1 /* 2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com> 3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Standard functionality for the common clock API. See Documentation/clk.txt 10 */ 11 12 #include <linux/clk-private.h> 13 #include <linux/clk/clk-conf.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/spinlock.h> 17 #include <linux/err.h> 18 #include <linux/list.h> 19 #include <linux/slab.h> 20 #include <linux/of.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/sched.h> 24 25 #include "clk.h" 26 27 static DEFINE_SPINLOCK(enable_lock); 28 static DEFINE_MUTEX(prepare_lock); 29 30 static struct task_struct *prepare_owner; 31 static struct task_struct *enable_owner; 32 33 static int prepare_refcnt; 34 static int enable_refcnt; 35 36 static HLIST_HEAD(clk_root_list); 37 static HLIST_HEAD(clk_orphan_list); 38 static LIST_HEAD(clk_notifier_list); 39 40 /*** locking ***/ 41 static void clk_prepare_lock(void) 42 { 43 if (!mutex_trylock(&prepare_lock)) { 44 if (prepare_owner == current) { 45 prepare_refcnt++; 46 return; 47 } 48 mutex_lock(&prepare_lock); 49 } 50 WARN_ON_ONCE(prepare_owner != NULL); 51 WARN_ON_ONCE(prepare_refcnt != 0); 52 prepare_owner = current; 53 prepare_refcnt = 1; 54 } 55 56 static void clk_prepare_unlock(void) 57 { 58 WARN_ON_ONCE(prepare_owner != current); 59 WARN_ON_ONCE(prepare_refcnt == 0); 60 61 if (--prepare_refcnt) 62 return; 63 prepare_owner = NULL; 64 mutex_unlock(&prepare_lock); 65 } 66 67 static unsigned long clk_enable_lock(void) 68 { 69 unsigned long flags; 70 71 if (!spin_trylock_irqsave(&enable_lock, flags)) { 72 if (enable_owner == current) { 73 enable_refcnt++; 74 return flags; 75 } 76 spin_lock_irqsave(&enable_lock, flags); 77 } 78 WARN_ON_ONCE(enable_owner != NULL); 79 WARN_ON_ONCE(enable_refcnt != 0); 80 enable_owner = current; 81 enable_refcnt = 1; 82 return flags; 83 } 84 85 static void clk_enable_unlock(unsigned long flags) 86 { 87 WARN_ON_ONCE(enable_owner != current); 88 WARN_ON_ONCE(enable_refcnt == 0); 89 90 if (--enable_refcnt) 91 return; 92 enable_owner = NULL; 93 spin_unlock_irqrestore(&enable_lock, flags); 94 } 95 96 /*** debugfs support ***/ 97 98 #ifdef CONFIG_DEBUG_FS 99 #include <linux/debugfs.h> 100 101 static struct dentry *rootdir; 102 static int inited = 0; 103 104 static struct hlist_head *all_lists[] = { 105 &clk_root_list, 106 &clk_orphan_list, 107 NULL, 108 }; 109 110 static struct hlist_head *orphan_list[] = { 111 &clk_orphan_list, 112 NULL, 113 }; 114 115 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level) 116 { 117 if (!c) 118 return; 119 120 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu\n", 121 level * 3 + 1, "", 122 30 - level * 3, c->name, 123 c->enable_count, c->prepare_count, clk_get_rate(c), 124 clk_get_accuracy(c)); 125 } 126 127 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c, 128 int level) 129 { 130 struct clk *child; 131 132 if (!c) 133 return; 134 135 clk_summary_show_one(s, c, level); 136 137 hlist_for_each_entry(child, &c->children, child_node) 138 clk_summary_show_subtree(s, child, level + 1); 139 } 140 141 static int clk_summary_show(struct seq_file *s, void *data) 142 { 143 struct clk *c; 144 struct hlist_head **lists = (struct hlist_head **)s->private; 145 146 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy\n"); 147 seq_puts(s, "--------------------------------------------------------------------------------\n"); 148 149 clk_prepare_lock(); 150 151 for (; *lists; lists++) 152 hlist_for_each_entry(c, *lists, child_node) 153 clk_summary_show_subtree(s, c, 0); 154 155 clk_prepare_unlock(); 156 157 return 0; 158 } 159 160 161 static int clk_summary_open(struct inode *inode, struct file *file) 162 { 163 return single_open(file, clk_summary_show, inode->i_private); 164 } 165 166 static const struct file_operations clk_summary_fops = { 167 .open = clk_summary_open, 168 .read = seq_read, 169 .llseek = seq_lseek, 170 .release = single_release, 171 }; 172 173 static void clk_dump_one(struct seq_file *s, struct clk *c, int level) 174 { 175 if (!c) 176 return; 177 178 seq_printf(s, "\"%s\": { ", c->name); 179 seq_printf(s, "\"enable_count\": %d,", c->enable_count); 180 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count); 181 seq_printf(s, "\"rate\": %lu", clk_get_rate(c)); 182 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c)); 183 } 184 185 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level) 186 { 187 struct clk *child; 188 189 if (!c) 190 return; 191 192 clk_dump_one(s, c, level); 193 194 hlist_for_each_entry(child, &c->children, child_node) { 195 seq_printf(s, ","); 196 clk_dump_subtree(s, child, level + 1); 197 } 198 199 seq_printf(s, "}"); 200 } 201 202 static int clk_dump(struct seq_file *s, void *data) 203 { 204 struct clk *c; 205 bool first_node = true; 206 struct hlist_head **lists = (struct hlist_head **)s->private; 207 208 seq_printf(s, "{"); 209 210 clk_prepare_lock(); 211 212 for (; *lists; lists++) { 213 hlist_for_each_entry(c, *lists, child_node) { 214 if (!first_node) 215 seq_puts(s, ","); 216 first_node = false; 217 clk_dump_subtree(s, c, 0); 218 } 219 } 220 221 clk_prepare_unlock(); 222 223 seq_printf(s, "}"); 224 return 0; 225 } 226 227 228 static int clk_dump_open(struct inode *inode, struct file *file) 229 { 230 return single_open(file, clk_dump, inode->i_private); 231 } 232 233 static const struct file_operations clk_dump_fops = { 234 .open = clk_dump_open, 235 .read = seq_read, 236 .llseek = seq_lseek, 237 .release = single_release, 238 }; 239 240 /* caller must hold prepare_lock */ 241 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry) 242 { 243 struct dentry *d; 244 int ret = -ENOMEM; 245 246 if (!clk || !pdentry) { 247 ret = -EINVAL; 248 goto out; 249 } 250 251 d = debugfs_create_dir(clk->name, pdentry); 252 if (!d) 253 goto out; 254 255 clk->dentry = d; 256 257 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry, 258 (u32 *)&clk->rate); 259 if (!d) 260 goto err_out; 261 262 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry, 263 (u32 *)&clk->accuracy); 264 if (!d) 265 goto err_out; 266 267 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry, 268 (u32 *)&clk->flags); 269 if (!d) 270 goto err_out; 271 272 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry, 273 (u32 *)&clk->prepare_count); 274 if (!d) 275 goto err_out; 276 277 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry, 278 (u32 *)&clk->enable_count); 279 if (!d) 280 goto err_out; 281 282 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry, 283 (u32 *)&clk->notifier_count); 284 if (!d) 285 goto err_out; 286 287 if (clk->ops->debug_init) { 288 ret = clk->ops->debug_init(clk->hw, clk->dentry); 289 if (ret) 290 goto err_out; 291 } 292 293 ret = 0; 294 goto out; 295 296 err_out: 297 debugfs_remove_recursive(clk->dentry); 298 clk->dentry = NULL; 299 out: 300 return ret; 301 } 302 303 /* caller must hold prepare_lock */ 304 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry) 305 { 306 struct clk *child; 307 int ret = -EINVAL;; 308 309 if (!clk || !pdentry) 310 goto out; 311 312 ret = clk_debug_create_one(clk, pdentry); 313 314 if (ret) 315 goto out; 316 317 hlist_for_each_entry(child, &clk->children, child_node) 318 clk_debug_create_subtree(child, pdentry); 319 320 ret = 0; 321 out: 322 return ret; 323 } 324 325 /** 326 * clk_debug_register - add a clk node to the debugfs clk tree 327 * @clk: the clk being added to the debugfs clk tree 328 * 329 * Dynamically adds a clk to the debugfs clk tree if debugfs has been 330 * initialized. Otherwise it bails out early since the debugfs clk tree 331 * will be created lazily by clk_debug_init as part of a late_initcall. 332 * 333 * Caller must hold prepare_lock. Only clk_init calls this function (so 334 * far) so this is taken care. 335 */ 336 static int clk_debug_register(struct clk *clk) 337 { 338 int ret = 0; 339 340 if (!inited) 341 goto out; 342 343 ret = clk_debug_create_subtree(clk, rootdir); 344 345 out: 346 return ret; 347 } 348 349 /** 350 * clk_debug_unregister - remove a clk node from the debugfs clk tree 351 * @clk: the clk being removed from the debugfs clk tree 352 * 353 * Dynamically removes a clk and all it's children clk nodes from the 354 * debugfs clk tree if clk->dentry points to debugfs created by 355 * clk_debug_register in __clk_init. 356 * 357 * Caller must hold prepare_lock. 358 */ 359 static void clk_debug_unregister(struct clk *clk) 360 { 361 debugfs_remove_recursive(clk->dentry); 362 } 363 364 struct dentry *clk_debugfs_add_file(struct clk *clk, char *name, umode_t mode, 365 void *data, const struct file_operations *fops) 366 { 367 struct dentry *d = NULL; 368 369 if (clk->dentry) 370 d = debugfs_create_file(name, mode, clk->dentry, data, fops); 371 372 return d; 373 } 374 EXPORT_SYMBOL_GPL(clk_debugfs_add_file); 375 376 /** 377 * clk_debug_init - lazily create the debugfs clk tree visualization 378 * 379 * clks are often initialized very early during boot before memory can 380 * be dynamically allocated and well before debugfs is setup. 