 ret = clk_core_save_context(clk); 1342 if (ret < 0) 1343 return ret; 1344 } 1345 1346 hlist_for_each_entry(clk, &clk_orphan_list, child_node) { 1347 ret = clk_core_save_context(clk); 1348 if (ret < 0) 1349 return ret; 1350 } 1351 1352 return 0; 1353 } 1354 EXPORT_SYMBOL_GPL(clk_save_context); 1355 1356 /** 1357 * clk_restore_context - restore clock context after poweroff 1358 * 1359 * Restore the saved clock context upon resume. 1360 * 1361 */ 1362 void clk_restore_context(void) 1363 { 1364 struct clk_core *core; 1365 1366 hlist_for_each_entry(core, &clk_root_list, child_node) 1367 clk_core_restore_context(core); 1368 1369 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1370 clk_core_restore_context(core); 1371 } 1372 EXPORT_SYMBOL_GPL(clk_restore_context); 1373 1374 /** 1375 * clk_enable - ungate a clock 1376 * @clk: the clk being ungated 1377 * 1378 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 1379 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 1380 * if the operation will never sleep. One example is a SoC-internal clk which 1381 * is controlled via simple register writes. In the complex case a clk ungate 1382 * operation may require a fast and a slow part. It is this reason that 1383 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 1384 * must be called before clk_enable. Returns 0 on success, -EERROR 1385 * otherwise. 1386 */ 1387 int clk_enable(struct clk *clk) 1388 { 1389 if (!clk) 1390 return 0; 1391 1392 return clk_core_enable_lock(clk->core); 1393 } 1394 EXPORT_SYMBOL_GPL(clk_enable); 1395 1396 /** 1397 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it. 1398 * @clk: clock source 1399 * 1400 * Returns true if clk_prepare() implicitly enables the clock, effectively 1401 * making clk_enable()/clk_disable() no-ops, false otherwise. 1402 * 1403 * This is of interest mainly to power management code where actually 1404 * disabling the clock also requires unpreparing it to have any material 1405 * effect. 1406 * 1407 * Regardless of the value returned here, the caller must always invoke 1408 * clk_enable() or clk_prepare_enable() and counterparts for usage counts 1409 * to be right. 1410 */ 1411 bool clk_is_enabled_when_prepared(struct clk *clk) 1412 { 1413 return clk && !(clk->core->ops->enable && clk->core->ops->disable); 1414 } 1415 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared); 1416 1417 static int clk_core_prepare_enable(struct clk_core *core) 1418 { 1419 int ret; 1420 1421 ret = clk_core_prepare_lock(core); 1422 if (ret) 1423 return ret; 1424 1425 ret = clk_core_enable_lock(core); 1426 if (ret) 1427 clk_core_unprepare_lock(core); 1428 1429 return ret; 1430 } 1431 1432 static void clk_core_disable_unprepare(struct clk_core *core) 1433 { 1434 clk_core_disable_lock(core); 1435 clk_core_unprepare_lock(core); 1436 } 1437 1438 static void __init clk_unprepare_unused_subtree(struct clk_core *core) 1439 { 1440 struct clk_core *child; 1441 1442 lockdep_assert_held(&prepare_lock); 1443 1444 hlist_for_each_entry(child, &core->children, child_node) 1445 clk_unprepare_unused_subtree(child); 1446 1447 if (core->prepare_count) 1448 return; 1449 1450 if (core->flags & CLK_IGNORE_UNUSED) 1451 return; 1452 1453 if (clk_core_is_prepared(core)) { 1454 trace_clk_unprepare(core); 1455 if (core->ops->unprepare_unused) 1456 core->ops->unprepare_unused(core->hw); 1457 else if (core->ops->unprepare) 1458 core->ops->unprepare(core->hw); 1459 trace_clk_unprepare_complete(core); 1460 } 1461 } 1462 1463 static void __init clk_disable_unused_subtree(struct clk_core *core) 1464 { 1465 struct clk_core *child; 1466 unsigned long flags; 1467 1468 lockdep_assert_held(&prepare_lock); 1469 1470 hlist_for_each_entry(child, &core->children, child_node) 1471 clk_disable_unused_subtree(child); 1472 1473 if (core->flags & CLK_OPS_PARENT_ENABLE) 1474 clk_core_prepare_enable(core->parent); 1475 1476 flags = clk_enable_lock(); 1477 1478 if (core->enable_count) 1479 goto unlock_out; 1480 1481 if (core->flags & CLK_IGNORE_UNUSED) 1482 goto unlock_out; 1483 1484 /* 1485 * some gate clocks have special needs during the disable-unused 1486 * sequence. call .disable_unused if available, otherwise fall 1487 * back to .disable 1488 */ 1489 if (clk_core_is_enabled(core)) { 1490 trace_clk_disable(core); 1491 if (core->ops->disable_unused) 1492 core->ops->disable_unused(core->hw); 1493 else if (core->ops->disable) 1494 core->ops->disable(core->hw); 1495 trace_clk_disable_complete(core); 1496 } 1497 1498 unlock_out: 1499 clk_enable_unlock(flags); 1500 if (core->flags & CLK_OPS_PARENT_ENABLE) 1501 clk_core_disable_unprepare(core->parent); 1502 } 1503 1504 static bool clk_ignore_unused __initdata; 1505 static int __init clk_ignore_unused_setup(char *__unused) 1506 { 1507 clk_ignore_unused = true; 1508 return 1; 1509 } 1510 __setup("clk_ignore_unused", clk_ignore_unused_setup); 1511 1512 static int __init clk_disable_unused(void) 1513 { 1514 struct clk_core *core; 1515 int ret; 1516 1517 if (clk_ignore_unused) { 1518 pr_warn("clk: Not disabling unused clocks\n"); 1519 return 0; 1520 } 1521 1522 pr_info("clk: Disabling unused clocks\n"); 1523 1524 ret = clk_pm_runtime_get_all(); 1525 if (ret) 1526 return ret; 1527 /* 1528 * Grab the prepare lock to keep the clk topology stable while iterating 1529 * over clks. 1530 */ 1531 clk_prepare_lock(); 1532 1533 hlist_for_each_entry(core, &clk_root_list, child_node) 1534 clk_disable_unused_subtree(core); 1535 1536 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1537 clk_disable_unused_subtree(core); 1538 1539 hlist_for_each_entry(core, &clk_root_list, child_node) 1540 clk_unprepare_unused_subtree(core); 1541 1542 hlist_for_each_entry(core, &clk_orphan_list, child_node) 1543 clk_unprepare_unused_subtree(core); 1544 1545 clk_prepare_unlock(); 1546 1547 clk_pm_runtime_put_all(); 1548 1549 return 0; 1550 } 1551 late_initcall_sync(clk_disable_unused); 1552 1553 static int clk_core_determine_round_nolock(struct clk_core *core, 1554 struct clk_rate_request *req) 1555 { 1556 long rate; 1557 1558 lockdep_assert_held(&prepare_lock); 1559 1560 if (!core) 1561 return 0; 1562 1563 /* 1564 * Some clock providers hand-craft their clk_rate_requests and 1565 * might not fill min_rate and max_rate. 1566 * 1567 * If it's the case, clamping the rate is equivalent to setting 1568 * the rate to 0 which is bad. Skip the clamping but complain so 1569 * that it gets fixed, hopefully. 1570 */ 1571 if (!req->min_rate && !req->max_rate) 1572 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n", 1573 __func__, core->name); 1574 else 1575 req->rate = clamp(req->rate, req->min_rate, req->max_rate); 1576 1577 /* 1578 * At this point, core protection will be disabled 1579 * - if the provider is not protected at all 1580 * - if the calling consumer is the only one which has exclusivity 1581 * over the provider 1582 */ 1583 if (clk_core_rate_is_protected(core)) { 1584 req->rate = core->rate; 1585 } else if (core->ops->determine_rate) { 1586 return core->ops->determine_rate(core->hw, req); 1587 } else if (core->ops->round_rate) { 1588 rate = core->ops->round_rate(core->hw, req->rate, 1589 &req->best_parent_rate); 1590 if (rate < 0) 1591 return rate; 1592 1593 req->rate = rate; 1594 } else { 1595 return -EINVAL; 1596 } 1597 1598 return 0; 1599 } 1600 1601 static void clk_core_init_rate_req(struct clk_core * const core, 1602 struct clk_rate_request *req, 1603 unsigned long rate) 1604 { 1605 struct clk_core *parent; 1606 1607 if (WARN_ON(!req)) 1608 return; 1609 1610 memset(req, 0, sizeof(*req)); 1611 req->max_rate = ULONG_MAX; 1612 1613 if (!core) 1614 return; 1615 1616 req->core = core; 1617 req->rate = rate; 1618 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate); 1619 1620 parent = core->parent; 1621 if (parent) { 1622 req->best_parent_hw = parent->hw; 1623 req->best_parent_rate = parent->rate; 1624 } else { 1625 req->best_parent_hw = NULL; 1626 req->best_parent_rate = 0; 1627 } 1628 } 1629 1630 /** 1631 * clk_hw_init_rate_request - Initializes a clk_rate_request 1632 * @hw: the clk for which we want to submit a rate request 1633 * @req: the clk_rate_request structure we want to initialise 1634 * @rate: the rate which is to be requested 1635 * 1636 * Initializes a clk_rate_request structure to submit to 1637 * __clk_determine_rate() or similar functions. 1638 */ 1639 void clk_hw_init_rate_request(const struct clk_hw *hw, 1640 struct clk_rate_request *req, 1641 unsigned long rate) 1642 { 1643 if (WARN_ON(!hw || !req)) 1644 return; 1645 1646 clk_core_init_rate_req(hw->core, req, rate); 1647 } 1648 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request); 1649 1650 /** 1651 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent 1652 * @hw: the original clock that got the rate request 1653 * @old_req: the original clk_rate_request structure we want to forward 1654 * @parent: the clk we want to forward @old_req to 1655 * @req: the clk_rate_request structure we want to initialise 1656 * @parent_rate: The rate which is to be requested to @parent 1657 * 1658 * Initializes a clk_rate_request structure to submit to a clock parent 1659 * in __clk_determine_rate() or similar functions. 1660 */ 1661 void clk_hw_forward_rate_request(const struct clk_hw *hw, 1662 const struct clk_rate_request *old_req, 1663 const struct clk_hw *parent, 1664 struct clk_rate_request *req, 1665 unsigned long parent_rate) 1666 { 1667 if (WARN_ON(!hw || !old_req || !parent || !req)) 1668 return; 1669 1670 clk_core_forward_rate_req(hw->core, old_req, 1671 parent->core, req, 1672 parent_rate); 1673 } 1674 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request); 1675 1676 static bool clk_core_can_round(struct clk_core * const core) 1677 { 1678 return core->ops->determine_rate || core->ops->round_rate; 1679 } 1680 1681 static int clk_core_round_rate_nolock(struct clk_core *core, 1682 struct clk_rate_request *req) 1683 { 1684 int ret; 1685 1686 lockdep_assert_held(&prepare_lock); 1687 1688 if (!core) { 1689 req->rate = 0; 1690 return 0; 1691 } 1692 1693 if (clk_core_can_round(core)) 1694 return clk_core_determine_round_nolock(core, req); 1695 1696 if (core->flags & CLK_SET_RATE_PARENT) { 1697 struct clk_rate_request parent_req; 1698 1699 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate); 1700 1701 trace_clk_rate_request_start(&parent_req); 1702 1703 ret = clk_core_round_rate_nolock(core->parent, &parent_req); 1704 if (ret) 1705 return ret; 1706 1707 trace_clk_rate_request_done(&parent_req); 1708 1709 req->best_parent_rate = parent_req.rate; 1710 req->rate = parent_req.rate; 1711 1712 return 0; 1713 } 1714 1715 req->rate = core->rate; 1716 return 0; 1717 } 1718 1719 /** 1720 * __clk_determine_rate - get the closest rate actually supported by a clock 1721 * @hw: determine the rate of this clock 1722 * @req: target rate request 1723 * 1724 * Useful for clk_ops such as .set_rate and .determine_rate. 1725 */ 1726 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 1727 { 1728 if (!hw) { 1729 req->rate = 0; 1730 return 0; 1731 } 1732 1733 return clk_core_round_rate_nolock(hw->core, req); 1734 } 1735 EXPORT_SYMBOL_GPL(__clk_determine_rate); 1736 1737 /** 1738 * clk_hw_round_rate() - round the given rate for a hw clk 1739 * @hw: the hw clk for which we are rounding a rate 1740 * @rate: the rate which is to be rounded 1741 * 1742 * Takes in a rate as input and rounds it to a rate that the clk can actually 1743 * use. 1744 * 1745 * Context: prepare_lock must be held. 1746 * For clk providers to call from within clk_ops such as .round_rate, 1747 * .determine_rate. 1748 * 1749 * Return: returns rounded rate of hw clk if clk supports round_rate operation 1750 * else returns the parent rate. 1751 */ 1752 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate) 1753 { 1754 int ret; 1755 struct clk_rate_request req; 1756 1757 clk_core_init_rate_req(hw->core, &req, rate); 1758 1759 trace_clk_rate_request_start(&req); 1760 1761 ret = clk_core_round_rate_nolock(hw->core, &req); 1762 if (ret) 1763 return 0; 1764 1765 trace_clk_rate_request_done(&req); 1766 1767 return req.rate; 1768 } 1769 EXPORT_SYMBOL_GPL(clk_hw_round_rate); 1770 1771 /** 1772 * clk_round_rate - round the given rate for a clk 1773 * @clk: the clk for which we are rounding a rate 1774 * @rate: the rate which is to be rounded 1775 * 1776 * Takes in a rate as input and rounds it to a rate that the clk can actually 1777 * use which is then returned. If clk doesn't support round_rate operation 1778 * then the parent rate is returned. 1779 */ 1780 long clk_round_rate(struct clk *clk, unsigned long rate) 1781 { 1782 struct clk_rate_request req; 1783 int ret; 1784 1785 if (!clk) 1786 return 0; 1787 1788 clk_prepare_lock(); 1789 1790 if (clk->exclusive_count) 1791 clk_core_rate_unprotect(clk->core); 1792 1793 clk_core_init_rate_req(clk->core, &req, rate); 1794 1795 trace_clk_rate_request_start(&req); 1796 1797 ret = clk_core_round_rate_nolock(clk->core, &req); 1798 1799 trace_clk_rate_request_done(&req); 1800 1801 if (clk->exclusive_count) 1802 clk_core_rate_protect(clk->core); 1803 1804 clk_prepare_unlock(); 1805 1806 if (ret) 1807 return ret; 1808 1809 return req.rate; 1810 } 1811 EXPORT_SYMBOL_GPL(clk_round_rate); 1812 1813 /** 1814 * __clk_notify - call clk notifier chain 1815 * @core: clk that is changing rate 1816 * @msg: clk notifier type (see include/linux/clk.h) 1817 * @old_rate: old clk rate 1818 * @new_rate: new clk rate 1819 * 1820 * Triggers a notifier call chain on the clk rate-change notification 1821 * for 'clk'. Passes a pointer to the struct clk and the previous 1822 * and current rates to the notifier callback. Intended to be called by 1823 * internal clock code only. Returns NOTIFY_DONE from the last driver 1824 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1825 * a driver returns that. 1826 */ 1827 static int __clk_notify(struct clk_core *core, unsigned long msg, 1828 unsigned long old_rate, unsigned long new_rate) 1829 { 1830 struct clk_notifier *cn; 1831 struct clk_notifier_data cnd; 1832 int ret = NOTIFY_DONE; 1833 1834 cnd.old_rate = old_rate; 1835 cnd.new_rate = new_rate; 1836 1837 list_for_each_entry(cn, &clk_notifier_list, node) { 1838 if (cn->clk->core == core) { 1839 cnd.clk = cn->clk; 1840 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1841 &cnd); 1842 if (ret & NOTIFY_STOP_MASK) 1843 return ret; 1844 } 1845 } 1846 1847 return ret; 1848 } 1849 1850 /** 1851 * __clk_recalc_accuracies 1852 * @core: first clk in the subtree 1853 * 1854 * Walks the subtree of clks starting with clk and recalculates accuracies as 1855 * it goes. Note that if a clk does not implement the .recalc_accuracy 1856 * callback then it is assumed that the clock will take on the accuracy of its 1857 * parent. 