xref: /openbmc/linux/drivers/clk/clk.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /* List of registered clks that use runtime PM */
41 static HLIST_HEAD(clk_rpm_list);
42 static DEFINE_MUTEX(clk_rpm_list_lock);
43 
44 static const struct hlist_head *all_lists[] = {
45 	&clk_root_list,
46 	&clk_orphan_list,
47 	NULL,
48 };
49 
50 /***    private data structures    ***/
51 
52 struct clk_parent_map {
53 	const struct clk_hw	*hw;
54 	struct clk_core		*core;
55 	const char		*fw_name;
56 	const char		*name;
57 	int			index;
58 };
59 
60 struct clk_core {
61 	const char		*name;
62 	const struct clk_ops	*ops;
63 	struct clk_hw		*hw;
64 	struct module		*owner;
65 	struct device		*dev;
66 	struct hlist_node	rpm_node;
67 	struct device_node	*of_node;
68 	struct clk_core		*parent;
69 	struct clk_parent_map	*parents;
70 	u8			num_parents;
71 	u8			new_parent_index;
72 	unsigned long		rate;
73 	unsigned long		req_rate;
74 	unsigned long		new_rate;
75 	struct clk_core		*new_parent;
76 	struct clk_core		*new_child;
77 	unsigned long		flags;
78 	bool			orphan;
79 	bool			rpm_enabled;
80 	unsigned int		enable_count;
81 	unsigned int		prepare_count;
82 	unsigned int		protect_count;
83 	unsigned long		min_rate;
84 	unsigned long		max_rate;
85 	unsigned long		accuracy;
86 	int			phase;
87 	struct clk_duty		duty;
88 	struct hlist_head	children;
89 	struct hlist_node	child_node;
90 	struct hlist_head	clks;
91 	unsigned int		notifier_count;
92 #ifdef CONFIG_DEBUG_FS
93 	struct dentry		*dentry;
94 	struct hlist_node	debug_node;
95 #endif
96 	struct kref		ref;
97 };
98 
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/clk.h>
101 
102 struct clk {
103 	struct clk_core	*core;
104 	struct device *dev;
105 	const char *dev_id;
106 	const char *con_id;
107 	unsigned long min_rate;
108 	unsigned long max_rate;
109 	unsigned int exclusive_count;
110 	struct hlist_node clks_node;
111 };
112 
113 /***           runtime pm          ***/
114 static int clk_pm_runtime_get(struct clk_core *core)
115 {
116 	if (!core->rpm_enabled)
117 		return 0;
118 
119 	return pm_runtime_resume_and_get(core->dev);
120 }
121 
122 static void clk_pm_runtime_put(struct clk_core *core)
123 {
124 	if (!core->rpm_enabled)
125 		return;
126 
127 	pm_runtime_put_sync(core->dev);
128 }
129 
130 /**
131  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
132  *
133  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
134  * that disabling unused clks avoids a deadlock where a device is runtime PM
135  * resuming/suspending and the runtime PM callback is trying to grab the
136  * prepare_lock for something like clk_prepare_enable() while
137  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
138  * PM resume/suspend the device as well.
139  *
140  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
141  * success. Otherwise the lock is released on failure.
142  *
143  * Return: 0 on success, negative errno otherwise.
144  */
145 static int clk_pm_runtime_get_all(void)
146 {
147 	int ret;
148 	struct clk_core *core, *failed;
149 
150 	/*
151 	 * Grab the list lock to prevent any new clks from being registered
152 	 * or unregistered until clk_pm_runtime_put_all().
153 	 */
154 	mutex_lock(&clk_rpm_list_lock);
155 
156 	/*
157 	 * Runtime PM "get" all the devices that are needed for the clks
158 	 * currently registered. Do this without holding the prepare_lock, to
159 	 * avoid the deadlock.
160 	 */
161 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
162 		ret = clk_pm_runtime_get(core);
163 		if (ret) {
164 			failed = core;
165 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
166 			       dev_name(failed->dev), failed->name);
167 			goto err;
168 		}
169 	}
170 
171 	return 0;
172 
173 err:
174 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
175 		if (core == failed)
176 			break;
177 
178 		clk_pm_runtime_put(core);
179 	}
180 	mutex_unlock(&clk_rpm_list_lock);
181 
182 	return ret;
183 }
184 
185 /**
186  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
187  *
188  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
189  * the 'clk_rpm_list_lock'.
190  */
191 static void clk_pm_runtime_put_all(void)
192 {
193 	struct clk_core *core;
194 
195 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
196 		clk_pm_runtime_put(core);
197 	mutex_unlock(&clk_rpm_list_lock);
198 }
199 
200 static void clk_pm_runtime_init(struct clk_core *core)
201 {
202 	struct device *dev = core->dev;
203 
204 	if (dev && pm_runtime_enabled(dev)) {
205 		core->rpm_enabled = true;
206 
207 		mutex_lock(&clk_rpm_list_lock);
208 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
209 		mutex_unlock(&clk_rpm_list_lock);
210 	}
211 }
212 
213 /***           locking             ***/
214 static void clk_prepare_lock(void)
215 {
216 	if (!mutex_trylock(&prepare_lock)) {
217 		if (prepare_owner == current) {
218 			prepare_refcnt++;
219 			return;
220 		}
221 		mutex_lock(&prepare_lock);
222 	}
223 	WARN_ON_ONCE(prepare_owner != NULL);
224 	WARN_ON_ONCE(prepare_refcnt != 0);
225 	prepare_owner = current;
226 	prepare_refcnt = 1;
227 }
228 
229 static void clk_prepare_unlock(void)
230 {
231 	WARN_ON_ONCE(prepare_owner != current);
232 	WARN_ON_ONCE(prepare_refcnt == 0);
233 
234 	if (--prepare_refcnt)
235 		return;
236 	prepare_owner = NULL;
237 	mutex_unlock(&prepare_lock);
238 }
239 
240 static unsigned long clk_enable_lock(void)
241 	__acquires(enable_lock)
242 {
243 	unsigned long flags;
244 
245 	/*
246 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
247 	 * we already hold the lock. So, in that case, we rely only on
248 	 * reference counting.
249 	 */
250 	if (!IS_ENABLED(CONFIG_SMP) ||
251 	    !spin_trylock_irqsave(&enable_lock, flags)) {
252 		if (enable_owner == current) {
253 			enable_refcnt++;
254 			__acquire(enable_lock);
255 			if (!IS_ENABLED(CONFIG_SMP))
256 				local_save_flags(flags);
257 			return flags;
258 		}
259 		spin_lock_irqsave(&enable_lock, flags);
260 	}
261 	WARN_ON_ONCE(enable_owner != NULL);
262 	WARN_ON_ONCE(enable_refcnt != 0);
263 	enable_owner = current;
264 	enable_refcnt = 1;
265 	return flags;
266 }
267 
268 static void clk_enable_unlock(unsigned long flags)
269 	__releases(enable_lock)
270 {
271 	WARN_ON_ONCE(enable_owner != current);
272 	WARN_ON_ONCE(enable_refcnt == 0);
273 
274 	if (--enable_refcnt) {
275 		__release(enable_lock);
276 		return;
277 	}
278 	enable_owner = NULL;
279 	spin_unlock_irqrestore(&enable_lock, flags);
280 }
281 
282 static bool clk_core_rate_is_protected(struct clk_core *core)
283 {
284 	return core->protect_count;
285 }
286 
287 static bool clk_core_is_prepared(struct clk_core *core)
288 {
289 	bool ret = false;
290 
291 	/*
292 	 * .is_prepared is optional for clocks that can prepare
293 	 * fall back to software usage counter if it is missing
294 	 */
295 	if (!core->ops->is_prepared)
296 		return core->prepare_count;
297 
298 	if (!clk_pm_runtime_get(core)) {
299 		ret = core->ops->is_prepared(core->hw);
300 		clk_pm_runtime_put(core);
301 	}
302 
303 	return ret;
304 }
305 
306 static bool clk_core_is_enabled(struct clk_core *core)
307 {
308 	bool ret = false;
309 
310 	/*
311 	 * .is_enabled is only mandatory for clocks that gate
312 	 * fall back to software usage counter if .is_enabled is missing
313 	 */
314 	if (!core->ops->is_enabled)
315 		return core->enable_count;
316 
317 	/*
318 	 * Check if clock controller's device is runtime active before
319 	 * calling .is_enabled callback. If not, assume that clock is
320 	 * disabled, because we might be called from atomic context, from
321 	 * which pm_runtime_get() is not allowed.
322 	 * This function is called mainly from clk_disable_unused_subtree,
323 	 * which ensures proper runtime pm activation of controller before
324 	 * taking enable spinlock, but the below check is needed if one tries
325 	 * to call it from other places.
326 	 */
327 	if (core->rpm_enabled) {
328 		pm_runtime_get_noresume(core->dev);
329 		if (!pm_runtime_active(core->dev)) {
330 			ret = false;
331 			goto done;
332 		}
333 	}
334 
335 	/*
336 	 * This could be called with the enable lock held, or from atomic
337 	 * context. If the parent isn't enabled already, we can't do
338 	 * anything here. We can also assume this clock isn't enabled.
339 	 */
340 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
341 		if (!clk_core_is_enabled(core->parent)) {
342 			ret = false;
343 			goto done;
344 		}
345 
346 	ret = core->ops->is_enabled(core->hw);
347 done:
348 	if (core->rpm_enabled)
349 		pm_runtime_put(core->dev);
350 
351 	return ret;
352 }
353 
354 /***    helper functions   ***/
355 
356 const char *__clk_get_name(const struct clk *clk)
357 {
358 	return !clk ? NULL : clk->core->name;
359 }
360 EXPORT_SYMBOL_GPL(__clk_get_name);
361 
362 const char *clk_hw_get_name(const struct clk_hw *hw)
363 {
364 	return hw->core->name;
365 }
366 EXPORT_SYMBOL_GPL(clk_hw_get_name);
367 
368 struct clk_hw *__clk_get_hw(struct clk *clk)
369 {
370 	return !clk ? NULL : clk->core->hw;
371 }
372 EXPORT_SYMBOL_GPL(__clk_get_hw);
373 
374 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
375 {
376 	return hw->core->num_parents;
377 }
378 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
379 
380 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
381 {
382 	return hw->core->parent ? hw->core->parent->hw : NULL;
383 }
384 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
385 
386 static struct clk_core *__clk_lookup_subtree(const char *name,
387 					     struct clk_core *core)
388 {
389 	struct clk_core *child;
390 	struct clk_core *ret;
391 
392 	if (!strcmp(core->name, name))
393 		return core;
394 
395 	hlist_for_each_entry(child, &core->children, child_node) {
396 		ret = __clk_lookup_subtree(name, child);
397 		if (ret)
398 			return ret;
399 	}
400 
401 	return NULL;
402 }
403 
404 static struct clk_core *clk_core_lookup(const char *name)
405 {
406 	struct clk_core *root_clk;
407 	struct clk_core *ret;
408 
409 	if (!name)
410 		return NULL;
411 
412 	/* search the 'proper' clk tree first */
413 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
414 		ret = __clk_lookup_subtree(name, root_clk);
415 		if (ret)
416 			return ret;
417 	}
418 
419 	/* if not found, then search the orphan tree */
420 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
421 		ret = __clk_lookup_subtree(name, root_clk);
422 		if (ret)
423 			return ret;
424 	}
425 
426 	return NULL;
427 }
428 
429 #ifdef CONFIG_OF
430 static int of_parse_clkspec(const struct device_node *np, int index,
431 			    const char *name, struct of_phandle_args *out_args);
432 static struct clk_hw *
433 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
434 #else
435 static inline int of_parse_clkspec(const struct device_node *np, int index,
436 				   const char *name,
437 				   struct of_phandle_args *out_args)
438 {
439 	return -ENOENT;
440 }
441 static inline struct clk_hw *
442 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
443 {
444 	return ERR_PTR(-ENOENT);
445 }
446 #endif
447 
448 /**
449  * clk_core_get - Find the clk_core parent of a clk
450  * @core: clk to find parent of
451  * @p_index: parent index to search for
452  *
453  * This is the preferred method for clk providers to find the parent of a
454  * clk when that parent is external to the clk controller. The parent_names
455  * array is indexed and treated as a local name matching a string in the device
456  * node's 'clock-names' property or as the 'con_id' matching the device's
457  * dev_name() in a clk_lookup. This allows clk providers to use their own
458  * namespace instead of looking for a globally unique parent string.
459  *
460  * For example the following DT snippet would allow a clock registered by the
461  * clock-controller@c001 that has a clk_init_data::parent_data array
462  * with 'xtal' in the 'name' member to find the clock provided by the
463  * clock-controller@f00abcd without needing to get the globally unique name of
464  * the xtal clk.
465  *
466  *      parent: clock-controller@f00abcd {
467  *              reg = <0xf00abcd 0xabcd>;
468  *              #clock-cells = <0>;
469  *      };
470  *
471  *      clock-controller@c001 {
472  *              reg = <0xc001 0xf00d>;
473  *              clocks = <&parent>;
474  *              clock-names = "xtal";
475  *              #clock-cells = <1>;
476  *      };
477  *
478  * Returns: -ENOENT when the provider can't be found or the clk doesn't
479  * exist in the provider or the name can't be found in the DT node or
480  * in a clkdev lookup. NULL when the provider knows about the clk but it
481  * isn't provided on this system.
482  * A valid clk_core pointer when the clk can be found in the provider.
483  */
484 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
485 {
486 	const char *name = core->parents[p_index].fw_name;
487 	int index = core->parents[p_index].index;
488 	struct clk_hw *hw = ERR_PTR(-ENOENT);
489 	struct device *dev = core->dev;
490 	const char *dev_id = dev ? dev_name(dev) : NULL;
491 	struct device_node *np = core->of_node;
492 	struct of_phandle_args clkspec;
493 
494 	if (np && (name || index >= 0) &&
495 	    !of_parse_clkspec(np, index, name, &clkspec)) {
496 		hw = of_clk_get_hw_from_clkspec(&clkspec);
497 		of_node_put(clkspec.np);
498 	} else if (name) {
499 		/*
500 		 * If the DT search above couldn't find the provider fallback to
501 		 * looking up via clkdev based clk_lookups.
502 		 */
503 		hw = clk_find_hw(dev_id, name);
504 	}
505 
506 	if (IS_ERR(hw))
507 		return ERR_CAST(hw);
508 
509 	if (!hw)
510 		return NULL;
511 
512 	return hw->core;
513 }
514 
515 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
516 {
517 	struct clk_parent_map *entry = &core->parents[index];
518 	struct clk_core *parent;
519 
520 	if (entry->hw) {
521 		parent = entry->hw->core;
522 	} else {
523 		parent = clk_core_get(core, index);
524 		if (PTR_ERR(parent) == -ENOENT && entry->name)
525 			parent = clk_core_lookup(entry->name);
526 	}
527 
528 	/*
529 	 * We have a direct reference but it isn't registered yet?
530 	 * Orphan it and let clk_reparent() update the orphan status
531 	 * when the parent is registered.
532 	 */
533 	if (!parent)
534 		parent = ERR_PTR(-EPROBE_DEFER);
535 
536 	/* Only cache it if it's not an error */
537 	if (!IS_ERR(parent))
538 		entry->core = parent;
539 }
540 
541 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
542 							 u8 index)
543 {
544 	if (!core || index >= core->num_parents || !core->parents)
545 		return NULL;
546 
547 	if (!core->parents[index].core)
548 		clk_core_fill_parent_index(core, index);
549 
550 	return core->parents[index].core;
551 }
552 
553 struct clk_hw *
554 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
555 {
556 	struct clk_core *parent;
557 
558 	parent = clk_core_get_parent_by_index(hw->core, index);
559 
560 	return !parent ? NULL : parent->hw;
561 }
562 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
563 
564 unsigned int __clk_get_enable_count(struct clk *clk)
565 {
566 	return !clk ? 0 : clk->core->enable_count;
567 }
568 
569 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
570 {
571 	if (!core)
572 		return 0;
573 
574 	if (!core->num_parents || core->parent)
575 		return core->rate;
576 
577 	/*
578 	 * Clk must have a parent because num_parents > 0 but the parent isn't
579 	 * known yet. Best to return 0 as the rate of this clk until we can
580 	 * properly recalc the rate based on the parent's rate.
581 	 */
582 	return 0;
583 }
584 
585 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
586 {
587 	return clk_core_get_rate_nolock(hw->core);
588 }
589 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
590 
591 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
592 {
593 	if (!core)
594 		return 0;
595 
596 	return core->accuracy;
597 }
598 
599 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
600 {
601 	return hw->core->flags;
602 }
603 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
604 
605 bool clk_hw_is_prepared(const struct clk_hw *hw)
606 {
607 	return clk_core_is_prepared(hw->core);
608 }
609 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
610 
611 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
612 {
613 	return clk_core_rate_is_protected(hw->core);
614 }
615 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
616 
617 bool clk_hw_is_enabled(const struct clk_hw *hw)
618 {
619 	return clk_core_is_enabled(hw->core);
620 }
621 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
622 
623 bool __clk_is_enabled(struct clk *clk)
624 {
625 	if (!clk)
626 		return false;
627 
628 	return clk_core_is_enabled(clk->core);
629 }
630 EXPORT_SYMBOL_GPL(__clk_is_enabled);
631 
632 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
633 			   unsigned long best, unsigned long flags)
634 {
635 	if (flags & CLK_MUX_ROUND_CLOSEST)
636 		return abs(now - rate) < abs(best - rate);
637 
638 	return now <= rate && now > best;
639 }
640 
641 static void clk_core_init_rate_req(struct clk_core * const core,
642 				   struct clk_rate_request *req,
643 				   unsigned long rate);
644 
645 static int clk_core_round_rate_nolock(struct clk_core *core,
646 				      struct clk_rate_request *req);
647 
648 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
649 {
650 	struct clk_core *tmp;
651 	unsigned int i;
652 
653 	/* Optimize for the case where the parent is already the parent. */
654 	if (core->parent == parent)
655 		return true;
656 
657 	for (i = 0; i < core->num_parents; i++) {
658 		tmp = clk_core_get_parent_by_index(core, i);
659 		if (!tmp)
660 			continue;
661 
662 		if (tmp == parent)
663 			return true;
664 	}
665 
666 	return false;
667 }
668 
669 static void
670 clk_core_forward_rate_req(struct clk_core *core,
671 			  const struct clk_rate_request *old_req,
672 			  struct clk_core *parent,
673 			  struct clk_rate_request *req,
674 			  unsigned long parent_rate)
675 {
676 	if (WARN_ON(!clk_core_has_parent(core, parent)))
677 		return;
678 
679 	clk_core_init_rate_req(parent, req, parent_rate);
680 
681 	if (req->min_rate < old_req->min_rate)
682 		req->min_rate = old_req->min_rate;
683 
684 	if (req->max_rate > old_req->max_rate)
685 		req->max_rate = old_req->max_rate;
686 }
687 
688 static int
689 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
690 				    struct clk_rate_request *req)
691 {
692 	struct clk_core *core = hw->core;
693 	struct clk_core *parent = core->parent;
694 	unsigned long best;
695 	int ret;
696 
697 	if (core->flags & CLK_SET_RATE_PARENT) {
698 		struct clk_rate_request parent_req;
699 
700 		if (!parent) {
701 			req->rate = 0;
702 			return 0;
703 		}
704 
705 		clk_core_forward_rate_req(core, req, parent, &parent_req,
706 					  req->rate);
707 
708 		trace_clk_rate_request_start(&parent_req);
709 
710 		ret = clk_core_round_rate_nolock(parent, &parent_req);
711 		if (ret)
712 			return ret;
713 
714 		trace_clk_rate_request_done(&parent_req);
715 
716 		best = parent_req.rate;
717 	} else if (parent) {
718 		best = clk_core_get_rate_nolock(parent);
719 	} else {
720 		best = clk_core_get_rate_nolock(core);
721 	}
722 
723 	req->best_parent_rate = best;
724 	req->rate = best;
725 
726 	return 0;
727 }
728 
729 int clk_mux_determine_rate_flags(struct clk_hw *hw,
730 				 struct clk_rate_request *req,
731 				 unsigned long flags)
732 {
733 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
734 	int i, num_parents, ret;
735 	unsigned long best = 0;
736 
737 	/* if NO_REPARENT flag set, pass through to current parent */
738 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
739 		return clk_core_determine_rate_no_reparent(hw, req);
740 
741 	/* find the parent that can provide the fastest rate <= rate */
742 	num_parents = core->num_parents;
743 	for (i = 0; i < num_parents; i++) {
744 		unsigned long parent_rate;
745 
746 		parent = clk_core_get_parent_by_index(core, i);
747 		if (!parent)
748 			continue;
749 
750 		if (core->flags & CLK_SET_RATE_PARENT) {
751 			struct clk_rate_request parent_req;
752 
753 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
754 
755 			trace_clk_rate_request_start(&parent_req);
756 
757 			ret = clk_core_round_rate_nolock(parent, &parent_req);
758 			if (ret)
759 				continue;
760 
761 			trace_clk_rate_request_done(&parent_req);
762 
763 			parent_rate = parent_req.rate;
764 		} else {
765 			parent_rate = clk_core_get_rate_nolock(parent);
766 		}
767 
768 		if (mux_is_better_rate(req->rate, parent_rate,
769 				       best, flags)) {
770 			best_parent = parent;
771 			best = parent_rate;
772 		}
773 	}
774 
775 	if (!best_parent)
776 		return -EINVAL;
777 
778 	req->best_parent_hw = best_parent->hw;
779 	req->best_parent_rate = best;
780 	req->rate = best;
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
785 
786 struct clk *__clk_lookup(const char *name)
787 {
788 	struct clk_core *core = clk_core_lookup(name);
789 
790 	return !core ? NULL : core->hw->clk;
791 }
792 
793 static void clk_core_get_boundaries(struct clk_core *core,
794 				    unsigned long *min_rate,
795 				    unsigned long *max_rate)
796 {
797 	struct clk *clk_user;
798 
799 	lockdep_assert_held(&prepare_lock);
800 
801 	*min_rate = core->min_rate;
802 	*max_rate = core->max_rate;
803 
804 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
805 		*min_rate = max(*min_rate, clk_user->min_rate);
806 
807 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
808 		*max_rate = min(*max_rate, clk_user->max_rate);
809 }
810 
811 /*
812  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
813  * @hw: the hw clk we want to get the range from
814  * @min_rate: pointer to the variable that will hold the minimum
815  * @max_rate: pointer to the variable that will hold the maximum
816  *
817  * Fills the @min_rate and @max_rate variables with the minimum and
818  * maximum that clock can reach.