381 * clk_debug_init walks the clk tree hierarchy while holding 382 * prepare_lock and creates the topology as part of a late_initcall, 383 * thus insuring that clks initialized very early will still be 384 * represented in the debugfs clk tree. This function should only be 385 * called once at boot-time, and all other clks added dynamically will 386 * be done so with clk_debug_register. 387 */ 388 static int __init clk_debug_init(void) 389 { 390 struct clk *clk; 391 struct dentry *d; 392 393 rootdir = debugfs_create_dir("clk", NULL); 394 395 if (!rootdir) 396 return -ENOMEM; 397 398 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists, 399 &clk_summary_fops); 400 if (!d) 401 return -ENOMEM; 402 403 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists, 404 &clk_dump_fops); 405 if (!d) 406 return -ENOMEM; 407 408 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir, 409 &orphan_list, &clk_summary_fops); 410 if (!d) 411 return -ENOMEM; 412 413 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir, 414 &orphan_list, &clk_dump_fops); 415 if (!d) 416 return -ENOMEM; 417 418 clk_prepare_lock(); 419 420 hlist_for_each_entry(clk, &clk_root_list, child_node) 421 clk_debug_create_subtree(clk, rootdir); 422 423 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 424 clk_debug_create_subtree(clk, rootdir); 425 426 inited = 1; 427 428 clk_prepare_unlock(); 429 430 return 0; 431 } 432 late_initcall(clk_debug_init); 433 #else 434 static inline int clk_debug_register(struct clk *clk) { return 0; } 435 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent) 436 { 437 } 438 static inline void clk_debug_unregister(struct clk *clk) 439 { 440 } 441 #endif 442 443 /* caller must hold prepare_lock */ 444 static void clk_unprepare_unused_subtree(struct clk *clk) 445 { 446 struct clk *child; 447 448 if (!clk) 449 return; 450 451 hlist_for_each_entry(child, &clk->children, child_node) 452 clk_unprepare_unused_subtree(child); 453 454 if (clk->prepare_count) 455 return; 456 457 if (clk->flags & CLK_IGNORE_UNUSED) 458 return; 459 460 if (__clk_is_prepared(clk)) { 461 if (clk->ops->unprepare_unused) 462 clk->ops->unprepare_unused(clk->hw); 463 else if (clk->ops->unprepare) 464 clk->ops->unprepare(clk->hw); 465 } 466 } 467 468 /* caller must hold prepare_lock */ 469 static void clk_disable_unused_subtree(struct clk *clk) 470 { 471 struct clk *child; 472 unsigned long flags; 473 474 if (!clk) 475 goto out; 476 477 hlist_for_each_entry(child, &clk->children, child_node) 478 clk_disable_unused_subtree(child); 479 480 flags = clk_enable_lock(); 481 482 if (clk->enable_count) 483 goto unlock_out; 484 485 if (clk->flags & CLK_IGNORE_UNUSED) 486 goto unlock_out; 487 488 /* 489 * some gate clocks have special needs during the disable-unused 490 * sequence. call .disable_unused if available, otherwise fall 491 * back to .disable 492 */ 493 if (__clk_is_enabled(clk)) { 494 if (clk->ops->disable_unused) 495 clk->ops->disable_unused(clk->hw); 496 else if (clk->ops->disable) 497 clk->ops->disable(clk->hw); 498 } 499 500 unlock_out: 501 clk_enable_unlock(flags); 502 503 out: 504 return; 505 } 506 507 static bool clk_ignore_unused; 508 static int __init clk_ignore_unused_setup(char *__unused) 509 { 510 clk_ignore_unused = true; 511 return 1; 512 } 513 __setup("clk_ignore_unused", clk_ignore_unused_setup); 514 515 static int clk_disable_unused(void) 516 { 517 struct clk *clk; 518 519 if (clk_ignore_unused) { 520 pr_warn("clk: Not disabling unused clocks\n"); 521 return 0; 522 } 523 524 clk_prepare_lock(); 525 526 hlist_for_each_entry(clk, &clk_root_list, child_node) 527 clk_disable_unused_subtree(clk); 528 529 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 530 clk_disable_unused_subtree(clk); 531 532 hlist_for_each_entry(clk, &clk_root_list, child_node) 533 clk_unprepare_unused_subtree(clk); 534 535 hlist_for_each_entry(clk, &clk_orphan_list, child_node) 536 clk_unprepare_unused_subtree(clk); 537 538 clk_prepare_unlock(); 539 540 return 0; 541 } 542 late_initcall_sync(clk_disable_unused); 543 544 /*** helper functions ***/ 545 546 const char *__clk_get_name(struct clk *clk) 547 { 548 return !clk ? NULL : clk->name; 549 } 550 EXPORT_SYMBOL_GPL(__clk_get_name); 551 552 struct clk_hw *__clk_get_hw(struct clk *clk) 553 { 554 return !clk ? NULL : clk->hw; 555 } 556 EXPORT_SYMBOL_GPL(__clk_get_hw); 557 558 u8 __clk_get_num_parents(struct clk *clk) 559 { 560 return !clk ? 0 : clk->num_parents; 561 } 562 EXPORT_SYMBOL_GPL(__clk_get_num_parents); 563 564 struct clk *__clk_get_parent(struct clk *clk) 565 { 566 return !clk ? NULL : clk->parent; 567 } 568 EXPORT_SYMBOL_GPL(__clk_get_parent); 569 570 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index) 571 { 572 if (!clk || index >= clk->num_parents) 573 return NULL; 574 else if (!clk->parents) 575 return __clk_lookup(clk->parent_names[index]); 576 else if (!clk->parents[index]) 577 return clk->parents[index] = 578 __clk_lookup(clk->parent_names[index]); 579 else 580 return clk->parents[index]; 581 } 582 EXPORT_SYMBOL_GPL(clk_get_parent_by_index); 583 584 unsigned int __clk_get_enable_count(struct clk *clk) 585 { 586 return !clk ? 0 : clk->enable_count; 587 } 588 589 unsigned int __clk_get_prepare_count(struct clk *clk) 590 { 591 return !clk ? 0 : clk->prepare_count; 592 } 593 594 unsigned long __clk_get_rate(struct clk *clk) 595 { 596 unsigned long ret; 597 598 if (!clk) { 599 ret = 0; 600 goto out; 601 } 602 603 ret = clk->rate; 604 605 if (clk->flags & CLK_IS_ROOT) 606 goto out; 607 608 if (!clk->parent) 609 ret = 0; 610 611 out: 612 return ret; 613 } 614 EXPORT_SYMBOL_GPL(__clk_get_rate); 615 616 unsigned long __clk_get_accuracy(struct clk *clk) 617 { 618 if (!clk) 619 return 0; 620 621 return clk->accuracy; 622 } 623 624 unsigned long __clk_get_flags(struct clk *clk) 625 { 626 return !clk ? 0 : clk->flags; 627 } 628 EXPORT_SYMBOL_GPL(__clk_get_flags); 629 630 bool __clk_is_prepared(struct clk *clk) 631 { 632 int ret; 633 634 if (!clk) 635 return false; 636 637 /* 638 * .is_prepared is optional for clocks that can prepare 639 * fall back to software usage counter if it is missing 640 */ 641 if (!clk->ops->is_prepared) { 642 ret = clk->prepare_count ? 1 : 0; 643 goto out; 644 } 645 646 ret = clk->ops->is_prepared(clk->hw); 647 out: 648 return !!ret; 649 } 650 651 bool __clk_is_enabled(struct clk *clk) 652 { 653 int ret; 654 655 if (!clk) 656 return false; 657 658 /* 659 * .is_enabled is only mandatory for clocks that gate 660 * fall back to software usage counter if .is_enabled is missing 661 */ 662 if (!clk->ops->is_enabled) { 663 ret = clk->enable_count ? 1 : 0; 664 goto out; 665 } 666 667 ret = clk->ops->is_enabled(clk->hw); 668 out: 669 return !!ret; 670 } 671 EXPORT_SYMBOL_GPL(__clk_is_enabled); 672 673 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk) 674 { 675 struct clk *child; 676 struct clk *ret; 677 678 if (!strcmp(clk->name, name)) 679 return clk; 680 681 hlist_for_each_entry(child, &clk->children, child_node) { 682 ret = __clk_lookup_subtree(name, child); 683 if (ret) 684 return ret; 685 } 686 687 return NULL; 688 } 689 690 struct clk *__clk_lookup(const char *name) 691 { 692 struct clk *root_clk; 693 struct clk *ret; 694 695 if (!name) 696 return NULL; 697 698 /* search the 'proper' clk tree first */ 699 hlist_for_each_entry(root_clk, &clk_root_list, child_node) { 700 ret = __clk_lookup_subtree(name, root_clk); 701 if (ret) 702 return ret; 703 } 704 705 /* if not found, then search the orphan tree */ 706 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) { 707 ret = __clk_lookup_subtree(name, root_clk); 708 if (ret) 709 return ret; 710 } 711 712 return NULL; 713 } 714 715 /* 716 * Helper for finding best parent to provide a given frequency. This can be used 717 * directly as a determine_rate callback (e.g. for a mux), or from a more 718 * complex clock that may combine a mux with other operations. 