1858 */ 1859 static void __clk_recalc_accuracies(struct clk_core *core) 1860 { 1861 unsigned long parent_accuracy = 0; 1862 struct clk_core *child; 1863 1864 lockdep_assert_held(&prepare_lock); 1865 1866 if (core->parent) 1867 parent_accuracy = core->parent->accuracy; 1868 1869 if (core->ops->recalc_accuracy) 1870 core->accuracy = core->ops->recalc_accuracy(core->hw, 1871 parent_accuracy); 1872 else 1873 core->accuracy = parent_accuracy; 1874 1875 hlist_for_each_entry(child, &core->children, child_node) 1876 __clk_recalc_accuracies(child); 1877 } 1878 1879 static long clk_core_get_accuracy_recalc(struct clk_core *core) 1880 { 1881 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE)) 1882 __clk_recalc_accuracies(core); 1883 1884 return clk_core_get_accuracy_no_lock(core); 1885 } 1886 1887 /** 1888 * clk_get_accuracy - return the accuracy of clk 1889 * @clk: the clk whose accuracy is being returned 1890 * 1891 * Simply returns the cached accuracy of the clk, unless 1892 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1893 * issued. 1894 * If clk is NULL then returns 0. 1895 */ 1896 long clk_get_accuracy(struct clk *clk) 1897 { 1898 long accuracy; 1899 1900 if (!clk) 1901 return 0; 1902 1903 clk_prepare_lock(); 1904 accuracy = clk_core_get_accuracy_recalc(clk->core); 1905 clk_prepare_unlock(); 1906 1907 return accuracy; 1908 } 1909 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1910 1911 static unsigned long clk_recalc(struct clk_core *core, 1912 unsigned long parent_rate) 1913 { 1914 unsigned long rate = parent_rate; 1915 1916 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) { 1917 rate = core->ops->recalc_rate(core->hw, parent_rate); 1918 clk_pm_runtime_put(core); 1919 } 1920 return rate; 1921 } 1922 1923 /** 1924 * __clk_recalc_rates 1925 * @core: first clk in the subtree 1926 * @update_req: Whether req_rate should be updated with the new rate 1927 * @msg: notification type (see include/linux/clk.h) 1928 * 1929 * Walks the subtree of clks starting with clk and recalculates rates as it 1930 * goes. Note that if a clk does not implement the .recalc_rate callback then 1931 * it is assumed that the clock will take on the rate of its parent. 1932 * 1933 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1934 * if necessary. 1935 */ 1936 static void __clk_recalc_rates(struct clk_core *core, bool update_req, 1937 unsigned long msg) 1938 { 1939 unsigned long old_rate; 1940 unsigned long parent_rate = 0; 1941 struct clk_core *child; 1942 1943 lockdep_assert_held(&prepare_lock); 1944 1945 old_rate = core->rate; 1946 1947 if (core->parent) 1948 parent_rate = core->parent->rate; 1949 1950 core->rate = clk_recalc(core, parent_rate); 1951 if (update_req) 1952 core->req_rate = core->rate; 1953 1954 /* 1955 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1956 * & ABORT_RATE_CHANGE notifiers 1957 */ 1958 if (core->notifier_count && msg) 1959 __clk_notify(core, msg, old_rate, core->rate); 1960 1961 hlist_for_each_entry(child, &core->children, child_node) 1962 __clk_recalc_rates(child, update_req, msg); 1963 } 1964 1965 static unsigned long clk_core_get_rate_recalc(struct clk_core *core) 1966 { 1967 if (core && (core->flags & CLK_GET_RATE_NOCACHE)) 1968 __clk_recalc_rates(core, false, 0); 1969 1970 return clk_core_get_rate_nolock(core); 1971 } 1972 1973 /** 1974 * clk_get_rate - return the rate of clk 1975 * @clk: the clk whose rate is being returned 1976 * 1977 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1978 * is set, which means a recalc_rate will be issued. Can be called regardless of 1979 * the clock enabledness. If clk is NULL, or if an error occurred, then returns 1980 * 0. 1981 */ 1982 unsigned long clk_get_rate(struct clk *clk) 1983 { 1984 unsigned long rate; 1985 1986 if (!clk) 1987 return 0; 1988 1989 clk_prepare_lock(); 1990 rate = clk_core_get_rate_recalc(clk->core); 1991 clk_prepare_unlock(); 1992 1993 return rate; 1994 } 1995 EXPORT_SYMBOL_GPL(clk_get_rate); 1996 1997 static int clk_fetch_parent_index(struct clk_core *core, 1998 struct clk_core *parent) 1999 { 2000 int i; 2001 2002 if (!parent) 2003 return -EINVAL; 2004 2005 for (i = 0; i < core->num_parents; i++) { 2006 /* Found it first try! */ 2007 if (core->parents[i].core == parent) 2008 return i; 2009 2010 /* Something else is here, so keep looking */ 2011 if (core->parents[i].core) 2012 continue; 2013 2014 /* Maybe core hasn't been cached but the hw is all we know? */ 2015 if (core->parents[i].hw) { 2016 if (core->parents[i].hw == parent->hw) 2017 break; 2018 2019 /* Didn't match, but we're expecting a clk_hw */ 2020 continue; 2021 } 2022 2023 /* Maybe it hasn't been cached (clk_set_parent() path) */ 2024 if (parent == clk_core_get(core, i)) 2025 break; 2026 2027 /* Fallback to comparing globally unique names */ 2028 if (core->parents[i].name && 2029 !strcmp(parent->name, core->parents[i].name)) 2030 break; 2031 } 2032 2033 if (i == core->num_parents) 2034 return -EINVAL; 2035 2036 core->parents[i].core = parent; 2037 return i; 2038 } 2039 2040 /** 2041 * clk_hw_get_parent_index - return the index of the parent clock 2042 * @hw: clk_hw associated with the clk being consumed 2043 * 2044 * Fetches and returns the index of parent clock. Returns -EINVAL if the given 2045 * clock does not have a current parent. 2046 */ 2047 int clk_hw_get_parent_index(struct clk_hw *hw) 2048 { 2049 struct clk_hw *parent = clk_hw_get_parent(hw); 2050 2051 if (WARN_ON(parent == NULL)) 2052 return -EINVAL; 2053 2054 return clk_fetch_parent_index(hw->core, parent->core); 2055 } 2056 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index); 2057 2058 /* 2059 * Update the orphan status of @core and all its children. 2060 */ 2061 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan) 2062 { 2063 struct clk_core *child; 2064 2065 core->orphan = is_orphan; 2066 2067 hlist_for_each_entry(child, &core->children, child_node) 2068 clk_core_update_orphan_status(child, is_orphan); 2069 } 2070 2071 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent) 2072 { 2073 bool was_orphan = core->orphan; 2074 2075 hlist_del(&core->child_node); 2076 2077 if (new_parent) { 2078 bool becomes_orphan = new_parent->orphan; 2079 2080 /* avoid duplicate POST_RATE_CHANGE notifications */ 2081 if (new_parent->new_child == core) 2082 new_parent->new_child = NULL; 2083 2084 hlist_add_head(&core->child_node, &new_parent->children); 2085 2086 if (was_orphan != becomes_orphan) 2087 clk_core_update_orphan_status(core, becomes_orphan); 2088 } else { 2089 hlist_add_head(&core->child_node, &clk_orphan_list); 2090 if (!was_orphan) 2091 clk_core_update_orphan_status(core, true); 2092 } 2093 2094 core->parent = new_parent; 2095 } 2096 2097 static struct clk_core *__clk_set_parent_before(struct clk_core *core, 2098 struct clk_core *parent) 2099 { 2100 unsigned long flags; 2101 struct clk_core *old_parent = core->parent; 2102 2103 /* 2104 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock 2105 * 2106 * 2. Migrate prepare state between parents and prevent race with 2107 * clk_enable(). 2108 * 2109 * If the clock is not prepared, then a race with 2110 * clk_enable/disable() is impossible since we already have the 2111 * prepare lock (future calls to clk_enable() need to be preceded by 2112 * a clk_prepare()). 2113 * 2114 * If the clock is prepared, migrate the prepared state to the new 2115 * parent and also protect against a race with clk_enable() by 2116 * forcing the clock and the new parent on. This ensures that all 2117 * future calls to clk_enable() are practically NOPs with respect to 2118 * hardware and software states. 2119 * 2120 * See also: Comment for clk_set_parent() below. 2121 */ 2122 2123 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */ 2124 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2125 clk_core_prepare_enable(old_parent); 2126 clk_core_prepare_enable(parent); 2127 } 2128 2129 /* migrate prepare count if > 0 */ 2130 if (core->prepare_count) { 2131 clk_core_prepare_enable(parent); 2132 clk_core_enable_lock(core); 2133 } 2134 2135 /* update the clk tree topology */ 2136 flags = clk_enable_lock(); 2137 clk_reparent(core, parent); 2138 clk_enable_unlock(flags); 2139 2140 return old_parent; 2141 } 2142 2143 static void __clk_set_parent_after(struct clk_core *core, 2144 struct clk_core *parent, 2145 struct clk_core *old_parent) 2146 { 2147 /* 2148 * Finish the migration of prepare state and undo the changes done 2149 * for preventing a race with clk_enable(). 2150 */ 2151 if (core->prepare_count) { 2152 clk_core_disable_lock(core); 2153 clk_core_disable_unprepare(old_parent); 2154 } 2155 2156 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */ 2157 if (core->flags & CLK_OPS_PARENT_ENABLE) { 2158 clk_core_disable_unprepare(parent); 2159 clk_core_disable_unprepare(old_parent); 2160 } 2161 } 2162 2163 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent, 2164 u8 p_index) 2165 { 2166 unsigned long flags; 2167 int ret = 0; 2168 struct clk_core *old_parent; 2169 2170 old_parent = __clk_set_parent_before(core, parent); 2171 2172 trace_clk_set_parent(core, parent); 2173 2174 /* change clock input source */ 2175 if (parent && core->ops->set_parent) 2176 ret = core->ops->set_parent(core->hw, p_index); 2177 2178 trace_clk_set_parent_complete(core, parent); 2179 2180 if (ret) { 2181 flags = clk_enable_lock(); 2182 clk_reparent(core, old_parent); 2183 clk_enable_unlock(flags); 2184 2185 __clk_set_parent_after(core, old_parent, parent); 2186 2187 return ret; 2188 } 2189 2190 __clk_set_parent_after(core, parent, old_parent); 2191 2192 return 0; 2193 } 2194 2195 /** 2196 * __clk_speculate_rates 2197 * @core: first clk in the subtree 2198 * @parent_rate: the "future" rate of clk's parent 2199 * 2200 * Walks the subtree of clks starting with clk, speculating rates as it 2201 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 2202 * 2203 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 2204 * pre-rate change notifications and returns early if no clks in the 2205 * subtree have subscribed to the notifications. Note that if a clk does not 2206 * implement the .recalc_rate callback then it is assumed that the clock will 2207 * take on the rate of its parent. 2208 */ 2209 static int __clk_speculate_rates(struct clk_core *core, 2210 unsigned long parent_rate) 2211 { 2212 struct clk_core *child; 2213 unsigned long new_rate; 2214 int ret = NOTIFY_DONE; 2215 2216 lockdep_assert_held(&prepare_lock); 2217 2218 new_rate = clk_recalc(core, parent_rate); 2219 2220 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 2221 if (core->notifier_count) 2222 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate); 2223 2224 if (ret & NOTIFY_STOP_MASK) { 2225 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 2226 __func__, core->name, ret); 2227 goto out; 2228 } 2229 2230 hlist_for_each_entry(child, &core->children, child_node) { 2231 ret = __clk_speculate_rates(child, new_rate); 2232 if (ret & NOTIFY_STOP_MASK) 2233 break; 2234 } 2235 2236 out: 2237 return ret; 2238 } 2239 2240 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate, 2241 struct clk_core *new_parent, u8 p_index) 2242 { 2243 struct clk_core *child; 2244 2245 core->new_rate = new_rate; 2246 core->new_parent = new_parent; 2247 core->new_parent_index = p_index; 2248 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 2249 core->new_child = NULL; 2250 if (new_parent && new_parent != core->parent) 2251 new_parent->new_child = core; 2252 2253 hlist_for_each_entry(child, &core->children, child_node) { 2254 child->new_rate = clk_recalc(child, new_rate); 2255 clk_calc_subtree(child, child->new_rate, NULL, 0); 2256 } 2257 } 2258 2259 /* 2260 * calculate the new rates returning the topmost clock that has to be 2261 * changed. 2262 */ 2263 static struct clk_core *clk_calc_new_rates(struct clk_core *core, 2264 unsigned long rate) 2265 { 2266 struct clk_core *top = core; 2267 struct clk_core *old_parent, *parent; 2268 unsigned long best_parent_rate = 0; 2269 unsigned long new_rate; 2270 unsigned long min_rate; 2271 unsigned long max_rate; 2272 int p_index = 0; 2273 long ret; 2274 2275 /* sanity */ 2276 if (IS_ERR_OR_NULL(core)) 2277 return NULL; 2278 2279 /* save parent rate, if it exists */ 2280 parent = old_parent = core->parent; 2281 if (parent) 2282 best_parent_rate = parent->rate; 2283 2284 clk_core_get_boundaries(core, &min_rate, &max_rate); 2285 2286 /* find the closest rate and parent clk/rate */ 2287 if (clk_core_can_round(core)) { 2288 struct clk_rate_request req; 2289 2290 clk_core_init_rate_req(core, &req, rate); 2291 2292 trace_clk_rate_request_start(&req); 2293 2294 ret = clk_core_determine_round_nolock(core, &req); 2295 if (ret < 0) 2296 return NULL; 2297 2298 trace_clk_rate_request_done(&req); 2299 2300 best_parent_rate = req.best_parent_rate; 2301 new_rate = req.rate; 2302 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL; 2303 2304 if (new_rate < min_rate || new_rate > max_rate) 2305 return NULL; 2306 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) { 2307 /* pass-through clock without adjustable parent */ 2308 core->new_rate = core->rate; 2309 return NULL; 2310 } else { 2311 /* pass-through clock with adjustable parent */ 2312 top = clk_calc_new_rates(parent, rate); 2313 new_rate = parent->new_rate; 2314 goto out; 2315 } 2316 2317 /* some clocks must be gated to change parent */ 2318 if (parent != old_parent && 2319 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) { 2320 pr_debug("%s: %s not gated but wants to reparent\n", 2321 __func__, core->name); 2322 return NULL; 2323 } 2324 2325 /* try finding the new parent index */ 2326 if (parent && core->num_parents > 1) { 2327 p_index = clk_fetch_parent_index(core, parent); 2328 if (p_index < 0) { 2329 pr_debug("%s: clk %s can not be parent of clk %s\n", 2330 __func__, parent->name, core->name); 2331 return NULL; 2332 } 2333 } 2334 2335 if ((core->flags & CLK_SET_RATE_PARENT) && parent && 2336 best_parent_rate != parent->rate) 2337 top = clk_calc_new_rates(parent, best_parent_rate); 2338 2339 out: 2340 clk_calc_subtree(core, new_rate, parent, p_index); 2341 2342 return top; 2343 } 2344 2345 /* 2346 * Notify about rate changes in a subtree. Always walk down the whole tree 2347 * so that in case of an error we can walk down the whole tree again and 2348 * abort the change. 