819  */
820 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
821 			   unsigned long *max_rate)
822 {
823 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
824 }
825 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
826 
827 static bool clk_core_check_boundaries(struct clk_core *core,
828 				      unsigned long min_rate,
829 				      unsigned long max_rate)
830 {
831 	struct clk *user;
832 
833 	lockdep_assert_held(&prepare_lock);
834 
835 	if (min_rate > core->max_rate || max_rate < core->min_rate)
836 		return false;
837 
838 	hlist_for_each_entry(user, &core->clks, clks_node)
839 		if (min_rate > user->max_rate || max_rate < user->min_rate)
840 			return false;
841 
842 	return true;
843 }
844 
845 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
846 			   unsigned long max_rate)
847 {
848 	hw->core->min_rate = min_rate;
849 	hw->core->max_rate = max_rate;
850 }
851 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
852 
853 /*
854  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
855  * @hw: mux type clk to determine rate on
856  * @req: rate request, also used to return preferred parent and frequencies
857  *
858  * Helper for finding best parent to provide a given frequency. This can be used
859  * directly as a determine_rate callback (e.g. for a mux), or from a more
860  * complex clock that may combine a mux with other operations.
861  *
862  * Returns: 0 on success, -EERROR value on error
863  */
864 int __clk_mux_determine_rate(struct clk_hw *hw,
865 			     struct clk_rate_request *req)
866 {
867 	return clk_mux_determine_rate_flags(hw, req, 0);
868 }
869 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
870 
871 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
872 				     struct clk_rate_request *req)
873 {
874 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
875 }
876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
877 
878 /*
879  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
880  * @hw: mux type clk to determine rate on
881  * @req: rate request, also used to return preferred frequency
882  *
883  * Helper for finding best parent rate to provide a given frequency.
884  * This can be used directly as a determine_rate callback (e.g. for a
885  * mux), or from a more complex clock that may combine a mux with other
886  * operations.
887  *
888  * Returns: 0 on success, -EERROR value on error
889  */
890 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
891 				      struct clk_rate_request *req)
892 {
893 	return clk_core_determine_rate_no_reparent(hw, req);
894 }
895 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
896 
897 /***        clk api        ***/
898 
899 static void clk_core_rate_unprotect(struct clk_core *core)
900 {
901 	lockdep_assert_held(&prepare_lock);
902 
903 	if (!core)
904 		return;
905 
906 	if (WARN(core->protect_count == 0,
907 	    "%s already unprotected\n", core->name))
908 		return;
909 
910 	if (--core->protect_count > 0)
911 		return;
912 
913 	clk_core_rate_unprotect(core->parent);
914 }
915 
916 static int clk_core_rate_nuke_protect(struct clk_core *core)
917 {
918 	int ret;
919 
920 	lockdep_assert_held(&prepare_lock);
921 
922 	if (!core)
923 		return -EINVAL;
924 
925 	if (core->protect_count == 0)
926 		return 0;
927 
928 	ret = core->protect_count;
929 	core->protect_count = 1;
930 	clk_core_rate_unprotect(core);
931 
932 	return ret;
933 }
934 
935 /**
936  * clk_rate_exclusive_put - release exclusivity over clock rate control
937  * @clk: the clk over which the exclusivity is released
938  *
939  * clk_rate_exclusive_put() completes a critical section during which a clock
940  * consumer cannot tolerate any other consumer making any operation on the
941  * clock which could result in a rate change or rate glitch. Exclusive clocks
942  * cannot have their rate changed, either directly or indirectly due to changes
943  * further up the parent chain of clocks. As a result, clocks up parent chain
944  * also get under exclusive control of the calling consumer.
945  *
946  * If exlusivity is claimed more than once on clock, even by the same consumer,
947  * the rate effectively gets locked as exclusivity can't be preempted.
948  *
949  * Calls to clk_rate_exclusive_put() must be balanced with calls to
950  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
951  * error status.
952  */
953 void clk_rate_exclusive_put(struct clk *clk)
954 {
955 	if (!clk)
956 		return;
957 
958 	clk_prepare_lock();
959 
960 	/*
961 	 * if there is something wrong with this consumer protect count, stop
962 	 * here before messing with the provider
963 	 */
964 	if (WARN_ON(clk->exclusive_count <= 0))
965 		goto out;
966 
967 	clk_core_rate_unprotect(clk->core);
968 	clk->exclusive_count--;
969 out:
970 	clk_prepare_unlock();
971 }
972 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
973 
974 static void clk_core_rate_protect(struct clk_core *core)
975 {
976 	lockdep_assert_held(&prepare_lock);
977 
978 	if (!core)
979 		return;
980 
981 	if (core->protect_count == 0)
982 		clk_core_rate_protect(core->parent);
983 
984 	core->protect_count++;
985 }
986 
987 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
988 {
989 	lockdep_assert_held(&prepare_lock);
990 
991 	if (!core)
992 		return;
993 
994 	if (count == 0)
995 		return;
996 
997 	clk_core_rate_protect(core);
998 	core->protect_count = count;
999 }
1000 
1001 /**
1002  * clk_rate_exclusive_get - get exclusivity over the clk rate control
1003  * @clk: the clk over which the exclusity of rate control is requested
1004  *
1005  * clk_rate_exclusive_get() begins a critical section during which a clock
1006  * consumer cannot tolerate any other consumer making any operation on the
1007  * clock which could result in a rate change or rate glitch. Exclusive clocks
1008  * cannot have their rate changed, either directly or indirectly due to changes
1009  * further up the parent chain of clocks. As a result, clocks up parent chain
1010  * also get under exclusive control of the calling consumer.
1011  *
1012  * If exlusivity is claimed more than once on clock, even by the same consumer,
1013  * the rate effectively gets locked as exclusivity can't be preempted.
1014  *
1015  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1016  * clk_rate_exclusive_put(). Calls to this function may sleep.
1017  * Returns 0 on success, -EERROR otherwise
1018  */
1019 int clk_rate_exclusive_get(struct clk *clk)
1020 {
1021 	if (!clk)
1022 		return 0;
1023 
1024 	clk_prepare_lock();
1025 	clk_core_rate_protect(clk->core);
1026 	clk->exclusive_count++;
1027 	clk_prepare_unlock();
1028 
1029 	return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1032 
1033 static void clk_core_unprepare(struct clk_core *core)
1034 {
1035 	lockdep_assert_held(&prepare_lock);
1036 
1037 	if (!core)
1038 		return;
1039 
1040 	if (WARN(core->prepare_count == 0,
1041 	    "%s already unprepared\n", core->name))
1042 		return;
1043 
1044 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1045 	    "Unpreparing critical %s\n", core->name))
1046 		return;
1047 
1048 	if (core->flags & CLK_SET_RATE_GATE)
1049 		clk_core_rate_unprotect(core);
1050 
1051 	if (--core->prepare_count > 0)
1052 		return;
1053 
1054 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1055 
1056 	trace_clk_unprepare(core);
1057 
1058 	if (core->ops->unprepare)
1059 		core->ops->unprepare(core->hw);
1060 
1061 	trace_clk_unprepare_complete(core);
1062 	clk_core_unprepare(core->parent);
1063 	clk_pm_runtime_put(core);
1064 }
1065 
1066 static void clk_core_unprepare_lock(struct clk_core *core)
1067 {
1068 	clk_prepare_lock();
1069 	clk_core_unprepare(core);
1070 	clk_prepare_unlock();
1071 }
1072 
1073 /**
1074  * clk_unprepare - undo preparation of a clock source
1075  * @clk: the clk being unprepared
1076  *
1077  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1078  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1079  * if the operation may sleep.  One example is a clk which is accessed over
1080  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1081  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1082  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1083  */
1084 void clk_unprepare(struct clk *clk)
1085 {
1086 	if (IS_ERR_OR_NULL(clk))
1087 		return;
1088 
1089 	clk_core_unprepare_lock(clk->core);
1090 }
1091 EXPORT_SYMBOL_GPL(clk_unprepare);
1092 
1093 static int clk_core_prepare(struct clk_core *core)
1094 {
1095 	int ret = 0;
1096 
1097 	lockdep_assert_held(&prepare_lock);
1098 
1099 	if (!core)
1100 		return 0;
1101 
1102 	if (core->prepare_count == 0) {
1103 		ret = clk_pm_runtime_get(core);
1104 		if (ret)
1105 			return ret;
1106 
1107 		ret = clk_core_prepare(core->parent);
1108 		if (ret)
1109 			goto runtime_put;
1110 
1111 		trace_clk_prepare(core);
1112 
1113 		if (core->ops->prepare)
1114 			ret = core->ops->prepare(core->hw);
1115 
1116 		trace_clk_prepare_complete(core);
1117 
1118 		if (ret)
1119 			goto unprepare;
1120 	}
1121 
1122 	core->prepare_count++;
1123 
1124 	/*
1125 	 * CLK_SET_RATE_GATE is a special case of clock protection
1126 	 * Instead of a consumer claiming exclusive rate control, it is
1127 	 * actually the provider which prevents any consumer from making any
1128 	 * operation which could result in a rate change or rate glitch while
1129 	 * the clock is prepared.
1130 	 */
1131 	if (core->flags & CLK_SET_RATE_GATE)
1132 		clk_core_rate_protect(core);
1133 
1134 	return 0;
1135 unprepare:
1136 	clk_core_unprepare(core->parent);
1137 runtime_put:
1138 	clk_pm_runtime_put(core);
1139 	return ret;
1140 }
1141 
1142 static int clk_core_prepare_lock(struct clk_core *core)
1143 {
1144 	int ret;
1145 
1146 	clk_prepare_lock();
1147 	ret = clk_core_prepare(core);
1148 	clk_prepare_unlock();
1149 
1150 	return ret;
1151 }
1152 
1153 /**
1154  * clk_prepare - prepare a clock source
1155  * @clk: the clk being prepared
1156  *
1157  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1158  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1159  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1160  * the complex case a clk ungate operation may require a fast and a slow part.
1161  * It is this reason that clk_prepare and clk_enable are not mutually
1162  * exclusive.  In fact clk_prepare must be called before clk_enable.
1163  * Returns 0 on success, -EERROR otherwise.
1164  */
1165 int clk_prepare(struct clk *clk)
1166 {
1167 	if (!clk)
1168 		return 0;
1169 
1170 	return clk_core_prepare_lock(clk->core);
1171 }
1172 EXPORT_SYMBOL_GPL(clk_prepare);
1173 
1174 static void clk_core_disable(struct clk_core *core)
1175 {
1176 	lockdep_assert_held(&enable_lock);
1177 
1178 	if (!core)
1179 		return;
1180 
1181 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1182 		return;
1183 
1184 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1185 	    "Disabling critical %s\n", core->name))
1186 		return;
1187 
1188 	if (--core->enable_count > 0)
1189 		return;
1190 
1191 	trace_clk_disable(core);
1192 
1193 	if (core->ops->disable)
1194 		core->ops->disable(core->hw);
1195 
1196 	trace_clk_disable_complete(core);
1197 
1198 	clk_core_disable(core->parent);
1199 }
1200 
1201 static void clk_core_disable_lock(struct clk_core *core)
1202 {
1203 	unsigned long flags;
1204 
1205 	flags = clk_enable_lock();
1206 	clk_core_disable(core);
1207 	clk_enable_unlock(flags);
1208 }
1209 
1210 /**
1211  * clk_disable - gate a clock
1212  * @clk: the clk being gated
1213  *
1214  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1215  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1216  * clk if the operation is fast and will never sleep.  One example is a
1217  * SoC-internal clk which is controlled via simple register writes.  In the
1218  * complex case a clk gate operation may require a fast and a slow part.  It is
1219  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1220  * In fact clk_disable must be called before clk_unprepare.
1221  */
1222 void clk_disable(struct clk *clk)
1223 {
1224 	if (IS_ERR_OR_NULL(clk))
1225 		return;
1226 
1227 	clk_core_disable_lock(clk->core);
1228 }
1229 EXPORT_SYMBOL_GPL(clk_disable);
1230 
1231 static int clk_core_enable(struct clk_core *core)
1232 {
1233 	int ret = 0;
1234 
1235 	lockdep_assert_held(&enable_lock);
1236 
1237 	if (!core)
1238 		return 0;
1239 
1240 	if (WARN(core->prepare_count == 0,
1241 	    "Enabling unprepared %s\n", core->name))
1242 		return -ESHUTDOWN;
1243 
1244 	if (core->enable_count == 0) {
1245 		ret = clk_core_enable(core->parent);
1246 
1247 		if (ret)
1248 			return ret;
1249 
1250 		trace_clk_enable(core);
1251 
1252 		if (core->ops->enable)
1253 			ret = core->ops->enable(core->hw);
1254 
1255 		trace_clk_enable_complete(core);
1256 
1257 		if (ret) {
1258 			clk_core_disable(core->parent);
1259 			return ret;
1260 		}
1261 	}
1262 
1263 	core->enable_count++;
1264 	return 0;
1265 }
1266 
1267 static int clk_core_enable_lock(struct clk_core *core)
1268 {
1269 	unsigned long flags;
1270 	int ret;
1271 
1272 	flags = clk_enable_lock();
1273 	ret = clk_core_enable(core);
1274 	clk_enable_unlock(flags);
1275 
1276 	return ret;
1277 }
1278 
1279 /**
1280  * clk_gate_restore_context - restore context for poweroff
1281  * @hw: the clk_hw pointer of clock whose state is to be restored
1282  *
1283  * The clock gate restore context function enables or disables
1284  * the gate clocks based on the enable_count. This is done in cases
1285  * where the clock context is lost and based on the enable_count
1286  * the clock either needs to be enabled/disabled. This
1287  * helps restore the state of gate clocks.
1288  */
1289 void clk_gate_restore_context(struct clk_hw *hw)
1290 {
1291 	struct clk_core *core = hw->core;
1292 
1293 	if (core->enable_count)
1294 		core->ops->enable(hw);
1295 	else
1296 		core->ops->disable(hw);
1297 }
1298 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1299 
1300 static int clk_core_save_context(struct clk_core *core)
1301 {
1302 	struct clk_core *child;
1303 	int ret = 0;
1304 
1305 	hlist_for_each_entry(child, &core->children, child_node) {
1306 		ret = clk_core_save_context(child);
1307 		if (ret < 0)
1308 			return ret;
1309 	}
1310 
1311 	if (core->ops && core->ops->save_context)
1312 		ret = core->ops->save_context(core->hw);
1313 
1314 	return ret;
1315 }
1316 
1317 static void clk_core_restore_context(struct clk_core *core)
1318 {
1319 	struct clk_core *child;
1320 
1321 	if (core->ops && core->ops->restore_context)
1322 		core->ops->restore_context(core->hw);
1323 
1324 	hlist_for_each_entry(child, &core->children, child_node)
1325 		clk_core_restore_context(child);
1326 }
1327 
1328 /**
1329  * clk_save_context - save clock context for poweroff
1330  *
1331  * Saves the context of the clock register for powerstates in which the
1332  * contents of the registers will be lost. Occurs deep within the suspend
1333  * code.  Returns 0 on success.
1334  */
1335 int clk_save_context(void)
1336 {
1337 	struct clk_core *clk;
1338 	int ret;
1339 
1340 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1341 		ret = clk_core_save_context(clk);
1342 		if (ret < 0)
1343 			return ret;
1344 	}
1345 
1346 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1347 		ret = clk_core_save_context(clk);
1348 		if (ret < 0)
1349 			return ret;
1350 	}
1351 
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(clk_save_context);
1355 
1356 /**
1357  * clk_restore_context - restore clock context after poweroff
1358  *
1359  * Restore the saved clock context upon resume.
1360  *
1361  */
1362 void clk_restore_context(void)
1363 {
1364 	struct clk_core *core;
1365 
1366 	hlist_for_each_entry(core, &clk_root_list, child_node)
1367 		clk_core_restore_context(core);
1368 
1369 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1370 		clk_core_restore_context(core);
1371 }
1372 EXPORT_SYMBOL_GPL(clk_restore_context);
1373 
1374 /**
1375  * clk_enable - ungate a clock
1376  * @clk: the clk being ungated
1377  *
1378  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1379  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1380  * if the operation will never sleep.  One example is a SoC-internal clk which
1381  * is controlled via simple register writes.  In the complex case a clk ungate
1382  * operation may require a fast and a slow part.  It is this reason that
1383  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1384  * must be called before clk_enable.  Returns 0 on success, -EERROR
1385  * otherwise.
1386  */
1387 int clk_enable(struct clk *clk)
1388 {
1389 	if (!clk)
1390 		return 0;
1391 
1392 	return clk_core_enable_lock(clk->core);
1393 }
1394 EXPORT_SYMBOL_GPL(clk_enable);
1395 
1396 /**
1397  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1398  * @clk: clock source
1399  *
1400  * Returns true if clk_prepare() implicitly enables the clock, effectively
1401  * making clk_enable()/clk_disable() no-ops, false otherwise.
1402  *
1403  * This is of interest mainly to power management code where actually
1404  * disabling the clock also requires unpreparing it to have any material
1405  * effect.
1406  *
1407  * Regardless of the value returned here, the caller must always invoke
1408  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1409  * to be right.