719 */ 720 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate, 721 unsigned long *best_parent_rate, 722 struct clk **best_parent_p) 723 { 724 struct clk *clk = hw->clk, *parent, *best_parent = NULL; 725 int i, num_parents; 726 unsigned long parent_rate, best = 0; 727 728 /* if NO_REPARENT flag set, pass through to current parent */ 729 if (clk->flags & CLK_SET_RATE_NO_REPARENT) { 730 parent = clk->parent; 731 if (clk->flags & CLK_SET_RATE_PARENT) 732 best = __clk_round_rate(parent, rate); 733 else if (parent) 734 best = __clk_get_rate(parent); 735 else 736 best = __clk_get_rate(clk); 737 goto out; 738 } 739 740 /* find the parent that can provide the fastest rate <= rate */ 741 num_parents = clk->num_parents; 742 for (i = 0; i < num_parents; i++) { 743 parent = clk_get_parent_by_index(clk, i); 744 if (!parent) 745 continue; 746 if (clk->flags & CLK_SET_RATE_PARENT) 747 parent_rate = __clk_round_rate(parent, rate); 748 else 749 parent_rate = __clk_get_rate(parent); 750 if (parent_rate <= rate && parent_rate > best) { 751 best_parent = parent; 752 best = parent_rate; 753 } 754 } 755 756 out: 757 if (best_parent) 758 *best_parent_p = best_parent; 759 *best_parent_rate = best; 760 761 return best; 762 } 763 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate); 764 765 /*** clk api ***/ 766 767 void __clk_unprepare(struct clk *clk) 768 { 769 if (!clk) 770 return; 771 772 if (WARN_ON(clk->prepare_count == 0)) 773 return; 774 775 if (--clk->prepare_count > 0) 776 return; 777 778 WARN_ON(clk->enable_count > 0); 779 780 if (clk->ops->unprepare) 781 clk->ops->unprepare(clk->hw); 782 783 __clk_unprepare(clk->parent); 784 } 785 786 /** 787 * clk_unprepare - undo preparation of a clock source 788 * @clk: the clk being unprepared 789 * 790 * clk_unprepare may sleep, which differentiates it from clk_disable. In a 791 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk 792 * if the operation may sleep. One example is a clk which is accessed over 793 * I2c. In the complex case a clk gate operation may require a fast and a slow 794 * part. It is this reason that clk_unprepare and clk_disable are not mutually 795 * exclusive. In fact clk_disable must be called before clk_unprepare. 796 */ 797 void clk_unprepare(struct clk *clk) 798 { 799 if (IS_ERR_OR_NULL(clk)) 800 return; 801 802 clk_prepare_lock(); 803 __clk_unprepare(clk); 804 clk_prepare_unlock(); 805 } 806 EXPORT_SYMBOL_GPL(clk_unprepare); 807 808 int __clk_prepare(struct clk *clk) 809 { 810 int ret = 0; 811 812 if (!clk) 813 return 0; 814 815 if (clk->prepare_count == 0) { 816 ret = __clk_prepare(clk->parent); 817 if (ret) 818 return ret; 819 820 if (clk->ops->prepare) { 821 ret = clk->ops->prepare(clk->hw); 822 if (ret) { 823 __clk_unprepare(clk->parent); 824 return ret; 825 } 826 } 827 } 828 829 clk->prepare_count++; 830 831 return 0; 832 } 833 834 /** 835 * clk_prepare - prepare a clock source 836 * @clk: the clk being prepared 837 * 838 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple 839 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the 840 * operation may sleep. One example is a clk which is accessed over I2c. In 841 * the complex case a clk ungate operation may require a fast and a slow part. 842 * It is this reason that clk_prepare and clk_enable are not mutually 843 * exclusive. In fact clk_prepare must be called before clk_enable. 844 * Returns 0 on success, -EERROR otherwise. 845 */ 846 int clk_prepare(struct clk *clk) 847 { 848 int ret; 849 850 clk_prepare_lock(); 851 ret = __clk_prepare(clk); 852 clk_prepare_unlock(); 853 854 return ret; 855 } 856 EXPORT_SYMBOL_GPL(clk_prepare); 857 858 static void __clk_disable(struct clk *clk) 859 { 860 if (!clk) 861 return; 862 863 if (WARN_ON(clk->enable_count == 0)) 864 return; 865 866 if (--clk->enable_count > 0) 867 return; 868 869 if (clk->ops->disable) 870 clk->ops->disable(clk->hw); 871 872 __clk_disable(clk->parent); 873 } 874 875 /** 876 * clk_disable - gate a clock 877 * @clk: the clk being gated 878 * 879 * clk_disable must not sleep, which differentiates it from clk_unprepare. In 880 * a simple case, clk_disable can be used instead of clk_unprepare to gate a 881 * clk if the operation is fast and will never sleep. One example is a 882 * SoC-internal clk which is controlled via simple register writes. In the 883 * complex case a clk gate operation may require a fast and a slow part. It is 884 * this reason that clk_unprepare and clk_disable are not mutually exclusive. 885 * In fact clk_disable must be called before clk_unprepare. 886 */ 887 void clk_disable(struct clk *clk) 888 { 889 unsigned long flags; 890 891 if (IS_ERR_OR_NULL(clk)) 892 return; 893 894 flags = clk_enable_lock(); 895 __clk_disable(clk); 896 clk_enable_unlock(flags); 897 } 898 EXPORT_SYMBOL_GPL(clk_disable); 899 900 static int __clk_enable(struct clk *clk) 901 { 902 int ret = 0; 903 904 if (!clk) 905 return 0; 906 907 if (WARN_ON(clk->prepare_count == 0)) 908 return -ESHUTDOWN; 909 910 if (clk->enable_count == 0) { 911 ret = __clk_enable(clk->parent); 912 913 if (ret) 914 return ret; 915 916 if (clk->ops->enable) { 917 ret = clk->ops->enable(clk->hw); 918 if (ret) { 919 __clk_disable(clk->parent); 920 return ret; 921 } 922 } 923 } 924 925 clk->enable_count++; 926 return 0; 927 } 928 929 /** 930 * clk_enable - ungate a clock 931 * @clk: the clk being ungated 932 * 933 * clk_enable must not sleep, which differentiates it from clk_prepare. In a 934 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk 935 * if the operation will never sleep. One example is a SoC-internal clk which 936 * is controlled via simple register writes. In the complex case a clk ungate 937 * operation may require a fast and a slow part. It is this reason that 938 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare 939 * must be called before clk_enable. Returns 0 on success, -EERROR 940 * otherwise. 941 */ 942 int clk_enable(struct clk *clk) 943 { 944 unsigned long flags; 945 int ret; 946 947 flags = clk_enable_lock(); 948 ret = __clk_enable(clk); 949 clk_enable_unlock(flags); 950 951 return ret; 952 } 953 EXPORT_SYMBOL_GPL(clk_enable); 954 955 /** 956 * __clk_round_rate - round the given rate for a clk 957 * @clk: round the rate of this clock 958 * @rate: the rate which is to be rounded 959 * 960 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate 961 */ 962 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate) 963 { 964 unsigned long parent_rate = 0; 965 struct clk *parent; 966 967 if (!clk) 968 return 0; 969 970 parent = clk->parent; 971 if (parent) 972 parent_rate = parent->rate; 973 974 if (clk->ops->determine_rate) 975 return clk->ops->determine_rate(clk->hw, rate, &parent_rate, 976 &parent); 977 else if (clk->ops->round_rate) 978 return clk->ops->round_rate(clk->hw, rate, &parent_rate); 979 else if (clk->flags & CLK_SET_RATE_PARENT) 980 return __clk_round_rate(clk->parent, rate); 981 else 982 return clk->rate; 983 } 984 EXPORT_SYMBOL_GPL(__clk_round_rate); 985 986 /** 987 * clk_round_rate - round the given rate for a clk 988 * @clk: the clk for which we are rounding a rate 989 * @rate: the rate which is to be rounded 990 * 991 * Takes in a rate as input and rounds it to a rate that the clk can actually 992 * use which is then returned. If clk doesn't support round_rate operation 993 * then the parent rate is returned. 994 */ 995 long clk_round_rate(struct clk *clk, unsigned long rate) 996 { 997 unsigned long ret; 998 999 clk_prepare_lock(); 1000 ret = __clk_round_rate(clk, rate); 1001 clk_prepare_unlock(); 1002 1003 return ret; 1004 } 1005 EXPORT_SYMBOL_GPL(clk_round_rate); 1006 1007 /** 1008 * __clk_notify - call clk notifier chain 1009 * @clk: struct clk * that is changing rate 1010 * @msg: clk notifier type (see include/linux/clk.h) 1011 * @old_rate: old clk rate 1012 * @new_rate: new clk rate 1013 * 1014 * Triggers a notifier call chain on the clk rate-change notification 1015 * for 'clk'. Passes a pointer to the struct clk and the previous 1016 * and current rates to the notifier callback. Intended to be called by 1017 * internal clock code only. Returns NOTIFY_DONE from the last driver 1018 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if 1019 * a driver returns that. 1020 */ 1021 static int __clk_notify(struct clk *clk, unsigned long msg, 1022 unsigned long old_rate, unsigned long new_rate) 1023 { 1024 struct clk_notifier *cn; 1025 struct clk_notifier_data cnd; 1026 int ret = NOTIFY_DONE; 1027 1028 cnd.clk = clk; 1029 cnd.old_rate = old_rate; 1030 cnd.new_rate = new_rate; 1031 1032 list_for_each_entry(cn, &clk_notifier_list, node) { 1033 if (cn->clk == clk) { 1034 ret = srcu_notifier_call_chain(&cn->notifier_head, msg, 1035 &cnd); 1036 break; 1037 } 1038 } 1039 1040 return ret; 1041 } 1042 1043 /** 1044 * __clk_recalc_accuracies 1045 * @clk: first clk in the subtree 1046 * 1047 * Walks the subtree of clks starting with clk and recalculates accuracies as 1048 * it goes. Note that if a clk does not implement the .recalc_accuracy 1049 * callback then it is assumed that the clock will take on the accuracy of it's 1050 * parent. 1051 * 1052 * Caller must hold prepare_lock. 1053 */ 1054 static void __clk_recalc_accuracies(struct clk *clk) 1055 { 1056 unsigned long parent_accuracy = 0; 1057 struct clk *child; 1058 1059 if (clk->parent) 1060 parent_accuracy = clk->parent->accuracy; 1061 1062 if (clk->ops->recalc_accuracy) 1063 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 1064 parent_accuracy); 1065 else 1066 clk->accuracy = parent_accuracy; 1067 1068 hlist_for_each_entry(child, &clk->children, child_node) 1069 __clk_recalc_accuracies(child); 1070 } 1071 1072 /** 1073 * clk_get_accuracy - return the accuracy of clk 1074 * @clk: the clk whose accuracy is being returned 1075 * 1076 * Simply returns the cached accuracy of the clk, unless 1077 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be 1078 * issued. 