2349 */ 2350 static struct clk_core *clk_propagate_rate_change(struct clk_core *core, 2351 unsigned long event) 2352 { 2353 struct clk_core *child, *tmp_clk, *fail_clk = NULL; 2354 int ret = NOTIFY_DONE; 2355 2356 if (core->rate == core->new_rate) 2357 return NULL; 2358 2359 if (core->notifier_count) { 2360 ret = __clk_notify(core, event, core->rate, core->new_rate); 2361 if (ret & NOTIFY_STOP_MASK) 2362 fail_clk = core; 2363 } 2364 2365 hlist_for_each_entry(child, &core->children, child_node) { 2366 /* Skip children who will be reparented to another clock */ 2367 if (child->new_parent && child->new_parent != core) 2368 continue; 2369 tmp_clk = clk_propagate_rate_change(child, event); 2370 if (tmp_clk) 2371 fail_clk = tmp_clk; 2372 } 2373 2374 /* handle the new child who might not be in core->children yet */ 2375 if (core->new_child) { 2376 tmp_clk = clk_propagate_rate_change(core->new_child, event); 2377 if (tmp_clk) 2378 fail_clk = tmp_clk; 2379 } 2380 2381 return fail_clk; 2382 } 2383 2384 /* 2385 * walk down a subtree and set the new rates notifying the rate 2386 * change on the way 2387 */ 2388 static void clk_change_rate(struct clk_core *core) 2389 { 2390 struct clk_core *child; 2391 struct hlist_node *tmp; 2392 unsigned long old_rate; 2393 unsigned long best_parent_rate = 0; 2394 bool skip_set_rate = false; 2395 struct clk_core *old_parent; 2396 struct clk_core *parent = NULL; 2397 2398 old_rate = core->rate; 2399 2400 if (core->new_parent) { 2401 parent = core->new_parent; 2402 best_parent_rate = core->new_parent->rate; 2403 } else if (core->parent) { 2404 parent = core->parent; 2405 best_parent_rate = core->parent->rate; 2406 } 2407 2408 if (clk_pm_runtime_get(core)) 2409 return; 2410 2411 if (core->flags & CLK_SET_RATE_UNGATE) { 2412 clk_core_prepare(core); 2413 clk_core_enable_lock(core); 2414 } 2415 2416 if (core->new_parent && core->new_parent != core->parent) { 2417 old_parent = __clk_set_parent_before(core, core->new_parent); 2418 trace_clk_set_parent(core, core->new_parent); 2419 2420 if (core->ops->set_rate_and_parent) { 2421 skip_set_rate = true; 2422 core->ops->set_rate_and_parent(core->hw, core->new_rate, 2423 best_parent_rate, 2424 core->new_parent_index); 2425 } else if (core->ops->set_parent) { 2426 core->ops->set_parent(core->hw, core->new_parent_index); 2427 } 2428 2429 trace_clk_set_parent_complete(core, core->new_parent); 2430 __clk_set_parent_after(core, core->new_parent, old_parent); 2431 } 2432 2433 if (core->flags & CLK_OPS_PARENT_ENABLE) 2434 clk_core_prepare_enable(parent); 2435 2436 trace_clk_set_rate(core, core->new_rate); 2437 2438 if (!skip_set_rate && core->ops->set_rate) 2439 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate); 2440 2441 trace_clk_set_rate_complete(core, core->new_rate); 2442 2443 core->rate = clk_recalc(core, best_parent_rate); 2444 2445 if (core->flags & CLK_SET_RATE_UNGATE) { 2446 clk_core_disable_lock(core); 2447 clk_core_unprepare(core); 2448 } 2449 2450 if (core->flags & CLK_OPS_PARENT_ENABLE) 2451 clk_core_disable_unprepare(parent); 2452 2453 if (core->notifier_count && old_rate != core->rate) 2454 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate); 2455 2456 if (core->flags & CLK_RECALC_NEW_RATES) 2457 (void)clk_calc_new_rates(core, core->new_rate); 2458 2459 /* 2460 * Use safe iteration, as change_rate can actually swap parents 2461 * for certain clock types. 2462 */ 2463 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) { 2464 /* Skip children who will be reparented to another clock */ 2465 if (child->new_parent && child->new_parent != core) 2466 continue; 2467 clk_change_rate(child); 2468 } 2469 2470 /* handle the new child who might not be in core->children yet */ 2471 if (core->new_child) 2472 clk_change_rate(core->new_child); 2473 2474 clk_pm_runtime_put(core); 2475 } 2476 2477 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core, 2478 unsigned long req_rate) 2479 { 2480 int ret, cnt; 2481 struct clk_rate_request req; 2482 2483 lockdep_assert_held(&prepare_lock); 2484 2485 if (!core) 2486 return 0; 2487 2488 /* simulate what the rate would be if it could be freely set */ 2489 cnt = clk_core_rate_nuke_protect(core); 2490 if (cnt < 0) 2491 return cnt; 2492 2493 clk_core_init_rate_req(core, &req, req_rate); 2494 2495 trace_clk_rate_request_start(&req); 2496 2497 ret = clk_core_round_rate_nolock(core, &req); 2498 2499 trace_clk_rate_request_done(&req); 2500 2501 /* restore the protection */ 2502 clk_core_rate_restore_protect(core, cnt); 2503 2504 return ret ? 0 : req.rate; 2505 } 2506 2507 static int clk_core_set_rate_nolock(struct clk_core *core, 2508 unsigned long req_rate) 2509 { 2510 struct clk_core *top, *fail_clk; 2511 unsigned long rate; 2512 int ret; 2513 2514 if (!core) 2515 return 0; 2516 2517 rate = clk_core_req_round_rate_nolock(core, req_rate); 2518 2519 /* bail early if nothing to do */ 2520 if (rate == clk_core_get_rate_nolock(core)) 2521 return 0; 2522 2523 /* fail on a direct rate set of a protected provider */ 2524 if (clk_core_rate_is_protected(core)) 2525 return -EBUSY; 2526 2527 /* calculate new rates and get the topmost changed clock */ 2528 top = clk_calc_new_rates(core, req_rate); 2529 if (!top) 2530 return -EINVAL; 2531 2532 ret = clk_pm_runtime_get(core); 2533 if (ret) 2534 return ret; 2535 2536 /* notify that we are about to change rates */ 2537 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 2538 if (fail_clk) { 2539 pr_debug("%s: failed to set %s rate\n", __func__, 2540 fail_clk->name); 2541 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 2542 ret = -EBUSY; 2543 goto err; 2544 } 2545 2546 /* change the rates */ 2547 clk_change_rate(top); 2548 2549 core->req_rate = req_rate; 2550 err: 2551 clk_pm_runtime_put(core); 2552 2553 return ret; 2554 } 2555 2556 /** 2557 * clk_set_rate - specify a new rate for clk 2558 * @clk: the clk whose rate is being changed 2559 * @rate: the new rate for clk 2560 * 2561 * In the simplest case clk_set_rate will only adjust the rate of clk. 2562 * 2563 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 2564 * propagate up to clk's parent; whether or not this happens depends on the 2565 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 2566 * after calling .round_rate then upstream parent propagation is ignored. If 2567 * *parent_rate comes back with a new rate for clk's parent then we propagate 2568 * up to clk's parent and set its rate. Upward propagation will continue 2569 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 2570 * .round_rate stops requesting changes to clk's parent_rate. 2571 * 2572 * Rate changes are accomplished via tree traversal that also recalculates the 2573 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 2574 * 2575 * Returns 0 on success, -EERROR otherwise. 2576 */ 2577 int clk_set_rate(struct clk *clk, unsigned long rate) 2578 { 2579 int ret; 2580 2581 if (!clk) 2582 return 0; 2583 2584 /* prevent racing with updates to the clock topology */ 2585 clk_prepare_lock(); 2586 2587 if (clk->exclusive_count) 2588 clk_core_rate_unprotect(clk->core); 2589 2590 ret = clk_core_set_rate_nolock(clk->core, rate); 2591 2592 if (clk->exclusive_count) 2593 clk_core_rate_protect(clk->core); 2594 2595 clk_prepare_unlock(); 2596 2597 return ret; 2598 } 2599 EXPORT_SYMBOL_GPL(clk_set_rate); 2600 2601 /** 2602 * clk_set_rate_exclusive - specify a new rate and get exclusive control 2603 * @clk: the clk whose rate is being changed 2604 * @rate: the new rate for clk 2605 * 2606 * This is a combination of clk_set_rate() and clk_rate_exclusive_get() 2607 * within a critical section 2608 * 2609 * This can be used initially to ensure that at least 1 consumer is 2610 * satisfied when several consumers are competing for exclusivity over the 2611 * same clock provider. 2612 * 2613 * The exclusivity is not applied if setting the rate failed. 2614 * 2615 * Calls to clk_rate_exclusive_get() should be balanced with calls to 2616 * clk_rate_exclusive_put(). 2617 * 2618 * Returns 0 on success, -EERROR otherwise. 2619 */ 2620 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate) 2621 { 2622 int ret; 2623 2624 if (!clk) 2625 return 0; 2626 2627 /* prevent racing with updates to the clock topology */ 2628 clk_prepare_lock(); 2629 2630 /* 2631 * The temporary protection removal is not here, on purpose 2632 * This function is meant to be used instead of clk_rate_protect, 2633 * so before the consumer code path protect the clock provider 2634 */ 2635 2636 ret = clk_core_set_rate_nolock(clk->core, rate); 2637 if (!ret) { 2638 clk_core_rate_protect(clk->core); 2639 clk->exclusive_count++; 2640 } 2641 2642 clk_prepare_unlock(); 2643 2644 return ret; 2645 } 2646 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive); 2647 2648 static int clk_set_rate_range_nolock(struct clk *clk, 2649 unsigned long min, 2650 unsigned long max) 2651 { 2652 int ret = 0; 2653 unsigned long old_min, old_max, rate; 2654 2655 lockdep_assert_held(&prepare_lock); 2656 2657 if (!clk) 2658 return 0; 2659 2660 trace_clk_set_rate_range(clk->core, min, max); 2661 2662 if (min > max) { 2663 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n", 2664 __func__, clk->core->name, clk->dev_id, clk->con_id, 2665 min, max); 2666 return -EINVAL; 2667 } 2668 2669 if (clk->exclusive_count) 2670 clk_core_rate_unprotect(clk->core); 2671 2672 /* Save the current values in case we need to rollback the change */ 2673 old_min = clk->min_rate; 2674 old_max = clk->max_rate; 2675 clk->min_rate = min; 2676 clk->max_rate = max; 2677 2678 if (!clk_core_check_boundaries(clk->core, min, max)) { 2679 ret = -EINVAL; 2680 goto out; 2681 } 2682 2683 rate = clk->core->req_rate; 2684 if (clk->core->flags & CLK_GET_RATE_NOCACHE) 2685 rate = clk_core_get_rate_recalc(clk->core); 2686 2687 /* 2688 * Since the boundaries have been changed, let's give the 2689 * opportunity to the provider to adjust the clock rate based on 2690 * the new boundaries. 2691 * 2692 * We also need to handle the case where the clock is currently 2693 * outside of the boundaries. Clamping the last requested rate 2694 * to the current minimum and maximum will also handle this. 2695 * 2696 * FIXME: 2697 * There is a catch. It may fail for the usual reason (clock 2698 * broken, clock protected, etc) but also because: 2699 * - round_rate() was not favorable and fell on the wrong 2700 * side of the boundary 2701 * - the determine_rate() callback does not really check for 2702 * this corner case when determining the rate 2703 */ 2704 rate = clamp(rate, min, max); 2705 ret = clk_core_set_rate_nolock(clk->core, rate); 2706 if (ret) { 2707 /* rollback the changes */ 2708 clk->min_rate = old_min; 2709 clk->max_rate = old_max; 2710 } 2711 2712 out: 2713 if (clk->exclusive_count) 2714 clk_core_rate_protect(clk->core); 2715 2716 return ret; 2717 } 2718 2719 /** 2720 * clk_set_rate_range - set a rate range for a clock source 2721 * @clk: clock source 2722 * @min: desired minimum clock rate in Hz, inclusive 2723 * @max: desired maximum clock rate in Hz, inclusive 2724 * 2725 * Return: 0 for success or negative errno on failure. 2726 */ 2727 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max) 2728 { 2729 int ret; 2730 2731 if (!clk) 2732 return 0; 2733 2734 clk_prepare_lock(); 2735 2736 ret = clk_set_rate_range_nolock(clk, min, max); 2737 2738 clk_prepare_unlock(); 2739 2740 return ret; 2741 } 2742 EXPORT_SYMBOL_GPL(clk_set_rate_range); 2743 2744 /** 2745 * clk_set_min_rate - set a minimum clock rate for a clock source 2746 * @clk: clock source 2747 * @rate: desired minimum clock rate in Hz, inclusive 2748 * 2749 * Returns success (0) or negative errno. 2750 */ 2751 int clk_set_min_rate(struct clk *clk, unsigned long rate) 2752 { 2753 if (!clk) 2754 return 0; 2755 2756 trace_clk_set_min_rate(clk->core, rate); 2757 2758 return clk_set_rate_range(clk, rate, clk->max_rate); 2759 } 2760 EXPORT_SYMBOL_GPL(clk_set_min_rate); 2761 2762 /** 2763 * clk_set_max_rate - set a maximum clock rate for a clock source 2764 * @clk: clock source 2765 * @rate: desired maximum clock rate in Hz, inclusive 2766 * 2767 * Returns success (0) or negative errno. 2768 */ 2769 int clk_set_max_rate(struct clk *clk, unsigned long rate) 2770 { 2771 if (!clk) 2772 return 0; 2773 2774 trace_clk_set_max_rate(clk->core, rate); 2775 2776 return clk_set_rate_range(clk, clk->min_rate, rate); 2777 } 2778 EXPORT_SYMBOL_GPL(clk_set_max_rate); 2779 2780 /** 2781 * clk_get_parent - return the parent of a clk 2782 * @clk: the clk whose parent gets returned 2783 * 2784 * Simply returns clk->parent. Returns NULL if clk is NULL. 2785 */ 2786 struct clk *clk_get_parent(struct clk *clk) 2787 { 2788 struct clk *parent; 2789 2790 if (!clk) 2791 return NULL; 2792 2793 clk_prepare_lock(); 2794 /* TODO: Create a per-user clk and change callers to call clk_put */ 2795 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk; 2796 clk_prepare_unlock(); 2797 2798 return parent; 2799 } 2800 EXPORT_SYMBOL_GPL(clk_get_parent); 2801 2802 static struct clk_core *__clk_init_parent(struct clk_core *core) 2803 { 2804 u8 index = 0; 2805 2806 if (core->num_parents > 1 && core->ops->get_parent) 2807 index = core->ops->get_parent(core->hw); 2808 2809 return clk_core_get_parent_by_index(core, index); 2810 } 2811 2812 static void clk_core_reparent(struct clk_core *core, 2813 struct clk_core *new_parent) 2814 { 2815 clk_reparent(core, new_parent); 2816 __clk_recalc_accuracies(core); 2817 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2818 } 2819 2820 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent) 2821 { 2822 if (!hw) 2823 return; 2824 2825 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core); 2826 } 2827 2828 /** 2829 * clk_has_parent - check if a clock is a possible parent for another 2830 * @clk: clock source 2831 * @parent: parent clock source 2832 * 2833 * This function can be used in drivers that need to check that a clock can be 2834 * the parent of another without actually changing the parent. 2835 * 2836 * Returns true if @parent is a possible parent for @clk, false otherwise. 2837 */ 2838 bool clk_has_parent(const struct clk *clk, const struct clk *parent) 2839 { 2840 /* NULL clocks should be nops, so return success if either is NULL. */ 2841 if (!clk || !parent) 2842 return true; 2843 2844 return clk_core_has_parent(clk->core, parent->core); 2845 } 2846 EXPORT_SYMBOL_GPL(clk_has_parent); 2847 2848 static int clk_core_set_parent_nolock(struct clk_core *core, 2849 struct clk_core *parent) 2850 { 2851 int ret = 0; 2852 int p_index = 0; 2853 unsigned long p_rate = 0; 2854 2855 lockdep_assert_held(&prepare_lock); 2856 2857 if (!core) 2858 return 0; 2859 2860 if (core->parent == parent) 2861 return 0; 2862 2863 /* verify ops for multi-parent clks */ 2864 if (core->num_parents > 1 && !core->ops->set_parent) 2865 return -EPERM; 2866 2867 /* check that we are allowed to re-parent if the clock is in use */ 2868 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) 2869 return -EBUSY; 2870 2871 if (clk_core_rate_is_protected(core)) 2872 return -EBUSY; 2873 2874 /* try finding the new parent index */ 2875 if (parent) { 2876 p_index = clk_fetch_parent_index(core, parent); 2877 if (p_index < 0) { 2878 pr_debug("%s: clk %s can not be parent of clk %s\n", 2879 __func__, parent->name, core->name); 2880 return p_index; 2881 } 2882 p_rate = parent->rate; 2883 } 2884 2885 ret = clk_pm_runtime_get(core); 2886 if (ret) 2887 return ret; 2888 2889 /* propagate PRE_RATE_CHANGE notifications */ 2890 ret = __clk_speculate_rates(core, p_rate); 2891 2892 /* abort if a driver objects */ 2893 if (ret & NOTIFY_STOP_MASK) 2894 goto runtime_put; 2895 2896 /* do the re-parent */ 2897 ret = __clk_set_parent(core, parent, p_index); 2898 2899 /* propagate rate an accuracy recalculation accordingly */ 2900 if (ret) { 2901 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE); 2902 } else { 2903 __clk_recalc_rates(core, true, POST_RATE_CHANGE); 2904 __clk_recalc_accuracies(core); 2905 } 2906 2907 runtime_put: 2908 clk_pm_runtime_put(core); 2909 2910 return ret; 2911 } 2912 2913 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent) 2914 { 2915 return clk_core_set_parent_nolock(hw->core, parent->core); 2916 } 2917 EXPORT_SYMBOL_GPL(clk_hw_set_parent); 2918 2919 /** 2920 * clk_set_parent - switch the parent of a mux clk 2921 * @clk: the mux clk whose input we are switching 2922 * @parent: the new input to clk 2923 * 2924 * Re-parent clk to use parent as its new input source. If clk is in 2925 * prepared state, the clk will get enabled for the duration of this call. If 2926 * that's not acceptable for a specific clk (Eg: the consumer can't handle 2927 * that, the reparenting is glitchy in hardware, etc), use the 2928 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 2929 * 2930 * After successfully changing clk's parent clk_set_parent will update the 2931 * clk topology, sysfs topology and propagate rate recalculation via 2932 * __clk_recalc_rates. 