1410  */
1411 bool clk_is_enabled_when_prepared(struct clk *clk)
1412 {
1413 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1414 }
1415 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1416 
1417 static int clk_core_prepare_enable(struct clk_core *core)
1418 {
1419 	int ret;
1420 
1421 	ret = clk_core_prepare_lock(core);
1422 	if (ret)
1423 		return ret;
1424 
1425 	ret = clk_core_enable_lock(core);
1426 	if (ret)
1427 		clk_core_unprepare_lock(core);
1428 
1429 	return ret;
1430 }
1431 
1432 static void clk_core_disable_unprepare(struct clk_core *core)
1433 {
1434 	clk_core_disable_lock(core);
1435 	clk_core_unprepare_lock(core);
1436 }
1437 
1438 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1439 {
1440 	struct clk_core *child;
1441 
1442 	lockdep_assert_held(&prepare_lock);
1443 
1444 	hlist_for_each_entry(child, &core->children, child_node)
1445 		clk_unprepare_unused_subtree(child);
1446 
1447 	if (core->prepare_count)
1448 		return;
1449 
1450 	if (core->flags & CLK_IGNORE_UNUSED)
1451 		return;
1452 
1453 	if (clk_core_is_prepared(core)) {
1454 		trace_clk_unprepare(core);
1455 		if (core->ops->unprepare_unused)
1456 			core->ops->unprepare_unused(core->hw);
1457 		else if (core->ops->unprepare)
1458 			core->ops->unprepare(core->hw);
1459 		trace_clk_unprepare_complete(core);
1460 	}
1461 }
1462 
1463 static void __init clk_disable_unused_subtree(struct clk_core *core)
1464 {
1465 	struct clk_core *child;
1466 	unsigned long flags;
1467 
1468 	lockdep_assert_held(&prepare_lock);
1469 
1470 	hlist_for_each_entry(child, &core->children, child_node)
1471 		clk_disable_unused_subtree(child);
1472 
1473 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1474 		clk_core_prepare_enable(core->parent);
1475 
1476 	flags = clk_enable_lock();
1477 
1478 	if (core->enable_count)
1479 		goto unlock_out;
1480 
1481 	if (core->flags & CLK_IGNORE_UNUSED)
1482 		goto unlock_out;
1483 
1484 	/*
1485 	 * some gate clocks have special needs during the disable-unused
1486 	 * sequence.  call .disable_unused if available, otherwise fall
1487 	 * back to .disable
1488 	 */
1489 	if (clk_core_is_enabled(core)) {
1490 		trace_clk_disable(core);
1491 		if (core->ops->disable_unused)
1492 			core->ops->disable_unused(core->hw);
1493 		else if (core->ops->disable)
1494 			core->ops->disable(core->hw);
1495 		trace_clk_disable_complete(core);
1496 	}
1497 
1498 unlock_out:
1499 	clk_enable_unlock(flags);
1500 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1501 		clk_core_disable_unprepare(core->parent);
1502 }
1503 
1504 static bool clk_ignore_unused __initdata;
1505 static int __init clk_ignore_unused_setup(char *__unused)
1506 {
1507 	clk_ignore_unused = true;
1508 	return 1;
1509 }
1510 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1511 
1512 static int __init clk_disable_unused(void)
1513 {
1514 	struct clk_core *core;
1515 	int ret;
1516 
1517 	if (clk_ignore_unused) {
1518 		pr_warn("clk: Not disabling unused clocks\n");
1519 		return 0;
1520 	}
1521 
1522 	pr_info("clk: Disabling unused clocks\n");
1523 
1524 	ret = clk_pm_runtime_get_all();
1525 	if (ret)
1526 		return ret;
1527 	/*
1528 	 * Grab the prepare lock to keep the clk topology stable while iterating
1529 	 * over clks.
1530 	 */
1531 	clk_prepare_lock();
1532 
1533 	hlist_for_each_entry(core, &clk_root_list, child_node)
1534 		clk_disable_unused_subtree(core);
1535 
1536 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1537 		clk_disable_unused_subtree(core);
1538 
1539 	hlist_for_each_entry(core, &clk_root_list, child_node)
1540 		clk_unprepare_unused_subtree(core);
1541 
1542 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1543 		clk_unprepare_unused_subtree(core);
1544 
1545 	clk_prepare_unlock();
1546 
1547 	clk_pm_runtime_put_all();
1548 
1549 	return 0;
1550 }
1551 late_initcall_sync(clk_disable_unused);
1552 
1553 static int clk_core_determine_round_nolock(struct clk_core *core,
1554 					   struct clk_rate_request *req)
1555 {
1556 	long rate;
1557 
1558 	lockdep_assert_held(&prepare_lock);
1559 
1560 	if (!core)
1561 		return 0;
1562 
1563 	/*
1564 	 * Some clock providers hand-craft their clk_rate_requests and
1565 	 * might not fill min_rate and max_rate.
1566 	 *
1567 	 * If it's the case, clamping the rate is equivalent to setting
1568 	 * the rate to 0 which is bad. Skip the clamping but complain so
1569 	 * that it gets fixed, hopefully.
1570 	 */
1571 	if (!req->min_rate && !req->max_rate)
1572 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1573 			__func__, core->name);
1574 	else
1575 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1576 
1577 	/*
1578 	 * At this point, core protection will be disabled
1579 	 * - if the provider is not protected at all
1580 	 * - if the calling consumer is the only one which has exclusivity
1581 	 *   over the provider
1582 	 */
1583 	if (clk_core_rate_is_protected(core)) {
1584 		req->rate = core->rate;
1585 	} else if (core->ops->determine_rate) {
1586 		return core->ops->determine_rate(core->hw, req);
1587 	} else if (core->ops->round_rate) {
1588 		rate = core->ops->round_rate(core->hw, req->rate,
1589 					     &req->best_parent_rate);
1590 		if (rate < 0)
1591 			return rate;
1592 
1593 		req->rate = rate;
1594 	} else {
1595 		return -EINVAL;
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static void clk_core_init_rate_req(struct clk_core * const core,
1602 				   struct clk_rate_request *req,
1603 				   unsigned long rate)
1604 {
1605 	struct clk_core *parent;
1606 
1607 	if (WARN_ON(!req))
1608 		return;
1609 
1610 	memset(req, 0, sizeof(*req));
1611 	req->max_rate = ULONG_MAX;
1612 
1613 	if (!core)
1614 		return;
1615 
1616 	req->core = core;
1617 	req->rate = rate;
1618 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1619 
1620 	parent = core->parent;
1621 	if (parent) {
1622 		req->best_parent_hw = parent->hw;
1623 		req->best_parent_rate = parent->rate;
1624 	} else {
1625 		req->best_parent_hw = NULL;
1626 		req->best_parent_rate = 0;
1627 	}
1628 }
1629 
1630 /**
1631  * clk_hw_init_rate_request - Initializes a clk_rate_request
1632  * @hw: the clk for which we want to submit a rate request
1633  * @req: the clk_rate_request structure we want to initialise
1634  * @rate: the rate which is to be requested
1635  *
1636  * Initializes a clk_rate_request structure to submit to
1637  * __clk_determine_rate() or similar functions.
1638  */
1639 void clk_hw_init_rate_request(const struct clk_hw *hw,
1640 			      struct clk_rate_request *req,
1641 			      unsigned long rate)
1642 {
1643 	if (WARN_ON(!hw || !req))
1644 		return;
1645 
1646 	clk_core_init_rate_req(hw->core, req, rate);
1647 }
1648 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1649 
1650 /**
1651  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1652  * @hw: the original clock that got the rate request
1653  * @old_req: the original clk_rate_request structure we want to forward
1654  * @parent: the clk we want to forward @old_req to
1655  * @req: the clk_rate_request structure we want to initialise
1656  * @parent_rate: The rate which is to be requested to @parent
1657  *
1658  * Initializes a clk_rate_request structure to submit to a clock parent
1659  * in __clk_determine_rate() or similar functions.
1660  */
1661 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1662 				 const struct clk_rate_request *old_req,
1663 				 const struct clk_hw *parent,
1664 				 struct clk_rate_request *req,
1665 				 unsigned long parent_rate)
1666 {
1667 	if (WARN_ON(!hw || !old_req || !parent || !req))
1668 		return;
1669 
1670 	clk_core_forward_rate_req(hw->core, old_req,
1671 				  parent->core, req,
1672 				  parent_rate);
1673 }
1674 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1675 
1676 static bool clk_core_can_round(struct clk_core * const core)
1677 {
1678 	return core->ops->determine_rate || core->ops->round_rate;
1679 }
1680 
1681 static int clk_core_round_rate_nolock(struct clk_core *core,
1682 				      struct clk_rate_request *req)
1683 {
1684 	int ret;
1685 
1686 	lockdep_assert_held(&prepare_lock);
1687 
1688 	if (!core) {
1689 		req->rate = 0;
1690 		return 0;
1691 	}
1692 
1693 	if (clk_core_can_round(core))
1694 		return clk_core_determine_round_nolock(core, req);
1695 
1696 	if (core->flags & CLK_SET_RATE_PARENT) {
1697 		struct clk_rate_request parent_req;
1698 
1699 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1700 
1701 		trace_clk_rate_request_start(&parent_req);
1702 
1703 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1704 		if (ret)
1705 			return ret;
1706 
1707 		trace_clk_rate_request_done(&parent_req);
1708 
1709 		req->best_parent_rate = parent_req.rate;
1710 		req->rate = parent_req.rate;
1711 
1712 		return 0;
1713 	}
1714 
1715 	req->rate = core->rate;
1716 	return 0;
1717 }
1718 
1719 /**
1720  * __clk_determine_rate - get the closest rate actually supported by a clock
1721  * @hw: determine the rate of this clock
1722  * @req: target rate request
1723  *
1724  * Useful for clk_ops such as .set_rate and .determine_rate.
1725  */
1726 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1727 {
1728 	if (!hw) {
1729 		req->rate = 0;
1730 		return 0;
1731 	}
1732 
1733 	return clk_core_round_rate_nolock(hw->core, req);
1734 }
1735 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1736 
1737 /**
1738  * clk_hw_round_rate() - round the given rate for a hw clk
1739  * @hw: the hw clk for which we are rounding a rate
1740  * @rate: the rate which is to be rounded
1741  *
1742  * Takes in a rate as input and rounds it to a rate that the clk can actually
1743  * use.
1744  *
1745  * Context: prepare_lock must be held.
1746  *          For clk providers to call from within clk_ops such as .round_rate,
1747  *          .determine_rate.
1748  *
1749  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1750  *         else returns the parent rate.
1751  */
1752 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1753 {
1754 	int ret;
1755 	struct clk_rate_request req;
1756 
1757 	clk_core_init_rate_req(hw->core, &req, rate);
1758 
1759 	trace_clk_rate_request_start(&req);
1760 
1761 	ret = clk_core_round_rate_nolock(hw->core, &req);
1762 	if (ret)
1763 		return 0;
1764 
1765 	trace_clk_rate_request_done(&req);
1766 
1767 	return req.rate;
1768 }
1769 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1770 
1771 /**
1772  * clk_round_rate - round the given rate for a clk
1773  * @clk: the clk for which we are rounding a rate
1774  * @rate: the rate which is to be rounded
1775  *
1776  * Takes in a rate as input and rounds it to a rate that the clk can actually
1777  * use which is then returned.  If clk doesn't support round_rate operation
1778  * then the parent rate is returned.
1779  */
1780 long clk_round_rate(struct clk *clk, unsigned long rate)
1781 {
1782 	struct clk_rate_request req;
1783 	int ret;
1784 
1785 	if (!clk)
1786 		return 0;
1787 
1788 	clk_prepare_lock();
1789 
1790 	if (clk->exclusive_count)
1791 		clk_core_rate_unprotect(clk->core);
1792 
1793 	clk_core_init_rate_req(clk->core, &req, rate);
1794 
1795 	trace_clk_rate_request_start(&req);
1796 
1797 	ret = clk_core_round_rate_nolock(clk->core, &req);
1798 
1799 	trace_clk_rate_request_done(&req);
1800 
1801 	if (clk->exclusive_count)
1802 		clk_core_rate_protect(clk->core);
1803 
1804 	clk_prepare_unlock();
1805 
1806 	if (ret)
1807 		return ret;
1808 
1809 	return req.rate;
1810 }
1811 EXPORT_SYMBOL_GPL(clk_round_rate);
1812 
1813 /**
1814  * __clk_notify - call clk notifier chain
1815  * @core: clk that is changing rate
1816  * @msg: clk notifier type (see include/linux/clk.h)
1817  * @old_rate: old clk rate
1818  * @new_rate: new clk rate
1819  *
1820  * Triggers a notifier call chain on the clk rate-change notification
1821  * for 'clk'.  Passes a pointer to the struct clk and the previous
1822  * and current rates to the notifier callback.  Intended to be called by
1823  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1824  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1825  * a driver returns that.
1826  */
1827 static int __clk_notify(struct clk_core *core, unsigned long msg,
1828 		unsigned long old_rate, unsigned long new_rate)
1829 {
1830 	struct clk_notifier *cn;
1831 	struct clk_notifier_data cnd;
1832 	int ret = NOTIFY_DONE;
1833 
1834 	cnd.old_rate = old_rate;
1835 	cnd.new_rate = new_rate;
1836 
1837 	list_for_each_entry(cn, &clk_notifier_list, node) {
1838 		if (cn->clk->core == core) {
1839 			cnd.clk = cn->clk;
1840 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1841 					&cnd);
1842 			if (ret & NOTIFY_STOP_MASK)
1843 				return ret;
1844 		}
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 /**
1851  * __clk_recalc_accuracies
1852  * @core: first clk in the subtree
1853  *
1854  * Walks the subtree of clks starting with clk and recalculates accuracies as
1855  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1856  * callback then it is assumed that the clock will take on the accuracy of its
1857  * parent.
1858  */
1859 static void __clk_recalc_accuracies(struct clk_core *core)
1860 {
1861 	unsigned long parent_accuracy = 0;
1862 	struct clk_core *child;
1863 
1864 	lockdep_assert_held(&prepare_lock);
1865 
1866 	if (core->parent)
1867 		parent_accuracy = core->parent->accuracy;
1868 
1869 	if (core->ops->recalc_accuracy)
1870 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1871 							  parent_accuracy);
1872 	else
1873 		core->accuracy = parent_accuracy;
1874 
1875 	hlist_for_each_entry(child, &core->children, child_node)
1876 		__clk_recalc_accuracies(child);
1877 }
1878 
1879 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1880 {
1881 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1882 		__clk_recalc_accuracies(core);
1883 
1884 	return clk_core_get_accuracy_no_lock(core);
1885 }
1886 
1887 /**
1888  * clk_get_accuracy - return the accuracy of clk
1889  * @clk: the clk whose accuracy is being returned
1890  *
1891  * Simply returns the cached accuracy of the clk, unless
1892  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1893  * issued.
1894  * If clk is NULL then returns 0.
1895  */
1896 long clk_get_accuracy(struct clk *clk)
1897 {
1898 	long accuracy;
1899 
1900 	if (!clk)
1901 		return 0;
1902 
1903 	clk_prepare_lock();
1904 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1905 	clk_prepare_unlock();
1906 
1907 	return accuracy;
1908 }
1909 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1910 
1911 static unsigned long clk_recalc(struct clk_core *core,
1912 				unsigned long parent_rate)
1913 {
1914 	unsigned long rate = parent_rate;
1915 
1916 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1917 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1918 		clk_pm_runtime_put(core);
1919 	}
1920 	return rate;
1921 }
1922 
1923 /**
1924  * __clk_recalc_rates
1925  * @core: first clk in the subtree
1926  * @update_req: Whether req_rate should be updated with the new rate
1927  * @msg: notification type (see include/linux/clk.h)
1928  *
1929  * Walks the subtree of clks starting with clk and recalculates rates as it
1930  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1931  * it is assumed that the clock will take on the rate of its parent.
1932  *
1933  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1934  * if necessary.
1935  */
1936 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1937 			       unsigned long msg)
1938 {
1939 	unsigned long old_rate;
1940 	unsigned long parent_rate = 0;
1941 	struct clk_core *child;
1942 
1943 	lockdep_assert_held(&prepare_lock);
1944 
1945 	old_rate = core->rate;
1946 
1947 	if (core->parent)
1948 		parent_rate = core->parent->rate;
1949 
1950 	core->rate = clk_recalc(core, parent_rate);
1951 	if (update_req)
1952 		core->req_rate = core->rate;
1953 
1954 	/*
1955 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1956 	 * & ABORT_RATE_CHANGE notifiers
1957 	 */
1958 	if (core->notifier_count && msg)
1959 		__clk_notify(core, msg, old_rate, core->rate);
1960 
1961 	hlist_for_each_entry(child, &core->children, child_node)
1962 		__clk_recalc_rates(child, update_req, msg);
1963 }
1964 
1965 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1966 {
1967 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1968 		__clk_recalc_rates(core, false, 0);
1969 
1970 	return clk_core_get_rate_nolock(core);
1971 }
1972 
1973 /**
1974  * clk_get_rate - return the rate of clk
1975  * @clk: the clk whose rate is being returned
1976  *
1977  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1978  * is set, which means a recalc_rate will be issued. Can be called regardless of
1979  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1980  * 0.
1981  */
1982 unsigned long clk_get_rate(struct clk *clk)
1983 {
1984 	unsigned long rate;
1985 
1986 	if (!clk)
1987 		return 0;
1988 
1989 	clk_prepare_lock();
1990 	rate = clk_core_get_rate_recalc(clk->core);
1991 	clk_prepare_unlock();
1992 
1993 	return rate;
1994 }
1995 EXPORT_SYMBOL_GPL(clk_get_rate);
1996 
1997 static int clk_fetch_parent_index(struct clk_core *core,
1998 				  struct clk_core *parent)
1999 {
2000 	int i;
2001 
2002 	if (!parent)
2003 		return -EINVAL;
2004 
2005 	for (i = 0; i < core->num_parents; i++) {
2006 		/* Found it first try! */
2007 		if (core->parents[i].core == parent)
2008 			return i;
2009 
2010 		/* Something else is here, so keep looking */
2011 		if (core->parents[i].core)
2012 			continue;
2013 
2014 		/* Maybe core hasn't been cached but the hw is all we know? */
2015 		if (core->parents[i].hw) {
2016 			if (core->parents[i].hw == parent->hw)
2017 				break;
2018 
2019 			/* Didn't match, but we're expecting a clk_hw */
2020 			continue;
2021 		}
2022 
2023 		/* Maybe it hasn't been cached (clk_set_parent() path) */
2024 		if (parent == clk_core_get(core, i))
2025 			break;
2026 
2027 		/* Fallback to comparing globally unique names */
2028 		if (core->parents[i].name &&
2029 		    !strcmp(parent->name, core->parents[i].name))
2030 			break;
2031 	}
2032 
2033 	if (i == core->num_parents)
2034 		return -EINVAL;
2035 
2036 	core->parents[i].core = parent;
2037 	return i;
2038 }
2039 
2040 /**
2041  * clk_hw_get_parent_index - return the index of the parent clock
2042  * @hw: clk_hw associated with the clk being consumed
2043  *
2044  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2045  * clock does not have a current parent.
2046  */
2047 int clk_hw_get_parent_index(struct clk_hw *hw)
2048 {
2049 	struct clk_hw *parent = clk_hw_get_parent(hw);
2050 
2051 	if (WARN_ON(parent == NULL))
2052 		return -EINVAL;
2053 
2054 	return clk_fetch_parent_index(hw->core, parent->core);
2055 }
2056 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2057 
2058 /*
2059  * Update the orphan status of @core and all its children.
2060  */
2061 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2062 {
2063 	struct clk_core *child;
2064 
2065 	core->orphan = is_orphan;
2066 
2067 	hlist_for_each_entry(child, &core->children, child_node)
2068 		clk_core_update_orphan_status(child, is_orphan);
2069 }
2070 
2071 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2072 {
2073 	bool was_orphan = core->orphan;
2074 
2075 	hlist_del(&core->child_node);
2076 
2077 	if (new_parent) {
2078 		bool becomes_orphan = new_parent->orphan;
2079 
2080 		/* avoid duplicate POST_RATE_CHANGE notifications */
2081 		if (new_parent->new_child == core)
2082 			new_parent->new_child = NULL;
2083 
2084 		hlist_add_head(&core->child_node, &new_parent->children);
2085 
2086 		if (was_orphan != becomes_orphan)
2087 			clk_core_update_orphan_status(core, becomes_orphan);
2088 	} else {
2089 		hlist_add_head(&core->child_node, &clk_orphan_list);
2090 		if (!was_orphan)
2091 			clk_core_update_orphan_status(core, true);
2092 	}
2093 
2094 	core->parent = new_parent;
2095 }
2096 
2097 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2098 					   struct clk_core *parent)
2099 {
2100 	unsigned long flags;
2101 	struct clk_core *old_parent = core->parent;
2102 
2103 	/*
2104 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2105 	 *
2106 	 * 2. Migrate prepare state between parents and prevent race with
2107 	 * clk_enable().
2108 	 *
2109 	 * If the clock is not prepared, then a race with
2110 	 * clk_enable/disable() is impossible since we already have the
2111 	 * prepare lock (future calls to clk_enable() need to be preceded by
2112 	 * a clk_prepare()).
2113 	 *
2114 	 * If the clock is prepared, migrate the prepared state to the new
2115 	 * parent and also protect against a race with clk_enable() by
2116 	 * forcing the clock and the new parent on.  This ensures that all
2117 	 * future calls to clk_enable() are practically NOPs with respect to
2118 	 * hardware and software states.