1079 * If clk is NULL then returns 0. 1080 */ 1081 long clk_get_accuracy(struct clk *clk) 1082 { 1083 unsigned long accuracy; 1084 1085 clk_prepare_lock(); 1086 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE)) 1087 __clk_recalc_accuracies(clk); 1088 1089 accuracy = __clk_get_accuracy(clk); 1090 clk_prepare_unlock(); 1091 1092 return accuracy; 1093 } 1094 EXPORT_SYMBOL_GPL(clk_get_accuracy); 1095 1096 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate) 1097 { 1098 if (clk->ops->recalc_rate) 1099 return clk->ops->recalc_rate(clk->hw, parent_rate); 1100 return parent_rate; 1101 } 1102 1103 /** 1104 * __clk_recalc_rates 1105 * @clk: first clk in the subtree 1106 * @msg: notification type (see include/linux/clk.h) 1107 * 1108 * Walks the subtree of clks starting with clk and recalculates rates as it 1109 * goes. Note that if a clk does not implement the .recalc_rate callback then 1110 * it is assumed that the clock will take on the rate of its parent. 1111 * 1112 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification, 1113 * if necessary. 1114 * 1115 * Caller must hold prepare_lock. 1116 */ 1117 static void __clk_recalc_rates(struct clk *clk, unsigned long msg) 1118 { 1119 unsigned long old_rate; 1120 unsigned long parent_rate = 0; 1121 struct clk *child; 1122 1123 old_rate = clk->rate; 1124 1125 if (clk->parent) 1126 parent_rate = clk->parent->rate; 1127 1128 clk->rate = clk_recalc(clk, parent_rate); 1129 1130 /* 1131 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE 1132 * & ABORT_RATE_CHANGE notifiers 1133 */ 1134 if (clk->notifier_count && msg) 1135 __clk_notify(clk, msg, old_rate, clk->rate); 1136 1137 hlist_for_each_entry(child, &clk->children, child_node) 1138 __clk_recalc_rates(child, msg); 1139 } 1140 1141 /** 1142 * clk_get_rate - return the rate of clk 1143 * @clk: the clk whose rate is being returned 1144 * 1145 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag 1146 * is set, which means a recalc_rate will be issued. 1147 * If clk is NULL then returns 0. 1148 */ 1149 unsigned long clk_get_rate(struct clk *clk) 1150 { 1151 unsigned long rate; 1152 1153 clk_prepare_lock(); 1154 1155 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE)) 1156 __clk_recalc_rates(clk, 0); 1157 1158 rate = __clk_get_rate(clk); 1159 clk_prepare_unlock(); 1160 1161 return rate; 1162 } 1163 EXPORT_SYMBOL_GPL(clk_get_rate); 1164 1165 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent) 1166 { 1167 int i; 1168 1169 if (!clk->parents) { 1170 clk->parents = kcalloc(clk->num_parents, 1171 sizeof(struct clk *), GFP_KERNEL); 1172 if (!clk->parents) 1173 return -ENOMEM; 1174 } 1175 1176 /* 1177 * find index of new parent clock using cached parent ptrs, 1178 * or if not yet cached, use string name comparison and cache 1179 * them now to avoid future calls to __clk_lookup. 1180 */ 1181 for (i = 0; i < clk->num_parents; i++) { 1182 if (clk->parents[i] == parent) 1183 return i; 1184 1185 if (clk->parents[i]) 1186 continue; 1187 1188 if (!strcmp(clk->parent_names[i], parent->name)) { 1189 clk->parents[i] = __clk_lookup(parent->name); 1190 return i; 1191 } 1192 } 1193 1194 return -EINVAL; 1195 } 1196 1197 static void clk_reparent(struct clk *clk, struct clk *new_parent) 1198 { 1199 hlist_del(&clk->child_node); 1200 1201 if (new_parent) { 1202 /* avoid duplicate POST_RATE_CHANGE notifications */ 1203 if (new_parent->new_child == clk) 1204 new_parent->new_child = NULL; 1205 1206 hlist_add_head(&clk->child_node, &new_parent->children); 1207 } else { 1208 hlist_add_head(&clk->child_node, &clk_orphan_list); 1209 } 1210 1211 clk->parent = new_parent; 1212 } 1213 1214 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent) 1215 { 1216 unsigned long flags; 1217 struct clk *old_parent = clk->parent; 1218 1219 /* 1220 * Migrate prepare state between parents and prevent race with 1221 * clk_enable(). 1222 * 1223 * If the clock is not prepared, then a race with 1224 * clk_enable/disable() is impossible since we already have the 1225 * prepare lock (future calls to clk_enable() need to be preceded by 1226 * a clk_prepare()). 1227 * 1228 * If the clock is prepared, migrate the prepared state to the new 1229 * parent and also protect against a race with clk_enable() by 1230 * forcing the clock and the new parent on. This ensures that all 1231 * future calls to clk_enable() are practically NOPs with respect to 1232 * hardware and software states. 1233 * 1234 * See also: Comment for clk_set_parent() below. 1235 */ 1236 if (clk->prepare_count) { 1237 __clk_prepare(parent); 1238 clk_enable(parent); 1239 clk_enable(clk); 1240 } 1241 1242 /* update the clk tree topology */ 1243 flags = clk_enable_lock(); 1244 clk_reparent(clk, parent); 1245 clk_enable_unlock(flags); 1246 1247 return old_parent; 1248 } 1249 1250 static void __clk_set_parent_after(struct clk *clk, struct clk *parent, 1251 struct clk *old_parent) 1252 { 1253 /* 1254 * Finish the migration of prepare state and undo the changes done 1255 * for preventing a race with clk_enable(). 1256 */ 1257 if (clk->prepare_count) { 1258 clk_disable(clk); 1259 clk_disable(old_parent); 1260 __clk_unprepare(old_parent); 1261 } 1262 } 1263 1264 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index) 1265 { 1266 unsigned long flags; 1267 int ret = 0; 1268 struct clk *old_parent; 1269 1270 old_parent = __clk_set_parent_before(clk, parent); 1271 1272 /* change clock input source */ 1273 if (parent && clk->ops->set_parent) 1274 ret = clk->ops->set_parent(clk->hw, p_index); 1275 1276 if (ret) { 1277 flags = clk_enable_lock(); 1278 clk_reparent(clk, old_parent); 1279 clk_enable_unlock(flags); 1280 1281 if (clk->prepare_count) { 1282 clk_disable(clk); 1283 clk_disable(parent); 1284 __clk_unprepare(parent); 1285 } 1286 return ret; 1287 } 1288 1289 __clk_set_parent_after(clk, parent, old_parent); 1290 1291 return 0; 1292 } 1293 1294 /** 1295 * __clk_speculate_rates 1296 * @clk: first clk in the subtree 1297 * @parent_rate: the "future" rate of clk's parent 1298 * 1299 * Walks the subtree of clks starting with clk, speculating rates as it 1300 * goes and firing off PRE_RATE_CHANGE notifications as necessary. 1301 * 1302 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending 1303 * pre-rate change notifications and returns early if no clks in the 1304 * subtree have subscribed to the notifications. Note that if a clk does not 1305 * implement the .recalc_rate callback then it is assumed that the clock will 1306 * take on the rate of its parent. 1307 * 1308 * Caller must hold prepare_lock. 1309 */ 1310 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate) 1311 { 1312 struct clk *child; 1313 unsigned long new_rate; 1314 int ret = NOTIFY_DONE; 1315 1316 new_rate = clk_recalc(clk, parent_rate); 1317 1318 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */ 1319 if (clk->notifier_count) 1320 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate); 1321 1322 if (ret & NOTIFY_STOP_MASK) { 1323 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n", 1324 __func__, clk->name, ret); 1325 goto out; 1326 } 1327 1328 hlist_for_each_entry(child, &clk->children, child_node) { 1329 ret = __clk_speculate_rates(child, new_rate); 1330 if (ret & NOTIFY_STOP_MASK) 1331 break; 1332 } 1333 1334 out: 1335 return ret; 1336 } 1337 1338 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate, 1339 struct clk *new_parent, u8 p_index) 1340 { 1341 struct clk *child; 1342 1343 clk->new_rate = new_rate; 1344 clk->new_parent = new_parent; 1345 clk->new_parent_index = p_index; 1346 /* include clk in new parent's PRE_RATE_CHANGE notifications */ 1347 clk->new_child = NULL; 1348 if (new_parent && new_parent != clk->parent) 1349 new_parent->new_child = clk; 1350 1351 hlist_for_each_entry(child, &clk->children, child_node) { 1352 child->new_rate = clk_recalc(child, new_rate); 1353 clk_calc_subtree(child, child->new_rate, NULL, 0); 1354 } 1355 } 1356 1357 /* 1358 * calculate the new rates returning the topmost clock that has to be 1359 * changed. 