2933 * 2934 * Returns 0 on success, -EERROR otherwise. 2935 */ 2936 int clk_set_parent(struct clk *clk, struct clk *parent) 2937 { 2938 int ret; 2939 2940 if (!clk) 2941 return 0; 2942 2943 clk_prepare_lock(); 2944 2945 if (clk->exclusive_count) 2946 clk_core_rate_unprotect(clk->core); 2947 2948 ret = clk_core_set_parent_nolock(clk->core, 2949 parent ? parent->core : NULL); 2950 2951 if (clk->exclusive_count) 2952 clk_core_rate_protect(clk->core); 2953 2954 clk_prepare_unlock(); 2955 2956 return ret; 2957 } 2958 EXPORT_SYMBOL_GPL(clk_set_parent); 2959 2960 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees) 2961 { 2962 int ret = -EINVAL; 2963 2964 lockdep_assert_held(&prepare_lock); 2965 2966 if (!core) 2967 return 0; 2968 2969 if (clk_core_rate_is_protected(core)) 2970 return -EBUSY; 2971 2972 trace_clk_set_phase(core, degrees); 2973 2974 if (core->ops->set_phase) { 2975 ret = core->ops->set_phase(core->hw, degrees); 2976 if (!ret) 2977 core->phase = degrees; 2978 } 2979 2980 trace_clk_set_phase_complete(core, degrees); 2981 2982 return ret; 2983 } 2984 2985 /** 2986 * clk_set_phase - adjust the phase shift of a clock signal 2987 * @clk: clock signal source 2988 * @degrees: number of degrees the signal is shifted 2989 * 2990 * Shifts the phase of a clock signal by the specified 2991 * degrees. Returns 0 on success, -EERROR otherwise. 2992 * 2993 * This function makes no distinction about the input or reference 2994 * signal that we adjust the clock signal phase against. For example 2995 * phase locked-loop clock signal generators we may shift phase with 2996 * respect to feedback clock signal input, but for other cases the 2997 * clock phase may be shifted with respect to some other, unspecified 2998 * signal. 2999 * 3000 * Additionally the concept of phase shift does not propagate through 3001 * the clock tree hierarchy, which sets it apart from clock rates and 3002 * clock accuracy. A parent clock phase attribute does not have an 3003 * impact on the phase attribute of a child clock. 3004 */ 3005 int clk_set_phase(struct clk *clk, int degrees) 3006 { 3007 int ret; 3008 3009 if (!clk) 3010 return 0; 3011 3012 /* sanity check degrees */ 3013 degrees %= 360; 3014 if (degrees < 0) 3015 degrees += 360; 3016 3017 clk_prepare_lock(); 3018 3019 if (clk->exclusive_count) 3020 clk_core_rate_unprotect(clk->core); 3021 3022 ret = clk_core_set_phase_nolock(clk->core, degrees); 3023 3024 if (clk->exclusive_count) 3025 clk_core_rate_protect(clk->core); 3026 3027 clk_prepare_unlock(); 3028 3029 return ret; 3030 } 3031 EXPORT_SYMBOL_GPL(clk_set_phase); 3032 3033 static int clk_core_get_phase(struct clk_core *core) 3034 { 3035 int ret; 3036 3037 lockdep_assert_held(&prepare_lock); 3038 if (!core->ops->get_phase) 3039 return 0; 3040 3041 /* Always try to update cached phase if possible */ 3042 ret = core->ops->get_phase(core->hw); 3043 if (ret >= 0) 3044 core->phase = ret; 3045 3046 return ret; 3047 } 3048 3049 /** 3050 * clk_get_phase - return the phase shift of a clock signal 3051 * @clk: clock signal source 3052 * 3053 * Returns the phase shift of a clock node in degrees, otherwise returns 3054 * -EERROR. 3055 */ 3056 int clk_get_phase(struct clk *clk) 3057 { 3058 int ret; 3059 3060 if (!clk) 3061 return 0; 3062 3063 clk_prepare_lock(); 3064 ret = clk_core_get_phase(clk->core); 3065 clk_prepare_unlock(); 3066 3067 return ret; 3068 } 3069 EXPORT_SYMBOL_GPL(clk_get_phase); 3070 3071 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core) 3072 { 3073 /* Assume a default value of 50% */ 3074 core->duty.num = 1; 3075 core->duty.den = 2; 3076 } 3077 3078 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core); 3079 3080 static int clk_core_update_duty_cycle_nolock(struct clk_core *core) 3081 { 3082 struct clk_duty *duty = &core->duty; 3083 int ret = 0; 3084 3085 if (!core->ops->get_duty_cycle) 3086 return clk_core_update_duty_cycle_parent_nolock(core); 3087 3088 ret = core->ops->get_duty_cycle(core->hw, duty); 3089 if (ret) 3090 goto reset; 3091 3092 /* Don't trust the clock provider too much */ 3093 if (duty->den == 0 || duty->num > duty->den) { 3094 ret = -EINVAL; 3095 goto reset; 3096 } 3097 3098 return 0; 3099 3100 reset: 3101 clk_core_reset_duty_cycle_nolock(core); 3102 return ret; 3103 } 3104 3105 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core) 3106 { 3107 int ret = 0; 3108 3109 if (core->parent && 3110 core->flags & CLK_DUTY_CYCLE_PARENT) { 3111 ret = clk_core_update_duty_cycle_nolock(core->parent); 3112 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3113 } else { 3114 clk_core_reset_duty_cycle_nolock(core); 3115 } 3116 3117 return ret; 3118 } 3119 3120 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3121 struct clk_duty *duty); 3122 3123 static int clk_core_set_duty_cycle_nolock(struct clk_core *core, 3124 struct clk_duty *duty) 3125 { 3126 int ret; 3127 3128 lockdep_assert_held(&prepare_lock); 3129 3130 if (clk_core_rate_is_protected(core)) 3131 return -EBUSY; 3132 3133 trace_clk_set_duty_cycle(core, duty); 3134 3135 if (!core->ops->set_duty_cycle) 3136 return clk_core_set_duty_cycle_parent_nolock(core, duty); 3137 3138 ret = core->ops->set_duty_cycle(core->hw, duty); 3139 if (!ret) 3140 memcpy(&core->duty, duty, sizeof(*duty)); 3141 3142 trace_clk_set_duty_cycle_complete(core, duty); 3143 3144 return ret; 3145 } 3146 3147 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core, 3148 struct clk_duty *duty) 3149 { 3150 int ret = 0; 3151 3152 if (core->parent && 3153 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) { 3154 ret = clk_core_set_duty_cycle_nolock(core->parent, duty); 3155 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty)); 3156 } 3157 3158 return ret; 3159 } 3160 3161 /** 3162 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal 3163 * @clk: clock signal source 3164 * @num: numerator of the duty cycle ratio to be applied 3165 * @den: denominator of the duty cycle ratio to be applied 3166 * 3167 * Apply the duty cycle ratio if the ratio is valid and the clock can 3168 * perform this operation 3169 * 3170 * Returns (0) on success, a negative errno otherwise. 3171 */ 3172 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den) 3173 { 3174 int ret; 3175 struct clk_duty duty; 3176 3177 if (!clk) 3178 return 0; 3179 3180 /* sanity check the ratio */ 3181 if (den == 0 || num > den) 3182 return -EINVAL; 3183 3184 duty.num = num; 3185 duty.den = den; 3186 3187 clk_prepare_lock(); 3188 3189 if (clk->exclusive_count) 3190 clk_core_rate_unprotect(clk->core); 3191 3192 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty); 3193 3194 if (clk->exclusive_count) 3195 clk_core_rate_protect(clk->core); 3196 3197 clk_prepare_unlock(); 3198 3199 return ret; 3200 } 3201 EXPORT_SYMBOL_GPL(clk_set_duty_cycle); 3202 3203 static int clk_core_get_scaled_duty_cycle(struct clk_core *core, 3204 unsigned int scale) 3205 { 3206 struct clk_duty *duty = &core->duty; 3207 int ret; 3208 3209 clk_prepare_lock(); 3210 3211 ret = clk_core_update_duty_cycle_nolock(core); 3212 if (!ret) 3213 ret = mult_frac(scale, duty->num, duty->den); 3214 3215 clk_prepare_unlock(); 3216 3217 return ret; 3218 } 3219 3220 /** 3221 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal 3222 * @clk: clock signal source 3223 * @scale: scaling factor to be applied to represent the ratio as an integer 3224 * 3225 * Returns the duty cycle ratio of a clock node multiplied by the provided 3226 * scaling factor, or negative errno on error. 3227 */ 3228 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale) 3229 { 3230 if (!clk) 3231 return 0; 3232 3233 return clk_core_get_scaled_duty_cycle(clk->core, scale); 3234 } 3235 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle); 3236 3237 /** 3238 * clk_is_match - check if two clk's point to the same hardware clock 3239 * @p: clk compared against q 3240 * @q: clk compared against p 3241 * 3242 * Returns true if the two struct clk pointers both point to the same hardware 3243 * clock node. Put differently, returns true if struct clk *p and struct clk *q 3244 * share the same struct clk_core object. 3245 * 3246 * Returns false otherwise. Note that two NULL clks are treated as matching. 3247 */ 3248 bool clk_is_match(const struct clk *p, const struct clk *q) 3249 { 3250 /* trivial case: identical struct clk's or both NULL */ 3251 if (p == q) 3252 return true; 3253 3254 /* true if clk->core pointers match. Avoid dereferencing garbage */ 3255 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q)) 3256 if (p->core == q->core) 3257 return true; 3258 3259 return false; 3260 } 3261 EXPORT_SYMBOL_GPL(clk_is_match); 3262 3263 /*** debugfs support ***/ 3264 3265 #ifdef CONFIG_DEBUG_FS 3266 #include <linux/debugfs.h> 3267 3268 static struct dentry *rootdir; 3269 static int inited = 0; 3270 static DEFINE_MUTEX(clk_debug_lock); 3271 static HLIST_HEAD(clk_debug_list); 3272 3273 static struct hlist_head *orphan_list[] = { 3274 &clk_orphan_list, 3275 NULL, 3276 }; 3277 3278 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c, 3279 int level) 3280 { 3281 int phase; 3282 struct clk *clk_user; 3283 int multi_node = 0; 3284 3285 seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ", 3286 level * 3 + 1, "", 3287 35 - level * 3, c->name, 3288 c->enable_count, c->prepare_count, c->protect_count, 3289 clk_core_get_rate_recalc(c), 3290 clk_core_get_accuracy_recalc(c)); 3291 3292 phase = clk_core_get_phase(c); 3293 if (phase >= 0) 3294 seq_printf(s, "%-5d", phase); 3295 else 3296 seq_puts(s, "-----"); 3297 3298 seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000)); 3299 3300 if (c->ops->is_enabled) 3301 seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N'); 3302 else if (!c->ops->enable) 3303 seq_printf(s, " %5c ", 'Y'); 3304 else 3305 seq_printf(s, " %5c ", '?'); 3306 3307 hlist_for_each_entry(clk_user, &c->clks, clks_node) { 3308 seq_printf(s, "%*s%-*s %-25s\n", 3309 level * 3 + 2 + 105 * multi_node, "", 3310 30, 3311 clk_user->dev_id ? clk_user->dev_id : "deviceless", 3312 clk_user->con_id ? clk_user->con_id : "no_connection_id"); 3313 3314 multi_node = 1; 3315 } 3316 3317 } 3318 3319 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c, 3320 int level) 3321 { 3322 struct clk_core *child; 3323 3324 clk_summary_show_one(s, c, level); 3325 3326 hlist_for_each_entry(child, &c->children, child_node) 3327 clk_summary_show_subtree(s, child, level + 1); 3328 } 3329 3330 static int clk_summary_show(struct seq_file *s, void *data) 3331 { 3332 struct clk_core *c; 3333 struct hlist_head **lists = s->private; 3334 int ret; 3335 3336 seq_puts(s, " enable prepare protect duty hardware connection\n"); 3337 seq_puts(s, " clock count count count rate accuracy phase cycle enable consumer id\n"); 3338 seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n"); 3339 3340 ret = clk_pm_runtime_get_all(); 3341 if (ret) 3342 return ret; 3343 3344 clk_prepare_lock(); 3345 3346 for (; *lists; lists++) 3347 hlist_for_each_entry(c, *lists, child_node) 3348 clk_summary_show_subtree(s, c, 0); 3349 3350 clk_prepare_unlock(); 3351 clk_pm_runtime_put_all(); 3352 3353 return 0; 3354 } 3355 DEFINE_SHOW_ATTRIBUTE(clk_summary); 3356 3357 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level) 3358 { 3359 int phase; 3360 unsigned long min_rate, max_rate; 3361 3362 clk_core_get_boundaries(c, &min_rate, &max_rate); 3363 3364 /* This should be JSON format, i.e. elements separated with a comma */ 3365 seq_printf(s, "\"%s\": { ", c->name); 3366 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 3367 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 3368 seq_printf(s, "\"protect_count\": %d,", c->protect_count); 3369 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c)); 3370 seq_printf(s, "\"min_rate\": %lu,", min_rate); 3371 seq_printf(s, "\"max_rate\": %lu,", max_rate); 3372 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c)); 3373 phase = clk_core_get_phase(c); 3374 if (phase >= 0) 3375 seq_printf(s, "\"phase\": %d,", phase); 3376 seq_printf(s, "\"duty_cycle\": %u", 3377 clk_core_get_scaled_duty_cycle(c, 100000)); 3378 } 3379 3380 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level) 3381 { 3382 struct clk_core *child; 3383 3384 clk_dump_one(s, c, level); 3385 3386 hlist_for_each_entry(child, &c->children, child_node) { 3387 seq_putc(s, ','); 3388 clk_dump_subtree(s, child, level + 1); 3389 } 3390 3391 seq_putc(s, '}'); 3392 } 3393 3394 static int clk_dump_show(struct seq_file *s, void *data) 3395 { 3396 struct clk_core *c; 3397 bool first_node = true; 3398 struct hlist_head **lists = s->private; 3399 int ret; 3400 3401 ret = clk_pm_runtime_get_all(); 3402 if (ret) 3403 return ret; 3404 3405 seq_putc(s, '{'); 3406 3407 clk_prepare_lock(); 3408 3409 for (; *lists; lists++) { 3410 hlist_for_each_entry(c, *lists, child_node) { 3411 if (!first_node) 3412 seq_putc(s, ','); 3413 first_node = false; 3414 clk_dump_subtree(s, c, 0); 3415 } 3416 } 3417 3418 clk_prepare_unlock(); 3419 clk_pm_runtime_put_all(); 3420 3421 seq_puts(s, "}\n"); 3422 return 0; 3423 } 3424 DEFINE_SHOW_ATTRIBUTE(clk_dump); 3425 3426 #undef CLOCK_ALLOW_WRITE_DEBUGFS 3427 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3428 /* 3429 * This can be dangerous, therefore don't provide any real compile time 3430 * configuration option for this feature. 3431 * People who want to use this will need to modify the source code directly. 3432 */ 3433 static int clk_rate_set(void *data, u64 val) 3434 { 3435 struct clk_core *core = data; 3436 int ret; 3437 3438 clk_prepare_lock(); 3439 ret = clk_core_set_rate_nolock(core, val); 3440 clk_prepare_unlock(); 3441 3442 return ret; 3443 } 3444 3445 #define clk_rate_mode 0644 3446 3447 static int clk_prepare_enable_set(void *data, u64 val) 3448 { 3449 struct clk_core *core = data; 3450 int ret = 0; 3451 3452 if (val) 3453 ret = clk_prepare_enable(core->hw->clk); 3454 else 3455 clk_disable_unprepare(core->hw->clk); 3456 3457 return ret; 3458 } 3459 3460 static int clk_prepare_enable_get(void *data, u64 *val) 3461 { 3462 struct clk_core *core = data; 3463 3464 *val = core->enable_count && core->prepare_count; 3465 return 0; 3466 } 3467 3468 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get, 3469 clk_prepare_enable_set, "%llu\n"); 3470 3471 #else 3472 #define clk_rate_set NULL 3473 #define clk_rate_mode 0444 3474 #endif 3475 3476 static int clk_rate_get(void *data, u64 *val) 3477 { 3478 struct clk_core *core = data; 3479 3480 clk_prepare_lock(); 3481 *val = clk_core_get_rate_recalc(core); 3482 clk_prepare_unlock(); 3483 3484 return 0; 3485 } 3486 3487 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n"); 3488 3489 static const struct { 3490 unsigned long flag; 3491 const char *name; 3492 } clk_flags[] = { 3493 #define ENTRY(f) { f, #f } 3494 ENTRY(CLK_SET_RATE_GATE), 3495 ENTRY(CLK_SET_PARENT_GATE), 3496 ENTRY(CLK_SET_RATE_PARENT), 3497 ENTRY(CLK_IGNORE_UNUSED), 3498 ENTRY(CLK_GET_RATE_NOCACHE), 3499 ENTRY(CLK_SET_RATE_NO_REPARENT), 3500 ENTRY(CLK_GET_ACCURACY_NOCACHE), 3501 ENTRY(CLK_RECALC_NEW_RATES), 3502 ENTRY(CLK_SET_RATE_UNGATE), 3503 ENTRY(CLK_IS_CRITICAL), 3504 ENTRY(CLK_OPS_PARENT_ENABLE), 3505 ENTRY(CLK_DUTY_CYCLE_PARENT), 3506 #undef ENTRY 3507 }; 3508 3509 static int clk_flags_show(struct seq_file *s, void *data) 3510 { 3511 struct clk_core *core = s->private; 3512 unsigned long flags = core->flags; 3513 unsigned int i; 3514 3515 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) { 3516 if (flags & clk_flags[i].flag) { 3517 seq_printf(s, "%s\n", clk_flags[i].name); 3518 flags &= ~clk_flags[i].flag; 3519 } 3520 } 3521 if (flags) { 3522 /* Unknown flags */ 3523 seq_printf(s, "0x%lx\n", flags); 3524 } 3525 3526 return 0; 3527 } 3528 DEFINE_SHOW_ATTRIBUTE(clk_flags); 3529 3530 static void possible_parent_show(struct seq_file *s, struct clk_core *core, 3531 unsigned int i, char terminator) 3532 { 3533 struct clk_core *parent; 3534 const char *name = NULL; 3535 3536 /* 3537 * Go through the following options to fetch a parent's name. 3538 * 3539 * 1. Fetch the registered parent clock and use its name 3540 * 2. Use the global (fallback) name if specified 3541 * 3. Use the local fw_name if provided 3542 * 4. Fetch parent clock's clock-output-name if DT index was set 3543 * 3544 * This may still fail in some cases, such as when the parent is 3545 * specified directly via a struct clk_hw pointer, but it isn't 3546 * registered (yet). 