2119 	 *
2120 	 * See also: Comment for clk_set_parent() below.
2121 	 */
2122 
2123 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2124 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2125 		clk_core_prepare_enable(old_parent);
2126 		clk_core_prepare_enable(parent);
2127 	}
2128 
2129 	/* migrate prepare count if > 0 */
2130 	if (core->prepare_count) {
2131 		clk_core_prepare_enable(parent);
2132 		clk_core_enable_lock(core);
2133 	}
2134 
2135 	/* update the clk tree topology */
2136 	flags = clk_enable_lock();
2137 	clk_reparent(core, parent);
2138 	clk_enable_unlock(flags);
2139 
2140 	return old_parent;
2141 }
2142 
2143 static void __clk_set_parent_after(struct clk_core *core,
2144 				   struct clk_core *parent,
2145 				   struct clk_core *old_parent)
2146 {
2147 	/*
2148 	 * Finish the migration of prepare state and undo the changes done
2149 	 * for preventing a race with clk_enable().
2150 	 */
2151 	if (core->prepare_count) {
2152 		clk_core_disable_lock(core);
2153 		clk_core_disable_unprepare(old_parent);
2154 	}
2155 
2156 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2157 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2158 		clk_core_disable_unprepare(parent);
2159 		clk_core_disable_unprepare(old_parent);
2160 	}
2161 }
2162 
2163 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2164 			    u8 p_index)
2165 {
2166 	unsigned long flags;
2167 	int ret = 0;
2168 	struct clk_core *old_parent;
2169 
2170 	old_parent = __clk_set_parent_before(core, parent);
2171 
2172 	trace_clk_set_parent(core, parent);
2173 
2174 	/* change clock input source */
2175 	if (parent && core->ops->set_parent)
2176 		ret = core->ops->set_parent(core->hw, p_index);
2177 
2178 	trace_clk_set_parent_complete(core, parent);
2179 
2180 	if (ret) {
2181 		flags = clk_enable_lock();
2182 		clk_reparent(core, old_parent);
2183 		clk_enable_unlock(flags);
2184 
2185 		__clk_set_parent_after(core, old_parent, parent);
2186 
2187 		return ret;
2188 	}
2189 
2190 	__clk_set_parent_after(core, parent, old_parent);
2191 
2192 	return 0;
2193 }
2194 
2195 /**
2196  * __clk_speculate_rates
2197  * @core: first clk in the subtree
2198  * @parent_rate: the "future" rate of clk's parent
2199  *
2200  * Walks the subtree of clks starting with clk, speculating rates as it
2201  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2202  *
2203  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2204  * pre-rate change notifications and returns early if no clks in the
2205  * subtree have subscribed to the notifications.  Note that if a clk does not
2206  * implement the .recalc_rate callback then it is assumed that the clock will
2207  * take on the rate of its parent.
2208  */
2209 static int __clk_speculate_rates(struct clk_core *core,
2210 				 unsigned long parent_rate)
2211 {
2212 	struct clk_core *child;
2213 	unsigned long new_rate;
2214 	int ret = NOTIFY_DONE;
2215 
2216 	lockdep_assert_held(&prepare_lock);
2217 
2218 	new_rate = clk_recalc(core, parent_rate);
2219 
2220 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2221 	if (core->notifier_count)
2222 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2223 
2224 	if (ret & NOTIFY_STOP_MASK) {
2225 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2226 				__func__, core->name, ret);
2227 		goto out;
2228 	}
2229 
2230 	hlist_for_each_entry(child, &core->children, child_node) {
2231 		ret = __clk_speculate_rates(child, new_rate);
2232 		if (ret & NOTIFY_STOP_MASK)
2233 			break;
2234 	}
2235 
2236 out:
2237 	return ret;
2238 }
2239 
2240 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2241 			     struct clk_core *new_parent, u8 p_index)
2242 {
2243 	struct clk_core *child;
2244 
2245 	core->new_rate = new_rate;
2246 	core->new_parent = new_parent;
2247 	core->new_parent_index = p_index;
2248 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2249 	core->new_child = NULL;
2250 	if (new_parent && new_parent != core->parent)
2251 		new_parent->new_child = core;
2252 
2253 	hlist_for_each_entry(child, &core->children, child_node) {
2254 		child->new_rate = clk_recalc(child, new_rate);
2255 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2256 	}
2257 }
2258 
2259 /*
2260  * calculate the new rates returning the topmost clock that has to be
2261  * changed.
2262  */
2263 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2264 					   unsigned long rate)
2265 {
2266 	struct clk_core *top = core;
2267 	struct clk_core *old_parent, *parent;
2268 	unsigned long best_parent_rate = 0;
2269 	unsigned long new_rate;
2270 	unsigned long min_rate;
2271 	unsigned long max_rate;
2272 	int p_index = 0;
2273 	long ret;
2274 
2275 	/* sanity */
2276 	if (IS_ERR_OR_NULL(core))
2277 		return NULL;
2278 
2279 	/* save parent rate, if it exists */
2280 	parent = old_parent = core->parent;
2281 	if (parent)
2282 		best_parent_rate = parent->rate;
2283 
2284 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2285 
2286 	/* find the closest rate and parent clk/rate */
2287 	if (clk_core_can_round(core)) {
2288 		struct clk_rate_request req;
2289 
2290 		clk_core_init_rate_req(core, &req, rate);
2291 
2292 		trace_clk_rate_request_start(&req);
2293 
2294 		ret = clk_core_determine_round_nolock(core, &req);
2295 		if (ret < 0)
2296 			return NULL;
2297 
2298 		trace_clk_rate_request_done(&req);
2299 
2300 		best_parent_rate = req.best_parent_rate;
2301 		new_rate = req.rate;
2302 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2303 
2304 		if (new_rate < min_rate || new_rate > max_rate)
2305 			return NULL;
2306 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2307 		/* pass-through clock without adjustable parent */
2308 		core->new_rate = core->rate;
2309 		return NULL;
2310 	} else {
2311 		/* pass-through clock with adjustable parent */
2312 		top = clk_calc_new_rates(parent, rate);
2313 		new_rate = parent->new_rate;
2314 		goto out;
2315 	}
2316 
2317 	/* some clocks must be gated to change parent */
2318 	if (parent != old_parent &&
2319 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2320 		pr_debug("%s: %s not gated but wants to reparent\n",
2321 			 __func__, core->name);
2322 		return NULL;
2323 	}
2324 
2325 	/* try finding the new parent index */
2326 	if (parent && core->num_parents > 1) {
2327 		p_index = clk_fetch_parent_index(core, parent);
2328 		if (p_index < 0) {
2329 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2330 				 __func__, parent->name, core->name);
2331 			return NULL;
2332 		}
2333 	}
2334 
2335 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2336 	    best_parent_rate != parent->rate)
2337 		top = clk_calc_new_rates(parent, best_parent_rate);
2338 
2339 out:
2340 	clk_calc_subtree(core, new_rate, parent, p_index);
2341 
2342 	return top;
2343 }
2344 
2345 /*
2346  * Notify about rate changes in a subtree. Always walk down the whole tree
2347  * so that in case of an error we can walk down the whole tree again and
2348  * abort the change.
2349  */
2350 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2351 						  unsigned long event)
2352 {
2353 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2354 	int ret = NOTIFY_DONE;
2355 
2356 	if (core->rate == core->new_rate)
2357 		return NULL;
2358 
2359 	if (core->notifier_count) {
2360 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2361 		if (ret & NOTIFY_STOP_MASK)
2362 			fail_clk = core;
2363 	}
2364 
2365 	hlist_for_each_entry(child, &core->children, child_node) {
2366 		/* Skip children who will be reparented to another clock */
2367 		if (child->new_parent && child->new_parent != core)
2368 			continue;
2369 		tmp_clk = clk_propagate_rate_change(child, event);
2370 		if (tmp_clk)
2371 			fail_clk = tmp_clk;
2372 	}
2373 
2374 	/* handle the new child who might not be in core->children yet */
2375 	if (core->new_child) {
2376 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2377 		if (tmp_clk)
2378 			fail_clk = tmp_clk;
2379 	}
2380 
2381 	return fail_clk;
2382 }
2383 
2384 /*
2385  * walk down a subtree and set the new rates notifying the rate
2386  * change on the way
2387  */
2388 static void clk_change_rate(struct clk_core *core)
2389 {
2390 	struct clk_core *child;
2391 	struct hlist_node *tmp;
2392 	unsigned long old_rate;
2393 	unsigned long best_parent_rate = 0;
2394 	bool skip_set_rate = false;
2395 	struct clk_core *old_parent;
2396 	struct clk_core *parent = NULL;
2397 
2398 	old_rate = core->rate;
2399 
2400 	if (core->new_parent) {
2401 		parent = core->new_parent;
2402 		best_parent_rate = core->new_parent->rate;
2403 	} else if (core->parent) {
2404 		parent = core->parent;
2405 		best_parent_rate = core->parent->rate;
2406 	}
2407 
2408 	if (clk_pm_runtime_get(core))
2409 		return;
2410 
2411 	if (core->flags & CLK_SET_RATE_UNGATE) {
2412 		clk_core_prepare(core);
2413 		clk_core_enable_lock(core);
2414 	}
2415 
2416 	if (core->new_parent && core->new_parent != core->parent) {
2417 		old_parent = __clk_set_parent_before(core, core->new_parent);
2418 		trace_clk_set_parent(core, core->new_parent);
2419 
2420 		if (core->ops->set_rate_and_parent) {
2421 			skip_set_rate = true;
2422 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2423 					best_parent_rate,
2424 					core->new_parent_index);
2425 		} else if (core->ops->set_parent) {
2426 			core->ops->set_parent(core->hw, core->new_parent_index);
2427 		}
2428 
2429 		trace_clk_set_parent_complete(core, core->new_parent);
2430 		__clk_set_parent_after(core, core->new_parent, old_parent);
2431 	}
2432 
2433 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2434 		clk_core_prepare_enable(parent);
2435 
2436 	trace_clk_set_rate(core, core->new_rate);
2437 
2438 	if (!skip_set_rate && core->ops->set_rate)
2439 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2440 
2441 	trace_clk_set_rate_complete(core, core->new_rate);
2442 
2443 	core->rate = clk_recalc(core, best_parent_rate);
2444 
2445 	if (core->flags & CLK_SET_RATE_UNGATE) {
2446 		clk_core_disable_lock(core);
2447 		clk_core_unprepare(core);
2448 	}
2449 
2450 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2451 		clk_core_disable_unprepare(parent);
2452 
2453 	if (core->notifier_count && old_rate != core->rate)
2454 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2455 
2456 	if (core->flags & CLK_RECALC_NEW_RATES)
2457 		(void)clk_calc_new_rates(core, core->new_rate);
2458 
2459 	/*
2460 	 * Use safe iteration, as change_rate can actually swap parents
2461 	 * for certain clock types.
2462 	 */
2463 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2464 		/* Skip children who will be reparented to another clock */
2465 		if (child->new_parent && child->new_parent != core)
2466 			continue;
2467 		clk_change_rate(child);
2468 	}
2469 
2470 	/* handle the new child who might not be in core->children yet */
2471 	if (core->new_child)
2472 		clk_change_rate(core->new_child);
2473 
2474 	clk_pm_runtime_put(core);
2475 }
2476 
2477 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2478 						     unsigned long req_rate)
2479 {
2480 	int ret, cnt;
2481 	struct clk_rate_request req;
2482 
2483 	lockdep_assert_held(&prepare_lock);
2484 
2485 	if (!core)
2486 		return 0;
2487 
2488 	/* simulate what the rate would be if it could be freely set */
2489 	cnt = clk_core_rate_nuke_protect(core);
2490 	if (cnt < 0)
2491 		return cnt;
2492 
2493 	clk_core_init_rate_req(core, &req, req_rate);
2494 
2495 	trace_clk_rate_request_start(&req);
2496 
2497 	ret = clk_core_round_rate_nolock(core, &req);
2498 
2499 	trace_clk_rate_request_done(&req);
2500 
2501 	/* restore the protection */
2502 	clk_core_rate_restore_protect(core, cnt);
2503 
2504 	return ret ? 0 : req.rate;
2505 }
2506 
2507 static int clk_core_set_rate_nolock(struct clk_core *core,
2508 				    unsigned long req_rate)
2509 {
2510 	struct clk_core *top, *fail_clk;
2511 	unsigned long rate;
2512 	int ret;
2513 
2514 	if (!core)
2515 		return 0;
2516 
2517 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2518 
2519 	/* bail early if nothing to do */
2520 	if (rate == clk_core_get_rate_nolock(core))
2521 		return 0;
2522 
2523 	/* fail on a direct rate set of a protected provider */
2524 	if (clk_core_rate_is_protected(core))
2525 		return -EBUSY;
2526 
2527 	/* calculate new rates and get the topmost changed clock */
2528 	top = clk_calc_new_rates(core, req_rate);
2529 	if (!top)
2530 		return -EINVAL;
2531 
2532 	ret = clk_pm_runtime_get(core);
2533 	if (ret)
2534 		return ret;
2535 
2536 	/* notify that we are about to change rates */
2537 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2538 	if (fail_clk) {
2539 		pr_debug("%s: failed to set %s rate\n", __func__,
2540 				fail_clk->name);
2541 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2542 		ret = -EBUSY;
2543 		goto err;
2544 	}
2545 
2546 	/* change the rates */
2547 	clk_change_rate(top);
2548 
2549 	core->req_rate = req_rate;
2550 err:
2551 	clk_pm_runtime_put(core);
2552 
2553 	return ret;
2554 }
2555 
2556 /**
2557  * clk_set_rate - specify a new rate for clk
2558  * @clk: the clk whose rate is being changed
2559  * @rate: the new rate for clk
2560  *
2561  * In the simplest case clk_set_rate will only adjust the rate of clk.
2562  *
2563  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2564  * propagate up to clk's parent; whether or not this happens depends on the
2565  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2566  * after calling .round_rate then upstream parent propagation is ignored.  If
2567  * *parent_rate comes back with a new rate for clk's parent then we propagate
2568  * up to clk's parent and set its rate.  Upward propagation will continue
2569  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2570  * .round_rate stops requesting changes to clk's parent_rate.
2571  *
2572  * Rate changes are accomplished via tree traversal that also recalculates the
2573  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2574  *
2575  * Returns 0 on success, -EERROR otherwise.
2576  */
2577 int clk_set_rate(struct clk *clk, unsigned long rate)
2578 {
2579 	int ret;
2580 
2581 	if (!clk)
2582 		return 0;
2583 
2584 	/* prevent racing with updates to the clock topology */
2585 	clk_prepare_lock();
2586 
2587 	if (clk->exclusive_count)
2588 		clk_core_rate_unprotect(clk->core);
2589 
2590 	ret = clk_core_set_rate_nolock(clk->core, rate);
2591 
2592 	if (clk->exclusive_count)
2593 		clk_core_rate_protect(clk->core);
2594 
2595 	clk_prepare_unlock();
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL_GPL(clk_set_rate);
2600 
2601 /**
2602  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2603  * @clk: the clk whose rate is being changed
2604  * @rate: the new rate for clk
2605  *
2606  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2607  * within a critical section
2608  *
2609  * This can be used initially to ensure that at least 1 consumer is
2610  * satisfied when several consumers are competing for exclusivity over the
2611  * same clock provider.
2612  *
2613  * The exclusivity is not applied if setting the rate failed.
2614  *
2615  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2616  * clk_rate_exclusive_put().
2617  *
2618  * Returns 0 on success, -EERROR otherwise.
2619  */
2620 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2621 {
2622 	int ret;
2623 
2624 	if (!clk)
2625 		return 0;
2626 
2627 	/* prevent racing with updates to the clock topology */
2628 	clk_prepare_lock();
2629 
2630 	/*
2631 	 * The temporary protection removal is not here, on purpose
2632 	 * This function is meant to be used instead of clk_rate_protect,
2633 	 * so before the consumer code path protect the clock provider
2634 	 */
2635 
2636 	ret = clk_core_set_rate_nolock(clk->core, rate);
2637 	if (!ret) {
2638 		clk_core_rate_protect(clk->core);
2639 		clk->exclusive_count++;
2640 	}
2641 
2642 	clk_prepare_unlock();
2643 
2644 	return ret;
2645 }
2646 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2647 
2648 static int clk_set_rate_range_nolock(struct clk *clk,
2649 				     unsigned long min,
2650 				     unsigned long max)
2651 {
2652 	int ret = 0;
2653 	unsigned long old_min, old_max, rate;
2654 
2655 	lockdep_assert_held(&prepare_lock);
2656 
2657 	if (!clk)
2658 		return 0;
2659 
2660 	trace_clk_set_rate_range(clk->core, min, max);
2661 
2662 	if (min > max) {
2663 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2664 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2665 		       min, max);
2666 		return -EINVAL;
2667 	}
2668 
2669 	if (clk->exclusive_count)
2670 		clk_core_rate_unprotect(clk->core);
2671 
2672 	/* Save the current values in case we need to rollback the change */
2673 	old_min = clk->min_rate;
2674 	old_max = clk->max_rate;
2675 	clk->min_rate = min;
2676 	clk->max_rate = max;
2677 
2678 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2679 		ret = -EINVAL;
2680 		goto out;
2681 	}
2682 
2683 	rate = clk->core->req_rate;
2684 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2685 		rate = clk_core_get_rate_recalc(clk->core);
2686 
2687 	/*
2688 	 * Since the boundaries have been changed, let's give the
2689 	 * opportunity to the provider to adjust the clock rate based on
2690 	 * the new boundaries.
2691 	 *
2692 	 * We also need to handle the case where the clock is currently
2693 	 * outside of the boundaries. Clamping the last requested rate
2694 	 * to the current minimum and maximum will also handle this.
2695 	 *
2696 	 * FIXME:
2697 	 * There is a catch. It may fail for the usual reason (clock
2698 	 * broken, clock protected, etc) but also because:
2699 	 * - round_rate() was not favorable and fell on the wrong
2700 	 *   side of the boundary
2701 	 * - the determine_rate() callback does not really check for
2702 	 *   this corner case when determining the rate
2703 	 */
2704 	rate = clamp(rate, min, max);
2705 	ret = clk_core_set_rate_nolock(clk->core, rate);
2706 	if (ret) {
2707 		/* rollback the changes */
2708 		clk->min_rate = old_min;
2709 		clk->max_rate = old_max;
2710 	}
2711 
2712 out:
2713 	if (clk->exclusive_count)
2714 		clk_core_rate_protect(clk->core);
2715 
2716 	return ret;
2717 }
2718 
2719 /**
2720  * clk_set_rate_range - set a rate range for a clock source
2721  * @clk: clock source
2722  * @min: desired minimum clock rate in Hz, inclusive
2723  * @max: desired maximum clock rate in Hz, inclusive
2724  *
2725  * Return: 0 for success or negative errno on failure.
2726  */
2727 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2728 {
2729 	int ret;
2730 
2731 	if (!clk)
2732 		return 0;
2733 
2734 	clk_prepare_lock();
2735 
2736 	ret = clk_set_rate_range_nolock(clk, min, max);
2737 
2738 	clk_prepare_unlock();
2739 
2740 	return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2743 
2744 /**
2745  * clk_set_min_rate - set a minimum clock rate for a clock source
2746  * @clk: clock source
2747  * @rate: desired minimum clock rate in Hz, inclusive
2748  *
2749  * Returns success (0) or negative errno.
2750  */
2751 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2752 {
2753 	if (!clk)
2754 		return 0;
2755 
2756 	trace_clk_set_min_rate(clk->core, rate);
2757 
2758 	return clk_set_rate_range(clk, rate, clk->max_rate);
2759 }
2760 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2761 
2762 /**
2763  * clk_set_max_rate - set a maximum clock rate for a clock source
2764  * @clk: clock source
2765  * @rate: desired maximum clock rate in Hz, inclusive
2766  *
2767  * Returns success (0) or negative errno.