1360 */ 1361 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate) 1362 { 1363 struct clk *top = clk; 1364 struct clk *old_parent, *parent; 1365 unsigned long best_parent_rate = 0; 1366 unsigned long new_rate; 1367 int p_index = 0; 1368 1369 /* sanity */ 1370 if (IS_ERR_OR_NULL(clk)) 1371 return NULL; 1372 1373 /* save parent rate, if it exists */ 1374 parent = old_parent = clk->parent; 1375 if (parent) 1376 best_parent_rate = parent->rate; 1377 1378 /* find the closest rate and parent clk/rate */ 1379 if (clk->ops->determine_rate) { 1380 new_rate = clk->ops->determine_rate(clk->hw, rate, 1381 &best_parent_rate, 1382 &parent); 1383 } else if (clk->ops->round_rate) { 1384 new_rate = clk->ops->round_rate(clk->hw, rate, 1385 &best_parent_rate); 1386 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) { 1387 /* pass-through clock without adjustable parent */ 1388 clk->new_rate = clk->rate; 1389 return NULL; 1390 } else { 1391 /* pass-through clock with adjustable parent */ 1392 top = clk_calc_new_rates(parent, rate); 1393 new_rate = parent->new_rate; 1394 goto out; 1395 } 1396 1397 /* some clocks must be gated to change parent */ 1398 if (parent != old_parent && 1399 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1400 pr_debug("%s: %s not gated but wants to reparent\n", 1401 __func__, clk->name); 1402 return NULL; 1403 } 1404 1405 /* try finding the new parent index */ 1406 if (parent) { 1407 p_index = clk_fetch_parent_index(clk, parent); 1408 if (p_index < 0) { 1409 pr_debug("%s: clk %s can not be parent of clk %s\n", 1410 __func__, parent->name, clk->name); 1411 return NULL; 1412 } 1413 } 1414 1415 if ((clk->flags & CLK_SET_RATE_PARENT) && parent && 1416 best_parent_rate != parent->rate) 1417 top = clk_calc_new_rates(parent, best_parent_rate); 1418 1419 out: 1420 clk_calc_subtree(clk, new_rate, parent, p_index); 1421 1422 return top; 1423 } 1424 1425 /* 1426 * Notify about rate changes in a subtree. Always walk down the whole tree 1427 * so that in case of an error we can walk down the whole tree again and 1428 * abort the change. 1429 */ 1430 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event) 1431 { 1432 struct clk *child, *tmp_clk, *fail_clk = NULL; 1433 int ret = NOTIFY_DONE; 1434 1435 if (clk->rate == clk->new_rate) 1436 return NULL; 1437 1438 if (clk->notifier_count) { 1439 ret = __clk_notify(clk, event, clk->rate, clk->new_rate); 1440 if (ret & NOTIFY_STOP_MASK) 1441 fail_clk = clk; 1442 } 1443 1444 hlist_for_each_entry(child, &clk->children, child_node) { 1445 /* Skip children who will be reparented to another clock */ 1446 if (child->new_parent && child->new_parent != clk) 1447 continue; 1448 tmp_clk = clk_propagate_rate_change(child, event); 1449 if (tmp_clk) 1450 fail_clk = tmp_clk; 1451 } 1452 1453 /* handle the new child who might not be in clk->children yet */ 1454 if (clk->new_child) { 1455 tmp_clk = clk_propagate_rate_change(clk->new_child, event); 1456 if (tmp_clk) 1457 fail_clk = tmp_clk; 1458 } 1459 1460 return fail_clk; 1461 } 1462 1463 /* 1464 * walk down a subtree and set the new rates notifying the rate 1465 * change on the way 1466 */ 1467 static void clk_change_rate(struct clk *clk) 1468 { 1469 struct clk *child; 1470 unsigned long old_rate; 1471 unsigned long best_parent_rate = 0; 1472 bool skip_set_rate = false; 1473 struct clk *old_parent; 1474 1475 old_rate = clk->rate; 1476 1477 if (clk->new_parent) 1478 best_parent_rate = clk->new_parent->rate; 1479 else if (clk->parent) 1480 best_parent_rate = clk->parent->rate; 1481 1482 if (clk->new_parent && clk->new_parent != clk->parent) { 1483 old_parent = __clk_set_parent_before(clk, clk->new_parent); 1484 1485 if (clk->ops->set_rate_and_parent) { 1486 skip_set_rate = true; 1487 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate, 1488 best_parent_rate, 1489 clk->new_parent_index); 1490 } else if (clk->ops->set_parent) { 1491 clk->ops->set_parent(clk->hw, clk->new_parent_index); 1492 } 1493 1494 __clk_set_parent_after(clk, clk->new_parent, old_parent); 1495 } 1496 1497 if (!skip_set_rate && clk->ops->set_rate) 1498 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate); 1499 1500 clk->rate = clk_recalc(clk, best_parent_rate); 1501 1502 if (clk->notifier_count && old_rate != clk->rate) 1503 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate); 1504 1505 hlist_for_each_entry(child, &clk->children, child_node) { 1506 /* Skip children who will be reparented to another clock */ 1507 if (child->new_parent && child->new_parent != clk) 1508 continue; 1509 clk_change_rate(child); 1510 } 1511 1512 /* handle the new child who might not be in clk->children yet */ 1513 if (clk->new_child) 1514 clk_change_rate(clk->new_child); 1515 } 1516 1517 /** 1518 * clk_set_rate - specify a new rate for clk 1519 * @clk: the clk whose rate is being changed 1520 * @rate: the new rate for clk 1521 * 1522 * In the simplest case clk_set_rate will only adjust the rate of clk. 1523 * 1524 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to 1525 * propagate up to clk's parent; whether or not this happens depends on the 1526 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged 1527 * after calling .round_rate then upstream parent propagation is ignored. If 1528 * *parent_rate comes back with a new rate for clk's parent then we propagate 1529 * up to clk's parent and set its rate. Upward propagation will continue 1530 * until either a clk does not support the CLK_SET_RATE_PARENT flag or 1531 * .round_rate stops requesting changes to clk's parent_rate. 1532 * 1533 * Rate changes are accomplished via tree traversal that also recalculates the 1534 * rates for the clocks and fires off POST_RATE_CHANGE notifiers. 1535 * 1536 * Returns 0 on success, -EERROR otherwise. 1537 */ 1538 int clk_set_rate(struct clk *clk, unsigned long rate) 1539 { 1540 struct clk *top, *fail_clk; 1541 int ret = 0; 1542 1543 if (!clk) 1544 return 0; 1545 1546 /* prevent racing with updates to the clock topology */ 1547 clk_prepare_lock(); 1548 1549 /* bail early if nothing to do */ 1550 if (rate == clk_get_rate(clk)) 1551 goto out; 1552 1553 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) { 1554 ret = -EBUSY; 1555 goto out; 1556 } 1557 1558 /* calculate new rates and get the topmost changed clock */ 1559 top = clk_calc_new_rates(clk, rate); 1560 if (!top) { 1561 ret = -EINVAL; 1562 goto out; 1563 } 1564 1565 /* notify that we are about to change rates */ 1566 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE); 1567 if (fail_clk) { 1568 pr_debug("%s: failed to set %s rate\n", __func__, 1569 fail_clk->name); 1570 clk_propagate_rate_change(top, ABORT_RATE_CHANGE); 1571 ret = -EBUSY; 1572 goto out; 1573 } 1574 1575 /* change the rates */ 1576 clk_change_rate(top); 1577 1578 out: 1579 clk_prepare_unlock(); 1580 1581 return ret; 1582 } 1583 EXPORT_SYMBOL_GPL(clk_set_rate); 1584 1585 /** 1586 * clk_get_parent - return the parent of a clk 1587 * @clk: the clk whose parent gets returned 1588 * 1589 * Simply returns clk->parent. Returns NULL if clk is NULL. 1590 */ 1591 struct clk *clk_get_parent(struct clk *clk) 1592 { 1593 struct clk *parent; 1594 1595 clk_prepare_lock(); 1596 parent = __clk_get_parent(clk); 1597 clk_prepare_unlock(); 1598 1599 return parent; 1600 } 1601 EXPORT_SYMBOL_GPL(clk_get_parent); 1602 1603 /* 1604 * .get_parent is mandatory for clocks with multiple possible parents. It is 1605 * optional for single-parent clocks. Always call .get_parent if it is 1606 * available and WARN if it is missing for multi-parent clocks. 1607 * 1608 * For single-parent clocks without .get_parent, first check to see if the 1609 * .parents array exists, and if so use it to avoid an expensive tree 1610 * traversal. If .parents does not exist then walk the tree with __clk_lookup. 1611 */ 1612 static struct clk *__clk_init_parent(struct clk *clk) 1613 { 1614 struct clk *ret = NULL; 1615 u8 index; 1616 1617 /* handle the trivial cases */ 1618 1619 if (!clk->num_parents) 1620 goto out; 1621 1622 if (clk->num_parents == 1) { 1623 if (IS_ERR_OR_NULL(clk->parent)) 1624 ret = clk->parent = __clk_lookup(clk->parent_names[0]); 1625 ret = clk->parent; 1626 goto out; 1627 } 1628 1629 if (!clk->ops->get_parent) { 1630 WARN(!clk->ops->get_parent, 1631 "%s: multi-parent clocks must implement .get_parent\n", 1632 __func__); 1633 goto out; 1634 }; 1635 1636 /* 1637 * Do our best to cache parent clocks in clk->parents. This prevents 1638 * unnecessary and expensive calls to __clk_lookup. We don't set 1639 * clk->parent here; that is done by the calling function 1640 */ 1641 1642 index = clk->ops->get_parent(clk->hw); 1643 1644 if (!clk->parents) 1645 clk->parents = 1646 kcalloc(clk->num_parents, sizeof(struct clk *), 1647 GFP_KERNEL); 1648 1649 ret = clk_get_parent_by_index(clk, index); 1650 1651 out: 1652 return ret; 1653 } 1654 1655 void __clk_reparent(struct clk *clk, struct clk *new_parent) 1656 { 1657 clk_reparent(clk, new_parent); 1658 __clk_recalc_accuracies(clk); 1659 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1660 } 1661 1662 /** 1663 * clk_set_parent - switch the parent of a mux clk 1664 * @clk: the mux clk whose input we are switching 1665 * @parent: the new input to clk 1666 * 1667 * Re-parent clk to use parent as its new input source. If clk is in 1668 * prepared state, the clk will get enabled for the duration of this call. If 1669 * that's not acceptable for a specific clk (Eg: the consumer can't handle 1670 * that, the reparenting is glitchy in hardware, etc), use the 1671 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared. 1672 * 1673 * After successfully changing clk's parent clk_set_parent will update the 1674 * clk topology, sysfs topology and propagate rate recalculation via 1675 * __clk_recalc_rates. 1676 * 1677 * Returns 0 on success, -EERROR otherwise. 