3547 */ 3548 parent = clk_core_get_parent_by_index(core, i); 3549 if (parent) { 3550 seq_puts(s, parent->name); 3551 } else if (core->parents[i].name) { 3552 seq_puts(s, core->parents[i].name); 3553 } else if (core->parents[i].fw_name) { 3554 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name); 3555 } else { 3556 if (core->parents[i].index >= 0) 3557 name = of_clk_get_parent_name(core->of_node, core->parents[i].index); 3558 if (!name) 3559 name = "(missing)"; 3560 3561 seq_puts(s, name); 3562 } 3563 3564 seq_putc(s, terminator); 3565 } 3566 3567 static int possible_parents_show(struct seq_file *s, void *data) 3568 { 3569 struct clk_core *core = s->private; 3570 int i; 3571 3572 for (i = 0; i < core->num_parents - 1; i++) 3573 possible_parent_show(s, core, i, ' '); 3574 3575 possible_parent_show(s, core, i, '\n'); 3576 3577 return 0; 3578 } 3579 DEFINE_SHOW_ATTRIBUTE(possible_parents); 3580 3581 static int current_parent_show(struct seq_file *s, void *data) 3582 { 3583 struct clk_core *core = s->private; 3584 3585 if (core->parent) 3586 seq_printf(s, "%s\n", core->parent->name); 3587 3588 return 0; 3589 } 3590 DEFINE_SHOW_ATTRIBUTE(current_parent); 3591 3592 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3593 static ssize_t current_parent_write(struct file *file, const char __user *ubuf, 3594 size_t count, loff_t *ppos) 3595 { 3596 struct seq_file *s = file->private_data; 3597 struct clk_core *core = s->private; 3598 struct clk_core *parent; 3599 u8 idx; 3600 int err; 3601 3602 err = kstrtou8_from_user(ubuf, count, 0, &idx); 3603 if (err < 0) 3604 return err; 3605 3606 parent = clk_core_get_parent_by_index(core, idx); 3607 if (!parent) 3608 return -ENOENT; 3609 3610 clk_prepare_lock(); 3611 err = clk_core_set_parent_nolock(core, parent); 3612 clk_prepare_unlock(); 3613 if (err) 3614 return err; 3615 3616 return count; 3617 } 3618 3619 static const struct file_operations current_parent_rw_fops = { 3620 .open = current_parent_open, 3621 .write = current_parent_write, 3622 .read = seq_read, 3623 .llseek = seq_lseek, 3624 .release = single_release, 3625 }; 3626 #endif 3627 3628 static int clk_duty_cycle_show(struct seq_file *s, void *data) 3629 { 3630 struct clk_core *core = s->private; 3631 struct clk_duty *duty = &core->duty; 3632 3633 seq_printf(s, "%u/%u\n", duty->num, duty->den); 3634 3635 return 0; 3636 } 3637 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle); 3638 3639 static int clk_min_rate_show(struct seq_file *s, void *data) 3640 { 3641 struct clk_core *core = s->private; 3642 unsigned long min_rate, max_rate; 3643 3644 clk_prepare_lock(); 3645 clk_core_get_boundaries(core, &min_rate, &max_rate); 3646 clk_prepare_unlock(); 3647 seq_printf(s, "%lu\n", min_rate); 3648 3649 return 0; 3650 } 3651 DEFINE_SHOW_ATTRIBUTE(clk_min_rate); 3652 3653 static int clk_max_rate_show(struct seq_file *s, void *data) 3654 { 3655 struct clk_core *core = s->private; 3656 unsigned long min_rate, max_rate; 3657 3658 clk_prepare_lock(); 3659 clk_core_get_boundaries(core, &min_rate, &max_rate); 3660 clk_prepare_unlock(); 3661 seq_printf(s, "%lu\n", max_rate); 3662 3663 return 0; 3664 } 3665 DEFINE_SHOW_ATTRIBUTE(clk_max_rate); 3666 3667 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry) 3668 { 3669 struct dentry *root; 3670 3671 if (!core || !pdentry) 3672 return; 3673 3674 root = debugfs_create_dir(core->name, pdentry); 3675 core->dentry = root; 3676 3677 debugfs_create_file("clk_rate", clk_rate_mode, root, core, 3678 &clk_rate_fops); 3679 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops); 3680 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops); 3681 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy); 3682 debugfs_create_u32("clk_phase", 0444, root, &core->phase); 3683 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops); 3684 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count); 3685 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count); 3686 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count); 3687 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count); 3688 debugfs_create_file("clk_duty_cycle", 0444, root, core, 3689 &clk_duty_cycle_fops); 3690 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3691 debugfs_create_file("clk_prepare_enable", 0644, root, core, 3692 &clk_prepare_enable_fops); 3693 3694 if (core->num_parents > 1) 3695 debugfs_create_file("clk_parent", 0644, root, core, 3696 ¤t_parent_rw_fops); 3697 else 3698 #endif 3699 if (core->num_parents > 0) 3700 debugfs_create_file("clk_parent", 0444, root, core, 3701 ¤t_parent_fops); 3702 3703 if (core->num_parents > 1) 3704 debugfs_create_file("clk_possible_parents", 0444, root, core, 3705 &possible_parents_fops); 3706 3707 if (core->ops->debug_init) 3708 core->ops->debug_init(core->hw, core->dentry); 3709 } 3710 3711 /** 3712 * clk_debug_register - add a clk node to the debugfs clk directory 3713 * @core: the clk being added to the debugfs clk directory 3714 * 3715 * Dynamically adds a clk to the debugfs clk directory if debugfs has been 3716 * initialized. Otherwise it bails out early since the debugfs clk directory 3717 * will be created lazily by clk_debug_init as part of a late_initcall. 3718 */ 3719 static void clk_debug_register(struct clk_core *core) 3720 { 3721 mutex_lock(&clk_debug_lock); 3722 hlist_add_head(&core->debug_node, &clk_debug_list); 3723 if (inited) 3724 clk_debug_create_one(core, rootdir); 3725 mutex_unlock(&clk_debug_lock); 3726 } 3727 3728 /** 3729 * clk_debug_unregister - remove a clk node from the debugfs clk directory 3730 * @core: the clk being removed from the debugfs clk directory 3731 * 3732 * Dynamically removes a clk and all its child nodes from the 3733 * debugfs clk directory if clk->dentry points to debugfs created by 3734 * clk_debug_register in __clk_core_init. 3735 */ 3736 static void clk_debug_unregister(struct clk_core *core) 3737 { 3738 mutex_lock(&clk_debug_lock); 3739 hlist_del_init(&core->debug_node); 3740 debugfs_remove_recursive(core->dentry); 3741 core->dentry = NULL; 3742 mutex_unlock(&clk_debug_lock); 3743 } 3744 3745 /** 3746 * clk_debug_init - lazily populate the debugfs clk directory 3747 * 3748 * clks are often initialized very early during boot before memory can be 3749 * dynamically allocated and well before debugfs is setup. This function 3750 * populates the debugfs clk directory once at boot-time when we know that 3751 * debugfs is setup. It should only be called once at boot-time, all other clks 3752 * added dynamically will be done so with clk_debug_register. 3753 */ 3754 static int __init clk_debug_init(void) 3755 { 3756 struct clk_core *core; 3757 3758 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS 3759 pr_warn("\n"); 3760 pr_warn("********************************************************************\n"); 3761 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3762 pr_warn("** **\n"); 3763 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n"); 3764 pr_warn("** **\n"); 3765 pr_warn("** This means that this kernel is built to expose clk operations **\n"); 3766 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n"); 3767 pr_warn("** to userspace, which may compromise security on your system. **\n"); 3768 pr_warn("** **\n"); 3769 pr_warn("** If you see this message and you are not debugging the **\n"); 3770 pr_warn("** kernel, report this immediately to your vendor! **\n"); 3771 pr_warn("** **\n"); 3772 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); 3773 pr_warn("********************************************************************\n"); 3774 #endif 3775 3776 rootdir = debugfs_create_dir("clk", NULL); 3777 3778 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists, 3779 &clk_summary_fops); 3780 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists, 3781 &clk_dump_fops); 3782 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list, 3783 &clk_summary_fops); 3784 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list, 3785 &clk_dump_fops); 3786 3787 mutex_lock(&clk_debug_lock); 3788 hlist_for_each_entry(core, &clk_debug_list, debug_node) 3789 clk_debug_create_one(core, rootdir); 3790 3791 inited = 1; 3792 mutex_unlock(&clk_debug_lock); 3793 3794 return 0; 3795 } 3796 late_initcall(clk_debug_init); 3797 #else 3798 static inline void clk_debug_register(struct clk_core *core) { } 3799 static inline void clk_debug_unregister(struct clk_core *core) 3800 { 3801 } 3802 #endif 3803 3804 static void clk_core_reparent_orphans_nolock(void) 3805 { 3806 struct clk_core *orphan; 3807 struct hlist_node *tmp2; 3808 3809 /* 3810 * walk the list of orphan clocks and reparent any that newly finds a 3811 * parent. 3812 */ 3813 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 3814 struct clk_core *parent = __clk_init_parent(orphan); 3815 3816 /* 3817 * We need to use __clk_set_parent_before() and _after() to 3818 * properly migrate any prepare/enable count of the orphan 3819 * clock. This is important for CLK_IS_CRITICAL clocks, which 3820 * are enabled during init but might not have a parent yet. 3821 */ 3822 if (parent) { 3823 /* update the clk tree topology */ 3824 __clk_set_parent_before(orphan, parent); 3825 __clk_set_parent_after(orphan, parent, NULL); 3826 __clk_recalc_accuracies(orphan); 3827 __clk_recalc_rates(orphan, true, 0); 3828 3829 /* 3830 * __clk_init_parent() will set the initial req_rate to 3831 * 0 if the clock doesn't have clk_ops::recalc_rate and 3832 * is an orphan when it's registered. 3833 * 3834 * 'req_rate' is used by clk_set_rate_range() and 3835 * clk_put() to trigger a clk_set_rate() call whenever 3836 * the boundaries are modified. Let's make sure 3837 * 'req_rate' is set to something non-zero so that 3838 * clk_set_rate_range() doesn't drop the frequency. 3839 */ 3840 orphan->req_rate = orphan->rate; 3841 } 3842 } 3843 } 3844 3845 /** 3846 * __clk_core_init - initialize the data structures in a struct clk_core 3847 * @core: clk_core being initialized 3848 * 3849 * Initializes the lists in struct clk_core, queries the hardware for the 3850 * parent and rate and sets them both. 3851 */ 3852 static int __clk_core_init(struct clk_core *core) 3853 { 3854 int ret; 3855 struct clk_core *parent; 3856 unsigned long rate; 3857 int phase; 3858 3859 clk_prepare_lock(); 3860 3861 /* 3862 * Set hw->core after grabbing the prepare_lock to synchronize with 3863 * callers of clk_core_fill_parent_index() where we treat hw->core 3864 * being NULL as the clk not being registered yet. This is crucial so 3865 * that clks aren't parented until their parent is fully registered. 3866 */ 3867 core->hw->core = core; 3868 3869 ret = clk_pm_runtime_get(core); 3870 if (ret) 3871 goto unlock; 3872 3873 /* check to see if a clock with this name is already registered */ 3874 if (clk_core_lookup(core->name)) { 3875 pr_debug("%s: clk %s already initialized\n", 3876 __func__, core->name); 3877 ret = -EEXIST; 3878 goto out; 3879 } 3880 3881 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */ 3882 if (core->ops->set_rate && 3883 !((core->ops->round_rate || core->ops->determine_rate) && 3884 core->ops->recalc_rate)) { 3885 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 3886 __func__, core->name); 3887 ret = -EINVAL; 3888 goto out; 3889 } 3890 3891 if (core->ops->set_parent && !core->ops->get_parent) { 3892 pr_err("%s: %s must implement .get_parent & .set_parent\n", 3893 __func__, core->name); 3894 ret = -EINVAL; 3895 goto out; 3896 } 3897 3898 if (core->ops->set_parent && !core->ops->determine_rate) { 3899 pr_err("%s: %s must implement .set_parent & .determine_rate\n", 3900 __func__, core->name); 3901 ret = -EINVAL; 3902 goto out; 3903 } 3904 3905 if (core->num_parents > 1 && !core->ops->get_parent) { 3906 pr_err("%s: %s must implement .get_parent as it has multi parents\n", 3907 __func__, core->name); 3908 ret = -EINVAL; 3909 goto out; 3910 } 3911 3912 if (core->ops->set_rate_and_parent && 3913 !(core->ops->set_parent && core->ops->set_rate)) { 3914 pr_err("%s: %s must implement .set_parent & .set_rate\n", 3915 __func__, core->name); 3916 ret = -EINVAL; 3917 goto out; 3918 } 3919 3920 /* 3921 * optional platform-specific magic 3922 * 3923 * The .init callback is not used by any of the basic clock types, but 3924 * exists for weird hardware that must perform initialization magic for 3925 * CCF to get an accurate view of clock for any other callbacks. It may 3926 * also be used needs to perform dynamic allocations. Such allocation 3927 * must be freed in the terminate() callback. 3928 * This callback shall not be used to initialize the parameters state, 3929 * such as rate, parent, etc ... 3930 * 3931 * If it exist, this callback should called before any other callback of 3932 * the clock 3933 */ 3934 if (core->ops->init) { 3935 ret = core->ops->init(core->hw); 3936 if (ret) 3937 goto out; 3938 } 3939 3940 parent = core->parent = __clk_init_parent(core); 3941 3942 /* 3943 * Populate core->parent if parent has already been clk_core_init'd. If 3944 * parent has not yet been clk_core_init'd then place clk in the orphan 3945 * list. If clk doesn't have any parents then place it in the root 3946 * clk list. 3947 * 3948 * Every time a new clk is clk_init'd then we walk the list of orphan 3949 * clocks and re-parent any that are children of the clock currently 3950 * being clk_init'd. 3951 */ 3952 if (parent) { 3953 hlist_add_head(&core->child_node, &parent->children); 3954 core->orphan = parent->orphan; 3955 } else if (!core->num_parents) { 3956 hlist_add_head(&core->child_node, &clk_root_list); 3957 core->orphan = false; 3958 } else { 3959 hlist_add_head(&core->child_node, &clk_orphan_list); 3960 core->orphan = true; 3961 } 3962 3963 /* 3964 * Set clk's accuracy. The preferred method is to use 3965 * .recalc_accuracy. For simple clocks and lazy developers the default 3966 * fallback is to use the parent's accuracy. If a clock doesn't have a 3967 * parent (or is orphaned) then accuracy is set to zero (perfect 3968 * clock). 