2768  */
2769 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2770 {
2771 	if (!clk)
2772 		return 0;
2773 
2774 	trace_clk_set_max_rate(clk->core, rate);
2775 
2776 	return clk_set_rate_range(clk, clk->min_rate, rate);
2777 }
2778 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2779 
2780 /**
2781  * clk_get_parent - return the parent of a clk
2782  * @clk: the clk whose parent gets returned
2783  *
2784  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2785  */
2786 struct clk *clk_get_parent(struct clk *clk)
2787 {
2788 	struct clk *parent;
2789 
2790 	if (!clk)
2791 		return NULL;
2792 
2793 	clk_prepare_lock();
2794 	/* TODO: Create a per-user clk and change callers to call clk_put */
2795 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2796 	clk_prepare_unlock();
2797 
2798 	return parent;
2799 }
2800 EXPORT_SYMBOL_GPL(clk_get_parent);
2801 
2802 static struct clk_core *__clk_init_parent(struct clk_core *core)
2803 {
2804 	u8 index = 0;
2805 
2806 	if (core->num_parents > 1 && core->ops->get_parent)
2807 		index = core->ops->get_parent(core->hw);
2808 
2809 	return clk_core_get_parent_by_index(core, index);
2810 }
2811 
2812 static void clk_core_reparent(struct clk_core *core,
2813 				  struct clk_core *new_parent)
2814 {
2815 	clk_reparent(core, new_parent);
2816 	__clk_recalc_accuracies(core);
2817 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2818 }
2819 
2820 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2821 {
2822 	if (!hw)
2823 		return;
2824 
2825 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2826 }
2827 
2828 /**
2829  * clk_has_parent - check if a clock is a possible parent for another
2830  * @clk: clock source
2831  * @parent: parent clock source
2832  *
2833  * This function can be used in drivers that need to check that a clock can be
2834  * the parent of another without actually changing the parent.
2835  *
2836  * Returns true if @parent is a possible parent for @clk, false otherwise.
2837  */
2838 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2839 {
2840 	/* NULL clocks should be nops, so return success if either is NULL. */
2841 	if (!clk || !parent)
2842 		return true;
2843 
2844 	return clk_core_has_parent(clk->core, parent->core);
2845 }
2846 EXPORT_SYMBOL_GPL(clk_has_parent);
2847 
2848 static int clk_core_set_parent_nolock(struct clk_core *core,
2849 				      struct clk_core *parent)
2850 {
2851 	int ret = 0;
2852 	int p_index = 0;
2853 	unsigned long p_rate = 0;
2854 
2855 	lockdep_assert_held(&prepare_lock);
2856 
2857 	if (!core)
2858 		return 0;
2859 
2860 	if (core->parent == parent)
2861 		return 0;
2862 
2863 	/* verify ops for multi-parent clks */
2864 	if (core->num_parents > 1 && !core->ops->set_parent)
2865 		return -EPERM;
2866 
2867 	/* check that we are allowed to re-parent if the clock is in use */
2868 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2869 		return -EBUSY;
2870 
2871 	if (clk_core_rate_is_protected(core))
2872 		return -EBUSY;
2873 
2874 	/* try finding the new parent index */
2875 	if (parent) {
2876 		p_index = clk_fetch_parent_index(core, parent);
2877 		if (p_index < 0) {
2878 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2879 					__func__, parent->name, core->name);
2880 			return p_index;
2881 		}
2882 		p_rate = parent->rate;
2883 	}
2884 
2885 	ret = clk_pm_runtime_get(core);
2886 	if (ret)
2887 		return ret;
2888 
2889 	/* propagate PRE_RATE_CHANGE notifications */
2890 	ret = __clk_speculate_rates(core, p_rate);
2891 
2892 	/* abort if a driver objects */
2893 	if (ret & NOTIFY_STOP_MASK)
2894 		goto runtime_put;
2895 
2896 	/* do the re-parent */
2897 	ret = __clk_set_parent(core, parent, p_index);
2898 
2899 	/* propagate rate an accuracy recalculation accordingly */
2900 	if (ret) {
2901 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2902 	} else {
2903 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2904 		__clk_recalc_accuracies(core);
2905 	}
2906 
2907 runtime_put:
2908 	clk_pm_runtime_put(core);
2909 
2910 	return ret;
2911 }
2912 
2913 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2914 {
2915 	return clk_core_set_parent_nolock(hw->core, parent->core);
2916 }
2917 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2918 
2919 /**
2920  * clk_set_parent - switch the parent of a mux clk
2921  * @clk: the mux clk whose input we are switching
2922  * @parent: the new input to clk
2923  *
2924  * Re-parent clk to use parent as its new input source.  If clk is in
2925  * prepared state, the clk will get enabled for the duration of this call. If
2926  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2927  * that, the reparenting is glitchy in hardware, etc), use the
2928  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2929  *
2930  * After successfully changing clk's parent clk_set_parent will update the
2931  * clk topology, sysfs topology and propagate rate recalculation via
2932  * __clk_recalc_rates.
2933  *
2934  * Returns 0 on success, -EERROR otherwise.
2935  */
2936 int clk_set_parent(struct clk *clk, struct clk *parent)
2937 {
2938 	int ret;
2939 
2940 	if (!clk)
2941 		return 0;
2942 
2943 	clk_prepare_lock();
2944 
2945 	if (clk->exclusive_count)
2946 		clk_core_rate_unprotect(clk->core);
2947 
2948 	ret = clk_core_set_parent_nolock(clk->core,
2949 					 parent ? parent->core : NULL);
2950 
2951 	if (clk->exclusive_count)
2952 		clk_core_rate_protect(clk->core);
2953 
2954 	clk_prepare_unlock();
2955 
2956 	return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(clk_set_parent);
2959 
2960 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2961 {
2962 	int ret = -EINVAL;
2963 
2964 	lockdep_assert_held(&prepare_lock);
2965 
2966 	if (!core)
2967 		return 0;
2968 
2969 	if (clk_core_rate_is_protected(core))
2970 		return -EBUSY;
2971 
2972 	trace_clk_set_phase(core, degrees);
2973 
2974 	if (core->ops->set_phase) {
2975 		ret = core->ops->set_phase(core->hw, degrees);
2976 		if (!ret)
2977 			core->phase = degrees;
2978 	}
2979 
2980 	trace_clk_set_phase_complete(core, degrees);
2981 
2982 	return ret;
2983 }
2984 
2985 /**
2986  * clk_set_phase - adjust the phase shift of a clock signal
2987  * @clk: clock signal source
2988  * @degrees: number of degrees the signal is shifted
2989  *
2990  * Shifts the phase of a clock signal by the specified
2991  * degrees. Returns 0 on success, -EERROR otherwise.
2992  *
2993  * This function makes no distinction about the input or reference
2994  * signal that we adjust the clock signal phase against. For example
2995  * phase locked-loop clock signal generators we may shift phase with
2996  * respect to feedback clock signal input, but for other cases the
2997  * clock phase may be shifted with respect to some other, unspecified
2998  * signal.
2999  *
3000  * Additionally the concept of phase shift does not propagate through
3001  * the clock tree hierarchy, which sets it apart from clock rates and
3002  * clock accuracy. A parent clock phase attribute does not have an
3003  * impact on the phase attribute of a child clock.
3004  */
3005 int clk_set_phase(struct clk *clk, int degrees)
3006 {
3007 	int ret;
3008 
3009 	if (!clk)
3010 		return 0;
3011 
3012 	/* sanity check degrees */
3013 	degrees %= 360;
3014 	if (degrees < 0)
3015 		degrees += 360;
3016 
3017 	clk_prepare_lock();
3018 
3019 	if (clk->exclusive_count)
3020 		clk_core_rate_unprotect(clk->core);
3021 
3022 	ret = clk_core_set_phase_nolock(clk->core, degrees);
3023 
3024 	if (clk->exclusive_count)
3025 		clk_core_rate_protect(clk->core);
3026 
3027 	clk_prepare_unlock();
3028 
3029 	return ret;
3030 }
3031 EXPORT_SYMBOL_GPL(clk_set_phase);
3032 
3033 static int clk_core_get_phase(struct clk_core *core)
3034 {
3035 	int ret;
3036 
3037 	lockdep_assert_held(&prepare_lock);
3038 	if (!core->ops->get_phase)
3039 		return 0;
3040 
3041 	/* Always try to update cached phase if possible */
3042 	ret = core->ops->get_phase(core->hw);
3043 	if (ret >= 0)
3044 		core->phase = ret;
3045 
3046 	return ret;
3047 }
3048 
3049 /**
3050  * clk_get_phase - return the phase shift of a clock signal
3051  * @clk: clock signal source
3052  *
3053  * Returns the phase shift of a clock node in degrees, otherwise returns
3054  * -EERROR.
3055  */
3056 int clk_get_phase(struct clk *clk)
3057 {
3058 	int ret;
3059 
3060 	if (!clk)
3061 		return 0;
3062 
3063 	clk_prepare_lock();
3064 	ret = clk_core_get_phase(clk->core);
3065 	clk_prepare_unlock();
3066 
3067 	return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(clk_get_phase);
3070 
3071 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3072 {
3073 	/* Assume a default value of 50% */
3074 	core->duty.num = 1;
3075 	core->duty.den = 2;
3076 }
3077 
3078 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3079 
3080 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3081 {
3082 	struct clk_duty *duty = &core->duty;
3083 	int ret = 0;
3084 
3085 	if (!core->ops->get_duty_cycle)
3086 		return clk_core_update_duty_cycle_parent_nolock(core);
3087 
3088 	ret = core->ops->get_duty_cycle(core->hw, duty);
3089 	if (ret)
3090 		goto reset;
3091 
3092 	/* Don't trust the clock provider too much */
3093 	if (duty->den == 0 || duty->num > duty->den) {
3094 		ret = -EINVAL;
3095 		goto reset;
3096 	}
3097 
3098 	return 0;
3099 
3100 reset:
3101 	clk_core_reset_duty_cycle_nolock(core);
3102 	return ret;
3103 }
3104 
3105 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3106 {
3107 	int ret = 0;
3108 
3109 	if (core->parent &&
3110 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3111 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3112 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3113 	} else {
3114 		clk_core_reset_duty_cycle_nolock(core);
3115 	}
3116 
3117 	return ret;
3118 }
3119 
3120 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3121 						 struct clk_duty *duty);
3122 
3123 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3124 					  struct clk_duty *duty)
3125 {
3126 	int ret;
3127 
3128 	lockdep_assert_held(&prepare_lock);
3129 
3130 	if (clk_core_rate_is_protected(core))
3131 		return -EBUSY;
3132 
3133 	trace_clk_set_duty_cycle(core, duty);
3134 
3135 	if (!core->ops->set_duty_cycle)
3136 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3137 
3138 	ret = core->ops->set_duty_cycle(core->hw, duty);
3139 	if (!ret)
3140 		memcpy(&core->duty, duty, sizeof(*duty));
3141 
3142 	trace_clk_set_duty_cycle_complete(core, duty);
3143 
3144 	return ret;
3145 }
3146 
3147 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3148 						 struct clk_duty *duty)
3149 {
3150 	int ret = 0;
3151 
3152 	if (core->parent &&
3153 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3154 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3155 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3156 	}
3157 
3158 	return ret;
3159 }
3160 
3161 /**
3162  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3163  * @clk: clock signal source
3164  * @num: numerator of the duty cycle ratio to be applied
3165  * @den: denominator of the duty cycle ratio to be applied
3166  *
3167  * Apply the duty cycle ratio if the ratio is valid and the clock can
3168  * perform this operation
3169  *
3170  * Returns (0) on success, a negative errno otherwise.
3171  */
3172 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3173 {
3174 	int ret;
3175 	struct clk_duty duty;
3176 
3177 	if (!clk)
3178 		return 0;
3179 
3180 	/* sanity check the ratio */
3181 	if (den == 0 || num > den)
3182 		return -EINVAL;
3183 
3184 	duty.num = num;
3185 	duty.den = den;
3186 
3187 	clk_prepare_lock();
3188 
3189 	if (clk->exclusive_count)
3190 		clk_core_rate_unprotect(clk->core);
3191 
3192 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3193 
3194 	if (clk->exclusive_count)
3195 		clk_core_rate_protect(clk->core);
3196 
3197 	clk_prepare_unlock();
3198 
3199 	return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3202 
3203 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3204 					  unsigned int scale)
3205 {
3206 	struct clk_duty *duty = &core->duty;
3207 	int ret;
3208 
3209 	clk_prepare_lock();
3210 
3211 	ret = clk_core_update_duty_cycle_nolock(core);
3212 	if (!ret)
3213 		ret = mult_frac(scale, duty->num, duty->den);
3214 
3215 	clk_prepare_unlock();
3216 
3217 	return ret;
3218 }
3219 
3220 /**
3221  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3222  * @clk: clock signal source
3223  * @scale: scaling factor to be applied to represent the ratio as an integer
3224  *
3225  * Returns the duty cycle ratio of a clock node multiplied by the provided
3226  * scaling factor, or negative errno on error.
3227  */
3228 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3229 {
3230 	if (!clk)
3231 		return 0;
3232 
3233 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3234 }
3235 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3236 
3237 /**
3238  * clk_is_match - check if two clk's point to the same hardware clock
3239  * @p: clk compared against q
3240  * @q: clk compared against p
3241  *
3242  * Returns true if the two struct clk pointers both point to the same hardware
3243  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3244  * share the same struct clk_core object.
3245  *
3246  * Returns false otherwise. Note that two NULL clks are treated as matching.
3247  */
3248 bool clk_is_match(const struct clk *p, const struct clk *q)
3249 {
3250 	/* trivial case: identical struct clk's or both NULL */
3251 	if (p == q)
3252 		return true;
3253 
3254 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3255 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3256 		if (p->core == q->core)
3257 			return true;
3258 
3259 	return false;
3260 }
3261 EXPORT_SYMBOL_GPL(clk_is_match);
3262 
3263 /***        debugfs support        ***/
3264 
3265 #ifdef CONFIG_DEBUG_FS
3266 #include <linux/debugfs.h>
3267 
3268 static struct dentry *rootdir;
3269 static int inited = 0;
3270 static DEFINE_MUTEX(clk_debug_lock);
3271 static HLIST_HEAD(clk_debug_list);
3272 
3273 static struct hlist_head *orphan_list[] = {
3274 	&clk_orphan_list,
3275 	NULL,
3276 };
3277 
3278 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3279 				 int level)
3280 {
3281 	int phase;
3282 	struct clk *clk_user;
3283 	int multi_node = 0;
3284 
3285 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3286 		   level * 3 + 1, "",
3287 		   35 - level * 3, c->name,
3288 		   c->enable_count, c->prepare_count, c->protect_count,
3289 		   clk_core_get_rate_recalc(c),
3290 		   clk_core_get_accuracy_recalc(c));
3291 
3292 	phase = clk_core_get_phase(c);
3293 	if (phase >= 0)
3294 		seq_printf(s, "%-5d", phase);
3295 	else
3296 		seq_puts(s, "-----");
3297 
3298 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3299 
3300 	if (c->ops->is_enabled)
3301 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3302 	else if (!c->ops->enable)
3303 		seq_printf(s, " %5c ", 'Y');
3304 	else
3305 		seq_printf(s, " %5c ", '?');
3306 
3307 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3308 		seq_printf(s, "%*s%-*s  %-25s\n",
3309 			   level * 3 + 2 + 105 * multi_node, "",
3310 			   30,
3311 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3312 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3313 
3314 		multi_node = 1;
3315 	}
3316 
3317 }
3318 
3319 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3320 				     int level)
3321 {
3322 	struct clk_core *child;
3323 
3324 	clk_summary_show_one(s, c, level);
3325 
3326 	hlist_for_each_entry(child, &c->children, child_node)
3327 		clk_summary_show_subtree(s, child, level + 1);
3328 }
3329 
3330 static int clk_summary_show(struct seq_file *s, void *data)
3331 {
3332 	struct clk_core *c;
3333 	struct hlist_head **lists = s->private;
3334 	int ret;
3335 
3336 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3337 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3338 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3339 
3340 	ret = clk_pm_runtime_get_all();
3341 	if (ret)
3342 		return ret;
3343 
3344 	clk_prepare_lock();
3345 
3346 	for (; *lists; lists++)
3347 		hlist_for_each_entry(c, *lists, child_node)
3348 			clk_summary_show_subtree(s, c, 0);
3349 
3350 	clk_prepare_unlock();
3351 	clk_pm_runtime_put_all();
3352 
3353 	return 0;
3354 }
3355 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3356 
3357 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3358 {
3359 	int phase;
3360 	unsigned long min_rate, max_rate;
3361 
3362 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3363 
3364 	/* This should be JSON format, i.e. elements separated with a comma */
3365 	seq_printf(s, "\"%s\": { ", c->name);
3366 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3367 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3368 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3369 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3370 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3371 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3372 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3373 	phase = clk_core_get_phase(c);
3374 	if (phase >= 0)
3375 		seq_printf(s, "\"phase\": %d,", phase);
3376 	seq_printf(s, "\"duty_cycle\": %u",
3377 		   clk_core_get_scaled_duty_cycle(c, 100000));
3378 }
3379 
3380 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3381 {
3382 	struct clk_core *child;
3383 
3384 	clk_dump_one(s, c, level);
3385 
3386 	hlist_for_each_entry(child, &c->children, child_node) {
3387 		seq_putc(s, ',');
3388 		clk_dump_subtree(s, child, level + 1);
3389 	}
3390 
3391 	seq_putc(s, '}');
3392 }
3393 
3394 static int clk_dump_show(struct seq_file *s, void *data)
3395 {
3396 	struct clk_core *c;
3397 	bool first_node = true;
3398 	struct hlist_head **lists = s->private;
3399 	int ret;
3400 
3401 	ret = clk_pm_runtime_get_all();
3402 	if (ret)
3403 		return ret;
3404 
3405 	seq_putc(s, '{');
3406 
3407 	clk_prepare_lock();
3408 
3409 	for (; *lists; lists++) {
3410 		hlist_for_each_entry(c, *lists, child_node) {
3411 			if (!first_node)
3412 				seq_putc(s, ',');
3413 			first_node = false;
3414 			clk_dump_subtree(s, c, 0);
3415 		}
3416 	}
3417 
3418 	clk_prepare_unlock();
3419 	clk_pm_runtime_put_all();
3420 
3421 	seq_puts(s, "}\n");
3422 	return 0;
3423 }
3424 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3425 
3426 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3427 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3428 /*
3429  * This can be dangerous, therefore don't provide any real compile time
3430  * configuration option for this feature.
3431  * People who want to use this will need to modify the source code directly.
3432  */
3433 static int clk_rate_set(void *data, u64 val)
3434 {
3435 	struct clk_core *core = data;
3436 	int ret;
3437 
3438 	clk_prepare_lock();
3439 	ret = clk_core_set_rate_nolock(core, val);
3440 	clk_prepare_unlock();
3441 
3442 	return ret;
3443 }
3444 
3445 #define clk_rate_mode	0644
3446 
3447 static int clk_prepare_enable_set(void *data, u64 val)
3448 {
3449 	struct clk_core *core = data;
3450 	int ret = 0;
3451 
3452 	if (val)
3453 		ret = clk_prepare_enable(core->hw->clk);
3454 	else
3455 		clk_disable_unprepare(core->hw->clk);
3456 
3457 	return ret;
3458 }
3459 
3460 static int clk_prepare_enable_get(void *data, u64 *val)
3461 {
3462 	struct clk_core *core = data;
3463 
3464 	*val = core->enable_count && core->prepare_count;
3465 	return 0;
3466 }
3467 
3468 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3469 			 clk_prepare_enable_set, "%llu\n");
3470 
3471 #else
3472 #define clk_rate_set	NULL
3473 #define clk_rate_mode	0444
3474 #endif
3475 
3476 static int clk_rate_get(void *data, u64 *val)
3477 {
3478 	struct clk_core *core = data;
3479 
3480 	clk_prepare_lock();
3481 	*val = clk_core_get_rate_recalc(core);
3482 	clk_prepare_unlock();
3483 
3484 	return 0;
3485 }
3486 
3487 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3488 
3489 static const struct {
3490 	unsigned long flag;
3491 	const char *name;
3492 } clk_flags[] = {
3493 #define ENTRY(f) { f, #f }
3494 	ENTRY(CLK_SET_RATE_GATE),
3495 	ENTRY(CLK_SET_PARENT_GATE),
3496 	ENTRY(CLK_SET_RATE_PARENT),
3497 	ENTRY(CLK_IGNORE_UNUSED),
3498 	ENTRY(CLK_GET_RATE_NOCACHE),
3499 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3500 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3501 	ENTRY(CLK_RECALC_NEW_RATES),
3502 	ENTRY(CLK_SET_RATE_UNGATE),
3503 	ENTRY(CLK_IS_CRITICAL),
3504 	ENTRY(CLK_OPS_PARENT_ENABLE),
3505 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3506 #undef ENTRY
3507 };
3508 
3509 static int clk_flags_show(struct seq_file *s, void *data)
3510 {
3511 	struct clk_core *core = s->private;
3512 	unsigned long flags = core->flags;
3513 	unsigned int i;
3514 
3515 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3516 		if (flags & clk_flags[i].flag) {
3517 			seq_printf(s, "%s\n", clk_flags[i].name);
3518 			flags &= ~clk_flags[i].flag;
3519 		}
3520 	}
3521 	if (flags) {
3522 		/* Unknown flags */
3523 		seq_printf(s, "0x%lx\n", flags);
3524 	}
3525 
3526 	return 0;
3527 }
3528 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3529 
3530 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3531 				 unsigned int i, char terminator)
3532 {
3533 	struct clk_core *parent;
3534 	const char *name = NULL;
3535 
3536 	/*
3537 	 * Go through the following options to fetch a parent's name.