1678 */ 1679 int clk_set_parent(struct clk *clk, struct clk *parent) 1680 { 1681 int ret = 0; 1682 int p_index = 0; 1683 unsigned long p_rate = 0; 1684 1685 if (!clk) 1686 return 0; 1687 1688 /* verify ops for for multi-parent clks */ 1689 if ((clk->num_parents > 1) && (!clk->ops->set_parent)) 1690 return -ENOSYS; 1691 1692 /* prevent racing with updates to the clock topology */ 1693 clk_prepare_lock(); 1694 1695 if (clk->parent == parent) 1696 goto out; 1697 1698 /* check that we are allowed to re-parent if the clock is in use */ 1699 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) { 1700 ret = -EBUSY; 1701 goto out; 1702 } 1703 1704 /* try finding the new parent index */ 1705 if (parent) { 1706 p_index = clk_fetch_parent_index(clk, parent); 1707 p_rate = parent->rate; 1708 if (p_index < 0) { 1709 pr_debug("%s: clk %s can not be parent of clk %s\n", 1710 __func__, parent->name, clk->name); 1711 ret = p_index; 1712 goto out; 1713 } 1714 } 1715 1716 /* propagate PRE_RATE_CHANGE notifications */ 1717 ret = __clk_speculate_rates(clk, p_rate); 1718 1719 /* abort if a driver objects */ 1720 if (ret & NOTIFY_STOP_MASK) 1721 goto out; 1722 1723 /* do the re-parent */ 1724 ret = __clk_set_parent(clk, parent, p_index); 1725 1726 /* propagate rate an accuracy recalculation accordingly */ 1727 if (ret) { 1728 __clk_recalc_rates(clk, ABORT_RATE_CHANGE); 1729 } else { 1730 __clk_recalc_rates(clk, POST_RATE_CHANGE); 1731 __clk_recalc_accuracies(clk); 1732 } 1733 1734 out: 1735 clk_prepare_unlock(); 1736 1737 return ret; 1738 } 1739 EXPORT_SYMBOL_GPL(clk_set_parent); 1740 1741 /** 1742 * __clk_init - initialize the data structures in a struct clk 1743 * @dev: device initializing this clk, placeholder for now 1744 * @clk: clk being initialized 1745 * 1746 * Initializes the lists in struct clk, queries the hardware for the 1747 * parent and rate and sets them both. 1748 */ 1749 int __clk_init(struct device *dev, struct clk *clk) 1750 { 1751 int i, ret = 0; 1752 struct clk *orphan; 1753 struct hlist_node *tmp2; 1754 1755 if (!clk) 1756 return -EINVAL; 1757 1758 clk_prepare_lock(); 1759 1760 /* check to see if a clock with this name is already registered */ 1761 if (__clk_lookup(clk->name)) { 1762 pr_debug("%s: clk %s already initialized\n", 1763 __func__, clk->name); 1764 ret = -EEXIST; 1765 goto out; 1766 } 1767 1768 /* check that clk_ops are sane. See Documentation/clk.txt */ 1769 if (clk->ops->set_rate && 1770 !((clk->ops->round_rate || clk->ops->determine_rate) && 1771 clk->ops->recalc_rate)) { 1772 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n", 1773 __func__, clk->name); 1774 ret = -EINVAL; 1775 goto out; 1776 } 1777 1778 if (clk->ops->set_parent && !clk->ops->get_parent) { 1779 pr_warning("%s: %s must implement .get_parent & .set_parent\n", 1780 __func__, clk->name); 1781 ret = -EINVAL; 1782 goto out; 1783 } 1784 1785 if (clk->ops->set_rate_and_parent && 1786 !(clk->ops->set_parent && clk->ops->set_rate)) { 1787 pr_warn("%s: %s must implement .set_parent & .set_rate\n", 1788 __func__, clk->name); 1789 ret = -EINVAL; 1790 goto out; 1791 } 1792 1793 /* throw a WARN if any entries in parent_names are NULL */ 1794 for (i = 0; i < clk->num_parents; i++) 1795 WARN(!clk->parent_names[i], 1796 "%s: invalid NULL in %s's .parent_names\n", 1797 __func__, clk->name); 1798 1799 /* 1800 * Allocate an array of struct clk *'s to avoid unnecessary string 1801 * look-ups of clk's possible parents. This can fail for clocks passed 1802 * in to clk_init during early boot; thus any access to clk->parents[] 1803 * must always check for a NULL pointer and try to populate it if 1804 * necessary. 1805 * 1806 * If clk->parents is not NULL we skip this entire block. This allows 1807 * for clock drivers to statically initialize clk->parents. 1808 */ 1809 if (clk->num_parents > 1 && !clk->parents) { 1810 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *), 1811 GFP_KERNEL); 1812 /* 1813 * __clk_lookup returns NULL for parents that have not been 1814 * clk_init'd; thus any access to clk->parents[] must check 1815 * for a NULL pointer. We can always perform lazy lookups for 1816 * missing parents later on. 1817 */ 1818 if (clk->parents) 1819 for (i = 0; i < clk->num_parents; i++) 1820 clk->parents[i] = 1821 __clk_lookup(clk->parent_names[i]); 1822 } 1823 1824 clk->parent = __clk_init_parent(clk); 1825 1826 /* 1827 * Populate clk->parent if parent has already been __clk_init'd. If 1828 * parent has not yet been __clk_init'd then place clk in the orphan 1829 * list. If clk has set the CLK_IS_ROOT flag then place it in the root 1830 * clk list. 1831 * 1832 * Every time a new clk is clk_init'd then we walk the list of orphan 1833 * clocks and re-parent any that are children of the clock currently 1834 * being clk_init'd. 1835 */ 1836 if (clk->parent) 1837 hlist_add_head(&clk->child_node, 1838 &clk->parent->children); 1839 else if (clk->flags & CLK_IS_ROOT) 1840 hlist_add_head(&clk->child_node, &clk_root_list); 1841 else 1842 hlist_add_head(&clk->child_node, &clk_orphan_list); 1843 1844 /* 1845 * Set clk's accuracy. The preferred method is to use 1846 * .recalc_accuracy. For simple clocks and lazy developers the default 1847 * fallback is to use the parent's accuracy. If a clock doesn't have a 1848 * parent (or is orphaned) then accuracy is set to zero (perfect 1849 * clock). 1850 */ 1851 if (clk->ops->recalc_accuracy) 1852 clk->accuracy = clk->ops->recalc_accuracy(clk->hw, 1853 __clk_get_accuracy(clk->parent)); 1854 else if (clk->parent) 1855 clk->accuracy = clk->parent->accuracy; 1856 else 1857 clk->accuracy = 0; 1858 1859 /* 1860 * Set clk's rate. The preferred method is to use .recalc_rate. For 1861 * simple clocks and lazy developers the default fallback is to use the 1862 * parent's rate. If a clock doesn't have a parent (or is orphaned) 1863 * then rate is set to zero. 1864 */ 1865 if (clk->ops->recalc_rate) 1866 clk->rate = clk->ops->recalc_rate(clk->hw, 1867 __clk_get_rate(clk->parent)); 1868 else if (clk->parent) 1869 clk->rate = clk->parent->rate; 1870 else 1871 clk->rate = 0; 1872 1873 clk_debug_register(clk); 1874 /* 1875 * walk the list of orphan clocks and reparent any that are children of 1876 * this clock 1877 */ 1878 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) { 1879 if (orphan->num_parents && orphan->ops->get_parent) { 1880 i = orphan->ops->get_parent(orphan->hw); 1881 if (!strcmp(clk->name, orphan->parent_names[i])) 1882 __clk_reparent(orphan, clk); 1883 continue; 1884 } 1885 1886 for (i = 0; i < orphan->num_parents; i++) 1887 if (!strcmp(clk->name, orphan->parent_names[i])) { 1888 __clk_reparent(orphan, clk); 1889 break; 1890 } 1891 } 1892 1893 /* 1894 * optional platform-specific magic 1895 * 1896 * The .init callback is not used by any of the basic clock types, but 1897 * exists for weird hardware that must perform initialization magic. 1898 * Please consider other ways of solving initialization problems before 1899 * using this callback, as its use is discouraged. 1900 */ 1901 if (clk->ops->init) 1902 clk->ops->init(clk->hw); 1903 1904 kref_init(&clk->ref); 1905 out: 1906 clk_prepare_unlock(); 1907 1908 return ret; 1909 } 1910 1911 /** 1912 * __clk_register - register a clock and return a cookie. 1913 * 1914 * Same as clk_register, except that the .clk field inside hw shall point to a 1915 * preallocated (generally statically allocated) struct clk. None of the fields 1916 * of the struct clk need to be initialized. 1917 * 1918 * The data pointed to by .init and .clk field shall NOT be marked as init 1919 * data. 1920 * 1921 * __clk_register is only exposed via clk-private.h and is intended for use with 1922 * very large numbers of clocks that need to be statically initialized. It is 1923 * a layering violation to include clk-private.h from any code which implements 1924 * a clock's .ops; as such any statically initialized clock data MUST be in a 1925 * separate C file from the logic that implements its operations. Returns 0 1926 * on success, otherwise an error code. 1927 */ 1928 struct clk *__clk_register(struct device *dev, struct clk_hw *hw) 1929 { 1930 int ret; 1931 struct clk *clk; 1932 1933 clk = hw->clk; 1934 clk->name = hw->init->name; 1935 clk->ops = hw->init->ops; 1936 clk->hw = hw; 1937 clk->flags = hw->init->flags; 1938 clk->parent_names = hw->init->parent_names; 1939 clk->num_parents = hw->init->num_parents; 1940 if (dev && dev->driver) 1941 clk->owner = dev->driver->owner; 1942 else 1943 clk->owner = NULL; 1944 1945 ret = __clk_init(dev, clk); 1946 if (ret) 1947 return ERR_PTR(ret); 1948 1949 return clk; 1950 } 1951 EXPORT_SYMBOL_GPL(__clk_register); 1952 1953 /** 1954 * clk_register - allocate a new clock, register it and return an opaque cookie 1955 * @dev: device that is registering this clock 1956 * @hw: link to hardware-specific clock data 1957 * 1958 * clk_register is the primary interface for populating the clock tree with new 1959 * clock nodes. It returns a pointer to the newly allocated struct clk which 1960 * cannot be dereferenced by driver code but may be used in conjuction with the 1961 * rest of the clock API. In the event of an error clk_register will return an 1962 * error code; drivers must test for an error code after calling clk_register. 