3969 */ 3970 if (core->ops->recalc_accuracy) 3971 core->accuracy = core->ops->recalc_accuracy(core->hw, 3972 clk_core_get_accuracy_no_lock(parent)); 3973 else if (parent) 3974 core->accuracy = parent->accuracy; 3975 else 3976 core->accuracy = 0; 3977 3978 /* 3979 * Set clk's phase by clk_core_get_phase() caching the phase. 3980 * Since a phase is by definition relative to its parent, just 3981 * query the current clock phase, or just assume it's in phase. 3982 */ 3983 phase = clk_core_get_phase(core); 3984 if (phase < 0) { 3985 ret = phase; 3986 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__, 3987 core->name); 3988 goto out; 3989 } 3990 3991 /* 3992 * Set clk's duty cycle. 3993 */ 3994 clk_core_update_duty_cycle_nolock(core); 3995 3996 /* 3997 * Set clk's rate. The preferred method is to use .recalc_rate. For 3998 * simple clocks and lazy developers the default fallback is to use the 3999 * parent's rate. If a clock doesn't have a parent (or is orphaned) 4000 * then rate is set to zero. 4001 */ 4002 if (core->ops->recalc_rate) 4003 rate = core->ops->recalc_rate(core->hw, 4004 clk_core_get_rate_nolock(parent)); 4005 else if (parent) 4006 rate = parent->rate; 4007 else 4008 rate = 0; 4009 core->rate = core->req_rate = rate; 4010 4011 /* 4012 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks 4013 * don't get accidentally disabled when walking the orphan tree and 4014 * reparenting clocks 4015 */ 4016 if (core->flags & CLK_IS_CRITICAL) { 4017 ret = clk_core_prepare(core); 4018 if (ret) { 4019 pr_warn("%s: critical clk '%s' failed to prepare\n", 4020 __func__, core->name); 4021 goto out; 4022 } 4023 4024 ret = clk_core_enable_lock(core); 4025 if (ret) { 4026 pr_warn("%s: critical clk '%s' failed to enable\n", 4027 __func__, core->name); 4028 clk_core_unprepare(core); 4029 goto out; 4030 } 4031 } 4032 4033 clk_core_reparent_orphans_nolock(); 4034 out: 4035 clk_pm_runtime_put(core); 4036 unlock: 4037 if (ret) { 4038 hlist_del_init(&core->child_node); 4039 core->hw->core = NULL; 4040 } 4041 4042 clk_prepare_unlock(); 4043 4044 if (!ret) 4045 clk_debug_register(core); 4046 4047 return ret; 4048 } 4049 4050 /** 4051 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core 4052 * @core: clk to add consumer to 4053 * @clk: consumer to link to a clk 4054 */ 4055 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk) 4056 { 4057 clk_prepare_lock(); 4058 hlist_add_head(&clk->clks_node, &core->clks); 4059 clk_prepare_unlock(); 4060 } 4061 4062 /** 4063 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core 4064 * @clk: consumer to unlink 4065 */ 4066 static void clk_core_unlink_consumer(struct clk *clk) 4067 { 4068 lockdep_assert_held(&prepare_lock); 4069 hlist_del(&clk->clks_node); 4070 } 4071 4072 /** 4073 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core 4074 * @core: clk to allocate a consumer for 4075 * @dev_id: string describing device name 4076 * @con_id: connection ID string on device 4077 * 4078 * Returns: clk consumer left unlinked from the consumer list 4079 */ 4080 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id, 4081 const char *con_id) 4082 { 4083 struct clk *clk; 4084 4085 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 4086 if (!clk) 4087 return ERR_PTR(-ENOMEM); 4088 4089 clk->core = core; 4090 clk->dev_id = dev_id; 4091 clk->con_id = kstrdup_const(con_id, GFP_KERNEL); 4092 clk->max_rate = ULONG_MAX; 4093 4094 return clk; 4095 } 4096 4097 /** 4098 * free_clk - Free a clk consumer 4099 * @clk: clk consumer to free 4100 * 4101 * Note, this assumes the clk has been unlinked from the clk_core consumer 4102 * list. 4103 */ 4104 static void free_clk(struct clk *clk) 4105 { 4106 kfree_const(clk->con_id); 4107 kfree(clk); 4108 } 4109 4110 /** 4111 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given 4112 * a clk_hw 4113 * @dev: clk consumer device 4114 * @hw: clk_hw associated with the clk being consumed 4115 * @dev_id: string describing device name 4116 * @con_id: connection ID string on device 4117 * 4118 * This is the main function used to create a clk pointer for use by clk 4119 * consumers. It connects a consumer to the clk_core and clk_hw structures 4120 * used by the framework and clk provider respectively. 4121 */ 4122 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw, 4123 const char *dev_id, const char *con_id) 4124 { 4125 struct clk *clk; 4126 struct clk_core *core; 4127 4128 /* This is to allow this function to be chained to others */ 4129 if (IS_ERR_OR_NULL(hw)) 4130 return ERR_CAST(hw); 4131 4132 core = hw->core; 4133 clk = alloc_clk(core, dev_id, con_id); 4134 if (IS_ERR(clk)) 4135 return clk; 4136 clk->dev = dev; 4137 4138 if (!try_module_get(core->owner)) { 4139 free_clk(clk); 4140 return ERR_PTR(-ENOENT); 4141 } 4142 4143 kref_get(&core->ref); 4144 clk_core_link_consumer(core, clk); 4145 4146 return clk; 4147 } 4148 4149 /** 4150 * clk_hw_get_clk - get clk consumer given an clk_hw 4151 * @hw: clk_hw associated with the clk being consumed 4152 * @con_id: connection ID string on device 4153 * 4154 * Returns: new clk consumer 4155 * This is the function to be used by providers which need 4156 * to get a consumer clk and act on the clock element 4157 * Calls to this function must be balanced with calls clk_put() 4158 */ 4159 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id) 4160 { 4161 struct device *dev = hw->core->dev; 4162 const char *name = dev ? dev_name(dev) : NULL; 4163 4164 return clk_hw_create_clk(dev, hw, name, con_id); 4165 } 4166 EXPORT_SYMBOL(clk_hw_get_clk); 4167 4168 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist) 4169 { 4170 const char *dst; 4171 4172 if (!src) { 4173 if (must_exist) 4174 return -EINVAL; 4175 return 0; 4176 } 4177 4178 *dst_p = dst = kstrdup_const(src, GFP_KERNEL); 4179 if (!dst) 4180 return -ENOMEM; 4181 4182 return 0; 4183 } 4184 4185 static int clk_core_populate_parent_map(struct clk_core *core, 4186 const struct clk_init_data *init) 4187 { 4188 u8 num_parents = init->num_parents; 4189 const char * const *parent_names = init->parent_names; 4190 const struct clk_hw **parent_hws = init->parent_hws; 4191 const struct clk_parent_data *parent_data = init->parent_data; 4192 int i, ret = 0; 4193 struct clk_parent_map *parents, *parent; 4194 4195 if (!num_parents) 4196 return 0; 4197 4198 /* 4199 * Avoid unnecessary string look-ups of clk_core's possible parents by 4200 * having a cache of names/clk_hw pointers to clk_core pointers. 4201 */ 4202 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL); 4203 core->parents = parents; 4204 if (!parents) 4205 return -ENOMEM; 4206 4207 /* Copy everything over because it might be __initdata */ 4208 for (i = 0, parent = parents; i < num_parents; i++, parent++) { 4209 parent->index = -1; 4210 if (parent_names) { 4211 /* throw a WARN if any entries are NULL */ 4212 WARN(!parent_names[i], 4213 "%s: invalid NULL in %s's .parent_names\n", 4214 __func__, core->name); 4215 ret = clk_cpy_name(&parent->name, parent_names[i], 4216 true); 4217 } else if (parent_data) { 4218 parent->hw = parent_data[i].hw; 4219 parent->index = parent_data[i].index; 4220 ret = clk_cpy_name(&parent->fw_name, 4221 parent_data[i].fw_name, false); 4222 if (!ret) 4223 ret = clk_cpy_name(&parent->name, 4224 parent_data[i].name, 4225 false); 4226 } else if (parent_hws) { 4227 parent->hw = parent_hws[i]; 4228 } else { 4229 ret = -EINVAL; 4230 WARN(1, "Must specify parents if num_parents > 0\n"); 4231 } 4232 4233 if (ret) { 4234 do { 4235 kfree_const(parents[i].name); 4236 kfree_const(parents[i].fw_name); 4237 } while (--i >= 0); 4238 kfree(parents); 4239 4240 return ret; 4241 } 4242 } 4243 4244 return 0; 4245 } 4246 4247 static void clk_core_free_parent_map(struct clk_core *core) 4248 { 4249 int i = core->num_parents; 4250 4251 if (!core->num_parents) 4252 return; 4253 4254 while (--i >= 0) { 4255 kfree_const(core->parents[i].name); 4256 kfree_const(core->parents[i].fw_name); 4257 } 4258 4259 kfree(core->parents); 4260 } 4261 4262 /* Free memory allocated for a struct clk_core */ 4263 static void __clk_release(struct kref *ref) 4264 { 4265 struct clk_core *core = container_of(ref, struct clk_core, ref); 4266 4267 if (core->rpm_enabled) { 4268 mutex_lock(&clk_rpm_list_lock); 4269 hlist_del(&core->rpm_node); 4270 mutex_unlock(&clk_rpm_list_lock); 4271 } 4272 4273 clk_core_free_parent_map(core); 4274 kfree_const(core->name); 4275 kfree(core); 4276 } 4277 4278 static struct clk * 4279 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw) 4280 { 4281 int ret; 4282 struct clk_core *core; 4283 const struct clk_init_data *init = hw->init; 4284 4285 /* 4286 * The init data is not supposed to be used outside of registration path. 4287 * Set it to NULL so that provider drivers can't use it either and so that 4288 * we catch use of hw->init early on in the core. 4289 */ 4290 hw->init = NULL; 4291 4292 core = kzalloc(sizeof(*core), GFP_KERNEL); 4293 if (!core) { 4294 ret = -ENOMEM; 4295 goto fail_out; 4296 } 4297 4298 kref_init(&core->ref); 4299 4300 core->name = kstrdup_const(init->name, GFP_KERNEL); 4301 if (!core->name) { 4302 ret = -ENOMEM; 4303 goto fail_name; 4304 } 4305 4306 if (WARN_ON(!init->ops)) { 4307 ret = -EINVAL; 4308 goto fail_ops; 4309 } 4310 core->ops = init->ops; 4311 4312 core->dev = dev; 4313 clk_pm_runtime_init(core); 4314 core->of_node = np; 4315 if (dev && dev->driver) 4316 core->owner = dev->driver->owner; 4317 core->hw = hw; 4318 core->flags = init->flags; 4319 core->num_parents = init->num_parents; 4320 core->min_rate = 0; 4321 core->max_rate = ULONG_MAX; 4322 4323 ret = clk_core_populate_parent_map(core, init); 4324 if (ret) 4325 goto fail_parents; 4326 4327 INIT_HLIST_HEAD(&core->clks); 4328 4329 /* 4330 * Don't call clk_hw_create_clk() here because that would pin the 4331 * provider module to itself and prevent it from ever being removed. 4332 */ 4333 hw->clk = alloc_clk(core, NULL, NULL); 4334 if (IS_ERR(hw->clk)) { 4335 ret = PTR_ERR(hw->clk); 4336 goto fail_create_clk; 4337 } 4338 4339 clk_core_link_consumer(core, hw->clk); 4340 4341 ret = __clk_core_init(core); 4342 if (!ret) 4343 return hw->clk; 4344 4345 clk_prepare_lock(); 4346 clk_core_unlink_consumer(hw->clk); 4347 clk_prepare_unlock(); 4348 4349 free_clk(hw->clk); 4350 hw->clk = NULL; 4351 4352 fail_create_clk: 4353 fail_parents: 4354 fail_ops: 4355 fail_name: 4356 kref_put(&core->ref, __clk_release); 4357 fail_out: 4358 return ERR_PTR(ret); 4359 } 4360 4361 /** 4362 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent 4363 * @dev: Device to get device node of 4364 * 4365 * Return: device node pointer of @dev, or the device node pointer of 4366 * @dev->parent if dev doesn't have a device node, or NULL if neither 4367 * @dev or @dev->parent have a device node. 4368 */ 4369 static struct device_node *dev_or_parent_of_node(struct device *dev) 4370 { 4371 struct device_node *np; 4372 4373 if (!dev) 4374 return NULL; 4375 4376 np = dev_of_node(dev); 4377 if (!np) 4378 np = dev_of_node(dev->parent); 4379 4380 return np; 4381 } 4382 4383 /** 4384 * clk_register - allocate a new clock, register it and return an opaque cookie 4385 * @dev: device that is registering this clock 4386 * @hw: link to hardware-specific clock data 4387 * 4388 * clk_register is the *deprecated* interface for populating the clock tree with 4389 * new clock nodes. Use clk_hw_register() instead. 4390 * 4391 * Returns: a pointer to the newly allocated struct clk which 4392 * cannot be dereferenced by driver code but may be used in conjunction with the 4393 * rest of the clock API. In the event of an error clk_register will return an 4394 * error code; drivers must test for an error code after calling clk_register. 4395 */ 4396 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 4397 { 4398 return __clk_register(dev, dev_or_parent_of_node(dev), hw); 4399 } 4400 EXPORT_SYMBOL_GPL(clk_register); 4401 4402 /** 4403 * clk_hw_register - register a clk_hw and return an error code 4404 * @dev: device that is registering this clock 4405 * @hw: link to hardware-specific clock data 4406 * 4407 * clk_hw_register is the primary interface for populating the clock tree with 4408 * new clock nodes. It returns an integer equal to zero indicating success or 4409 * less than zero indicating failure. Drivers must test for an error code after 4410 * calling clk_hw_register(). 4411 */ 4412 int clk_hw_register(struct device *dev, struct clk_hw *hw) 4413 { 4414 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev), 4415 hw)); 4416 } 4417 EXPORT_SYMBOL_GPL(clk_hw_register); 4418 4419 /* 4420 * of_clk_hw_register - register a clk_hw and return an error code 4421 * @node: device_node of device that is registering this clock 4422 * @hw: link to hardware-specific clock data 4423 * 4424 * of_clk_hw_register() is the primary interface for populating the clock tree 4425 * with new clock nodes when a struct device is not available, but a struct 4426 * device_node is. It returns an integer equal to zero indicating success or 4427 * less than zero indicating failure. Drivers must test for an error code after 4428 * calling of_clk_hw_register(). 4429 */ 4430 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw) 4431 { 4432 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw)); 4433 } 4434 EXPORT_SYMBOL_GPL(of_clk_hw_register); 4435 4436 /* 4437 * Empty clk_ops for unregistered clocks. These are used temporarily 4438 * after clk_unregister() was called on a clock and until last clock 4439 * consumer calls clk_put() and the struct clk object is freed. 4440 */ 4441 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 4442 { 4443 return -ENXIO; 4444 } 4445 4446 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 4447 { 4448 WARN_ON_ONCE(1); 4449 } 4450 4451 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 4452 unsigned long parent_rate) 4453 { 4454 return -ENXIO; 4455 } 4456 4457 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 4458 { 4459 return -ENXIO; 4460 } 4461 4462 static int clk_nodrv_determine_rate(struct clk_hw *hw, 4463 struct clk_rate_request *req) 4464 { 4465 return -ENXIO; 4466 } 4467 4468 static const struct clk_ops clk_nodrv_ops = { 4469 .enable = clk_nodrv_prepare_enable, 4470 .disable = clk_nodrv_disable_unprepare, 4471 .prepare = clk_nodrv_prepare_enable, 4472 .unprepare = clk_nodrv_disable_unprepare, 4473 .determine_rate = clk_nodrv_determine_rate, 4474 .set_rate = clk_nodrv_set_rate, 4475 .set_parent = clk_nodrv_set_parent, 4476 }; 4477 4478 static void clk_core_evict_parent_cache_subtree(struct clk_core *root, 4479 const struct clk_core *target) 4480 { 4481 int i; 4482 struct clk_core *child; 4483 4484 for (i = 0; i < root->num_parents; i++) 4485 if (root->parents[i].core == target) 4486 root->parents[i].core = NULL; 4487 4488 hlist_for_each_entry(child, &root->children, child_node) 4489 clk_core_evict_parent_cache_subtree(child, target); 4490 } 4491 4492 /* Remove this clk from all parent caches */ 4493 static void clk_core_evict_parent_cache(struct clk_core *core) 4494 { 4495 const struct hlist_head **lists; 4496 struct clk_core *root; 4497 4498 lockdep_assert_held(&prepare_lock); 4499 4500 for (lists = all_lists; *lists; lists++) 4501 hlist_for_each_entry(root, *lists, child_node) 4502 clk_core_evict_parent_cache_subtree(root, core); 4503 4504 } 4505 4506 /** 4507 * clk_unregister - unregister a currently registered clock 4508 * @clk: clock to unregister 4509 */ 4510 void clk_unregister(struct clk *clk) 4511 { 4512 unsigned long flags; 4513 const struct clk_ops *ops; 4514 4515 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4516 return; 4517 4518 clk_debug_unregister(clk->core); 4519 4520 clk_prepare_lock(); 4521 4522 ops = clk->core->ops; 4523 if (ops == &clk_nodrv_ops) { 4524 pr_err("%s: unregistered clock: %s\n", __func__, 4525 clk->core->name); 4526 clk_prepare_unlock(); 4527 return; 4528 } 4529 /* 4530 * Assign empty clock ops for consumers that might still hold 4531 * a reference to this clock. 