3538 	 *
3539 	 * 1. Fetch the registered parent clock and use its name
3540 	 * 2. Use the global (fallback) name if specified
3541 	 * 3. Use the local fw_name if provided
3542 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3543 	 *
3544 	 * This may still fail in some cases, such as when the parent is
3545 	 * specified directly via a struct clk_hw pointer, but it isn't
3546 	 * registered (yet).
3547 	 */
3548 	parent = clk_core_get_parent_by_index(core, i);
3549 	if (parent) {
3550 		seq_puts(s, parent->name);
3551 	} else if (core->parents[i].name) {
3552 		seq_puts(s, core->parents[i].name);
3553 	} else if (core->parents[i].fw_name) {
3554 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3555 	} else {
3556 		if (core->parents[i].index >= 0)
3557 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3558 		if (!name)
3559 			name = "(missing)";
3560 
3561 		seq_puts(s, name);
3562 	}
3563 
3564 	seq_putc(s, terminator);
3565 }
3566 
3567 static int possible_parents_show(struct seq_file *s, void *data)
3568 {
3569 	struct clk_core *core = s->private;
3570 	int i;
3571 
3572 	for (i = 0; i < core->num_parents - 1; i++)
3573 		possible_parent_show(s, core, i, ' ');
3574 
3575 	possible_parent_show(s, core, i, '\n');
3576 
3577 	return 0;
3578 }
3579 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3580 
3581 static int current_parent_show(struct seq_file *s, void *data)
3582 {
3583 	struct clk_core *core = s->private;
3584 
3585 	if (core->parent)
3586 		seq_printf(s, "%s\n", core->parent->name);
3587 
3588 	return 0;
3589 }
3590 DEFINE_SHOW_ATTRIBUTE(current_parent);
3591 
3592 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3593 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3594 				    size_t count, loff_t *ppos)
3595 {
3596 	struct seq_file *s = file->private_data;
3597 	struct clk_core *core = s->private;
3598 	struct clk_core *parent;
3599 	u8 idx;
3600 	int err;
3601 
3602 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3603 	if (err < 0)
3604 		return err;
3605 
3606 	parent = clk_core_get_parent_by_index(core, idx);
3607 	if (!parent)
3608 		return -ENOENT;
3609 
3610 	clk_prepare_lock();
3611 	err = clk_core_set_parent_nolock(core, parent);
3612 	clk_prepare_unlock();
3613 	if (err)
3614 		return err;
3615 
3616 	return count;
3617 }
3618 
3619 static const struct file_operations current_parent_rw_fops = {
3620 	.open		= current_parent_open,
3621 	.write		= current_parent_write,
3622 	.read		= seq_read,
3623 	.llseek		= seq_lseek,
3624 	.release	= single_release,
3625 };
3626 #endif
3627 
3628 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3629 {
3630 	struct clk_core *core = s->private;
3631 	struct clk_duty *duty = &core->duty;
3632 
3633 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3634 
3635 	return 0;
3636 }
3637 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3638 
3639 static int clk_min_rate_show(struct seq_file *s, void *data)
3640 {
3641 	struct clk_core *core = s->private;
3642 	unsigned long min_rate, max_rate;
3643 
3644 	clk_prepare_lock();
3645 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3646 	clk_prepare_unlock();
3647 	seq_printf(s, "%lu\n", min_rate);
3648 
3649 	return 0;
3650 }
3651 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3652 
3653 static int clk_max_rate_show(struct seq_file *s, void *data)
3654 {
3655 	struct clk_core *core = s->private;
3656 	unsigned long min_rate, max_rate;
3657 
3658 	clk_prepare_lock();
3659 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3660 	clk_prepare_unlock();
3661 	seq_printf(s, "%lu\n", max_rate);
3662 
3663 	return 0;
3664 }
3665 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3666 
3667 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3668 {
3669 	struct dentry *root;
3670 
3671 	if (!core || !pdentry)
3672 		return;
3673 
3674 	root = debugfs_create_dir(core->name, pdentry);
3675 	core->dentry = root;
3676 
3677 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3678 			    &clk_rate_fops);
3679 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3680 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3681 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3682 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3683 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3684 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3685 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3686 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3687 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3688 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3689 			    &clk_duty_cycle_fops);
3690 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3691 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3692 			    &clk_prepare_enable_fops);
3693 
3694 	if (core->num_parents > 1)
3695 		debugfs_create_file("clk_parent", 0644, root, core,
3696 				    &current_parent_rw_fops);
3697 	else
3698 #endif
3699 	if (core->num_parents > 0)
3700 		debugfs_create_file("clk_parent", 0444, root, core,
3701 				    &current_parent_fops);
3702 
3703 	if (core->num_parents > 1)
3704 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3705 				    &possible_parents_fops);
3706 
3707 	if (core->ops->debug_init)
3708 		core->ops->debug_init(core->hw, core->dentry);
3709 }
3710 
3711 /**
3712  * clk_debug_register - add a clk node to the debugfs clk directory
3713  * @core: the clk being added to the debugfs clk directory
3714  *
3715  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3716  * initialized.  Otherwise it bails out early since the debugfs clk directory
3717  * will be created lazily by clk_debug_init as part of a late_initcall.
3718  */
3719 static void clk_debug_register(struct clk_core *core)
3720 {
3721 	mutex_lock(&clk_debug_lock);
3722 	hlist_add_head(&core->debug_node, &clk_debug_list);
3723 	if (inited)
3724 		clk_debug_create_one(core, rootdir);
3725 	mutex_unlock(&clk_debug_lock);
3726 }
3727 
3728  /**
3729  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3730  * @core: the clk being removed from the debugfs clk directory
3731  *
3732  * Dynamically removes a clk and all its child nodes from the
3733  * debugfs clk directory if clk->dentry points to debugfs created by
3734  * clk_debug_register in __clk_core_init.
3735  */
3736 static void clk_debug_unregister(struct clk_core *core)
3737 {
3738 	mutex_lock(&clk_debug_lock);
3739 	hlist_del_init(&core->debug_node);
3740 	debugfs_remove_recursive(core->dentry);
3741 	core->dentry = NULL;
3742 	mutex_unlock(&clk_debug_lock);
3743 }
3744 
3745 /**
3746  * clk_debug_init - lazily populate the debugfs clk directory
3747  *
3748  * clks are often initialized very early during boot before memory can be
3749  * dynamically allocated and well before debugfs is setup. This function
3750  * populates the debugfs clk directory once at boot-time when we know that
3751  * debugfs is setup. It should only be called once at boot-time, all other clks
3752  * added dynamically will be done so with clk_debug_register.
3753  */
3754 static int __init clk_debug_init(void)
3755 {
3756 	struct clk_core *core;
3757 
3758 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3759 	pr_warn("\n");
3760 	pr_warn("********************************************************************\n");
3761 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3762 	pr_warn("**                                                                **\n");
3763 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3764 	pr_warn("**                                                                **\n");
3765 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3766 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3767 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3768 	pr_warn("**                                                                **\n");
3769 	pr_warn("** If you see this message and you are not debugging the          **\n");
3770 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3771 	pr_warn("**                                                                **\n");
3772 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3773 	pr_warn("********************************************************************\n");
3774 #endif
3775 
3776 	rootdir = debugfs_create_dir("clk", NULL);
3777 
3778 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3779 			    &clk_summary_fops);
3780 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3781 			    &clk_dump_fops);
3782 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3783 			    &clk_summary_fops);
3784 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3785 			    &clk_dump_fops);
3786 
3787 	mutex_lock(&clk_debug_lock);
3788 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3789 		clk_debug_create_one(core, rootdir);
3790 
3791 	inited = 1;
3792 	mutex_unlock(&clk_debug_lock);
3793 
3794 	return 0;
3795 }
3796 late_initcall(clk_debug_init);
3797 #else
3798 static inline void clk_debug_register(struct clk_core *core) { }
3799 static inline void clk_debug_unregister(struct clk_core *core)
3800 {
3801 }
3802 #endif
3803 
3804 static void clk_core_reparent_orphans_nolock(void)
3805 {
3806 	struct clk_core *orphan;
3807 	struct hlist_node *tmp2;
3808 
3809 	/*
3810 	 * walk the list of orphan clocks and reparent any that newly finds a
3811 	 * parent.
3812 	 */
3813 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3814 		struct clk_core *parent = __clk_init_parent(orphan);
3815 
3816 		/*
3817 		 * We need to use __clk_set_parent_before() and _after() to
3818 		 * properly migrate any prepare/enable count of the orphan
3819 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3820 		 * are enabled during init but might not have a parent yet.
3821 		 */
3822 		if (parent) {
3823 			/* update the clk tree topology */
3824 			__clk_set_parent_before(orphan, parent);
3825 			__clk_set_parent_after(orphan, parent, NULL);
3826 			__clk_recalc_accuracies(orphan);
3827 			__clk_recalc_rates(orphan, true, 0);
3828 
3829 			/*
3830 			 * __clk_init_parent() will set the initial req_rate to
3831 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3832 			 * is an orphan when it's registered.
3833 			 *
3834 			 * 'req_rate' is used by clk_set_rate_range() and
3835 			 * clk_put() to trigger a clk_set_rate() call whenever
3836 			 * the boundaries are modified. Let's make sure
3837 			 * 'req_rate' is set to something non-zero so that
3838 			 * clk_set_rate_range() doesn't drop the frequency.
3839 			 */
3840 			orphan->req_rate = orphan->rate;
3841 		}
3842 	}
3843 }
3844 
3845 /**
3846  * __clk_core_init - initialize the data structures in a struct clk_core
3847  * @core:	clk_core being initialized
3848  *
3849  * Initializes the lists in struct clk_core, queries the hardware for the
3850  * parent and rate and sets them both.
3851  */
3852 static int __clk_core_init(struct clk_core *core)
3853 {
3854 	int ret;
3855 	struct clk_core *parent;
3856 	unsigned long rate;
3857 	int phase;
3858 
3859 	clk_prepare_lock();
3860 
3861 	/*
3862 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3863 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3864 	 * being NULL as the clk not being registered yet. This is crucial so
3865 	 * that clks aren't parented until their parent is fully registered.
3866 	 */
3867 	core->hw->core = core;
3868 
3869 	ret = clk_pm_runtime_get(core);
3870 	if (ret)
3871 		goto unlock;
3872 
3873 	/* check to see if a clock with this name is already registered */
3874 	if (clk_core_lookup(core->name)) {
3875 		pr_debug("%s: clk %s already initialized\n",
3876 				__func__, core->name);
3877 		ret = -EEXIST;
3878 		goto out;
3879 	}
3880 
3881 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3882 	if (core->ops->set_rate &&
3883 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3884 	      core->ops->recalc_rate)) {
3885 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3886 		       __func__, core->name);
3887 		ret = -EINVAL;
3888 		goto out;
3889 	}
3890 
3891 	if (core->ops->set_parent && !core->ops->get_parent) {
3892 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3893 		       __func__, core->name);
3894 		ret = -EINVAL;
3895 		goto out;
3896 	}
3897 
3898 	if (core->ops->set_parent && !core->ops->determine_rate) {
3899 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3900 			__func__, core->name);
3901 		ret = -EINVAL;
3902 		goto out;
3903 	}
3904 
3905 	if (core->num_parents > 1 && !core->ops->get_parent) {
3906 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3907 		       __func__, core->name);
3908 		ret = -EINVAL;
3909 		goto out;
3910 	}
3911 
3912 	if (core->ops->set_rate_and_parent &&
3913 			!(core->ops->set_parent && core->ops->set_rate)) {
3914 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3915 				__func__, core->name);
3916 		ret = -EINVAL;
3917 		goto out;
3918 	}
3919 
3920 	/*
3921 	 * optional platform-specific magic
3922 	 *
3923 	 * The .init callback is not used by any of the basic clock types, but
3924 	 * exists for weird hardware that must perform initialization magic for
3925 	 * CCF to get an accurate view of clock for any other callbacks. It may
3926 	 * also be used needs to perform dynamic allocations. Such allocation
3927 	 * must be freed in the terminate() callback.
3928 	 * This callback shall not be used to initialize the parameters state,
3929 	 * such as rate, parent, etc ...
3930 	 *
3931 	 * If it exist, this callback should called before any other callback of
3932 	 * the clock
3933 	 */
3934 	if (core->ops->init) {
3935 		ret = core->ops->init(core->hw);
3936 		if (ret)
3937 			goto out;
3938 	}
3939 
3940 	parent = core->parent = __clk_init_parent(core);
3941 
3942 	/*
3943 	 * Populate core->parent if parent has already been clk_core_init'd. If
3944 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3945 	 * list.  If clk doesn't have any parents then place it in the root
3946 	 * clk list.
3947 	 *
3948 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3949 	 * clocks and re-parent any that are children of the clock currently
3950 	 * being clk_init'd.
3951 	 */
3952 	if (parent) {
3953 		hlist_add_head(&core->child_node, &parent->children);
3954 		core->orphan = parent->orphan;
3955 	} else if (!core->num_parents) {
3956 		hlist_add_head(&core->child_node, &clk_root_list);
3957 		core->orphan = false;
3958 	} else {
3959 		hlist_add_head(&core->child_node, &clk_orphan_list);
3960 		core->orphan = true;
3961 	}
3962 
3963 	/*
3964 	 * Set clk's accuracy.  The preferred method is to use
3965 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3966 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3967 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3968 	 * clock).
3969 	 */
3970 	if (core->ops->recalc_accuracy)
3971 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3972 					clk_core_get_accuracy_no_lock(parent));
3973 	else if (parent)
3974 		core->accuracy = parent->accuracy;
3975 	else
3976 		core->accuracy = 0;
3977 
3978 	/*
3979 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3980 	 * Since a phase is by definition relative to its parent, just
3981 	 * query the current clock phase, or just assume it's in phase.
3982 	 */
3983 	phase = clk_core_get_phase(core);
3984 	if (phase < 0) {
3985 		ret = phase;
3986 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3987 			core->name);
3988 		goto out;
3989 	}
3990 
3991 	/*
3992 	 * Set clk's duty cycle.
3993 	 */
3994 	clk_core_update_duty_cycle_nolock(core);
3995 
3996 	/*
3997 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3998 	 * simple clocks and lazy developers the default fallback is to use the
3999 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4000 	 * then rate is set to zero.
4001 	 */
4002 	if (core->ops->recalc_rate)
4003 		rate = core->ops->recalc_rate(core->hw,
4004 				clk_core_get_rate_nolock(parent));
4005 	else if (parent)
4006 		rate = parent->rate;
4007 	else
4008 		rate = 0;
4009 	core->rate = core->req_rate = rate;
4010 
4011 	/*
4012 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4013 	 * don't get accidentally disabled when walking the orphan tree and
4014 	 * reparenting clocks
4015 	 */
4016 	if (core->flags & CLK_IS_CRITICAL) {
4017 		ret = clk_core_prepare(core);
4018 		if (ret) {
4019 			pr_warn("%s: critical clk '%s' failed to prepare\n",
4020 			       __func__, core->name);
4021 			goto out;
4022 		}
4023 
4024 		ret = clk_core_enable_lock(core);
4025 		if (ret) {
4026 			pr_warn("%s: critical clk '%s' failed to enable\n",
4027 			       __func__, core->name);
4028 			clk_core_unprepare(core);
4029 			goto out;
4030 		}
4031 	}
4032 
4033 	clk_core_reparent_orphans_nolock();
4034 out:
4035 	clk_pm_runtime_put(core);
4036 unlock:
4037 	if (ret) {
4038 		hlist_del_init(&core->child_node);
4039 		core->hw->core = NULL;
4040 	}
4041 
4042 	clk_prepare_unlock();
4043 
4044 	if (!ret)
4045 		clk_debug_register(core);
4046 
4047 	return ret;
4048 }
4049 
4050 /**
4051  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4052  * @core: clk to add consumer to
4053  * @clk: consumer to link to a clk
4054  */
4055 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4056 {
4057 	clk_prepare_lock();
4058 	hlist_add_head(&clk->clks_node, &core->clks);
4059 	clk_prepare_unlock();
4060 }
4061 
4062 /**
4063  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4064  * @clk: consumer to unlink
4065  */
4066 static void clk_core_unlink_consumer(struct clk *clk)
4067 {
4068 	lockdep_assert_held(&prepare_lock);
4069 	hlist_del(&clk->clks_node);
4070 }
4071 
4072 /**
4073  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4074  * @core: clk to allocate a consumer for
4075  * @dev_id: string describing device name
4076  * @con_id: connection ID string on device
4077  *
4078  * Returns: clk consumer left unlinked from the consumer list
4079  */
4080 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4081 			     const char *con_id)
4082 {
4083 	struct clk *clk;
4084 
4085 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4086 	if (!clk)
4087 		return ERR_PTR(-ENOMEM);
4088 
4089 	clk->core = core;
4090 	clk->dev_id = dev_id;
4091 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4092 	clk->max_rate = ULONG_MAX;
4093 
4094 	return clk;
4095 }
4096 
4097 /**
4098  * free_clk - Free a clk consumer
4099  * @clk: clk consumer to free
4100  *
4101  * Note, this assumes the clk has been unlinked from the clk_core consumer
4102  * list.
4103  */
4104 static void free_clk(struct clk *clk)
4105 {
4106 	kfree_const(clk->con_id);
4107 	kfree(clk);
4108 }
4109 
4110 /**
4111  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4112  * a clk_hw
4113  * @dev: clk consumer device
4114  * @hw: clk_hw associated with the clk being consumed
4115  * @dev_id: string describing device name
4116  * @con_id: connection ID string on device
4117  *
4118  * This is the main function used to create a clk pointer for use by clk
4119  * consumers. It connects a consumer to the clk_core and clk_hw structures
4120  * used by the framework and clk provider respectively.