1963 */ 1964 struct clk *clk_register(struct device *dev, struct clk_hw *hw) 1965 { 1966 int i, ret; 1967 struct clk *clk; 1968 1969 clk = kzalloc(sizeof(*clk), GFP_KERNEL); 1970 if (!clk) { 1971 pr_err("%s: could not allocate clk\n", __func__); 1972 ret = -ENOMEM; 1973 goto fail_out; 1974 } 1975 1976 clk->name = kstrdup(hw->init->name, GFP_KERNEL); 1977 if (!clk->name) { 1978 pr_err("%s: could not allocate clk->name\n", __func__); 1979 ret = -ENOMEM; 1980 goto fail_name; 1981 } 1982 clk->ops = hw->init->ops; 1983 if (dev && dev->driver) 1984 clk->owner = dev->driver->owner; 1985 clk->hw = hw; 1986 clk->flags = hw->init->flags; 1987 clk->num_parents = hw->init->num_parents; 1988 hw->clk = clk; 1989 1990 /* allocate local copy in case parent_names is __initdata */ 1991 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *), 1992 GFP_KERNEL); 1993 1994 if (!clk->parent_names) { 1995 pr_err("%s: could not allocate clk->parent_names\n", __func__); 1996 ret = -ENOMEM; 1997 goto fail_parent_names; 1998 } 1999 2000 2001 /* copy each string name in case parent_names is __initdata */ 2002 for (i = 0; i < clk->num_parents; i++) { 2003 clk->parent_names[i] = kstrdup(hw->init->parent_names[i], 2004 GFP_KERNEL); 2005 if (!clk->parent_names[i]) { 2006 pr_err("%s: could not copy parent_names\n", __func__); 2007 ret = -ENOMEM; 2008 goto fail_parent_names_copy; 2009 } 2010 } 2011 2012 ret = __clk_init(dev, clk); 2013 if (!ret) 2014 return clk; 2015 2016 fail_parent_names_copy: 2017 while (--i >= 0) 2018 kfree(clk->parent_names[i]); 2019 kfree(clk->parent_names); 2020 fail_parent_names: 2021 kfree(clk->name); 2022 fail_name: 2023 kfree(clk); 2024 fail_out: 2025 return ERR_PTR(ret); 2026 } 2027 EXPORT_SYMBOL_GPL(clk_register); 2028 2029 /* 2030 * Free memory allocated for a clock. 2031 * Caller must hold prepare_lock. 2032 */ 2033 static void __clk_release(struct kref *ref) 2034 { 2035 struct clk *clk = container_of(ref, struct clk, ref); 2036 int i = clk->num_parents; 2037 2038 kfree(clk->parents); 2039 while (--i >= 0) 2040 kfree(clk->parent_names[i]); 2041 2042 kfree(clk->parent_names); 2043 kfree(clk->name); 2044 kfree(clk); 2045 } 2046 2047 /* 2048 * Empty clk_ops for unregistered clocks. These are used temporarily 2049 * after clk_unregister() was called on a clock and until last clock 2050 * consumer calls clk_put() and the struct clk object is freed. 2051 */ 2052 static int clk_nodrv_prepare_enable(struct clk_hw *hw) 2053 { 2054 return -ENXIO; 2055 } 2056 2057 static void clk_nodrv_disable_unprepare(struct clk_hw *hw) 2058 { 2059 WARN_ON_ONCE(1); 2060 } 2061 2062 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate, 2063 unsigned long parent_rate) 2064 { 2065 return -ENXIO; 2066 } 2067 2068 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index) 2069 { 2070 return -ENXIO; 2071 } 2072 2073 static const struct clk_ops clk_nodrv_ops = { 2074 .enable = clk_nodrv_prepare_enable, 2075 .disable = clk_nodrv_disable_unprepare, 2076 .prepare = clk_nodrv_prepare_enable, 2077 .unprepare = clk_nodrv_disable_unprepare, 2078 .set_rate = clk_nodrv_set_rate, 2079 .set_parent = clk_nodrv_set_parent, 2080 }; 2081 2082 /** 2083 * clk_unregister - unregister a currently registered clock 2084 * @clk: clock to unregister 2085 */ 2086 void clk_unregister(struct clk *clk) 2087 { 2088 unsigned long flags; 2089 2090 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2091 return; 2092 2093 clk_prepare_lock(); 2094 2095 if (clk->ops == &clk_nodrv_ops) { 2096 pr_err("%s: unregistered clock: %s\n", __func__, clk->name); 2097 goto out; 2098 } 2099 /* 2100 * Assign empty clock ops for consumers that might still hold 2101 * a reference to this clock. 2102 */ 2103 flags = clk_enable_lock(); 2104 clk->ops = &clk_nodrv_ops; 2105 clk_enable_unlock(flags); 2106 2107 if (!hlist_empty(&clk->children)) { 2108 struct clk *child; 2109 struct hlist_node *t; 2110 2111 /* Reparent all children to the orphan list. */ 2112 hlist_for_each_entry_safe(child, t, &clk->children, child_node) 2113 clk_set_parent(child, NULL); 2114 } 2115 2116 clk_debug_unregister(clk); 2117 2118 hlist_del_init(&clk->child_node); 2119 2120 if (clk->prepare_count) 2121 pr_warn("%s: unregistering prepared clock: %s\n", 2122 __func__, clk->name); 2123 2124 kref_put(&clk->ref, __clk_release); 2125 out: 2126 clk_prepare_unlock(); 2127 } 2128 EXPORT_SYMBOL_GPL(clk_unregister); 2129 2130 static void devm_clk_release(struct device *dev, void *res) 2131 { 2132 clk_unregister(*(struct clk **)res); 2133 } 2134 2135 /** 2136 * devm_clk_register - resource managed clk_register() 2137 * @dev: device that is registering this clock 2138 * @hw: link to hardware-specific clock data 2139 * 2140 * Managed clk_register(). Clocks returned from this function are 2141 * automatically clk_unregister()ed on driver detach. See clk_register() for 2142 * more information. 2143 */ 2144 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw) 2145 { 2146 struct clk *clk; 2147 struct clk **clkp; 2148 2149 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL); 2150 if (!clkp) 2151 return ERR_PTR(-ENOMEM); 2152 2153 clk = clk_register(dev, hw); 2154 if (!IS_ERR(clk)) { 2155 *clkp = clk; 2156 devres_add(dev, clkp); 2157 } else { 2158 devres_free(clkp); 2159 } 2160 2161 return clk; 2162 } 2163 EXPORT_SYMBOL_GPL(devm_clk_register); 2164 2165 static int devm_clk_match(struct device *dev, void *res, void *data) 2166 { 2167 struct clk *c = res; 2168 if (WARN_ON(!c)) 2169 return 0; 2170 return c == data; 2171 } 2172 2173 /** 2174 * devm_clk_unregister - resource managed clk_unregister() 2175 * @clk: clock to unregister 2176 * 2177 * Deallocate a clock allocated with devm_clk_register(). Normally 2178 * this function will not need to be called and the resource management 2179 * code will ensure that the resource is freed. 2180 */ 2181 void devm_clk_unregister(struct device *dev, struct clk *clk) 2182 { 2183 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk)); 2184 } 2185 EXPORT_SYMBOL_GPL(devm_clk_unregister); 2186 2187 /* 2188 * clkdev helpers 2189 */ 2190 int __clk_get(struct clk *clk) 2191 { 2192 if (clk) { 2193 if (!try_module_get(clk->owner)) 2194 return 0; 2195 2196 kref_get(&clk->ref); 2197 } 2198 return 1; 2199 } 2200 2201 void __clk_put(struct clk *clk) 2202 { 2203 if (!clk || WARN_ON_ONCE(IS_ERR(clk))) 2204 return; 2205 2206 clk_prepare_lock(); 2207 kref_put(&clk->ref, __clk_release); 2208 clk_prepare_unlock(); 2209 2210 module_put(clk->owner); 2211 } 2212 2213 /*** clk rate change notifiers ***/ 2214 2215 /** 2216 * clk_notifier_register - add a clk rate change notifier 2217 * @clk: struct clk * to watch 2218 * @nb: struct notifier_block * with callback info 2219 * 2220 * Request notification when clk's rate changes. This uses an SRCU 2221 * notifier because we want it to block and notifier unregistrations are 2222 * uncommon. The callbacks associated with the notifier must not 2223 * re-enter into the clk framework by calling any top-level clk APIs; 2224 * this will cause a nested prepare_lock mutex. 2225 * 2226 * In all notification cases cases (pre, post and abort rate change) the 2227 * original clock rate is passed to the callback via struct 2228 * clk_notifier_data.old_rate and the new frequency is passed via struct 2229 * clk_notifier_data.new_rate. 2230 * 2231 * clk_notifier_register() must be called from non-atomic context. 2232 * Returns -EINVAL if called with null arguments, -ENOMEM upon 2233 * allocation failure; otherwise, passes along the return value of 2234 * srcu_notifier_chain_register(). 2235 */ 2236 int clk_notifier_register(struct clk *clk, struct notifier_block *nb) 2237 { 2238 struct clk_notifier *cn; 2239 int ret = -ENOMEM; 2240 2241 if (!clk || !nb) 2242 return -EINVAL; 2243 2244 clk_prepare_lock(); 2245 2246 /* search the list of notifiers for this clk */ 2247 list_for_each_entry(cn, &clk_notifier_list, node) 2248 if (cn->clk == clk) 2249 break; 2250 2251 /* if clk wasn't in the notifier list, allocate new clk_notifier */ 2252 if (cn->clk != clk) { 2253 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL); 2254 if (!cn) 2255 goto out; 2256 2257 cn->clk = clk; 2258 srcu_init_notifier_head(&cn->notifier_head); 2259 2260 list_add(&cn->node, &clk_notifier_list); 2261 } 2262 2263 ret = srcu_notifier_chain_register(&cn->notifier_head, nb); 2264 2265 clk->notifier_count++; 2266 2267 out: 2268 clk_prepare_unlock(); 2269 2270 return ret; 2271 } 2272 EXPORT_SYMBOL_GPL(clk_notifier_register); 2273 2274 /** 2275 * clk_notifier_unregister - remove a clk rate change notifier 2276 * @clk: struct clk * 2277 * @nb: struct notifier_block * with callback info 2278 * 2279 * Request no further notification for changes to 'clk' and frees memory 2280 * allocated in clk_notifier_register. 