4532 */ 4533 flags = clk_enable_lock(); 4534 clk->core->ops = &clk_nodrv_ops; 4535 clk_enable_unlock(flags); 4536 4537 if (ops->terminate) 4538 ops->terminate(clk->core->hw); 4539 4540 if (!hlist_empty(&clk->core->children)) { 4541 struct clk_core *child; 4542 struct hlist_node *t; 4543 4544 /* Reparent all children to the orphan list. */ 4545 hlist_for_each_entry_safe(child, t, &clk->core->children, 4546 child_node) 4547 clk_core_set_parent_nolock(child, NULL); 4548 } 4549 4550 clk_core_evict_parent_cache(clk->core); 4551 4552 hlist_del_init(&clk->core->child_node); 4553 4554 if (clk->core->prepare_count) 4555 pr_warn("%s: unregistering prepared clock: %s\n", 4556 __func__, clk->core->name); 4557 4558 if (clk->core->protect_count) 4559 pr_warn("%s: unregistering protected clock: %s\n", 4560 __func__, clk->core->name); 4561 clk_prepare_unlock(); 4562 4563 kref_put(&clk->core->ref, __clk_release); 4564 free_clk(clk); 4565 } 4566 EXPORT_SYMBOL_GPL(clk_unregister); 4567 4568 /** 4569 * clk_hw_unregister - unregister a currently registered clk_hw 4570 * @hw: hardware-specific clock data to unregister 4571 */ 4572 void clk_hw_unregister(struct clk_hw *hw) 4573 { 4574 clk_unregister(hw->clk); 4575 } 4576 EXPORT_SYMBOL_GPL(clk_hw_unregister); 4577 4578 static void devm_clk_unregister_cb(struct device *dev, void *res) 4579 { 4580 clk_unregister(*(struct clk **)res); 4581 } 4582 4583 static void devm_clk_hw_unregister_cb(struct device *dev, void *res) 4584 { 4585 clk_hw_unregister(*(struct clk_hw **)res); 4586 } 4587 4588 /** 4589 * devm_clk_register - resource managed clk_register() 4590 * @dev: device that is registering this clock 4591 * @hw: link to hardware-specific clock data 4592 * 4593 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead. 4594 * 4595 * Clocks returned from this function are automatically clk_unregister()ed on 4596 * driver detach. See clk_register() for more information. 4597 */ 4598 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 4599 { 4600 struct clk *clk; 4601 struct clk **clkp; 4602 4603 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL); 4604 if (!clkp) 4605 return ERR_PTR(-ENOMEM); 4606 4607 clk = clk_register(dev, hw); 4608 if (!IS_ERR(clk)) { 4609 *clkp = clk; 4610 devres_add(dev, clkp); 4611 } else { 4612 devres_free(clkp); 4613 } 4614 4615 return clk; 4616 } 4617 EXPORT_SYMBOL_GPL(devm_clk_register); 4618 4619 /** 4620 * devm_clk_hw_register - resource managed clk_hw_register() 4621 * @dev: device that is registering this clock 4622 * @hw: link to hardware-specific clock data 4623 * 4624 * Managed clk_hw_register(). Clocks registered by this function are 4625 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register() 4626 * for more information. 4627 */ 4628 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw) 4629 { 4630 struct clk_hw **hwp; 4631 int ret; 4632 4633 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL); 4634 if (!hwp) 4635 return -ENOMEM; 4636 4637 ret = clk_hw_register(dev, hw); 4638 if (!ret) { 4639 *hwp = hw; 4640 devres_add(dev, hwp); 4641 } else { 4642 devres_free(hwp); 4643 } 4644 4645 return ret; 4646 } 4647 EXPORT_SYMBOL_GPL(devm_clk_hw_register); 4648 4649 static void devm_clk_release(struct device *dev, void *res) 4650 { 4651 clk_put(*(struct clk **)res); 4652 } 4653 4654 /** 4655 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk() 4656 * @dev: device that is registering this clock 4657 * @hw: clk_hw associated with the clk being consumed 4658 * @con_id: connection ID string on device 4659 * 4660 * Managed clk_hw_get_clk(). Clocks got with this function are 4661 * automatically clk_put() on driver detach. See clk_put() 4662 * for more information. 4663 */ 4664 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw, 4665 const char *con_id) 4666 { 4667 struct clk *clk; 4668 struct clk **clkp; 4669 4670 /* This should not happen because it would mean we have drivers 4671 * passing around clk_hw pointers instead of having the caller use 4672 * proper clk_get() style APIs 4673 */ 4674 WARN_ON_ONCE(dev != hw->core->dev); 4675 4676 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 4677 if (!clkp) 4678 return ERR_PTR(-ENOMEM); 4679 4680 clk = clk_hw_get_clk(hw, con_id); 4681 if (!IS_ERR(clk)) { 4682 *clkp = clk; 4683 devres_add(dev, clkp); 4684 } else { 4685 devres_free(clkp); 4686 } 4687 4688 return clk; 4689 } 4690 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk); 4691 4692 /* 4693 * clkdev helpers 4694 */ 4695 4696 void __clk_put(struct clk *clk) 4697 { 4698 struct module *owner; 4699 4700 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 4701 return; 4702 4703 clk_prepare_lock(); 4704 4705 /* 4706 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a 4707 * given user should be balanced with calls to clk_rate_exclusive_put() 4708 * and by that same consumer 4709 */ 4710 if (WARN_ON(clk->exclusive_count)) { 4711 /* We voiced our concern, let's sanitize the situation */ 4712 clk->core->protect_count -= (clk->exclusive_count - 1); 4713 clk_core_rate_unprotect(clk->core); 4714 clk->exclusive_count = 0; 4715 } 4716 4717 hlist_del(&clk->clks_node); 4718 4719 /* If we had any boundaries on that clock, let's drop them. */ 4720 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX) 4721 clk_set_rate_range_nolock(clk, 0, ULONG_MAX); 4722 4723 clk_prepare_unlock(); 4724 4725 owner = clk->core->owner; 4726 kref_put(&clk->core->ref, __clk_release); 4727 module_put(owner); 4728 free_clk(clk); 4729 } 4730 4731 /*** clk rate change notifiers ***/ 4732 4733 /** 4734 * clk_notifier_register - add a clk rate change notifier 4735 * @clk: struct clk * to watch 4736 * @nb: struct notifier_block * with callback info 4737 * 4738 * Request notification when clk's rate changes. This uses an SRCU 4739 * notifier because we want it to block and notifier unregistrations are 4740 * uncommon. The callbacks associated with the notifier must not 4741 * re-enter into the clk framework by calling any top-level clk APIs; 4742 * this will cause a nested prepare_lock mutex. 4743 * 4744 * In all notification cases (pre, post and abort rate change) the original 4745 * clock rate is passed to the callback via struct clk_notifier_data.old_rate 4746 * and the new frequency is passed via struct clk_notifier_data.new_rate. 4747 * 4748 * clk_notifier_register() must be called from non-atomic context. 4749 * Returns -EINVAL if called with null arguments, -ENOMEM upon 4750 * allocation failure; otherwise, passes along the return value of 4751 * srcu_notifier_chain_register(). 4752 */ 4753 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 4754 { 4755 struct clk_notifier *cn; 4756 int ret = -ENOMEM; 4757 4758 if (!clk || !nb) 4759 return -EINVAL; 4760 4761 clk_prepare_lock(); 4762 4763 /* search the list of notifiers for this clk */ 4764 list_for_each_entry(cn, &clk_notifier_list, node) 4765 if (cn->clk == clk) 4766 goto found; 4767 4768 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 4769 cn = kzalloc(sizeof(*cn), GFP_KERNEL); 4770 if (!cn) 4771 goto out; 4772 4773 cn->clk = clk; 4774 srcu_init_notifier_head(&cn->notifier_head); 4775 4776 list_add(&cn->node, &clk_notifier_list); 4777 4778 found: 4779 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 4780 4781 clk->core->notifier_count++; 4782 4783 out: 4784 clk_prepare_unlock(); 4785 4786 return ret; 4787 } 4788 EXPORT_SYMBOL_GPL(clk_notifier_register); 4789 4790 /** 4791 * clk_notifier_unregister - remove a clk rate change notifier 4792 * @clk: struct clk * 4793 * @nb: struct notifier_block * with callback info 4794 * 4795 * Request no further notification for changes to 'clk' and frees memory 4796 * allocated in clk_notifier_register. 4797 * 4798 * Returns -EINVAL if called with null arguments; otherwise, passes 4799 * along the return value of srcu_notifier_chain_unregister(). 4800 */ 4801 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 4802 { 4803 struct clk_notifier *cn; 4804 int ret = -ENOENT; 4805 4806 if (!clk || !nb) 4807 return -EINVAL; 4808 4809 clk_prepare_lock(); 4810 4811 list_for_each_entry(cn, &clk_notifier_list, node) { 4812 if (cn->clk == clk) { 4813 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 4814 4815 clk->core->notifier_count--; 4816 4817 /* XXX the notifier code should handle this better */ 4818 if (!cn->notifier_head.head) { 4819 srcu_cleanup_notifier_head(&cn->notifier_head); 4820 list_del(&cn->node); 4821 kfree(cn); 4822 } 4823 break; 4824 } 4825 } 4826 4827 clk_prepare_unlock(); 4828 4829 return ret; 4830 } 4831 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 4832 4833 struct clk_notifier_devres { 4834 struct clk *clk; 4835 struct notifier_block *nb; 4836 }; 4837 4838 static void devm_clk_notifier_release(struct device *dev, void *res) 4839 { 4840 struct clk_notifier_devres *devres = res; 4841 4842 clk_notifier_unregister(devres->clk, devres->nb); 4843 } 4844 4845 int devm_clk_notifier_register(struct device *dev, struct clk *clk, 4846 struct notifier_block *nb) 4847 { 4848 struct clk_notifier_devres *devres; 4849 int ret; 4850 4851 devres = devres_alloc(devm_clk_notifier_release, 4852 sizeof(*devres), GFP_KERNEL); 4853 4854 if (!devres) 4855 return -ENOMEM; 4856 4857 ret = clk_notifier_register(clk, nb); 4858 if (!ret) { 4859 devres->clk = clk; 4860 devres->nb = nb; 4861 devres_add(dev, devres); 4862 } else { 4863 devres_free(devres); 4864 } 4865 4866 return ret; 4867 } 4868 EXPORT_SYMBOL_GPL(devm_clk_notifier_register); 4869 4870 #ifdef CONFIG_OF 4871 static void clk_core_reparent_orphans(void) 4872 { 4873 clk_prepare_lock(); 4874 clk_core_reparent_orphans_nolock(); 4875 clk_prepare_unlock(); 4876 } 4877 4878 /** 4879 * struct of_clk_provider - Clock provider registration structure 4880 * @link: Entry in global list of clock providers 4881 * @node: Pointer to device tree node of clock provider 4882 * @get: Get clock callback. Returns NULL or a struct clk for the 4883 * given clock specifier 4884 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a 4885 * struct clk_hw for the given clock specifier 4886 * @data: context pointer to be passed into @get callback 4887 */ 4888 struct of_clk_provider { 4889 struct list_head link; 4890 4891 struct device_node *node; 4892 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 4893 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data); 4894 void *data; 4895 }; 4896 4897 extern struct of_device_id __clk_of_table; 4898 static const struct of_device_id __clk_of_table_sentinel 4899 __used __section("__clk_of_table_end"); 4900 4901 static LIST_HEAD(of_clk_providers); 4902 static DEFINE_MUTEX(of_clk_mutex); 4903 4904 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 4905 void *data) 4906 { 4907 return data; 4908 } 4909 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 4910 4911 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data) 4912 { 4913 return data; 4914 } 4915 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get); 4916 4917 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 4918 { 4919 struct clk_onecell_data *clk_data = data; 4920 unsigned int idx = clkspec->args[0]; 4921 4922 if (idx >= clk_data->clk_num) { 4923 pr_err("%s: invalid clock index %u\n", __func__, idx); 4924 return ERR_PTR(-EINVAL); 4925 } 4926 4927 return clk_data->clks[idx]; 4928 } 4929 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 4930 4931 struct clk_hw * 4932 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data) 4933 { 4934 struct clk_hw_onecell_data *hw_data = data; 4935 unsigned int idx = clkspec->args[0]; 4936 4937 if (idx >= hw_data->num) { 4938 pr_err("%s: invalid index %u\n", __func__, idx); 4939 return ERR_PTR(-EINVAL); 4940 } 4941 4942 return hw_data->hws[idx]; 4943 } 4944 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get); 4945 4946 /** 4947 * of_clk_add_provider() - Register a clock provider for a node 4948 * @np: Device node pointer associated with clock provider 4949 * @clk_src_get: callback for decoding clock 4950 * @data: context pointer for @clk_src_get callback. 4951 * 4952 * This function is *deprecated*. Use of_clk_add_hw_provider() instead. 4953 */ 4954 int of_clk_add_provider(struct device_node *np, 4955 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 4956 void *data), 4957 void *data) 4958 { 4959 struct of_clk_provider *cp; 4960 int ret; 4961 4962 if (!np) 4963 return 0; 4964 4965 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 4966 if (!cp) 4967 return -ENOMEM; 4968 4969 cp->node = of_node_get(np); 4970 cp->data = data; 4971 cp->get = clk_src_get; 4972 4973 mutex_lock(&of_clk_mutex); 4974 list_add(&cp->link, &of_clk_providers); 4975 mutex_unlock(&of_clk_mutex); 4976 pr_debug("Added clock from %pOF\n", np); 4977 4978 clk_core_reparent_orphans(); 4979 4980 ret = of_clk_set_defaults(np, true); 4981 if (ret < 0) 4982 of_clk_del_provider(np); 4983 4984 fwnode_dev_initialized(&np->fwnode, true); 4985 4986 return ret; 4987 } 4988 EXPORT_SYMBOL_GPL(of_clk_add_provider); 4989 4990 /** 4991 * of_clk_add_hw_provider() - Register a clock provider for a node 4992 * @np: Device node pointer associated with clock provider 4993 * @get: callback for decoding clk_hw 4994 * @data: context pointer for @get callback. 4995 */ 4996 int of_clk_add_hw_provider(struct device_node *np, 4997 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 4998 void *data), 4999 void *data) 5000 { 5001 struct of_clk_provider *cp; 5002 int ret; 5003 5004 if (!np) 5005 return 0; 5006 5007 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 5008 if (!cp) 5009 return -ENOMEM; 5010 5011 cp->node = of_node_get(np); 5012 cp->data = data; 5013 cp->get_hw = get; 5014 5015 mutex_lock(&of_clk_mutex); 5016 list_add(&cp->link, &of_clk_providers); 5017 mutex_unlock(&of_clk_mutex); 5018 pr_debug("Added clk_hw provider from %pOF\n", np); 5019 5020 clk_core_reparent_orphans(); 5021 5022 ret = of_clk_set_defaults(np, true); 5023 if (ret < 0) 5024 of_clk_del_provider(np); 5025 5026 fwnode_dev_initialized(&np->fwnode, true); 5027 5028 return ret; 5029 } 5030 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider); 5031 5032 static void devm_of_clk_release_provider(struct device *dev, void *res) 5033 { 5034 of_clk_del_provider(*(struct device_node **)res); 5035 } 5036 5037 /* 5038 * We allow a child device to use its parent device as the clock provider node 5039 * for cases like MFD sub-devices where the child device driver wants to use 5040 * devm_*() APIs but not list the device in DT as a sub-node. 5041 */ 5042 static struct device_node *get_clk_provider_node(struct device *dev) 5043 { 5044 struct device_node *np, *parent_np; 5045 5046 np = dev->of_node; 5047 parent_np = dev->parent ? dev->parent->of_node : NULL; 5048 5049 if (!of_property_present(np, "#clock-cells")) 5050 if (of_property_present(parent_np, "#clock-cells")) 5051 np = parent_np; 5052 5053 return np; 5054 } 5055 5056 /** 5057 * devm_of_clk_add_hw_provider() - Managed clk provider node registration 5058 * @dev: Device acting as the clock provider (used for DT node and lifetime) 5059 * @get: callback for decoding clk_hw 5060 * @data: context pointer for @get callback 5061 * 5062 * Registers clock provider for given device's node. If the device has no DT 5063 * node or if the device node lacks of clock provider information (#clock-cells) 5064 * then the parent device's node is scanned for this information. If parent node 5065 * has the #clock-cells then it is used in registration. Provider is 5066 * automatically released at device exit. 5067 * 5068 * Return: 0 on success or an errno on failure. 