4121  */
4122 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4123 			      const char *dev_id, const char *con_id)
4124 {
4125 	struct clk *clk;
4126 	struct clk_core *core;
4127 
4128 	/* This is to allow this function to be chained to others */
4129 	if (IS_ERR_OR_NULL(hw))
4130 		return ERR_CAST(hw);
4131 
4132 	core = hw->core;
4133 	clk = alloc_clk(core, dev_id, con_id);
4134 	if (IS_ERR(clk))
4135 		return clk;
4136 	clk->dev = dev;
4137 
4138 	if (!try_module_get(core->owner)) {
4139 		free_clk(clk);
4140 		return ERR_PTR(-ENOENT);
4141 	}
4142 
4143 	kref_get(&core->ref);
4144 	clk_core_link_consumer(core, clk);
4145 
4146 	return clk;
4147 }
4148 
4149 /**
4150  * clk_hw_get_clk - get clk consumer given an clk_hw
4151  * @hw: clk_hw associated with the clk being consumed
4152  * @con_id: connection ID string on device
4153  *
4154  * Returns: new clk consumer
4155  * This is the function to be used by providers which need
4156  * to get a consumer clk and act on the clock element
4157  * Calls to this function must be balanced with calls clk_put()
4158  */
4159 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4160 {
4161 	struct device *dev = hw->core->dev;
4162 	const char *name = dev ? dev_name(dev) : NULL;
4163 
4164 	return clk_hw_create_clk(dev, hw, name, con_id);
4165 }
4166 EXPORT_SYMBOL(clk_hw_get_clk);
4167 
4168 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4169 {
4170 	const char *dst;
4171 
4172 	if (!src) {
4173 		if (must_exist)
4174 			return -EINVAL;
4175 		return 0;
4176 	}
4177 
4178 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4179 	if (!dst)
4180 		return -ENOMEM;
4181 
4182 	return 0;
4183 }
4184 
4185 static int clk_core_populate_parent_map(struct clk_core *core,
4186 					const struct clk_init_data *init)
4187 {
4188 	u8 num_parents = init->num_parents;
4189 	const char * const *parent_names = init->parent_names;
4190 	const struct clk_hw **parent_hws = init->parent_hws;
4191 	const struct clk_parent_data *parent_data = init->parent_data;
4192 	int i, ret = 0;
4193 	struct clk_parent_map *parents, *parent;
4194 
4195 	if (!num_parents)
4196 		return 0;
4197 
4198 	/*
4199 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4200 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4201 	 */
4202 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4203 	core->parents = parents;
4204 	if (!parents)
4205 		return -ENOMEM;
4206 
4207 	/* Copy everything over because it might be __initdata */
4208 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4209 		parent->index = -1;
4210 		if (parent_names) {
4211 			/* throw a WARN if any entries are NULL */
4212 			WARN(!parent_names[i],
4213 				"%s: invalid NULL in %s's .parent_names\n",
4214 				__func__, core->name);
4215 			ret = clk_cpy_name(&parent->name, parent_names[i],
4216 					   true);
4217 		} else if (parent_data) {
4218 			parent->hw = parent_data[i].hw;
4219 			parent->index = parent_data[i].index;
4220 			ret = clk_cpy_name(&parent->fw_name,
4221 					   parent_data[i].fw_name, false);
4222 			if (!ret)
4223 				ret = clk_cpy_name(&parent->name,
4224 						   parent_data[i].name,
4225 						   false);
4226 		} else if (parent_hws) {
4227 			parent->hw = parent_hws[i];
4228 		} else {
4229 			ret = -EINVAL;
4230 			WARN(1, "Must specify parents if num_parents > 0\n");
4231 		}
4232 
4233 		if (ret) {
4234 			do {
4235 				kfree_const(parents[i].name);
4236 				kfree_const(parents[i].fw_name);
4237 			} while (--i >= 0);
4238 			kfree(parents);
4239 
4240 			return ret;
4241 		}
4242 	}
4243 
4244 	return 0;
4245 }
4246 
4247 static void clk_core_free_parent_map(struct clk_core *core)
4248 {
4249 	int i = core->num_parents;
4250 
4251 	if (!core->num_parents)
4252 		return;
4253 
4254 	while (--i >= 0) {
4255 		kfree_const(core->parents[i].name);
4256 		kfree_const(core->parents[i].fw_name);
4257 	}
4258 
4259 	kfree(core->parents);
4260 }
4261 
4262 /* Free memory allocated for a struct clk_core */
4263 static void __clk_release(struct kref *ref)
4264 {
4265 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4266 
4267 	if (core->rpm_enabled) {
4268 		mutex_lock(&clk_rpm_list_lock);
4269 		hlist_del(&core->rpm_node);
4270 		mutex_unlock(&clk_rpm_list_lock);
4271 	}
4272 
4273 	clk_core_free_parent_map(core);
4274 	kfree_const(core->name);
4275 	kfree(core);
4276 }
4277 
4278 static struct clk *
4279 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4280 {
4281 	int ret;
4282 	struct clk_core *core;
4283 	const struct clk_init_data *init = hw->init;
4284 
4285 	/*
4286 	 * The init data is not supposed to be used outside of registration path.
4287 	 * Set it to NULL so that provider drivers can't use it either and so that
4288 	 * we catch use of hw->init early on in the core.
4289 	 */
4290 	hw->init = NULL;
4291 
4292 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4293 	if (!core) {
4294 		ret = -ENOMEM;
4295 		goto fail_out;
4296 	}
4297 
4298 	kref_init(&core->ref);
4299 
4300 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4301 	if (!core->name) {
4302 		ret = -ENOMEM;
4303 		goto fail_name;
4304 	}
4305 
4306 	if (WARN_ON(!init->ops)) {
4307 		ret = -EINVAL;
4308 		goto fail_ops;
4309 	}
4310 	core->ops = init->ops;
4311 
4312 	core->dev = dev;
4313 	clk_pm_runtime_init(core);
4314 	core->of_node = np;
4315 	if (dev && dev->driver)
4316 		core->owner = dev->driver->owner;
4317 	core->hw = hw;
4318 	core->flags = init->flags;
4319 	core->num_parents = init->num_parents;
4320 	core->min_rate = 0;
4321 	core->max_rate = ULONG_MAX;
4322 
4323 	ret = clk_core_populate_parent_map(core, init);
4324 	if (ret)
4325 		goto fail_parents;
4326 
4327 	INIT_HLIST_HEAD(&core->clks);
4328 
4329 	/*
4330 	 * Don't call clk_hw_create_clk() here because that would pin the
4331 	 * provider module to itself and prevent it from ever being removed.
4332 	 */
4333 	hw->clk = alloc_clk(core, NULL, NULL);
4334 	if (IS_ERR(hw->clk)) {
4335 		ret = PTR_ERR(hw->clk);
4336 		goto fail_create_clk;
4337 	}
4338 
4339 	clk_core_link_consumer(core, hw->clk);
4340 
4341 	ret = __clk_core_init(core);
4342 	if (!ret)
4343 		return hw->clk;
4344 
4345 	clk_prepare_lock();
4346 	clk_core_unlink_consumer(hw->clk);
4347 	clk_prepare_unlock();
4348 
4349 	free_clk(hw->clk);
4350 	hw->clk = NULL;
4351 
4352 fail_create_clk:
4353 fail_parents:
4354 fail_ops:
4355 fail_name:
4356 	kref_put(&core->ref, __clk_release);
4357 fail_out:
4358 	return ERR_PTR(ret);
4359 }
4360 
4361 /**
4362  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4363  * @dev: Device to get device node of
4364  *
4365  * Return: device node pointer of @dev, or the device node pointer of
4366  * @dev->parent if dev doesn't have a device node, or NULL if neither
4367  * @dev or @dev->parent have a device node.
4368  */
4369 static struct device_node *dev_or_parent_of_node(struct device *dev)
4370 {
4371 	struct device_node *np;
4372 
4373 	if (!dev)
4374 		return NULL;
4375 
4376 	np = dev_of_node(dev);
4377 	if (!np)
4378 		np = dev_of_node(dev->parent);
4379 
4380 	return np;
4381 }
4382 
4383 /**
4384  * clk_register - allocate a new clock, register it and return an opaque cookie
4385  * @dev: device that is registering this clock
4386  * @hw: link to hardware-specific clock data
4387  *
4388  * clk_register is the *deprecated* interface for populating the clock tree with
4389  * new clock nodes. Use clk_hw_register() instead.
4390  *
4391  * Returns: a pointer to the newly allocated struct clk which
4392  * cannot be dereferenced by driver code but may be used in conjunction with the
4393  * rest of the clock API.  In the event of an error clk_register will return an
4394  * error code; drivers must test for an error code after calling clk_register.
4395  */
4396 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4397 {
4398 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4399 }
4400 EXPORT_SYMBOL_GPL(clk_register);
4401 
4402 /**
4403  * clk_hw_register - register a clk_hw and return an error code
4404  * @dev: device that is registering this clock
4405  * @hw: link to hardware-specific clock data
4406  *
4407  * clk_hw_register is the primary interface for populating the clock tree with
4408  * new clock nodes. It returns an integer equal to zero indicating success or
4409  * less than zero indicating failure. Drivers must test for an error code after
4410  * calling clk_hw_register().
4411  */
4412 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4413 {
4414 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4415 			       hw));
4416 }
4417 EXPORT_SYMBOL_GPL(clk_hw_register);
4418 
4419 /*
4420  * of_clk_hw_register - register a clk_hw and return an error code
4421  * @node: device_node of device that is registering this clock
4422  * @hw: link to hardware-specific clock data
4423  *
4424  * of_clk_hw_register() is the primary interface for populating the clock tree
4425  * with new clock nodes when a struct device is not available, but a struct
4426  * device_node is. It returns an integer equal to zero indicating success or
4427  * less than zero indicating failure. Drivers must test for an error code after
4428  * calling of_clk_hw_register().
4429  */
4430 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4431 {
4432 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4433 }
4434 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4435 
4436 /*
4437  * Empty clk_ops for unregistered clocks. These are used temporarily
4438  * after clk_unregister() was called on a clock and until last clock
4439  * consumer calls clk_put() and the struct clk object is freed.
4440  */
4441 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4442 {
4443 	return -ENXIO;
4444 }
4445 
4446 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4447 {
4448 	WARN_ON_ONCE(1);
4449 }
4450 
4451 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4452 					unsigned long parent_rate)
4453 {
4454 	return -ENXIO;
4455 }
4456 
4457 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4458 {
4459 	return -ENXIO;
4460 }
4461 
4462 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4463 				    struct clk_rate_request *req)
4464 {
4465 	return -ENXIO;
4466 }
4467 
4468 static const struct clk_ops clk_nodrv_ops = {
4469 	.enable		= clk_nodrv_prepare_enable,
4470 	.disable	= clk_nodrv_disable_unprepare,
4471 	.prepare	= clk_nodrv_prepare_enable,
4472 	.unprepare	= clk_nodrv_disable_unprepare,
4473 	.determine_rate	= clk_nodrv_determine_rate,
4474 	.set_rate	= clk_nodrv_set_rate,
4475 	.set_parent	= clk_nodrv_set_parent,
4476 };
4477 
4478 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4479 						const struct clk_core *target)
4480 {
4481 	int i;
4482 	struct clk_core *child;
4483 
4484 	for (i = 0; i < root->num_parents; i++)
4485 		if (root->parents[i].core == target)
4486 			root->parents[i].core = NULL;
4487 
4488 	hlist_for_each_entry(child, &root->children, child_node)
4489 		clk_core_evict_parent_cache_subtree(child, target);
4490 }
4491 
4492 /* Remove this clk from all parent caches */
4493 static void clk_core_evict_parent_cache(struct clk_core *core)
4494 {
4495 	const struct hlist_head **lists;
4496 	struct clk_core *root;
4497 
4498 	lockdep_assert_held(&prepare_lock);
4499 
4500 	for (lists = all_lists; *lists; lists++)
4501 		hlist_for_each_entry(root, *lists, child_node)
4502 			clk_core_evict_parent_cache_subtree(root, core);
4503 
4504 }
4505 
4506 /**
4507  * clk_unregister - unregister a currently registered clock
4508  * @clk: clock to unregister
4509  */
4510 void clk_unregister(struct clk *clk)
4511 {
4512 	unsigned long flags;
4513 	const struct clk_ops *ops;
4514 
4515 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4516 		return;
4517 
4518 	clk_debug_unregister(clk->core);
4519 
4520 	clk_prepare_lock();
4521 
4522 	ops = clk->core->ops;
4523 	if (ops == &clk_nodrv_ops) {
4524 		pr_err("%s: unregistered clock: %s\n", __func__,
4525 		       clk->core->name);
4526 		clk_prepare_unlock();
4527 		return;
4528 	}
4529 	/*
4530 	 * Assign empty clock ops for consumers that might still hold
4531 	 * a reference to this clock.
4532 	 */
4533 	flags = clk_enable_lock();
4534 	clk->core->ops = &clk_nodrv_ops;
4535 	clk_enable_unlock(flags);
4536 
4537 	if (ops->terminate)
4538 		ops->terminate(clk->core->hw);
4539 
4540 	if (!hlist_empty(&clk->core->children)) {
4541 		struct clk_core *child;
4542 		struct hlist_node *t;
4543 
4544 		/* Reparent all children to the orphan list. */
4545 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4546 					  child_node)
4547 			clk_core_set_parent_nolock(child, NULL);
4548 	}
4549 
4550 	clk_core_evict_parent_cache(clk->core);
4551 
4552 	hlist_del_init(&clk->core->child_node);
4553 
4554 	if (clk->core->prepare_count)
4555 		pr_warn("%s: unregistering prepared clock: %s\n",
4556 					__func__, clk->core->name);
4557 
4558 	if (clk->core->protect_count)
4559 		pr_warn("%s: unregistering protected clock: %s\n",
4560 					__func__, clk->core->name);
4561 	clk_prepare_unlock();
4562 
4563 	kref_put(&clk->core->ref, __clk_release);
4564 	free_clk(clk);
4565 }
4566 EXPORT_SYMBOL_GPL(clk_unregister);
4567 
4568 /**
4569  * clk_hw_unregister - unregister a currently registered clk_hw
4570  * @hw: hardware-specific clock data to unregister
4571  */
4572 void clk_hw_unregister(struct clk_hw *hw)
4573 {
4574 	clk_unregister(hw->clk);
4575 }
4576 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4577 
4578 static void devm_clk_unregister_cb(struct device *dev, void *res)
4579 {
4580 	clk_unregister(*(struct clk **)res);
4581 }
4582 
4583 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4584 {
4585 	clk_hw_unregister(*(struct clk_hw **)res);
4586 }
4587 
4588 /**
4589  * devm_clk_register - resource managed clk_register()
4590  * @dev: device that is registering this clock
4591  * @hw: link to hardware-specific clock data
4592  *
4593  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4594  *
4595  * Clocks returned from this function are automatically clk_unregister()ed on
4596  * driver detach. See clk_register() for more information.
4597  */
4598 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4599 {
4600 	struct clk *clk;
4601 	struct clk **clkp;
4602 
4603 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4604 	if (!clkp)
4605 		return ERR_PTR(-ENOMEM);
4606 
4607 	clk = clk_register(dev, hw);
4608 	if (!IS_ERR(clk)) {
4609 		*clkp = clk;
4610 		devres_add(dev, clkp);
4611 	} else {
4612 		devres_free(clkp);
4613 	}
4614 
4615 	return clk;
4616 }
4617 EXPORT_SYMBOL_GPL(devm_clk_register);
4618 
4619 /**
4620  * devm_clk_hw_register - resource managed clk_hw_register()
4621  * @dev: device that is registering this clock
4622  * @hw: link to hardware-specific clock data
4623  *
4624  * Managed clk_hw_register(). Clocks registered by this function are
4625  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4626  * for more information.
4627  */
4628 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4629 {
4630 	struct clk_hw **hwp;
4631 	int ret;
4632 
4633 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4634 	if (!hwp)
4635 		return -ENOMEM;
4636 
4637 	ret = clk_hw_register(dev, hw);
4638 	if (!ret) {
4639 		*hwp = hw;
4640 		devres_add(dev, hwp);
4641 	} else {
4642 		devres_free(hwp);
4643 	}
4644 
4645 	return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4648 
4649 static void devm_clk_release(struct device *dev, void *res)
4650 {
4651 	clk_put(*(struct clk **)res);
4652 }
4653 
4654 /**
4655  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4656  * @dev: device that is registering this clock
4657  * @hw: clk_hw associated with the clk being consumed
4658  * @con_id: connection ID string on device
4659  *
4660  * Managed clk_hw_get_clk(). Clocks got with this function are
4661  * automatically clk_put() on driver detach. See clk_put()
4662  * for more information.
4663  */
4664 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4665 				const char *con_id)
4666 {
4667 	struct clk *clk;
4668 	struct clk **clkp;
4669 
4670 	/* This should not happen because it would mean we have drivers
4671 	 * passing around clk_hw pointers instead of having the caller use
4672 	 * proper clk_get() style APIs
4673 	 */
4674 	WARN_ON_ONCE(dev != hw->core->dev);
4675 
4676 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4677 	if (!clkp)
4678 		return ERR_PTR(-ENOMEM);
4679 
4680 	clk = clk_hw_get_clk(hw, con_id);
4681 	if (!IS_ERR(clk)) {
4682 		*clkp = clk;
4683 		devres_add(dev, clkp);
4684 	} else {
4685 		devres_free(clkp);
4686 	}
4687 
4688 	return clk;
4689 }
4690 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4691 
4692 /*
4693  * clkdev helpers
4694  */
4695 
4696 void __clk_put(struct clk *clk)
4697 {
4698 	struct module *owner;
4699 
4700 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4701 		return;
4702 
4703 	clk_prepare_lock();
4704 
4705 	/*
4706 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4707 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4708 	 * and by that same consumer
4709 	 */
4710 	if (WARN_ON(clk->exclusive_count)) {
4711 		/* We voiced our concern, let's sanitize the situation */
4712 		clk->core->protect_count -= (clk->exclusive_count - 1);
4713 		clk_core_rate_unprotect(clk->core);
4714 		clk->exclusive_count = 0;
4715 	}
4716 
4717 	hlist_del(&clk->clks_node);
4718 
4719 	/* If we had any boundaries on that clock, let's drop them. */
4720 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4721 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4722 
4723 	clk_prepare_unlock();
4724 
4725 	owner = clk->core->owner;
4726 	kref_put(&clk->core->ref, __clk_release);
4727 	module_put(owner);
4728 	free_clk(clk);
4729 }
4730 
4731 /***        clk rate change notifiers        ***/
4732 
4733 /**
4734  * clk_notifier_register - add a clk rate change notifier
4735  * @clk: struct clk * to watch
4736  * @nb: struct notifier_block * with callback info
4737  *
4738  * Request notification when clk's rate changes.  This uses an SRCU
4739  * notifier because we want it to block and notifier unregistrations are
4740  * uncommon.  The callbacks associated with the notifier must not
4741  * re-enter into the clk framework by calling any top-level clk APIs;
4742  * this will cause a nested prepare_lock mutex.
4743  *
4744  * In all notification cases (pre, post and abort rate change) the original
4745  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4746  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4747  *
4748  * clk_notifier_register() must be called from non-atomic context.
4749  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4750  * allocation failure; otherwise, passes along the return value of
4751  * srcu_notifier_chain_register().
4752  */
4753 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4754 {
4755 	struct clk_notifier *cn;
4756 	int ret = -ENOMEM;
4757 
4758 	if (!clk || !nb)
4759 		return -EINVAL;
4760 
4761 	clk_prepare_lock();
4762 
4763 	/* search the list of notifiers for this clk */
4764 	list_for_each_entry(cn, &clk_notifier_list, node)
4765 		if (cn->clk == clk)
4766 			goto found;
4767 
4768 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4769 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4770 	if (!cn)
4771 		goto out;
4772 
4773 	cn->clk = clk;
4774 	srcu_init_notifier_head(&cn->notifier_head);
4775 
4776 	list_add(&cn->node, &clk_notifier_list);
4777 
4778 found:
4779 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4780 
4781 	clk->core->notifier_count++;
4782 
4783 out:
4784 	clk_prepare_unlock();
4785 
4786 	return ret;
4787 }
4788 EXPORT_SYMBOL_GPL(clk_notifier_register);
4789 
4790 /**
4791  * clk_notifier_unregister - remove a clk rate change notifier
4792  * @clk: struct clk *
4793  * @nb: struct notifier_block * with callback info
4794  *
4795  * Request no further notification for changes to 'clk' and frees memory
4796  * allocated in clk_notifier_register.
4797  *
4798  * Returns -EINVAL if called with null arguments; otherwise, passes
4799  * along the return value of srcu_notifier_chain_unregister().