2281 * 2282 * Returns -EINVAL if called with null arguments; otherwise, passes 2283 * along the return value of srcu_notifier_chain_unregister(). 2284 */ 2285 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb) 2286 { 2287 struct clk_notifier *cn = NULL; 2288 int ret = -EINVAL; 2289 2290 if (!clk || !nb) 2291 return -EINVAL; 2292 2293 clk_prepare_lock(); 2294 2295 list_for_each_entry(cn, &clk_notifier_list, node) 2296 if (cn->clk == clk) 2297 break; 2298 2299 if (cn->clk == clk) { 2300 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb); 2301 2302 clk->notifier_count--; 2303 2304 /* XXX the notifier code should handle this better */ 2305 if (!cn->notifier_head.head) { 2306 srcu_cleanup_notifier_head(&cn->notifier_head); 2307 list_del(&cn->node); 2308 kfree(cn); 2309 } 2310 2311 } else { 2312 ret = -ENOENT; 2313 } 2314 2315 clk_prepare_unlock(); 2316 2317 return ret; 2318 } 2319 EXPORT_SYMBOL_GPL(clk_notifier_unregister); 2320 2321 #ifdef CONFIG_OF 2322 /** 2323 * struct of_clk_provider - Clock provider registration structure 2324 * @link: Entry in global list of clock providers 2325 * @node: Pointer to device tree node of clock provider 2326 * @get: Get clock callback. Returns NULL or a struct clk for the 2327 * given clock specifier 2328 * @data: context pointer to be passed into @get callback 2329 */ 2330 struct of_clk_provider { 2331 struct list_head link; 2332 2333 struct device_node *node; 2334 struct clk *(*get)(struct of_phandle_args *clkspec, void *data); 2335 void *data; 2336 }; 2337 2338 static const struct of_device_id __clk_of_table_sentinel 2339 __used __section(__clk_of_table_end); 2340 2341 static LIST_HEAD(of_clk_providers); 2342 static DEFINE_MUTEX(of_clk_mutex); 2343 2344 /* of_clk_provider list locking helpers */ 2345 void of_clk_lock(void) 2346 { 2347 mutex_lock(&of_clk_mutex); 2348 } 2349 2350 void of_clk_unlock(void) 2351 { 2352 mutex_unlock(&of_clk_mutex); 2353 } 2354 2355 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec, 2356 void *data) 2357 { 2358 return data; 2359 } 2360 EXPORT_SYMBOL_GPL(of_clk_src_simple_get); 2361 2362 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data) 2363 { 2364 struct clk_onecell_data *clk_data = data; 2365 unsigned int idx = clkspec->args[0]; 2366 2367 if (idx >= clk_data->clk_num) { 2368 pr_err("%s: invalid clock index %d\n", __func__, idx); 2369 return ERR_PTR(-EINVAL); 2370 } 2371 2372 return clk_data->clks[idx]; 2373 } 2374 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get); 2375 2376 /** 2377 * of_clk_add_provider() - Register a clock provider for a node 2378 * @np: Device node pointer associated with clock provider 2379 * @clk_src_get: callback for decoding clock 2380 * @data: context pointer for @clk_src_get callback. 2381 */ 2382 int of_clk_add_provider(struct device_node *np, 2383 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec, 2384 void *data), 2385 void *data) 2386 { 2387 struct of_clk_provider *cp; 2388 int ret; 2389 2390 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL); 2391 if (!cp) 2392 return -ENOMEM; 2393 2394 cp->node = of_node_get(np); 2395 cp->data = data; 2396 cp->get = clk_src_get; 2397 2398 mutex_lock(&of_clk_mutex); 2399 list_add(&cp->link, &of_clk_providers); 2400 mutex_unlock(&of_clk_mutex); 2401 pr_debug("Added clock from %s\n", np->full_name); 2402 2403 ret = of_clk_set_defaults(np, true); 2404 if (ret < 0) 2405 of_clk_del_provider(np); 2406 2407 return ret; 2408 } 2409 EXPORT_SYMBOL_GPL(of_clk_add_provider); 2410 2411 /** 2412 * of_clk_del_provider() - Remove a previously registered clock provider 2413 * @np: Device node pointer associated with clock provider 2414 */ 2415 void of_clk_del_provider(struct device_node *np) 2416 { 2417 struct of_clk_provider *cp; 2418 2419 mutex_lock(&of_clk_mutex); 2420 list_for_each_entry(cp, &of_clk_providers, link) { 2421 if (cp->node == np) { 2422 list_del(&cp->link); 2423 of_node_put(cp->node); 2424 kfree(cp); 2425 break; 2426 } 2427 } 2428 mutex_unlock(&of_clk_mutex); 2429 } 2430 EXPORT_SYMBOL_GPL(of_clk_del_provider); 2431 2432 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec) 2433 { 2434 struct of_clk_provider *provider; 2435 struct clk *clk = ERR_PTR(-EPROBE_DEFER); 2436 2437 /* Check if we have such a provider in our array */ 2438 list_for_each_entry(provider, &of_clk_providers, link) { 2439 if (provider->node == clkspec->np) 2440 clk = provider->get(clkspec, provider->data); 2441 if (!IS_ERR(clk)) 2442 break; 2443 } 2444 2445 return clk; 2446 } 2447 2448 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec) 2449 { 2450 struct clk *clk; 2451 2452 mutex_lock(&of_clk_mutex); 2453 clk = __of_clk_get_from_provider(clkspec); 2454 mutex_unlock(&of_clk_mutex); 2455 2456 return clk; 2457 } 2458 2459 int of_clk_get_parent_count(struct device_node *np) 2460 { 2461 return of_count_phandle_with_args(np, "clocks", "#clock-cells"); 2462 } 2463 EXPORT_SYMBOL_GPL(of_clk_get_parent_count); 2464 2465 const char *of_clk_get_parent_name(struct device_node *np, int index) 2466 { 2467 struct of_phandle_args clkspec; 2468 struct property *prop; 2469 const char *clk_name; 2470 const __be32 *vp; 2471 u32 pv; 2472 int rc; 2473 int count; 2474 2475 if (index < 0) 2476 return NULL; 2477 2478 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index, 2479 &clkspec); 2480 if (rc) 2481 return NULL; 2482 2483 index = clkspec.args_count ? clkspec.args[0] : 0; 2484 count = 0; 2485 2486 /* if there is an indices property, use it to transfer the index 2487 * specified into an array offset for the clock-output-names property. 2488 */ 2489 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) { 2490 if (index == pv) { 2491 index = count; 2492 break; 2493 } 2494 count++; 2495 } 2496 2497 if (of_property_read_string_index(clkspec.np, "clock-output-names", 2498 index, 2499 &clk_name) < 0) 2500 clk_name = clkspec.np->name; 2501 2502 of_node_put(clkspec.np); 2503 return clk_name; 2504 } 2505 EXPORT_SYMBOL_GPL(of_clk_get_parent_name); 2506 2507 struct clock_provider { 2508 of_clk_init_cb_t clk_init_cb; 2509 struct device_node *np; 2510 struct list_head node; 2511 }; 2512 2513 static LIST_HEAD(clk_provider_list); 2514 2515 /* 2516 * This function looks for a parent clock. If there is one, then it 2517 * checks that the provider for this parent clock was initialized, in 2518 * this case the parent clock will be ready. 2519 */ 2520 static int parent_ready(struct device_node *np) 2521 { 2522 int i = 0; 2523 2524 while (true) { 2525 struct clk *clk = of_clk_get(np, i); 2526 2527 /* this parent is ready we can check the next one */ 2528 if (!IS_ERR(clk)) { 2529 clk_put(clk); 2530 i++; 2531 continue; 2532 } 2533 2534 /* at least one parent is not ready, we exit now */ 2535 if (PTR_ERR(clk) == -EPROBE_DEFER) 2536 return 0; 2537 2538 /* 2539 * Here we make assumption that the device tree is 2540 * written correctly. So an error means that there is 2541 * no more parent. As we didn't exit yet, then the 2542 * previous parent are ready. If there is no clock 2543 * parent, no need to wait for them, then we can 2544 * consider their absence as being ready 2545 */ 2546 return 1; 2547 } 2548 } 2549 2550 /** 2551 * of_clk_init() - Scan and init clock providers from the DT 2552 * @matches: array of compatible values and init functions for providers. 2553 * 2554 * This function scans the device tree for matching clock providers 2555 * and calls their initialization functions. It also does it by trying 2556 * to follow the dependencies. 2557 */ 2558 void __init of_clk_init(const struct of_device_id *matches) 2559 { 2560 const struct of_device_id *match; 2561 struct device_node *np; 2562 struct clock_provider *clk_provider, *next; 2563 bool is_init_done; 2564 bool force = false; 2565 2566 if (!matches) 2567 matches = &__clk_of_table; 2568 2569 /* First prepare the list of the clocks providers */ 2570 for_each_matching_node_and_match(np, matches, &match) { 2571 struct clock_provider *parent = 2572 kzalloc(sizeof(struct clock_provider), GFP_KERNEL); 2573 2574 parent->clk_init_cb = match->data; 2575 parent->np = np; 2576 list_add_tail(&parent->node, &clk_provider_list); 2577 } 2578 2579 while (!list_empty(&clk_provider_list)) { 2580 is_init_done = false; 2581 list_for_each_entry_safe(clk_provider, next, 2582 &clk_provider_list, node) { 2583 if (force || parent_ready(clk_provider->np)) { 2584 2585 clk_provider->clk_init_cb(clk_provider->np); 2586 of_clk_set_defaults(clk_provider->np, true); 2587 2588 list_del(&clk_provider->node); 2589 kfree(clk_provider); 2590 is_init_done = true; 2591 } 2592 } 2593 2594 /* 2595 * We didn't manage to initialize any of the 2596 * remaining providers during the last loop, so now we 2597 * initialize all the remaining ones unconditionally 2598 * in case the clock parent was not mandatory 2599 */ 2600 if (!is_init_done) 2601 force = true; 2602 } 2603 } 2604 #endif 2605