5069 */ 5070 int devm_of_clk_add_hw_provider(struct device *dev, 5071 struct clk_hw *(*get)(struct of_phandle_args *clkspec, 5072 void *data), 5073 void *data) 5074 { 5075 struct device_node **ptr, *np; 5076 int ret; 5077 5078 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr), 5079 GFP_KERNEL); 5080 if (!ptr) 5081 return -ENOMEM; 5082 5083 np = get_clk_provider_node(dev); 5084 ret = of_clk_add_hw_provider(np, get, data); 5085 if (!ret) { 5086 *ptr = np; 5087 devres_add(dev, ptr); 5088 } else { 5089 devres_free(ptr); 5090 } 5091 5092 return ret; 5093 } 5094 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider); 5095 5096 /** 5097 * of_clk_del_provider() - Remove a previously registered clock provider 5098 * @np: Device node pointer associated with clock provider 5099 */ 5100 void of_clk_del_provider(struct device_node *np) 5101 { 5102 struct of_clk_provider *cp; 5103 5104 if (!np) 5105 return; 5106 5107 mutex_lock(&of_clk_mutex); 5108 list_for_each_entry(cp, &of_clk_providers, link) { 5109 if (cp->node == np) { 5110 list_del(&cp->link); 5111 fwnode_dev_initialized(&np->fwnode, false); 5112 of_node_put(cp->node); 5113 kfree(cp); 5114 break; 5115 } 5116 } 5117 mutex_unlock(&of_clk_mutex); 5118 } 5119 EXPORT_SYMBOL_GPL(of_clk_del_provider); 5120 5121 /** 5122 * of_parse_clkspec() - Parse a DT clock specifier for a given device node 5123 * @np: device node to parse clock specifier from 5124 * @index: index of phandle to parse clock out of. If index < 0, @name is used 5125 * @name: clock name to find and parse. If name is NULL, the index is used 5126 * @out_args: Result of parsing the clock specifier 5127 * 5128 * Parses a device node's "clocks" and "clock-names" properties to find the 5129 * phandle and cells for the index or name that is desired. The resulting clock 5130 * specifier is placed into @out_args, or an errno is returned when there's a 5131 * parsing error. The @index argument is ignored if @name is non-NULL. 5132 * 5133 * Example: 5134 * 5135 * phandle1: clock-controller@1 { 5136 * #clock-cells = <2>; 5137 * } 5138 * 5139 * phandle2: clock-controller@2 { 5140 * #clock-cells = <1>; 5141 * } 5142 * 5143 * clock-consumer@3 { 5144 * clocks = <&phandle1 1 2 &phandle2 3>; 5145 * clock-names = "name1", "name2"; 5146 * } 5147 * 5148 * To get a device_node for `clock-controller@2' node you may call this 5149 * function a few different ways: 5150 * 5151 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args); 5152 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args); 5153 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args); 5154 * 5155 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT 5156 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in 5157 * the "clock-names" property of @np. 5158 */ 5159 static int of_parse_clkspec(const struct device_node *np, int index, 5160 const char *name, struct of_phandle_args *out_args) 5161 { 5162 int ret = -ENOENT; 5163 5164 /* Walk up the tree of devices looking for a clock property that matches */ 5165 while (np) { 5166 /* 5167 * For named clocks, first look up the name in the 5168 * "clock-names" property. If it cannot be found, then index 5169 * will be an error code and of_parse_phandle_with_args() will 5170 * return -EINVAL. 5171 */ 5172 if (name) 5173 index = of_property_match_string(np, "clock-names", name); 5174 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells", 5175 index, out_args); 5176 if (!ret) 5177 break; 5178 if (name && index >= 0) 5179 break; 5180 5181 /* 5182 * No matching clock found on this node. If the parent node 5183 * has a "clock-ranges" property, then we can try one of its 5184 * clocks. 5185 */ 5186 np = np->parent; 5187 if (np && !of_get_property(np, "clock-ranges", NULL)) 5188 break; 5189 index = 0; 5190 } 5191 5192 return ret; 5193 } 5194 5195 static struct clk_hw * 5196 __of_clk_get_hw_from_provider(struct of_clk_provider *provider, 5197 struct of_phandle_args *clkspec) 5198 { 5199 struct clk *clk; 5200 5201 if (provider->get_hw) 5202 return provider->get_hw(clkspec, provider->data); 5203 5204 clk = provider->get(clkspec, provider->data); 5205 if (IS_ERR(clk)) 5206 return ERR_CAST(clk); 5207 return __clk_get_hw(clk); 5208 } 5209 5210 static struct clk_hw * 5211 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec) 5212 { 5213 struct of_clk_provider *provider; 5214 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER); 5215 5216 if (!clkspec) 5217 return ERR_PTR(-EINVAL); 5218 5219 mutex_lock(&of_clk_mutex); 5220 list_for_each_entry(provider, &of_clk_providers, link) { 5221 if (provider->node == clkspec->np) { 5222 hw = __of_clk_get_hw_from_provider(provider, clkspec); 5223 if (!IS_ERR(hw)) 5224 break; 5225 } 5226 } 5227 mutex_unlock(&of_clk_mutex); 5228 5229 return hw; 5230 } 5231 5232 /** 5233 * of_clk_get_from_provider() - Lookup a clock from a clock provider 5234 * @clkspec: pointer to a clock specifier data structure 5235 * 5236 * This function looks up a struct clk from the registered list of clock 5237 * providers, an input is a clock specifier data structure as returned 5238 * from the of_parse_phandle_with_args() function call. 5239 */ 5240 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 5241 { 5242 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec); 5243 5244 return clk_hw_create_clk(NULL, hw, NULL, __func__); 5245 } 5246 EXPORT_SYMBOL_GPL(of_clk_get_from_provider); 5247 5248 struct clk_hw *of_clk_get_hw(struct device_node *np, int index, 5249 const char *con_id) 5250 { 5251 int ret; 5252 struct clk_hw *hw; 5253 struct of_phandle_args clkspec; 5254 5255 ret = of_parse_clkspec(np, index, con_id, &clkspec); 5256 if (ret) 5257 return ERR_PTR(ret); 5258 5259 hw = of_clk_get_hw_from_clkspec(&clkspec); 5260 of_node_put(clkspec.np); 5261 5262 return hw; 5263 } 5264 5265 static struct clk *__of_clk_get(struct device_node *np, 5266 int index, const char *dev_id, 5267 const char *con_id) 5268 { 5269 struct clk_hw *hw = of_clk_get_hw(np, index, con_id); 5270 5271 return clk_hw_create_clk(NULL, hw, dev_id, con_id); 5272 } 5273 5274 struct clk *of_clk_get(struct device_node *np, int index) 5275 { 5276 return __of_clk_get(np, index, np->full_name, NULL); 5277 } 5278 EXPORT_SYMBOL(of_clk_get); 5279 5280 /** 5281 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node 5282 * @np: pointer to clock consumer node 5283 * @name: name of consumer's clock input, or NULL for the first clock reference 5284 * 5285 * This function parses the clocks and clock-names properties, 5286 * and uses them to look up the struct clk from the registered list of clock 5287 * providers. 5288 */ 5289 struct clk *of_clk_get_by_name(struct device_node *np, const char *name) 5290 { 5291 if (!np) 5292 return ERR_PTR(-ENOENT); 5293 5294 return __of_clk_get(np, 0, np->full_name, name); 5295 } 5296 EXPORT_SYMBOL(of_clk_get_by_name); 5297 5298 /** 5299 * of_clk_get_parent_count() - Count the number of clocks a device node has 5300 * @np: device node to count 5301 * 5302 * Returns: The number of clocks that are possible parents of this node 5303 */ 5304 unsigned int of_clk_get_parent_count(const struct device_node *np) 5305 { 5306 int count; 5307 5308 count = of_count_phandle_with_args(np, "clocks", "#clock-cells"); 5309 if (count < 0) 5310 return 0; 5311 5312 return count; 5313 } 5314 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 5315 5316 const char *of_clk_get_parent_name(const struct device_node *np, int index) 5317 { 5318 struct of_phandle_args clkspec; 5319 struct property *prop; 5320 const char *clk_name; 5321 const __be32 *vp; 5322 u32 pv; 5323 int rc; 5324 int count; 5325 struct clk *clk; 5326 5327 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 5328 &clkspec); 5329 if (rc) 5330 return NULL; 5331 5332 index = clkspec.args_count ? clkspec.args[0] : 0; 5333 count = 0; 5334 5335 /* if there is an indices property, use it to transfer the index 5336 * specified into an array offset for the clock-output-names property. 5337 */ 5338 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 5339 if (index == pv) { 5340 index = count; 5341 break; 5342 } 5343 count++; 5344 } 5345 /* We went off the end of 'clock-indices' without finding it */ 5346 if (prop && !vp) 5347 return NULL; 5348 5349 if (of_property_read_string_index(clkspec.np, "clock-output-names", 5350 index, 5351 &clk_name) < 0) { 5352 /* 5353 * Best effort to get the name if the clock has been 5354 * registered with the framework. If the clock isn't 5355 * registered, we return the node name as the name of 5356 * the clock as long as #clock-cells = 0. 5357 */ 5358 clk = of_clk_get_from_provider(&clkspec); 5359 if (IS_ERR(clk)) { 5360 if (clkspec.args_count == 0) 5361 clk_name = clkspec.np->name; 5362 else 5363 clk_name = NULL; 5364 } else { 5365 clk_name = __clk_get_name(clk); 5366 clk_put(clk); 5367 } 5368 } 5369 5370 5371 of_node_put(clkspec.np); 5372 return clk_name; 5373 } 5374 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 5375 5376 /** 5377 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return 5378 * number of parents 5379 * @np: Device node pointer associated with clock provider 5380 * @parents: pointer to char array that hold the parents' names 5381 * @size: size of the @parents array 5382 * 5383 * Return: number of parents for the clock node. 5384 */ 5385 int of_clk_parent_fill(struct device_node *np, const char **parents, 5386 unsigned int size) 5387 { 5388 unsigned int i = 0; 5389 5390 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL) 5391 i++; 5392 5393 return i; 5394 } 5395 EXPORT_SYMBOL_GPL(of_clk_parent_fill); 5396 5397 struct clock_provider { 5398 void (*clk_init_cb)(struct device_node *); 5399 struct device_node *np; 5400 struct list_head node; 5401 }; 5402 5403 /* 5404 * This function looks for a parent clock. If there is one, then it 5405 * checks that the provider for this parent clock was initialized, in 5406 * this case the parent clock will be ready. 5407 */ 5408 static int parent_ready(struct device_node *np) 5409 { 5410 int i = 0; 5411 5412 while (true) { 5413 struct clk *clk = of_clk_get(np, i); 5414 5415 /* this parent is ready we can check the next one */ 5416 if (!IS_ERR(clk)) { 5417 clk_put(clk); 5418 i++; 5419 continue; 5420 } 5421 5422 /* at least one parent is not ready, we exit now */ 5423 if (PTR_ERR(clk) == -EPROBE_DEFER) 5424 return 0; 5425 5426 /* 5427 * Here we make assumption that the device tree is 5428 * written correctly. So an error means that there is 5429 * no more parent. As we didn't exit yet, then the 5430 * previous parent are ready. If there is no clock 5431 * parent, no need to wait for them, then we can 5432 * consider their absence as being ready 5433 */ 5434 return 1; 5435 } 5436 } 5437 5438 /** 5439 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree 5440 * @np: Device node pointer associated with clock provider 5441 * @index: clock index 5442 * @flags: pointer to top-level framework flags 5443 * 5444 * Detects if the clock-critical property exists and, if so, sets the 5445 * corresponding CLK_IS_CRITICAL flag. 5446 * 5447 * Do not use this function. It exists only for legacy Device Tree 5448 * bindings, such as the one-clock-per-node style that are outdated. 5449 * Those bindings typically put all clock data into .dts and the Linux 5450 * driver has no clock data, thus making it impossible to set this flag 5451 * correctly from the driver. Only those drivers may call 5452 * of_clk_detect_critical from their setup functions. 5453 * 5454 * Return: error code or zero on success 5455 */ 5456 int of_clk_detect_critical(struct device_node *np, int index, 5457 unsigned long *flags) 5458 { 5459 struct property *prop; 5460 const __be32 *cur; 5461 uint32_t idx; 5462 5463 if (!np || !flags) 5464 return -EINVAL; 5465 5466 of_property_for_each_u32(np, "clock-critical", prop, cur, idx) 5467 if (index == idx) 5468 *flags |= CLK_IS_CRITICAL; 5469 5470 return 0; 5471 } 5472 5473 /** 5474 * of_clk_init() - Scan and init clock providers from the DT 5475 * @matches: array of compatible values and init functions for providers. 5476 * 5477 * This function scans the device tree for matching clock providers 5478 * and calls their initialization functions. It also does it by trying 5479 * to follow the dependencies. 5480 */ 5481 void __init of_clk_init(const struct of_device_id *matches) 5482 { 5483 const struct of_device_id *match; 5484 struct device_node *np; 5485 struct clock_provider *clk_provider, *next; 5486 bool is_init_done; 5487 bool force = false; 5488 LIST_HEAD(clk_provider_list); 5489 5490 if (!matches) 5491 matches = &__clk_of_table; 5492 5493 /* First prepare the list of the clocks providers */ 5494 for_each_matching_node_and_match(np, matches, &match) { 5495 struct clock_provider *parent; 5496 5497 if (!of_device_is_available(np)) 5498 continue; 5499 5500 parent = kzalloc(sizeof(*parent), GFP_KERNEL); 5501 if (!parent) { 5502 list_for_each_entry_safe(clk_provider, next, 5503 &clk_provider_list, node) { 5504 list_del(&clk_provider->node); 5505 of_node_put(clk_provider->np); 5506 kfree(clk_provider); 5507 } 5508 of_node_put(np); 5509 return; 5510 } 5511 5512 parent->clk_init_cb = match->data; 5513 parent->np = of_node_get(np); 5514 list_add_tail(&parent->node, &clk_provider_list); 5515 } 5516 5517 while (!list_empty(&clk_provider_list)) { 5518 is_init_done = false; 5519 list_for_each_entry_safe(clk_provider, next, 5520 &clk_provider_list, node) { 5521 if (force || parent_ready(clk_provider->np)) { 5522 5523 /* Don't populate platform devices */ 5524 of_node_set_flag(clk_provider->np, 5525 OF_POPULATED); 5526 5527 clk_provider->clk_init_cb(clk_provider->np); 5528 of_clk_set_defaults(clk_provider->np, true); 5529 5530 list_del(&clk_provider->node); 5531 of_node_put(clk_provider->np); 5532 kfree(clk_provider); 5533 is_init_done = true; 5534 } 5535 } 5536 5537 /* 5538 * We didn't manage to initialize any of the 5539 * remaining providers during the last loop, so now we 5540 * initialize all the remaining ones unconditionally 5541 * in case the clock parent was not mandatory 5542 */ 5543 if (!is_init_done) 5544 force = true; 5545 } 5546 } 5547 #endif 5548