4800  */
4801 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4802 {
4803 	struct clk_notifier *cn;
4804 	int ret = -ENOENT;
4805 
4806 	if (!clk || !nb)
4807 		return -EINVAL;
4808 
4809 	clk_prepare_lock();
4810 
4811 	list_for_each_entry(cn, &clk_notifier_list, node) {
4812 		if (cn->clk == clk) {
4813 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4814 
4815 			clk->core->notifier_count--;
4816 
4817 			/* XXX the notifier code should handle this better */
4818 			if (!cn->notifier_head.head) {
4819 				srcu_cleanup_notifier_head(&cn->notifier_head);
4820 				list_del(&cn->node);
4821 				kfree(cn);
4822 			}
4823 			break;
4824 		}
4825 	}
4826 
4827 	clk_prepare_unlock();
4828 
4829 	return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4832 
4833 struct clk_notifier_devres {
4834 	struct clk *clk;
4835 	struct notifier_block *nb;
4836 };
4837 
4838 static void devm_clk_notifier_release(struct device *dev, void *res)
4839 {
4840 	struct clk_notifier_devres *devres = res;
4841 
4842 	clk_notifier_unregister(devres->clk, devres->nb);
4843 }
4844 
4845 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4846 			       struct notifier_block *nb)
4847 {
4848 	struct clk_notifier_devres *devres;
4849 	int ret;
4850 
4851 	devres = devres_alloc(devm_clk_notifier_release,
4852 			      sizeof(*devres), GFP_KERNEL);
4853 
4854 	if (!devres)
4855 		return -ENOMEM;
4856 
4857 	ret = clk_notifier_register(clk, nb);
4858 	if (!ret) {
4859 		devres->clk = clk;
4860 		devres->nb = nb;
4861 		devres_add(dev, devres);
4862 	} else {
4863 		devres_free(devres);
4864 	}
4865 
4866 	return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4869 
4870 #ifdef CONFIG_OF
4871 static void clk_core_reparent_orphans(void)
4872 {
4873 	clk_prepare_lock();
4874 	clk_core_reparent_orphans_nolock();
4875 	clk_prepare_unlock();
4876 }
4877 
4878 /**
4879  * struct of_clk_provider - Clock provider registration structure
4880  * @link: Entry in global list of clock providers
4881  * @node: Pointer to device tree node of clock provider
4882  * @get: Get clock callback.  Returns NULL or a struct clk for the
4883  *       given clock specifier
4884  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4885  *       struct clk_hw for the given clock specifier
4886  * @data: context pointer to be passed into @get callback
4887  */
4888 struct of_clk_provider {
4889 	struct list_head link;
4890 
4891 	struct device_node *node;
4892 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4893 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4894 	void *data;
4895 };
4896 
4897 extern struct of_device_id __clk_of_table;
4898 static const struct of_device_id __clk_of_table_sentinel
4899 	__used __section("__clk_of_table_end");
4900 
4901 static LIST_HEAD(of_clk_providers);
4902 static DEFINE_MUTEX(of_clk_mutex);
4903 
4904 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4905 				     void *data)
4906 {
4907 	return data;
4908 }
4909 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4910 
4911 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4912 {
4913 	return data;
4914 }
4915 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4916 
4917 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4918 {
4919 	struct clk_onecell_data *clk_data = data;
4920 	unsigned int idx = clkspec->args[0];
4921 
4922 	if (idx >= clk_data->clk_num) {
4923 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4924 		return ERR_PTR(-EINVAL);
4925 	}
4926 
4927 	return clk_data->clks[idx];
4928 }
4929 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4930 
4931 struct clk_hw *
4932 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4933 {
4934 	struct clk_hw_onecell_data *hw_data = data;
4935 	unsigned int idx = clkspec->args[0];
4936 
4937 	if (idx >= hw_data->num) {
4938 		pr_err("%s: invalid index %u\n", __func__, idx);
4939 		return ERR_PTR(-EINVAL);
4940 	}
4941 
4942 	return hw_data->hws[idx];
4943 }
4944 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4945 
4946 /**
4947  * of_clk_add_provider() - Register a clock provider for a node
4948  * @np: Device node pointer associated with clock provider
4949  * @clk_src_get: callback for decoding clock
4950  * @data: context pointer for @clk_src_get callback.
4951  *
4952  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4953  */
4954 int of_clk_add_provider(struct device_node *np,
4955 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4956 						   void *data),
4957 			void *data)
4958 {
4959 	struct of_clk_provider *cp;
4960 	int ret;
4961 
4962 	if (!np)
4963 		return 0;
4964 
4965 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4966 	if (!cp)
4967 		return -ENOMEM;
4968 
4969 	cp->node = of_node_get(np);
4970 	cp->data = data;
4971 	cp->get = clk_src_get;
4972 
4973 	mutex_lock(&of_clk_mutex);
4974 	list_add(&cp->link, &of_clk_providers);
4975 	mutex_unlock(&of_clk_mutex);
4976 	pr_debug("Added clock from %pOF\n", np);
4977 
4978 	clk_core_reparent_orphans();
4979 
4980 	ret = of_clk_set_defaults(np, true);
4981 	if (ret < 0)
4982 		of_clk_del_provider(np);
4983 
4984 	fwnode_dev_initialized(&np->fwnode, true);
4985 
4986 	return ret;
4987 }
4988 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4989 
4990 /**
4991  * of_clk_add_hw_provider() - Register a clock provider for a node
4992  * @np: Device node pointer associated with clock provider
4993  * @get: callback for decoding clk_hw
4994  * @data: context pointer for @get callback.
4995  */
4996 int of_clk_add_hw_provider(struct device_node *np,
4997 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4998 						 void *data),
4999 			   void *data)
5000 {
5001 	struct of_clk_provider *cp;
5002 	int ret;
5003 
5004 	if (!np)
5005 		return 0;
5006 
5007 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5008 	if (!cp)
5009 		return -ENOMEM;
5010 
5011 	cp->node = of_node_get(np);
5012 	cp->data = data;
5013 	cp->get_hw = get;
5014 
5015 	mutex_lock(&of_clk_mutex);
5016 	list_add(&cp->link, &of_clk_providers);
5017 	mutex_unlock(&of_clk_mutex);
5018 	pr_debug("Added clk_hw provider from %pOF\n", np);
5019 
5020 	clk_core_reparent_orphans();
5021 
5022 	ret = of_clk_set_defaults(np, true);
5023 	if (ret < 0)
5024 		of_clk_del_provider(np);
5025 
5026 	fwnode_dev_initialized(&np->fwnode, true);
5027 
5028 	return ret;
5029 }
5030 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5031 
5032 static void devm_of_clk_release_provider(struct device *dev, void *res)
5033 {
5034 	of_clk_del_provider(*(struct device_node **)res);
5035 }
5036 
5037 /*
5038  * We allow a child device to use its parent device as the clock provider node
5039  * for cases like MFD sub-devices where the child device driver wants to use
5040  * devm_*() APIs but not list the device in DT as a sub-node.
5041  */
5042 static struct device_node *get_clk_provider_node(struct device *dev)
5043 {
5044 	struct device_node *np, *parent_np;
5045 
5046 	np = dev->of_node;
5047 	parent_np = dev->parent ? dev->parent->of_node : NULL;
5048 
5049 	if (!of_property_present(np, "#clock-cells"))
5050 		if (of_property_present(parent_np, "#clock-cells"))
5051 			np = parent_np;
5052 
5053 	return np;
5054 }
5055 
5056 /**
5057  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5058  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5059  * @get: callback for decoding clk_hw
5060  * @data: context pointer for @get callback
5061  *
5062  * Registers clock provider for given device's node. If the device has no DT
5063  * node or if the device node lacks of clock provider information (#clock-cells)
5064  * then the parent device's node is scanned for this information. If parent node
5065  * has the #clock-cells then it is used in registration. Provider is
5066  * automatically released at device exit.
5067  *
5068  * Return: 0 on success or an errno on failure.
5069  */
5070 int devm_of_clk_add_hw_provider(struct device *dev,
5071 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5072 					      void *data),
5073 			void *data)
5074 {
5075 	struct device_node **ptr, *np;
5076 	int ret;
5077 
5078 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5079 			   GFP_KERNEL);
5080 	if (!ptr)
5081 		return -ENOMEM;
5082 
5083 	np = get_clk_provider_node(dev);
5084 	ret = of_clk_add_hw_provider(np, get, data);
5085 	if (!ret) {
5086 		*ptr = np;
5087 		devres_add(dev, ptr);
5088 	} else {
5089 		devres_free(ptr);
5090 	}
5091 
5092 	return ret;
5093 }
5094 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5095 
5096 /**
5097  * of_clk_del_provider() - Remove a previously registered clock provider
5098  * @np: Device node pointer associated with clock provider
5099  */
5100 void of_clk_del_provider(struct device_node *np)
5101 {
5102 	struct of_clk_provider *cp;
5103 
5104 	if (!np)
5105 		return;
5106 
5107 	mutex_lock(&of_clk_mutex);
5108 	list_for_each_entry(cp, &of_clk_providers, link) {
5109 		if (cp->node == np) {
5110 			list_del(&cp->link);
5111 			fwnode_dev_initialized(&np->fwnode, false);
5112 			of_node_put(cp->node);
5113 			kfree(cp);
5114 			break;
5115 		}
5116 	}
5117 	mutex_unlock(&of_clk_mutex);
5118 }
5119 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5120 
5121 /**
5122  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5123  * @np: device node to parse clock specifier from
5124  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5125  * @name: clock name to find and parse. If name is NULL, the index is used
5126  * @out_args: Result of parsing the clock specifier
5127  *
5128  * Parses a device node's "clocks" and "clock-names" properties to find the
5129  * phandle and cells for the index or name that is desired. The resulting clock
5130  * specifier is placed into @out_args, or an errno is returned when there's a
5131  * parsing error. The @index argument is ignored if @name is non-NULL.
5132  *
5133  * Example:
5134  *
5135  * phandle1: clock-controller@1 {
5136  *	#clock-cells = <2>;
5137  * }
5138  *
5139  * phandle2: clock-controller@2 {
5140  *	#clock-cells = <1>;
5141  * }
5142  *
5143  * clock-consumer@3 {
5144  *	clocks = <&phandle1 1 2 &phandle2 3>;
5145  *	clock-names = "name1", "name2";
5146  * }
5147  *
5148  * To get a device_node for `clock-controller@2' node you may call this
5149  * function a few different ways:
5150  *
5151  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5152  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5153  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5154  *
5155  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5156  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5157  * the "clock-names" property of @np.
5158  */
5159 static int of_parse_clkspec(const struct device_node *np, int index,
5160 			    const char *name, struct of_phandle_args *out_args)
5161 {
5162 	int ret = -ENOENT;
5163 
5164 	/* Walk up the tree of devices looking for a clock property that matches */
5165 	while (np) {
5166 		/*
5167 		 * For named clocks, first look up the name in the
5168 		 * "clock-names" property.  If it cannot be found, then index
5169 		 * will be an error code and of_parse_phandle_with_args() will
5170 		 * return -EINVAL.
5171 		 */
5172 		if (name)
5173 			index = of_property_match_string(np, "clock-names", name);
5174 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5175 						 index, out_args);
5176 		if (!ret)
5177 			break;
5178 		if (name && index >= 0)
5179 			break;
5180 
5181 		/*
5182 		 * No matching clock found on this node.  If the parent node
5183 		 * has a "clock-ranges" property, then we can try one of its
5184 		 * clocks.
5185 		 */
5186 		np = np->parent;
5187 		if (np && !of_get_property(np, "clock-ranges", NULL))
5188 			break;
5189 		index = 0;
5190 	}
5191 
5192 	return ret;
5193 }
5194 
5195 static struct clk_hw *
5196 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5197 			      struct of_phandle_args *clkspec)
5198 {
5199 	struct clk *clk;
5200 
5201 	if (provider->get_hw)
5202 		return provider->get_hw(clkspec, provider->data);
5203 
5204 	clk = provider->get(clkspec, provider->data);
5205 	if (IS_ERR(clk))
5206 		return ERR_CAST(clk);
5207 	return __clk_get_hw(clk);
5208 }
5209 
5210 static struct clk_hw *
5211 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5212 {
5213 	struct of_clk_provider *provider;
5214 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5215 
5216 	if (!clkspec)
5217 		return ERR_PTR(-EINVAL);
5218 
5219 	mutex_lock(&of_clk_mutex);
5220 	list_for_each_entry(provider, &of_clk_providers, link) {
5221 		if (provider->node == clkspec->np) {
5222 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5223 			if (!IS_ERR(hw))
5224 				break;
5225 		}
5226 	}
5227 	mutex_unlock(&of_clk_mutex);
5228 
5229 	return hw;
5230 }
5231 
5232 /**
5233  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5234  * @clkspec: pointer to a clock specifier data structure
5235  *
5236  * This function looks up a struct clk from the registered list of clock
5237  * providers, an input is a clock specifier data structure as returned
5238  * from the of_parse_phandle_with_args() function call.
5239  */
5240 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5241 {
5242 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5243 
5244 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5245 }
5246 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5247 
5248 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5249 			     const char *con_id)
5250 {
5251 	int ret;
5252 	struct clk_hw *hw;
5253 	struct of_phandle_args clkspec;
5254 
5255 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5256 	if (ret)
5257 		return ERR_PTR(ret);
5258 
5259 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5260 	of_node_put(clkspec.np);
5261 
5262 	return hw;
5263 }
5264 
5265 static struct clk *__of_clk_get(struct device_node *np,
5266 				int index, const char *dev_id,
5267 				const char *con_id)
5268 {
5269 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5270 
5271 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5272 }
5273 
5274 struct clk *of_clk_get(struct device_node *np, int index)
5275 {
5276 	return __of_clk_get(np, index, np->full_name, NULL);
5277 }
5278 EXPORT_SYMBOL(of_clk_get);
5279 
5280 /**
5281  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5282  * @np: pointer to clock consumer node
5283  * @name: name of consumer's clock input, or NULL for the first clock reference
5284  *
5285  * This function parses the clocks and clock-names properties,
5286  * and uses them to look up the struct clk from the registered list of clock
5287  * providers.
5288  */
5289 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5290 {
5291 	if (!np)
5292 		return ERR_PTR(-ENOENT);
5293 
5294 	return __of_clk_get(np, 0, np->full_name, name);
5295 }
5296 EXPORT_SYMBOL(of_clk_get_by_name);
5297 
5298 /**
5299  * of_clk_get_parent_count() - Count the number of clocks a device node has
5300  * @np: device node to count
5301  *
5302  * Returns: The number of clocks that are possible parents of this node
5303  */
5304 unsigned int of_clk_get_parent_count(const struct device_node *np)
5305 {
5306 	int count;
5307 
5308 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5309 	if (count < 0)
5310 		return 0;
5311 
5312 	return count;
5313 }
5314 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5315 
5316 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5317 {
5318 	struct of_phandle_args clkspec;
5319 	struct property *prop;
5320 	const char *clk_name;
5321 	const __be32 *vp;
5322 	u32 pv;
5323 	int rc;
5324 	int count;
5325 	struct clk *clk;
5326 
5327 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5328 					&clkspec);
5329 	if (rc)
5330 		return NULL;
5331 
5332 	index = clkspec.args_count ? clkspec.args[0] : 0;
5333 	count = 0;
5334 
5335 	/* if there is an indices property, use it to transfer the index
5336 	 * specified into an array offset for the clock-output-names property.
5337 	 */
5338 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5339 		if (index == pv) {
5340 			index = count;
5341 			break;
5342 		}
5343 		count++;
5344 	}
5345 	/* We went off the end of 'clock-indices' without finding it */
5346 	if (prop && !vp)
5347 		return NULL;
5348 
5349 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5350 					  index,
5351 					  &clk_name) < 0) {
5352 		/*
5353 		 * Best effort to get the name if the clock has been
5354 		 * registered with the framework. If the clock isn't
5355 		 * registered, we return the node name as the name of
5356 		 * the clock as long as #clock-cells = 0.
5357 		 */
5358 		clk = of_clk_get_from_provider(&clkspec);
5359 		if (IS_ERR(clk)) {
5360 			if (clkspec.args_count == 0)
5361 				clk_name = clkspec.np->name;
5362 			else
5363 				clk_name = NULL;
5364 		} else {
5365 			clk_name = __clk_get_name(clk);
5366 			clk_put(clk);
5367 		}
5368 	}
5369 
5370 
5371 	of_node_put(clkspec.np);
5372 	return clk_name;
5373 }
5374 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5375 
5376 /**
5377  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5378  * number of parents
5379  * @np: Device node pointer associated with clock provider
5380  * @parents: pointer to char array that hold the parents' names
5381  * @size: size of the @parents array
5382  *
5383  * Return: number of parents for the clock node.
5384  */
5385 int of_clk_parent_fill(struct device_node *np, const char **parents,
5386 		       unsigned int size)
5387 {
5388 	unsigned int i = 0;
5389 
5390 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5391 		i++;
5392 
5393 	return i;
5394 }
5395 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5396 
5397 struct clock_provider {
5398 	void (*clk_init_cb)(struct device_node *);
5399 	struct device_node *np;
5400 	struct list_head node;
5401 };
5402 
5403 /*
5404  * This function looks for a parent clock. If there is one, then it
5405  * checks that the provider for this parent clock was initialized, in
5406  * this case the parent clock will be ready.
5407  */
5408 static int parent_ready(struct device_node *np)
5409 {
5410 	int i = 0;
5411 
5412 	while (true) {
5413 		struct clk *clk = of_clk_get(np, i);
5414 
5415 		/* this parent is ready we can check the next one */
5416 		if (!IS_ERR(clk)) {
5417 			clk_put(clk);
5418 			i++;
5419 			continue;
5420 		}
5421 
5422 		/* at least one parent is not ready, we exit now */
5423 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5424 			return 0;
5425 
5426 		/*
5427 		 * Here we make assumption that the device tree is
5428 		 * written correctly. So an error means that there is
5429 		 * no more parent. As we didn't exit yet, then the
5430 		 * previous parent are ready. If there is no clock
5431 		 * parent, no need to wait for them, then we can
5432 		 * consider their absence as being ready
5433 		 */
5434 		return 1;
5435 	}
5436 }
5437 
5438 /**
5439  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5440  * @np: Device node pointer associated with clock provider
5441  * @index: clock index
5442  * @flags: pointer to top-level framework flags
5443  *
5444  * Detects if the clock-critical property exists and, if so, sets the
5445  * corresponding CLK_IS_CRITICAL flag.
5446  *
5447  * Do not use this function. It exists only for legacy Device Tree
5448  * bindings, such as the one-clock-per-node style that are outdated.
5449  * Those bindings typically put all clock data into .dts and the Linux
5450  * driver has no clock data, thus making it impossible to set this flag
5451  * correctly from the driver. Only those drivers may call
5452  * of_clk_detect_critical from their setup functions.
5453  *
5454  * Return: error code or zero on success
5455  */
5456 int of_clk_detect_critical(struct device_node *np, int index,
5457 			   unsigned long *flags)
5458 {
5459 	struct property *prop;
5460 	const __be32 *cur;
5461 	uint32_t idx;
5462 
5463 	if (!np || !flags)
5464 		return -EINVAL;
5465 
5466 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5467 		if (index == idx)
5468 			*flags |= CLK_IS_CRITICAL;
5469 
5470 	return 0;
5471 }
5472 
5473 /**
5474  * of_clk_init() - Scan and init clock providers from the DT
5475  * @matches: array of compatible values and init functions for providers.
5476  *
5477  * This function scans the device tree for matching clock providers
5478  * and calls their initialization functions. It also does it by trying
5479  * to follow the dependencies.
5480  */
5481 void __init of_clk_init(const struct of_device_id *matches)
5482 {
5483 	const struct of_device_id *match;
5484 	struct device_node *np;
5485 	struct clock_provider *clk_provider, *next;
5486 	bool is_init_done;
5487 	bool force = false;
5488 	LIST_HEAD(clk_provider_list);
5489 
5490 	if (!matches)
5491 		matches = &__clk_of_table;
5492 
5493 	/* First prepare the list of the clocks providers */
5494 	for_each_matching_node_and_match(np, matches, &match) {
5495 		struct clock_provider *parent;
5496 
5497 		if (!of_device_is_available(np))
5498 			continue;
5499 
5500 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5501 		if (!parent) {
5502 			list_for_each_entry_safe(clk_provider, next,
5503 						 &clk_provider_list, node) {
5504 				list_del(&clk_provider->node);
5505 				of_node_put(clk_provider->np);
5506 				kfree(clk_provider);
5507 			}
5508 			of_node_put(np);
5509 			return;
5510 		}
5511 
5512 		parent->clk_init_cb = match->data;
5513 		parent->np = of_node_get(np);
5514 		list_add_tail(&parent->node, &clk_provider_list);
5515 	}
5516 
5517 	while (!list_empty(&clk_provider_list)) {
5518 		is_init_done = false;
5519 		list_for_each_entry_safe(clk_provider, next,
5520 					&clk_provider_list, node) {
5521 			if (force || parent_ready(clk_provider->np)) {
5522 
5523 				/* Don't populate platform devices */
5524 				of_node_set_flag(clk_provider->np,
5525 						 OF_POPULATED);
5526 
5527 				clk_provider->clk_init_cb(clk_provider->np);
5528 				of_clk_set_defaults(clk_provider->np, true);
5529 
5530 				list_del(&clk_provider->node);
5531 				of_node_put(clk_provider->np);
5532 				kfree(clk_provider);
5533 				is_init_done = true;
5534 			}
5535 		}
5536 
5537 		/*
5538 		 * We didn't manage to initialize any of the
5539 		 * remaining providers during the last loop, so now we
5540 		 * initialize all the remaining ones unconditionally
5541 		 * in case the clock parent was not mandatory
5542 		 */
5543 		if (!is_init_done)
5544 			force = true;
5545 	}
5546 }
5547 #endif
5548